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Abstract 
 

Satisfying the constancy condition is required in advective solvers. A violation to this condition in a 

numerical tranport scheme can create instabilities. The constancy condition is satisfied when flow 

coefficients are conservative and there is consistency between the discretization of the flow 

equations and that of the transport equation.  

The inputs obtained from a solver or other sources don't necessarily satisfy the flow equation which 

is consistent with the underlying transport numerical scheme. Orthogonal projection methods are 

developed to correct these inputs so as to be conservative. These methods are first developed in the 

context of the finite volume scheme of the divergence free velocity equation. Then they are adopted 

in the context of shallow water flow. A major difference now is that several choices of variables to 

be corrected are possible. 

Simulations for some test problems of shallow water flow show that the constancy condition can be 

achieved by means of these projection methods, even under for large Courant numbers. Despite that, 

there are some important aspects that need concern :  

1. The positivity of water depth cannot always be ensured 

2. Choice of variables to be corrected seems to depend on their original value  
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1. Introduction 
Advective transport, in the absence of sources or sinks, will satisfy the property of constancy 

condition, i.e. a constant solution at t = 0 will reproduce the similar solution in next instances. A 

violation to this condition in the numerical scheme can create instabilities [1]. The constancy 

condition is satisfied when flow coefficients are conservative and there is a consistency between the 

discretization of continuity equation and that of transport equation [2]. In the finite volume scheme 

of advection transport within incompressible flow, the normal velocity needs to be numerically 

divergence free to ensure this constancy condition.  

A given velocity field, however, doesn’t always meet the divergence free condition. Such 

inputs might not be conservative. Our goal is to determine a small correction such that the new 

input meets the divergence free condition. In the implementation of finite volume in advective 

transport, computation can be done using the normal velocity or flux at faces instead of the full 

velocity field. To achieve zero divergence it is necessary to preserve zero net flux within cells. An 

iterative procedure to modify the flux in order to achieve the divergence freedom has been 

implemented in [3] and [4]. It attempts to make a slight modification such that the new normal 

velocity can be maintained as close as possible to the original normal velocity. It turns out that this 

procedure is in fact an example of an orthogonal projection method. In this thesis some orthogonal 

projection methods are developed in a general sense and applied to obtain a nearby divergence free 

velocity field. Similar to above, iterative procedures are necessary to solve the projection equations. 

 Shallow water flow is a special case of incompressible flow and also here the constancy 

condition needs to be satisfied in its transport computation. Beside velocity, the corresponding 

continuity equation now contains the water depth and it changes dynamically in time. So the 

velocity is no longer the only variable that can be corrected. The correction can be done to either 

velocity only, water depth only or both of them. Accordingly, for each choice a corresponding 

orthogonal projection method can be developed.  

 The outline of this report is as follows. Chapter 2 gives the construction of finite volume 

scheme of the advection transport and describes the requirement of a numerical divergence free 

condition as a result of the necessity of constancy condition. In Chapter 3, the concept of orthogonal 

projection methods is developed to cope with the numerical divergence free condition. Iterative 

methods for solving the correction equations are presented and some examples are discussed.  

Chapter 4 is devoted to a more specific case of incompressible flow, i.e. shallow water flow. 
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Orthogonal projection methods are developed for this case. Also in this chapter, two test problems 

are introduced to be attacked by the orthogonal projection methods. The corresponding numerical 

results are given in Chapter 5. The final section is Chapter 6 which gives some conclusions 

regarding the results of this investigation and some recommendation for further research. 
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2. Finite Volume Scheme of Transport Equation & Constancy 
Condition 
This chapter discusses the construction of a finite volume scheme for advective transport and 

describes the requirement of a numerical divergence free condition in its transport computation in 

order to satisfy constancy condition. Afterward an iterative procedure of flux correction to recover 

the divergence free condition is given.  

 

2.1 Geometry of Face 

A finite volume mesh divides a domain into a partition of cells and the boundary of a cell is 

set by its faces. The convention used in the geometry of mesh is essential in the formalization of a 

finite volume scheme.  

In 2D domain, a face is determined by its end points which are in an order arranged in the 

mesh description. The unit normal ne on the face e is taken such that the normal points to the right if 

the face is looked from the end point 1 to the end point 2.  

 

   

 

 
Figure 2.1: The convention of the vector normal of a face 

 

 

 

 

 
Figure 2.2: The face normals for a cell 

 

The face normals of a cell are always taken outward as seen in Figure 2.2. Consequently, 

two cells sharing the same face will have different signs for their face normals. As for the face e in 

Figure 2.1, there holds e
V
e nn =1~  and e

V
e nn −=2~  for which 1~V

en and 2~V
en are the face normal of face e 

for cell V1 and V2 respectively.  

ñe1 ñe2 

ñe3 

e1 
e2 

e3 

e
V1 

1

ne 
V2 

2
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For any cell V sharing the face e, we define  

 

  
⎪⎩

⎪
⎨
⎧

−=

=
=

e
V
e

e
V
e

nn

nn
eV ~ if,1

~ if,0
),(α  

2.2 Advection Equation 

The equation governing the advection transport in incompressible flow, with the absence of sources 

and sinks, is given in the following general form  

 

 0)~.( =∇+
∂
∂ cu

t
c  (2.1) 

 

where c is the concentration of substance contained in the fluid (per unit volume) and u~  denotes the 

velocity field of the flow.  

 

2.3 Consistency of Discretization 

Integrating the equation (2.1) over a volume grid cell V and applying Green’s divergence 

theorem leads to the next relation  

 

 dSnuccdV
t S

V

V ∫∫ −=
∂
∂ )~.~(  (2.2) 

 

where S is the boundary enclosing V and Vn~  is the outward unit normal vector to S.  

In a grid cell, the right hand side is the sum of integrals over all faces of the cell,  

 

 ∑∫∫
∈

=
Ve

S

V
n

S

V

e

dScudSnuc )~.~(  (2.3) 

 

where VV
n nuu ~.~=  is the normal velocity to faces in the cell V. The integral is then approximated by 

e
V
ee luc  for which ce, V

eu , and le are respectively the concentration at face e, the normal velocity at 
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face e outward the cell V and the area of face e. The normal velocity V
eu is taken as V

e
V
n nuu ~.~= at the 

face midpoint. 

The average concentration of the cell V is 
V

dVc
c V

V Δ
= ∫  , ΔV being the volume of cell V. The 

semi-discrete of (2.2) now turns into 

 ∑
∈

−=Δ
Ve

e
V
ee

V luc
dt

dc
V  (2.4) 

 

The discrete formula (2.4) needs to be completed by presenting a formula expressing ce as a 

function of surrounding cell center values Vc . In the present context, it is not necessary to present 

further details at this point.  

 

The definition of consistency of discretization is given by [1] and the references therein : a 

discretization of the advection equation is consistent with continuity if, given a spatially uniform 

scalar field as an initial datum, and a general flow field, the discretized scalar advection equation 

reduces to the discretized continuity equation. 

By that definition, the simplified form of discretized continuity equation with which (2.4) is 

consistent can be found by applying a uniform scalar field. Substituting a constant solution c = 1 in 

(2.4) yields   

  

 0=∑
∈Ve

e
V
e lu  (2.5) 

 

This equation is also the representation of the finite volume discretization of divergence-free 

velocity, 0. =∇ ur . Suppose that the discretized conservative flow equation leads to the numerical 

divergence free of (2.5), the discretized advection (2.4) is consistent with continuity.   

 

2.3 Constancy Condition 

The constancy condition is satisfied when the flow coefficients are conservative and the 

consistency between flow and transport equation is guaranteed [2]. The equation (2.4) has been 
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shown to be consistent with (2.5). Furthermore as the term e
V
e lu  is equivalent to the flux through the 

face e, the flow coefficients can also be regarded as flux instead of normal velocity. Accordingly, 

(2.4) can meet the constancy condition when the fluxes or normal velocities at faces satisfy the zero 

divergence equation (2.5).  

In many cases, the given velocity field doesn’t necessarily achieve zero divergence when 

applied to a developed numerical scheme, thus it is of importance to do a slight modification to the 

flow coefficients so as to satisfy (2.5). In the next section, an iterative procedure is presented to 

perform the flux modification. This method will be the main concern in the rest of this report.   

 

2.4 Endlich’s Iterative Procedure of Flux Correction  

In this section a procedure is described to make the flux satisfying the zero divergence 

equation. The idea is based on Endlich method [3,4], but now with flux modification instead of 

velocity modification. This choice is made to comply with the requirement of the finite volume 

scheme.  

Instead of using V
eu , (2.5) will be expressed in term of the normal velocity on the face e 

which is approximated by ee nuu .~=  at the midpoint of face e. The equation (2.5) can now be 

written as 

 

 ( ) 01 ),( =−∑
∈Ve

ee
eV luα   

 

Defining fe = uele as the flux through the face e, the last equation becomes  

 

 ( ) 01 ),( =−∑
∈Ve

e
eV fα  (2.6) 

 

The left hand side of (2.6) which will be later denoted as FTV, is the net outflow flux from 

the cell V. The iterative procedure will be applied to modify fe until the net flux FTV = 0 is 

accomplished up to a certain tolerance.  

It is often required to retain the value of flux on the boundary faces. For this reason, it is 

necessary to have a boundary indicator for every face e, 
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⎩
⎨
⎧

=
otherwise,1

faceboundary  a is  if,0 e
eβ  

 

The procedure can be performed with one of the following two different iterative methods, 

namely the sequential or parallel method. Let ncells be the number of cells in the domain and nfbV 

be the number of boundary faces on the cell V. The sequential method will lead the iterative 

procedure with the following two steps for V = 1,…,ncells : 

1. Compute FTV  

2.  Compute for every face e∈V the new values of flux 

( ) eVV

V
eV

ee nfbnfaces
FTff βα

−
−−= ),(1   

 

This method computes the net outflow flux using the newest values of the flux whereas the parallel 

method does it using the flux in the previous iteration. With the parallel method, the iterative 

procedure consists of the following steps : 

 

1. Compute FTV for V = 1,…,ncells  

2.  Compute the new values of flux for V = 1,…,ncells and for every face e∈V   

 ( ) eVV

V
eV

ee nfbnfaces
FTff βα

−
−−= ),(1  

 

 For any method, applying the two steps for a single cell only will result in (2.6). In general, 

the flux is modified more than once while looping over all cells, so the procedure seeks to reduce 

the value of  FT. The procedure is stopped when the maximum value of FT over all cells is smaller 

than a tolerance ε.  
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3. Projection Formulation of Divergence Free Velocity Equation 
The concept of orthogonal projection methods is developed in this chapter to cope with the 

numerical divergence free condition. Iterative methods for solving the correction equations in 

projection methods are presented and some examples are discussed.  

3.1 Finite Volume representation of velocity correction  

The Finite Volume scheme of divergence free velocity (2.6), which is expressed in terms of 

fluxes at faces, can be arranged in the matrix equation 

 

 0=LF  (3.1) 

 

where nvolnfaceL ℜ→ℜ:  is the discrete divergence operator and F is the vector of fluxes at faces. In 

general there holds nface > nvol and (3.1) presents an undetermined system.   

It can also be written using normal velocity at faces since flux is equal to the normal velocity 

times the area of the face. In 2D grid, the area is given by the length of the face. If we store the 

information of the face length in a diagonal matrix D, (3.1) can be written as  

 

 0=LDq  (3.2) 

 

where q is the vector of normal velocities at faces.  

Due to some possibilities such as different discretization schemes, a given normal velocity 

q~ at faces might not satisfy (3.2). The main objective now is therefore, to recover the discrete 

equation (3.2) by presenting a new normal velocity q which is obtained from the correction of the 

given normal velocity. Taking q′  as the correction applied to q~ , the following relation follows : 

 

 qqq ′+= ~  (3.3) 

 

The velocity correction must take into account the boundary conditions, which requires the 

values of some fluxes or normal velocities to be fixed. Let q1 corresponds to the faces on which the 

flux correction is applied and q2 be the fixed normal velocity ( 22
~qq = ), (3.2) can be decomposed as  
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 0222111 =+ qDLqDL  (3.4) 

 

with  [ ]21 LLL =  , ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

0
0

D
D

D , and ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

q
q

q  

 

Combining (3.3) & (3.4) and knowing that 22
~qq =  leads to  

)~~(
0)~~(

0~)~(

222111111

222111111

2221111

qDLqDLqDL
qDLqDLqDL

qDLqqDL

+−=′
=++′

=+′+
 

 

 qLDrrqDL qq
~; ~~111 −==′  (3.5) 

 

3.2. Scalar Field Formulation  

Let E denotes the diagonal matrix containing the distance between two centers of the cells sharing 

the same face. We define a vector of quantities S as   

 

    EqS =   

 

Setting ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

0
0

E
E

E  where E1 and E2 correspond to the faces of corrected and fixed fluxes 

respectively, we then have  

111 qES =  

 

The correction of quantity 111 qES ′=′  is assumed to depend upon a scalar field ϕ  via  

 

    ϕTMS =′1   
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Here, nvolℜ∈ϕ  is a scalar field related to volumes and nfacenvolTM ℜ→ℜ: is an operator 

transferring volume information to face information. It follows that   

 

 ϕTMEq 1
11
−=′  (3.6) 

 

Of course, a question arising is how to choose the matrix M. We will serve this question later on. 

 

Remark :  

If we choose M = L, then (3.6) reads 

 

ϕGq =′1   ,  G = E-1LT 

 

It can be seen that G presents a discretization of the gradient. Against this background assuming 

ϕTMS =′1   is related to the Helmholtz decomposition of vector fields.  

  

3.3 System of Equations 

The equations (3.3), (3.5) and (3.6) can be brought together into a system of matrix equation  

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

11

11

11

~
0'

0
0
00

q

r

q
q

II
EM
DL q

T
&&&ϕ

 (3.7) 

 

where  

qLDrq
~

~ −= . 

 

An equivalent system is  

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

11

11
~
0'

0
0
00

q

r

q
q

II
EM

A q
T

&&&ϕ
 (3.8) 
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with  
TMEDLA 1

111
−=    

 

We can now rewrite the system of equations into a single equation :  

 

 q
T rAMEqq ~

11
111

~ −−+=  (3.9) 

 

or in terms of flux as  

 

 q
T rAMEDFF ~

11
1111

~ −−+=  (3.10) 

 

3.4. Orthogonal Projection  

The specific form of (3.9) or (3.10) depends on the choice of matrix M. There are four special 

choices of matrix M, each having its own objective.  

3.4.1 Minimal flux correction  

Choosing 1
1

11 EDLM −=  turns (3.10) into    

 

 T
q

T LLArALFF 11~
1

111 ;~ =+= −  (3.11) 

 q
TT

q
T rLLLrALF ~

1
111~

1
11 )( −− ==′  (3.12) 

 

Recall equation (3.5) in flux form : 

 

 qrFL ~11 =′  (3.13) 

 

The orthogonal projections RF ,1′  and NF ,1′  of 1F ′ into the row space )( 1
TLℜ  and the null space 

N(L1) respectively are represented by : 
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q
TTTT

R rLLLFLLLLF ~
1

11111
1

111,1 )()( −− ==′=′  

 ( ) 11
1

111,1 )( FLLLLF TT
N ′−Ι=′ −  

 

It is obvious that with this choice of M, the correction 1F ′ is represented by its projection on the 

row space only. Since we have NF ,1′  = 0, the length of flux correction ′
1F  is minimized.  

  

3.4.2 Minimal velocity correction   

From (3.9), the choice of 111 EDLM =  results in 

 
T

q
T

q
T

DLDLArADLq

rALDqq

))((;)(~

~

1111~
1

111

~
1

1111

=+=

+=
−

−

 (3.14) 

 

 ( ) q
TT rDLDLDLq ~

1
1111111 ))(()( −

=′  (3.15) 

 

′
1q in (3.15) is the orthogonal projection of normal velocity correction on the row space ( )TDL )( 11ℜ  

and according to (3.5), it represents the minimal length of normal velocity correction ′
1q . 

Writing (3.14) in terms of flux :  

 

 ( ) T
q

T DLDLArADLDFF ))((;~
1111~

1
11111 =+= −  (3.16) 

 

3.4.3 Minimal shear correction  

We have defined the correction of a quantity in a mesh as 111 qES ′=′ . If we assume that its faces 

are perpendicular to faces of its dual mesh and its cell centers coincide with vertices of the dual 

mesh, then 1S ′ contains the correction of shears on the dual mesh. See figure 3.1. 
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Figure 3.1: Primary & dual mesh 

 

The equation (3.5) can also be written as  

 

( ) qLDrrqEEDL qq
~; ~~11

1
111 −==′−  

 qs rSL ~1 =′  (3.17) 

 

with  1
111
−= EDLLs  

 

Now let us choose 1
111
−== EDLLM s .  Left-multiplying (3.9) by E1 :  

 

q
T

s rALSS ~
1

11
~ −+=  ;  ( ) T

ss
T LLEDLEDLA == −− 1

111
1

111  

 ( ) q
T

ss
T

s rLLLS ~
1

1

−
=′  (3.18) 

 

The expression (3.18) represents the projection of solution of (3.17) on the row space ( )T
sLℜ , 

hence resulting in the minimal length of correction ′
1S .  

The normal velocity and flux with this projection are given by   

 

 
1

111~
11

1111

~
11

111

;;~
~

−−−

−−

==+=

+=

EDLLLLArALEDFF

rALEqq

s
T
ssq

T
s

q
T
s  (3.19) 

 

dual 
mesh 

primary 
mesh 

nfp 

nfp = face normal of primary face 
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3.4.4 Correction of zero curl  

Let us define ( )eTL ϕ1  as the row equation in ϕTL1  which corresponds with the face e. Now consider 

Fig. 3.2. For the face e, we have  

 

 ( ) 211 ϕϕϕ −=e
TL  (3.20) 

 

 

   

 

 
Figure 3.2: Face e 

 

Next see Fig. 3.3. Consider all faces that meet in the vertex P of the primary mesh :    

    

 

 

 

 

 
Figure 3.3: Mesh around point P 

 

There holds  

 ( ) 014433221

4

1
1 =−+−+−+−=∑

=

ϕϕϕϕϕϕϕϕϕ
i

f
T

i
L  (3.21) 

 

We assume there exists a mesh like in Figure 3.3 where vertices of the dual mesh coincide 

with cell centers of the primary mesh and faces of the dual mesh are perpendicular to those of 

primary mesh. We denote the cell of the dual mesh with V ′ and the face of the dual mesh with .if ′  

We see that the tangent to the face if ′are identical to the normal inf  of the primary mesh (or only 

different in the sign). Let 111 qES ′=′ as before. The curl discretization (see Appendix) of velocity 

correction within the cell V ′which surrounds P then reads :   

e
V1 

1

ne 
V2 

2

dual 
mesh

primary 
mesh 

fi =  i-th face of the primary mesh 
nfi = face normal of i-th face of the primary mesh 
cj = cell - j  

P 

c4 

c1 c2 

c3 

nf4   
nf1   

nf2   
f4   f1   

f2   f3   
nf3   
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 ( )
4321 11111 ffffV SSSSSC ′′′′′ ′+′+′+′=′  (3.22) 

 

Taking ϕTLS 11 = , it follows from (3.22) and (3.21) that  

 

 01 =ϕTCL  

 

This is valid for arbitraryϕ , thus 01 =TCL . 

It is clear now that choosing M = L1 leads to zero curl in the dual mesh with correction equations  

 

 
q

T

T
q

T

rALEDFF

LEDLArALEqq

~
1

1
1

1111

1
1

111~
1

1
1

111
~

;~

−−

−−−

+=

=+=
 (3.23) 

 

The projection solutions presented by (3.11), (3.16), (3.19), and (3.23) require the solution 

of qrA &&&=ϕ . The matrix A is symmetric for the first three projection methods. In the zero curl 

correction, A is symmetric only if a regular grid is applied to the domain of problem.  

 When we deal with a regular grid or a problem in 1D, all those projection methods reduce to 

the minimal flux correction. In the later discussion, we focus on this method only. If we don’t 

mention a specific type of projection method, then the term ‘the projection method’ or ‘the 

projection technique’ will refer to the method of minimal flux correction. 

If our grid has a huge amount of cells, a direct method for the inversion might not be 

feasible. The next sections of this chapter are related to some iterative methods implemented for 

solving this φ equation.  

 

3.5. The Endlich’s Iterative Procedure Revisited 

The solution of FrA ~=ϕ  can be iteratively computed with Jacobi method as follows :  
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ii

l
il

il
i

F

i a

kar
k

⎥
⎦

⎤
⎢
⎣

⎡
−

=+
∑
≠

)(
)1(

~ ϕ
ϕ  (3.24) 

 

where aij (i = 1,2,…., nvol  and  j = 1,2,…, nvol) is an element of matrix A.   

 

We rewrite (3.12) :   

 

 ϕT
F

T LrALF 1~
1

11 ==′ − ;      FLrF

~
~ −=  (3.25) 

 

 

 
Figure 3.4: Face a 

 

Equation (3.25) constitutes a set of equations related to all faces of the grid, and every single 

equation corresponds to a specific face. Accordingly, by considering Figure 3.4, we can determine 

the equation for the face a as follows : 
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Substituting every corresponding ϕ  with (3.24): 
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The corrected flux at iteration k and k+1 are obtained after the corrections   : 
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from which we can get the relation  
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The last term in the right hand side can be elaborated using (3.26) :  
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where )(kFTi  and )(kFTj are respectively the net flux in the cell-i and cell-j at iteration k.  

The corrected flux (3.27) is now expressed as  
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or in the following form with 0),( =aiα  and 1),( =ajα , 
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Elements aii and ajj of A = L1L1
T denote the number of corrected fluxes corresponding to cell i and j 

respectively. It is now evident that the Jacobi method of minimal flux correction is equivalent to the 

Endlich’s parallel iterative procedure. 

One can also demonstrate that the Gauss Seidel method of minimal flux correction is 

equivalent to the Endlich’s sequential iterative procedure 

 

3.6. Some numerical results by Endlich’s Procedure  

In this section, we rewrite some results obtained in Internship [5] that concern the projection 

method. Two test problems are included here, each having non-zero numerical velocity divergence 

for the given initial data of velocity. The recovery of the divergence free condition was performed 

using the Endlich’s parallel and sequential procedures, which were just mentioned to be equivalent 

to the orthogonal projection technique using Jacobi and Gauss Seidel method respectively.  

The first test problem is presented as a close relevance to the nature and solved with the 

sequential procedure. It will be shown that this Gauss Seidel-type projection method is not fast 

enough in its convergence aspect. The second test problem is given to study the limit solution of the 

Endlich’s parallel procedure in connection to its 1D analysis.  

 

3.6.1 Sand Layer 

The domain of sand layer is presented in the Figure 3.5. The flow is considered as quasi-1D 

in this layer. Thus a good approximation of the velocity can be found by assuming the vertical 

component velocity to be zero and by replacing the horizontal component of the velocity by its 

vertical average. This is commonly approximated by applying the integrated mass balance over the 

full vertical in the sand layer which yields velocity field )0),(( xuq =   

 Yet that approximation doesn’t satisfy the boundary conditions in the sand layer where there 

is a need of zero normal velocity on the boundary. Another approximation is found by setting 
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x
xuyxuq )(),( . This velocity satisfies both the local mass balance as well as the boundary 

condition at the upper and lower boundary. 

 Based on the last approximation, the velocity field (u,v) in the sand layer reads  
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The profile of this velocity is displayed in the Figure 3.6. In this test example, we retain the value 

on the boundaries and consequently no correction on the fluxes is allowed on the boundaries. The 

value taken on the left and the right boundary is therefore (u,v) = (20,0). On the top and bottom 

boundary, the zero normal velocity is zero. It can be verified that, analytically, the divergence of the 

velocity is zero. But some numerical schemes, when using the value of these analytical functions, 

will present a nonzero divergence around discontinuity lines x = -5, x = 0 and x = 5.   
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Figure 3.5: Domain of sand layer 
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Figure 3.6: Velocity field in the sand layer 

 

3.6.2 Results 

For this sand layer problem, a triangular mesh of 2244 cells and 3488 faces is applied to the 

problem domain. When the original velocity field is used in the finite volume scheme, the numerical 

divergence at cells of discontinuity is far from zero. Figure 3.7 depicts this.  
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Figure 3.7: Numerical divergence of original velocity in the sand layer 

 

The cells coinciding with the discontinuity points (x = -5, x = 0, x = 5) give high divergence which 

is caused by the flux difference between faces having different velocity.  
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As mentioned before, for this problem the computational procedure of flux modification is 

implemented using the sequential method. Figure 3.8 illustrates the convergence of the 

computational procedure and presents the logarithmic plot of L∞-norm of divergence.  
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Figure 3.8: Log L∞-norm of divergence 

 

This iterative procedure can recover the numerical divergence free up to the tolerance of 10-6 within 

36127 iterations, but this performance is slow with respect to the convergence. Starting from 

iteration k = 71, the convergence ratio is never again below 0.998. Figure 3.9 gives us an obvious 

outlook of this. 
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Figure 3.9: convergence speed 

 

Large corrections to the flux are made around the discontinuity points. This is shown in the contour 

of the correction of the normal velocity at faces, given in Figure 3.10.  
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Figure 3.10: Contour of normal velocity correction 

 

 The procedure deals with normal velocity components only. Having the corrected normal 

components, a full velocity field can be recovered using the technique in [6], by which the velocity 

field can be uniquely determined once the total flux is zero. The corrected full velocity field 

resulting from this technique is presented in Figure 3.11. Figure 3.12 gives the velocity field 

correction, which is the difference between the original and corrected velocity field, in a substantial 

part of domain. Considerably large corrections to the velocity field are made around the 

discontinuity points.  
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Figure 3.11: Numerically divergence free velocity field 
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Figure 3.12: Correction of velocity field (small domain, around discontinuity points) 

 

3.6.3 One Dimensional Problem 

In the second test problem, the focus is on the limit solution. The domain is given in Figure 

3.13, while the velocity profile is as follows :  

everywherev

yxu
yxu

;0

10,15.0;0
10,5.00;1

=

≤≤≤<=
≤≤≤≤=

 

 

0 0.2 0.4 0.6 0.8 10.5

0

0.2

0.4

0.6

0.8

1

x

y

 
Figure 3.13: Problem Domain 
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An equidistant square grid is used for the computational purpose. The numerical 

computation using the original velocity profile results in nonzero divergence around discontinuity 

points. This is given in Figure 3.14. 
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Figure 3.14: Numerical divergence within  cells before any correction 

 
 

Choosing the parallel method as the iterative procedure will not give any change on the flux 

at horizontal faces because the net flux in the neighbouring cells will cancel each other. In Figure 

3.15, the horizontal face e is shared by two cells in the same column, namely cell-1and cell-2 with 

net fluxes FT1 and FT2 respectively. Because of residing on the same column, there holds FT1 = FT2. 

At the iteration - k, the flux at face e will be corrected according to the parallel procedure as follows  
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Beside that, there is no flux through the face e (fluxe = 0) as the consequence of zero normal velocity. 

Therefore the net flux within a cell is only affected by fluxes through the vertical faces only. The 

numerical scheme in these cases can then be considered as resulting from 1D numerical 

computation.  

The next subsection will give the implementation results of the parallel iterative procedure. 

In this experiment, the flux correction is allowed to take place on the left and right boundary.  

 

3.6.4 Results 

In [5], a 1 D analysis has been done on this test problem. A zero velocity divergence in 1D 

implies a solution of constant velocity. When flux correction is allowed to take place on the left and 

right boundary of the domain, the solution that minimizes the L2-norm of the velocity correction (Δu) 

is given by  

 u(x) = 
2
1 , x є [0,1] (3.29) 

 

The numerical results using the parallel procedure are given in two plots of Figure 3.16. 

Figure 3.16(a) shows that the L∞ of the divergence of velocity converges to zero. Figure 3.16(b) 

presents the plot of normal velocity at faces when a divergence free condition with tolerance 10-5 is 

achieved. It has been discussed earlier that at horizontal faces, the normal velocity will remain zero. 

This is why we found many points with exactly zero normal velocity in that figure. The normal 

velocity at vertical faces, which is the main interest in our concern, goes to a constant limit solution 

of 0.5. 
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For the vertical faces, the horizontal velocity equals the normal velocity. Thus the limit 

solution given by the numerical computation satisfies the 1D analysis. This implies the procedure 

converges to a limit solution that minimizes the L2-norm of  Δu. 

 
 

3.7. Comparison of Iterative Methods 

In the last section, the orthogonal projection technique using Gauss Seidel suffered from a 

slow convergence. Then it is a good idea to check the performance of other iterative methods. In 

this section, the performance of four iterative methods in solving the projection equation will be 

compared. These methods are Jacobi (Endlich’s parallel procedure), Gauss Seidel (Endlich’s 

sequential procedure), Symmetric Successive Overrelaxation (SSOR), and Conjugate Gradient (CG). 

For the implementation, we rely upon MATLAB. Moreover, for CG, we use the MATLAB standard 

routine pcg. With respect to SSOR, we have chosen to start off with 20 Gauss Seidel iterations. This 

enables an estimation of the spectral radius of the Gauss Seidel iteration matrix and, next, to 

determine an estimation of ωopt [7].    

 For this purpose, the second test problem from the previous section is used. The stopping 

criterion for all the iterative methods is chosen such that the residual ≤ 1.5e-7. This residual is 

chosen instead of the maximum divergence over cells because we want to focus on the solution of 

the projection equation which delivers φ as the output. However, for checking we compute the final 

max-div as well.   

 The results appear in Table 3-1 & 3-2. The Conjugate Gradient (CG) method is better than 

the rest in the sense of computational time and number of iteration. At this point, it is reasonable to 

apply a preconditioner to this best method and see whether it can give considerable effect. This 

method is well known as Preconditioning Conjugate Gradient (PCG).  

Table 3-3 shows the performance of PCG and it shows less iterations but poorer 

computational time. A refinement on the grid reveals a significant impact to the computational time. 

This could be a major drawback in time-dependent computations. For this reason, we will use the 

Conjugate Gradient Method in the time dependent computation in later sections. 
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Table 3-1 Jacobi  & Gauss Seidel  

Jacobi Gauss Seidel Grid 

n.iter Time Max(Div) n.iter Time Max(Div) 

100x100 56571 116.516 2.1236e-6 Out of Memory 

60x60 20943 16.016 1.6457e-6 10474 573.25 1.6596e-6 

40x 40 9555 3.6090 1.3434e-6 4779 72.735 1.3628e-6 

20x20 2532 0.2970 9.5085e-7 1268 1.4220 9.7065e-7 

10x10 691 0.0630 6.6154e-7 347 0.0620 6.9103e-7 

 

 
Table 3-2 SSOR & Conjugate Gradient (CG) 

SSOR Conjugate Gradient Grid 

n.iter Time Max(Div) n.iter Time Max(Div) 

100x100 Out Of Memory 144 0.8910 3.4448e-6 

60x60 830 263.719 9.5318e-6 86 0.2180 1.3318e-6 

40x 40 448 29.203 6.4521e-6 56 0.0780 7.9987e-7 

20x20 184 0.9380 3.1254e-6 24 0.0310 1.4252e-7 

10x10 87 0.0470 1.2421e-6 10 0.0150 1.9469e-9 

 
           Table 3-3 Preconditioned Conjugate Gradient (PCG) 

PCG Grid 

n.iter Time Max(Div) 

100x100 6 1.7030 3.4448e-6 

60x60 4 0.3600 1.4797e-6 

40x 40 3 0.1250 1.7325e-6 

20x 20 2 0.0470 1.0038e-6 

10x10 2 0.0310 9.0099e-9 
 

 
In the above implementation, the MATLAB routine pcg is run by first building the matrix A of the 

projection equation. MATLAB also provides another means to run this routine, i.e. the matrix free 

technique. Table 3-4 presents the performance of this matrix free Conjugate Gradient method and it 
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appears that the conventional technique (building the matrix A) is somewhat faster. So we will 

choose the conventional technique while running the Conjugate Gradient.    

 
Table 3-4 Matrix-free Conjugate Gradient  

Matrix free Conjugate Gradient Grid 

n.iter Time Max(Div) 

100x100 144 1.0000 3.4479e-6 

60x60 86 0.2340 1.3303e-6 

40x 40 56 0.1410 8.0060e-7 

20x 20 24 0.0320 1.4269e-7 

10x10 10 0.0150 1.9377e-9 
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4. Projection Schemes For The Depth-Averaged Transport 
Equation 

In the last chapter, the concept of orthogonal projection methods has been developed under the 

realm of a divergence free velocity equation. In this chapter, the idea is expanded to the case of 

shallow water flow. Then two test problems of shallow water flow are introduced in the last section. 

4.1 Introduction  

The continuity equation of depth-averaged shallow water flow can be derived from the divergence 

free velocity equation, 0. =∇ u  by averaging over the vertical. 

The derivation can be found in many references such as [8]. The equation reads 

 

 ( ) 0=∇+
∂
∂ UH

t
h  (4.1) 

 

where U is depth averaged velocity, h is the water elevation measured from the reference level 

while H=h+d is the total water depth.  

 

 
Figure 4.1 Shallow water flow  

 

It is expressed in 2D flow by  
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whereas in 1D flow :  

 

 ( )[ ] 0=
∂
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x
hdu

t
h  (4.3) 

 

In the case where the width is constant, the 1D shallow water equation can be expressed in terms of 

water discharge,  
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where B is the width and BhduuAQ x )( +==  

  

4.2 Projection Scheme for Shallow Water Equation 

The generic transport equation of shallow water flow associated with (4.1) reads :  
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t
Hc  (4.5) 

 

where c is the concentration of the transported substance in the water.  

The finite volume semi-discretization of the transport equation is  
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where A is the area of the cell, He is the water depth at face e and the other terms remain the same as 

in the previous chapter.  

Using the Crank Nicholson method to approximate the time derivative, (4.6) turns into  
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For simplicity, we will use superscript 0 to indicate the old time level and no superscript for the new 

time level :  
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Substituting c =1 reduces (4.7) into  
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The depth of reference level d doesn’t change in time, hence ΔH = Δh and the last equation 

becomes  
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One can verify that this is the equation resulting from the finite volume discretization of (4.1) using 

the implicit trapezoidal rule. Now, choosing Equation (4.8) as the discrete continuity equation 

automatically determines the consistency between the flow and transport computation. Now it 

remains to provide the conservative inputs ue and He that satisfy (4.8).  

 

The role of projection method, as described in the previous chapter, is to correct the given 

coefficients in the staggered grid so as to make them conservative. The requirement data in a control 

volume is at least having the water elevation (hcell) at cell center and water depth (He) and velocity 

(ue) at the face centers. From the solver one usually obtains data of water elevation at the cell center. 

The water depth at face centers can then be obtained from the interpolation of water elevation at cell 

centers. But this is beyond the scope of our investigation. We just assume that, by any means, the 

water depth (or water discharge) at the face center are known.  

 

We write (4.8) by arranging the coefficients of new time level in the left hand side :  
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Because this is a time dependent computation, we propose to do the correction on the coefficients of 

new time level and keep the value of old time level. In fact, on the old time level the original values 

are always taken. The alternative is to take the previously corrected data but this has the danger of 

drifting away too far as time goes on. 

 

While in the divergence free velocity equation the correction is performed only on the normal 

velocity, there are more choices for the continuity equation (4.9). Three choices of correction are 

possible in every cell, i.e. :  

 

1. Correcting the value
cellt

hA ⎟
⎠
⎞

⎜
⎝
⎛

Δ
 at the cell center and the discharge flux (Qe = ueHele).at the face.  

2. Correcting the normal velocity ue or discharge Qe at the face and retaining the value of water 

depth. 

3. Correcting the water elevation hcell at cell center and total water depth He at face while retaining 

the value of normal velocity. 

 

For the first choice, we cannot use the primary variables as the corrected coefficients because 

otherwise we will deal with a problem in a nonlinear system. If this is the case, then our projection 

methods can not be applied. 

 

There might be a situation when the available data at the face center is discharge Qe instead of ue 

and He. Given this condition, the second choice becomes correcting the water discharge Qe and the 

third does correcting the water elevation hcell only. 

 

4.2.1 Correcting the coefficients at cell centers and face centers 

To formulate the correction scheme based on the first choice, we use Qe to represent ueHele in the 

discrete continuity equation :  
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Based on the Equation (4.10) for each cell, we formulate a matrix equation  

 

 gLF =  (4.11) 

where 
T

nfee
nccellcell

QQh
t
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t
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⎜
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Δ
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......  is the vector of coefficients at cell 

centers and face centers, and g is the vector of right hand side of (4.9). The size of matrix L is 

therefore nc x (nc+nf).  

 

Having (4.10), we can adopt the technique used in the former chapter (basic idea of orthogonal 

projection methods) to formulate the correction equation. The constraint of boundary conditions 

entails no correction on some fluxes at the boundary. Let’s denote F1 as the vector of coefficients 

that needs correction and F2 as the vector of coefficients whose values have been fixed as the 

original data. If nfb is the number of coefficient that is not corrected, then we can arrange a matrix 

L1 of the size ncc x (ncc + nfc -nfb) and a matrix L2 of the size ncc x nfb such that (4.11) can be 

decomposed into  

 gFLFL =+ 2211  (4.12) 

 

Let 1
~F and 1F ′ be the original data and the correction respectively so that 111

~ FFF ′+= , it follows that  

 

( ) gFLFFL =+′+ 22111
~  

112211
~FLFLgFL −−=′  

 112211
~; FLFLgrrFL FF −−==′  (4.13) 

 

Following the first projection method, we then obtain the projected conservative inputs : 
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4.2.2 Correcting the normal velocity  

Fixing the water depth leaves us only with the normal velocity. Thus the second correction 

scheme can give us freedom in applying  all the types of orthogonal  projection described  in 

Chapter 3. Rearrange (4.8) by putting the normal velocity of new time level on the left hand side :  
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celle
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11
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The set of equations of (4.14) for every cell can be organized in the matrix equation   

 

 gLDq =  (4.15) 

 

where [ ]Tnfee uuq _1_ ...=  is the vector of normal velocities at faces, D is a diagonal matrix 

containing coefficients Hele of every face, and g is the right hand side of (4.14).   

 

 Using the same procedure taken for the derivation of (3.2) until (3.5), we will arrive at  

 

 qLDgrrqDL qq
~; ~~111 −==′  (4.16) 

 

where q~ is the vector of original normal velocity value and 1q′  is the vector of correction associated 

with the normal velocity that needs to be corrected.  

From (4.16), we can proceed with the projection result given by (3.11), (3.16), (3.19) and (3.23). 

 

4.2.3 Correcting the water depth  

Preserving the value of normal velocity at faces, the equation (4.9) is rearranged as follow  
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We set the matrix equation based on (4.17) as :  

 

gLF =  

 

where [ ]Tnfeenccellcell HHhhF _1__1_ ......=  is the vector of water elevation on cell centers 

and total water depth on face centers.   

This has the same form as (4.11), hence by means of the procedures pacing from (4.11) to (4.13), 

we obtain the projection result on the corrected water depth He and water elevation hcell:  

 

 1122
1

1111
~;)( FLFLgrrLLLF FF

TT −−==′ −  

 

with 1L , 1F ′ , 1
~F , 2L and 2F being derived from the analogous idea in the Section 4.2.1. 

 

4.3 Test Problems 

Two test problems are addressed to the idea of projection schemes for shallow water equation. Their 

purposes are to demonstrate how an orthogonal projection method recovers the constancy condition 

for a specified numerical scheme by correcting the available input. The first test problem is taken 

from [9] while the second is from [10]. Both tests only enable us to use the first projection method 

(minimal flux correction) because the velocity (or discharge) of our concern is one-dimensional. In 

these test problems there holds that the mass conservation equation of the flow is satisfied 

analytically for the input data. Deviations occur because of discretization.  

4.3.1 First Test Problem : Spreading of a Water Drop  

• Problem Description  

This test problem is within the framework of the one-dimensional shallow water equation. In 

dimensionless notation, the governing equation, in absence of surface friction and background 

rotation can be expressed as   
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where u is the velocity in the x-direction, and H is the depth of the fluid layer. We consider the 

spreading of a parabolic-shaped drop of shallow water on a horizontal plane. The drop is initially 

confined to 1≤x  according to  
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Upon releasing the drop, it spreads under the effect of gravity. The temporal evolution of this 

system has been analytically investigated by Frei [11]. He noted that the parabola shape is always 

retained and that the velocity across the drop is a linear function of x. In our case, the dimensionless 

solution can be represented by  

 

 ( ) ( )[ ]
( ) ( ),/,

/1, 21

λλ
λλ

txtxu
xtxH

=
−= −

 (4.18) 

 

where λ describes the half-width of the drop, and tλ =
t∂

∂λ is the velocity of the leading edge. 

Following [11], the function λ(t) is obtained numerically as the root of the equation  

 

( ) ( )[ ]λλλλ +−+−= 1ln12
1t  

 

and  

 

112 −−= λλt  
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Figure 4.2 The drop of shallow water 

 

The Figure Error! Reference source not found. illustrates how the water drop spreads with the 

width 2λ(t) at time t and fills up further area which was still dry at time t-1. A full numerical 

treatment covering the entire domain has to deal with a moving boundary mesh [12] and this is not a 

part of our investigation. We confine the test of the constancy condition to the domain of interval -1 

≤ x ≤ 1 which is the initial spread of the water drop.  

 

 

 
Figure 4.3 The available data in one grid cell for test problem-1 

 

To perform the test on this problem, the domain will be meshed with an equidistant grid and we 

assume that the input data is available as given in Figure 4.3, i.e. the water depth Hcell at cell centers 

(xc), the water depth H1/2 & H-1/2 and velocity u1/2 & u-1/2 at faces (f1/2 & f-1/2). These data are 

provided by the values given by the analytical solutions (4.18) at the corresponding points. 

  

Given this setting, the objective is to satisfy the constancy condition of the discretized version of the 

1D shallow water transport equation,  

 

xc f1/2 f-1/2 

Hcell H1/2, u1/2 H-1/2, u-1/2 

a = 1/λ(t-1) 
b = 1/λ(t) 
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which is approximated by the 1D version of transport equation (4.7). For an equidistant grid cell 

with inputs defined in Fig.(4.3), by placing the old time level at the right hand side, it reads  
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where 2/1c and 2/1−c  stand for the concentration at face f1/2 and f-1/2 respectively.  

The flow equation for consistency with this transport equation is then given by :  
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One can also check that this is the 1D version of (4.9) by taking Hcell = hcell . 

Given the last equation and the available data, the following presents the choices of correction in the 

projection method :  

 

1. Correcting the value
cell

H
t
x

⎟
⎠
⎞

⎜
⎝
⎛
Δ
Δ at the cell centers and the flux Heue.at the faces.  

2. Correcting the normal velocity ue at the face and retaining the value of water depth. 

3. Correcting the water depth Hcell at cell center and total water depth He at face while retaining the 

value of normal velocity. 

 

On both boundaries, the variables are corrected since there is no boundary condition that has to be 

fulfilled in this test problem.  

 

4.3.1 Second Test Problem : Water Wave 

The second test problem concerns a shallow water wave governed by the following continuity and 

momentum equations : 
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In these equations, B is the width of the channel, Q is the water discharge, g is the gravity constant, 

As is approximated by As= Bd where d is the depth of reference level, and 
R
Uc f

ˆ

3
8
π

κ = . Here, Û is 

a reference velocity, 
dB

A
R s

2+
=  and 2C

gc f =  where C is the Chezy constant. 

 
Figure 4.4 A shallow water wave moving in x-direction 

 

The solutions to (4.19) and (4.20)are given by  

 

 ( ){ }tjxhtxh ωexp)(~Re),( =  (4.21) 

 ( ){ }tjxQtxQ ωexp)(~Re),( =  (4.22) 

 

where   

  )(~.
)cosh(
)cosh()(~ lh

pl
pxxh =  

B

x

Q = 0 

d

l

x=0

H = d+h

closed boundary open boundary 

h = A sin ωt
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For the numerical simulation, we use the following values of all parameters :  

A = 0.5 m,               ω = 2π /T  with T = 5400 s.   

l= 247000 m,             B = 300 m,                 d = 20 m 

721.0ˆ =U m/s,            )(~ lh = 0.5 m,            C = 70 

The domain is covered by an equidistant grid and we assume that the input data is available such as 

highlighted in Figure 4.5, i.e. the water elevation hcell at cell centers (xc), and water discharge Q1/2 & 

Q-1/2 at faces (f1/2 & f-1/2). These data are determined from the analytical solutions (4.21) and (4.22)  

 

 

 
Figure 4.5 The available data in one grid cell for test problem-2 

 

The transport equation in this context is  
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Its finite volume discretization using the implicit trapezoidal rule results in :  
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Substituting c = 1 gives rise to the discrete continuity equation which is consistent with the last 

transport equation : 

c f1/2 f-1/2 

hcell Q1/2 Q-1/2 
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To take care that the input becomes conservative, the first projection method will be applied with 

the following choices of the correction :  

 

1. Correcting the value
cell

h
t
xB

⎟
⎠
⎞

⎜
⎝
⎛
Δ
Δ  at cell centers and the discharge flux Qe.at faces.  

2. Correcting the discharge Qe at the face and retaining the value of water depth. 

3. Correcting the water elevation hcell cell centers while retaining the value of water discharge. 

 

We keep the condition on the closed boundary, therefore no correction is imposed here. Since the 

value of water elevation at the closed boundary face is not given (see Figure 4.5), we preserve its 

value at the nearest cell center to the closed boundary. 
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5. Numerical Results 
This chapter presents the numerical results associated with the two test problems described in the 

previous chapter. Simulations were done with respect to the model that has been developed. 

Accordingly, the procedure was carried out by first projecting the model input which makes use of 

the Conjugate Gradient as the iterative method, and next by computing the concentration (transport 

quantity) on the basis of the projected data. For this, we use (4.24) with c1/2 = ½ (co + c1). In the 

present context such a simple implementation of the transport solver suffices. Our only goal is to 

check for constancy.  

 

5.1 First Test  

The simulations for the first test are performed until T = 50 while varying the grid size and 

the time step. The initial concentration is c = 1at every grid point. 

5.1.1 Correction of water depth (H) at cell centers and discharge (UH) at faces 

The results of accuracy are given in Table 5-1 in term of the maximum deviation from 

concentration = 1 over the entire domain and time interval. The transport computation using the 

projected data is compared with the transport computation using the original data only.  

 
Table 5-1 Accuracy of constancy condition  

Max( |concentration – 1| ) Max (Courant number) ∆t ∆x 

Original data Projected Data Original data 

0.01 0.05 4.1920e-004 3.3501e-011 0.1501 

0.1 0.05 0.0191 1.1617e-009 1.4993 

1   0.05 0.6336 5.1922e-007 14.4539 

1 0.01 0.4552 1.0272e-006 73.7519 

1 0.001 0.4557 1.5806e-006 741.2250 

 

The results show that the numerical scheme is stable, with a very high Courant number 

(η=741.2250) the concentration is still bounded. There is a significant difference of accuracy where  



 43

the transport computation using the projection method is much better. Computation with the 

original data produces a maximum of deviation of 0.4557 for the highest Courant number while the 

accuracy of almost 10-6 is obtained by means of the projection method. 

 Table 5-2 explains why inaccuracy occurs when using the original data. The tolerance of 

residual is not satisfactory, thus contributing to the error of constancy condition. Evidently from that 

table, using the projected data can recover the conservativeness of the input.  

 
Table 5-2 Data Conservativeness   

Max( | Residual | ) ∆t ∆x 

Original data Projected Data 

0.01 0.05 1.50 e-5 8.42 e-12 

0.1 0.05 6.36 e-4 8.60 e-11 

1   0.05 1.84 e-2 3.39 e-9 

1 0.01 3.90 e-3 7.04 e-10 

1 0.001 3.98 e-4 4.22 e-10 
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Figure 5.1 Water depth (H) and discharge (UH) at T = 1 (Δt = 1; Δx = 0.001)  
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Figure 5.2 Water depth (H) and discharge (UH) at T = 50 (Δt = 1; Δx = 0.001)  
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Figure 5.3 Negative water depth near the left and right edge at T = 1 (Δt = 1; Δx = 0.001)  

 

In Figure 5.2 (at T = 50), the water depth H and discharge UH are small and everything 

seems normal. The projected data (both H and UH) don’t differ significantly from the original data. 



 45

A contrast can be observed at T = 1, as depicted in Figure 5.1. A large correction of water depth is 

needed to satisfy the constancy condition. Moreover, there is a negative value of total water depth 

near the left and the right edge, which is indicated in Figure 5.3. This implies some dry regions 

occur in the interval [-1,1].  

 

5.1.2 Correction of velocity at faces 

By fixing the value of water depth, the positivity of water depth can be preserved. Thus correcting 

the velocity appears to be more accepted than the former. The accuracy of the constancy condition 

can be achieved with a tolerance below 10-5 for the maximum Courant number of  961.1514. Only a 

slight compensation is the decreasing slope of velocity at the left and right edge at T=1 (Figure 5.4). 

 
 Table 5-3 Accuracy of constancy condition for velocity correction 

Max( |concentration – 1| ) Max (Courant number) ∆t ∆x 
Original data Projected Data Original data Projected Data 

0.01 0.05 4.1920e-004 2.7982e-012 0.1501 0.1541 
0.1 0.05 0.0191 4.8504e-010 1.4993 1.5522 
1 0.05 0.6336 1.7741e-010 14.4539 19.2296 
1 0.01 0.4552 3.9777e-006 73.7519 96.1174 
1 0.001 0.4557 7.6988e-006 741.2250 961.1514 
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Figure 5.4 Velocity profile at T = 1 and T = 50 (Δt = 1; Δx = 0.001)  
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The velocity profiles of projected and original data appear to coincide at T = 50, but Figure 5.5 

demonstrates that the transport computation using original data cannot recover the constancy 

condition anymore (at T=50) because of the inaccuracy produced in early timesteps. Figure 5.6 

shows the maximum error generated over the entire domain when using the original data.  
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Figure 5.5 Concentration profile at T = 1and T = 50 (Δt = 1; Δx = 0.001)  
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Figure 5.6 Maximum source/sink generated when using the original data  

                  (Δt = 1; Δx = 0.001)  
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5.1.3 Correction of the water depth  

The projection method by correcting the water depth and maintaining the value of velocity satisfies 

the constancy condition with a tolerance below 10-5. The result of the projection of the water depth 

is ensured its positivity. However, as shown in Figure 5.7, the mass of water mounted up in the 

interval [-1,1] is considerably bigger than given by the original data.  

 
Table 5-4 Accuracy of constancy condition for the correction on water depth  

Max( |concentration – 1| ) ∆t ∆x 
Original data Projected Data 

Max (Courant number) 

0.01 0.05 4.1920e-004 2.4094e-011 0.1501 
0.1 0.05 0.0191 3.5984e-010 1.4993 
1   0.05 0.6336 7.0691e-008 14.4539 
1 0.01 0.4552 2.9810e-006 73.7519 
1 0.001 0.4557 3.4720e-006 741.2250 
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 Figure 5.7 Water depth at T = 1 & T = 50 (Δt = 1; Δx = 0.001)  

 

 

5.2 Second Test 

The simulations for the second test are performed until T = 108000 while varying the grid 

size and the time step. The initial concentration is c = 1at every grid point. The elapsed time in 

every table of accuracy refers to the total computational time when using the projected data. 
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5.2.1 Correction of water elevation (h) at cell centers and discharge (Q) at 
faces 

Using the original data only, a significant deviation takes place as can be seen in Table 5-5. Figure 

5.9 shows that the deviation is present most of the time. The projected method provides input that 

can give a tolerance lower than 10-7 for ∆t=1000 and ∆x=10. The Courant number for this 

specification is 63.1743.  

 
Table 5-5 Accuracy of constancy condition  

Max( |concentration – 1| ) ∆t ∆x 

Original data Projected Data 

Max (Courant 

number) 

Elapsed Time 

100 100 1.7631e-004 1.9409e-010 0.6317 359.39 s 

1000 1000 0.0182 1.7954e-009 0.6316 2.75 s 

1000 100 0.0182 1.8897e-008 6.3174 24.56 s 

1000  50 0.0182 2.2467e-008 12.6348 63.53 s 

1000  10 0.0182 2.3029e-008 63.1743 1119.2 s 
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Figure 5.8 Maximum Courant number for ∆t = 1000  and ∆x = 10 

 

In Figure 5.10, the projected input of water elevation is able to follow the trajectory pattern of the 

original input. But that doesn’t take place on the entire domain. Shown in Figure 5.11, there 

happens to be a very steep slope near the closed boundary.  

 

Figure 5.12 gives a picture of the coinciding plots of projected and original Q. The scale of the 

quantity of discharge is very large such that the discrepancy is not visible in the figure. Therefore 
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Figure 5.13 is presented to show the difference between them whereas Figure 5.14 gives the picture 

in smaller domain in order to show the steep slope near the left boundary.  
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Figure 5.9 Source/sink generated when using original data (∆t = 1000  and ∆x = 10) 
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 Figure 5.10 Water elevation at T = 1000 & T = 108000 (Δt = 1000; Δx =10)  
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Figure 5.11 Water elevation on the interval [0,1000]  at T=1000  (Δt=1000; Δx=10)  
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Figure 5.12 Discharge  at T=1000 and T=108000  (Δt=1000; Δx =10)  
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Figure 5.13 Difference between the projected discharge (Qp) and original    

                     discharge (Qp) at T=1000  and T=108000  (Δt=1000; Δx =10) 
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Figure 5.14 Difference between the projected discharge (Qp) and original    

discharge (Qp) on the interval [0,100] at T=1000 and T=108000 (Δt=1000; Δx =10)  
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5.2.2 Correction of discharge (Q) at faces 

The accuracy of constancy condition obtained by correcting the discharge at faces is remarkably 

fascinating as presented in Table 5-6. With the computational scheme of ∆t=1000 and ∆x=50, the 

accuracy is achieved below 10-10, much better than correcting discharge and water elevation 

altogether. But actually this is not really feasible, it needs an extremely lot of iterations to find the 

solution of projection equation using the Conjugate Gradient iterative method. When the grid size is 

decreased to ∆x=10, it needs 956 seconds for 3 time steps. This is awfully time consuming 

compared to the correction on both discharge and water elevation which only needs roughly 31 

seconds within 3 time steps.   

 
Table 5-6 Accuracy of constancy condition  

Max( |concentration – 1| ) ∆t ∆x 

Original data Projected Data 

Max (Courant 

number) 

Elapsed time 

1000 1000 0.0182 2.7423e-014 0.7512 9.45 s 

1000 100 0.0182 8.7568e-012 7.5091 377.77 s 

1000 50 0.0182 4.2377e-011 15.0182 1511.39 s 

1000 10 0.0182 Not feasible  956 s (only for 3 
time steps) 
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          Figure 5.15 Discharge  at T=1000 and T=108000  (Δt=1000; Δx =50)  
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5.2.3 Correction of water elevation (h) at cell centers 

Correction on water elevation only doesn’t seem to be a good option for this test. It doesn’t give 

good accuracy with respect to the constancy condition as presented in Table 5-7. Although Figure 

5.16 shows that the source/sink generated is bounded (the scheme is stable), refining the grid size 

when ∆t = 1000 doesn’t improve the accuracy. It looks as if the correction on water discharge has 

more significant impact in improving accuracy. 

 
Table 5-7 Accuracy of constancy condition  

Max( |concentration – 1| ) ∆t ∆x 

Original data Projected Data 

Max (Courant 

number) 

Elapsed Time 

100 100 1.7631e-004 4.9825e-005 0.6317 126.64 s 

1000 1000 0.0182 0.0051 0.6316 2.09 s 

1000 100 0.0182 0.0050 6.3174 14.56 s 

1000  50 0.0182 0.0050 12.6348 45.42 s 

1000  10 0.0182 0.0050 63.1743 335.38 s 
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      Figure 5.16 Source/sink generated when using the projected data of water elevation   

                          (∆t = 1000  and ∆x = 10) 
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Figure 5.17 Water elevation at T = 1000 & T = 108000 (Δt = 1000; Δx =50)  
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                   Figure 5.18 Water elevation on domain [0,1000] at T = 1000 & T = 108000 (Δt = 1000; Δx =50)  
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6. Conclusion 
In this study, four orthogonal projection methods to correct velocity inputs have been developed 

under the circumstance of a divergence free velocity equation. Each method has its own objective 

on the projected normal velocity/flux, i.e. either minimal flux correction, minimal velocity 

correction, minimal shear correction, or zero curl correction. It has been verified that the Endlich’s 

iterative procedure is equivalent to the projection method of minimal flux correction. Two examples 

have been presented and iterative procedures for solving the correction equation have been 

discussed. 

 

The projection method is then adopted to derive projection methods in the specific case of shallow 

water flow. Here, the corrected variables can be velocity, or water elevation or both. It is needed to 

correct these inputs to satisfy the constancy condition in the transport computation of shallow water 

flow.  

 

The projection method of minimal flux correction is addressed in two test problems. They are the 

spread of a water drop and the evolution of a water wave. In the first test, the constancy condition 

can be achieved with good accuracy even with a high Courant number. This works for any choice of 

corrected variables. However the scheme suffers from some drawbacks as a result of the correction. 

When the corrected inputs are water depth and velocity, a large correction of water depth is found 

and at some points the value of total water depth becomes negative. When the correction is done on 

velocity only, a slight change to the monotonicity of velocity takes place, while choosing the water 

depth as the corrected input can significantly affect the total mass of fluid. It is concluded that 

correcting the velocity only is the best compromise for this test problem.  

 

In the second test, a boundary condition is set on the closed boundary, i.e. no correction is allowed 

for. Choice of water elevation and discharge as the corrected inputs tops the other choices. Its 

disadvantage is that the data smoothness near the closed boundary becomes disturbed. On the other 

hand, correction on discharge gives excellent constancy condition, but the computational time is 

miserable. Choosing water elevation as the only corrected input doesn’t yield a good accuracy. In 

this case, it looks as if the value of discharge is more dominant in the improvement of accuracy. 
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Appendix 
Curl Discretization 

The volume integral of curl q (denoted by q×∇ ) in 2D, according to Stokes Theorem can be 

written as   

( ) ds
V

V
 .. t∫∫

∂

=×∇ q  dV q  (1) 

In that equation, t denotes the unit tangential vector to ∂ V.   

  

   

     

 

 

   Figure A.1 tangential vector te  

 

In 2D domain, the unit tangent te of the face e is determined by the end points of the face which has 

been arranged in the mesh description. In Figure A.1 above, te points from end point 1 to end point 2.   

For an individual cell V, the tangents over its faces are taken such that they form a 

counterclockwise direction.  

 

 

 

 

   Figure A.2 tangents of cell V over its faces  

 

Based on that, we can define an indicator function for every face e in any volume V  : 

β(V,e)  
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Referring to Figure A.2,  β(V1, e) = 0 and β(V2, e) = 1. 

 

Discretization of the right hand side of (1) requires us to introduce the integrated velocity, also 

known as shear   
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   eqS t
ee =  

where e
t
e tqq .=  is the tangential velocity on the face e and e is the length of the face. 

Thus the discretization of (1) for any volume V can be written as follows  

ve
eV

Ve
gS =−∑

∈

),()1( β , V∀  (2) 

 where gv is the magnitude of numerical curl q in the volume V.  

 

From (2) can be derived the resulting system of equations :  

gCS =   (3) 

Denote the number of volumes and faces as nV and nf respectively, the matrix C  is the operator 

from nfℜ to nVℜ . Every row of C corresponds to a specific volume and all nonzero elements in that 

row correspond to faces of that volume.   
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