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Introduction

In the beginning of probability theory, statistics or statistical physics, the basic
model for describing events which are obtained by cumulation of very many very
small independent variables was the Gaussian distribution and more generally
� the Gaussian process. The Brownian random walk and Gauss theory of errors
emerged in this way.
In the �rst half of the 20 century it turned out that the class of stable distri-
butions, generalizing Gaussian distribution, introduced by P. Lévy and A. Ya.
Khintchine can be used for more subtle description of some random events. Now
the stable distributions and processes are successfully applied in �nancial math-
ematics, statistical physics, astronomy, electrical engineering and many other
areas of science.
There are three main reasons why stable distributions and processes found so
wide application. First, they appear in limit theorems as the only possible limit
of the weighted sums of independent random variables. Thus they can be con-
sidered as a result of cumulation of very many very small independent variables.
Second, they give the possibility to model variables without second moment or
continuity of trajectories of the corresponding stochastic process (for example:
stock market diagrams). Third, stable vectors and processes are closed under
linear combinations which means that weighted sums of stable vectors are still
stable, and this means also that linear combination of coordinates of a stable
random vector has the same distribution as the �rst coordinate up to a multi-
plicative constant. This property seems to especially important in statistics.
On the other hand stable distributions are very di�cult in calculations. The
main reason is that, except for Gaussian, Cauchy and 1

2 -stable, any nice ana-
lytical formula for the density functions do not exist, even for one-dimensional
symmetric stable distributions. Now, with a wide access to computers, this prob-
lem does not seem insurmountable. However using the inverse Fourier transform
for calculating the corresponding density function still causes a lot of trouble.
Thus there is a permanent need for new stochastic representations and new
characterizations of stable vectors and processes.
Scientists are becoming increasingly interested in distributions and processes
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generated by stable distributions and processes. For example, tempered stable
distributions (see e.g. [62]) are extensively used in statistical physics to model
turbulence, or in mathematical �nance to model stochastic volatility.
In this situation, stable, sub-stable and the most general class of weakly sta-
ble distributions and processes seem to be good candidates for use in stochastic
modelling. They have nice linear properties, i.e. if (Xi) is a sequence of indepen-
dent identically distributed random vectors with the weakly stable distribution
µ then every linear combination

∑
aiXi has the same distribution as X1 ·Θ for

some random variable Θ independent of X1. This condition holds not only when
(ai) is a sequence of real numbers, but also when (ai) is a sequence of random
variables for ai,Xi, i = 1, 2, . . . mutually independent. This means that the de-
pendence structure of the linear combination

∑
aiXi and dependence structure

of the random vector X1 are the same, and the sequence (ai) is responsible
only for the radial behavior. Moreover weak stability is preserved under taking
linear operators A(X1) and under taking projections or functionals < ξ,X1 >.
On the other hand radial properties of distribution can be arbitrarily de�ned
by choosing a proper random variable Θ independent of X1 and considering the
distribution of Θ ·X1.
An interested reader can �nd also a very rich bibliography on stable distributions
and related topics on the home-page of John Nolan:
http://academic2.american.edu/∼jpnolan/stable/StableBibliography.pdf
In the �rst chapter of this book we recall the de�nition and the basic properties
of characteristic functions for random variables and random vectors. In the last
section of this chapter we use our knowledge about norm-dependent character-
istic functions to describe norm-dependent positive de�nite matrices, which are
extensively used in stochastic modelling random vectors with �xed correlation
structure.
The �rst section of the second chapter contains �ve equivalent de�nitions of
stable random variables together with the detailed proofs of their equivalence.
A part of these proofs can be found in the very well known Feller book [17],
but some of them are almost forgotten. Next we give some basic properties of
stable random variables and few representation involving much simpler random
variables - uniformly or exponentially distributed.
Fourth chapter contains a description of stable random vectors and their spectral
representation. Based on this spectral representation we de�ne the covariation
function and the covariation ratio - parameters, which in the Gaussian case, are
equal to covariance and correlation. They describe the dependence structure of
the corresponding symmetric α-stable random vector even though it does not
have second moment. In the third section we discuss properties of symmetric
α-stable random vectors, which are β-substable for some 0 < α < β. The last
section contains one simple series representation for an SαS random vector.
The last chapter in this book contains a description of weakly stable random
vectors. As this kind of vectors is much less known, we will give here detailed
proofs of their basic properties as well as the basic properties of a generalized
convolution de�ned by weak stability. In section 6 we give a description of a
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very well known example of weakly stable random vectors, which are the extreme
points for the set of elliptically contoured or rotationally invariant vectors. Much
less known are random vectors discovered by S. Cambanis, R. Keener and G.
Simons (see [?], which are the extreme points of the set of `1-symmetric (or `1-
pseudo-isotropic) random vectors in Rn. Here a vector X ∈ Rn is `1-symmetric
if its characteristic function is of the form ϕ(‖ξ‖1), ξ ∈ Rn. The section 7
contains the description of Cambanis, Keener and Simons distributions and
their computer simulation.
Basically, we have not given in this book any explicitly written problems to
be solved. Students attending the course were supposed to use the presented
stochastic representations for stable and weakly stable random variables and
vectors in computer simulation. As an exercise they were writing computer
programs for calculating and drawing densities graphs, scatter plots and his-
tograms, so all the �gures contained in this book were done by Leszek Grzelak,
Sebastian Kuniewski, Dorota Kurowicka and Daniel Lewandowski. The �gures
ilustrating applications of copulae in the spectral representation of symmetric
α-stable vectors come from the paper [7] written together with Jacek Bojarski.
The density plots for Cambanis, Keener and Simons distribution were made by
Grazyna Mazurkiewicz (in [49]), who kindly allowed us to present them here.
We appreciate the encouragement and support provided by the sta� of Delft
Institute of Applied Mathematics, Delft University of Technology. We are very
grateful to Roger Cooke, Dorota Kurowicka and Hans van der Weide for their
valuable advices and criticism.
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2

Characteristic functions

Throughout this book we will use the following notation:
L(X) is the distribution of the random vector X,
X d= Y means that random vectors X and Y have the same distribution,
Pn is the set of all probability distributions on Rn,
P the set of probability measures on R,
P+, probability measures on [0, +∞).

For every a ∈ IR and every probability measure µ we de�ne the rescaling oper-
ator Ta : P → P by the formula:

Taµ(A) =
{

µ(A/a) for a 6= 0;
δ0(A) for a = 0,

for every Borel set A ∈ Rn. Equivalently

TaL(X) = L(aX).

The scale mixture µ◦λ of a measure µ ∈ Pn with respect to the measure λ ∈ P
is de�ned by the formula:

µ ◦ λ(A)
def
=

∫

IR

Tsµ (A)λ(ds).

It is easy to see that for X and Θ independent we have

L(X) ◦ L(Θ) = L(X ·Θ).
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2.1 Characteristic functions for random variables

De�nition 2.1.1. Let X be a random variable with the distribution µ.
Then the function ϕ on R with values in the complex numbers, de�ned as

ϕX(t) = E exp{itX} =
∫

R
eitxµ(dx),

is called the characteristic function of the random variable X, or of the dis-
tribution µ. Whenever it is not misleading we will simply write ϕ(t) instead of
ϕX(t).

The main properties of characteristic functions are described in the following
theorem.

Theorem 2.1.1. The characteristic function ϕ(t) of the random variable
X has the following properties:
1) |ϕ(t)| ≤ ϕ(0) = 1;
2) ϕX(−t) = ϕX(t) = ϕ−X(t);
3) ϕaX+b(t) = eitbϕX(at);
4) variables X, Y are independent if and only if ϕaX+bY (t) = ϕX(at)ϕY (bt)
for every a, b ∈ R.
5) ϕ is a positive de�nite function, i.e. for every n ∈ N, every choice of

t1, . . . , tn ∈ R and every choice of complex numbers c1, . . . , cn we have
n∑

i,j=1

cicjϕ(ti − tj) ≥ 0;

6) ϕ is uniformly continuous on R.

Proof. Ad. 1) It is evident that ϕ(0) = Ee0 = E1 = 1. Thus we have |ϕ(t)| =
|EeitX | ≤ E|eitx| = E1 = ϕ(0).
Ad. 2) It is enough to apply the formula eiu = cos u + i sin u:

ϕ(−t) = E cos(−tX) + iE sin(−tX) = E cos(tX) + iE sin(tX) = ϕ(t).

It is easy to see also that ϕ(−t) = Eeit(−X) = ϕ−X(t).
Ad. 3) ϕaX+b(t) = EeitaX+itb = eitbEeitaX = eitbϕX(at).
Ad 4) If the random variables X,Y are independent, then also the variables
eitX and eitY are independent thus

E exp{it(aX + bY )} = EeitaX ·EeitbY = ϕX(at)ϕY (bt).

Ad. 5) Let n ∈ N, t1, . . . , tn ∈ R and let c1, . . . , cn be complex numbers. Then
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we have
n∑

k,j=1

ckcjϕ(tk − tj) =
n∑

k,j=1

ckcjEei(tk−tj)X

= E
n∑

k,j=1

(
ckeitkX

)
(cjeitjX) = E

∣∣∣
n∑

k=1

ckeitkX
∣∣∣
2

≥ 0.

Ad. 6) Notice �rst that
|ϕ(t + h)− ϕ(t)| = |EeitX(eihX − 1)| ≤ E|eihX − 1|.

The function gh(x) = |eihx − 1| is bounded by 2 on the whole real line. Notice
also that for each m > 0 the function gh converges uniformly to zero on the
interval [−m,m] for h → 0. For ε > 0 we choose m large enough to have
P(|X(ω)| > m) < ε/4. Next we choose h0 small enough such that for every
h ∈ (0, h0) and every x ∈ [−m,m] we have gh(x) < ε/2. Now for h ∈ (0, h0) we
obtain

|ϕ(t + h)− ϕ(t)| ≤
∫ m

−m

|eihx − 1|dF (x) +
∫

|x|>m

|eihX − 1|dF (x)

≤ ε/2P(|X(ω)| ≤ m) + 2P(|X(ω)| > m) < ε.

2

Remark 2.1.1. As an easy consequence of the proof of property 2) in
Theorem 2.1.1 we obtain that the characteristic function ϕX(t) of the random
variable X is real if and only if X is symmetric, i.e. L(X) = L(−X).

Examples of characteristic functions of discrete
distributions.

P{X = xi} = pi,
∑

i

pi = 1 ϕ(t) =
∑

i

eitxipi.

name distribution characteristic function
one point P{X = a} = 1 eita

two points P{X = 1} = P{X = −1} =
1
2

cos t

discrete uniform P{X =
k

n
} =

1
n

, n ≤ n− 1
(eit − 1)

n(eit/n − 1)

Bernoulli P{X = k} =
(

n

k

)
pkqn−k

(
peit + q

)n

Poisson P{X = k} = e−λ λk

k!
exp{−λ(1− eit)}

geometrical P{X = k} = pqk−1 peit

1− qeit

negative binomial P{X = k} =
(

k

r − 1

)
prqk−r

( peit

1− qeit

)r
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Examples of characteristic functions of continuous
distributions.

X has density f(x) ϕ(t) =
∫

R
eitxf(x) dx.

name density function characteristic function

uniform 1
b− a

I(a < x < b)
eitb − eita

it(b− a)
.

1
2
I(−1 < x < 1)

sin t

t

exponential λe−λx λ

λ− it

Gamma λp

Γ(p)
xp−1e−λx

(
λ

λ− it

)p

Gaussian 1√
2πσ

exp
{
− (x−m)2

2σ2

}
exp

{
itm− 1

2
σ2t2

}

Cauchy a

π(a2 + (x−m)2)
exp {itm− a|t|}

For symmetric random variables the characteristic functions take values in R
so we can simply visualize such functions drawing their graphs in R2. Notice
that the characteristic function for Gaussian distribution is equal to its density
function multiplied by a normalizing constant.
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Figure 2.1: The characteristic function of Gaussian N(0, 1) distribution
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Figure 2.2: The characteristic function of uniform distribution on −1, 1]

If the random variable is not symmetric then its characteristic function takes
values in the complex plane, thus it is better to make drawings in R3. Sometimes
we can get very interesting graphical e�ects by drawing the projection of this
3-dimensional diagram into the complex plane.
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Figure 2.3: The characteristic function of discrete 1
2δ1 + 1

2δ2 distribution
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Figure 2.4: The characteristic function of discrete 1
2δ1 + 1

2δ√2 distribution
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Gamma: (λ=50, p=30)

Density Function: ( λp/Γ(p))xp−1e−λx

Characteristic Function: ( λ/(λ−it))p

Figure 2.5: The characteristic function of Gamma Γ(50, 30) distribution
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Characteristic Function: exp(it µ−0.5σ2t2) 

Figure 2.6: The characteristic function of Gaussian N(10; 0.05) distribution

The next theorem describes the relation between the characteristic function and
the distribution function of a random variable. It states also that under some
regularity conditions we can recognize from the characteristic function if the
distribution has a density function and even calculate this density. The formula
in statement (c) of Theorem 2.1.2 is called the Fourier Inversion Formula.

Theorem 2.1.2. Let ϕ be a characteristic function of the random variable
X with distribution PX(A) = P{X ∈ A} and distribution function F . Then:
a) for every a < b

G = lim
R→∞

1
2π

∫ R

−R

e−ita − e−itb

it
ϕ(t) dt = PX ((a, b))+

1
2
PX ({a})+1

2
PX ({b}) ;

b) if F is continuous at the points a and b, a < b, then

G = F (b)− F (a);

c) if
∫∞
−∞ |ϕ(t)|dt < ∞, then F has a density function f(·), where

f(x) =
1
2π

∫ ∞

−∞
e−itxϕ(t)dt.

Proof. Let us consider the following integral

G(R) =
1
2π

∫ R

−R

e−ita − e−itb

it
ϕ(t) dt =

1
2π

∫ R

−R

e−ita − e−itb

it

∫ ∞

−∞
eitxdF (x)dt.
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The integrand in the last formula is bounded because
∣∣∣∣
e−ita − e−itb

it
eitx

∣∣∣∣ =
∣∣∣∣
e−ita − e−itb

it

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

eitx dx

∣∣∣∣∣ ≤
∫ b

a

dx = b− a.

Using the Fubini Theorem we obtain

G(R) =
1
2π

∫ ∞

−∞

∫ R

−R

eit(x−a) − eit(x−b)

it
dt dF (x).

Writing e−itc = cos(tc) + i sin(tc), we notice that the integral of the function
cos(tc)/it over the symmetric set [−R,R] vanishes, thus

G(R) =
1
2π

∫ ∞

−∞

{
2

∫ R

0

sin t(x− a)
t

dt− 2
∫ R

0

sin t(x− b)
t

dt

}
dF (x)

=
1
π

∫ ∞

−∞

{∫ R(x−a)

0

sin y

y
dy −

∫ R(x−b)

0

sin y

y
dy

}
dF (x)

=
1
π

∫ ∞

−∞

∫ R(x−a)

R(x−b)

sin y

y
dy dF (x).

We will show now that the function
∫ z

0
sin y

y dy is bounded. Since the integrand
is an odd function it is enough to consider z > 0. If 0 < z < π

2 , then
∣∣∣∣
∫ z

0

sin y

y
dy

∣∣∣∣ ≤
∫ z

0

∣∣∣∣
sin y

y

∣∣∣∣ dy ≤
∫ z

0

dy = z <
π

2
.

For z > π
2 we obtain integrating by parts,
∣∣∣∣
∫ z

0

sin y

y
dy

∣∣∣∣ ≤
∣∣∣∣∣
∫ π/2

0

sin y

y
dy

∣∣∣∣∣ +

∣∣∣∣∣
cos y

y

∣∣∣∣
z

π/2

+
∫ z

π/2

cos y

y2
dy

∣∣∣∣∣

≤ π

2
+

1
z

+
2
π

+
∫ ∞

π/2

1
y2

dy ≤ π

2
+

6
π

= const.

By Lebesgue's Theorem on bounded convergence we have:

lim
R→∞

G(R) = lim
R→∞

1
π

∫ ∞

−∞

∫ R(x−a)

R(x−b)

sin y

y
dydF (x)

=
1
π

∫ ∞

−∞

{
lim

R→∞

∫ R(x−a)

R(x−b)

sin y

y
dy

}
dF (x).

Now we have to consider the following cases:
� if a < x < b, then

lim
R→∞

1
π

∫ R(x−a)

R(x−b)

sin y

y
dy =

1
π

∫ ∞

−∞

sin y

y
dy = 1;
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� if x > b, then limR→∞R(x − b) = ∞. Since the function sin y
y is integrable

then
lim

R→∞
1
π

∫ R(x−a)

R(x−b)

sin y

y
dy = 0;

� if x < a, similarly as before limR→∞R(x− a) = −∞ and

lim
R→∞

1
π

∫ R(x−a)

R(x−b)

sin y

y
dy = 0;

� for x = a we have:

lim
R→∞

1
π

∫ 0

−R(b−a)

sin y

y
dy =

1
π

∫ 0

−∞

sin y

y
dy =

1
2
;

� if x = b, then

lim
R→∞

1
π

∫ R(b−a)

0

sin y

y
dy =

1
π

∫ ∞

0

sin y

y
dy =

1
2
.

We see that

lim
R→∞

G(R) =
∫ ∞

−∞

{
1(a,b)(x) +

1
2
1{a}(x) +

1
2
1{b}(x)

}
dF (x)

= P((a, b)) +
1
2
P ({a}) +

1
2
P ({b}) .

Property (b) is a simple consequence of (a), because at the continuity points of
the distribution function F we have P ({a}) = P ({b}) = 0. In order to prove
(c) assume that

∫∞
−∞ |ϕ(t)|dt < ∞. Then the following function

f(x) =
1
2π

∫ ∞

−∞
e−itxϕ(t)dt

is well de�ned, continuous and integrable on every interval [a, b]. Consider the
integral

∫ b

a

f(x)dx =
∫ b

a

1
2π

∫ ∞

−∞
e−itxϕ(t)dt dx

=
1
2π

∫ ∞

−∞
ϕ(t)

∫ b

a

e−itxdx dt =
1
2π

∫ ∞

−∞
ϕ(t)

e−ita − e−itb

it
dt

= lim
R→∞

1
2π

∫ R

−R

ϕ(t)
e−ita − e−itb

it
dt = P((a, b)) +

1
2
P ({a}) +

1
2
P ({b}) .

Since f is continuous, its integral is also a continuous function of the variables
a and b, so

∀ a < b

∫ b

a

f(x)dx = F (b)− F (a),

which, by de�nition means that f is the density function corresponding to the
distribution function F .

2
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As a simple consequence of Theorem 2.1.2 we have the following.

Theorem 2.1.3. The characteristic function uniquely determines the dis-
tribution of the corresponding random variable.

There exists a strong relation between the existence of k-th derivative of the
characteristic function at zero and the existence of k-th moment of the corre-
sponding random variable. However we shall be careful in using the following
theorem since it gives the implication only in one direction, not equivalence.

Theorem 2.1.4. If there exists n ≥ 1 such that E|X|n < ∞, then, for
every r ≤ n, the derivatives ϕ(r)(t) exist and

ϕ(r)(t) =
∫ ∞

−∞
(ix)reitxdF (x);

EXr =
ϕ(r)(0)

ir
.

Proof. If E|X|n < ∞, then of course E|X|r < ∞ for every 0 ≤ r ≤ n. Consider

ϕ(t + h)− ϕ(t)
h

= E
[
eitX eihX − 1

h

]
.

Since |eihX − 1| ≤ |hX| and E|X| < ∞, then there exists the limit of this
di�erence quotient for h → 0 and

ϕ′(t) = lim
h→0

E
[
eitX eihX − 1

h

]
= E

[
eitX lim

h→0

eihX − 1
h

]
= E

[
iXeitX

]
.

By mathematical induction we obtain

ϕ(r)(t) =
∫ ∞

−∞
(ix)reitxdF (x).

Now it is enough to apply this formula for t = 0.
2

Remark 2.1.2. The opposite implication in Theorem 2.1.4 does not hold.
It can happen that the characteristic function has k-th derivative at zero but
the corresponding random variable does not have �nite k-th moment. It can be
shown however that if the derivative ϕ(2k)(0) exists, then EX2k < ∞. We will
prove here only the following

Theorem 2.1.5. Let ϕ be the characteristic function of the random vari-
able X. If ϕ is twice di�erentiable at zero then EX2 < ∞.
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Proof. Since ϕ(0) = 1, then the function ϕ cannot be convex around zero. It is
not possible then that ϕ′′(0) > 0. Applying de l'Hospital's formula we obtain:

ϕ′′(0) = lim
h→0

1
2

[
ϕ′(2h)− ϕ′(0)

2h
+

ϕ′(0)− ϕ(−2h)
2h

]

= lim
h→0

ϕ′(2h)− ϕ′(−2h)
4h

= lim
h→0

ϕ(2h)− 2ϕ(0) + ϕ(−2h)
4h2

= lim
h→0

∫ ∞

−∞

(
eihx − e−ihx

2h

)2

dF (x) = − lim
h→0

∫ ∞

−∞

(
sin (hx)

hx

)2

x2dF (x).

By Fatou's Lemma we �nally have

−ϕ′′(0) = lim
h→0

∫ ∞

−∞

(
sin hx

hx

)2

x2dF (x)

≥
∫ ∞

−∞
lim
h→0

(
sin hx

hx

)2

x2 dF (x) =
∫ ∞

−∞
x2dF (x),

which was to be shown.
2

The next theorem, known in the literature under the name of Pólya's Lemma,
will be needed in the next chapter.

Theorem 2.1.6 (Pólya's Lemma). Let ϕ(t) be a real-valued and
continuous function on R which satis�es the following conditions:
(i) ϕ(0) = 1;

(ii) ϕ(−t) = ϕ(t);

(iii) ϕ(t) is convex for t > 0;

(iv) limt→∞ ϕ(t) = 0.

Then ϕ(t) is the characteristic function of an absolutely continuous distribution
F (x).

Proof. Since ϕ(t) is a convex and symmetric function it has everywhere a right-
hand derivative which we denote by ϕ′(t). The function ϕ′(t) is non-decreasing
for t > 0. Moreover ϕ′(t) ≤ 0 for t > 0 and limt→∞ ϕ′(t) = 0.
It is easily seen that the function p(x) given by

p(x) =
1
2π

∫ ∞

−∞
eitxϕ(t)dt =

1
π

∫ ∞

0

cos (tx)ϕ(t)dt

is well de�ned for all x 6= 0. It can be easily checked that

ϕ(t) =
∫ ∞

−∞
e−itxp(x)dx,
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so in particular
∫∞
−∞ p(x)dx = 1 since ϕ(0) = 1. This implies that the proof is

completed as soon as we show that p(x) ≥ 0.
Integrating by parts in the formula de�ning p(x) and writing g(t) = −ϕ′(t) we
get

p(x) =
1

π|x|
∫ ∞

0

g(t) sin (t|x|)dt,

where g(t) is a non-increasing, non-negative function with limt→∞ = 0. Then

p(x) =
1
π

∞∑

j=0

∫ π(j+1)

πj

g(t) sin (t|x|)dt =
1

π|x|
∫ π/|x|

0



∞∑

j=0

(−1)jg

(
t +

πj

|x|
)

 sin (t|x|)dt.

The series ∞∑

j=0

(−1)jg

(
t +

πj

|x|
)

is an alternating series whose terms are non-increasing in absolute value; since
the �rst term of the series is non-negative one sees that the integrand is non-
negative. Thus p(x) ≥ 0.

2

2.2 Characteristic functions for random vectors
,

De�nition 2.2.1. Let X = (X1, . . . , Xd) be a random vector with distri-
bution µ on Rd. The characteristic function of X is the function ϕX on Rd

taking values in the complex plane de�ned by

ϕX(ξ) = E exp{i < ξ,X >} = E exp

{
i

d∑

k=1

ξkXk

}
.

Notice that the characteristic function of the random vector X at the point tξ,
t ∈ R, ξ ∈ Rd, is equal to the characteristic function of the random variable
< X, ξ >=

∑d
k=1 ξkXk at the point t, i.e.

ϕX(ξt) = ϕ<X,ξ>(t).

This means that the main properties of multidimensional characteristic func-
tions can be derived from the properties of one dimensional characteristic func-
tions. We give here only one example: if X has a d-dimensional Gaussian dis-
tribution with the mean vector m = (m1, . . . , md) and the covariance matrix
Σ = (σi,j)d

ij=1 then the < X, ξ > is a Gaussian random variable with mean

m = E < X, ξ >= E
d∑

k=1

Xkξk =
d∑

k=1

mkξk =< m, ξ >
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and variance

Var
(
< X, ξ >

)
= Cov




d∑

k=1

Xkξk,

d∑

j=1

Xjξj


 =

d∑

k,j=1

ξkσijξj = ξΣξT .

Now it is enough to use the formula for the characteristic function of the Gaus-
sian random variable N(m, σ) (see Table 2.1.2) to obtain that

ϕX(ξ) = exp
{

i < m, ξ > −1
2
ξΣξT

}
.

2.3 In�nitely divisible distributions and one method
for their computer simulation

In modelling real events we know that some of variables shall be considered as
sums of very many very small independent factors. It turns out that the char-
acteristic functions of such variables have very special forms, which we describe
here. Let us start from the following de�nition.

De�nition 2.3.1. The random variable X (its distribution F or its char-
acteristic function ϕ) is in�nitely divisible if for every n ∈ N, X has the same
distribution as the sum of n independent identically distributed random vari-
ables Xn

1 , . . . , Xn
n (with common distribution Fn and characteristic function

ϕn). In other words for each n ∈ N

F = F ∗nn , ϕ(t) =
(
ϕn(t)

)n
,

where F ∗nn denotes the n-th convolution power of distribution Fn.

In particular it means that ϕ is the characteristic function of an in�nitely divis-
ible random variable if and only if (ϕ(t))1/n is a characteristic function for each
n ∈ N. Now it is easy to see that

• if X has Gaussian N(m,σ) distribution, then ϕ(t) = exp{itm− σ2t2/2}, thus
(ϕ(t))1/n = exp{it/nm − σ2t2/2n} which is the characteristic function of the
Gaussian N(m/n, σ/

√
n). Consequently Gaussian distribution is in�nitely di-

visible.

• If X has Γ(p, λ) distribution then

ϕ(t) =
(

λ

λ− it

)p

.

Consequently (ϕ(t))1/n is the characteristic function of Γ(p/n, λ) distribution,
which means that the Gamma distributed random variable is in�nitelly divisi-
ble.
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Of course the de�nition of an in�nitely divisible random variable can be easily
extended to in�nitely divisible random vector, so we present here the famous
Lévi-Khintchine formula in the verion for in�nitely divisible random vectors.
More details one can �nd in chapter XVII in Feller [17].

Theorem 2.3.1. A function ϕ:Rn → C is the characteristic function of
an in�nitely divisible random vector X if and only if there exist µ ∈ Rn, a
non-negative de�nite n × n-matrix < and a measure m on Rn with

∫
(1 ∧

‖x‖2)m(dx) < ∞ such that

ln ϕ(ξ) = i < µ, ξ > −1
2

< ξ,<ξ >

+
∫

Rn

(
1− ei<ξ,x> − i < ξ,x > 1{‖x‖<1}

)
m(dx).

The measure m is called the Lévy measure of the in�nitely divisible vector X.

Notice that for m = 0 we obtain here the Gaussian characteristic function,
but since < is not strictly positive de�nite, the corresponding Gaussian random
vector can be degenerated to a subspace of Rn. Notice also that in Theorem 2.3.1
the Lévy measure m on Rn does not have to be �nite, however m restricted
to the complement of any neighborhood of zero is �nite. If it happens that
m(Rn) < ∞ then the function < ξ,x > is integrable on the set {‖x‖ < 1} thus
the Lévy-Khintchine formula can be written in the form

ln ϕ(ξ) = i < µ1, ξ > −1
2

< ξ,<ξ > +
∫

Rn

(
1− ei<ξ,x>

)
m(dx).

Computer simulation for in�nitely divisible random vector
with �nite Lévy measure

Assume that the random vector X without Gaussian component has �nite Lévy
measure m. This means that

µ = 0, < = 0, m
(
Rn

)
= λ < ∞.

We de�ne a probability distribution on Rn by

Pm(A) =
1
λ

m(A), for A ∈ B(Rn).

Now let the random variable N = NX have the Poisson distribution with pa-
rameter λ, and let X1,X2, . . . be independent, identically distributed with dis-
tribution Pm. If N is independent of X1,X2, . . . and X0 ≡ 0, then

X d=
N∑

k=0

Xk.
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To see this, it is enough to calculate the characteristic function of
∑N

k=0 Xk:

E exp

{
i < ξ,

N∑

k=0

Xk >

}
= E exp

{
i

N∑

k=0

< ξ,Xk >

}

=
∞∑

n=0

E
(
exp

{
i < ξ,

n∑

k=0

Xk >

}∣∣∣N = n
)
P(N = n)

=
∞∑

n=0

(
E exp {i < ξ,X1 >}

)n λn

n!
e−λ

= exp {−λ + λE exp {i < ξ,X1 >}}
= exp

{
−λ

∫

Rn

(
1− exp {i < ξ,X1 >})Pm(dx)

}

= exp
{
−

∫

Rn

(
1− exp {i < ξ,X1 >})m(dx)

}
.

Now we are ready for computer simulation of the random vector X. The proce-
dure is the following
1. Sample the value n of the random variable N by sampling (n+1) independent
variables T1, . . . , Tn+1 with the exponential distribution Γ(1, 1). The number n
shall be chosen in such a way that

T1 + . . . + Tn ≤ λ, T1 + . . . + Tn+1 > λ.

It is easy to calculate that

P {T1 + . . . + Tn ≤ λ, T1 + . . . + Tn+1 > λ} =
λn

n!
e−λ.

2. Sample n independent, identically distributed random vectors X1, . . . ,Xn

with distribution Pm.
3. Calculate the following

X̃ =
n∑

k=0

Xk.

Remark. In all these calculations we assumed that
∑0

k=0 Xk ≡ 0. This means
in particular that if the in�nitely divisible random vector X has �nite Lévy
measure m then it has distribution containing at least one atom:

P {X = 0} ≥ P {NX = 0} = exp
{−m

(
Rn

)}
= e−λ.

On the other hand, if we denote the distribution of X by ν then we see that the
probability measure

ν1 =
1

1− e−λ

(
ν − e−λδ0

)

can be absolutely continuous with respect to the Lebesgue measure. This means
that, after removing atom at zero, the in�nitely divisible vector X with �nite
Lévy measure may have a density function.
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2.4 Positive de�nite norm dependent matrices

De�nition 2.4.1. An n × n matrix Σ = (σij)
n
ij=1, σij ∈ R, is positive

de�nite if for every c = (c1, . . . , cn) ∈ Rn we have cΣcT ≥ 0.

The following theorem describes the connection between positive de�nite real
matrices and positive de�nite real functions. The de�nition of positive de�nite
function was given in the statement 5) of Theorem 2.1.1. We shall notice here
that if the function is real then it is enough to consider real constants cj , j =
1, . . . , n.

Theorem 2.4.1. Let f be a function on Rd taking values in R. The func-
tion f is positive de�nite if and only if for every n ∈ N and every choice of
x1, . . . , xn ∈ Rd the matrix

Σ =
(
f(xi − xj)

)n

i,j=1
=




f(0) f(x1 − x2) . . . f(x1 − xn)
f(x2 − x1) f(0) . . . f(x2 − xn)

. . . . . . . . . . . .
f(xn − x1) f(xn − x2) . . . f(0)




is positive de�nite.

Proof. It is enough to notice that positive de�niteness of the matrix Σ means
that for every vector c = (c1, . . . , cn) ∈ Rn we have cΣcT ≥ 0. But

cΣcT =
n∑

ij=1

cicjf(xi − xj),

which is equivalent with positive de�niteness of the real function f .
2

The Theorem 2.3.1 can be of great help for the construction of positive de�nite
matrices (for example a covariance matrix) or if you want to check whether
a given matrix of the form de�ned in the Theorem 2.3.1 is positive de�nite.
Consider for example the following function de�ned on Rd:

fp,q(x) = exp

{
−

( d∑

k=1

|xk|p
)q/p

}
= exp

{
−‖x‖q

p

}
,

Theorem 2.4.2. The function fp,q(x) is positive de�nite on R2 if and only
if the following condition holds

0 < q ≤ p ≤ 2 or p ∈ (2,∞] and q ≤ 1.

Proof. If 0 < q ≤ p ≤ 2, we will see in the next chapter that the function
fp,q(x) is the characteristic function of q-stable, p-substable random vector, and
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therefore positive de�nite. This holds for every dimension d, not only for d = 2.
This fact was known already in 1937 to P. Lévy [43]. He proved also that the
parameter q has to belong to the interval (0, 2] and this fact also does not depend
on the dimension of the space.
We continue with the case p > 2. In Theorem 2.1 of [15] Dor proved that
the function fp,q is not positive de�nite if 1 < q < 2 < p. In the case when
p > 1 and q = 1 positive de�niteness of the function fp,q(x) on R2 follows from
the well known theorem stating that every two-dimensional Banach space (e.g.
(R2, ‖ · ‖p)) embeds isometrically into some L1-space. This theorem has been
proven by several authors in di�erent ways in di�erent areas of mathematics;
see e.g.: Ferguson 1962 [18], Herz 1963 [25], Lindenstrauss 1964 [44], Assouad
1979-1980 [3�5] or Misiewicz and Ryll-Nardzewski 1989 [53]. In this last paper
one can �nd the explicit formula for the corresponding measure ν on [0, 2π):
Notice �rst that two dimensional Banach space is nothing but the plane R2

equipped with a norm c:R2 → [0,∞). If this norm c(x, y) is a smooth function
on R2 then

c(x, y) =
1
4

∫ 2π

0

∣∣x cos θ + y sin θ
∣∣
(
q′′(θ − π

2
) + q(θ − π

2
)
)

dθ,

where q(θ) = c(cos θ, sin θ). Now it is enough to know that if fp,q is positive
de�nite then for every 0 < s < q the function fp,s is also positive de�nite, which
will be clear for us in the next chapter.

2

Theorem 2.4.3. The function fp,q(x) is positive de�nite on Rd, d ≥ 3, if
and only if 0 < q ≤ p ≤ 2.
Moreover if for some p ∈ (2,∞] a function f(‖x‖p) is a positive de�nite func-
tion on Rd, d ≥ 3, then f ≡ 1.

Proof. History of the proof The proof of necessity of the condition 0 < q ≤ p ≤ 2
has a long history going back to the �rst investigations of symmetric stable
random vectors [43], and the �rst Schoenberg problem [66]. In 1963 Herz [25]
proved that if 1 < q < 2 and fp,q is positive de�nite on Rd then q < p <
q(1 − q)−1. In 1973 Witsenhausen [69] proved that if p > 2.7, d ≥ 3 then fp,1

is not a positive de�nite function. In 1976 Dor [15] (see also [11]) proved that
if p, q ∈ [1,∞) and fp,q is positive de�nite on Rd then 1 ≤ q ≤ p ≤ 2. In 1991
Koldobsky [36] proved that if p > 2 and d ≥ 3 then fp,q(x) is not positive de�nite
for any q ≤ 2. Note that the result of Koldobsky solves �nally, after 53 years, the
�rst Schoenberg question. And in 1995, Grz�a±lewicz and Misiewicz [21] noticed
that the previous considerations do not include all cases when p < 1 or q < 1.
They proved in full generality that if 0 < p < q ≤ 2 then the function fp,q(x) is
not positive de�nite.
In 1989 Misiewicz ( see [54]) proved that if the function f(‖x‖∞) is positive
de�nite on Rd, d ≥ 3 then f ≡ 1. It is known also that if the function f(‖x‖p)
is positive de�nite on Rd, d ≥ 3, p > 2, then f ≡ 1. This result was proven
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independently by two authors: Lisitsky in 1991 [45] and Zastawny in 1991 [73].
2

Exercises.

1. Let X1, X2, . . . be a sequence of independent identically distributed random
variables and Sn =

∑n
k=1 Xk. Show that

a) if Xk's are Gaussian then Sn is Gaussian;
b) if Xk's have Gamma distribution then Sn also has Gamma distribution;
c) if Xk's have Bernoulli distribution, then Sn has Bernoulli distribution.

2. Show that none of the following functions can be a characteristic function of
some probability distribution: a) ϕ(t) = cos t2, b) ϕ(t) = exp{−t15}.

3. Using the Fourier inversion formula �nd numerically the density function for
a probability distribution with the following characteristic function:
a) ϕ(t) = exp{−|t|3/2},
b) ϕ(t) = exp{−|t|

√
2}.

Explain why a density exists in these cases. In both cases �nd the distribution
of Y = 2X + 3X ′, where X, X ′ are independent with the same distribution
and the characteristic function ϕ(t).
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3

Stable random variables

In 1850 Augustino Cauchy noticed that the function fα satisfying the equation
∫ ∞

−∞
eitxfα(x)dx = exp

{−|t|α}
, α > 0

has a very special convolution property, namely:
(
afα(a·)) ∗ (

bfα(b·)) = cfα(c·),
for every a, b > 0 and properly chosen c = c(a, b). He showed also that fα ≥ 0
for α = 1 and α = 2
In 1923 George Pólya proved his famous result (see Theorem 2.3.4). From Pólya's
result we obtain that fα ≥ 0 for α ∈ (0, 1] as a density function of the corre-
sponding probability distribution.
In 1924 Paul Lévy proved that fα ≥ 0 for every α ∈ (0, 2]. He introduced the
name stable distribution for distribution with density fα (with possible rescal-
ing). Actually his de�nition was as follows: the random variable X is stable if
aX + bX ′ d= cX + d, for any a, b > 0, X ′ is an independent copy of X, d= de-
notes equality of distributions, and c = c(a, b), d = d(a, b) are properly chosen
constants.
The easiest way to prove that for α > 2 the function fα cannot be a density
function for any probability distribution is using a result of Durret obtained in
1991:
if ϕ(t) is a characteristic function of a symmetric random variable X and

lim
t→0+

ϕ(t)− 1
t2

= −σ2

2
> −∞,

then EX = 0 and EX2 = σ2.
If we assume that fα is a density of the random variable X for some α > 2 then
we would have

lim
t→0+

exp{−|t|α} − 1
t2

= 0,
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thus, by the Durret's result, EX = 0, VarX = 0, so X = 0 with probability 1
and EeitX ≡ 1 6= exp{−|t|α} which is a contradiction.
Now the stable random variables and vectors play a crucial role in probability
theory. Their investigations started in 1920's and in 1930's by Paul Lévy and
Aleksandr Yakovlevich Khinchine. The literature is very rich on this topic; see,
e.g. P. Lévy [43], Gnedenko, Kolmogorov [19], Zolotariev [74], Ibragimov, Linnik
[27]. Not long ago appeared two books completely devoted to stable stochastic
processes: one of Samorodnitsky and Taqqu [63], the second of Janicki and
Weron [28]. Also Ledoux and Talagrand published a book �Probability in Banach
Spaces� (see [41]), where stable random variables, vectors and processes are
shown to play an important role in structure theorems of Banach spaces.

3.1 Equivalent de�nitions of stable random vari-
ables

In this section we will present �ve equivalent de�nitions of a stable random
variables. We will also give the detailed proof of their equivalence. The last pre-
sented de�nition, de�nition E, is called the representation of the characteristic
function for stable random variable.

De�nition 3.1.1 (A). A random variable X is stable (or it has a stable
distribution) if

∀ a, b > 0 ∃ c = c(a, b) ≥ 0 ∃ d ∈ R aX1 + bX2
d= cX + d, (I)

where X1, X2 are independent copies of X, and d= denotes equality in distri-
bution.
If for the random variable X the condition (I) holds with d = 0 then X is called
strictly stable. If the distribution of X is symmetric then the condition (I) holds
for every a, b ∈ R (also the negative constants are possible) and X is called
symmetric stable.
Remark 3.1.1. Notice that if ϕ is the characteristic function of a stable
random variable then |ϕ|2 is the characteristic function of symmetric random
variable X−X ′ which is stable with the same function c(a, b). Indeed, for ϕ the
condition (I) can be written as
∀ a, b > 0 ∃ c = c(a, b) ≥ 0 ∃ d ∈ R ∀ t ∈ R ϕ(at)ϕ(bt) = ϕ (c(a, b)t) eidt.

This, together with the property ϕ(t) = ϕ(−t), implies that
|ϕ(at)|2|ϕ(bt)|2 = ϕ(at)ϕ(bt)ϕ(−at)ϕ(−bt)

= ϕ (c(a, b)t) eidtϕ (−c(a, b)t) e−idt = |ϕ (c(a, b)t)|2 .

The function c, which by de�nition is de�ned only on the set [0,∞)2 can then
be extended to the whole R2 by putting c(a, b) = c(|a|, |b|). We will use this
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simple remark in order to simplify proofs which concern only the properties of
the function c. It is easy to see that
a) c(a, b) = c(b, a) for all a, b ∈ R, and
b) c(at, bt) = |t|c(a, b) for all a, b, t ∈ R.
Notice also that the random variable concentrated at zero is symmetric stable.
From now on we will assume that this trivial case does not hold, i.e. we will
assume that
c) c(a, b) = 0 if and only if a = b = 0.

Lemma 3.1.1. Let X be a random variable with characteristic function
ϕ 6≡ 1. If there exist positive constants c2 and d2 ∈ R such that

X + X ′ d= c2X + d2,

where X ′ is an independent copy of X, then ϕ(t) 6= 0 for every t ∈ R.

Proof. Without loss of generality we can assume that X is symmetric, which
implies also that d2 = 0. From the assumptions we have that

ϕ(t)2 = ϕ(c2t) ∀ t ∈ R.

Since ϕ 6≡ 1 then c2 6= 1. Assume that there exists t0 > 0 such that ϕ(t0) = 0,
and let τ0 = inf{t > 0 : ϕ(t) = 0}. Of course τ0 > 0 because ϕ(0) = 1. If c2 < 1
then we would have

0 = ϕ(τ0)2 = ϕ(c2τ0),

which is impossible since 0 < c2τ0 < τ0. If c2 > 1 then

0 = ϕ(t0) = ϕ(c−1
2 t0)2,

which is also impossible since 0 < c−1
2 τ0) < τ0.

2

De�nition 3.1.2 (B). A random variable X is stable i�

∀ n ∈ N ∃ cn > 0 ∃ dn ∈ R X1 + . . . + Xn
d= cnX + dn, (II)

where X1, . . . , Xn are independent copies of X.

Lemma 3.1.2. If random variable X satis�es the equation (II), then there
exists α > 0 such that cn = n1/α.
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Proof. Without loss of generality we can assume that dn = 0. Notice that

cnmX1
d= (X1 + . . . + Xn) + . . . + (X(n−1)m+1 + . . . + Xnm)
d= cn(X1 + . . . + Xm) d= cncmX1.

Thus we obtain that cnm = cncm, and consequently cnk = ck
n.

Now we show that the sequence (cn) is monotonically increasing. Since the
random variables Xi, i ∈ N are symmetric then for every x > 0 we have

P {cn+mX1 > cmx} = P {cnX1 + cmX2 > cmx}
≥ P {cnX1 ≥ 0}P {cmX2 > cmx} =

1
2
P {X2 > x} .

For a �xed x > 0 the right hand side of this inequality is a positive constant thus
the fraction cm

cn+m
has to be bounded for n →∞. Let m = ks and n+m = (k+1)s

for some �xed k ∈ N and s →∞. Since
cm

cn+m
=

(
ck

ck+1

)s

is bounded when s →∞ we conclude that ck ≤ ck+1.
Now let j, k ∈ N. For every n ∈ N there exists exactly one λ ∈ N such that

jλ ≤ kn < jλ+1.

From the previous considerations it follows that

cλ
j ≤ cn

k ≤ cλ+1
j .

In particular it means that cj ≥ 1. In the case when cj = 1 for some j > 1 we
would have ϕ(t)j = ϕ(t) for the characteristic function ϕ of the variable X. Since
we assume that X is symmetric this would imply that ϕ ≡ 1, P{X = 0} = 1
and the Lemma 3.1.2 holds for every α > 0. Assume then that cj > 1 for every
j ∈ N. Then

λ

λ + 1
ln j

ln cj
≤ ln k

ln ck
≤ λ + 1

λ

ln j

ln cj
.

Since λ can be arbitrary large, then ln k
ln ck

is independent of k, i.e. ck = k1/α for
some α. Of course α > 0 since c1 = 1 and the sequence cn, n ∈ N is increasing.

2

Theorem 3.1.1. De�nitions A and B are equivalent. Moreover, if X is
stable, there exists α > 0 such that

∀ a, b > 0 ∃ d ∈ R aX1 + bX2
d=

(
aα + bα

)1/α
X + d.

where X1, X2 are independent copies of X. The constant α is called the index
of stability or the characteristic exponent. A symmetric stable random variable
X with index α is called symmetric α-stable (notation SαS).
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Proof. Assume that the functional equation (II) holds. From Lemma 3.1.2 it
follows that

∀ k, n, m
(n

k

)1/α

X1 +
(m

k

)1/α

X2
d=

(n

k
+

m

k

)1/α

X1 +
dn+m − dn − dm

k1/α
.

This means that

∀ r, s ∈ Q+ ∃d(r, s) ∈ R r1/αX1 + s1/αX2
d= (r + s)1/αX1 + d(r, s).

For ϕ the characteristic function of X this implies that

∀ r, s ∈ Q+ ∃ d(r, s) ∀ t ∈ R ϕ
(
r1/αt

)
ϕ

(
s1/αt

)
= ϕ

(
(r + s)1/αt

)
eid(r,s)t.

Continuity of the function ϕ implies that for rn → a, sn → b, rn, sn ∈ Q+ we
have ϕ(r1/α

n t) → ϕ(a1/αt), ϕ(s1/α
n t) → ϕ(b1/αt), ϕ((rn + sn)1/αt) → ϕ((a +

b)1/αt) for every �xed t ∈ R. Consequently there exists also the limit d(rn, sn),
which we denote by d = d(a, b), which ends the proof of implication (II) ⇒ (I)
together with the speci�cation of the constant c = c(a, b) in de�nition (I).
Implication (I) ⇒ (II) is a consequence of a simple application of mathematical
induction.

2

In 1983 Zolotariev proved that a stable random variable can be equivalently
de�ned as the one for which the conditions of de�nition B hold only for n = 2
and n = 3. In fact the particular choice of these two natural numbers can be
replaced by any two natural numbers k, ` under the assumption that they are
relatively prime i.e. they do not have any joint factor except 1.

De�nition 3.1.3 (C). A symmetric random variable X is stable if there
exist c2, c3 > 0 and d2, d3 ∈ R such that

X1 + X2
d= c2X + d2, and X1 + X2 + X3

d= c3X + d3, (III)

where X1, X2, X3 are independent copies of X.

Lemma 3.1.3. De�nitions B and C are equivalent.

Proof. We need to show that de�nition C implies that for every n ∈ N there
exist cn > 0 and dn ∈ R such that

ϕn(t) = ϕ(cnt)eidnt.

It follows from Lemma 3.1.1 that the function Ψ(t) = ln ϕ(t) is well de�ned. For
the function Ψ, De�nition C implies that

2Ψ(t) = Ψ(c2t) + id2t, 3Ψ(t) = Ψ(c3t) + id3t,
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and by mathematical induction we can obtain that there exists a family of real
numbers djk, j, k ∈ N such that

2j3kΨ(t) = Ψ(cj
2c

k
3t) + idjkt. (∗)

Since the set {j + k log2 3 : j, k = 0,±1,±2, . . .} is dense in R then the set
{2j3k : j, k = 0,±1,±2, . . .} is dense in (0,∞), so for every n ∈ N there exists a
sequence rm = 2jm3km such that rm → n. Let c(m) = cjm

2 ckm
3 . Comparing the

real parts of equation (∗) we obtain

rm<eΨ(t) = <eΨ(c(m)t).

If the sequence c(m) is unbounded then there exists a subsequence c(m′) →∞
and then

<eΨ(t) = rm′<eΨ(t/c(m′)) → 0

for every t ∈ R in contradiction with the assumption that X is not trivial. This
means that the sequence c(m) is bounded and it contains a subsequence c(m′)
converging to some cn > 0. Coming back to equation (∗) we obtain

djm′km′ =
i

t
(Ψ(c(m′)t)− rm′Ψ(t)) → i

t
(Ψ(cnt)− nΨ(t)) .

Since the left hand side is a numerical sequence then its limit also cannot depend
on t, thus there exists dn such that nΨ(t) = Ψ(cnt)+itdn, which ends the proof.

2

The next de�nition is very important. It states that stable distributions are the
only possible distributions which can be obtained as weak limits of sequences of
rescaled and shifted sums of independent identically distributed random vari-
ables. The Central Limit Theorem is the most known theorem of such type. It
states that under the assumption of �nite variance of components we can �nd
numbers (an) and (bn) such that

X1 + . . . + Xn − an

bn
⇒ XN(0,1).

Since de�nition D is one of the possible equivalent de�nitions of stable ran-
dom variables we know that these variables can be considered as an e�ect of
accumulation of very many very small factors.

De�nition 3.1.4 (D). A random variable X is stable if it has a domain of
attraction, i.e. if there exists a sequence of independent identically distributed
random variables Y1, Y2, . . . such that for a suitable constants an ∈ R, bn > 0

Y1 + . . . Yn − an

bn

d=⇒ X, for n →∞,

where d⇒ denotes convergence in distribution.

Theorem 3.1.2. De�nitions B and D are equivalent.

29



Proof. Notice �rst that de�nition B implies de�nition D. It is enough to take
(Yi) sequence of independent identically distributed random variables with the
same distribution as X and de�ne an = dn, bn = cn, where cn, dn are the
constants appearing in de�nition B. Then we have that for every n ∈ N

Y1 + . . . Yn − an

bn

d= X.

To see the opposite implication choose k ∈ N. Then we have

Y1 + . . . + Ynk − ank

bnk
=

Y1 + . . . + Yn − an

bn

bn

bnk

+ . . . +
Y(k−1)n+1 + . . . + Ynk − an

bn

bn

bnk
+

kan − ank

bnk
.

Denoting by ϕn the characteristic function of (Y1 + . . . + Yn − an)/bn we obtain

ϕnk(t) =
[
ϕn

( bn

bnk
t
)]k

exp
{

it
kan − ank

bnk

}
. (∗)

The sequence bn

bnk
, as a sequence of positive numbers has an accumulation point

c−1
k ∈ [0,∞]. It is easy to see that in both cases c−1

k = 0 and c−1
k = ∞ we would

have |ϕ(t)| ≡ 1 in contradiction to our assumptions, thus 0 < c−1
k < ∞. Let (n′)

be subsequence of natural numbers such that bn′/bn′k → c−1
k . Then we have

ϕn′k(t) → ϕX(t), ϕn′
( bn′

bn′k
t
)
→ ϕX(c−1

k t),

which, in view of equality (∗), implies that there exists also the limit

lim
n′→∞

kan′ − an′k

bn′k

def
= −dk

ck
.

For n′ →∞ in equality (∗) we obtain then

ϕX(t) =
[
ϕX(c−1

k t)
]k

exp
{
−it

dk

ck

}
,

which means that X1 + . . . + Xk
d= ckX1 + dk, which was to be shown.

2

De�nition 3.1.5 (E). A random variable X with the characteristic func-
tion ϕ(t) is stable if there are parameters α ∈ (0, 2], σ > 0, β ∈ [−1, 1] and
µ ∈ R such that

ϕ(t) =





exp
{
−σα|t|α(

1− iβsgn(t) tan
πα

2
)

+ iµt
}

if α 6= 1;

exp
{
−σ|t|(1 + iβ

π

2
sgn(t) ln |t|) + iµt

}
if α = 1.
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The parameters α ∈ (0, 2], σ > 0, β ∈ [−1, 1] and µ ∈ R uniquely determine the
characteristic function of stable random variable and consequently its distribu-
tion. We will use the notation Sα(σ, β, µ) for such distribution. The de�nition
E is called the Lévy spectral representation for a stable distribution.

Lemma 3.1.4. If X is stable with an exponent α 6= 1 then there exists
m ∈ R such that (X + m) is strictly stable.

Proof. We follow here the proof based on De�nition (B) presented by Feller
[17] Th. VI.1.2. Let Sk be the sum of k independent random variables each
distributed as X. Accordingly

Smn
d= cnSm + mdn

d= cncmX + cndm + mdn.

Since m and n play the same role this means that we have identically

(cn − n)dm = (cm −m)dn.

Since α 6= 1 then cn 6= n and this equation implies that dn/(cn − n) does not
depend on n, thus there exists m such that dn = m(cn − n). It is easy to check
now that the random variable (X + m) is strictly stable.

2

Lemma 3.1.5. Assume that X is a strictly α-stable random variable with
characteristic function ϕ. If α 6= 1 then there exist a positive constant σ > 0
and γ ∈ (−1, 1) such that

ϕ(t) = exp
{
−σα|t|α

(
1− isgn(t) tan(

πγ

2
)
)}

.

Proof. It follows from Theorem 3.1.1 that there exists a positive constant α such
that

∀ a, b ≥ 0 ∀ t ∈ R ϕ(a1/αt)ϕ(b1/αt) = ϕ
(
(a + b)1/α

t
)

.

Moreover ϕ(t) 6= 0 for every t ∈ R by Lemma 3.1.1. Putting t = 1 and Φ(s) =
ϕ(s1/α) for s > 0 we obtain

∀ a, b ≥ 0 Φ(a)Φ(b) = Φ(a + b).

This is a classical functional equation of the Cauchy type, which can be easily
solved in the following way: First by mathematical induction we show that
Φ(ns) = Φ(s)n. Substituting s → s

n we obtain also that Φ( s
n ) = Φ(s)1/n.

Consequently
∀ k, n ∈ N Φ

(k

n

)
= Φ(1)k/n.

Continuity of the function Φ implies that Φ(s) = Φ(1)s for every s ≥ 0.
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By the same arguments for t = −1 we obtain that for every s > 0 Φ(−s) =
Φ(−1)s. Since Φ(−1) = Φ(1) and the real part of Φ(1) has to be less than 1, we
can represent Φ(1) in the following form

Φ(1) = exp
{
−Aeiπγ/2

}
,

for some γ ∈ (−1, 1). Finally we obtain

ϕ(t) = Φ(|t|αsgn(t)) = exp
{
−A|t|α

(
cos

πγ

2
+ isgn(t) sin

πγ

2

)}
.

Now it is enough to de�ne σα = A cos πγ
2 .

2

Lemma 3.1.6. The number α is the index of stability for some symmetric
stable random variable i� α ∈ (0, 2].

Proof. Let X be an α-stable random variable with the characteristic function
ϕ. According to Remark 3.1.1 it is enough to consider only the case when X
has a symmetric distribution and then ϕ(t) = exp{−A|t|α}.
• If α > 2 then the function ϕ(t) = exp{−A|t|α} has second derivative and
ϕ′(0) = 0, ϕ′′(0) = 0. Thus, if ϕ(t) were a characteristic function of some random
variable X then EX = 0 and Var(X) = 0. Consequently P{X = 0} = 1 and
ϕX(t) ≡ 1 6= ϕ(t).
• If α ∈ (0, 1] then it is easy to check that the function ϕ(t) = exp{−A|t|α} is
symmetric, convex and decreasing on (0,∞) thus Polya's Lemma implies that
ϕ is a characteristic function of some symmetric random variable X.
• For α = 2 the function ϕ(t) = exp{−At2} is the characteristic function of a
symmetric Gaussian distribution N(0,

√
2A).

• For α ∈ (1, 2) we de�ne a sequence of probability measures

µn
def
= exp{mn} = e−mn(R)

∞∑

k=0

1
k!

m∗k
n ,

where ν∗k denotes the k'th convolution power of the measure ν, and

mn(dx) = Ac
1

|x|α+1
1[n−1,∞)(|x|) dx,

with positive constants A and c are. Calculating the characteristic function of
µn we obtain

µ̂n(t) = exp

{
−Ac

∫

|x|>n−1

(
1− cos(tx)

) dx

|x|α+1

}

= exp

{
−Ac|t|α

∫

|x|>n−1|t|

1− cos y

|y|α+1
dy

}
.
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Let h(y) = (1 − cos y)|y|−1−α. Since h(y) ≤ |y|1−α for |y| < 1 and h(y) ≤
2|y|−α−1 for |y| > 1 then h(y) is integrable and we can choose c such that

c−1 =
∫

R

1− cos y

|y|α+1
dy.

Now we have
µ̂n(t) −→ exp {−A|t|α} as n →∞.

Since ϕ(t) = exp{−A|t|α} is continuous and it is a pointwise limit of character-
istic functions we conclude that ϕ is also a characteristic function.

2

Lemma 3.1.7. If the random variable X is 1-stable with the characteristic
function ϕ then there exist σ > 0, µ, γ ∈ R such that

ϕ(t) = exp {−σ|t| (1 + iγsgn(t) ln |t|) + iµt} .

Proof. We will show that the de�nition A for α = 1 implies the result. From
Lemma 3.1.1 we know that the function Φ(t) = − ln ϕ(t) is well de�ned, thus
for every a, b > 0 we have

Φ(at) + Φ(bt) = Φ((a + b)t) + id(a, b)t.

Consequently
id(a, b) =

1
t

(Φ(at) + Φ(bt)− Φ((a + b)t)) ,

so substituting t = 1 we have also

id(a, b) = Φ(a) + Φ(b)− Φ(a + b).

The last two equations imply that
(

Φ(at)
t

− Φ(a)
)

+
(

Φ(bt)
t

− Φ(b)
)

=
(

Φ((a + b)t)
t

− Φ(a + b)
)

.

Let Ψ(a, t) = Φ(at)/t − Φ(a) for a > 0, t ∈ R. Treating this function as a
function of a we see that for every a, b > 0

Ψ(a, t) + Ψ(b, t) = Ψ((a + b), t),

which is again the classical Cauchy functional equation (see proof of Lemma
3.1.5), so there exists h(t) such that

Ψ(a, t) = h(t)a,

and consequently
Φ(at) = Φ(a)t + h(t)at. (∗)
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Let t > 0. Since Φ(a) = Φ(1 · a) = Φ(1)a + h(a)a we obtain

Φ(at) = Φ(1)at + h(a)at + h(t)at.

In further considerations we will use the notation Φ(1) = σ+ iµ. Substitute now
a = ev, t = eu, G(u) = Φ(eu)e−u − Φ(1), H(u) = h(eu). Now we have

G(u + v) = H(u) + H(v).

Since G(0) = 0 then 0 = 2H(0) and G(u) = H(u). This means that G(u + v) =
G(u) + G(v) and there exists a constant which we denote by kγσ, where k is
some complex number, |k| = 1, γ ∈ R, such that G(u) = H(u) = kγσu. Coming
back to the function Φ we obtain Φ(eu) = Φ(1)eu +kγσeuu, so consequently for
every t > 0

Φ(t) = (σ + iµ)t + kγσt ln t.

Calculating Φ(−at) for a, t > 0 from the equation (∗) we obtain Φ(−at) =
Φ(−1)at−ath(a)−ath(b). From the previous considerations h(1) = 0, Thus for
every t > 0 we have

Φ(−t) = Φ(−1)t− tkγσ ln t.

Now it is enough to notice that Φ(−1) = Φ(1) = σ − iµ and Φ(−t) = Φ(t) thus
we can assume that k = i.

2

Theorem 3.1.3.
(A) ⇔ (B) ⇔ (C) ⇔ (D) ⇔ (E).

Proof. The equivalence of de�nitions A, B, C and D has been already proven.
It is easy to see that for the random variable X with the characteristic func-
tion ϕ de�ned in de�nition E conditions of de�nition A are satis�ed, thus the
characteristic function of the form given in de�nition E is stable. For α 6= 1
the representation E follows from Lemma 3.1.5., and for α = 1 it follows from l
Lemma 3.1.7.

2

3.2 Properties of stable random variables
For α = 2, the random variable X with distribution S2(σ, 0, 0) (see the notation
introduced by De�nition E) has simply N(0,

√
2σ) distribution, so E|X|p < ∞

for every p > 0. If 0 < α < 2 then it is not even true that the random variable
X with the distribution Sα(σ, 0, 0) has α-moment. However, it can be shown
that in this case

lim
t→∞

tαP
{|X| > t

}
= cα

α · σα,

where cα > 0 depends only on α. Therefore, X has moments of order r for every
0 < r < α and

E|X|r = σrE|Xs,α|r ≡ σrcr
α,r, (3.1.2)
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and E|X|r = ∞ for all r ≥ α, where Xs,α is the standard symmetric α-stable
random variable with distribution Sα(1, 0, 0). We call a distribution with in�nite
second moment a heavy tail distribution, thus all α-stable distributions have
heavy tails.
If α ≥ 1 then the support of any α-stable, not necessarily symmetric, random
variable is equal to the whole R, but if α ∈ (0, 1), then it is possible to construct
a strictly positive α-stable random variable. We will need and use a special kind
of such α-stable random variables; namely variables Θα, α ∈ (0, 1) such that
P{Θα ≥ 0} = 1 and their Laplace transform is of the form:

E exp
{
−ξΘα

}
= exp {−ξα} , ξ > 0. (3.1.3)

It easily follows from the equality of the corresponding Laplace transforms that
Θα is an α-stable random variable. We will use the notation γ+

α for the distri-
bution of Θα. Only in one case the density of γ+

α is given in an explicit form,
namely

γ+
1/2(dx) =

1
2
√

π

1√
x3

e−1/(4x)dx, x > 0;

for details see Feller [17], examples II.4(f) and XIII.3(b). If α ∈ (0, 1) and
α 6= 1/2, then the density of Θα can be obtained by the inverse Fourier transform
of its characteristic function. Namely, we have:

γ+
α (dx) =

1
xπ

∫ ∞

0

exp
{
−t− tαx−α cos(

π

2
α)

}
sin

{
tαx−α sin(

π

2
α)

}
dt× dx,

and the proof of this formula can be found in [27], Theorem 2.3.1(3).
The probability densities of α-stable random variables exist and are continuous
but, with a few exceptions, they are not known in closed form (see [74]). The
exceptions are:

(a) Gaussian distribution S2(σ, 0, µ) = N(µ, 2σ2);

(b) Cauchy distribution S1(σ, 0, µ) with density
σ

π((x− µ)2 + σ2)
.

and the cumulative distribution function

P{X < x} =
1
2

+
1
π
arctg

(
x− µ

σ

)
;

(c) The Lévy distribution S1/2(σ, 1, µ) with the density
( σ

2π

)1/2 1
(x− µ)3/2

exp
{
− σ

4(x− µ)

}
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is concentrated on (µ,∞). If X ∼ S1/2(σ, 1, 0) then

P{X < x} = 2
(
1− Φ

(√
σ/x

))
,

where Φ is the cumulative distribution function for N(0, 1) distribution.

The density function for the symmetric Sα(σ, 0, 0) distribution can be easily
expressed by the inverse Fourier transform

fα,σ(x) =
1
2π

∫ ∞

−∞
eitxe−σαtα

dt =
1
π

∫ ∞

0

cos (tx)e−σαtα

dt.
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Figure 3.1: Examples of symmetric stable density functions

Directly implementing the general formula for the characteristic function of sta-
ble random variables into the Fourier inverse formula in order to get the density
function may cause some numerical troubles. The cumulation of very many very
small approximations in computer calculations could give us an imaginary part
in the resulting density function. Thus, it is better to use the following expres-
sions for density of Sα(σ, β, 0) distribution:

fα,σ,β(x) =
1
π

∫ ∞

0

exp {−σα|t|α} cos (βσα|t|α(sgn t)tg(πα/2)− tx) dt,

for α 6= 1, and, for α = 1:

f1,σ,β(x) =
1
π

∫ ∞

0

exp {−σ|t|} cos
(

tx− βσ
2
π

t ln |t|
)

dt.
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Figure 3.2: 3
2 -stable density function with µ = 0 and di�erent β's
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Figure 3.3: 1
2 -stable density function with µ = 0 and di�erent β's

3.3 Simulating stable random variables.

Consider the Lévy distribution S1/2(σ, 1, µ). It is easy to check that this is the
density function for the random variable

X = σZ−2 + µ,

where Z has the N(0, 1) distribution. This representation gives a simple method
for sampling S1/2(σ, 1, µ) distribution, namely by sampling a symmetric Gaus-
sian random variable. For α 6= 1/2 we have much more trouble.
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Proposition 3.3.1 (Generating completely skewed stable
variables.). Let α ∈ (0, 1). If θ with uniform distribution on (0, π) and W
exponential with mean 1 are independent then

X =
sin αθ

(
cos πα

2

)1/α (sin θ)1/α

(
sin ((1− α)θ)

W

)(1−α)/α

has the Sα(1, 1, 0) distribution.
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Figure 3.4: Histogram of completely skewed 0.7 stable variable

The following two propositions give the method for generating symmetric stable
random variables by sampling two much simpler distributions. We present here
the description given in Samorodnitsky, Taqqu (1994) [63].

Proposition 3.3.2. For 0 < α ≤ 2, α 6= 1 and 0 < θ < π
2 we de�ne

Uα(θ) =
(

sin αθ

cos θ

)α/(1−α) cos ((1− α)θ)
cos θ

and let L(X) = Sα(1, 0, 0). Then for x ≥ 0,

1
π

∫ π/2

0

exp
{
−xα/(α−1)Uα(θ)

}
dθ =

{
P {0 < X ≤ x} if 0 < α < 1;
P {X ≥ x} if 1 < α ≤ 2.

Proof. The result follows from Zolotarev (1986), Remark 1, page 78. This gives
us the integral representation for the cumulative distribution function for sym-
metric α-stable variables with α 6= 1.

2
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Proposition 3.3.3 (Generating symmetric stable vari-
ables.). Let θ with uniform distribution on (−π/2, π/2) and W exponential
with mean 1 be independent. Then

X =
sin αθ

(cos θ)1/α

(
cos ((1− α)θ)

W

)(1−α)/α

has Sα(1, 0, 0) distribution.

Proof. For θ ∈ (0, π/2) the right-hand side of this formula can be expressed as

(
a(θ)
W

)(1−α)/α

,

where

a(θ) =
(

sin αθ

cos θ

)α/(1−α)

cos ((1− α)θ).

(a) Case α ∈ (0, 1).

P{0 ≤ X ≤ x} = P{0 ≤ X ≤ x, θ > 0}
= P

{
0 ≤ (a(θ)/W )(1−α)/α

< x, θ > 0
}

= P
{

W ≥ x−α/(1−α)a(θ), θ > 0
}

= E exp
{
−x−α/(1−α)a(θ)

}
1{θ>0}

=
1
π

∫ π/2

0

exp
{
−x−α/(1−α)a(θ)

}
dθ.

Now the previous proposition gives the result.

(b) Case α ∈ (1, 2]. We start with P{0 ≤ X ≤ x} = P{0 ≤ X ≤ x, θ > 0} and
proceed as above, making use of the inequality (1− α) < 0.

(c) Case α = 1. The formula reduces to X = tan θ, and it is easy to see that X
has a symmetric Cauchy distribution.

2

The next proposition generalizes the previous construction to strictly stable
random variables for α 6∈ {1, 2}. We follow here the description given in Janicki
(1996) [29].
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Figure 3.5: Histogram of symmetric 0.5 stable variable
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Figure 3.6: Histogram of symmetric 01.8 stable variable

Proposition 3.3.4 (Generating strictly stable random vari-
ables). Let θ with uniform distribution on the interval (−π/2, π/2) and
the exponential random variable W with mean 1 be independent. For α ∈
(0, 1) ∪ (1, 2) and β ∈ [−1, 1] we de�ne

Cα,β =
arctan(β tan(πα/2))

α
,

and
Dα,β =

(
cos(arctan(β tan(πα/2)))

)−1/α
.

Then the random variable

X = Dα,β · sin (α(θ + Cα,β))
(cos θ)1/α

[
cos (θ − α(θ + Cα,β))

W

](1−α)/α

has a strictly stable distribution Sα(1, β, 0).
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This representation applied to completely skewed stable random variables with
distribution Sα(1, 1, 0) for α < 1 gives

Cα,1 =
π

2
, Dα,1 =

(
cos

(πα

2

))−1/α

,

thus Sα(1, 1, 0) distribution can be sampled using the formula

X =
(
cos

(πα

2

))−1/α

· sin
(
α(θ + π

2 )
)

(cos θ)1/α

[
cos

(
θ − α(θ + π

2 )
)

W

](1−α)/α

Proposition 3.3.5 (Full family of stable random variables).
Let θ with uniform distribution on the interval (−π/2, π/2) and the exponential
random variable W with mean 1 be independent.
For α 6= 1 and β ∈ [−1, 1] we de�ne

Cα,β =
arctan(β tan(πα/2))

α
,

and
Dα,β,σ = σ

(
cos(arctan(β tan(πα/2)))

)−1/α
,

and
Bα,β,σ,µ = µ− βσα tan

πα

2
.

Then the random variable

X = Dα,β,σ · sin (α(θ + Cα,β))
(cos θ)1/α

[
cos (θ − α(θ + Cα,β))

W

](1−α)/α

+ Bα,β,σ,µ

has stable distribution Sα(σ, β, µ).
• For α = 1 we have that

X = σ
2
π

[(π

2
+ βθ

)
tan θ − β ln

(
πW cos θ

π + 2βθ

)]
+ Bβ,σ,µ,

where
Bβ,σ,µ = µ +

2
π

βσ ln σ

has S1(σ, β, µ) distribution.
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Figure 3.7: histogram for Cauchy distribution with β = σ = 1, µ = 0
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4

Stable random vectors

4.1 Basic Properties of symmetric stable vectors

De�nition 4.1.1. A random vector X = (X1, . . . , Xn) is said to be stable
in Rn if for every choice of a, b ∈ R there exists a positive constant c and
vector d ∈ Rn such that

aX1 + bX2
d= cX + d,

where X1, X2 are independent copies of X.

Theorem 4.1.1. Let X = (X1, . . . , Xn) be a symmetric stable random
vector in Rn. Then there exists α ∈ (0, 2] such that all linear combinations of
the components of X are symmetric α-stable random variables.

Proof. The de�nition of a symmetric stable random vector X is equivalent to
the following condition for its characteristic function ϕX: for every a, b ∈ R
there exists a positive constant c such that for every ξ ∈ Rn

ϕaX(ξ)ϕbX(ξ) = ϕcX(ξ).

Put ξ =
(
ξ1, 0, . . . , 0) ∈ Rn. Then the characteristic function ϕX1 of the �rst

component X1 of the random vector X has the property ϕaX1(ξ1)ϕbX1(ξ1) =
ϕcX1(ξ1), which means that X1 is a stable random variable with some index of
stability α ∈ (0, 2]. Evidently, X1 is symmetric as a component of a symmetric
random vector X, hence cα = |a|α + |b|α. Consider now a random variable
Y = 〈ξ,X〉 =

∑n
1 ξkXk. Calculating the characteristic function ϕY of Y we get:

ϕaY (t)ϕbY (t) = ϕaX(tξ)ϕbX(tξ) = ϕcX(tξ) = ϕcY (t),

which means that the random variable Y is stable. As Y is a linear combination
of the components of a symmetric random vector X, it is also symmetric. If the
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index of stability for Y is β, then cβ = |a|β + |b|β . Comparing with the stability
of X1 we have (

|a|β + |b|β
)1/β

=
(
|a|α + |b|α

)1/α

for every a, b ∈ R; this however is possible only if α = β. Now, Y is a symmetric
α-stable random variable and thus there exists a positive constant c(ξ) such
that

ϕY (t) = exp {−c(ξ)α|t|α} , t ∈ R.

2

Corolary 4.1.1. If every linear combination of the components of the ran-
dom vector X = (X1, . . . , Xn) in Rn is symmetric α-stable then X is symmet-
ric α-stable.
The next two theorems are known in the literature as the Lévy spectral represen-
tation for symmetric stable random vectors in Rn (see [43] �63). In the language
of geometry of Banach space theory they can be expressed as follows:

Let E be a �nite dimensional linear space equipped with a quasi-norm, i.e. a
continuous function c : E 7→ [0,∞) such that c(x) = 0 ⇐⇒ x = 0 and
c(tx) = |t|c(x) for every t ∈ R, x ∈ E. Then the function exp{−c(x)α} is positive
de�nite on E if and only if 1) α ∈ (0, 2], and 2) (E, c) embeds isometrically into
some Lα-space.
Lévy was using �nite measures ν on the unit sphere Sn−1 ⊂ Rn (so his �em-
bedding� was taken into the space Lα(Sn−1, ν) with the correspondence x ↔
< x, y >) in order to obtain uniqueness of the representation. For the purpose
of this book however it is better to omit this restriction.

Theorem 4.1.2. Let α ∈ (0, 2]. For every �nite symmetric measure ν on
Rn such that

∫
. . .

∫ ∣∣< ξ, x >
∣∣α ν(dx) < ∞ for every ξ = (ξ1, . . . , ξn) ∈ Rn, the

following formula

ϕ(ξ) = exp
{
−

∫
. . .

∫

Rn

∣∣< ξ, x >
∣∣α ν(dx)

}
, ξ ∈ Rn

de�nes a characteristic function of some symmetric α-stable random vector
X = (X1, . . . , Xn) on Rn.

Proof. For α = 2 we see that − ln(ϕ(ξ) can be treated as an Euclidean norm on
Rn, thus it de�nes an inner product in Rn which can always be written in the
form 2 ξΣξT for the n× n-matrix Σ with

2σi,j =
1
4

[− ln(ϕ(ei + ej))− ln(ϕ(ei − ej))] ,
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where ei = (0, ..., 1, 0, ..., 0) (1 on the i'th position), i = 1, ..., n. The last equality
follows from the parallelogram equation for 2σi,j being the inner product of ei

and ej . Now it is easy to see that ϕ(ξ) is the characteristic function of symmetric
Gaussian random vector with the correlation matrix Σ.
Assume that α < 2. Let ν be a positive �nite symmetric measure on Rn. If the
characteristic function of the random vector X = (X1, . . . , Xn) is given by the
function ϕ, then evidently X is symmetric α-stable. So we need only to show
that the function ϕ is indeed a characteristic function of some random vector.
To show this let us de�ne a family of probability measures:

Exp(mε) = exp (−mε(Rn))
∞∑

k=0

m∗k
ε

k!
,

where
mε(A) ≡ a−1

∫ ∞

ε

ν(A/s)s−α−1 ds,

for every Borel set A ⊂ Rn, and where the constant a is de�ned by

a =
∫ ∞

0

(
1− cos s

)
s−α−1 ds.

It is easy to see now that ϕ is the characteristic function of the probability
measure which is the weak limit of probability measures Exp(mε) as ε ↘ 0,
because

lim
ε↘0

∫
. . .

∫

Rn

ei<ξ,x> Exp(mε)(dx)

= lim
ε↘0

exp
{
−

∫
. . .

∫

Rn

(
1− cos < ξ, x >

)
mε(dx)

}

= lim
ε↘0

exp
{
−a−1

∫
. . .

∫

Rn

| < ξ, x > |α ν(dx)
∫ ∞

ε|<ξ,x>|

(
1− cos s

)
s−α−1ds

}

= exp
{
−

∫
. . .

∫

Rn

| < ξ, x > |α ν(dx)
}

.

2

Theorem 4.1.3. If a random vector X = (X1, . . . , Xn) on Rn is symmetric
α-stable then there exists a positive �nite measure ν on Rn such that

Eei<ξ,X> = exp
{
−

∫
. . .

∫

Rn

| < ξ, x > |α ν(dx)
}

, for every ξ ∈ Rn.

The measure ν is called the (canonical) spectral measure for the SαS random
vector X.
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Proof. We will follow here the proof given by Ledoux and Talagrand in [41].
Recall that if the random variable Y has a symmetric α-stable distribution
Sα(c, 0, 0) and r < α then E|Y |r = cr

α,rc
r (see formula (3.1.2)). It follows that

for every ξ = (ξ1, . . . , ξn) ∈ Rn,

E exp
{

i

n∑

k=1

ξkXk

}
+ exp

{
−c(ξ)α

}
= exp

{
−c−α

α,r

(
E

∣∣∣
n∑

k=1

ξkXk

∣∣∣
r
)α/r}

,

where c(ξ) is the scale parameter for the random variable
∑n

k=1 ξkXk. For every
r < α de�ne then a positive �nite measure mr on the unit sphere S = Sn−1

∞ for
the sup-norm ‖ · ‖∞ on Rn by setting, for every bounded measurable function
ϕ on S,

∫
. . .

∫

S

ϕ(y)mr(dy) = c−r
α,r

∫
. . .

∫

Rn

ϕ
(
x/‖x‖∞

)
‖x‖r

∞PX(dx),

where PX is the distribution of X = (X1, . . . , Xn). Hence for any ξ = (ξ1, . . . , ξn) ∈
Rn

E exp
{

i

n∑

k=1

ξkXk

}
= exp

{
−

(∫
. . .

∫

S

∣∣∣
n∑

k=1

ξkxk

∣∣∣
r

mr(dx)
)α/r}

.

Now the total mass |mr| of the measure mr is easily seen to be majorized by

|mr| ≤
[

inf
x∈S

n∑

k=1

|xk|r
]−1 n∑

k=1

c(ek)r,

where ek, 1 ≤ k ≤ n are the unit vectors of Rn. Therefore supr<α |mr| < ∞.
Let m be a cluster point (in the ∗-weak sense) of {mr : r < α}; m is a positive
�nite measure which is clearly the spectral measure of X.

2

Remark 4.1.1. It is easy to see that for every �nite positive symmetric
measure ν on Rn such that

∫
. . .

∫ | < ξ, x > |α ν(dx) < ∞ for every ξ =

(ξ1, . . . , ξn) ∈ Rn we can construct a �nite positive symmetric measure ν1 on
Sn−1 = {x ∈ Rn :

∑n
1 x2

k = 1} such that for every ξ ∈ Rn

∫
. . .

∫

Rn

∣∣< ξ, x >
∣∣α ν(dx) =

∫
. . .

∫

Sn−1

∣∣< ξ, x >
∣∣α ν1(dx).

It is enough to use spherical variables and integrate out the radial part. If the
characteristic function of a symmetric α-stable random vector X is of the form:

exp
{
−

∫
. . .

∫

Sn−1

∣∣< ξ, x >
∣∣α ν1(dx)

}
,
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then the symmetric measure ν1 is called the canonical spectral measure of X. For
0 < α < 2 the canonical spectral measure of a symmetric α-stable random vector
is uniquely determined. If the characteristic function of a symmetric α-stable
random vector X is of the form:

exp
{
−

∫
. . .

∫

Rn

∣∣< ξ, x >
∣∣α ν1(dx)

}
,

then the symmetric measure ν1 is called the spectral measure of X.
Example 4.1.1. A random vector (X1, . . . , Xn) is symmetric Gaussian if
there exists a symmetric positive de�nite n× n-matrix R such that the charac-
teristic function

E exp
{

i

n∑
ξkXk

}
= exp

{
−1

2
〈ξ,Rξ〉

}
.

This means that for every ξ ∈ Rn the random variable
∑n

ξkXk has the same
distribution as

(〈ξ,Rξ〉)1/2
X0, where the random variable X0 has distribution

N(0, 1). It is easy to see that a symmetric Gaussian random vector is symmetric
2-stable, thus for every symmetric positive de�nite n× n-matrix there exists a
�nite positive measure ν on Sn−1 such that

1
2
〈ξ,Rξ〉 =

∫
. . .

∫

Sn−1

| < ξ, x > |2 ν(dx), ξ ∈ Rn.

However, in the case of symmetric Gaussian random vectors the spectral measure
ν is not uniquely determined; we have e.g.:

n∑

k=1

ξ2
k =

∫
. . .

∫

Sn−1

| < ξ, x > |2 · 1
2

n∑

k=1

(
δek

+ δ−ek

)
(dx)

=
∫

. . .

∫

Sn−1

| < ξ, x > |2 cλ(dx),

where ek = (0, . . . , 0, 1, 0, . . . , 0), λ is the uniform distribution on the unit sphere
Sn−1 and c is a suitable constant.
Example 4.1.2. If the spectral measure of a symmetric α-stable random
vector X = (X1, . . . , Xn) is of the form

ν(dx) = 1
2

n∑

k=1

ak

(
δek

+ δ−ek

)
(dx)

for some positive constants a1, . . . , an, then the characteristic function of X can
be written as:

ϕX(ξ) = exp
{
−

n∑

k=1

ak|ξk|α
}

.
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It is easy to see that in this case X has independent components. The op-
posite implication also holds, i.e. if a symmetric α-stable random vector X
has independent components, then its spectral measure is of the form ν(dx) =
1
2

∑n
k=1 ak

(
δek

+ δ−ek

)
(dx), for some positive constants a1, . . . , an.

4.2 Covariation
The covariance function is an extremely powerful tool in studying properties
of Gaussian random vectors. It is also useful in studying other random vec-
tors for which the second moment exists. However it is not de�ned for vectors
without second moment. The covariation is designed to replace covariance for
symmetric α-stable random vectors. In this section we describe only the basic
properties of the covariation function; one can �nd more details in the book of
G. Samorodnitsky and M. Taqqu [63].
We consider here only α ∈ (1, 2]. Let us de�ne the signed power a<p>

a<p> = |a|psigna =
{

ap if a ≥ 0;
−|a|p if a < 0.

Notice that with this notation the derivative of the function f(x) = |x|r can be
simply written as f ′(x) = rx<r−1> for every x 6= 0.

De�nition 4.2.1. Let (X1, X2) be symmetric α-stable random vector with
spectral measure ν. The covariation of X1 on X2 (it is not symmetric!) is the
real number

[X1, X2]α =
∫

S1
s1s

<α−1>
2 ν(ds1, ds2)

If α = 2 then we obtain [X1, X2]2 = 1
2Cov(X1, X2).

Notice that if (X1, X2) is symmetric α stable random vector then for every
a, b ∈ R the variable aX1 + bX2 is also symmetric α stable with distribution
Sα(σaX1+bX2 , 0, 0). Of course σaX1+bX2 is the scale parameter here. It is easy to
see that the covariation [X1, X2]α can be also expressed in the following formula

[X1, X2]α =
1
α

∂

∂a
σα

aX1+bX2

∣∣∣
a=0,b=1

=
1
α

∂

∂a

∫

S1
|as1 + bs2|αν(ds1, ds2)

∣∣∣
a=0,b=1

.

Example 4.2.1. Let (X1, X2, X3) be a symmetric α-stable random vector
with the spectral measure ν = 1

2

∑
i(δei +δ−ei), where ei, i = 1, 2, 3, are the unit

versors in R3. Let X =
∑

piXi and Y =
∑

qiXi. In order to calculate [X, Y ]α
we shall �nd �rst

E exp {i (aX + bY )} = E exp

{
i

3∑

i=1

(api + bqi)Xi

}

= exp

{
−

3∑

i=1

|api + bqi|α
}

= exp
{−σα

aX+bY

}
.
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Now we obtain

[X1, X2]α =
1
α

∂

∂a

3∑

i=1

|api + bqi|α
∣∣∣
a=0,b=1

=
3∑

i=1

pi · q<α−1>
i .

Lemma 4.2.1. Let (X,Y, Z) be symmetric α-stable random vector, α ∈
(1, 2]. Then we have
1. [X + Y,Z]α = [X, Z]α + [Y, Z]α;
2. [aX, bZ]α = ab<α−1>[X, Z]α,
3. if X and Y are independent, then [X, Y ]α = 0; the opposite implication
does not hold.
4. covariation is not linear in the second argument, but if Y and Z are inde-
pendent, then [X,Y + Z]α = [X, Y ]α + [X,Z]α;
5.

∣∣[X, Y ]α
∣∣ ≤ σXσα−1

Y .

Proof. The properties 1 and 2 easily follow from the de�nition. If we consider the
symmetric α-stable random vector (X, Y ) with the spectral measure ω2 uniform
on the unit sphere S1 ⊂ R2 then we have

E exp{i(aX + bY )} = exp
{
−

∫ 2π

0

|a cos θ + b sin θ|αdθ

}

= exp
{
−(a2 + b2)α/2

∫ 2π

0

|cos(ϕ− θ)|αdθ

}

= exp
{
−(a2 + b2)α/2

∫ 2π

0

|cos(θ)|αdθ

}
= exp

{
−C(a2 + b2)α/2

}
,

where cosϕ = a/
√

a2 + b2, sinϕ = b/
√

a2 + b2, and C is a suitable constant. We
see now that this function cannot be written as a product of function dependent
only on a and a function dependent only on b, thus X and Y are not independent.
We On the other hand

[X,Y ]α =
∂

∂a
C

(
a2 + b2

)α/2
∣∣∣
a=0,b=1

= 0,

which proves that [X,Y ]α = 0 does not imply independence. However, if X and
Y are independent then we have σα

aX+bY = |a|ασα
X + |b|ασα

Y , and consequently
[X, Y ]α = 0.
It is easy to see that the linearity does not hold for the second argument of the
covariation function. The proof that it does hold if Y and Z are independent is
more complicated and it can be found in [63], Section 2.8. To prove property 5,
we use the Hölder inequality:

∣∣[X, Y ]α
∣∣ =

∣∣∣
∫

S1
u1u

<α−1>
2 ν(du)

∣∣∣
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≤
(∫

S1
|u1|αν(du)

)1/α (∫

S1
|u2|(α−1)(1−1/α)−1

ν(du)
)1−1/α

= σXσ
α(1−1/α)
Y = σXσα−1

Y .

2

De�nition 4.2.2. Let (X,Y ) be a symmetric α-stable random vector. The
covariation ratio ρα(X, Y ) of X to Y is de�ned by

ρα(X,Y ) =
[X, Y ]α
σXσα−1

Y

=
1

σX

∂

∂a
σaX+bY

∣∣∣
a=0,b=1

.

According to the property 5 in Lemma 4.2.1 we have that

−1 ≤ ρα(X,Y ) ≤ 1.

The idea of covariation ratio turns out to be especially useful in the situation
when the parameter α is unknown and in the case of pseudo-isotropic distribu-
tions.
The scale constant σX for symmetric α-stable random variable X plays a very
similar role in the theory of stable variables as the variance σ in the theory
of Gaussian variables. Moreover, if we denote by Sα the space of jointly stable
random variables, α > 1, then the function

Sα 3 X ⇒ ‖X‖α
def
= σX = ([X, X]α)1/α

de�nes a norm on Sα. To see this note that
1. if σX = 0 for the random variable X ∼ S(σX , 0, 0) then P{X = 0} = 1;

2. σaX = |a|σX ;

3. if X, Y ∈ Sα then they are jointly symmetric α-stable, thus there exists a
spectral measure ν for the random vector (X,Y ) such that

‖X + Y ‖α = σX+Y =
(∫

S1
|u1 + u2|αν(u)

)1/α

≤
(∫

S1
|u1|αν(u)

)1/α

+
(∫

S1
|u2|αν(u)

)1/α

= σX + σY = ‖X‖α + ‖Y ‖α.

4.3 Stable can be sub-stable
Let X = (X1, . . . , Xn) be a symmetric α-stable random vector on Rn with spec-
tral measure ν and let Θβ with distribution γ+

β , where β ∈ (0, 1), be independent
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of X. Consider the random vector Y = XΘ1/α
β . The characteristic function of

Y is of the form

Eei<ξt,Y> = E exp
{
−Θβ |t|α

∫
. . .

∫

Sn−1

| < ξ, x > |α ν(dx)
}

= exp
{
−|t|αβ

(∫
. . .

∫

Sn−1

| < ξ, x > |α ν(dx)
)β}

,

for every ξ ∈ Rn and t ∈ R, which means that all linear combinations of the
components of Y are symmetric (αβ)-stable random variables. From Corollary
4.1.1 we have that the random vector Y is also symmetric (αβ)-stable, so from
Theorem 4.1.4. we get that there exists a �nite positive measure ν1 on Sn−1

such that

Eei<ξt,Y> = exp
{
−|t|αβ

∫
. . .

∫

Sn−1

| < ξ, x > |αβ ν1(dx)
}

.

Finally we get that for every α ∈ (0, 2], κ < α and every �nite positive measure
ν on Sn−1 there exists a �nite positive measure ν1 on Sn−1 such that

(∫
. . .

∫

Sn−1

| < ξ, x > |α ν(dx)
)1/α

=
(∫

. . .

∫

Sn−1

| < ξ, x > |κ ν1(dx)
)1/κ

To see this it is enough to put β = κ/α in the previous considerations.
Notice that the last equality implies that for every ξ ∈ Rn the scale parameter
σ<ξ,X> for SαS random vector X is equal to the scale parameter σ<ξ,Y> for
SκS random vector Y = XΘ1/α

β . This means also that

ρα(Xi, Xj) = ρκ(Yi, Yj), i, j ∈ {1, . . . , n}.
The measure ν is called the spectral measure for SαS random vector X. If ν
is concentrated on the unit sphere Sn−1 ⊂ Rn then it is called the canonical
spectral measure for X. The canonical spectral measure for given SαS vector
X is uniquely determined.

De�nition 4.3.1. An SαS random vector is called β-substable, α < β ≤ 2,
if there exists a symmetric β-stable random vector Y such that

X d= YΘ1/β ,

where Θ ≥ 0 is a α/β-stable random variable with the Laplace transform
exp{−tα/β}, Y and Θ are independent.

De�nition 4.3.2. An SαS random vector X is maximal if for every β ≥ α
and every SβS random vector Y, and every Θ independent of Y the equality
X d= YΘ implies that α = β and Θ = constant.
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Almost all SαS random vectors and stochastic processes studied in the literature
are maximal; and even more, almost all of them have pure atomic spectral
measures. The following, surprisingly simple, theorem characterizes maximal
symmetric α-stable random vectors on IRn:

Theorem 4.3.1. Assume that a random vector X = (X1, . . . , Xn) is sym-
metric α-stable and β-substable for some β ∈ (α, 2]. Then the canonical spectral
measure ν for the vector X has continuous density function f(u) with respect
to the Lebesgue measure on the unit sphere Sn−1 ⊂ IRn, and f(u) > 0 for
every u ∈ Sn−1.

Proof. From the assumptions we have that there exists a symmetric β-stable
random vector Y = (Y1, . . . , Yn) such that X d= YΘ1/β , where Θ > 0 indepen-
dent of Y is α/β-stable with a Laplace transform exp{−tα/β}. Assume that

E exp{it < ξ,Y >} = exp{−c(ξ)β |t|β}.

This means that for every ξ we have < ξ,Y >
d= c(ξ)Y0, where EeitY0 = e−|t|

β .
In particular

E| < ξ,Y > |α = c(ξ)αE|Y0|α.

Since α < β we have that c−1 = E|Y0|α < ∞ and c(ξ)α = cE| < ξ,Y > |α.
Calculating now the characteristic function for the vector X we obtain:

E exp{i < ξ,X >} = E exp{i < ξ,YΘ1/β >}
= E exp{−c(ξ)βΘ} = exp{−c(ξ)α}
= exp{−cE| < ξ,Y > |α} = exp{−

∫
. . .

∫

Rn

| < ξ,x > |αcfβ(x)dx},

where fβ(x) denotes the density function of the SβS random vector Y. This
means that the function cfβ(x) is the density of a spectral measure for the
random vector X.
To get the canonical spectral measure ν0 for the SαS random vector X from
this spectral measure it is enough to make the spherical substitution x = ru
and integrate out the radial part. So for every Borel set A ⊂ Sn−1 we obtain

ν0(A) =
∫

. . .

∫

A

∫ ∞

0

c fβ(ru)rn−1+αdr w(du)

here w is the Lebesgue measure on Sn−1

=
∫

. . .

∫

A

∫
rn−1+αc fβ(ru)dr

︸ ︷︷ ︸
g(u)

w(du).

Since fβ is continuous on Rn and fβ > 0 everywhere, it follows that g(u) is a
continuous function and g(u) > 0 everywhere. The uniqueness of the canonical
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spectral measure implies that the function g(u) is the density of the measure
ν0, which ends the proof.

2

Corolary 4.3.1. Every random vector with a pure atomic spectral measure
is maximal. In fact for maximality of the SαS random vector it is enough that
its spectral measure µ is zero on a subset of Sn−1 of positive Lebesgue measure.

Corolary 4.3.2. If an SαS random vector X is not maximal, i.e. if X is
β-substable for some β > α, then there exists a symmetric Gaussian random
vector Z and a maximal SαS random vector Y such that

X d= ZΘ1/2 + Y,

where Θ ≥ 0 has the Laplace transform exp{−tα/2}, Z, Y and Θ are indepen-
dent.

Proof. Since every continuous function attains its extremes on every compact
set we have that

A = inf
{
g(u) : u ∈ Sn−1

}
> 0,

where g(u) is the density of the canonical spectral measure for X obtained in
Theorem 4.3.1. Now it is easy to see that X d= ZΘ1/2 + Y, for the Gaussian
random vector Z with the characteristic function exp{−A1/α

∑n
k=1 ξ2

k}, and the
SβS random vector Y with the spectral measure given by the density function
f(u) = g(u)−A.

2

Remark 4.3.1. The representation obtained in the Corollary 4.3.2 is not
unique. In fact, for every SαS β-substable random vector X and every symmet-
ric Gaussian random vector Z taking values in the same space Rn there exist a
constant c > 0 and a maximal SαS random vector Y such that

X d= cZΘ1/2 + Y,

where Θ as in Corollary 4.3.2, Y, Z and Θ are independent.

Proof. Let us recall that the canonical spectral measure ν for Gaussian random
vector (α = 2) is not unique. In fact ν can always be taken here from the class
of pure atomic measures on Sn−1, but such representation is not useful for our
construction. We will use the measure νA constructed as follows:
Let ν = ωn be the uniform distribution on the unit sphere Sn−1 ⊂ IRn, and let
U = (U1, . . . , Un) be the random vector with the distribution ν. Then we have

exp



−

∫
. . .

∫

Sn−1

| < ξ,u > |2cnν(du)



 = exp

{
−1

2
< ξ, ξ >

}
,
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where c−1
n = 2EU2

1 . Now let Σ be the covariance matrix for the random vector
Z and let Σ = AAT . If by ν1 we denote the distribution of the random vector
AU , then

exp



−

∫
. . .

∫

IRn

< ξ,x >2 cnν1(dx)



 = exp



−

∫
. . .

∫

Sn−1

< ξ,Au >2 cnν(du)





= exp



−

∫
. . .

∫

Sn−1

| < AT ξ,u > |2cnν(du)





= exp
{
−1

2
< AT ξ,AT ξ >

}
= exp

{
−1

2
< ξ, Σξ >

}
,

which is the characteristic function for the Gaussian vector Z. It is easy to see
now that for a suitable constant a > 0

exp



−

∫
. . .

∫

iRn

| < ξ,x > |αcnν1(dx)



 = exp

{
−a (< ξ, Σξ >)α/2

}
,

which is a characteristic function of the sub-Gaussian vector ZΘ1/2. We de�ne
now the measure νA as the projection (in the sense described in the proof of
Theorem 4.3.1) of the measure ν1 on the sphere Sn−1 and we obtain

∫
. . .

∫

IRn

| < ξ,x > |αcnν1(dx) =
∫

. . .

∫

Sn−1

| < ξ,u > |ανA(du).

Since ν1 is absolutely continuous with respect to the Lebesgue measure, it follows
that νA has the same property and νA(du) = fA(u)ω(du) for some positive
function fA. If g(u) is the density of the spectral measure for X then there
exists c0 > 0 such that

c0 = sup {c > 0 : g(u)− cfA(u) ≥ 0} .

Now it is enough to de�ne the maximal SαS random vector X by its canonical
spectral measure absolutely continuous with respect to the Lebesgue measure
with the density h(u) = g(u)− c0fA(u) and put c = c

1/α
0 .

2

The next four �gures ilustrate how di�erent can be characteristic functions for
α-stable random vectors even if we �x α and assume that vector is symmetric.
We consider here di�erent types of two-dimensional, symmetric Cauchy random
vector.
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Figure 4.1: The characteristic function of the sub-Gaussian (rotationally invari-
ant two-dimensional Cauchy distribution
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Figure 4.2: The characteristic function of a two-dimensional Cauchy 3/2-
substable distribution
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Figure 4.3: The characteristic function of a two-dimensional Cauchy distribution
with independent marginals (it is maximal)
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Figure 4.4: The characteristic function of a two-dimensional maximal Cauchy
distribution

Figure 4.4 is especially surprising. The level curves are smooth and strictly
convex, they resemble the level curves presented in Figure 4.2 corresponding
to the 3/2-substable Cauchy distribution. And they are the level curves of a
maximal 1-stable distribution. To see this we shall go back to the last statement
in the history of the proof of Theorem 2.3.2. In the case of Cauchy distribution
with the characteristic function

exp
{
− (|a|α + |b|α)1/α

}
,

with α > 2 we have c(a, b) = (|a|α + |b|α)1/α, and q(ϕ) = (| cosϕ|α + | sin ϕ|α)1/α.
To calculate the density of the corresponding spectral measure notice �rst that
[|x|p]′ = px<p−1> and [x<p>]′ = p|x|p−1 in the sense de�ned in Section 4.2. Now
we have

q′(ϕ) = q1−α(ϕ)
[
(sinϕ)<α−1> cosϕ− (cos ϕ)<α−1> sin ϕ

]
,
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and

q′′(ϕ) = (1− α)q1−α(ϕ)
[
(sinϕ)<α−1> cosϕ− (cos ϕ)<α−1> sin ϕ

]2

+ (α− 1)q1−α(ϕ)
[| sin ϕ|α−2 cos2 ϕ− | cos ϕ|α−2 sin2 ϕ

]− q(ϕ)

= (α− 1)q1−2α(ϕ)| sinϕ cosϕ|α−2 − q(ϕ).

This means that the density of the spectral measure has the form

1
4

(
q′′

(
ϕ +

π

2

)
+ q

(
ϕ +

π

2

))
= (α− 1)q1−2α(ϕ)| sin ϕ cos ϕ|α−2.

Now it is easy to see that this density attains value zero at points k π
4 for k =

1, 3, 5, 7, thus the corresponding Cauchy distribution is maximal.

4.4 Copulae as a spectral measure for SαS ran-
dom vector

We are not obliged to use the canonical spectral measure in the canonical repre-
sentation for the characteristic function of a symmetric α stable random vector.
Using other distributions on Rn we loose uniqueness of the representation, but
this has no in�uence on the geometrical properties of the corresponding SαS
random vector or its characteristic function.
Remark 4.4.1. Assume that n = 2 and assume that the canonical measure
ν in the spectral representation of the SαS random vector (X,Y ) is absolutely
continuous with the density function f(x, y). Then we can write:

− ln ϕ(X,Y )(ξ) =
∫

. . .

∫

R2

| < ξ, x > |αν(dx)

=
∫ 2π

0

|ξ1 cos t + ξ2 sin t|α
∫ ∞

0

rα+1f(r cos t, r sin t)drdt.

This means that the canonical spectral measure ν0 for this random vector has
density given by:

g(u) =
∫ ∞

0

f(ru)rα+1dr, u ∈ S1 ⊂ R2.

In general, by the term copula we understand two dimensional (or n-dimensio-
nal) distribution with given marginals, which usualy are assumed to be uniform.
The inversion method restricts the problem of constructing such distributions
into constructing distributions on [0, 1]2 (or [−1, 1]2) having uniform marginals
on the interval [0, 1] (or [−1, 1] respectively). Many types of copulas are well
known in the literature. Recently there appeared a book written by Nelsen
[61] which is entirely devoted to to the theory of copulae and two dimensional
distribution on [0, 1]2. In this section, based on the paper [7] written by J.
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Bojarski and J. Misiewicz, we will use copulae from a very wide class constructed
by J. Bojarski in [6]. The construction as follows:
Construction:
Let Z be a random variable with a density function f (z), concentrated on the
interval [−2, 2] such that f (z) = f (−z). We de�ne a two-dimensional density
function g(x, y) concentrated on [−1, 1]2 by the formula

g (x, y) =
{

f (x− y) + f (x + y − 2) for x + y ≥ 0,
f (x− y) + f (x + y + 2) for x + y ≤ 0,

(4.4.1)

The marginals of the density g (x, y) are uniform on the interval [−1, 1], thus it
de�nes a two-dimensional copulae.
Let us recall that x<p> = |x|psign(x). This notation is very useful in describ-
ing properties and moments of random variables with in�nite variance. In our
considerations we will use the following formulas:

∫
(ax + b)<α>

dx =
1

a(α + 1)
|ax + b|α+1 + C,

∫
|ax + b|α dx =

1
a(α + 1)

(ax + b)<α+1> + C,

(4.4.2)

Theorem 4.4.1. Assume that Z is a random variable with a density function
f(z) concentrated on [−2, 2]. If the spectral measure ν of an SαS random vector
(X, Y ) has the density g(x, y) given by formula (4.4.1) then the characteristic
function of (X, Y ) at the point (a, b) is given by exp{−c(a, b)α} where

c(a, b)α =
2(1 + α)−1

(a2 − b2)
E

[
b (b− a(1− |Z|))<α+1> + a (b(1− |Z|)− a)<α+1>

]
.

The covariation of X on Y is given by:

[X, Y ]α
def
=

∫ ∫
x<α−1>yν(dx, dy)

=
2

α(α + 1)
E

[
(α + 1)(1− |Z|)− (1− |Z|)<α+1>

]
.

Proof. The proof is only a matter of a laborious calculation, which can be sim-
pli�ed somewhat by the integral formulas (4.4.2) given at the beginning of this
section. The formula for [X, Y ]α holds for every α ∈ (0, 2] as long as the right
hand side makes sense.

2

In the following examples we want to illustrate for di�erent α's the relation
between the distribution f(x), distribution of the spectral measure g(x, y), the
shape of the level curves of the characteristic function of the corresponding SαS
vector. For each example we give also

h(α) = ρα(X, Y ) =
[X, Y ]α
[X, X]α
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describing the dependence between α and covariation ratio. In the de�nition of
the function h(α) we shall explain something more. Since g(x, y) is a copula
density function, it has identical marginals, and

σXσα−1
Y = σα

X = [X, X]α,

which explains why we have the denominator di�erent than given in De�nition
4.2.2.
Example 1. (Figures 4.5 and 4.6) The function f is constant on the subset
of [−2, 2]. Notice that the shape of the level curves of the characteristic function
suggests positive dependence, while in fact we have here h(α) ≡ 0.

Figure 4.5: The density function f(x) and the corresponding density g(x, y)
de�ning the spectral measure on R2

Figure 4.6: Level curves for the corresponding SαS random vector for di�erent
α's and the plot of the covariation ratio h(α)
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Example 2. The whole description is contained in Figures 4.7 and 4.8. The
function f consists of four parabolic functions.

Figure 4.7: Another density function f(x) and the corresponding density g(x, y)
de�ning the spectral measure on R2

Figure 4.8: Level curves for the corresponding SαS random vector for di�erent
α's and the plot of the covariation ratio h(α)

4.5 A series representation for SαS random vec-
tor

In the Section 7.4 of [?] R.B. Ash gave as a problem a simple method to obtain
symmetric α-stable random variable as a weak limit of much simpler distri-
butions. He started from independent, identically distributed random variables
X1, . . . , Xn with distribution uniform on the interval [−n, n]. Next he showed
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that the following random variable

Yn = k

n∑

k=1

sign(Xk)
|Xk|1/α

converges in distribution to a random variable with symmetric α-stable distri-
bution. The construction of Ash can be extended to a series representation of
symmetric α-stable random vector with given spectral measure. We start from
the spectral representation of symmetric α-stable random vector X:

E exp{i < ξ,X >} = exp



−

∫
. . .

∫

R2

| < ξ,x > |αν(dx)



 .

We do not have to assume here that ν is the canonical spectral measure, bu we
assume that

∫
< ξ,x >2 ν(dx) < ∞ for every ξ ∈ Rn.

Let λ = ν(Rn). Then λ−1ν(·) is a probability measure on Rn. Let Xk, k ∈ N be a
sequence of independent random variables such that Xk has uniform distribution
on the interval [−k, k], and let Yk be a sequence of independent, identically
distributed random vectors with the distribution λ−1ν(·) such that (Xk) and
(Yk) are independent. Then the series

Z = A

∞∑

k=1

Yk
sign(Xk)
|Xk|1/α

converges a.s. to a random variable with the same distribution as X. Here A is
a positive constant such that

Aα

∫ ∞

0

(
1− cos y1/α

)
y−2dy = λ.

First, calculate the following

E exp
{

i < ξ,AYk
sign(Xk)
|Xk|1/α

}
=

1
k

∫ k

0

E cos
(
A < ξ,Yk > x−1/α

)
dx

= 1− 1
k
E

∫ k

0

(
1− cos

(
A < ξ,Yk > x−1/α

))
dx

= 1− 1
k

AαE| < ξ,Yk > |α
∫ ∞

0

(
1− cos y1/α

)
y−2dy +

1
k

hk(ξ),

where

hk(ξ) = AαE| < ξ,Yk > |α
∫ Aα|<ξ,Yk>|α/k

0

(
1− cos y1/α

)
y−2dy

≤ AαE| < ξ,Yk > |α
∫ Aα|<ξ,Yk>|α/k

0

y2/α−2dy

=
α

2− α
A2E| < ξ,Yk > |2k1−2/α.
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This means that hk(ξ) → 0 when k →∞. Now we see that

E exp

{
i < ξ, A

∞∑

k=n

Yk
sign(Xk)
|Xk|1/α

>

}

=
n∏

k=1

(
1− 1

k
λE| < ξ,Yk > |α +

1
k

hk(ξ)
)

n→∞−→ E exp{i < ξ,X >}.

This shows that the series Z converges in distribution to a random variable with
the same distribution as X. The proof that Z converges almost surely requires
some further justi�cation, but this also can be done.
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5

Weakly stable random vectors

The �rst four sections of this chapter are based on the paper of J. Misiewicz,
K. Oleszkiewicz and K. Urbanik [57] published in 2005. The �fth section de-
scribing the idea of generalized convolution and generalized in�nite divisibility
comes from the paper J. Misiewicz [59] published in 2006. Since ideas and con-
structions in this chapter are not well known we give the detailed proofs of all
basic properties of weakly stable distributions and generalized convolution.
In Section 5.6 we recall the characterization of the elliptically contoured distri-
butions and show that their extreme points are weakly stable. We give also the
method of simulation not only elliptically contoured random vectors, but also
elliptically for contoured Lévy stochastic processes.
Section 5.7 is completely devoted to the very interesting class of weakly stable
distributions de�ned by Cambanis, Keener and Simons [12] in 1983. We present
here the results obtained by G. Mazurkiewicz in 2005 [48], thus we give the
explicit formulas for k-dimensional marginal distributions and their interesting
graphs. In spite of very complicated formulas for the densities, simulation of
such random vectors is surprisingly simple.

5.1 De�nition of weakly stable distributions
We will consider here the set of all mixtures of a �xed measure µ on Rn, i.e.:

M(µ) = {µ ◦ λ : λ ∈ P} = µ ◦ P.

When it is more convenient we will write (µ̂) instead ofM(µ). The corresponding
set of characteristic functions we denote by

Φ(µ) = {ν̂ : ν = µ ◦ λ, λ ∈ P} =
{

ϕ : ϕ(ξ) =
∫

µ̂(ξt)λ(dt), λ ∈ P, ξ ∈ Rn

}
.

The problem which is discussed here has a very elementary formulation. Namely,
what is the characterization of those probability measures µ on Rn, for which
the set M(µ) is closed under convolution?
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De�nition 5.1.1. The random vector X and its distribution µ is weakly
stable if the following condition holds:

∀ ν1, ν2 ∈M(µ) ν1 ∗ ν2 ∈M(µ) (A)

Equivalently if
∀Θ1,Θ2 ∃Θ XΘ1 + X ′Θ2

d= XΘ,

where X, X ′, Θ1, Θ2, Θ are independent, X and X ′ are independent copies
of X.

The main result in this area states that the condition (A) is equivalent to the
following:

∀ a, b ∈ R Ta(µ) ∗ Tb(µ) ∈M(µ). (B)

In the language of corresponding random vectors this condition can be formu-
lated in the following way:

∀ a, b ∈ R ∃Θ = Θ(a, b), X and Θ independent and aX + bX ′ d= XΘ.

Example 5.1.1. The class of symmetric distributions on R is closed under
mixing and under convolution. It is easy to see that this class can be written
as M(τ) for τ = 1

2δ1 + 1
2δ−1. Checking property (B) in this case is especially

simple. In the language of characteristic functions we have

τ̂(at)τ̂(bt) = cos(at) cos(bt) =
1
2

cos
(
(a + b)t

)
+

1
2

cos
(
(a− b)t

)

=
∫

R
cos(ts)

(1
2
δa+b +

1
2
δa−b

)
(ds),

which means that for the measure λ we can take 1
2δa+b + 1

2δa−b. But there are
many other possibilities, since, for the symmetric random vector X we know
that if X and Θ are independent, then XΘ d= X|Θ|. Thus the measure λ is not
uniquely determined and the condition (B) holds for every λpq, p, q ∈ [0, 1/2],
where

λpq
def
= pδa+b +

(1
2
− p

)
δ−a−b + qδa−b +

(1
2
− q

)
δb−a.

It is easy to see that the set K(δa, δb) = {λpq : p, q ∈ [0, 1/2]} is closed and
convex. This property turns out to be general.
In [38,67,70�72] Kucharczak, Urbanik and Vol'kovich considered a very similar
problem. They were studying properties of weakly stable random variables and
measures, where a random variable X with distribution µ is said to be weakly
stable if

∀ a, b > 0 ∃λ Taµ ∗ Tbµ = µ ◦ λ. (C)

From now on we will say that the distribution µ for which the condition (C)
holds, is R+−weakly stable, and we will say that µ is weakly stable when the con-
dition (B) is satis�ed for µ. The next example shows that these two conditions
are not equivalent.
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Example 5.1.2. Assume that a random vector X has a symmetric α-stable
distribution µ with α ∈ (0, 2]. This is equivalent with the property that for every
a, b ∈ R we have aX + bX ′ d= cX, where cα = |a|α + |b|α, so the condition (B)
holds for λ = δc. This is a little di�erent from the de�nition of the strictly stable
distribution of the random vector X, which is

∀ a, b > 0 ∃ c > 0 aX + bX ′ d= cX. (D)

Thus, a strictly stable distribution is R+−weakly stable, but it is not weakly
stable. Symmetric stable distributions are both R+−weakly stable and weakly
stable.

5.2 Conditions (A) and (B) are equivalent

Lemma 5.2.1. Assume that a measure µ has property (B). Then, for every
choice of discrete measures ν1 =

∑
i piδai and ν2 =

∑
i qiδbi , the measure

(µ ◦ ν1) ∗ (µ ◦ ν2) belongs to M(µ).

Proof. Let λij be such that Tai(µ) ∗ Tbj (µ) = µ ◦ λij . Then we have

(µ ◦ ν1) ∗ (µ ◦ ν2) =
∑

i,j

piqjTai(µ) ∗ Tbj (µ)

=
∑

i,j

piqjµ ◦ λij = µ ◦
(∑

i,j

piqjλij

)
.

2

Lemma 5.2.2. Let µ 6= δ0 be a probability measure on Rn and let A be a
subset of P. If the set B = {µ ◦ λ : λ ∈ A} is tight, then also the family A is
tight.

Proof. Let X and Qλ independent, λ ∈ A, be independent and such that µ =
L(X) and λ = L(Qλ). Let ε be an arbitrary positive number. Since B is tight
there exists a compact set L ⊂ Rn such that

∀λ ∈ A P(QλX ∈ L) ≥ 1− εP(X 6= 0).

Put Ln = [−1/n, 1/n] · L = {sx; s ∈ [−1/n, 1/n], x ∈ L}. Since L is bounded
and the sequence Ln is decreasing we have

lim inf
n→∞

P(X 6∈ Ln) ≥ P(X 6= 0).

Choose n such that P(X 6∈ Ln) ≥ P(X 6= 0)/2. Then

εP(X 6= 0) ≥ P(QλX 6∈ L) ≥ P(|Qλ| > n, X 6∈ Ln) =
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P(|Qλ| > n)P(X 6∈ Ln) ≥ P(|Qλ| > n)P(X 6= 0)/2,

so that P(|Qλ| > n) ≤ 2ε for all λ ∈ A. This implies tightness of A.
2

Lemma 5.2.3. The set M(µ) is closed in the topology of weak convergence
and the set of extreme points of M(µ) is {Ta(µ) : a ∈ R}.

Proof. If µ = δ0 then the assertion follows immediately, so we assume that
µ 6= δ0. Assume that µ ◦λn ⇒ ν. Then the set {µ ◦λn : n ∈ N} is tight, and, by
Lemma 2 the set {λn : n ∈ N} is also tight. Thus it contains a subsequence λnk

converging weakly to a probability measure λ on R. Since the function µ̂(t) is
bounded and continuous, we obtain

∫
µ̂(ts)λnk

(ds) →
∫

µ̂(ts)λ(ds).

On the other hand we have
∫

µ̂(ts)λn(ds) → ν̂(t).

This means that ν = µ ◦ λ and consequently ν ∈ M(µ). So M(µ) is weakly
closed.
If a = 0, then Ta(µ) = δ0 and it is easy to check that δ0 is an extreme point in
M(µ). Assume that for some a ∈ R, a 6= 0, there exist λ1, λ2 ∈ P and p ∈ (0, 1)
such that

Ta(µ) = pµ ◦ λ1 + (1− p)µ ◦ λ2 = µ ◦ (pλ1 + (1− p)λ2) .

This means that aX
d= XΘ for some random variable Θ independent of X with

distribution pλ1 + (1 − p)λ2. A result of Mazurkiewicz (see [49]) implies that
P{Θ = a} = 1 if the distribution of X is not symmetric, and P{|Θ| = |a|} = 1
if X is symmetric. In the �rst situation we would have

δa = pλ1 + (1− p)λ2,

so λ1 = λ2 = δa since δa is an extreme point in P. If X has symmetric distri-
bution we obtain that

δ|a|(A) = pλ1(A) + (1− p)λ2(A) + pλ1(−A) + (1− p)λ2(−A)
:= p|λ1|(A) + (1− p)|λ2|(A),

for every Borel set A ∈ (0,∞). Since δ|a| is an extreme point in P+, then
δ|a| = |λ1| = |λ2|. Now, it is enough to notice that for symmetric distribution µ,
the equality µ ◦λ = µ ◦ |λ| holds for every probability measure λ. Consequently,
we obtain

Taµ = µ ◦ |λ1| = µ ◦ λ1 = µ ◦ |λ2| = µ ◦ λ2.
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The above reasoning works for µ ∈ P. For µ ∈ Pn the following two situations
are possible. If µ is nonsymmetric then one can choose ξ ∈ Rn such that <
ξ, X > is nonsymmetric and use the result of Mazurkiewicz as before. If µ is
symmetric then there exists ξ ∈ Rn such that < ξ, X > 6≡ 0 since µ 6= δ0, so
that δ|a| = |λ1| = |λ2|, as before. The rest of the reasoning does not need any
change.
Assume now that the probability measure ν is an extreme point ofM(µ). Then
there exists a probability measure λ such that ν = µ ◦ λ. If λ 6= δa for any
a ∈ R then we could divide R into two Borel sets A and A′ = R \ A such that
λ(A) = α ∈ (0, 1). Then

µ = α µ ◦ (α−1λ
∣∣
A
) + (1− α)µ ◦ ((1− α)−1λ

∣∣
A′),

in contradiction with the assumption that ν is extremal.
2

Lemma 5.2.4. Assume that for a probability measure µ 6= δ0 and some
ν1, ν2 ∈ P the set

Kµ (ν1, ν2)
def
= {λ : (µ ◦ ν1) ∗ (µ ◦ ν2) = µ ◦ λ}

is not empty. Then Kµ (ν1, ν2) is convex and compact in the topology of weak
convergence.

Proof. Notice that
{(µ ◦ ν1) ∗ (µ ◦ ν2)} = {µ ◦ λ : λ ∈ Kµ(ν1, ν2)} ,

and the set {(µ ◦ ν1) ∗ (µ ◦ ν2)} contains only one point. Then the compactness
of Kµ(ν1, ν2) follows from Lemma 5.2.2. The convexity is trivial.

2

Lemma 5.2.5. Assume that µ 6= δ0 is a probability measure and
Kµ(ν1

n, ν2
n) 6= ∅ for every n ∈ N, where ν1

n → ν1 weakly, ν2
n → ν2 weakly,

and νi
n, νi ∈ P. Then Kµ(ν1, ν2) 6= ∅.

Proof. Let A =
⋃∞

n=1 Kµ(ν1
n, ν2

n) and
B = {µ ◦ λ : λ ∈ A} =

{(
µ ◦ ν1

n

) ∗ (
µ ◦ ν2

n

)
: n ∈ N}

.

The set B is tight, thus it follows from Lemma 5.2.2 that the set A is also tight.
Choosing now λn ∈ Kµ(ν1

n, ν2
n) for every n ∈ N, we can �nd a subsequence λnk

converging weakly to a probability measure λ. Since
(µ ◦ ν1

nk
) ∗ (µ ◦ ν2

nk
) = µ ◦ λnk

,

then also
(µ ◦ ν1) ∗ (µ ◦ ν2) = µ ◦ λ,

and consequently λ ∈ Kµ(ν1, ν2) 6= ∅.
2
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Theorem 5.2.1. For every probability distribution µ properties (A) and
(B) are equivalent.

Proof. The implication (A) ⇒ (B) is trivial. Assume that µ 6= δ0 and the con-
dition (B) holds for the measure µ. This means that for every a, b ∈ R the set
Kµ(δa, δb) is not empty. It follows from Lemma 5.2.1 now that for every choice
of discrete measures ν1, ν2 the set Kµ(ν1, ν2) is not empty. Consider now two
probability measures λ1, λ2 ∈ P. We can �nd two sequences of discrete mea-
sures ν1,n and ν2,n converging weakly to λ1 and λ2. Since for every n ∈ N the
set Kµ(ν1,n, ν2,n) is not empty, then it follows from Lemma 5.2.5 that also the
set Kµ(λ1, λ2) 6= ∅, which implies (A).

2

Proposition 5.2.1. Let X = (X1, . . . , Xn) be a symmetric α-stable ran-
dom vector, and let random variable Θ be independent of X. Then Y = XΘ
is weakly stable i� |Θ|α is R+−weakly stable.

Proof. Notice that

aXΘ + bX ′Θ′ d= (|aΘ|α + |bΘ′|α)1/α
X,

where X ′, Θ′ are independent copies of X, Θ such that X,X ′,Θ, Θ′ are indepen-
dent. Assume that Y is weakly stable. Since XΘ d= X|Θ| we obtain that

(|aΘ|α + |bΘ′|α)1/α
X

d= X · |Θ| ·Q,

for some random variable Q. Without loss of generality we can assume that
Q ≥ 0. The symmetric stable distribution is cancellable (see [38], Prop.1.1) thus
we obtain

|a|α|Θ|α + |b|α|Θ′|α d= |Θ|αQα.

This implies that the random variable |Θ|α is R+−weakly stable. The reverse
implication is trivial.

2

5.3 Symmetrizations of mixing measures
are uniquely determined

Assume that a measure µ on R is weakly stable. As we have seen before, for
every choice of ν1, ν2 ∈ P, the set Kµ(ν1, ν2) is a nonempty convex and weakly
compact set in P. In this section we discuss further properties of Kµ(ν1, ν2).
For a weakly stable measure µ we de�ne

Φ(µ) = {ν̂ : ν = µ ◦ λ, λ ∈ P} .

68



Let L(µ) denote the complex linear space generated by Φ(µ). Weak stability of
µ implies that for every f, g ∈ L(µ) we have fg, f ∈ L(µ). Since µ◦ δ0 = δ0 then
L(µ) contains constants.
By R = R ∪ {∆} we denote the one-point compacti�cation of the real line, by
R+ = R+∪{∞} the one-point compacti�cation of the nonnegative half-line. We
will say that f ∈ C

(
R

)
i� f is a continuous real function on R, and similarly

we will say that f ∈ C
(
R+

)
i� f is a continuous real function on R+. The set

C
(
R+

)
can be identi�ed with the set of even (symmetric) functions from C

(
R

)
.

Now, for a probability measure µ, we de�ne

A(µ) =
{

f ∈ L(µ) : f = f, lim
x→∞

f(x) = lim
x→−∞

f(x)
}

.

If the measure µ is weakly stable then A(µ) is a linear algebra, i.e. it is closed
with respect to real linear combinations and products.

Lemma 5.3.1. If a probability measure µ on R is not symmetric, then the
set A(µ) separates points of R.

Proof. Let γ be a symmetric Cauchy distribution with the Fourier transform
γ̂(t) = e−|t|. For every c ∈ R, we de�ne

hc(t) = (µ ◦ (γ ∗ δc))
∧ (t) ∈ Φ(µ).

First we show that there exists a ∈ R such that =m(ha) 6= 0. Assume the
opposite, i.e. assume that for every c ∈ R we have =m(hc) ≡ 0. This means that

=m
(
hc(t)

)
=

∫ ∞

−∞
e−|tx| sin (ctx)µ(dx) = 0

for every c, t ∈ R. Substituting u = ct, we obtain
∫ ∞

−∞
e−|ux|/|c| sin (ux)µ(dx) = 0

for u ∈ R and c 6= 0. This implies that

lim
c→∞

∫ ∞

−∞
e−|ux|/|c| sin (ux)µ(dx) =

∫ ∞

−∞
sin (ux)µ(dx) = 0,

which means that the characteristic function µ̂ is real which contradicts our
assumption.
Now let a, t0 ∈ R be such that =mha(t0) 6= 0. For every s 6= 0, we de�ne

gs(t) = =m

(
ha

(
t · t0

s

))
.

It is easy to see that gs(t) ∈ A(µ), and gs(t) = −gs(−t). We can see now
that for every r ∈ R, r 6= 0 the function gr(t) separates points r and −r since
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gr(r) = ha(t0) 6= gr(−r). To �nish the proof, it is enough to notice that the
function

h0(t) =
∫ ∞

−∞
e−|tx|µ(dx)

separates points t1, t2 ∈ R if only |t1| 6= |t2| including the case ti = ∆.
2

Lemma 5.3.2. If a probability measure µ on R is symmetric and µ 6= δ0,
then A(µ) separates points of R+.

Proof. It is enough to notice that the function h0(t) =
∫

e−|tx|µ(dx) separates
points of R+.

2

Theorem 5.3.1. If a weakly stable measure µ 6= δ0 on R is not symmetric,
then for every ν1, ν2 ∈ P the set Kµ(ν1, ν2) contains only one measure.

Proof. Assume that λ1, λ2 ∈ Kµ(ν1, ν2). This means that µ ◦ λ1 = µ ◦ λ2, and
consequently, for every λ ∈ P,

(µ ◦ λ) ◦ λ1 = (µ ◦ λ) ◦ λ2.

Consequently, for every λ ∈ P,
∫ ∞

−∞
(µ ◦ λ)∧ (tx)λ1(dx) =

∫ ∞

−∞
(µ ◦ λ)∧ (tx)λ2(dx).

This implies that for every function f ∈ A(µ), the following equality holds:
∫ ∞

−∞
f(x)λ1(dx) =

∫ ∞

−∞
f(x)λ2(dx). (∗)

From Lemma 5.3.1 we know that the algebra A(µ) separates points of R, thus
by the Stone-Weierstrass Theorem (see Theorem 4E in [46]), A(µ) is dense in
C(R) in the topology of uniform convergence. This means that the equality (∗)
holds for every f ∈ C(R), and consequently λ1 = λ2.

2

Let τ = 1
2δ1+ 1

2δ−1. By the symmetrization of the measure λ ∈ P we understand
the measure λ◦τ . Notice that the measure λ is symmetric if and only if λ = λ◦τ .

Theorem 5.3.2. If a weakly stable measure µ 6= δ0 on R is symmetric and
ν1, ν2 ∈ P, then

λ1, λ2 ∈ Kµ(ν1, ν2) =⇒ λ1 ◦ τ = λ2 ◦ τ.

If λ1 ◦ τ = λ2 ◦ τ and λ1 ∈ Kµ(ν1, ν2) then λ2 ∈ Kµ(ν1, ν2).
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Proof. The second implication is trivial because for every symmetric measure µ
we have µ ◦ λ = µ ◦ (λ ◦ τ). To prove the �rst implication assume that λ1, λ2 ∈
Kµ(ν1, ν2). This implies that µ ◦ λ1 = µ ◦ λ2, and consequently (µ ◦ λ) ◦ λ1 =
(µ ◦ λ) ◦ λ2 for every λ ∈ P. This means that for every even function f ∈ A(µ)
the following equality holds:

∫ ∞

0

f(x)(τ ◦ λ1)(dx) =
∫ ∞

0

f(x)(τ ◦ λ2)(dx). (∗∗)

It follows from the proof of Lemma 5.3.2 that even functions from A(µ) sepa-
rate points in R+. Applying the Stone-Weierstrass Theorem again we conclude
that the set of even functions from A(µ) is dense in C(R+) in the topology of
uniform convergence. This means that the equality (∗∗) holds for every function
f ∈ C(R+). This implies that measures τ ◦ λ1 and τ ◦ λ2 coincide on R+, and,
by their symmetry, also on R.

2

Remark 5.3.1. Notice that it follows from the proofs of Theorem 5.3.1 and
Theorem 5.3.2, that weakly stable distributions are reducible in the sense that:
• If X,Y, Z are independent real random variables and X is nonsymmetric and
weakly stable then the equality XY

d= XZ implies L(Y ) = L(Z).
• If X, Y, Z are independent, Y, Z are real, and X is a nonsymmetric weakly
stable random vector taking values in Rn then the equality XY

d= XZ implies
L(Y ) = L(Z). To see this it is enough to apply the previous remark to the ran-
dom variable < ξ,X >, where ξ ∈ Rn is such that < ξ,X > is not symmetric.
• If X, Y, Z are independent, Y,Z take values in Rn and X is a nonsymmet-
ric weakly stable real random variable then the equality XY

d= XZ implies
L(Y ) = L(Z). To see this note that it su�ces to prove < ξ, Y >

d=< ξ, Z > for
all ξ ∈ Rn.
• If X,Y, Z are independent, and X 6≡ 0 is symmetric weakly stable then the
equality XY

d= XZ implies L(Y ) ◦ τ = L(Z) ◦ τ .

Remark 5.3.2. Notice that if µ is weakly stable then also µ ◦ τ is weakly
stable. Indeed, if Taµ ∗ Tbµ = ν1 ◦ µ and Taµ ∗ T−bµ = ν2 ◦ τ then

Ta(µ ◦ τ) ∗ Tb(µ ◦ τ) =
(

1
2
ν1 +

1
2
ν2

)
◦ (µ ◦ τ) .

5.4 Some general properties of weakly stable dis-
tributions

Lemma 5.4.1. If a measure µ on R is weakly stable then µ({0}) = 0 or 1.
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Proof. Let X be a weakly stable variable such that L(X) = µ, P{X = 0} = p <
1, and let X ′ be its independent copy. We de�ne the random variable Y with
distribution L(X|X 6= 0) and Y ′ its independent copy. The random variable
Y/Y ′ has at most countably many atoms, so there exists a ∈ R, a 6= 0, such
that P{Y = aY ′} = 0. Now let Θ be a random variable independent of X, such
that

X − aX ′ d= XΘ.

Then we have

p ≤ P{XΘ = 0} = P{X − aX ′ = 0} = p2 + (1− p)2P{Y − aY ′ = 0} = p2.

This holds only if p = 0, which ends the proof.
2

Lemma 5.4.2. Assume that a weakly stable probability measure µ 6= δ0

on R has at least one atom. Then the discrete part of µ (normalized to a
probability measure) is also weakly stable.

Proof. Let µ = αµ1 + (1 − α)µ2, α ∈ (0, 1), where αµ1 is the discrete part of
the measure µ, µ1(R) = 1, and µ2 is such that µ2(R) = 1 and µ2({x}) = 0 for
every x ∈ R. If µ is weakly stable, then for every a ∈ R there exists a probability
measure λ such that µ ∗ Taµ = µ ◦ λ. Now we have

µ ∗ Taµ = α2µ1 ∗ Taµ1 + α(1− α)µ1 ∗ Taµ2

+ α(1− α)µ2 ∗ Taµ1 + (1− α)2µ2 ∗ Taµ2.

Clearly for a 6= 0 the discrete part of µ ∗ Taµ is equal to α2µ1 ∗ Taµ1. On the
other hand we have

µ ◦ λ = (1− β)µ ◦ λ2 + αβµ1 ◦ λ1 + (1− α)βµ2 ◦ λ1,

where λ1(R) = λ2(R) = 1, λ1 is a discrete measure, λ2({x}) = 0 for every x ∈ R
and λ = βλ1 + (1− β)λ2.
Let S = {a ∈ R : µ ∗ Taµ({0}) = 0}. If a ∈ S, a 6= 0, then λ({0}) = 0 and
µ ◦ λ2({x}) = βµ2 ◦ λ1({x}) = 0, for every x ∈ R, so

α2µ1 ∗ Taµ1 = αβµ1 ◦ λ1.

This means that α = β and µ1 ∗ Taµ1 = µ1 ◦ λ1.
If a 6∈ S then there exists a sequence an ∈ S \ {0}, n ∈ N such that limn an = a.
Then µ ∗ Tanµ ⇒ µ ∗ Taµ and µ1 ∗ Tanµ1 ⇒ µ1 ∗ Taµ1. For every n ∈ N there
exists λn such that µ1 ∗ Tanµ1 = µ1 ◦ λn, i.e. λn ∈ Kµ1(δ1, δan). In view of
Lemma 5.2.5 there exists λ ∈ Kµ1(δ1, δa) which ends the proof.

2
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Theorem 5.4.1. Assume that a random vector X taking values in Rn and
having distribution µ is such that E‖X‖ < ∞ and EX = a 6= 0. Then µ is
weakly stable if and only if µ = δa.

Proof. Assume �rst that n = 1. If µ = δa for some a 6= 0, then all the conditions
of the theorem are satis�ed. Now let µ be weakly stable and EX = a 6= 0.
Let X1, X2, . . . be a sequence of i.i.d. random variables with distribution µ. The
Weak Law of Large Numbers implies that

1
n

n∑

k=1

Xk −→ a

weakly when n →∞. The measure µ is weakly stable thus for every n ∈ N there
exists a measure νn such that

µn = L
(

1
n

n∑

k=1

Xk

)
=

(
T1/nµ

)∗n = µ ◦ νn.

Since µn ⇒ δa, it follows from Lemma 5.2.2 that the family {νn} is tight and
it contains a sequence νnk

such that νnk
⇒ ν for some probability measure ν.

Now, we obtain
δa = lim

n→∞
µn = lim

k→∞
µ ◦ νnk

= µ ◦ ν.

Since a 6= 0 the last equality is possible only if µ = δx and ν = δy for some
x, y ∈ R, xy = a. Since EX = a, we conclude that µ = δa.
If X, EX = a 6= 0, is a random vector in Rn, then for each ξ ∈ Rn it follows
from the previous considerations that P{< ξ, X >=< ξ, a >} = 1. Conse-
quently P{X = a} = 1.

2

Theorem 5.4.2. Assume that for a weakly stable measure µ 6= δ0 on Rn

there exists ε ∈ (0, 1] such that for every ξ ∈ Rn and every p ∈ (0, ε)
∫

Rn

| < ξ, x > |pµ(dx) < ∞.

Then M(µ) contains strictly α-stable measures for every α ∈ (0, α0) for some
α0 ∈ [ε, 2].

Proof. Let p ∈ (0, ε). The set M(µ) is closed under scale mixing, thus for every
n ∈ N the measure µ ◦mn ∈M(µ), where

mn(dx) = c(n)x−p−11(1/n,∞)dx, c(n) = pn−p.
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The set M(µ) is also closed under convolution and convex linear combinations,
and it is weakly closed thus for every n ∈ N

νn = exp{c(n)−1(µ ◦mn)} ∈ M(µ),

where exp(κ)
def
= e−κ(Rn)

∑∞
k=0 κ∗k/k! for every �nite measure κ on Rn. Notice

that for every ξ ∈ Rn we have

ν̂n(ξ) = exp

{
−

∫

Rn

∫ ∞

1/n

(
1− eiξ(sx)

)
s−p−1dsµ(dx)

}

= exp

{
−

∫

Rn

| < ξ, x > |p
∫ ∞

|<ξ,x>|/n

(
1− eiusgn(<ξ,x>)

)
u−p−1duµ(dx)

}
.

Let h(u) =
(
1− eiusgn(<ξ,x>)

)
u−p−1. The function h(u) is integrable on [0,∞)

since p ∈ (0, 1) and |h(u)| = 2
∣∣sin u

2

∣∣ u−p−1, thus |h(u)| ≤ u−p for u < 1 and
|h(u)| ≤ 2u−p−1 for u ≥ 1. This implies that the function

Hp(< ξ, x >) =
∫ ∞

0

(
1− eiusgn(<ξ,x>)

)
u−p−1du

is well de�ned and bounded on Rn thus we can write

ν̂n(ξ) → exp
{
−

∫

Rn

| < ξ, x > |pHp(< ξ, x >)µ(dx)
}

def
= γ̂p(ξ).

It is easy to see now that the function γp is the characteristic function of a
strictly p−stable random variable and the corresponding measure γp belongs to
M(µ) since this class is weakly closed. Now we de�ne

α0 = sup
{

α ∈ (0, 2] : M(µ) contains strictly α-stable measure
}

.

To end the proof it is enough to remind that for every 0 < β < α ≤ 2 and every
strictly α-stable measure γα we have that the measure γα ◦ λβ/α is strictly β-
stable, where λβ/α is the distribution of the random variable Θ1/α

β/α, for Θβ/α ≥ 0
such that E exp{−tΘβ/α} = exp{−tβ/α}.

2

Remark 5.4.1. Notice that if a weakly stable measure µ 6= δ0 on Rn is such
that

∫ | < ξ, x > |pµ(dx) < ∞ for every ξ ∈ Rn and p ∈ (0, ε) for some ε ∈ (0, 2]
then M(µ) contains symmetric p-stable measures for every p ∈ (0, ε).
To see this it is enough to notice that for symmetric measure µ the measure νn

constructed in the proof of Theorem 5.4.2 is also symmetric. Consequently

ν̂n(ξ) = exp

{
−

∫

Rn

| < ξ, x > |p
∫ ∞

|<ξ,x>|/n

(1− cos u)u−p−1duµ(dx)

}
.
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Let h(u) = (1−cosu)u−p−1. Then |h(u)| < u1−p for u < 1, and |h(u)| < 2u−p−1

for u > 1 so the function h(u) is integrable on [0,∞) for every p ∈ (0, 2). For
the constants

Hp =
∫ ∞

0

(1− cos u)u−p−1du

we obtain that

ν̂n(ξ) −→ exp
{
−Hp

∫

Rn

| < ξ, x > |p µ(dx)
}

,

which is the characteristic function of a symmetric p-stable random vector. If the
measure µ is not symmetric then we shall use in this construction the measure
µ ◦ τ instead of µ. It is possible since µ ◦ τ is symmetric, belongs to M(µ) and
it has the same moments as the measure µ.
Remark 5.4.2. If in the situation described in Remark 5.4.1 we have n = 1
then M(µ) contains also a symmetric ε-stable random variable. It follows from
Remark 5.4.1 that

exp
{
−Hp

∫

R
|tx|p µ(dx)

}
= exp

{
−|t|pHp

∫

R
|x|p µ(dx)

}

is the characteristic function of some measure from M(µ). Since rescaling is
admissible we have also that exp{−|t|p} is the characteristic function of some
measure from M(µ). Now it is enough to notice that

lim
p↗ε

exp{−|t|p} = exp{−|t|ε},

and use Lemma 5.2.3.
Remark 5.4.3. There exist measures µ such that µ ◦ ν = γα, where γα is
symmetric α-stable, for some probability measure ν but µ is not weakly stable.
Any measure of the form µ = qδ−1 + (1− q)δ1 for q ∈ (0, 1) \ { 1

2} can serve as
an example.

Lemma 5.4.3. Let X be a real random variable with distribution µ. If µ is
weakly stable and µ is supported on a �nite set then either there exists a ∈ R
such that µ = δa or there exists a 6= 0 such that µ = 1

2δa + 1
2δ−a.

Proof. Let X ′ be an independent copy of X. Assume that µ 6= δa for all a ∈ R.
Theorem 5.4.1 implies that X must take on both negative and positive values
with positive probability. Let V = {x ∈ R : µ({x}) > 0}. By Lemma 5.4.1
we have 0 6∈ V . Let b be the greatest and let −a be the least element of V .
Certainly, a, b > 0. We will prove �rst that a = b.
Assume that b > a. For λ ∈ R let us de�ne the set of the values taken on by the
random variable X − λX ′ with positive probability: Vλ = {v − λw : v, w ∈ V }.
Clearly, for λ ∈ (0, 1) the greatest element of Vλ is equal to b + λa, whereas
−(a + λb) is the least element of Vλ. Moreover a + λb < b + λa (hence b + λa
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has strictly the greatest value among all elements of Vλ). Since µ is weakly
stable there exists a real random variable Yλ independent of X and such that
YλX

d= X − λX ′. One can easily see that Yλ is also �nitely supported. We have
b + λa ∈ Vλ so that there exist c, d 6= 0 such that P{Yλ = c} > 0, d ∈ V and
cd = b+λa. Also for any d′ ∈ V there is cd′ ∈ Vλ, so that |d′| > |d| would imply
|cd′| > b + λa, contrary to the fact that b + λa has the maximal absolute value
out of all elements of Vλ. Hence d must have maximal absolute value among all
elements of V and therefore d = b so that c = 1 + λa/b.

We deduce that −a
b (b + λa) = c · (−a) ∈ Vλ and therefore there exist v, w ∈ V

such that −a
b (b + λa) = v − λw, and consequently λ(w − a2

b ) = v + a. Let
us assume that a2/b 6∈ V . Then the last equation may be satis�ed for �nitely
many values of the parameter λ only (because v and w can be chosen from
a �nite set only). It was proved for all λ ∈ (0, 1), however. Hence a2/b ∈ V .
Therefore a2

b2 (b + λa) = c · a2/b ∈ Vλ and again, there exist v, w ∈ V such that
a2

b2 (b + λa) = v − λw so that λ(w + a3

b2 ) = v − a2

b . Like before we infer that
−a3

b2 ∈ V . By iterating this reasoning we prove that for every k ∈ N there is
(−1)k+1ak+1/bk ∈ V . Since 0 < a/b < 1 this implies that V contains an in�nite
subset, contradicting our assumptions. The case a > b is excluded in a similar
way. Hence a = b.

Now, let −α be the greatest negative element of V and let β denote the least
positive element of V . Let us consider X − λX ′ for 0 < λ < min(α, β)/a.
Certainly, the least positive element of Vλ is equal to β−λa whereas −(α−λa)
is the greatest negative element of Vλ. Let us assume without loss of generality
that β ≤ α so that β − λa has the least absolute value among all elements of
Vλ (otherwise one can consider −X instead of X). Again, we choose Yλ and
parameters c, d 6= 0 such that P{Yλ = c} > 0, d ∈ V and cd = β − λa. We
obtain d ∈ {−α, β} with a similar reasoning as before - no element can be both
at the same side of zero as d and closer to zero than d because multiplying
by c we would get a positive element of Vλ less than (β − λa). Hence c ∈
{(β − λa)/β,−(β − λa)/α}. However, ca ∈ Vλ so that there exist v, w ∈ V such
that ca = v − λw, which means that λ(w − a2

β ) = v − a or λ(w + a2

α ) = v + aβ
α .

Since we proved this alternative for in�nitely many λ's and we know that v
and w can have only �nitely many values we infer that a2/β ∈ V (if d = β)
or −a2/α ∈ V (if d = −α). We have proved that V ⊂ [−a, a], so that β = a
if d = β, or α = a if d = −α. Anyway, |d| = a so that |c| = β

a − λ. Since
{−a, a} ⊂ V we have {−ca, ca} ⊂ Vλ and therefore also −(β − λa) ∈ Vλ. We
have assumed though that β−λa has the least absolute value among all elements
of Vλ so in particular −(α − λa) ≤ −(β − λa). Since −(α − λa) is the greatest
negative element of Vλ we have also −(α− λa) ≥ −(β − λa). Hence α = β.

We have proved earlier that α = a or β = a, so �nally α = β = a and the
support of µ is equal {−a, a}. Theorem 5.4.1 implies that µ is symmetric.

2
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Lemma 5.4.4. Let X be a real random variable with distribution µ 6= δ0

and let X ′ be an independent copy of X. Assume that µ is weakly stable, so
that for any λ ∈ R there exists a real random variable Yλ independent of X

such that X − λX ′ d= YλX. If X is symmetric we additionally assume that
Yλ ≥ 0 a.s. Then the map

λ 7→ L(Yλ)

is well de�ned and continuous on R.

Proof. The existence and the uniqueness of distribution of the random variable
Yλ follows from Theorem 5.3.1 and Theorem 5.3.2. We only need to prove that
λn → λ implies that Yλn

d→ Yλ when n →∞. Let us assume it is not true. Then
we can �nd ε > 0 and a subsequence {nk} such that for any k the law of Yλnk

is ε-separated from the law of Yλ in Lévy's metric. Since

Yλnk
X

d= X − λnk
X ′ d→ X − λX ′ d= YλX,

by Lemma 5.2.2 we can choose a subsequence {nkl
} ⊂ {nk} such that Yλnkl

d→ Z

for some real random variable Z as l → ∞. Hence L(Z) 6= L(Yλ). Moreover
Z ≥ 0 a.s. if X is symmetric because then all Yλn 's are nonnegative a.s.
On the other hand, Z ′X d= YλX, where Z ′ is a copy of Z independent of X since
the map λ 7→ L(X − λX ′) is continuous. Therefore Yλ

d= Z ′ d= Z, by Theorem
5.3.1 and Theorem 5.3.2 (or by Remark 5.3.1). The obtained contradiction ends
the proof.

2

Remark 5.4.4. Let α ∈ [1, 2]. Note that if a random variable X with a
weakly stable distribution µ is such that E|X|p < ∞ for all p ∈ (0, α) then

1 + |λ| ≥
{ |Yλ| a.s. if α = 2;
‖Yλ‖α if α < 2.

Indeed, by Theorem 5.4.2 there exists Θ independent of X such that XΘ is
strictly α-stable. If α < 2 then E|XΘ|β < ∞ for every β < α, thus E|X|β < ∞
for every β < α. If α = 2 then XΘ is Gaussian so E|X|β < ∞ for every β > 0.
Now it is enough to notice that for β ≥ 1 we have

‖Yλ‖β‖X‖β = ‖YλX‖β = ‖X − λX ′‖β ≤ ‖X‖β + |λ|‖X ′‖β = (1 + |λ|)‖X‖β .

The case β = α can be obtained by observing that ‖Yλ‖α = limβ→α− ‖Yλ‖β . If
α = 2 the inequality holds for all β ≥ 1, which implies that ‖Yλ‖∞ ≤ 1 + |λ|.

Lemma 5.4.5. Let X be a real random variable with distribution µ. If µ
is weakly stable and µ is supported on a countable set then there exists a ∈ R
such that µ = δa or there exists a 6= 0 such that µ = 1

2δ−a + 1
2δa.
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Proof. Assume that the support of µ is an in�nite countable set. For λ ∈ (0, 1)
we have X−λX ′ d= YλX, where X ′ and Yλ are de�ned as in the preceding lemma
(so that if X is symmetric then Yλ ≥ 0 a.s.). By Lemma 5.4.4 Yλ

d→ Y0 = 1 as
λ → 0. Let

µ =
∞∑

n=1

pnδxn
,

where xn's are nonzero (by Lemma 5.4.1) and pairwise di�erent, and (pn)∞n=1 is
a non-increasing sequence of positive numbers. Let

M =
{

xi − xj

xk − xl
: k 6= l

}
.

Certainly, M is a countable set. We see that for λ 6∈ M the equality xk −
λxi = xl − λxj implies i = j and k = l. Finally, let N ∈ N be such that∑

n>N pn ≤ p2
1/2. Then for λ ∈ (0, 1) \M we have

p2
1 = P{X = x1, X

′ = x1} = P{X − λX ′ = x1 − λx1}

= P {YλX = x1(1− λ)} =
∞∑

n=1

P
{

Yλ =
x1

xn
(1− λ)

}
· pn

≤ P {Yλ = 1− λ} · p1 +
p2
1

2
+

N∑
n=2

P
{

Yλ

1− λ
=

x1

xn

}
· pn,

and the summands for 2 ≤ n ≤ N tend to zero as λ → 0 (since Yλ

1−λ

d→ 1) so
that

lim inf
λ→0;λ∈(0,1)\M

P {Yλ = 1− λ} ≥ p1/2.

On the other hand, for λ ∈ (0, 1) \M and k ∈ N we have

p2
k = P {X = xk, X ′ = xk} = P {X − λX ′ = xk(1− λ)}

= P {YλX = xk(1− λ)} ≥ P {Yλ = 1− λ} · pk,

so that
lim sup

λ→0;λ∈(0,1)\M
P {yλ = 1− λ} ≤ pk.

Hence pk ≥ p1/2 for any k ∈ N and
∑∞

k=1 pk = ∞ which clearly is not possible.
The obtained contradiction proves that µ has �nite support and the assertion
follows from Lemma 5.4.3.

2

Theorem 5.4.3. Let µ be a weakly stable probability measure on Rn. Then
either there exists a ∈ Rn such that µ = δa or there exists a ∈ Rn \ {0} such
that µ = 1

2δ−a + 1
2δa, or µ({a}) = 0 for all a ∈ Rn.
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Proof. Assume �rst that n = 1. One can express µ as pµ1 + (1 − p)µ2, where
p ∈ [0, 1], µ1 is a discrete probability measure and µ2({x}) = 0 for any x ∈ R.
The case p = 0 is trivial, so we will assume that p > 0. Lemma 5.4.2 implies
that µ1 is weakly stable on R and therefore by Lemma 12 µ1 = δa for some
a ∈ R or µ1 = 1

2δ−a + 1
2δa for some a 6= 0.

Case 1. µ1 = δa. If a = 0 then by Lemma 5.4.1 we have p = 1 and the
proof is �nished. If a 6= 0 let us note that for λ ∈ (0, 1) the random variable
X − λX ′ d= YλX has exactly one atom with the mass p2 at (1 − λ)a. Hence
Yλ has an atom with the mass p at (1 − λ). Since Yλ

d→ Y1 as λ → 1 we have
P{Y1 = 0} ≥ p, and therefore P{X − X ′ = 0} = P{Y1X = 0} ≥ p. On the
other hand P{X −X ′ = 0} = P{X = X ′} = p2 because X has only one atom,
at a. Hence p2 ≥ p so that p = 1.
Case 2. µ1 = 1

2δ−a + 1
2δa for some a 6= 0. For λ ∈ (0, 1) the random variable

X − λX ′ d= YλX has exactly four atoms, with mass p2/4 each, at (1 − λ)a,
−(1 − λ)a, (1 + λ)a and −(1 + λ)a. Hence Yλ has atoms with total mass
p/2 at (1 − λ) and −(1 − λ) (and atoms with total mass p/2 at (1 + λ) and
−(1 + λ)). Since Yλ

d→ Y1 as λ → 1 we have P{Y1 = 0} ≥ p/2, and therefore
P{X −X ′ = 0} = P{Y1X = 0} ≥ p/2. On the other hand, P{X −X ′ = 0} =
P{X = X ′ = a}+ P{X = X ′ = −a} = p2/2 so that p2/2 ≥ p/2 and p = 1.
Let n be an arbitrary natural number. By the use of the above result for real
random variables < ξ,X >, where ξ ∈ Rn we can easily end the proof.

2

5.5 Generalized weak convolution

De�nition 5.5.1. Let µ ∈ Pn be a nontrivial weakly stable measure, and
let λ1, λ2 be probability measures on R. If

(λ1 ◦ µ) ∗ (λ2 ◦ µ) = λ ◦ µ,

then the generalized convolution of the measures λ1, λ2 with respect to the
measure µ (notation λ1 ⊕µ λ2) is de�ned as follows

λ1 ⊕µ λ2 =
{

λ if µ is not symmetric;
|λ| if µ is symmetric.

If Θ1, Θ2 are random variables with distributions λ1, λ2 respectively then the
random variable with distribution λ1 ⊕µ λ2 we will denote by Θ1 ⊕µ Θ2. Thus
we have

Θ1X′ + Θ2X′′ d=
(
Θ1 ⊕µ Θ2

)
X,

where X,X′,X′′ have distribution µ, Θ1,Θ2,X′,X′′ and Θ1 ⊕µ Θ2,X are in-
dependent. One can always choose such versions of Θ1 ⊕µ Θ2 and X that the
above equality holds almost everywhere.
Now it is easy to see that the following lemma holds.
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Lemma 5.5.1. If the weakly stable measure µ ∈ P(E) is not trivial then

1) λ1 ⊕µ λ2 is uniquely determined;

2) λ1 ⊕µ λ2 = λ2 ⊕µ λ1;

3) λ⊕µ δ0 = λ;

4)
(
λ1 ⊕µ λ2

)⊕µ λ3 = λ1 ⊕µ

(
λ2 ⊕µ λ3);

5) Ta

(
λ1 ⊕µ λ2

)
=

(
Taλ1

)⊕µ

(
Taλ2

)
.

Example 5.5.1. It is known that the random vector Un = (U1, . . . , Un) with
the uniform distribution ωn on the unit sphere Sn−1 ⊂ Rn is weakly stable. The
easiest way to see this is using the characterizations of rotationally invariant
vectors.
Let us recall that the random vector X ∈ Rn is rotationally invariant (spherically
symmetric) if L(X) d= X for every unitary linear operator L : Rn → Rn. It is
known (see [14,66] for the details) that the following conditions are equivalent

a) X ∈ Rn is rotationally invariant,

b) X d= ΘUn, where Θ = ‖X‖2 is independent of Un,

c) the characteristic function of X has the form

Eei<ξ,X> = ϕX(ξ) = ϕ(‖ξ‖2)

for some symmetric function ϕ : R→ R.

Now let L(Θ1) = λ1, L(Θ2) = λ2 be such that Θ1, Θ2,Un1,Un2 are indepen-
dent, Un1 d= Un2 d= Un. In order to prove weak stability of Un we consider the
characteristic function ψ of the vector Θ1Un1 + Θ2Un2

ψ(ξ) = E exp
{
i < ξ, Θ1Un1 + Θ2Un2 >

}

= E exp
{
i < ξ, Θ1Un1 >

}
E exp

{
i < ξ, Θ2Un2 >

}
= ϕ1

(‖ξ‖2
)
ϕ2

(‖ξ‖2
)
.

It follows from the condition (c) that Θ1Un1 + Θ2Un2 is also rotationally in-
variant. Using condition (b) we obtain that Θ1Un1 + Θ2Un2 d= ΘUn for some
random variable Θ, which we denote by Θ1 ⊕ωn Θ2. This means that Un is
weakly stable and

Θ1 ⊕ωn Θ2 =
∥∥Θ1Un1 + Θ2Un2

∥∥
2

=

(
n∑

k=1

(
Θ1U

n1
k + Θ2U

n2
k

)2

)1/2

,
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where Uni = (Uni
1 , . . . , Uni

n ), i = 1, 2. Since U2 = (cos ϕ, sin ϕ) for the random
variable ϕ with uniform distribution on [0, 2π], then in the case n = 2 we get

Θ1 ⊕ωn Θ2 =
(
Θ2

1 + Θ2
2 + 2Θ1Θ2 cos(α− β)

)1/2
,

where Θ1, Θ2, α, β are independent, α and β have uniform distribution on the
interval [0, 2π]. It is easy to check that cos(α− β) has the same distribution as
cos(α), thus we have

Θ1 ⊕ωn
Θ2

d=
(
Θ2

1 + Θ2
2 + 2Θ1Θ2 cos(α)

)1/2
.

De�nition 5.5.2. Let L(Θ) = λ, and let µ = L(X) be a weakly stable
measure on E. We say that the measure λ (random variable Θ) is µ-weakly
in�nitely divisible if for every n ∈ N there exists a probability measure λn such
that

λ = λn ⊕µ . . .⊕µ λn, (n-times),
where (for the uniqueness) λn ∈ P+ if µ is weakly stable on [0,∞) or if µ is
symmetric, and λn ∈ P if µ is weakly stable nonsymmetric.

Notice that if λ is µ-weakly in�nitely divisible then the measure λ◦µ is in�nitely
divisible in the usual sense. However, as it is shown in the following example if
λ ◦ µ is in�nitely divisible then it does not have to imply µ-in�nite divisibility
of λ.
Example 5.5.2. Let m be a discrete measure:

m({x}) =
{

0, 26 for x = 1, 2, 4, 5,
−0, 04 for x = 3.

Since µ is a signed measure it cannot be the Lévy measure of any in�nitely
divisible distribution. However for some positive k the measure exp(km) de�ned
by

exp(km) = e−k
∞∑

n=0

(km)∗n

n!

is taking only nonnegative values and has total mass 1, thus it is a probability
measure. It is not very di�cult to see that exp(m) is a probability measure.
Moreover

exp(km)({3}) = e−k

[
−0, 04k + 0, 262k2 +

1
6
0, 263k3

]
,

thus it is negative for
0 < k <

√
9, 96− 3
2 · 0, 26

∼ 0, 3.

Consider now the measure γα ◦ exp(m). It was shown in [?] that

γα ◦ exp(m) = exp {γα ◦m} ,
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thus in order to show that γα◦exp(m) is in�nitely divisible we only need to show
that the measure γα ◦m has nonnegative density. We know that γα = γ2 ◦ ˜γα/2,
where ˜γα/2 is the distribution of

√
Θ with Θ having α/2-stable distribution on

the positive half-line. Thus it is enough to show that for every x ∈ R we have
∫

R

1√
2π

exp
{

x2

2s2

}
s−1m(ds) ≥ 0.

To see this it is enough to notice that

0, 26
4

exp
{
− x2

2 · 42

}
≥ 0, 04

3
exp

{
− x2

2 · 32

}
.

Example 5.5.3. If γα is a strictly α-stable (symmetric α-stable) distribution
on space Rn then it is weakly stable on [0,∞) (weakly stable). Simple application
of the de�nition of stable distribution shows that

Θ1 ⊕γα
Θ2

d= (Θα
1 + Θα

2 )1/α
,

(
Θ1 ⊕γα

Θ2
d= (|Θ1|α + |Θ2|α)1/α

)
.

Now we see that Θ is γα- weakly in�nitely divisible if and only if Θα (respectively
|Θ|α) is in�nitely divisible in the usual sense.

Lemma 5.5.2. Let µ be a weakly stable distribution, µ 6= δ0. If λ is µ-
weakly in�nitely divisible then there exists a family {λr : r ≥ 0} such that
1) λ0 = δ0, λ1 = λ;
2) λr ⊕µ λs = λr+s, r, s ≥ 0;
3) λr ⇒ δ0 if r → 0.

Proof. If λ is µ-weakly in�nitely divisible then for every n ∈ N there exists a
measure λn such that

(λn ◦ µ)∗n = λ ◦ µ,

where ν∗n denotes the n'th convolution power of the measure ν. We de�ne
λ1/n := λn. Weak stability of the measure µ implies that for every k, n ∈ N
there exists a probability measure which we denote by λk/n such that

λk/n ◦ µ =
(
λ1/n ◦ µ

)∗k
= (λ ◦ µ)∗k/n

.

The last expression follows from the in�nite divisibility of the measure λ ◦ µ.
We see here that for every n, k,m ∈ N we have

λkm/nm = λk/n,

since
(λ ◦ µ)∗km/nm = (λ ◦ µ)∗k/n

.

Now let x > 0 and let (rn)n be a sequence of rational numbers such that rn → x
when n →∞. Since (λ ◦ µ)∗rn → (λ ◦ µ)∗x and

{λrn ◦ µ : n ∈ N} =
{
(λ ◦ µ)∗rn : n ∈ N}
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then this family of measures is tight. Lemma 2 in [57] implies that also the family
{λrn : n ∈ N} is tight, so there exists a subsequence λrnk weakly convergent to
a probability measure which we call λx. Since λx ◦µ = (λ◦µ)∗x then uniqueness
of the measure λx follows from the uniqueness of (λ ◦µ)∗x, Remak 1 in [57] and
our assumptions.

To see 3) let rn → 0, rn > 0. Since

λrn ◦ µ = (λ ◦ µ)rn ⇒ δ0 = δ0 ◦ µ,

then {(λ ◦ µ)rn : n ∈ N} is tight, and by Lemma 5.2.2 the set {λrn : n ∈ N} is
also tight. Let {r′n} be the subsequence of {rn} such that λr′n converges weakly
to some probability measure λ0. Then we have

λr′n ◦ µ ⇒ λ0 ◦ µ,

and therefore λ0 ◦ µ = δ0 ◦ µ. If µ is not symmetric then Remark 5.3.1 implies
that λ0 = δ0. If µ is symmetric then by our assumptions λ and λrn are concen-
trated on [0,∞), thus also λ0 is concentrated on [0,∞). Since by Remark 5.3.1
the symmetrization of the mixing measure is uniquely determined in this case
we also conclude that λ0 = δ0.

2

5.6 Elliptically contoured vectors
The investigations of elliptically contoured distributions started in 1938 with
the paper of Schoenberg �Metric spaces and complete monotonic functions�
(see [64]). This paper is devoted to the study of random vectors which are
invariant under isometries in Rn and in `2. Later on this concept was gen-
eralized to the elliptically contoured random vectors, which are images under
linear operators of random vectors which are invariant under isometries. In this
section we recall only some basic properties of elliptically contoured random
vectors. For further information we refer the reader to the following review pa-
pers: Elliptically symmetric distributions: A review and bibliography by M. A.
Chmielewski (see [13], 1981), which treats the problem mainly from the statis-
tical point of view; and Pseudo-isotropic distributions by C. L. Sche�er and J.
Misiewicz (see [52], 1990), where emphasis is put on the theory of measure. Both
papers contain rich bibliographies.

De�nition 5.6.1. A random vector X = (X1, . . . , Xn) is elliptically con-
toured if there exists a symmetric positive de�nite n×n-matrix < and a func-
tion ϕ:R→ R such that

ϕX(ξ) = ϕ
(
〈ξ,<ξ〉1/2

)
, ∀ξ ∈ Rn.

Remark 5.6.1. If < = I, i.e. if 〈ξ,<ξ〉 =
∑n

k=1 ξ2
k, then the corresponding

elliptically contoured random vectors are also known in the literature under
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names such as rotationally invariant, spherically generated or spherically con-
toured random vectors (see Askey [2], Box [9], Gualtierotti [22], Huang and
Cambanis [26], Kelker [31], [32], Kingman [33] [34], Letac [42]).
Notice that the function varphi appearing in the de�nition of an elliptically
contoured random vector X = (X1, . . . , Xn) is equal up to a scale parameter to
the characteristic function of the �rst coordinate X1 of this vector. Indeed, we
see that

ϕX1(t) = ϕX((t, 0, . . . , 0)) = ϕ

(√
r1,1t2

)
= ϕ

(√
r1,1t

)
,

where the last equality follows from the symmetry of ϕ. From now on we will
use the notation EC(ϕ,<, n) for the distribution of elliptically contoured random
vector X = (X1, . . . , Xn) with function 〈ξ,<ξ〉 and E exp{itX1} = ϕ(t). The
following lemma has been proved by Crawford (see [14]) in 1977, originally for
absolutely continuous distributions:

Lemma 5.6.1. Let X = (X1, . . . , Xn) be elliptically contoured with distri-
bution EC(ϕ,<, n), < = BT B, and let C be a nonsingular, n × n-matrix. If
Y = B−1CX, then Y is elliptically contoured with distribution EC(ϕ,CT C, n).

As a corollary one has that a random vector X on Rn is elliptically contoured
if and only if there exists a non-degenerate linear operator B : Rn 7−→ Rn such
that B−1X is rotationally invariant. The next crucial result was proven in 1938
by Schoenberg (see [64] [66]).

Theorem 5.6.1. A random vector X = (X1, . . . , Xn) is rotationally in-
variant if and only if there exists a nonnegative random variable Θ such that

X d= (U1, . . . , Un)Θ,

where the random vector U(n) = (U1, . . . , Un) is independent of Θ and has a
uniform distribution on the unit sphere Sn−1 = {x ∈ Rn :

∑n
k=1 x2

k = 1}.

Proof. It is enough to de�ne Θ = ‖X‖2, check that Θ and X/‖X‖2 are inde-
pendent and notice that X/‖X‖2 have the same distribution as U(n).

2

The so called Box-Muller method (see [10]) of computer simulation for standard
two-dimensional normal N(0, I) random vector X = (X1, X2) is based on Theo-
rem 5.6.1. It follows from Theorem 5.6.1 that X d= U(2)

√
X2

1 + X2
2 , where U(2)

is uniformly distributed on the unit sphere in R2 and independent of
√

X2
1 + X2

2 .
The probability distribution ω2 of U(2) and the distribution of (cos θ, sin θ) with
θ uniform on the interval [0, 2π], are identical. It is easy to calculate that

X2
1 + X2

2
d= −2 ln(Q),
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where Q independent of Θ is uniformly distributed on the interval [0, 1]. This
�nally leads to the following Box-Muller statement:

cos θ
√−2 ln Q,

sin θ
√−2 ln Q

}
are i.i.d. with N(0, 1) distribution.

In the same way we obtain that

cos θ1 cos θ2

√
2Z

sin θ1 cos θ2

√
2Z

sin θ2

√
2Z



 are i.i.d. with N(0, 1) distribution,

where Z, θ1, θ2 are independent, Z has distribution Γ( 1
2 , 1), θ1 has uniform distri-

bution on [0, 2π] and θ2 uniform distribution on [−π/2, π/2]. Instead of the vari-
able

√
2Z we can also take a variable W with the density function

√
2/πx2e−x2/2

for x > 0. The same construction can be done for (X1, . . . , Xn) with Xi's i.i.d.
N(0, 1) random variables for every n ∈ N. It is a simple consequence of Theorem
5.6.1; namely we have

(X1, . . . , Xn) = (U1, . . . , Un) ·
√

S2(n),

where S2(n) d= X2
1 + . . . + X2

n is independent of the random vector U(n) =
(U1, . . . , Un) with uniform distribution on the unit sphere in Rn. It is evident
that the distribution of U(n), as supported in Sn−1 cannot be absolutely con-
tinuous with respect to the Lebesgue measure on Rn. The distribution of U(n)

is of sign-symmetric Dirichlet type with parameters (2, . . . , 2; 1, . . . , 1), i.e. the
following conditions hold:

(i) (U1, . . . , Un) is a sign-symmetric random vector;

(ii)
∑n

k=1 U2
k = 1 with probability one;

(iii) the joint density function of
(
U1, . . . , Un−1

)
is

Γ(n/2)
Γ(1/2)n

(
1−

n−1∑

k=1

u2
k

)−1/2

+

,

where (a)+ = max{a, 0}.

It is easy to see that the joint density function of the �rst k components
(U1, . . . , Uk), k < n, of the random vector U(n) is of the form:

Γ(n/2)
Γ((n− k)/2)Γ(1/2)k

(
1−

k∑
1

u2
j

)n−k
2 −1

+

,

for details see [23]. Now, we have the following:
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Theorem 5.6.2. The marginal density function of (X1, . . . , Xk), k < n, of
the rotationally invariant random vector X = (X1, . . . , Xn) = U(n)Θ admits
the following representation:

fk(x) =
Γ(n/2)

Γ((n− k)/2)Γ(1/2)k

∫ ∞

0

r−k

(
1− r−2

k∑
1

x2
j

)n−k
2 −1

+

λ(dr),

x ∈ Rk, where λ is the distribution of the random variable Θ. If the random
vector (X1, . . . , Xn) is elliptically contoured with representation BU(n)Θ then
the density of its k-dimensional projection (X1, . . . , Xk), k < n, is of the form

fk(x) =
Γ(n/2) |<k|−1/2

Γ((n− k)/2)Γ(1/2)k

∫ ∞

0

r−k

(
1− r−2 < x,<−1

k x >

)n−k
2 −1

+

λ(dr),

x ∈ Rk, where the k × k-matrix <k is built from the �rst k rows and columns
of the matrix < = BT B.

Remark 5.6.2. The formula of the density function of the k-dimensional
projection (X1, . . . , Xk), k < n, for the elliptically contoured random vector
X = BU(n)Θ can be also written in the following way:

fk(x) = |<k|−1/2
f
(
< x,<−1

k x >
)
,

where f : [0,∞) 7→ [0,∞) is n−k
2 -times monotonic function. More about α-times

monotonic functions can be found in the paper of Williamson [68]. In this book
it is enough to know that g is α-times monotonic function if it admits the
representation

g(r) =
∫ ∞

0

(
1− ru

)α−1

+
dF (u),

with F non-decreasing, non-negative function. In the case α ∈ N the function g is
α-times monotonic if and only if it is α-times di�erentiable and (−1)kg(k)(t) ≥ 0
for every 0 ≤ k ≤ α

Evidently all one-dimensional projections of U(n) are the same up to a scale
parameter and

E exp

{
i

n∑

k=1

ξkUk

}
= E exp

{
i

( n∑

k=1

ξ2
k

)1/2

U1

}

=
Γ(n/2)

Γ((n− 1)/2)Γ(1/2)

∫ 1

−1

cos
(
‖ξ‖2 · u

) (
1− u2

)(n−3)/2
du

≡ Ωn

(
‖ξ‖2

)
.
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The function Ωn can also be written in the following way:

Ωn(r) =
2Γ(n/2)

Γ((n− 1)/2)Γ(1/2)

∫ π/2

0

cos
(
r sin ϕ

)
cosn−2(ϕ) dϕ

= Γ
(n

2

)(2
r

)n
2−1

Jn−2
2

(r),

where Jν(r) is a Bessel function; i.e. a cylindrical function of the �rst kind, thus
it is a solution of the following di�erential equation (for details see e.g. [20]):

d2Jν(r)
dr2

+
1
r

dJν(r)
dr

+
(

1− ν2

r2

)
Jν(r) = 0.

This implies that

d2

dr2
Ωn(r) +

n− 1
r

d

dr
Ωn(r) + Ωn(r) = 0.

Now, we have the following:

Theorem 5.6.3 (Schoenberg [66]). If X = (X1, . . . , Xn) is an ellipti-
cally contoured random vector with representation X d= BU(n)

√
Θ, < = BT B,

then
E exp

{
i

n∑

k=1

ξkXk

}
=

∫ ∞

0

Ωn

((
< ξ,<ξ >

)1/2

r

)
λ(dr),

where λ is the distribution of the random variable Θ.

We can see that not every symmetric positive de�nite function ϕ on R with
ϕ(0) = 1 has the property that ϕ(‖ · ‖2) is a characteristic function of an
elliptically contoured random vector. In 1973 Askey [2] proved the following

Theorem 5.6.4. Let n ≥ 2 and let ϕ : [0,∞) 7→ R be continuous and such
that
1) ϕ(0) = 1, limt→∞ ϕ(t) = 0;
2) (−1)kϕ(k)(t) ≥ 0 is convex for k = [n

2 ].

Then, for every positive de�nite n × n-matrix <, ϕ
((

< ξ,<ξ >
)1/2) is the

characteristic function of some elliptically contoured random vector.

In 1982 Hardin published a paper (see [24]) in which he studied the linear
regression property for elliptically contoured processes. He showed that one of
the possible de�nitions of linearity of regression is just equivalent to the property
of processes being elliptically contoured. Namely, he considered the following
de�nition:
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De�nition 5.6.2. Let X = {Xt : t ∈ T} ⊂ L1(Ω, P ) be a stochastic process
and let L(X ) be the real vector space of all �nite linear combinations

∑
ξkXtk

.
We say that X has the linear regression property if all regressions in L(X )
are linear, that is

E
(
X0|X1, . . . , Xn

) ∈ L({X − 1, . . . , Xn}) if X0, X1, . . . , Xn ∈ L(X ).

The main result in Hardin's paper is based on the following lemma:

Lemma 5.6.2 (Hardin [24]). Let X = {Xt : t ∈ T} ⊂ L1(Ω, P ) be an
elliptically contoured process, i.e. process having all �nite dimensional distri-
butions elliptically contoured. Then

1. there exists an inner product < ·, · > on L(X ) such that
(
E|X|)2 =< X, X > for all X ∈ L(X ),

and

E
(
X|Y )

=
< X, Y >

< Y, Y >
· Y for all X, Y 6= 0 in L(X );

2. if X, Y ∈ L(X ), E|X| = E|Y | = 1, and E(X|Y ) = 0 then the random
vector (X,Y ) is rotationally invariant.

Theorem 5.6.5 (Hardin [24]). Let X = {Xt : t ∈ T} be a stochastic
process satisfying at least one of the following two conditions:

a) X ⊂ L2(Ω, P ) and dim
(L(X )

) ≥ 2;

b) X ⊂ L1(Ω, P ) and dim
(L(X )

) ≥ 3.

Then X has the linear regression property if and only if X is an elliptically
contoured process.

Of course, every elliptically contoured process for which regressions are de�ned
has the linear regression property - in this implication the dimension condition
is not needed. For the opposite implication when X ⊂ L1(Ω, P ) the condition
dim

(L(X )
) ≥ 3 is essential. Hardin has given an example (X = (X, Y ), where

X,Y are i.i.d. random variables with a symmetric α-stable distribution, α < 2)
of a two-dimensional process which has the linear regression property but which
is not elliptically contoured. See also [47], Th. 6.1.1, and [30], Th. 1.4.
By the Fourier Inversion Formula we can get that if a rotationally invariant
random vector X = U(n)Θ with representation EC(ϕ, I, n) has an integrable
characteristic function ϕ

(‖ξ‖2
)
, ξ ∈ Rn, then its density function can be written

88



as

f(x) =
Γ
(
(n− 1)/2

)
Γ
(
1/2

)

Γ(n/2)

∫ ∞

0

rn−1ϕ(r)Ωn

(
‖x‖2 · r

)
dr.

Let us also notice here that ϕ(r) is the characteristic function of the random
variable Θ · U1.
Now we are ready to prove the main result of this section, stating that for every
n ∈ N the distribution ωn of the random vector U(n) which is uniform on the
unit sphere Sn−1 ⊂ Rn is weakly stable. This is the property, which makes
elliptically contoured distributions so useful in applications.

Theorem 5.6.6. For every n ∈ N the random vector U(n) =
(U1,n, . . . , Un,n) with uniform distribution ωn on the unit sphere Sn−1 ⊂ Rn

is weakly stable. For every n×n-matrix A the random vector AU(n) is weakly
stable. Moreover for every a, b ∈ R

aU(n)
1 + bU(n)

2
d= U(n)

∥∥∥aU(n)
1 + bU(n)

2

∥∥∥
2
,

where U(n)
1 ,U(n)

2 and U(n) are independent, identically distributed.

Proof. In view of Theorem 5.6.3 we have that

E exp
{

i〈ξ,U(n)〉
}

= E exp

{
i

n∑

k=1

ξkUn
k

}
= Ω(‖ξ‖2) .

This implies that

E exp
{

i〈ξ, aU(n)
1 + bU(n)

2 〉
}

= Ω (|a|‖ξ‖2)Ω (|b|‖ξ‖2) ,

so the right hand side is a function dependent only on ‖ξ‖2 (a, b are only some
parameters here). This means by de�nition that aU(n)

1 + bU(n)
2 is rotationally

invariant, thus it follows from Theorem 5.6.1 that

aU(n)
1 + bU(n)

2
d= QU(n)

for some random variable Q = Qa,b independent of U(n). From the proof of
Theorem 5.6.1 it follows also that ‖aU(n)

1 + bU(n)
2 ‖2 can be chosen as Q. To

�nish the proof it is enough to notice that

a
(
AU(n)

1

)
+ b

(
AU(n)

2

)
= A

(
aU(n)

1 + bU(n)
2

)
d= A

(
QU(n)

)
= Q

(
AU(n)

)
.

2
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The setM(ωn) is well known as the set of all rotationally invariant distributions
on Rn. The set M(ωk,n) is a convex and closed subset of M(ωk). If n = k + 2,
then ωk,n is the uniform distribution on the unit ball Bk ⊂ Rk. In particular,
we obtain that M(ω1,3) is the set of symmetric unimodal probability measures
on R. Notice also that ω1,3 is uniform on the interval [−1, 1]. This property was
used in [39] to de�ne elliptically contoured copula.
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5.7 Cambanis, Keener and Simons distributions
We say that the distribution µ on Rn is `1-symmetric (sometimes the name
`1-pseudo-isotropic is used here) if the characteristic function of µ has the
following form

µ̂(ξ) = ϕ (‖ξ‖1) ,

for some function ϕ, where ‖ξ‖1 = |ξ1|+ . . .+ |ξn|. Since an `1 symmetric distri-
bution is evidently symmetric then putting ξ = (ξ1, 0, . . . , 0) we see that ϕ(|ξ1|)
is the characteristic function of X1 for X = (X1, . . . , Xn) having the distribution
µ. This means that the random vector X is `1-symmetric (`1-pseudo-isotropic)
if for every ξ ∈ Rn the following equation holds

< ξ,X >=
n∑

k=1

ξkXk
d= ‖ξ‖1 ·X1.

Let M1(n) denotes the set of all non-degenerate `1-symmetric distributions on
Rn. It is not di�cult to see that M1(n) is convex and weakly closed. For a long
time the extreme points of this set were unknown.
In 1983 S. Cambanis, R. Keener and G. Simons [12] found all the extreme points
for `1-dependent distributions on Rn. This result was based on the following,
surprisingly general, de�nite integral identity:

∫ π/2

0

f

(
s2

sin θ
+

t2

cosΘ

)
dθ =

∫ π/2

0

f

(
(|s|+ |t|)2

sin θ

)
dθ,

which holds for each s, t ∈ R and every function f for which the integrals make
sense. The S. Cambanis, R. Keener and G. Simons proof of this identity was not
very di�cult but complex. In 2002 K. Oleszkiewicz gave (but never published) a
very simple geometrical proof of this identity and with his permission we present
it here.

Consider the unit sphere in R2, and assume that the chords EF and DG are
parallel, the points a,B,C, O, P are situated as in Figure 5.3. Let CP ⊥ AE,
|OP | = x and ∠DPC = ∠CPB = α. Notice that the length of the chord EF

determines the length of the curve |ÊF | and it depends only on ∠PEF = π
2 −α.

We obtain
|B̂D| = |B̂E| − |D̂E| = |ÊG| − |F̂G| = |ÊF |,

which means that |B̂D| depends only on α and not on x.
Let s, t ∈ R and consider the sphere S ⊂ R2 with the radius r = |s| + |t|.
We assume that the random variable θ is uniformly distributed on the interval
[0, 2π] and the point H is the projection of X = r(cos θ, sin θ) on the diameter
AE - see the Figure 5.4. Of course the random vector X is uniformly distributed
on S and

P {|ctg∠XOH| < u} = P {|ctg∠XPH| < u}
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for all u ∈ R. This equality follows from the property that the points of the
sphere S, for which the inequality |ctg∠XOH| < u holds, and the points of the
sphere for which the inequality |ctg∠XPH| < u holds, form subsets of S with
the same Lebesgue measure. This implies that

∣∣∣∣
cos θ

sin θ

∣∣∣∣
d=

∣∣∣∣
r cos θ − x

r sin θ

∣∣∣∣ .

The same argument can be used to show that
∣∣ r cos θ−x

r sin θ

∣∣ d=
∣∣∣ r cos (2θ)−x

r sin (2θ)

∣∣∣ and as
a consequence we have the following

(
r cos (2θ)− x

r sin (2θ)

)2

+ 1 d=
(

cos θ

sin θ

)2

+ 1.

This implies that

(r − x)2

sin2 θ
+

(r + x)2

cos2 θ

d=
4r2

sin2 θ
.

Now it is enough to substitute 2r = |s|+ |t| and 2x = |s| − |t| to obtain that

t2

sin2 θ
+

s2

cos2 θ

d=
(|t|+ |s|)2

sin2 θ
.

The result of Cambanis, Keener and Simons can be formulated in the following
way
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Theorem 5.7.1. Let X = (X1, . . . , Xn) with distribution µ on Rn be non-
degenerate. Then the following conditions are equivalent:
1. µ ∈M1(n);
2. There exists a nonnegative variable Θ such that

X d=
(

U1√
D1

, . . . ,
Un√
Dn

)
·Θ,

where Un = (U1, . . . , Un) has uniform distribution on the unit sphere in Rn,
D = (D1, . . . , Dn) has Dirichlet distribution with parameters ( 1

2 , . . . , 1
2 ), Un,

D and Θ are independent.
3. The characteristic function of the measure µ can be written in the form

µ̂(ξ) = ϕ(‖ξ‖1), where

ϕ(r) =
∫ ∞

0

ϕn(rx)λ(dx),

for λ being the distribution of random variable Θ and

ϕn(r) =
Γ(n

2 )√
πΓ(n−1

2 )

∫ ∞

1

Ωn(ur2)u−n/2(u− 1)(n−3)/2du,

for Ωn(‖ξ‖22) the characteristic function of the vector Un.
4. µ is absolutely continuous with the density function

fn(x) =
∫ ∞

0

r−ngn(xr−1)λ(dr),

where

gn(x) =

[
Γ(n

2 )
]2

(n− 2)!πn

n∑

k=1

(x2
k − 1)n−2

+

Πn
j=1,j 6=k(x2

j − x2
k)

, |xj | 6= |xk| for j 6= k.

The next theorem was given by G. Mazurkiewicz in 2005 in the paper Weakly
stable distributions and magic distribution of S. Cambanis, R. Keener and G.
Simons [?]. Why magic? First, because of the surprising integral identity which
was the crucial point for their construction. Secondly, because of the resemblance
to the magic square, where sums of all elements in every row, every column and
every diagonal are constant. Here we have that every one-dimensional marginal
has the same distribution up to a scale parameter, and this scale parameter is
de�ned as the sum of absolute values of coe�cients in the linear combination
de�ning the projection.
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Theorem 5.7.2. For every n, α ∈ N, n − 4α ≥ 4, the marginal densities
Πn−k of the density gn are given by the following:
For k = 4α

Πn−k(x1, . . . , xn−k) =

[
n−k∑
m=1

(x2
m − 1)n−2

+

Πn−k
j=1,j 6=m(x2

m − x2
j )|xm|k

−Dn−k
2α−1

] [
Γ(n

2 )
]2

(n− 2)!πn−k
.

For k = 4α + 1

Πn−k(x1, . . . , xn−k) =

[
n−k∑
m=1

(x2
m − 1)n−2

Πn−k
j=1,j 6=m(x2

m − x2
j )|xm|k

ln
∣∣∣∣
1 + |xm|
1− |xm|

∣∣∣∣

+
2α∑

i=1

2
2i− 1

(
4αCn−k

2i −Dn−k
2α−i

)
] [

Γ(n
2 )

]2
(n− 2)!πn−k+1

.

For k = 4α + 2

Πn−k(x1, . . . , xn−k) =

[
n−k∑
m=1

(x2
m − 1)n−2

−
Πn−k

j=1,j 6=m(x2
m − x2

j )|xm|k
ln

∣∣∣∣
1 + |xm|
1− |xm|

∣∣∣∣

+ 4α+1C
n−k
1

] [
Γ(n

2 )
]2

(n− 2)!πn−k
.

For k = 4α + 3

Πn−k(x1, . . . , xn−k) =

[
−

n−k∑
m=1

(x2
m − 1)n−2

Πn−k
j=1,j 6=m(x2

m − x2
j )|xm|k

ln
∣∣∣∣
1 + |xm|
1− |xm|

∣∣∣∣

−
2α+1∑

i=1

2
2i− 1

(
4α+2C

n−k
2i −Dn−k

2α+1−i

)
] [

Γ(n
2 )

]2
(n− 2)!πn−k+1

.

In this theorem we use the following notation:

Sm
i =

{ ∑
(m

i )
(
xπ(1) . . . xπ(i)

)2 if i ∈ {1, . . . , m},
0 if i = 0 or i > m,

where (π(1), . . . , π(i)) = π ∈ (
m
i

)
denotes any choice of i elements from the set

{1, . . . , m}.

Dm
j =





1 j = 0,

(−1)j
(
n−2

j

)−∑j−i
i=0(−1)j−iSm

j−iD
m
i j = 1, . . . , t,

0 j < 0,

where ω = n−m− 2, t = ω − [
γ−1

2

]
, here γ = k with the condition m,ω ∈ N.

Sj,m
i =

{ ∑
(m−1

i )
(
xπj(1) . . . xπj(i)

)2
j = 1, 2, . . . , m,

0 i = 0 or i > m,
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where (πj(1), . . . , πj(i)) = πj ∈
(
m−1

i

)
denotes any choice of i elements from the

set {1, . . . ,m} \ {j}.

γ+1A
m
j =





(x2
j−1)n−2

|xj |γ+1Πm
i=1,i 6=j(x

2
j−x2

i )
j = 1, 2, . . . , m,

(x2
j−1)n−2

|xj |γ+1 j = m = 1.

The values of γCm
j are given by the following recursive formulas

γCm
j =

[ j−1
2 ]∑

i=1

Sm
i γCm

j−2i + 2(−1)[
j−1
2 ]

m∑

i=1

γ+1A
m
i Si,j

[ j−1
2 ] ·Gj(|xi|)

+ (−1)t+[ j−1
2 ]

(
n− 2

t +
[

j−1
2

]
)
−

∑

i=0

(−1)t+[ j−1
2 ]−iSm

t+[ j−1
2 ]−i

Dm
i ,

for Gj(r) = r if j is even, and Gj(r) = 1 if j is odd, j = 1, . . . , γ − 1, and

γCm
γ =

(−1)ω

Πm
i=1x

2
i

.

Yes, this theorem looks very complicated and unpleasant. Fortunately the com-
puter programs have no special di�culties in calculating these densities and with
presenting graphs of two-dimensional marginal densities. We give such graphs
on the next few pages in order to justify our opinion that they are just beautiful.
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Figure 5.5: two-dimensional density g2(x, y)

Figure 5.6: one-dimensional marginal Π2−1(x) and level curves for density
g2(x, y)
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Figure 5.7: two-dimensional marginal Π3−1(x, y) for density g3(x, y, z)

Figure 5.8: one-dimensional marginal Π3−2(x, y) and level curves of Π3−1(x, y)
for density g3(x, y, z)
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Figure 5.9: two-dimensional marginal Π4−2(x, y) for density g4(x, y, z, u)

Figure 5.10: one-dimensional marginal Π4−3(x) and level curves of Π4−2(x, y)
for density g4(x, y, z, u)
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Figure 5.11: two-dimensional marginal Π6−4(x, y) for density g6(x, y, z, u, w, t)

Figure 5.12: one-dimensional marginal Π6−5(x) and level curves of Π6−4(x, y)
for density g3(x, y, z, u, w, t)
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In spite of the very complicated formulas for multidimensional densities of `1-
symmetric distributions, simulating the corresponding random vectors is very
simple. Before we give the description of the method of simulating let us recall
some basic facts on Dirichlet and generalized Dirichlet distributions.

De�nition 5.7.1. A random vector (D1, . . . , Dn) has a Dirichlet dis-
tribution with parameters β1, . . . , βn, βi > 0 for i = 1, . . . , n (notation
D(β1, . . . , βn)) if
(i)

∑n
i=1 |Di| = 1 almost surely;

(ii) the joint density function of (D1, . . . , Dn−1) is

Γ(pn)
Γ(βn)

n−1∏

i=1

1
Γ(βi)

dβi−1
i

(
1−

n−1∑

i=1

di

)βn−1

+

,

where pn =
∑n

i=1 βi.

It is easy to see that the random vector (cos2 θ, sin2 θ) with θ uniformly dis-
tributed on the interval [0, π

2 ] has the D( 1
2 , 1

2 ) distribution. There is a very well
known procedure for constructing the Dirichlet distribution using Gamma ran-
dom variables (for details see e.g. [35]). We describe it here in the following
proposition.

Proposition 5.7.1. Let Z1, . . . , Zn be independent positive valued random
variables with distributions Γ(βi, 1) respectively, i.e. the random variable Zi has
the density function

1
Γ(βi)

zβi−1
i exp{−zi} for zi > 0.

Then the random vector
(

Z1∑n
i=1 Zi

, . . . ,
Zn∑n
i=1 Zi

)

has the Dirichlet distribution D(β1, . . . , βn).

Now we shall have no problem with simulating a random vector (D1, . . . , Dn)
with the Dirichlet distribution D( 1

2 , . . . , 1
2 ) appearing in the condition 2 of The-

orem 5.7.1. It turns out however that we do. The computer simulation of Γ( 1
2 , 1)

distribution appeared to be good enough to simulate (D1, . . . , Dn), but the sam-
ple (D1, . . . , Dn) obtained this way is not good enough to produce samples of
the random vector (

U1√
D1

, . . . ,
Un√
Dn

)
.

Much better results can be obtained if we use trigonometric representation in
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R2 and R3: (√
D1,

√
D2

)
d= (cos θ, sin θ) θ ∼ 2

π
1[0,π/2];

(√
D1,

√
D2,

√
D3

)
d= (cos θ cos Q, sin θ cosQ, sin Q) θ,Q ∼ 2

π
1[0,π/2].

In the case of higher dimensional spaces we shall use the following representation

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 5.13: n = 2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 5.14: n = 3

(√
D1, . . . ,

√
Dn

)
d=

(
|W1|√∑n

W 2
i

, . . . ,
|Wn|√∑n

W 2
i

)
,

where W1, . . . , Wn are independent identically distributed N(0, 1) Gaussian ran-
dom variables.
Simulating the random vector Un uniformly distributed on the unit sphere
in Rn can be easily done using trigonometric representation for n = 2 and
n = 3. In higher dimensional spaces however this construction is becoming
rather complicated, thus we will use rather the idea of sign-symmetric Dirichlet
type distributions (for details see [23]).

De�nition 5.7.2. A random vector (B1, . . . , Bn) has a sign-symmetric
Dirichlet-type distribution with parameters α1, . . . , αn and β1, . . . , βn (notation
D(α1, . . . , αn;β1, . . . , βn)) if
1. Bn is a symmetric random variable;
2.

∑n
i=1 |Bi|αi = 1 almost surely;

3. the joint density function of (B1, . . . , Bn−1) is

Γ(qn)
Γ(βn/αn)

n−1∏

i=1

αi

2Γ(βi/αi)
|bi|βi−1

(
1−

n−1∑

i=1

|bi|αi

) βn
αn
−1

+

,

where qk =
∑k

i=1 βi/αi.
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If αi ≡ 2 and βi ≡ 1 then the random vector (B1, . . . , Bn) has a uniform
distribution on the unit sphere in Rn, i.e. Un has generalized Dirichlet-type
distribution D(2, . . . , 2; 1, . . . , 1). In the following proposition we describe the
method of simulating Dirichlet-type distribution.

Proposition 5.7.2. Let W1, . . . , Wn be independent real valued random
variables such that the random variable Wi has the density function

αi

2Γ(βi/αi)
|wi|βi−1 exp{−|wi|αi}.

Then the random vector
(

W1

(
∑n

i=1 |Wi|αi)1/α1
, . . . ,

Wn

(
∑n

i=1 |Wi|αi)1/αn

)

has the Dirichlet-type distribution D(α1, . . . , αn; β1, . . . , βn).

Notice that the random vector U(n) = (U1, . . . , Un) with uniform distribution
on the unit sphere in Rn has the sign-symmetric Dirichlet-type distribution
D(2, . . . , 2; 1, . . . , 1) thus it can be sampled using Proposition 5.7.2. In this case
we have that the corresponding random variables Wi are Gaussian, thus

(U1, . . . , Un) d=

(
W1√∑n

W 2
i

, . . . ,
Wn√∑n

W 2
i

)
,

where W1, . . . ,Wn are independent identically distributed N(0, 1) Gaussian ran-
dom variables.
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