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Chapter 1

Purpose of the project

Nowadays, the renewable energy is gaining more and more interest. Mainly
due to the fact that renewable generation offers an advantage of being en-
vironmentally friendly and its source is available practically everywhere. In
order to allow for high stochastic renewable generation, power systems have
to follow structural changes in the existing distribution and transmission
network. The power systems with a few large power stations supplying the
transmission network will be replaced by systems characterized by decentral-
ized structure with many small-scale integrated generators (e.g. windmills)
[16]. However, the sources such as wind and sun are in their nature uncon-
trollable and consequently the electrical power output cannot be controlled
as well. Large scale implementation of this type of generation may cause
strong power fluctuation in the grid. The idea of energy storages seems
to provide a good solution to this problem. Such a storage would prevent
wasting of energy in cases of surplus and would supply it back to the system
when a deficiency occurs.

The implementation of energy buffers in future power systems will face
many significant issues like e.g. the optimal distribution of energy storages,
their capacity, operational strategies and their impacts in a system. The
project ”Role of Energy Storages in Future Power Systems”, which will start
at the beginning of September 2009, is going to develop methodologies for
the planning and operation of power systems with large quantities of small-
scale distributed storage devices. For this purpose, power system models,
energy storage models and time series models will be developed and joined
together in a one energy management model which will be further used in
simulation studies.

The mentioned time series models will represent a stochastic renewable
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2 1. PURPOSE OF THE PROJECT

resources (e.g. wind) and system energy consumption (load). The time series
model for wind speed will have to be able to simulate wind speeds in all wind
farms of interest. However, it is not feasible to build so highly dimensional
structure since it would be too complex and financially challenged. Therefore
a certain assumption should be made regarding the number and distribution
of sites taken into account. It will certainly lead to greater simplicity and
usefulness. In such a model, each considered site would be a representation
of a certain area. It is very reasonable assumption since the Netherlands are
a small country and places which are relatively close are characterized by
almost identical wind speeds.

The goal of the thesis is to develop a univariate and multivariate model
for wind speed by means of statistical tools. Although the made assumption
regarding the number of sites, their amount will be still quite significant
from modeling point of view. Therefore the developed model cannot be
too much elaborate but should captures the most important characteristics
of the data. We will propose a methodology which will help in building
a model satisfying aforementioned properties. However, we will present
our results for at most three sites which provide a good representation of
inland, onshore and offshore wind speeds. We believe that the generalization
to higher dimension will not raise problems thanks to paying attention to
simplicity.

The artificial time series of wind speed will be further transformed to
obtain respective time series of wind power. In this way, if wind speed/power
and load are simulated simultaneously, their difference will be nothing but
the input to an energy storage. Specifically, denoting a generation at time
t Xt and load at time t Lt, the input(or output) to(from) energy storage
is Dt = Xt − Lt and will play a crucial role in the assessing an optimal
dimension of energy storage device. It also shows the importance of time
series analysis which gives insight into the evolution of the processes in time
in contrast to the frequency distributions which would be not enough for
the analysis of storage systems.



Chapter 2

Wind speed data

The research was conducted on the basis of data provided by Royal
Netherlands Meteorological Institute (KNMI). This high quality dataset
comprising 53 long station records of near-surface wind in the Netherlands
was developed within the framework of the HYDRA (hydraulic conditions)
project [1]. It is, however, not measured wind speed at the anemometer’s
height but the so-called potential wind speed which has a few advantages
over the former. The Figure 2.1 presents the KNMI measuring network.
The potential wind speed is defined as corrected hourly averaged records so
that they correspond with wind speed at 10 m height over short grassland
free of obstacles. The correction involves also weakening of the influence of
inhomogeneities that may have occurred in data due to changes in observa-
tional routines, station relocations or measuring techniques. Therefore, the
correction gives us the possibility to compare the data recorded at different
station which is very important in multivariate modeling of wind speed. The
detailed information on the corrections made to the data can be found in
[2].

The analysis of the data has revealed a few main features of the wind
which are explainable in meteorological and physical terms and are discussed
in the following sections. For the purpose of presenting wind speed charac-
teristics, data from two stations were chosen: Schiphol-inland station and
Europlatform- offshore station.

2.1 Diurnal and annual variations of the wind

The diurnal variations of wind speed have been inferred from the observa-
tions collected at Schiphol station. Figure 2.2a shows the diurnal variations

3



4 2. WIND SPEED DATA

Figure 2.1: The KNMI measurement network



2.1. DIURNAL AND ANNUAL VARIATIONS OF THE WIND 5

of mean wind speed (averaged over several years). The wind speed increases
after sunrise, attains a maximum at 1-2 pm and then gradually decreases.
This variation appears because the temperature differences between the sea
surface and the land surface are larger during the day than during night.
This meteorological fact seems to be an advantage since the peak values of
the wind happen at similar hours as the peak values of electricity consump-
tion (load). Furthermore, it can be noticed that the diurnal wave is very
similar for each year considered (2003-2007 years) but the hourly averages
differ between years indicating that e.g. year 2007 was exposed to stronger
wind than year 2003. When one considers hourly averages at offshore sta-
tion, no such diurnal variations are visible, see Figure 2.2b.

As the temperatures during winter are lower than in the other seasons,
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Figure 2.2: Diurnal periodicity

one would expect that diurnal variations of inland wind may be less visible
in winter. Indeed, the Figure 2.3a confirms that December and January
enjoys approximately the same level of hourly averaged values which are
the same as peak values in summer months. Taking into consideration the
data from Europlatform, the diurnal variation does not appear but there
are differences in mean values between months. The wind speed on offshore
stations blows stronger than on land due to lower roughness of a surface
and lack of obstacles which contribute to wind turbulence. However, it is
more expensive to build wind farm on the sea where turbines are exposed
to tough conditions due to salt, seawater, waves and strong wind.
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2.1. DIURNAL AND ANNUAL VARIATIONS OF THE WIND 7

So far the diurnal variation was presented using mean values for each
hour. The pattern of the daily periodicity can be also noticed in the au-
tocorrelation of the data sequence in each considered year, see Figure 2.4a.
The autocorrelation function reaches its highest values every 24 hours as
expected. Moreover, the autocorrelation function obtained from 2007 year
gets usually the highest values among all years, whereas the function for
2003 year, the lowest. When considering hourly averages, year 2003 turned
out to have lower means than year 2007 which, together with the latter ob-
servation, would suggest that the degree of similarity between observations
separated by a certain time span is higher when the wind speed observations
are (in mean) higher. The data from Europlatform still does not reveal any
diurnal variations according to Figure 2.4b. As it was already noticed, the
strength of wind speed depends on the season of the year and is described
below.
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Figure 2.4: Autocorrelations

The Figures 2.5a-2.5b present monthly averages for several years and for
five years all together. One can see that summer winds are generally weaker
than winter winds for inland and offshore stations. Furthermore, just like
the diurnal variation matches the diurnal electricity consumption, the annual
pattern in wind speed matches the pattern in electricity demand. Because
of the periodicity in further part of the project we will consider months
separately.
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Figure 2.5: Annual variations

2.2 Wind speed distribution

There are several probability distribution proposed for modeling wind speed
e.g. Weibull, Lognormal, Gamma. However, usually Weibull distribution is
chosen for modeling wind speed [21]. The Figure 2.6 shows the histogram of
wind speed recorded at Schiphol in January 2003. The Kolmogorov-Smirnow
test checking the adequacy of the Weibull model has indicated that Weibull
distribution does not describe the data well.

The Figure presents a very important issue. Namely we can notice that
the accuracy of the measurements increases with the wind speed. It may
indicate that a meteorological station uses rather simple anemometer to
obtain the measurements and therefore a relatively light wind speed posses
high measurement error.

2.3 Persistence

The notion of wind persistence appears frequently in the literature con-
cerning wind engineering, climatology or energy. However, the definition
of persistence differs from author to author. We define the persistence as
in [26], [27] in the context of the duration of surface wind speeds within
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Figure 2.6: Histogram of wind speeds recorded at Schiphol in January 2003

specified wind speed classes. Thus, the analysis of persistence is a way of
exploring the dynamic features of the wind speed.

The length of the periods of no power or of full power generated from
wind correspond to the length of the periods of low and high wind speed
respectively. Therefore, from power systems standpoint, it is of high im-
portance to analyze the distribution of the run durations below or above
a certain threshold. However, we should take a note that the number of
excursions from a given threshold will depend very much on this threshold
and consequently, the computed distributions will be in some cases of lit-
tle reliability. The analysis of persistence usually is performed as a part of
assessing the wind resources at the sites of interest since the reliability and
predictability of generated power has implications for network design and
meshing of technologies to meet electricity demand. It gives opportunity to
compare power quality at sites characterized by different weather conditions
or/and different topography [26], [28], [29], [30]. Usually zones with better
attributes from power perspective require higher costs which have to be in-
volved in building a wind farm, connecting it to the grid and maintenance.
Therefore the analysis of persistence contributes to deciding whether the
expensive wind farm will in future give enough big profits to cover at least
the investment costs.

In the case of this project, the persistence is considered due to playing
important role in the issue of energy storages in power systems. Therefore it
will be entertained for the purpose of the comparison between the synthetic
and real data sequence but also between the months: January and July.
The Figure 2.7 presents the above-threshold excursions (red dots). In the
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Figure 2.7: Persistence: The excursion lengths

persistence analysis we will be interested mainly in the excursion lengths
(big font numbers) but also in the number of excursions. The high interest
in wind energy has led to some developments of the models for persistence
e.g. [27] proposes a composite distribution for modeling the distribution of
excursions lengths which consists of a power function distribution and scaled
exponential distribution. Another way of modeling persistence is presented
in [31] where the Markov theory is applied.



Chapter 3

Univariate case

From a statistical standpoint a given wind speed time series {Yt} is a
realization of a stochastic process. The goal is to construct stochastic models
which could define a mechanism responsible for producing such sequences
of values. Stochastic, as opposed to deterministic, means that if it were
used to generate several sets of observations over the same time period,
each set of observations would be different, but they would all obey the
same probabilistic laws. Usually, when we deal with recorded measurements,
we have only one realization of the process. However, given a set of data
covering a few years we can assume that wind speeds corresponding to a
certain month e.g. July are realizations of one unknown process. Hence,
taking into analysis measurements from period 2003-2005 will result in five
realizations of the process governing in July. The Figure 3.1 presents wind
speed observations in July in years 2003-2005. Although the mentioned
assumption of multiple realizations lacks verification, it is important to make
use of information that is available to us. This idea will be entertained
throughout the thesis and will lead to development of an averaged model
representing a process in given month. More details regarding this issue will
be presented further.

The first stage in modeling the sequence of observations called time se-
ries is specification of the class of models which could appropriately capture
the most important characteristics of the data. When we deal with wind
speed measurements, we intuitively know that the strength of wind speed
at present is somehow dependent on the wind speed in the preceding pe-
riod. The theory of time series analysis was established mainly by Box and
Jenkins who described in detail the approach to building model [3]. The
following sections will present the methodology used to model wind speed

11
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and statistical tools for building, estimating and verifying the model. The
theoretical information was written on the basis of the time series theory
described in several books: [3], [9]-[13], [17]. For more detailed description
and references the reader is referred to them.

3.1 Methodology

Recently wind speed modeling has gained much interest especially due to
growing demand on wind power. The researchers usually propose simple
ARMA models [14], [19]-[23] but more complex models start being common
[5]-[6], [24]-[25]. A thoroughful analysis of the wind speed time series has
led us to proposing an ARMA-GARCH model as a model capturing the
wind speed characteristics appropriately. ARMA-GARCH was developed for
modeling financial time series and finds application mainly in that field. The
applications to other time series types are rarely seen, especially concerning
wind speed (only [5] and [6]).

Since the present level of wind speed (Yt) depends on its immediate past
we describe this univariate time series Yt by the process

Yt = E(Yt|Ωt−1) + εt

where E(·|·) denotes the conditional expectation operator, Ωt−1 the infor-
mation set at time t − 1, and εt the innovations or residuals of the time
series which are uncorrelated, have mean zero and play the role of the un-
predictable part of the time series. We should here take a note that we
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consider only wind speed observations; wind speed direction, temperature
etc. will not appear in the mean equation. In the case of ARMA-GARCH
model, the mean equation is the ARMA process and the innovations are
generated from the GARCH model. The ARMA(p,q) mean equation has
the following (mean adjusted) form 1:

Yt − µ =
p∑

i=1

φi(Yt−i − µ) +
q∑

j=1

θjεt−j + εt (3.1)

= Φ(B)(Yt − µ) + Θ(B)εt

where µ is mean of time series, φ is autoregressive coefficient and θ is moving
average coefficient. Moroever, the equation is also expressed using backshift
operator B i.e. BYt = Yt−1. The functions Φ(B) and Θ(B) are polynomials
of degree p and q respectively in the backward shift operator B. When q = 0
we have a pure autoregressive process and when p = 0 pure moving average
process.

It may happen that squared residuals exhibit significant serial correla-
tion. It indicates that errors are not independent although they are serially
uncorrelated. Residuals are called then conditionally heteroscedastic and
GARCH (Generalized Autoregressive Conditional Heteroscedasticity) mod-
els have been proved to be very successful at modeling the serial correlation
in the second moment of the underlying time series. The formulation of the
GARCH model for errors εt is:

εt = ztσt

zt ∼ D(0, 1)

V ar(εt|Ωt−1) = E(ε2
t |Ωt−1) = σ2

t = K +
a∑

j=1

αjσ
2
t−j +

b∑

i=1

βiε
2
t−1 (3.2)

= K + α(B)σ2
t−1 + β(B)ε2

t−1

where zt are iid random variables with zero mean and unit variance and D
is their probability density function. Common choices for density function
D are normal distribution, student-t distribution and generalized error dis-
tribution. Thus, under the GARCH(a,b) model, the conditional variance of

1An another frequently used form in the literature is Yt = µ + Φ(B)Yt + Θ(B)εt, but
in this case µ does not stand for the mean of time series
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εt, σ2
t (3.2), depends on the squared residuals in the previous b periods, and

the conditional variance in the previous a periods. Usually a GARCH(1,1)
model with only three parameters in the conditional variance equation is
adequate to obtain a good model fit. The GARCH model was proposed by
Bollerslev [8] as a generalization of ARCH model which was initially pro-
posed by Engle [7] and corresponds to GARCH(0,b). The ARCH model
described by the conditional variance equation:

σ2
t = K + β1ε

2
t−1 + β2ε

2
t−2 + . . . + βbε

2
t−b

can be rewritten in the following form:

ε2
t = K + β1ε

2
t−1 + β2ε

2
t−2 + . . . + βbε

2
t−b + ut

where ut = ε2
t − E(ε2

t |Ωt−1) is a mean zero white noise process. It can
be noticed that it is AR(b) process for squared residuals ε2

t which explains
the reason for calling the model ”Autoregressive”. Analogously, the GARCH
model can be expressed as ARMA model for squared residuals (for simplicity
GARCH(1,1) is considered):

ε2
t = K + (α1 + β1)ε2

t−1 − α1ut−1 + ut

where again ut = ε2
t − E(ε2

t |Ωt−1) stands for white noise disturbance term.
The above equation represents the ARMA(1,1) model for squared residuals.
Due to mentioned relation with autoregressive processes, GARCH models
inherit many properties from the theory of ARMA models. Some of them
are : volatility clustering, fat tails and mean reversion. Considering the
simplest GARCH(1,1) model

σ2
t = K + α1σ

2
t−1 + β1ε

2
t−1

we can notice that a large ε2
t−1 will result in a large σ2

t . In other words, the
large ε2

t−1 will tend to be followed by another large ε2
t creating the behavior

known as volatility clustering. Moreover, the distribution of errors modeled
using GARCH is fat tailed even if the assumed conditional distribution is
normal, a formal explaination of this fact can be found e.g. in [7], [17],[4].
Moreover, assuming that

∑a
i=1 αi +

∑b
j=1 βj < 1 it may be shown that

V ar(εt) = K/(1 −∑a
i=1 αi +

∑b
j=1 βj) which is the formula for computing

unconditional variance of errors. If this assumption holds, then the volatility
of the underlying time series will be always pulled towards the long run
level expressed by the above formula even if a time series experiences large
volatility ( see [9] for more details).
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Modeling simultaneously conditional mean and variance using seemingly
different models ARMA GARCH, is actually working with two ARMA mod-
els: one which is applied to the levels of wind speed and second, to the
squared residuals. Generally speaking, the building an ARMA GARCH
model is based on removing any serial correlation in the data using ARMA
and then finding appropriate GARCH model for the residuals if a condi-
tional heteroscedasticity has been detected (following sections will describe
it in detail).

When a model for wind speeds has been built and satisfies most of statis-
tical criteria of being adequate, its estimated coefficients and structure need
some interpretation in terms of the wind physics. Interpreting such a model
is, however, quite difficult especially due to the fact that wind is a part of
large atmospheric mechanism which includes many phenomena interacting
with each other (e.g. temperature, pressure) which are not considered in
model building.

Whereas the Autoregressive moving average model provides quite in-
tuitive description of the serial correlation in wind speeds, the conditional
heteroscedasticity modeled by GARCH seems to be quite peculiar. Ewing
et al [6] apply a similar methodology to modeling 15 minutes averages of
wind speed and propose interpreting conditional variance σ2

t as turbulence.
Moreover, they think of shocks to wind speed εt as of wind gusts or lulls cor-
responding to positive and negative errors respectively. Therefore according
to GARCH model, turbulence is influenced by past wind shocks and past
turbulence levels. The importance of turbulence issue is crucial from the
standpoint of generated power since turbulence decreases the possibility of
using the energy in the wind effectively for a wind turbine. It also imposes
more wear and tear on the wind turbine.

The usefulness of such interpretation is less reasonable for our purposes
since we deal with hourly values of wind speed and concerning turbulence
then is questionable. However, we will sometimes refer to the proposed inter-
pretation in order to gain more intuition and understanding of the process.

3.2 Stationarity

Stationarity has been always an indispensable issue in a time series modeling
because stationary time series can be well described in terms of its first
and second order moments. Formally, we call a process {Yt} covariance
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stationary 2 if

E(Yt) = µ (3.3)

cov(Yt, Yt−j) = E((Yt − µ)(Yt−j − µ)) = γj

We will call the covariance stationary time series simply a stationary time
series. We can notice that the first and second moments are time invariant.
The parameter γj is called the jth order or lag j autocovariance of {Yt}.
The autocorrelations of {Yt} are defined by :

ρj =
cov(Yt, Yt−j)√

var(Yt)var(Yt−j)
=

γj

γ0
(3.4)

and a plot of ρj against j is called the autocorrelation function (ACF).
If a time series is stationary, the estimate of ACF may suggest which of
the many possible stationary time series models is a suitable candidate for
representing the dependence in the data. The sample autocovariance and
lag j sample autocorrelation are defined as follows:

γ̂j =
1
T

T∑

t=j+1

(Yt − Ȳ )(Yt−j − Ȳ ) (3.5)

ρ̂j =
γ̂j

γ̂0
(3.6)

where Ȳ is the sample mean and T is the number of data values. The sample
ACF is a plot of ρ̂j against j.

In the case of ARMA model described in the previous section,

Yt − µ = Φ(B)(Yt − µ) + Θ(B)εt

where Φ(B) = 1−φ1B− . . .−φpB
p, the stationarity is satisfied if the roots

of the characteristic equation

Φ(z) = 1− φ1z − φ2z
2 − . . .− φpz

p = 0 (3.7)

lie outside the complex unit circle (have modulus greater than one). A
necessary condition for stationarity that is useful in practice is that |φ1 +
. . . + φp| < 1.

2it is also called second order stationary or weakly stationary.
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In the case that there is one root lying on a complex unit circle then
we deal with a process called an integrated process of order 1 and denote it
I(1). I(1) process has the following form:

Yt = Yt−1 + ut

where ut is a stationary time series. The first difference of Yt leads to
stationary time series i.e.

∆Yt = ut

Because of the above property I(1) processes are called difference stationary.
The stationary process is sometimes denoted as I(0).

Sometimes it may be hard to distinguish between the stationary and
difference stationary processes especially if we are given time series covering
short period of time. Therefore several tests were developed in order to deal
with this issue. The tests which consider the null hypothesis of the existence
of unit root are called unit root tests i.e if we consider a simple AR(1) model

Yt = φYt−1 + εt

the hypothesis is:

H0 : φ = 1(unit root in Φ(z) = 0) ⇒ Yt ∼ I(1)

H1 : |φ| < 1 ⇒ Yt ∼ I(0)

The most famous test are the augmented Dickey-Fuller test and Phillips-
Perron test. However, they posses a drawback that they cannot distin-
guish highly persistent stationary processes from nonstationary processes
very well. Therefore the so-called efficient unit root test were proposed and
include: point optimal test, DF-GLS and modified efficient Phillips-Perron
tests. In [9] more information can be found together with references.

According to the literature, if the sample autocorrelation function decays
very slowly it may be an indication of nonstationarity. The usual advice is
taking the first difference and then fitting a time series model. However, if
the time series is highly persistent but not nonstationary then it may lead to
very bad results e.g. simulated sample from the model differs significantly
from the original time series. Therefore it is of importance to verify, using
efficient unit root tests, if the considered time series come from a nonsta-
tionary process.
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3.3 Model selection

According to Box and Jenkins [3] the process of building model has an
iterative structure. After postulating general class of models we identify
model to be tentatively entertained, we estimate its parameters and we
check if the model is adequate. If the model turns out to be inadequate we
go back to the step of identification. When the model satisfy all requirements
stated in diagnostic checking then we can use it for simulating or forcasting
purposes. This section aims to present the most important tools used in
each iteration stage and the next one serves their application to wind speed
data.

3.3.1 Transformation

Before going through all iterative stages, the data have to be prepared.
The preparation involves transformations that adjust for undesirable fea-
tures in dataset like nongaussian distribution, nonstationarity or seasonal-
ity. Usually, we assume in ARMA model representation 3.1 that innovations
come from normal distribution and this implies that modeled data should
be at least approximately Gaussian. Since we know that wind speed does
not exhibit required normality but is rather Weibull distributed we have to
apply suitable methods for dealing with it. Some ideas have already ap-
peared in literature including e.g. Brown et al. [14] who proposes power
transformation choosing the power using the fact that Weibull distribution
with shape parameter close to 3.6 resembles Normal distribution. However,
instead of trying to get approximately Gaussian distribution, we can just
transform our data to uniformity using their CDF and next transforming
them to standard normal distribution. Beside the latter approach seems to
be mathematically more correct, it is also more general and can be used
for data arbitrarily distributed. On the other hand, it may be memory
consuming in the case of using empirical CDFs which have to be saved for
back-transformation purpose.

Another important issue in data preparation is checking for seasonality.
Very often data exhibit some regular patterns and the one of approaches for
dealing with it is differencing the data which is taking difference between
consecutive observations or separated by a certain period. The differenced
data is then easier to model. We propose here another method for remov-
ing periodicity which is based on transforming each data point using its
respective CDF. More details are presented further in this section.

The last undesired feature to check is nonstationarity. In general, if
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there is no trend in data and the autocorrelation function decays quickly
and time series exhibit mean-reverting character then we have nothing to
worry about. If, however, some of the mentioned properties do not hold then
suitable tests (e.g. unit root tests) have to be performed in order to gain
more evidence regarding nonstationarity. In the case of wind speed we have
already presented its diurnal seasonality concerning inland stations. In order
to deal with both the nongaussianity and diurnal periodicity in wind speed,
instead of using two separate transformations we use one concise method
summarized below.

1. determination of CDF for each hour of the day

2. transforming each data value through its hourly CDF to uniformity

3. transforming the uniformly distributed time series to normality

In order to determine CDF (1) we can obviously try to fit paramet-
ric distributions for every 24 hours but more simple approach is to derive
empirical CDF or estimate cumulative distribution function using kernel
estimator. The latter method was applied in wind data transformation.

3.3.2 Identification

The purpose of model identification is specifying certain tentative models
which are worth careful investigation. The methods for model specification
can be divided into two groups. The first group focus on analyzing a several
sorts of correlations by mainly visual inspection, whereas the second one
is based on applying the criterion functions. The latter methods require,
however, full estimation of a considered model and preferable models are
those which minimize criterion function. There is no hierarchy of methods
e.i. no methods are better than others but all are intended to indicate
reasonable candidates for models.

Correlation methods

• SACF

The purpose of analyzing patterns in sample autocorrelation function
(SACF) is finding resemblance to known autocorrelation function of
common ARMA models. Moreover, SACF can be also used as in-
dicator of nonstationarity when it is persistent (ρ̂k decreases linearly
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instead of exponentially ). According to theory, for stationary ARMA
models

ρ̂k →p ρk, as n →∞
where →p denotes convergence in probability and n the time series
length. In addition, ρ̂k is asymptotically normal with mean ρk and
variance being function of the ρi’s. In the case of white noise one
obtains the following

var(ρ̂k) ≈ 1
n

for all k > 0

The MA(q) process is characterized by the autocorrelation function
which cuts off after lag q e.i ρk 6= 0 for k ≤ q and ρk = 0 for k > q.
Therefore if the sample ACF ρ̂h is significantly different from zero for
0 ≤ h ≤ q and negligible for h > q then as a tentative model MA(q)
can be considered. It is of course important what ”negligible” means in
that context. If we deal with MA(q) process, the asymptotic variance
of ρ̂k for k > q is

var(ρ̂k) =
1 + 2(ρ2

1 + · · ·+ ρ2
q)

n

Hence, it is advisable to check if ρ̂k falls between the bounds
±1.96

√
var(ρ̂k).

• SPACF

Since for MA(q) models the autocorrelation function is zero for lags
beyond q, the sample autocorrelation is a good indicator of the order
of the process. However, the autocorrelation of an AR(p) process do
not become zero after a certain number of lags- they die off rather
than cut off. So a different function is needed to help to determine
the order of autoregressive model. For computing the AR coefficient,
the Yule-Walker equations can be used. It is obvious that coefficients
of order higher that p are zero. Hence, one can identify the order
of the AR process having its coefficients estimates. The p-th order
Yule-Walker equation is




ρ1

ρ2
...

ρp


 =




1 ρ1 ρ2 · · · ρp−2 ρp−1

ρ1 1 ρ1 · · · ρp−3 ρp−2
...

...
ρp−1 ρp−2 ρp−3 · · · ρ1 1







φ1

φ2
...

φp



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If we replace autocorrelations ρi by their sample counterparts ρ̂i then
estimate ˆφp,p of φp in above matrix equation is called the partial au-
tocorrelation at lag p. In the light of previous remark, for an AR(p)
process the following holds

φ̂p,p 6= 0, but φ̂k,k = 0 for k > p

Foregoing relations formulate the cutting off property for AR(p) model.
For an observed time series, one needs to estimate the partial autocor-
relation function at several lags. According to Yule-Walker equation,
one has only to estimate autocorrelation function ρ̂k for k = 1, 2, . . .
and solve linear equations. It was shown that, under the hypothesis
that an AR(p) model is correct, the SPACF at lags greater than p are
approximately normally distributed with zero means and variances 1

n .
Thus, for k > p, ±1.96/

√
n can be used as critical limits on φ̂k,k to test

the null hypothesis that an AR(p) model is correct.

• SEACF

Autocorrelation and partial autocorrelation functions are useful in
indicating candidates for MA and AR models respectively. However,
in the case of specifying mixed autoregressive moving average mod-
els they fail. The reason is the fact that both autocorrelation and
partial autocorrelation do not posses cutting off property. That is
why different tools were developed for ARMA model specification and
they include among others EACF-Extended Autocorrelation Function,
SCAN- the Smallest Canonical Correlation.

The EACF was created on the basis of the idea that if the AR part of a
mixed ARMA model is known, ”filtering out” the autoregression from
the observed time series results in a pure MA process that enjoys the
cutoff property in its ACF. The AR coefficients may be estimated by
a finite sequence of autoregressions. In order to illustrate this idea,
the procedure will be discussed on the basis of ARMA(1,1) model:

Yt = φYt−1 + εt − θεt−1

In the first step, the simple linear regression of Yt on Yt−1 is per-
formed. Although, the estimated coefficient φ is not correct, the ob-
tained residuals contain information about the MA process. Therefore,
a second regression of Yt is performed, this time, on Yt−1 and on lag
1 of the residuals from the first regression. The estimated coefficient
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φ̃ turns out to be a consistent estimate. Consequently, the process
defined by Wt = Yt − φ̃Yt−1 is approximately MA(1) process. If the
considered model is ARMA(1,2) then the consistent coefficient of Yt−1

is obtained by the regression of Yt on Yt−1 the lag 1 of the residuals
from second regression and the lag 2 of the residuals from first regres-
sion. The same procedure holds for general ARMA(p,q) but requires
larger number of regression, namely q. Usually orders of AR and MA
are not known and iterative procedure has to be performed. Thus,
let us define autoregressive residuals using AR coefficients estimated
iteratively assuming that AR order is k and MA order is j:

Wt,k,j = Yt − φ̃1Yt−1 − · · · − φ̃kYt−k

The sample autocorrelations of Wt,k,j are called the extended sample

Figure 3.2: Theoretical eacf of ARMA(1,1) model

autocorrelations. If the true model is ARMA(p,g) then for k = p and
j ≥ q the process {Wt,k,j} is approximately an MA(q) model. The
information in the sample EACF can be presented in the table such as
in Figure 3.2, where the element in the kth row and jth column is X if
the lag j + 1 sample autocorrelation of {Wt,k,j} is significantly differ-
ent from 0 indicating that the model ARMA(k,j) is not worth further
consideration and the element is 0 otherwise. Figure 3.2 presents the
theoretical EACF ; the triangle of zeros can be noticed where 0∗ which
corresponds to ARMA(1,1) and indicates the best and most parsimo-
nious candidate. When one deals with real data, this kind of triangle
is hardly visible because many of correlations may be statistically not
significant by chance.
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Information criteria

An information criteria is a measure of the goodness of fit of an estimated
statistical model but is not a test in the sense of hypothesis testing, rather
it is a tool for model selection. Given a data set, several competing models
may be ranked according to their value of the information function, with
the one having the lowest value being the best. From these values one
may infer that e.g the top three models are in a tie and the rest are far
worse, but one should not assign a value above which a given model is
”rejected”. All formulas for information criteria contain a ”penalty term”
which is the function of the number of parameters in a model and helps to
ensure selection of parsimonious models and to avoid choosing models with
too many parameters. There are several information criteria available in
literature and some of them are presented below.

Let us denote Ln(k) the maximum likelihood of a model with k param-
eters based on a sample of size n.

• AIC

The Akaike’s information criteria is defined as

AIC(model) = −2ln(Ln(k))/n + 2k/n (3.8)

If the considered model is ARMA(p,q) with Gaussian errors i.e.

Yt − µ =
p∑

i=1

(Yt−i − µ) +
q∑

j=1

εt−j + εt, εt ∼ i.i.d.N(0, σ2) (3.9)

then the formula 3.8 can be rewritten in the following form 3

AIC(ARMA(p, q)) = ln(σ̂2) + 2(1 + p + q)/n

where σ̂2 is the maximum likelihood estimator of the variance of the
innovation noises.

Using this criteria we select the model which minimizes the AIC. The
AIC is also an estimator of the average Kullback-Leibler divergence of
the estimated model from the true model.

• BIC
3We use the fact that for ARMA model with normally distributed errors we have that

ln(Ln(k)) = − 1
2
n− 1

2
nln(2π)− 1

2
nln(σ̂2)
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Another method for determining the model’s orders is choosing model
that minimizes the Schwarz Bayesian Information Criteria (BIC) de-
fined as

BIC(model) = −2ln(Ln(k))/n + kln(n)/n (3.10)

Analogously to AIC, in the case of ARMA model (3.9), the formula
3.10 takes the following form:

BIC(ARMA(p, q)) = ln(σ̂2) + (1 + p + q)ln(n)/n

Monte Carlo studies regarding fitting autoregressive models has shown
that AIC has tendency to overestimate p. The BIC criterion was created to
correct the overfitting nature of AIC. It has a valuable property of consis-
tence in the sense that if the data are in fact observation from ARMA(p,q)
model and p̂ and q̂ are estimated orders found by minimizing BIC, then
p̂ → p and q̂ → q as n → ∞. This property is not possessed by AIC
statistics.

Apart from order determination, an equally important issue is finding
the subset of nonzero coefficients of an ARMA model especially in the case
of high order ARMA models. For example, the model Yt = 0.7Yt−10 + εt +
0.8εt−10 is a subset of ARMA(10,10) model. For this reason the method
of Hannan and Rissanen for estimating the ARMA orders was extended to
solving the problem of finding an optimal subset ARMA model. Without
going into theoretical details, one can examine a few best subset ARMA
models in terms of chosen criterion function and obtain information about
tentative models for further study. The algorithm of this method is imple-
mented in R in package TSA. The Figure 3.8b shows the output which is
a table with pattern indicating which lag of the observed time series and
which of the error process enter into best subset models. The models are
sorted according to their criterion function value, with better models placed
in higher rows and with darker shades.

3.3.3 Estimation

After the orders p and q are specified, one still needs the estimation of
models parameters. One of the methods for estimation coefficient is maxi-
mum likelihood estimation described below.

Maximum likelihood estimator

The likelihood function L for given time series Y1, Y2, . . . , Yn is defined to
be the joint probability density of obtaining the data actually observed.
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However, it is considered as a function of the unknown parameters in the
model with the observed data held fixed. For ARMA models L is a function
of φ, θ, µ, σ2 given the observations Y1, Y2, . . . , Yn. The maximum likelihood
estimators are then defined as those values of the parameters for which the
data actually observed are most likely, that is, the values that maximize
likelihood function. The unconditional log-likelihood is given by

l(φ, θ, σ) = f(φ, θ)− nln(σ)− S(φ, θ)
2σ2

where S(φ, θ) denotes unconditional sum of squares function.

3.3.4 Diagnostic checking

After a model has been identified and estimated, there is still a ques-
tion whether the model is adequate. Several methods for testing model
adequacy are available and are discussed in this section. These tools have
to be sensitive enough to capture all significant deviations from adequacy.
Unfortunately no such comprehensive methods exist and only ”part” of non-
suitability may be indicated. However, no model form ever represents the
truth absolutely. Therefore it is normal that the well fitted models will al-
ways enjoy some discrepancies. In general, the model is regarded as a model
describing the data adequately if when applied to long data does not show
serious discrepancies.

Residuals may be defined in a very general way as

residual = actual − predicted

If the considered model is well specified and estimated so that its co-
efficients are reasonably close to the true values, then the residuals should
behave in a similar manner to white noise. Namely, they are expected to
be serially uncorrelated and identically normally distributed 4. In the case
that at least one of the latter properties does not hold for estimated resid-
uals, then the model may be not a right one. Moreover, deviations from
these properties can sometimes suggest the way of finding the more appro-
priate model. Suppose the following model has been fitted with maximum
likelihood estimates (φ̂, θ̂)

φ(B)Yt = θ(B)εt

4Different distributions are also allowed. It depends on the assumptions made be-
fore estimation. Different likelihoods functions will be built for different distributions of
innovations
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then the quantities ε̂t = θ̂−1(B)φ̂(B)Yt are called residuals. It can be shown
that the following relation holds:

ε̂t = εt + O(
1√
n

)

where n is sample size. Hence, as the series length increases, the ε̂t’s becomes
close to the white noise εt’s. Let us now consider the AR(2) model Yt =
φ1Yt−1 + φ2Yt−2 + εt. In the estimation procedure one obtains estimated
φ̂1, φ̂2. The residuals in this case are defined as:

ε̂t = Yt − φ̂1Yt−1 − φ̂2Yt−2

• Residual graph

The first step in Residual analysis is a visual inspection. As it was
already mentioned, residuals have to resemble the white noise pro-
cess. Therefore one may check if there is no trends, cyclic components,
strong deviations from zero or nonconstancy of the variance. Very of-
ten standardization of residuals is applied by dividing their values by
the estimate of white noise standard deviation σ̂. Then it is easier to
notice unusual size of residuals. The visual inspection of the residuals
plot aims to inform one about probable shortcoming of the model and
has to be followed by a few next steps of diagnostic checking. Figures
presenting residuals are given in the next section.

• Residual ACF

In order to verify if the residuals are serially uncorrelated, the sam-
ple autocorrelation function is plotted. Analogously to white noise
process, the sample ACF of resiudals ρ̂k should have mean zero and
standard deviation equal to n−1/2. However, it was shown (see [3]
for references) that n−1/2 constitute an upper bound for standard er-
ror. The residuals for small lags can be substantially less than 1/n
and highly correlated. The latter effect gradually disappear over time.
That is why it is important to examine more carefully the sample ACF
at starting lags. As an example of these results, let us consider the
case of AR(1) which is assumed to fit well a large set of data. Then
one has:

V ar(ρ̂1) ≈ φ2

n
for k = 1

V ar(ρ̂k) ≈ 1− (1− φ2)φk−2

n
, for k > 1
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• Tests

Instead of examining values of ρ̂k individually, one may consider if
a group of them does not indicate inadequacy of the model. On the
basis of this idea the so called Portmanteau lack of fit test was created.
Originally it was developed by Box and Pierce and its statistic has the
following form:

Q = n(ρ̂2
1 + ρ̂2

s + · · ·+ ρ̂2
k)

where k is the number of estimated autocorrelations taken into ac-
count (from ARMA(p,q) model) and n is data size. The statistic is
approximately distributed as χ2(k − p − q) and if the fitted model is
inappropriate then the value of the statistic tends to inflate. Later it
was discovered by Ljung and Box that the chi-squared distribution is
not good enough estimate for the distribution of Q and consequently
they proposed a modified form of statistic which does not posses the
mentioned drawback. The improved statistic is given below:

Q∗ = n(n + 2)(
ρ̂2
1

n− 1
+

ρ̂2
2

n− 2
+ · · ·+ ρ̂2

k

n− k
)

• Normality of the residuals

In order to check if the residuals come from normal distribution, one
may plot the so called QQ plot which a plot of the quantiles of the
data set against (in this case) the quantiles of normal distribution.
If the points follow closely the straight line than it is an indicator of
normality of residuals. Apart from QQ graphs, one can also perform
normality tests like the Shapiro-Wilk or Jarque-Bera test.

3.3.5 Checking heteroskedasticity

So far we have considered the matters regarding fitting an adequate ARMA
model to the time series. The residuals obtained from fitting an ARMA
model are supposed to be uncorrelated and distributed according to the dis-
tribution superimposed in maximum likelihood estimation. It may happen,
however, that residuals are not characterized by constant conditional vari-
ance and exhibit e.g. alternating periods of low and high variability. Then, it
is indication of the so-called ARCH effect or equivalently heteroscedasticity.
Apart from the visual inspection of the graph of residuals there are more for-
mal techniques for checking the presence of ARCH effect and are described
in this section. According to the Engle’s strategy, when the conditional
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variance is not constant, it is possible to model the conditional variance us-
ing ARCH(q) (GARCH(0,b) presented in the section 3.1) process using the
square of the estimated residuals obtained from the application of ARMA
model to the time series at hand. Let us consider ε2

t modeled using AR(q)
process as shown below:

ε2
t = K + α1ε

2
t−1 + α2ε

2
t−2 + . . . + αqε

2
t−q + νt (3.11)

We can notice that for a given sample, ε2
t is an unbiased estimate of σ2

t .
Therefore, we can examine ε2

t to check for conditional heteroscedasticity.
The following tools are supposed to help us detecting the ARCH effect:

Autocorrelation plot

Calculate and plot the sample autocorrelation of the squared residuals. If
the autocorrelation is significantly high at some lags it indicates that ARCH
effect appears in residuals.

Tests

Tests the hypothesis: H0: No ARCH effect H1: ARCH effect present

• Perform the Ljung Box test on the squared residuals ε2
t taking into

consideration several numbers of correlation coefficients. If the null
hypothesis is rejected then we reject the hypothesis of no ARCH errors.

• The next test is the Lagrange multiplier test applied to the linear
regression 3.11. The usual R2 statistic is computed and assuming that
we deal with a sample of T residuals, the test statistic LM = TR2

converges to χ2(q) distribution. If LM is sufficiently large, rejection of
the null hypothesis that α1 . . . αq are jointly equal to zero is equivalent
to rejecting the null hypothesis of no ARCH errors. On the other
hand, if LM is sufficiently low, it is possible to conclude that there are
no ARCH effects.

3.3.6 Backtransformation

As soon as the model is found it can be used for simulation purpose. Since
the model was based on the transformed data, the simulated sequence of
values have to be transformed back to wind speed domain. It is possible by
reversing the transformation process described in section 3.3 in the following
way:
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1. transforming simulated time series to uniformity

2. transforming each data value of the uniform time series through the
inverse of the hourly CDF to the wind speed domain

3.4 Example

After discussing all needed tools in finding a good model it is time to
show how they work in practice. We will present the Box-Jenkins iterative
procedure applied to wind speed time series recorded at Schiphol station in
July 2004. The considered wind speeds are shown in Figure 3.3.
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Figure 3.3: Wind speed in July 2004
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Figure 3.4: Time series of transformed July observations
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3.4.1 Transformation

In order to transform July data we need to compute CDF for each hour of
the day i.e. for each random variable H1,H2, . . . ,H24. If we assume that the
Julys from years 2003− 2007 are realizations of the same process 5 then we
have access to more realization of variables H1,H2, . . . ,H24 than considering
July 2004 alone. Thus, we transform data from July 2004 using all available
values for H1, H2, . . . , H24 in all Julys 2003 − 2007. The Figure 3.5 shows
kernel CDF estimator for several hours.
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Figure 3.5: Hourly CDF

After transformation of data using hourly CDFs we deal with observa-
tions uniformly distributed (see Figure 3.6a) which are further transformed
to normality using inverse standard normal distribution. The Figure 3.6b
presents all data values transformed using their respective hourly CDF and
using inverse standard normal cumulative distribution function.

In order to check if the transormations led us to normally distributed
observations we perform four normality tests: Jarque Bera test, Lillliefors,
Kolmogorov Smirnov and Shapiro Wilk test. At the 1% level of signifi-
cance two of these tests judge a departure from normality (Lilliefors and
Kolmogorov Smirnov tests), whereas the other two fail to reject the null
hypothesis of normality (see Table 3.1). The wind speed time series from
July 2004 transformed according to this procedure is presented in Figure 3.4

At this stage of modeling we should consider the stationarity of the time
series. Analyzing the plot of transformed wind speeds we can notice that
there is no trend. Moreover, the series tend to return over time to zero

5see section 3.5.1 for more details
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Figure 3.6

Normality test p-value
Jarque Bera 0.0169

Lilliefors < 0.001
Kolmogorov Smirnov 0.0042

Shapiro Wilk 0.0122

Table 3.1: Normality tests applied to July transformed data

i.e. exhibit mean reversion behaviour. This is not a surprising observation
since we know from experience that wind speed behaves in a ”stable” way
reverting to its usual mean. However, if we are given wind speed time series
over very short period of time e.g. one week it can be the case that they
look very like random walk attaining zero e.g. only once. Therefore it is
important to know the behaviour of the process over long horizons. In order
to support our conjecture, we performed unit root tests (see section 3.2)
for the considered time series. According to three efficient unit root tests,
we reject the null hypothesis of present unit root at 5% level, see Appendix
Table 6.1.
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3.4.2 Identification of ARMA

At the beginning we focus on finding as good as possible model for the
conditional mean. When this is done we try to find a suitable model for the
conditional variance if a heteroscedasticity effect occurs. Before we start
the identification process, we carry out mean adjustment using the overall
sample mean. Therefore no intercept will be estimated.

The Figures 3.7a,3.7b, and 3.8 present the tools intended to help choosing
tentative models. The autocorrelation function seems to decay quite steeply
but attains high values for quite significant number of lags. According to
the theory it could be an indication of nonstationarity. However, according
to the observations made in the previous section and unit root tests we do
not have any doubts regarding the stationarity of the time series.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function (ACF)

(a) Autocorrelation

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

P
ar

tia
l A

ut
oc

or
re

la
tio

ns

Sample Partial Autocorrelation Function

(b) Partial autocorrelation

Figure 3.7: Identification tools

The values of ACF are high for all presented lags indicating that MA
model is certainly not appropriate. The PACF shown in Figure 3.7b cuts
off after lag 2 hinting AR(2) process. On the other hand the edge of trian-
gle with zeros in Figure 3.8a corresponds to ARMA(2,1) and ARMA(1,1).
Best subset ARMA selection supports the latter model. Summarizing, we
got the following tentative models to consider in further analysis: AR(2),
ARMA(2,1) and ARMA(1,1).

The next step involves the analysis of tentative models and their aug-
mentations with respect to their AIC and BIC. We choose the model which
minimizes both AIC and BIC. However, it may happen that one model have
higher BIC but smaller AIC than other. Then we use likelihood ratio test to
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Tentative model AIC BIC
AR(1) 875.86 885.08
AR(2) 860.95 874.78
AR(3) 862.44 880.89

ARMA(1,1) 860.27 874.10
ARMA(2,1) 862.23 880.67
ARMA(1,2) 862.23 880.68
ARMA(3,1) 864.20 887.26

Table 3.2: AIC and BIC of several tentative models

solve this problem. The Table 3.2 presents the values of information criteria
for several tentative models. The models were fitted using maximum likeli-
hood estimation and assuming that errors are normally distributed. We can
notice that ARMA(1,1) performs best but very similarly to AR(2) model.
This happens quite often and both competitive models could be used to
model the data [17]. In further analysis we will consider ARMA(1,1). The
estimated parameters for ARMA(1,1) are shown in Table 3.3

Parameter Value Standard Error T Statistic
AR(1) 0.93022 0.01416 65.6952
MA(1) -0.17338 0.029596 -5.8583

K 0.18458 0.0070488 26.1864

Table 3.3: Parameters, standard errors and T statistics of ARMA(1,1) model

3.4.3 Diagnostic checking

In order to check the adequacy of the ARMA(1,1) model we have to analyze
the residuals. They should posses the desired properties. Namely, they
should be serially uncorrelated and they should be normally distributed.

In order to check if the distribution of residuals is Gaussian we perform
several normality test. The results are shown in Table 3.4. We can notice
that only Kolmogorov Smirnov test does not rejects the null hypothesis.
The other tests reject it strongly. In order to find out if the distribution
of the residuals possess fatter tails than normal distribution we analyze
the normal quantile-quantile plot, see Figure 3.9a. We can notice that the
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(a) Extended autocorrelation (b) Best subset ARMA selection based on BIC

Figure 3.8: Identification tools

distribution of residuals are characterized by fatter tails than the normal
distribution since there are strong departures from the straight line and
consequently from 95% confidence envelop. Therefore we have also compared
the residuals distribution with the Student-t distribution, which has fatter
tails than Gaussian, using again qq plot, see Figure 3.9b. In contrast to
normal distribution, the Student-t qqplot does not raise any incomptability
suspicions because all points lie comfortably in the envelop. The leptokurtic
character of the distribution of errors may be an indication that residuals
are conditionally heteroscedastic.

The next desired feature of the residuals is serial uncorrelation. We check
the presence of this property by inspecting the sample autocorrelation of the
residuals and performing Ljung Box test for several numbers of lags. The
Figure 3.10 shows the sample autocorrelation function of residuals. We can
see that all sample autocorrelation coefficients lie in the confidence bounds
computed under the null hypothesis of white noise. Therefore the residu-
als seem to be serially uncorrelated. The performed Ljung Box gives high
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Normality test p-value
Jarque Bera < 0.001

Lilliefors < 0.001
Kolmogorov Smirnov 0.1583

Shapiro Wilk < 0.001

Table 3.4: Normality tests for residuals with superimposed normal distribu-
tion

(a) Normal QQ plot (b) Student-T qq plot

Figure 3.9: Diagnostic tools-qq plots

p-values for all considered numbers of lags, i.e. 5, 10, 15, 20, 25, 30 giving ev-
idence of residuals’ serial uncorrelation, see Table 3.5. We can conclude that
ARMA(1,1) describes well the dependence structure in the considered time
series. However, the assumption of normally distributed errors is not appro-
priate. In the next section we will examine whether the squared residuals
are correlated. If this is the case it would explain the fatter tailed character
of the residuals distribution.
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Figure 3.10: The sample autocorrelation of the residuals from ARMA(1,1)
model

lags p-value Qstat Critical value
5 0.7977 2.3584 11.0705
10 0.5738 8.5652 18.3070
15 0.7185 11.4721 24.9958
20 0.7507 15.4408 31.4104
25 0.7494 19.9508 37.6525
30 0.4725 29.8673 43.7730

Table 3.5: Ljung Box test performed on residuals
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3.4.4 Checking for heteroscedasticity

At the beginning of checking for the conditional heteroscedasticity we ex-
amine the plot of residuals. The residuals are shown in Figure 3.11a. It
is not straightforward to judge about presence of an ARCH effect on the
basis of this figure. The periods of low and high variability are not clearly
visible and this suggests that even if errors are heteroscedastic, the coeffi-
cients in the variance equation will be not very high. In order to formally
check the presence of ARCH effect we plot the autocorrelation of squared
residuals-see Figure 3.11b. We see that first lag autocorrelation coefficient
is very significant indicating the presence of ARCH effect. This result is in

lags p-value Qstat Critical value
5 0.0000 78.1909 11.0705
10 0.0000 81.2580 18.3070
15 0.0000 83.4714 24.9958
20 0.0000 86.1113 31.4104
25 0.0000 88.6498 37.6525
30 0.0000 100.0150 43.7730

Table 3.6: Ljung Box test for squared residuals

accordance with Ljung Box test performed on squared residuals. The null
hypothesis of uncorrelated squared residuals is strongly rejected for all con-
sidered number of lags (see Table 3.6). The Engle’s hypothesis test also gives
evidence for the presence of heteroscedasticity in errors-all p-values are ex-
tremely low, see Table 3.7, rejecting the null hypothesis of no ARCH effects.
Therefore we can conclude that the residuals from ARMA(1,1) model are
conditionally heteroscedastic and consequently an adequate GARCH model
have to be chosen.

3.4.5 Identification of GARCH model

Similarly to finding appropriate model for mean, we try to find an ade-
quate model for variance. In order to find out the order of GARCH model
appropriate for the residuals from ARMA(1,1) we plot the sample partial
autocorrelation function of squared residuals, see Figure 3.12. We can no-
tice that only first lag is significant indicating that a simple ARCH(1) model
i.e. GARCH(0,1) would be a good candidate for our data. The GARCH
model, apart from order, requires specifying the conditional distribution.
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lags p-value Qstat Critical value
1 0 72.5442 3.8415
2 0.0000 72.7723 5.9915
3 0.0000 72.8766 7.8147
4 0.0000 74.7756 9.4877
5 0.0000 75.6929 11.0705
6 0.0000 76.1948 12.5916

Table 3.7: ARCH test for the residuals from ARMA(1,1)
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(b) Autocorrelation of squared residuals

Figure 3.11

In Matlab there are two options for the conditional distribution: normal
and Student-T. For the purpose of choosing an appropriate model we com-
pare AIC and BIC computed for GARCH models with different orders and
conditional distributions. The Table 3.8 presents the results. We can see
that the GARCH models with Student-T distribution superimposed perform
much better than their gaussian counterparts. Furthermore, two models ob-
tained the best scores: the GARCH(0,1), which was also suggested by sample
partial autocorrelation, and GARCH(1,1). However, the GARCH(1,1) has
lower AIC value, whereas the GARCH(0,1) has lower BIC. Therefore we
need to use likelihood ratio test in order to decide which model should be
entertained. The p-value obtained from the likelihood ratio test is equal to
0.01 indicating that the GARCH(0,1) model is rejected at 0.05 significance
level.

The Table 3.9 presents the estimated parameters for ARMA-GARCH-T
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Figure 3.12: The sample partial autocorrelation of the squared residuals
from fitted ARMA(1,1) model

model. All estimated coefficients are significant at the standard 0.05 signif-
icance level. In order to find out if the ARMA-GARCH model is adequate
for our data we need to perform diagnostic checking described in the next
section.

Tentative model AIC-T BIC-T AIC BIC
GARCH(1,1) 800.66 828.34 809.52 832.58
GARCH(0,1) 804.50 827.66 1368.80 1387.30
GARCH(0,2) 801.72 829.4 1034.80 1057.9
GARCH(1,2) 802.65 834.94 811.52 839.19
GARCH(2,1) 802.66 834.95 811.52 839.19

Table 3.8: AIC and BIC of several tentative GARCH models. AIC-T and
BIC-T refers to GARCH models with Student-T distribution superimposed

3.4.6 Diagnostic checking

The standardized residuals from the ARMA-GARCH model should be dis-
tributed according to the conditional distribution superimposed. Moreover
they should be uncorrelated and should not be conditionally heteroscedastic.
We have already checked that residuals from ARMA model are uncorrelated.
In order to find out if the standardized residuals are not conditionally het-
eroscedastic we perform Ljung Box and ARCH test on squared standardized
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Mean: ARMA(1,1); Variance: GARCH(1,1)-T
Parameter Value Standard Error T Statistic

AR(1) 0.93418 0.013341 70.0207
MA(1) -0.13168 0.044335 -2.9702

K 0.069015 0.023952 2.8814
GARCH(1) 0.39992 0.15892 2.5166
ARCH(1) 0.22521 0.060134 3.7451

DoF 11.025 3.9278 2.8069
AIC: 800.6639 BIC: 828.3361

Table 3.9: ARMA(1,1)-GARCH(1,1)-T estimated parameters

residuals, see Table 3.10. We can see that for all considered lags the p-values
are high and the null hypothesis is not rejected. Therefore we may conclude
that the squared standardized residuals are uncorrelated and consequently
the standardized residuals are not conditionally heteroscedastic. The sample
autocorrelation plot supports the latter statement, see Figure 3.13a. More-
over, according to Student-T qq plot (Figure 3.13b) the distribution of the
standardized residuals is well captured by the Student -T distribution since
there are no departures from 95% envelope.
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(a) Squared standardized residuals (b) Student-T QQ plot for standardized
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Figure 3.13



3.4. EXAMPLE 41

Ljung Box test ARCH test
lags p-value lag p-value
5 0.4133 1 0.1310
10 0.7059 2 0.2901
15 0.4476 3 0.2484
20 0.5512 4 0.2751
25 0.5074 5 0.3937
30 0.3954 6 0.4165

Table 3.10: Ljung Box and ARCH tests applied to squared standardized
residuals
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3.5 The analysis of simulations

3.5.1 Averaged model

Under the assumption that each month of July is a realization of an unknown
model, fitting a model to each given time series of July’s measurements gives
us more information about how the general model may look like. On the
other hand we could proceed with several wind speed time series obtained
during certain month like with one long time series by connecting the ob-
servations from the end of one month with the observations from the begin-
ning of the same month but a year later. However, the standard statistical
tools for time series modeling cannot be applied to such time series. Conse-
quently, some counterparts to these tools would have to be developed and
implemented. For example, an adequate sample autocorrelation function
would not take into account the products of observations from two different
months. This method necessitates a complex implementation which gets
even more complicated when multivariate modeling is considered. There-
fore, due to time constrains, it was not possible to follow this approach.

If the method of fitting a model to each given month is followed, one
obtains a number of possibly different models. It would be desired to find a
method to aggregate all obtained models in the way that the resulted model
captures all important characteristics of wind speed in a specified month.
Thus, such a model is expected to generate different types of a month- month
with low, high, moderate wind speed.

Having at hand the sequence of observations from July 2003-2007 we fit
the model to each year following the Box-Jenkins procedure. The idea is to
aggregate all these models by building an ”averaged model” by averaging the
respective parameters in the obtained models. The Table 3.11-3.12 presents
the parameters of all models fitted to July and January 2003-2007 together
with the coefficients of the averaged model.

The models fitted differ from each other by the order and the magnitude
of parameters. However, they have a common form: the first autoregressive
lag coefficient φ1 is always very significant and high and quite often appears
alone i.e. AR order is 1. Surprisingly, in many cases after lag 1 there is a
”gap” of parameter values fixed to zero and is followed by a significant coef-
ficient which may be an indication of a sort of seasonality in data. The latter
fact stands in contradiction with our intuition. We would not expect that
present value of wind speed Yt would depend to higher degree on Yt−k than
on Yt−k+1 where k < 24. Therefore it is not straightforward to interpret the
suggested periodicity in terms of wind physics. It may be caused, however,
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not directly by some unknown meteorological aspects of wind but rather
by errors in measurements. Although we cannot avoid parameters at high
lags due to their significance, we can notice that their value is considerably
smaller than the parameter φ1. Hence, the seasonality in the transformed
data is very weak.

AR MA K GARCH ARCH DoF
2003: ARMA(1;1)-GARCH(1;1)-T

0.95 -0.07 0.05 0.43 0.2 9.83
2004: ARMA(1;1)-GARCH(1;1)-T

0.93 -0.13 0.07 0.4 0.22 11.02
2005: ARMA(1,2,18;only 14)-GARCH(1;1)-T

0.81;0.09;0.05 0.08 0.05 0.54 0.14 6.85
2006: ARMA(1,2;only 5 & 6)-GARCH(1;1)-T

0.76;0.11 0.09;0.08 0.11 0 0.19 11.31
2007:ARMA(1;1)-T

0.93 -0.06 0.17 0 0 4.21
the averaged model:ARMA(1,2,18;1,5,6,14)-GARCH(1;1)-T

0.87;0.04;0.01 -0.05;0.02;0.01;0.02 0.09 0.27 0.15 8.64

Table 3.11: The estimated parameters of models fitted to July’s time series.
The averaged model.

It is worth noticing that the autoregressive parameters sum to a value
which is close to one e.g. 0.95. The effective unit root tests have rejected the
null hypothesis of nonstationarity (see Table 6.1 in the Appendix) pointing
out a highly persistent character of considered processes. The moving aver-
age part of the process is also frequently seasonal and besides, its parameters
are very small.

Comparing respective ARMA parameters estimated for July and Jan-
uary we do not find any striking differences in magnitude. On the other
hand, the GARCH model gives us higher parameters in the case of January
than in the case of July. Furthermore, the heteroscedasticity in errors is
even sometimes not apparent in some years of July.

Section 3.1 mentioned the interpretation of the conditional volatility as
the wind turbulence and shocks to the mean as wind gusts or lulls. Thus,
the GARCH model describes the relation between the current turbulence
level, past turbulence levels and square of the past shocks to the mean.
Consequently, a strong wind gust makes the turbulence increase and will
keep influencing it for the period of time depending on GARCH and ARCH
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coefficients αi, βi. Specifically, the volatility persistence can be estimated
by the sum of coefficients from GARCH(a,b) model :

a∑

j=1

αj +
b∑

i=1

βi (3.12)

AR MA K GARCH ARCH DoF
2003: ARMA(1;1,4)-GARCH(2;1)-T

0.95 -0.05;0.05 0.001 0.26;0.64 0.08 5.33
2004: ARMA(1;only 3)-GARCH(1;1)-T

0.96 0.09 0.02 0.6 0.16 9.87
2005: ARMA(1;1)-GARCH(3;1)-T

0.97 -0.04 0.01 0;0.16;0.55 0.22 9.86
2006: ARMA(2;only 5)-GARCH(1;1)-T

0.79;0.15 0.07 0.003 0.85 0.08 14.11
2007:AR(1,7, 11)-GARCH(1;1)-T

0.98;-0.06;0.04 - 0.02 0.6 0.16 12.59
the averaged model:ARMA(2,7, 11;1,3,4,5)-GARCH(3;1)-T

0.93;0.03;-0.01;0.008 -0.02;0.02;0.01;0.01 0.01 0.46;0.16;0.12 0.14 10.35

Table 3.12: The estimated parameters of models fitted to January’s time
series. The averaged model.

The closer the sum gets to 1 the more volatility is persistent. More-
over, the sum equal to 1 would indicate that the shock will permanently
affect the conditional variance (turbulence). This kind of GARCH model
is a nonstationary process and is called integrated GARCH (IGARCH).
All estimated models for July and January are covariance stationary i.e.∑a

j=1 αj +
∑b

i=1 βi < 1. However, there is a significant difference between
July and January regarding the magnitude of 3.12. The July is character-
ized by models with the sum 3.12 varying in the range of (0, 0.63) whereas
the sum for January models in (0.76, 0.98). This indicates that gusts occur-
ring in January affect the turbulence for relatively longer time than gusts
in July. The latter finding may lead to the general conclusion that higher
wind speed exhibit higher persistence of volatility since we know that wind
blows stronger in January than in July. To similar conclusions came Bradley
T.Ewing et al [6].

The differences in volatility persistence are well depicted in Figure 3.14
which presents the conditional volatility simulated from the averaged model
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Figure 3.14: Simulated conditional standard deviation process from the av-
eraged model for July (upper panel) and January (lower panel)

for July and January. We can notice that conditional variance in the case of
July gets higher values than in the case of January. However, from physical
law perspective we cannot judge it as a general rule. We know only that
higher wind speed causes higher turbulence on the sea due to increase in the
roughness of the sea surface and that wind speed at high vertical distance
from the ground is characterized by smaller turbulence because of being
separated from the frictional source- the surface of the earth.

3.5.2 Methods for verification

So far it has been shown how to choose an appropriate model for the time
series at hand. However, it is now important to verify if the model that we
obtained is able to generate wind speed time series with statistical features
of the real wind speed. In order to perform such statistical analysis we need
first to consider which (statistical) properties are prominent from the point
of view of future application of the simulations. The developed models are
going to be used in extensive simulation studies where different operational
strategies and implementation scenarios for energy storages will be tested for
their impact on power system. Therefore, since the energy storage issue will
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play the leading role, it is important to check not only the correspondence of
wind speed values frequency but also to get insight into dynamic temporal
features like persistence.
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Figure 3.15: July-The comparison of simulated and observed data.

In the first stage of verification we should generate some number of
samples from the model, plot them against time and compare them with
the real time series plot. Obviously we do not expect from samples to
resemble perfectly the real observations but we want only to roughly compare
their dynamic behaviour. Significant differences would be an indication that
chosen class of models is too small or the model was fitted erroneously. The
Figures 3.15-3.16 present arbitrary samples from the averaged model for July
and January plotted against time. There are no striking differences between
the time series of observations and samples. Therefore we can step further in
the statistical validation by performing the analysis of sample distributions
and sample statistics.

Distribution and autocorrelation

The purpose of the averaged model is to ”explain” the random process which
produced the time series in July (or January). In other words we expect that
the observed time series can be regarded as realizations of this model. If



3.5. THE ANALYSIS OF SIMULATIONS 47

0 50 100 150 200 250 300 350 400
0

5

10

15

20

Hour

W
in

d 
sp

ee
d 

[m
/s

]
Sample from averaged model

0 50 100 150 200 250 300 350 400
0

5

10

15

20
Real data

Hour

W
in

d 
sp

ee
d 

[m
/s

]

Figure 3.16: January-The comparison of simulated and observed data.

the averaged model captures well the behaviour of the unknown process,
then all statistics that we derive from the observed time series should lie
in the uncertainty bounds created by simulated statistics. Therefore, the
model of interest is expected to produce broad enough uncertainty to be
able to capture the characteristics of the data but, on the other hand, the
uncertainty cannot be too big in order to make the model reliable.

We proceed as follows: we simulate 50 samples of size 744 (31 days times
24 hours) and for each replication we evaluate the value of the statistic of
interest. It is presented schematically below:

y
(1)
1 . . . y

(1)
744 → u(1)

y
(2)
1 . . . y

(2)
744 → u(2)

...
...

y
(50)
1 . . . y

(50)
744 → u(50)

where y
(j)
i is the jth replication of the ith sample member and u(j)

is the jth replication of the statistic of interest. The collection of values
u(1) . . . u(50) generated by simulation gives information about the distribu-
tion of the statistic of interest U . Therefore, it is straightforward to verify
if the value of the statistic for the observed time series, e.g. u(july 2003),
comes from the distribution of statistic U by checking if it lies between
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approximated confidence bounds obtained from simulation.
The averaged model was built on the basis of the data from five years:

2003-2007 of a certain month. Hence, in order to verify how well our model
represents the stochastic process generating the wind speeds in the chosen
month it is not enough to take into account only the years used in model
building but to use also an ”external” time series, e.g. from year 2008.
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Figure 3.17: July and January-The comparison of simulated and real data
with respect to distribution. The confidence bounds were computed on the
basis of 50 samples

We start our analysis with considering the histogram of synthetic and
real time series. Similar comparison can be found in many articles regarding
modelling wind speeds [15], [18]-[21]. However, they compare the frequencies
(or relative frequencies) of observed time series only with frequencies of one
synthetic time series without taking into consideration the uncertainty in
the model. The Figures 3.17a-3.17b present the histograms. We can notice
that the distributions of observed time series lie quite confidently in the
uncertainty bounds created by sample distributions. Moreover, the time
series from 2008 which were not used in building the averaged model also do
not raise any doubts about the models validity for both July and January.
The note should be made regarding the differences between the uncertainty
in the two averaged models. Namely, the averaged model for July seems to
produce lower uncertainty than the averaged model for January. The higher
uncertainty of January’s model is caused by the higher sum of autoregressive
coefficients (see section 3.2). Therefore the wind speeds in January are less
mean-reverting than the wind speeds in July.
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The sample autocorrelation function provides an assessment of the degree
of dependence in the data. Therefore the model representing the considered
time series should be characterized by the autocorrelation function which
is a good approximation to the one derived from the data. Moreover, if
the data are realized values of a stationary time series then the sample
autocorrelation will provide us with an estimate of the ACF.

According to performed unit root tests, the considered time series are
stationary and hence the analysis on the basis of sample autocorrelations
is reasonable. Analogously to the analysis of histograms, we compute sam-
ple autocorrelation function for each simulated sample, construct confidence
bounds and see whether they surround the sample autocorrelations derived
from the real data. The Figures 3.18a-3.18b present the sample autocorre-
lations for the July(left panel) and January case (right panel).

The sample autocorrelations derived from time series are situated within
the respective simulated confidence bounds in both cases. Therefore we can
conclude that the averaged models capture well the dependence structure in
the data.
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Figure 3.18: July and January-The comparison of simulated and original
data with respect to autocorrelation. The confidence bounds were computed
on the basis of 50 samples

Persistence

The next step in the validation of our models turns our attention to the
dynamic features of wind speeds, both artificial and real. Recalling from
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section 2.3, we define the persistence as a duration of wind speed within a
specified wind class e.g. above/below a certain threshold. Hence, the persis-
tence analysis depends considerably on the choice of wind classes. Therefore,
at this point we should ask ourselves what kind of wind speeds are favorable
from power generation perspective. Wind turbines are not able to produce
power from arbitrarily high or low wind speed due to technical constraints.
Specifically, the wind turbine starts running at wind speed around 4 m/s (it
is called the cut in wind speed) whereas when wind speed exceed 25 m/s the
wind turbine has to be shut down in order to avoid damaging the turbine or
its surroundings. In the latter case we call the stop wind speed the cut out
wind speed. As a consequence, the desired wind speed should be dominated
by values falling between cut in and cut off which naturally suggests the
wind speed class to consider. However, in order to make persistence analy-
sis effective we have to gain insight into the relationship between wind speed
and generated power and possibly extract more wind speed classes worth
consideration. The mentioned relationship is known in wind engineering as

Figure 3.19: Power curves for three different turbines

the power curve. The Figure 3.19 presents power curves for three different
turbines. The power curves remain at zero until the wind speed reaches the
cut in and then the power starts increasing with the cube of the velocity up
to the the so-called rated wind speed (it is around 15 m/s) i.e. the point at
which the conversion efficiency is near its maximum. For velocities higher
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than the rated power the maximal power output is obtained until the cut
off wind speed is reached and wind energy converter has to be stopped so
no power is then produced.

Therefore we would be interested, for example, in the persistence in the
interval (15, 25) m/s which corresponds to maximal power output. On the
other hand, the persistence below the cut in is also worth consideration since
it gives information about the distribution and amount of the run durations
of no power. However, we should keep in mind that values for the cut in,
cut off and rated power regard wind speed occurring at hub height. Since
the strength of the wind increases with the distance from the ground level
we cannot use mentioned values as thresholds for KNMI wind speed data.
Therefore, they have to be transformed in order to make them comparable
with our observations measured at 10 m height. The formula 6 used for
computing wind speed at a certain height above ground level is presented
below:

Y = Yref
ln(z/z0)

ln(zref/z0)
(3.13)

where Y is the wind speed at height of interest z above ground level,
Yref is the reference speed, i.e. wind speed we already know at height zref ,
z0 is the roughness length in the current wind direction.

We assume that the cut in, cut off and rated wind speed values cor-
respond to the hub of the standard height equal to 100 m. Thus, Yref =
4, 15 or 25 m/s, zref = 100 m and the counterparts Y will be computed for
z = 10m and the roughness length of 0.03 which corresponds to the rough-
ness of grass. The formula 3.13 is called the wind shear formula or power
law. The application of the formula gives the following counterparts of cut
in, rated and cut off wind speeds for 10 m height: 2.9, 10.7 and 17.9 m/s
respectively.

The persistence analysis will be performed on the basis of the method
described below which gives us statistics which are supposed to describe
the persistence features. However, we need to establish first a representa-
tion of the earlier mentioned run durations using random variable notation.
Assuming a certain threshold we denote Ei the ith excursion length; for a
given data we obtain a set of values {e1, . . . , eN} which is a realization of a
set of random variables {E1, . . . , EN}, where N is the number of excursions
from the assumed threshold. Therefore, analyzing the persistence we deal

6The formula assumes so-called neutral atmospheric stability conditions, i.e. that the
ground surface is neither heated nor cooled compared to the air temperature
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simultaneously with two random variables : E (the random variable which
has the same distribution as all the Eis) and N .
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Figure 3.20: Persistence analysis: January, 100 samples considered.

We consider three wind speed classes: above cut in, above rated and
above cut out wind speed. For each of these thresholds we are interested in
the total amount of time that wind speed was exceeding an assumed value.
In other words we are interested in the variable E1 + . . . + EN . Moreover,
considering (E1 + . . . + EN )/744 as a function of threshold is a survival
curve of the wind speed. It provides information regarding the percentage
of time that wind speed was above a certain threshold. However it does
not explain the persistence entirely since two different data sets with the
same survival curve may differ very much in the number of exceedances
from a considered wind speed level. Therefore we need to simultaneously
examine the distribution of the random variable N . If for the considered
thresholds, the total excursion length and the excursion frequency computed
for simulated data resemble statistically the persistence characteristics of
real data then the model captures well the dynamic persistence properties.
The Figures 3.20a-3.20b present the method applied to the January case.
The plots take into account only wind speed levels of interest.

For the threshold equal to cut in we can notice that there is a quite
visible bias in the survival plot. It indicates that synthetic sequences tend
to spend relatively less time above the threshold than real data sequences.
Considering the other wind speed levels, the confidence bounds reflect well
the uncertainty in the total excursion length of real data.

Although simulated wind speeds seem to stay above 10.7 m/s and 17.9
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threshold µ0 X̄ σ̄/
√

n Z stat p value
July

cut in 579.17 591.54 4.05 3.05 0.003
cut in (N) 33.5 36.44 0.28 10.34 0

rated 10.33 8.3 0.8 -2.55 0.01
rated (N) 3.17 3.54 0.11 3.45 0.01
cut out 0 0 0 - -

cut out (N) 0 0 0 - -
January

cut in 681.33 674.11 3.85 -1.87 0.06
cut in (N) 14.5 14.17 0.25 -1.38 0.17

rated 93.33 77.84 3.74 -4.14 0.001
rated (N) 12.33 15.47 0.25 12.62 0
cut out 4 6.3 0.77 2.9 0.004

cut out (N) 0.83 1.7 0.08 10.54 0

Table 3.13: The results from performing T-test. (N) refers to the result for
random variable N

m/s for statistically similar amount of time as real wind speed, they tend to
cross these levels relatively more often which can be noticed in the Figure
3.20b.

The above analysis is based only on the visual inspection of the graphs.
It would be desired to make such analysis on the basis of strictly statistical
tool like e.g. hypothesis testing. For a given threshold we have 6 realizations
of statistics E1 + . . . + EN and N from real data. Let us compute averages
of these realizations and proceed analogously with simulated samples i.e. let
simulate 6 samples and compute the averages for the given threshold and
let repeat it 100 times. Thus, we obtain 100 realizations of the averaged
statistics (x1, . . . , x100) and 1 realization from the data (µ0). The idea is
to apply one-sample location test i.e. t-test in order to compare the mean
of the set x1, . . . , x100 to a given constant µ0. Therefore we test the null
hypothesis : H0 : X̄ = µ0 using the statistic Z = (X̄ − µ0)/σ̄/

√
n which has

Student-T distribution with n − 17 degrees of freedom. The p-values from
the test applied to July and January for each threshold of interest are shown
in Table 3.13.

We can compare the results obtained from visual inspection with the
7in our case n− 1=99
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output from the test. For January, although there was a noted bias in the
percentage of time spent above cut in wind speed, the persistence according
to test seems to be in order, the p-values are equal to 0.06 and 0.17 which
means that the null hypothesis is not rejected at the 0.05 significance level.
However, for the rated and cut out wind speed, there is a strong rejection
of the null hypothesis when the mean excursion frequencies are compared.
This is also reflected in the biases in Figure 3.20b. Concerning the mean
total excursion length, the null hypothesis is not rejected at the 0.1% level.

In the case of July, there is no wind speed exceeding the cut out level in
both artificial and real time series. For cut in, the mean excursion frequency
of artificial time series seems to be significantly different from the mean
computed from the data. On the other hand, the persistence above rated
wind speed is quite well captured by the model since the p-values for mean
number of exceedances and mean total time of excursions are both equal to
0.01.

We can conclude that artificial time series exhibit statistically similar
total excursion length. However there are some overestimation regarding
the excursion frequency.



Chapter 4

Multivariate case

The univariate time series models are useful when one considers wind power
generation in a certain relatively small area. However, in order to have
information about the wind power generated in larger region e.g. a coun-
try, multivariate analysis, which takes into account the spatial correlation,
has to be performed. Multivariate modeling uncovers dynamic relationships
among time series recorded at different places. Such an analysis is feasible
since wind speed is recorder at measurement stations in equally spaced time
intervals and is adjusted to the standard height of 10 meters. Moreover,
modeling time series jointly may result in improving accuracy of forecasts
and consequently in statistically better simulations if there is historical in-
formation on one series contained in the historical data of another. On the
other hand, finding a model capturing the characteristics of each time series
together with their co-movements can turn out to be not straightforward.

In the multivariate analysis we consider time series of measurements
recorded at three meteorological stations: Schiphol, K13 and Cadzand which
are chosen as representatives for three different types of location: inland,
offshore and onshore respectively. Their positions can be found in Figure
2.1. The distance from the K13 station to Cadzand is 205 km, whereas the
distances from Cadzand to Schiphol and from Schiphol to K13 are: 139 km
and 146 km respectively. From the analysis in section 2.1 we know about
the impact of terrain roughness on the wind speed. The table 4.1 contains
averages of wind speed measured at three stations. We can see that the
mean values increases with the decrease in roughness terrain. Thus, wind
speeds are the highest (in average) at K13 station, whereas at Schiphol the
lowest.

Apart from the opportunity of simulating wind speed at several places

55
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january 03 january 04 january 05 january 06 january 07
Schiphol 6.14 6.32 7.42 4.88 8.30
Cadzand 6.97 7.20 7.73 5.36 8.57

K13 9.67 9.92 11.73 7.86 12.11

Table 4.1: Mean wind speed in January evaluated from data at three stations
[m/s].

simultaneously, the multivariate model will also provide us with the descrip-
tion of the dynamic dependence among wind measurements. There exist
many factors that influence the dynamic nature of wind in space. Some of
them are : the distance between stations, prevailing wind direction, common
type of location and so on. We will try to recover the most important char-
acteristics of the relationship among wind speeds from the three stations
and suggest which factors are the most influential on them.

We will proceed analogously to univariate case. First, the generalized
methodology will be presented, then the process of model selection with some
examples will be described and at the end we will validate the simulations.
Specification, estimation and diagnostic checking for multivariate ARMA-
GARCH model were performed using S-plus with the Finmetrics module.

4.1 Methodology

The introduced methodology in section 3.1 is going to be generalized to
handle the multivariate time series. A natural extension of the autoregressive
moving average model to dynamic multivariate time series is the vector
ARMA model (VARMA)[11],[13],[17],[35]. Assuming that we consider n
time series variables {Y1t}, . . . , {Ynt} the VARMA(p,q) is expressed in the
following way:

Yt −M = Π1(Yt−1 −M) + . . . + Πp(Yt−p −M)+ (4.1)

+ Ψ1Et−1 + . . . + ΨqEt−q + Et

where Yt = (Y1t, . . . , Ynt)′, Πi, Ψj are n × n parameter matrices, M is a
vector of means and Et is a multivariate white noise process with zero mean
which is modeled by multivariate GARCH model described below. The
text concerning multivariate GARCH models was prepared on the basis of
[9],[33]-[35]. The detailed information and references can be found there.
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Let us denote Σt the conditional covariance matrix of multivariate error
vector Et such that:

Et = Σ1/2
t Zt, Zt ∼MD(0, In) (4.2)

where Zt is n-dimensional i.i.d. white noise with mean zero and covariance
matrix In (identity matrix of order n). MD stands for multivariate den-
sity function which is usually chosen to be either the multivariate normal
distribution or the multivariate Student-t distribution.

We express the conditional variance equation as:

V ar(Yt|Ωt−1) = V ar(Et|Ωt−1) = Σt = DtRDt = (ρijσiitσjjt)

where
Dt = diag(σ11t . . . σnnt)

σ2
iit can be defined as any univariate GARCH model, R = (ρij) is constant

conditional correlation matrix. Assuming that GARCH(1,1) is specified for
each conditional variance in Dt we have:

σ2
iit = Ki + αiε

2
i,t−1 + βiσ

2
ii,t−1 i = 1, . . . , n

The above specified model inherited the name from the assumption regard-
ing correlation R and is called the Constant Conditional Correlation model
(CCC). When a GARCH model is used for description of conditional vari-
ances, we refer to CCC-GARCH model.

Recently multivariate GARCH models have received a lot of attention,
especially due to high interest in modeling volatility of returns, resulting
in the development of many various parametric formulations. The way of
parametric specification is governed by the trade off between flexibility and
parsimony. The models which can capture sophisticated dynamics of the
conditional variances and covariances well enough, are represented by many
parameters and consequently lead to estimation problems in highly dimen-
sional time series. The high complexity of the model can be reduced by
reducing the number of parameters or/and imposing constraints on the ma-
trix structure.

The multivariate GARCH models can be divided into several categories.
One category includes models of conditional variances and correlations.
These models are based on the decomposition of the conditional covariance
matrix Σt into conditional standard deviations and correlations. The sim-
plest such a model is Constant Conditional Correlation already presented
in this section. It was proposed by Borllerslev [32]. The advantages of
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multivariate modeling using CCC are working with relatively small number
of parameters: n(n − 1)/2 and computational attractiveness since during
estimation, one has to invert the conditional correlation matrix only once
per iteration. Because we are going to work with highly dimensional time
series during the project, the aforementioned properties make the model
suitable for our purposes. On the other hand, the simplicity in estimation
has to be paid by lower flexibility of the model. Precisely, the conditional
variances are modeled separately and therefore there is no interactions be-
tween them. Moreover, since the conditional correlation is assumed to be
constant, the conditional covariances are proportional to the product of the
corresponding standard deviations and as a result the conditional variances
and covariances vary in a restricted way so that the conditional correlations
are time-invariant. Therefore, it is important to verify if the assumption of
constant conditional correlations may seem to be realistic for the multivari-
ate time series of interest. We will try to answer this question by considering
much more flexible models and compare their results in diagnostic checking.
If the assumption of constant correlation is not appropriate for our data,
the CCC model will provide much worse fit then more complex models.

The models allowing for more dynamics are contained in a class where
conditional covariance is modeled directly. They are generalizations of uni-
variate GARCH models and thus, every conditional variance and covariance
may be a function of lagged conditional variances and covariances, as well
as lagged squared residuals and cross-products of residuals. As a first such a
model VEC was proposed by Bollerslev and is defined as follows (presented
in VEC(1,1) form):

vech(Σt) = K + Avech(EtE′t) + Gvech(Σt−1)

where vech(.) denotes the operator that stacks the lower triangular portion
of n×n as a n(n + 1)/2× 1 vector. A and G are square parameter matrices
of order n(n+1)/2 and K is a n(n+1)/2×1 vector. The model was further
simplified to the form where matrices A and G are diagonal and called
Diagonal VEC model (DVEC). In this way, the conditional variances follow
a GARCH process, whereas the conditional covariances can be treated as a
GARCH model in terms of the cross-moment of the errors. The number of
estimated parameters in DVEC(1,1) model is 3n(n + 1)/2.

Since the VEC model does not produce positive definite conditional vari-
ances, the need was to construct a model which would not posses this draw-
back. Therefore BEKK model was proposed by Baba, Engle, Kraft and
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Kroner. BEKK(1,1) model is defined as:

Σt = KK′ + A′Et−1Et−1A + G′Σt−1G

where K is a lower triangular matrix, but A and G are unrestricted square
matrices. The dynamics allowed by the BEKK model are richer than the
DVEC model. Unlike in the DVEC model, the conditional variance of one
series can influence the conditional variance of another series. It is possible
thanks to n(n− 1) more parameters than DVEC model requires.

The estimation of parameters is more difficult in VEC and BEKK models
since they need inverting the conditional covariance matrix for each time t
in every iteration of the numerical optimization. If the number of time
series considered in multivariate analysis is high and additionally they cover
long time span, the numerical procedure is time consuming and numerically
unstable.

Although the complex models do not seem to be appropriate for highly
dimensional wind speed time series (due to mentioned numerical problems),
we would like to take them into consideration in order to see whether the
assumption of constant correlation is realistic. We will perform the analysis
only for three time series so the computational problems should not occur.

4.2 Model selection

Specification of the ARMA order starts being not an easy task in multivari-
ate analysis. VARMA models suffer from nonuniqueness of representation.

For example let us consider bivariate VAR(1) process (VARMA(1,0)):

Yt = ΦYt−1 + Et {Et} ∼ WN(0, Σ)

with

Φ =
[
0 0.5
0 0

]

it may be shown that Yt has an alternative representation as an MA(1)
(VARMA(0,1)) process

Yt = Et + ΦEt−1

see [11],[13] and [35] for more details. This example shows that it may be
the case that we cannot distinguish between multivariate ARMA models of
different orders. Therefore, in order to avoid such problems, we will restrict
our attention to multivariate autoregressive models (VAR) only.
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The lag length for the VAR(p) model may be determined using model
selection criteria 3.8 and 3.10. The AIC and BIC for multivariate Gaussian
VAR(p) can be rewritten as follows:

AIC(p) = ln|Σ̄(p)|+ 2
T

pn2

BIC(p) = ln|Σ̄(p)|+ lnT

T
pn2

where Σ̄(p) = T−1
∑T

t=1 ÊtÊ
′
t is the residual covariance matrix and T is the

sample size. The last information criteria, which did not appear in univariate
analysis, is the Hannan-Quinn information criterion defined as:

HQ(model) = −2ln(LT (k))/T + 2kln(ln(T ))/T (4.3)

In the case of Gaussian VAR(p) model HQ takes the following form

HQ(p) = ln|Σ̄(p)|+ 2lnlnT

T
pn2.

The information criteria very often indicate different lag lengths. The
solution to this problem could be applying likelihood ratio test. The decision
may be also supported by the diagnostic checking results. If we notice
that the difference in diagnostic results between models with significantly
different orders is negligible then it can be decided to choose a simpler model.

Before we describe the diagnostic checking tools we need to define cross
covariance and correlation matrices. For a univariate time series the auto-
covariances and autocorrelations summarize the linear time dependence in
the data. In the case of multivariate time series Yt each component has
autocovariances and autocorrelations but there are also lead-lag covariances
and correlations between all possible pairs of components. For a vector time
series {Yt} with mean vector 0 let,

Γ(l) = E(YtYt−l) = {γij(l)}, i, j = 1 . . . n, l = 0,±1,±2, . . .

be the lag l-cross-covariance matrix and ρ(l) = {ρij(l)} be the corresponding
cross-correlation matrix.

The univariate Ljung Box test may be extended to multivariate case.
The multivariate portmanteau test is designed for testing:

H0 : Rh = (ρ(1), . . . , ρ(h)) = 0 against H1 : Rh 6= 0
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The test statistic was proposed by Hosking:

Qh := T 2
h∑

i=1

(T − i)−1tr(Γ̂(i)′Γ̂(0)−1Γ̂(i)Γ̂(0)−1)

Under the null hypothesis the Qh is distributed asymptotically as χ2(n2h).
We will call this test a multivariate Ljung Box test.

The model selection procedure should be performed analogously to the
univariate case. The difference is that we have to take into consideration the
cross correlations. First we find an appropriate AR model using information
criteria. Then we perform univariate and multivariate Ljung Box tests on
residuals. We plot the sample autocorrelation and crosscorrelations in order
to see if there are significant departures from 95% confidence bounds. Next
we check for heteroscedasticity by plotting the auto and cross correlations
of squared residuals. We can perform univariate and multivariate Ljung
Box tests as well. If there is conditional heteroscedasticity we try to find
an appriopriate multivariate GARCH. The next section will give evidence
that CCC-GARCH model should be an adequate for modeling wind speed
volatility. Therefore we need to choose order of the CCC-GARCH model
using information criteria. In multivariate case usually CCC-GARCH(1,1)
performs best. In the final step we need to check if there are no significant
auto and cross correlations coefficients in the squared standardized residuals.
Again, by making a plot and performing Ljung Box tests. Univariate ARCH
tests may be used as well.

4.3 CCC assumption

Since the assumption of constant correlation in a CCC-GARCH model may
turn out to be unrealistic in many empirical applications, we would like to
perform some tests to find out if this is the case. The section 4.1 presented
models DVEC and BEKK which allow for non-constant correlation. In order
to verify if the constant correlation assumption is reasonable for modeling
wind speed dynamics, we will compare the diagnostic results of all three
models : CCC-GARCH, DVEC and BEKK. For this purpose we will use
univariate and multivariate Ljung Box test for testing the serial correlation
in standardized squared residuals. Specifically, we will compare the p-values
evaluated for different models.

If the constant correlation constrains the model’s ability to capture the
volatility dynamics substantially, it will be seen in low p-values. More-
over these p-values will be significantly lower than the p-values obtained for
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DVEC and BEKK models. On the other hand, comparable p-values may
indicate that the difference in capturing the dynamical behavior is relatively
small. Consequently, it would show that higly sophisticated model is not
compulsory.

We will consider models CCC-GARCH(1,1), DVEC(1,1) and BEKK(1,1)
since they were found to perform best in their own classes according to AIC
and BIC. The results are presented for lag length equal to 20, see Table 4.2.
Other lag lengths were also studied, e.g. 10 and 30, and similar conclusions
were derived.

model LB Sch LB Cad LB K13 MLB
January 2003

CCC 0.36 0.84 6.9e-006 1e-008
DVEC 0.44 0.80 5.4e-006 5e-009
BEKK 0.02 0.34 0 0

January 2004
CCC 0.41 0.87 0.01 3e-008

DVEC 0.46 0.85 0.03 8e-007
BEKK 0.01 0.23 0.03 0.01

January 2005
CCC 0.33 0.61 0.87 0.03

DVEC 0.30 0.71 0.74 0.03
BEKK 3e-008 0.38 0.57 9e-006

January 2006
CCC 0.28 0.32 0.67 0.50

DVEC 0.82 0.79 0.68 0.98
BEKK 0.41 0.07 0.18 0.32

Table 4.2: P-values from performed univariate and multivariate Ljung Box
tests on standardized squared residuals from multivariate GARCH models.
The chosen lag length is 20. LB stands for Ljung Box test and MLB for
Multivariate Ljung Box test.

We can notice from the table that the univariate Ljung Box test pro-
vides very similar p-values for CCC-GARCH and DVEC models. It can
be justified since in both models conditional variances follow a univari-
ate GARCH(1,1) model. However, they model conditional covariances dif-
ferently. In CCC-GARCH model the conditional covariances are propor-
tional to the product of conditional variances and respective conditional
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correlation, whereas the DVEC models conditional covariance as univari-
ate GARCH in terms of cross-products of errors. The mentioned difference
has its result in the p-values of multivariate Ljung Box test. The p-values
for DVEC are higher than for CCC-GARCH but certainly not significantly
higher. The BEKK is a quite complex model, its performance, according
to the table, seems to be worse than the others. Quite often the p-values
are substantially lower. It suggests than the BEKK model is too elaborate.
Indeed, a large number of estimated parameters was not significant.

From the analysis of p-values we can conclude that the assumption of
constant correlation seems to be reasonable. The CCC-GARCH model out-
performed the BEKK model and gave a comparable results to the DVEC
model. Therefore, even if the conditional correlation is not constant, the
CCC-GARCH model should capture the volatility dynamics satisfactorily
enough. As a result it is a very attractive candidate for modeling highly
dimensional multivariate time series of wind speed.

4.4 The analysis of simulations

4.4.1 Averaged model

Considering the univariate case we showed that the constructed averaged
models perform well enough for simulation purposes. In this section we will
extend this approach to the higher dimension. We analyze January time
series from the three KNMI stations: Schiphol, Cadzand and K13 in the
usual time span 2003-2007. The tools discussed in section 4.2 has helped in
the specification and diagnostic process of choosing a model. Consequently
we obtained five trivariate time series models describing the wind speed in
January from five consecutive years.

This section aims to discuss the models obtained for Januaries as well
as the averaged model constructed on their basis. In order to validate if the
averaged model captures well the dynamic mechanism of wind speed, the
next section will provide the analysis of artificial time series. If the result
is satisfactory then it would be the next indication, apart from section 4.3,
that the constant conditional correlation is a reasonable assumption.

Just like in univariate case, the fitted univariate models differ from each
other by the VAR order. On the other hand, the multivariate GARCH
models are of the same order - CCC-GARCH(1,1) was found to perform best
in all five cases according to information criteria. The estimated parameters
for VAR-CCC-GARCH models are given in the appendix.

Since the multivariate analysis emphasize on the structure of relationship
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among time series, we start our consideration with analyzing the feedback
or/and unidirectional relations. For this purpose we present autoregressive
parameters in the form of indicator symbols. The sign plus means that the
t-ratio of the respective coefficient is higher than 1.5. The minus appears
otherwise. Each horizontal sequence of matrices corresponds to the VAR
parametric matrices of a model fitted to January. This way of presenting
the parametric matrices clearly depicts the significance patterns.
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We can notice the common features in the VAR structures: the lag one
matrix contains the highest amount of the significant parameters. It means
that the wind speed at present is related with wind speeds at different sta-
tions recorded one hour ago. This type of relationship is, however, not always
symmetric. For example in January 2005 and 2006 there is an unidirectional
relationship between wind speed at K13 and the others - an increase in wind
speed at K13 will be followed by an increase 1 in wind speeds at the other
sites a one hour later. It may be explained by the prevailing westerly wind
direction

1the coefficients in the lag one matrix are positive
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The lag two coefficient matrix either is zero or contains only one signif-
icant parameter as in January 2003 and 2004. Therefore we can conclude
that wind speeds separated by two hours tend to not interact with each
other. We should take a note that the significance patterns of the nonzero
lag-three parameters matrices are very similar. Usually, the wind speed at
Schiphol relates with wind speeds at K13 and Cadzand recorded 3 hours
ago. Moreover, the K13 wind speed is significantly correlated with its lag
of order 3. However, most of significant coefficients in lag three matrix are
negative which is quite surprising.

The CCC-GARCH models the conditional variances individually i.e. like
in the univariate case. Therefore we have compared the ARCH and GARCH
coefficients estimated for univariate GARCH in the previous chapter and
estimated for the Schiphol component in multivariate GARCH. We do not
notice any global increase/decrease in the coefficients.

In order to obtain the averaged model we took the average of the respec-
tive parameters. The obtained coefficient matrices with the model specifi-
cation are given below.

Yt = Π1Yt−1 + Π2Yt−2 + Π3Yt−3 + Et

Et = Σ1/2
t Zt

Σt = DtRDt

D2
t = K + AE2

t + GD2
t−1

where

Π1 =




0.77 0.11 0.17
0.10 0.85 0.09
0.03 0.02 0.99


Π2 =




0.01 0.01 0.03
0 −0.01 −0.01

−0.01 −0.01 0.04




Π3 =




0 −0.05 −0.05
−0.03 0 −0.02
−0.01 −0.01 −0.08




K =




0.02
0.02
0.02


A =




0.14 0 0
0 0.15 0
0 0 0.18


G =




0.52 0 0
0 0.59 0
0 0 0.44




R =




1 0.12 0.13
0.12 1 0.04
0.13 0.04 1



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It is striking that the lag two and three AR parameter matrices are full
of negative values. However, in comparison with Π1 coefficients are very
low. The persistence in volatility corresponding to Schiphol is lower by
2.2 than in the univariate case. In order to find out if the multivariate
averaged model is suitable for applications, it has to go through a process of
validation described in the next section. However, we first plot the simulated
multivariate time series and compare it with the original e.g. from January
2004, see Figure 4.1. We can see that the artificial multiple time series
exhibit very similar behaviour to the original time series.
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Figure 4.1: The comparison of simulated and observed time series.
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4.4.2 Autocorrelations and distributions

Analogously to the univariate case, we perform the analysis of the his-
tograms and sample autocorrelations derived from real and artificial time
series. However, this time we have to work with wind speeds from three
different stations. The analysis of histograms has revealed that in all three
cases the results were satisfactory i.e. the model is able to produce the un-
certainty of the similar degree to the real data. The Figure 4.2a presents
the histograms of wind speed recorded at Schiphol station together with
simulated confidence bounds. Comparing it to the histograms from univari-
ate case (see Figure 3.17b), there are no present differences, i.e. the both
models: univariate and multivariate describe uncertainty in a similar way.

In the case of sample autocorrelations, the multivariate model captures
the dependence in the data in each multiple time series component ade-
quately. The Figure 4.2b shows the sample autocorrelations from the wind
speeds at Schiphol together with confidence bounds computed from simula-
tions. The sample autocorrelations from real data lie confidently within the
bounds, except from SACF in January 2008 which slightly leaves out the
bounds. This result is comparable with the one from univariate case. How-
ever, in the univariate case the dependence in Schiphol time series seems to
be captured a bit better (see Figure 3.18b).
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Figure 4.2: The comparison of histograms and sample autocorrelations of
real time series recorded at Schiphol and artificial time series generated from
the averaged multivariate model

Since the multivariate model is aimed to describe the dynamic relation-
ships among time series, it is of importance to analyze also the sample cross-



68 4. MULTIVARIATE CASE

correlations in simulated vector time series. The Figures 4.3a-4.3c present
the sample cross-correlations. We can notice that in all cases the sample
cross-correlations lie within their respective confidence bounds computed
from simulations.
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Figure 4.3: The comparison of sample cross-correlations from real and sim-
ulated time series

In the case of Figures 4.3b and 4.3c there is a noticeable asymmetry.
The present observations recorded at Cadzand and Schiphol are more cor-
related with past observations recorded at K13 station than present K13
observations with past Cadzand/Schiphol observations. On the other hand
the Cadzand and Schiphol time series exhibit rather a feedback relationship.
These findings are in accordance with the results from the previous section.
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It is caused due to, inter alia, geographical position of stations station and
the prevailing wind directions.

4.4.3 Persistence

In the previous section we have shown that the averaged multivariate model
captures satisfactorily the dynamic relationships among the series as well us
the temporal dependence in the univariate components. This section aims
to verify if it is able to generate the time series with appropriate persistence
characteristics.

The Figure 4.4 presents the total excursion length for each station in
the form of survival curve. We can notice that artificial wind speeds spend
similar amount of time above rated and cut out thresholds to the real wind
speed at all considered stations. In the case of cut in wind level, the simula-
tions seem to underestimate slightly the total excursion length. This result
is very similar to the one obtained for univariate case. Moreover according
to the performed tests, in the case of all thresholds at all considered stations
the null hypothesis that total excursion length obtained from simulations is
not different statistically from excursion length from data is not rejected at
the 0.1% significance level, see Table 4.3.
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(b) Cadzand
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Figure 4.4: Total excursion length

Considering the excursion frequencies depicted in Figure 4.5, we can
notice a significant bias for the rated and cut out wind speeds especially
in the case of Schiphol and K13 station. The performed tests confirm it
by rejecting the null strongly. Although according to Figures the excursion
length for cut in is quite well reflected in simulations, the test rejects the
null for this threshold as well.
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Analyzing the Figures 4.4 and 4.5 we can draw conclusions regarding the
character of persistence of wind speeds at considered stations. In Figure 4.4
we see that the percentage of time, that wind speed spend above thresholds,
increases with the mean characteristic for each station (see Table 4.1). On
the other hand, in 4.5 we notice that the number of excursions tend to stay
constant with the increase of the mean. Therefore, the higher wind speeds
(in average) at certain location the more persistent they are. In the case of
our three stations, the highest persistence occurs at K13.
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(b) Cadzand
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Figure 4.5: Excursion frequency

Although the artificial wind speeds simulated from the averaged multi-
variate model exhibit satisfactorily the total excursion length, the excursion
frequency needs some improvements. It may be the case that finding a time
series model capturing the persistence nature may be very difficult and it
should be a topic for future research.

Threshold Schiphol Cadzand K13
µ X̄ p-value µ X̄ p-value µ X̄ p-value

cut in 681.33 674.77 0.08 704 699.31 0.15 730.17 726.72 0.025
cut in (N) 14.5 16.7 2e-011 17.8 15.2 2e-015 5 5.23 0.12

rated 93.33 86.69 0.14 125 109.27 0.001 365.17 349.3 0.05
rated (N) 12.33 16.99 0 19.67 22.33 9e-014 22.33 30.28 0
cut out 4 5.7 0.02 4 6.1 0.008 23 21.12 0.35

cut out (N) 0.8 2.05 0 1.17 2.1 2e-016 5.8 4.96 0

Table 4.3: Persistence test



Chapter 5

Conclusions and future
research

We have presented univariate and multivariate modeling of wind speed. The
time series were analyzed using strictly statistical tools in order to provide
model capturing the important features of the real time series i.e. time de-
pendence structure, spatial dependence, marginal distributions, periodic be-
haviour and persistence. Since wind speeds exhibit strong serial correlation
and turned out to be conditionally heteroscedastic we proposed methodology
based on ARMA-GARCH framework. We have shown that artificial time
series simulated from univariate and multivariate models exhibited most of
the aforementioned properties.

Since the models are intended to be used for simulations purposes only,
we have not considered the forecasting issue. However, the analysis of pre-
dictions made by the ARMA-GARCH models would be a valuable validation
method. Therefore it should be a topic for future research.

The univariate and multivariate models have shown to capture very well
the dynamic dependence structure between multiple time series components
as well as the time dependence in each component. However, the analysis
of persistence has revealed a defect of the models. It can be the case that
ARMA-GARCH model is not enough to model satisfactorily the persistence
characteristics and has to be extended e.g. by additional parameters. The
literature offers a broad class of asymmetric GARCH models which takes
into account the sign and magnitude of innovation noise term by using ad-
ditional parameter [4],[17],[9]. In this way the volatility reacts differently on
positive and negative error. We have checked for this asymmetry using the
news impact curve [36] which provides information about the relationship
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between conditional variance and the shock term. We noticed quite signif-
icant asymmetry in the volatility. However, this issue is out of the scope
of the thesis and can provide direction for the future improvements of the
models.

Considering the multivariate time series, we came to conclusion that
constant conditional correlation is enough to satisfactorily capture the co-
movements in volatility. We should make a note that CCC models were
further extended by retaining the decomposition of conditional covariance
but making the conditional correlation matrix time-varying. Resulting in
Dynamic conditional correlation model and Extended conditional correla-
tion model [33],[34]. It may be of interest to check the performance of the
extended models and compare them with CCC. The class of conditional cor-
relation models receives nowadays much attention in contrast to VEC and
BEKK which have already matured [34].

The simulated wind speeds will be further transformed to power gener-
ated at a certain area. In section 2.3 we presented the power curve which
represents the relationship between wind speed and power for one wind tur-
bine. In order to obtain the aggregated power generation for example at
wind farm having at hand only one wind speed time series we need to apply
the so called multi-turbine power curve. The details regarding this approach
can be found in [37].



Chapter 6

Appendix

Unit root tests performed on transformed time series recorded at Schiphol
in July and January. ERS- Elliot, Rothenberg and Stock test; DF-GLS-
efficient version of the Augmented Dickey Fuller (ADF) test; MPP- efficient
modified Phillips-Perron (PP) test.

January ERS DF GLS MPP
2003 1.76 xx -2.65 xx -2.67 xx
2004 2.42 x -2.87 xx -2.89 xx
2005 1.48 xx -2.94 xx -2.97 xx
2006 0.82 xx -4.10 xx -4.04 xx
2007 1.95 x -2.63 xx -2.69 xx

Table 6.1: Unit root tests- January. x significant at 5% level, xx significant
at 1 % level

January ERS DF GLS MPP
2003 2.04 x -2.51 x -2.60 xx
2004 2.70 x -2.16 x -2.21 x
2005 2.64 x -2.26 x -2.21 x
2006 0.93 xx -3.49 xx -3.88 xx
2007 4.05 -1.78 -1.77

Table 6.2: Unit root tests- July. x significant at 5% level, xx significant at
1 % level
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The estimated parameters of the multivariate AR-CCC-GARCH model:

###############
#
# JANUARY03:
#
##############

Conditional Distribution: t
with estimated parameter 9.354668 and standard error 1.499523

--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
AR(1; 1, 1) 0.7777006 0.039710 19.5845 0.000000
AR(1; 2, 1) 0.0680039 0.036861 1.8449 0.065458
AR(1; 3, 1) 0.0037046 0.026839 0.1380 0.890254
AR(1; 1, 2) 0.0308451 0.031814 0.9696 0.332589
AR(1; 2, 2) 0.8836537 0.040767 21.6756 0.000000
AR(1; 3, 2) 0.0176815 0.025209 0.7014 0.483287
AR(1; 1, 3) 0.1486299 0.038199 3.8909 0.000109
AR(1; 2, 3) 0.0482727 0.041612 1.1601 0.246407
AR(1; 3, 3) 1.0229353 0.040767 25.0922 0.000000
AR(2; 1, 1) 0.0655072 0.052746 1.2419 0.214654
AR(2; 2, 1) 0.0638300 0.044396 1.4378 0.150933
AR(2; 3, 1) 0.0035969 0.033716 0.1067 0.915069
AR(2; 1, 2) 0.1076747 0.039523 2.7244 0.006596
AR(2; 2, 2) -0.0125846 0.055131 -0.2283 0.819503
AR(2; 3, 2) -0.0262344 0.035135 -0.7467 0.455498
AR(2; 1, 3) 0.0531081 0.054017 0.9832 0.325851
AR(2; 2, 3) 0.0240876 0.057929 0.4158 0.677670
AR(2; 3, 3) 0.0781710 0.058236 1.3423 0.179913
AR(3; 1, 1) -0.0276876 0.038694 -0.7155 0.474502
AR(3; 2, 1) -0.0302175 0.033887 -0.8917 0.372836

Value Std.Error t value Pr(>|t|)
AR(3; 3, 1) 0.0009329 0.027051 0.03449 0.9724994
AR(3; 1, 2) -0.0844407 0.027525 -3.06783 0.0022359
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AR(3; 2, 2) -0.0120984 0.037155 -0.32562 0.7448041
AR(3; 3, 2) -0.0042157 0.026815 -0.15721 0.8751204
AR(3; 1, 3) -0.0933161 0.040454 -2.30673 0.0213488
AR(3; 2, 3) -0.0546515 0.040665 -1.34394 0.1793837
AR(3; 3, 3) -0.1367913 0.038502 -3.55282 0.0004056

A(1, 1) 0.0045524 0.001542 2.95168 0.0032619
A(2, 2) 0.0062785 0.002178 2.88270 0.0040587
A(3, 3) 0.0268836 0.008321 3.23085 0.0012896

ARCH(1; 1, 1) 0.1022539 0.031217 3.27558 0.0011043
ARCH(1; 2, 2) 0.1138733 0.030264 3.76265 0.0001816
ARCH(1; 3, 3) 0.1763428 0.060337 2.92261 0.0035784

GARCH(1; 1, 1) 0.8205182 0.045258 18.12996 0.0000000
GARCH(1; 2, 2) 0.7932420 0.052606 15.07886 0.0000000
GARCH(1; 3, 3) 0.2465766 0.189519 1.30106 0.1936473

Estimated Conditional Constant Correlation Matrix:
--------------------------------------------------------------

1.1 1.2 1.3
1.1 1.00000 0.11475 0.06711
1.2 0.11475 1.00000 0.01097
1.3 0.06711 0.01097 1.00000

Standard Errors:
[,1] [,2] [,3]

[1,] NA 0.04448 0.04107
[2,] 0.04448 NA 0.04468
[3,] 0.04107 0.04468 NA

--------------------------------------------------------------
################
#
# JANUARY04:
#
################
Conditional Distribution: t
with estimated parameter 14.90368 and standard error 4.052508

--------------------------------------------------------------

Estimated Coefficients:
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--------------------------------------------------------------
Value Std.Error t value Pr(>|t|)

AR(1; 1, 1) 0.720524 0.040368 17.8490 0.000e+000
AR(1; 2, 1) 0.084101 0.037262 2.2570 2.430e-002
AR(1; 3, 1) 0.062108 0.030366 2.0453 4.118e-002
AR(1; 1, 2) 0.168312 0.031858 5.2832 1.677e-007
AR(1; 2, 2) 0.935483 0.041412 22.5898 0.000e+000
AR(1; 3, 2) 0.049460 0.026494 1.8668 6.233e-002
AR(1; 1, 3) 0.182512 0.033970 5.3727 1.044e-007
AR(1; 2, 3) 0.140536 0.039331 3.5732 3.758e-004
AR(1; 3, 3) 1.024580 0.042909 23.8778 0.000e+000
AR(2; 1, 1) 0.019449 0.049583 0.3922 6.950e-001
AR(2; 2, 1) 0.031534 0.047141 0.6689 5.037e-001
AR(2; 3, 1) -0.046443 0.038658 -1.2014 2.300e-001
AR(2; 1, 2) -0.024696 0.040640 -0.6077 5.436e-001
AR(2; 2, 2) -0.040369 0.053885 -0.7492 4.540e-001
AR(2; 3, 2) -0.026620 0.036738 -0.7246 4.689e-001
AR(2; 1, 3) 0.061172 0.049344 1.2397 2.155e-001
AR(2; 2, 3) -0.107542 0.058522 -1.8376 6.652e-002
AR(2; 3, 3) 0.074875 0.062267 1.2025 2.296e-001
AR(3; 1, 1) 0.023048 0.038363 0.6008 5.482e-001
AR(3; 2, 1) -0.060211 0.037228 -1.6173 1.062e-001

Value Std.Error t value Pr(>|t|)
AR(3; 3, 1) -0.012838 0.029071 -0.44159 6.589e-001
AR(3; 1, 2) -0.071603 0.030375 -2.35731 1.867e-002
AR(3; 2, 2) -0.014849 0.038279 -0.38792 6.982e-001
AR(3; 3, 2) -0.001338 0.028970 -0.04619 9.632e-001
AR(3; 1, 3) -0.064877 0.041201 -1.57464 1.158e-001
AR(3; 2, 3) 0.024018 0.042614 0.56362 5.732e-001
AR(3; 3, 3) -0.157419 0.044035 -3.57487 3.735e-004

A(1, 1) 0.022257 0.007188 3.09660 2.032e-003
A(2, 2) 0.029432 0.008899 3.30724 9.884e-004
A(3, 3) 0.015534 0.004087 3.80113 1.561e-004

ARCH(1; 1, 1) 0.182588 0.051191 3.56681 3.849e-004
ARCH(1; 2, 2) 0.214782 0.061093 3.51567 4.657e-004
ARCH(1; 3, 3) 0.252768 0.055259 4.57424 5.615e-006
GARCH(1; 1, 1) 0.491430 0.128102 3.83625 1.357e-004
GARCH(1; 2, 2) 0.407957 0.138514 2.94523 3.330e-003
GARCH(1; 3, 3) 0.464077 0.094584 4.90652 1.144e-006
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Estimated Conditional Constant Correlation Matrix:
--------------------------------------------------------------

1.1 1.2 1.3
1.1 1.0000 0.13900 0.13215
1.2 0.1390 1.00000 0.04541
1.3 0.1321 0.04541 1.00000

Standard Errors:
[,1] [,2] [,3]

[1,] NA 0.03939 0.04364
[2,] 0.03939 NA 0.04270
[3,] 0.04364 0.04270 NA

--------------------------------------------------------------

##############
#
# JANUARY05
#
##############

Conditional Distribution: t
with estimated parameter 11.94504 and standard error 2.543177

--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
AR(1; 1, 1) 0.801032 0.019458 41.1680 0.000e+000
AR(1; 2, 1) 0.066606 0.018235 3.6526 2.780e-004
AR(1; 3, 1) 0.019265 0.015404 1.2506 2.115e-001
AR(1; 1, 2) 0.076020 0.017845 4.2599 2.310e-005
AR(1; 2, 2) 0.809481 0.019447 41.6249 0.000e+000
AR(1; 3, 2) -0.020366 0.014368 -1.4174 1.568e-001
AR(1; 1, 3) 0.133111 0.017793 7.4811 2.105e-013
AR(1; 2, 3) 0.110551 0.018519 5.9697 3.696e-009
AR(1; 3, 3) 0.972236 0.015176 64.0638 0.000e+000

A(1, 1) 0.005020 0.001878 2.6728 7.689e-003
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A(2, 2) 0.009699 0.003777 2.5678 1.043e-002
A(3, 3) 0.013499 0.005702 2.3672 1.818e-002

ARCH(1; 1, 1) 0.161899 0.038536 4.2013 2.980e-005
ARCH(1; 2, 2) 0.130353 0.037264 3.4981 4.967e-004
ARCH(1; 3, 3) 0.099715 0.047529 2.0980 3.625e-002
GARCH(1; 1, 1) 0.776455 0.047300 16.4154 0.000e+000
GARCH(1; 2, 2) 0.744753 0.072035 10.3388 0.000e+000
GARCH(1; 3, 3) 0.581219 0.157736 3.6848 2.457e-004

Estimated Conditional Constant Correlation Matrix:
--------------------------------------------------------------

1.1 1.2 1.3
1.1 1.00000 0.02497 0.11986
1.2 0.02497 1.00000 0.05689
1.3 0.11986 0.05689 1.00000

Standard Errors:
[,1] [,2] [,3]

[1,] NA 0.04180 0.03922
[2,] 0.04180 NA 0.04366
[3,] 0.03922 0.04366 NA

--------------------------------------------------------------

###############
#
# JANUARY06
#
##############
Conditional Distribution: t
with estimated parameter 26.85611 and standard error 0.03861663

--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
AR(1; 1, 1) 0.739084 0.023000 32.1344 0.000e+000
AR(1; 2, 1) 0.096804 0.024799 3.9036 1.035e-004
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AR(1; 3, 1) -0.010540 0.018169 -0.5801 5.620e-001
AR(1; 1, 2) 0.119526 0.019140 6.2448 7.170e-010
AR(1; 2, 2) 0.831742 0.020470 40.6328 0.000e+000
AR(1; 3, 2) 0.007411 0.014709 0.5038 6.145e-001
AR(1; 1, 3) 0.124918 0.015580 8.0176 4.219e-015
AR(1; 2, 3) 0.038000 0.016103 2.3598 1.855e-002
AR(1; 3, 3) 0.981417 0.012641 77.6393 0.000e+000

A(1, 1) 0.038421 0.017846 2.1530 3.164e-002
A(2, 2) 0.028190 0.009505 2.9657 3.117e-003
A(3, 3) 0.008477 0.002620 3.2350 1.271e-003

ARCH(1; 1, 1) 0.102828 0.052134 1.9724 4.894e-002
ARCH(1; 2, 2) 0.161652 0.055048 2.9366 3.422e-003
ARCH(1; 3, 3) 0.122475 0.040557 3.0198 2.617e-003

GARCH(1; 1, 1) 0.095691 0.374320 0.2556 7.983e-001
GARCH(1; 2, 2) 0.368885 0.176968 2.0845 3.746e-002
GARCH(1; 3, 3) 0.593769 0.102813 5.7753 1.133e-008

Estimated Conditional Constant Correlation Matrix:
--------------------------------------------------------------

1.1 1.2 1.3
1.1 1.0000 0.199055 0.169191
1.2 0.1991 1.000000 -0.002374
1.3 0.1692 -0.002374 1.000000

Standard Errors:
[,1] [,2] [,3]

[1,] NA 0.03639 0.03851
[2,] 0.03639 NA 0.04062
[3,] 0.03851 0.04062 NA

--------------------------------------------------------------

#############
#
# JANUARY07
#
############

Conditional Distribution: t
with estimated parameter 8.220502 and standard error 1.26982
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--------------------------------------------------------------

Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
AR(1; 1, 1) 0.8108232 0.039752 20.39683 0.000e+000
AR(1; 2, 1) 0.2042492 0.037104 5.50477 5.122e-008
AR(1; 3, 1) 0.0961658 0.031667 3.03683 2.476e-003
AR(1; 1, 2) 0.1511063 0.029715 5.08526 4.671e-007
AR(1; 2, 2) 0.8017278 0.039459 20.31809 0.000e+000
AR(1; 3, 2) 0.0631722 0.027121 2.32924 2.012e-002
AR(1; 1, 3) 0.2362681 0.039037 6.05245 2.280e-009
AR(1; 2, 3) 0.1158365 0.036911 3.13827 1.768e-003
AR(1; 3, 3) 0.9467887 0.040812 23.19859 0.000e+000
AR(2; 1, 1) -0.0371993 0.050628 -0.73476 4.627e-001
AR(2; 2, 1) -0.0721002 0.050210 -1.43597 1.514e-001
AR(2; 3, 1) -0.0259358 0.040038 -0.64778 5.173e-001
AR(2; 1, 2) -0.0162113 0.035577 -0.45567 6.488e-001
AR(2; 2, 2) 0.0269136 0.053554 0.50255 6.154e-001
AR(2; 3, 2) -0.0133221 0.033996 -0.39187 6.953e-001
AR(2; 1, 3) 0.0424936 0.054122 0.78515 4.326e-001
AR(2; 2, 3) 0.0132476 0.051978 0.25487 7.989e-001
AR(2; 3, 3) 0.0550571 0.055800 0.98669 3.241e-001
AR(3; 1, 1) 0.0274102 0.035724 0.76728 4.432e-001
AR(3; 2, 1) -0.0643807 0.036010 -1.78785 7.421e-002

Value Std.Error t value Pr(>|t|)
AR(3; 3, 1) -0.02860 0.029945 -0.9550 3.399e-001
AR(3; 1, 2) -0.10080 0.028590 -3.5256 4.490e-004
AR(3; 2, 2) 0.01065 0.038254 0.2785 7.807e-001
AR(3; 3, 2) -0.03130 0.024038 -1.3022 1.933e-001
AR(3; 1, 3) -0.11308 0.039747 -2.8451 4.565e-003
AR(3; 2, 3) -0.05291 0.041826 -1.2649 2.063e-001
AR(3; 3, 3) -0.10391 0.040474 -2.5674 1.045e-002

A(1, 1) 0.03137 0.012706 2.4693 1.376e-002
A(2, 2) 0.01802 0.005659 3.1839 1.515e-003
A(3, 3) 0.02726 0.006885 3.9600 8.229e-005

ARCH(1; 1, 1) 0.14971 0.063258 2.3667 1.821e-002
ARCH(1; 2, 2) 0.14875 0.044681 3.3291 9.150e-004
ARCH(1; 3, 3) 0.22407 0.058222 3.8485 1.292e-004
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GARCH(1; 1, 1) 0.39985 0.204684 1.9535 5.114e-002
GARCH(1; 2, 2) 0.63634 0.089244 7.1304 2.412e-012
GARCH(1; 3, 3) 0.30431 0.141213 2.1550 3.149e-002

Estimated Conditional Constant Correlation Matrix:
--------------------------------------------------------------

1.1 1.2 1.3
1.1 1.0000 0.13632 0.16333
1.2 0.1363 1.00000 0.09073
1.3 0.1633 0.09073 1.00000

Standard Errors:
[,1] [,2] [,3]

[1,] NA 0.04205 0.04240
[2,] 0.04205 NA 0.04393
[3,] 0.04240 0.04393 NA

--------------------------------------------------------------
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