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Abstract

Regular vines are a graphical tool for representing complex high dimensional distributions
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1 Introduction

Vines are graphical models for building up high dimensional distributions from conditional bivari-
ate pieces. When univariate continuous margins are specified and when conditional copulae are
assigned to the nodes of a regular vine, a routine can be specified for sampling the distribution.
This provides the basis for a theory of continuous non-parametric Bayesian belief nets, and offers
directions for model inference based on arbitrary functional relations between random variables.

This paper reports without proofs the main results about vines, sketches new research di-
rections, and gives an illustrative example of the use of vines in capturing complex dependence
structures. The example is used to illustrate the software tools which help understand complex
distributions. For information on copulae, we refer to [16] and the references therein. The vine
sampling algorithms are explored in [19]; the results regarding model learning in section 6 are new,
and extend the ideas in [17].

2 Definitions

A partial correlation can be defined in terms of partial regression coefficients.

Consider variables Xi with zero mean and standard deviations σi, i = 1, . . . , n, and let the numbers
b12;3,...,n, . . . , b1n;2,...,n−1 minimize

E
(
(X1 − b12;3,...,nX2 − . . .− b1n;2,...,n−1Xn)2

)
.

Definition 2.1 (Partial correlation)

ρ12;3,...,n = sgn(b12;3,...,n) (b12;3,...,nb21;3,...,n)
1
2 , etc.
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Equivalently we could define the partial correlation as

ρ12;3,...,n = − C12√
C11C22

,

where Ci,j denotes the (i, j)th cofactor of the correlation matrix. The partial correlation ρ12;3,...,n

can be interpreted as the correlation between the orthogonal projections of X1 and X2 on the
plane orthogonal to the space spanned by X3, . . . , Xn.

Partial correlations can be computed from correlations with the following recursive formula
[25].

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1− ρ2
1n;3,...,n−1

√
1− ρ2

2n;3,...,n−1

. (1)

Definition 2.2 (Multiple correlation) The multiple correlation R1{2,...,n} of variables X1

with respect to X2, ..., Xn is

1−R2
1{2,...,n} =

D

C11

where D is the determinant of the correlation matrix. It is the correlation between X1 and the best
linear predictor of X1 based on X2, ..., Xn.

In [11] it shown that R1{2,...,n} is non negative and satisfies:

1−R2
1{2,...,n} = (1− ρ2

1n)(1− ρ2
1,n−1;n)(1− ρ2

1,n−2;n−1,n)...(1− ρ2
12;3...n). (2)

It follows from [11], that R1{2,...,n} is invariant under permutation of {2, ..., n} and

D =
(
1−R2

1{2,...,n}
)(

1−R2
2{3,...,n}

)
...

(
1−R2

n−1{n}
)

; (3)

Of course Rn−1{n} = ρn−1,n.

Definition 2.3 (Relative information, Mutual information) Let f and g be densities on Rn

with f absolutely continuous with respect to g;

• the relative information of f with respect to g is

I(f |g) =
∫

1

. . .

∫

n

f(x1 . . . xn) ln(
f(x1 . . . xn)
g(x1 . . . xn)

)dx1 . . . dxn

• the mutual information of f is

MI(f) = I(f | Πn
i=ifi)

where fi is the i−th univariate marginal density of f and Πn
i=1f(x1 . . . xn) is the independent

distribution with univariate margins {fi}.
Relative information is also called the Kullback Leibler information and the directed divergence.

The mutual information is also called the information proper. The mutual information will be
used to capture general dependence in a set of multivariate data. We do not possess something
like an ‘empirical mutual information’, rather it must be estimated with kernel estimators, as
suggested in [9]. For some copulae, the mutual information can be expressed in closed form [16]:
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Theorem 2.1 Let g be the elliptical copula with correlation ρ, then the mutual information of g
is

1 + ln2 + ln(π
√

1− ρ2).

Let h be the diagonal band copula with vertical bandwidth parameter 1−α, then the mutual infor-
mation of h is

−ln(2|α|(1− |α|))
Note that the mutual information of the elliptical copula with zero correlation is not zero, reflecting
the fact that zero correlation in this case does not entail independence.

3 Vines

Graphical models called vines were introduced in [3, 2, 14]. A vine V on n variables is a nested
set of connected trees V = {T1, ..., Tn−1} where the edges of tree j are the nodes of tree j + 1,
j = 1, ..., n − 2. A regular vine on n variables is a vine in which two edges in tree j are joined
by an edge in tree j + 1 only if these edges share a common node, j = 1, ..., n − 2. The formal
definitions follow.

Definition 3.1 (Regular vine) V is a regular vine on n elements if

1. V = {T1, . . . , Tn−1},
2. T1 is a connected tree with nodes N1 = {1, . . . , n}, and edges E1;

for i = 2, . . . , n− 1 Ti is a tree with nodes Ni = Ei−1. E(V) denotes the set of edges of V
3. (proximity) for i = 2, . . . , n − 1, {a, b} ∈ Ei, #a4b = 2 where 4 denotes the symmetric

difference.

A regular vine is called a canonical or C vine if each tree Ti has a unique node of degree1 n− i,
hence has maximum degree. A regular vine is called a D-vine if all nodes in T1 have degree not
higher than 2 (see Figure 1). There are n(n−1)/2 edges in a regular vine on n variables. An edge
in tree Tj is an unordered pair of nodes of Tj , or equivalently, an unordered pair of edges of Tj−1.
By definition, the order of an edge in tree Tj is j − 1, j = 1, ..., n− 1.

The above definition is explained using the D-vine in Figure 1. There are 3 trees in the D-vine
on 4 variables

V = {T1, T2, T3},
T1 = (N1, E1) : N1 = {1, 2, 3, 4}; E1 = {(1, 2), (2, 3), (3, 4)},
T2 = (N2, E2) : N2 = E1; E2 = {((1, 2), (2, 3)), ((2, 3), (3, 4))},
T3 = (N3, E3) : N3 = E2; E3 = {(((1, 2), (2, 3)), ((2, 3), (3, 4)))}.

A regular vine is just a way of identifying a set of conditional bivariate constraints. The
conditional bivariate constraints associated with each edge are determined as follows: the variables
reachable from a given edge via the membership relation are called the constraint set of that edge.
When two edges are joined by an edge of the next tree, the intersection of the respective constraint
sets are the conditioning variables, and the symmetric differences of the constraint sets are the
conditioned variables. More precisely the constraint, the conditioning and the conditioned set of
an edge can be defined as follows:

Definition 3.2 1. For e ∈ Ei, i ≤ n−1, the constraint set associated with e is the complete
union U∗

e of e, that is, the subset of {1, . . . , n} reachable from e by the membership relation.

1The degree of node is the number of edges attached to it.
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2. For i = 1, . . . , n− 1, e ∈ Ei, if e = {j, k} then the conditioning set associated with e is

De = U∗
j ∩ U∗

k

and the conditioned set associated with e is

{Ce,j , Ce,k} = {U∗
j \De, U∗

k \De}.

Note that for e ∈ E1, the conditioning set is empty. One can see that the order of an edge is
the cardinality of its conditioning set. For e ∈ Ei, i ≤ n− 1, e = {j, k} we have U∗

e = U∗
j ∪ U∗

k .

The following propositions are proved in [2, 14, 18]:

Proposition 3.1 Let V = {T1, ...Tn−1} be a regular vine, then

1. the number of edges is n(n−1)
2 ,

2. each conditioned set is a doubleton, each pair of variables occurs exactly once as a conditioned
set,

3. if two edges have the same conditioning set, then they are the same edge.

Remark 3.1 When e ∈ E(V) for a regular vine V, we let De denote the conditioning set associ-
ated with e and {e1, e2} the conditioned set.

Definition 3.3 (m-child; m-descendent) If node e is an element of node f , we say that e is
an m-child of f ; similarly, if e is reachable from f via the membership relation: e ∈ e1 ∈ ... ∈ f ,
we say that e is an m-descendent of f .

Proposition 3.2 For any node K of order k > 0 in a regular vine2, if variable i is a member of
the conditioned set of K, then i is a member of the conditioned set of exactly one of the m-children
of K, and the conditioning set of an m-child of K is a subset of the conditioning set of K.

The edges of a regular vine may be associated with partial correlations, with values chosen
arbitrarily in the interval (−1, 1) in the following way:

To each e ∈ E(V) we associate

ρe1,e2;De .

where ρe1,e2;De = ρe1,e2 if De is vacuous. The result is called a partial correlation vine.

Theorem 3.1 [2] shows that each such partial correlation vine specification uniquely determines
the correlation matrix, and every full rank correlation matrix can be obtained in this way. In
other words, a regular vine provides a bijective mapping from (−1, 1)(

n
2) into the set of positive

definite matrices with 1’s on the diagonal.

Theorem 3.1 For any regular vine on n elements there is a one to one correspondence between
the set of n×n positive definite correlation matrices and the set of partial correlation specifications
for the vine.

2Equivalently one can formulate this lemma for edges of V.
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Figure 1: Partial correlations D-vine (left) and canonical vine (right) on 4 variables.

All assignments of the numbers between -1 and 1 to the edges of a partial correlation regular
vine are consistent, and all correlation matrices can be obtained this way.

One verifies that the correlation between ith and jth variables can be computed from the sub-
vine generated by the constraint set of the edge whose conditioned set is {i, j} using recursive the
formulae (1), and the following lemma.

Lemma 3.1 If z, x, y ∈ (−1, 1), then also w ∈ (−1, 1), where

w = z
√

(1− x2)(1− y2) + xy.

A regular vine may thus be seen as a way of picking out partial correlations which uniquely
determine the correlation matrix and which are algebraically independent. The partial correlations
in a partial correlation vine need not satisfy any algebraic constraint like positive definiteness. The
‘completion problem’ for partial correlation vines is therefore trivial. An incomplete specification
of a partial correlation vine may be extended to a complete specification by assigning arbitrary
numbers in the (−1, 1) interval to the unspecified edges in the vine.

Partial correlation vines have another important property; the product of 1 minus the square
partial correlations equals the determinant of the correlation matrix.

Theorem 3.2 Let D be the determinant of the n-dimensional correlation matrix (D > 0). For
any partial correlation vine

D =
∏

e∈E(V)

(1− ρ2
e1,e2;De

) (4)

Theorem 3.3 Let g be an n−dimensional density satisfying the bivariate vine specification
(F,V, B) with density g and one dimensional marginal densities g1, ..., gn; then

I(g |
n∏

i=1

gi) =
∑

e∈E(V)

EDeI(ge1,e2|De
| ge1|De

· ge2|De
). (5)

If De is vacuous then by definition

EDeI(ge1,e2|De
| ge1|De

· ge2|De
) = I(ge1,e2 | ge1 · ge2)
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Theorem 3.4 Let V = (T1, ..., Tn−1) be a regular vine on n elements. For each edge e ∈ E(V),
let the conditional copula and copula density be Ce1,e2|De

and ce1,e2|De
. Let the marginal distribu-

tions Fi with densities fi, i = 1, ..., n be given. Then the vine-dependent distribution is uniquely
determined and has a density given by

f1...n = f1...fn

∏

e∈E(V)

ce1,e2|De
(Fe1|De

, Fe2|De
). (6)

4 Sampling

We assume that variables X1, X2, ..., Xn are uniform on (0, 1). Each edge in a regular vine may
be associated with a conditional copula, that is, a conditional bivariate distribution with uniform
margins . It is convenient to specify the conditional bivariate copulae by first assigning a constant
conditional rank correlation to each edge of the vine. For i = 1, . . . , n− 1, with e ∈ Ei and {j, k}
the conditioned variables of e, De the conditioning variables of e, we associate

rj,k|De
.

The resulting structure is called a conditional rank correlation vine. Given a conditional rank
correlation vine, we choose a class of copulae indexed by correlation coefficients in the interval
[−1, 1] and select the copulae with correlation corresponding to the conditional rank correlation
assigned to the edge of the vine. A joint distribution satisfying the vine-copula specification can
be constructed and sampled on the fly, and will preserve maximum entropy properties of the
conditional bivariate distributions [3, 1].

The conditional rank correlation vine plus copula determines the whole joint distribution.
There are two strategies for sampling such a distribution, which we term the cumulative and
density approaches.

D-vine We first illustrate the cumulative approach with the distribution specified by the D-vine
in Figure 1, D(1,2,3,4): Sample four independent variables distributed uniformly on interval [0,1],
U1, U2, U3, U4 and calculate values of correlated variables X1, X2, X3, X4 as follows:

1. x1 = u1,

2. x2 = F−1
r12;x1

(u2),

3. x3 = F−1
r23;x2

(
F−1

r13|2;Fr12;x2 (x1)
(u3)

)
,

4. x4 = F−1
r34;x3

(
F−1

r24|3;Fr23;x3 (x2)

(
F−1

r14|23;Fr13|2;Fr23;x2 (x3)(Fr12;x2 (x1))
(u4)

))

where Frij|k;Xi(Xj) denotes the cumulative distribution function for Xj , applied to Xj , given Xi

under the conditional copula with correlation rij|k. Notice that the D-vine sampling procedure
uses conditional and inverse conditional distribution functions. A more general form of the above
procedure simply refers to conditional cumulative distribution functions:

x1 = u1

x2 = F−1
2|1:x1

(u2),

x3 = F−1
3|2:x2

(
F−1

3|12:F1|2(x1)
(u3)

)
,

x4 = F−1
4|3:x3

(
F−1

4|23:F2|3(x2)

(
F−1

4|123:F1|23(x1)
(u4)

))
.

(7)

Figure 2 depicts the sampling of X4 in the D-vine in Figure 1 with a ”staircase graph”. Following
the dotted arrows, we start by sampling U4 (realization u4) and use this with the copula for the
conditional rank correlation of {1, 4} given {2, 3} to find the argument of F−1

4|23, etc. Notice that
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X4

F4|23

F4|3

F4|123
U4

F
-1

4|123(u4)

u4

x4

Figure 2: Staircase graph representation of D-Vine sampling procedure.

for the D-vine, values of F2|3 and F1|23 that are used to conditionalize copulae with correlations
r24|3 and r14|23 to obtain F4|23 and F4|123, respectively, have to be calculated.

The staircase graph shows that if any of the cumulative conditional distributions in Figure 2
is uniform, then the corresponding abscissa and ordinates can be identified. This corresponds to
noting that the inverse cumulative function in (7) is the identity, and this in turn corresponds
to a conditional rank correlation being zero and the corresponding variables being conditionally
independent. Notice that the conditional rank correlations can be chosen arbitrarily in the interval
[−1, 1]; they need not be positive definite or satisfy any further algebraic constraint.

4.1 Sampling an arbitrary Regular Vine

A regular vine on n nodes will have a single node in tree n− 1. It suffices to show how to sample
one of the conditioned variables in this node, say n. Assuming we have sampled all the other
variables we proceed as follows:

1. By Lemma 3.2, the variable n occurs in trees 1, ..., n − 1 exactly once as a conditioned
variable. The variable with which it is conditioned in tree j is called its “j-partner”. We
define an ordering for n as follows: index the j-partner of variable n as variable j. We denote
the conditional bivariate constraints corresponding to the partners of n as:

(n, 1|∅), (n, 2|Dn
2 ), (n, 3|Dn

3 )...(n, n− 1|Dn
n−1)

Again by Lemma 3.2, variables 1, ..., n − 1 appear first as conditioned variables (to the left
of “|”) before appearing as conditioning variables (to the right of “|”). Also,

0 = #Dn
1 < #Dn

2 < . . . < #Dn
n−1 = n− 2.

2. Assuming we have sampled all variables except n, sample one variable uniformly distributed
on the interval (0,1), denoted un. We use the general notation Fa|b,C to denote Fa,b|C:Fb|C ;
that is the conditional copula for {a, b|C} conditional on a value of the cumulative conditional
distribution Fb|C . Here, {a, b|C} is the conditional bivariate constraint corresponding to a
node in the vine.

3. Sample xn as follows:

xn = F−1
n|1,Dn

1

(
F−1

n|2,Dn
2

(
...

(
F−1

n|n−1,Dn
n−1

(un)
)

...
))

. (8)
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The innermost term of (8) is:

F−1
n|n−1,Dn

n−1
= F−1

n,n−1|Dn
n−1:Fn−1|Dn

n−1

= F−1
n,n−1|Dn

n−1:Fn−1,n−2|Dn−1
n−2:F

n−2|Dn−1
n−2

Density approach sampling When the vine-copula distribution is given as a density, the
density approach to sampling may be used. If E is the edge set for V(n), for e ∈ E with conditioning
set De, let cij|De

be the copula density associated with e, then the density for a distribution
specified by the assignment of copulae to the edges of V(n) is given by [1]:

∏

e∈E

cij|De
(Fi|De

(xi), Fj|De
(xj))f1(x1) . . . fn(xn) =

∏

e∈E

cij|De
(Fi|De

(xi), Fj|De
(xj)) (9)

where, by uniformity, the density fi(xi) = 1.
This expression may be used to sample the vine distribution; namely, draw a large number

of samples (x1, . . . , xn) uniformly, and then resample these with probability proportional to (9).
This is less efficient than the general sampling algorithm given previously; however it may be more
convenient for conditionalization.

5 Continuous Bayesian Belief Nets

Bayesian belief nets are directed acyclic graphs that together with conditional probability functions
represent high dimensional uncertainty distributions [21, 7, 4, 8]. The nodes represent variables,
which can be discrete or continuous, and the arcs represent causal/influential or functional rela-
tionships between variables.

Continuous Bbns [21, 23] developed for joint normal variables interpret ”influence” of the par-
ents on a child as partial regression coefficients when the child is regressed on the parents. They
require means, conditional variances and partial regression coefficients which can be specified in an
algebraically independent manner. The restriction to joint normal cannot be easily relaxed. One
cannot simply invoke the theory of linear least squares predictors as applied to arbitrary joint dis-
tributions. Suppose (X1, ..., Xk−1) are the ancestors of Xk in an ordered Bbn3. We could interpret
the ”influence” of Xj on Xk as the partial regression of Xk on Xj given 1, ..., j − 1, j + 1, ..., k − 1.
If j is not a parent of k, then j and k are conditionally independent given the parents of k; how-
ever, it is not the case that the partial regression of k on j, given the parents, is necessarily zero
[13]. This means that the partial regression coefficients do not reflect the conditional independence
structure of the Bbn.

[16] advances a vine-based distribution-free approach to continuous Bbns. Starting with an
arbitrary Bbn whose nodes have continuous invertible distributions, we associate each arc with
a (conditional) parent-child rank correlation according to a certain protocol. We specify nested
sets of high dimensional joint distributions using the vine-copula approach, where any copula
with invertible conditional cumulative distribution functions may be used so long as the chosen
copula represents (conditional) independence as zero (conditional) correlation. The conditional
rank correlations (like the partial regression coefficients) are algebraically independent, and there
are tested protocols for their use in structured expert judgement [5, 12]. The vine generates a
sampling algorithm which satisfies the conditional independence relations implied by the Bbn.

3Y is an ancestor of X with respect to an ordering of the variables which preserves the parent-child relations,
that is, an ordering such that parents occur before their children in the ordering
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The vine based approach is quite general, and of course this comes at a price: These Bbn’s
must be evaluated by Monte Carlo simulation. However, if the joint normal copula is used, then
updating and conditionalizing can be done analytically [15, 6]

We associate nodes of a Bbn with univariate random variables {1, ..., n} having uniform distri-
butions on (0, 1). We will associate the arcs, or ”influences”, with (conditional) rank correlations
according to the following protocol:

1. Construct a sampling order for the nodes, that is, an ordering such that all ancestors of
node i appear before i in the ordering. A sampling order begins with a source node and ends
with a sink node. Of course the sampling order is not in general unique. Index the nodes
according to the sampling order 1, . . . , n.

2. Factorize the joint in the standard way following the sampling order. With sampling order
1, 2, . . . , n, write:

P (1, . . . , n) = P (1)P (2|1)P (3|21) . . . P (n|n− 1, n− 2, . . . , 1).

3. Underscore those nodes in each condition, which are not parents of the conditioned variable
and thus are not necessary in sampling the conditioned variable. This uses some of the
conditional independence relations in the belief net. Hence if in sampling 2, . . . , n variable 1
is not necessary (i.e. there is no influence from 1 to any other variable) then

P (1, . . . , n) = P (1)P (2|1)P (3|21) . . . P (n|n− 1, n− 2, . . . , 1). (10)

The underscored nodes could be omitted thereby yielding the familiar factorization of the
Bbn as a product of conditional probabilities, with each node conditionalized on its parents
(for source nodes the set of parents is empty).

4. For each term i with parents (non-underscored variables) i1...ip(i) in (10), associate the arc
ip(i)−k −→ i with the conditional rank correlation

r(i, ip(i)) ; k = 0

r(i, ip(i)−k|ip(i), ..., ip(i)−k+1); 1 ≤ k ≤ p(i)− 1. (11)

where the assignment is vacuous if {i1...ip(i)} = ∅. Assigning conditional rank correlations
for i = 1, ..n, every arc in the Bbn is assigned a conditional rank correlation between parent
and child.

Let Di denote a D-vine on variables 1, ..., i. The following theorem [16, 6] shows that these
assignments uniquely determine the joint distribution and are algebraically independent:

Theorem 5.1 Given a Bbn with n nodes and continuous invertible univariate margins; the spec-
ification of conditional rank correlations (11), i = 1, ..., n and a copula realizing all correlations
[−1, 1] for which correlation 0 entails independence uniquely determines the joint distribution.
This joint distribution satisfies the characteristic factorization (10) and the conditional rank cor-
relations in (11) are algebraically independent.

6 Model Learning

An approach to model learning inspired by [24] was developed in [16], based on the factorization
of the determinant in Theorem 3.2. We sketch here a more general approach based on the mutual
information. Following [9, 10], the mutual information is taken as a general measure of dependence.
The strategy is to choose a regular vine which captures the mutual information in a small number
of conditional bivariate terms, and to find a copula which renders these mutual information values.
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Theorem 6.1 Let f be a joint normal density with mean vector zero, then

MI(f) = −1
2

ln(D)

Where D is the determinant of the correlation matrix.

Proof: From ([24] , prop.6.4.5,p 168).

Remark 6.1 For a bivariate normal, theorem 6.1 says that MI(f) = −(1/2)ln(1 − ρ2). Substi-
tuting the appropriate conditional bivariate normal distributions in the right hand side of (5) we
find MI(f) = −1/2

∑
e∈E(V) ln(1− ρ2

e1,e2;De
), which agrees with Theorem 3.2.

The determinant of a correlation matrix indicates the ‘amount of linearity’ in a joint distribu-
tion. It takes the value 1 if the variables are uncorrelated, and the value zero if there is a linear
dependence. Theorem 6.1 suggest that

e−2MI(f)

is the appropriate generalization of the determinant to capture general dependence.

Proposition 6.1 e−2MI(f) = 1 if and only if f = Πfi and e−2MI(f) = 0 if and only if f has
positive mass on a set of Πfi measure zero.

The multiple correlation R1{2,...n} is the correlation between X1 and the best linear predictor of
X1 from X2, ...Xn. The appropriate concept for generalized dependence might be called multiple
information

Definition 6.1 (Multiple information) The multiple information of X1 with respect to X2, ...Xn

is

MI1{2,...n} = I(f | f1f2,...n) (12)

The following theorem helps interpret this notion.

Theorem 6.2 1. MI1{2,...n} = MI1{π2,...πn} where π is any permutation of {2, ...n};
2. MI1{2,...n} = I(f1,...n | Πn

i=1fi)− I(f2,...n | Πn
i=2fi)

3. MI1{2,...n} =
∑

e∈E(V);e1=1 EDeI(f1,ej |De
| f1|De

fej |De
); where V is any regular vine on n

elements.

4. MI(f) = MI1{2,...n} + MI2{3,...n} + MI1{n}

Proof: [1] is obvious. [2] is a calculation, [3] follows from Theorem 3.3, using a D-vine with 1 in
the top node.

We now write Theorem 3.3 as

MI(f) =
∑

{i,j|K(ij)}∈V
bij;K(ij) (13)

where K(ij) is conditioning set for the node in V with conditioned set {i, j}. The terms bij;K(ij)

will depend on the regular vine which we choose to represent the second order structure, however
the sum of these terms must satisfy (13). We seek a regular vine for which the terms bij;K(ij) in
(13) are ”as spread out” as possible. In other words, we wish to capture the total dependence
MI(f) in a small number of terms, with the remaining terms being close to zero. This concept is
made precise with the notion of majorization [20].
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Definition 6.2 Let x,y ∈ Rn be such that
∑n

i=1 xi =
∑n

i=1 yi; then x majorizes y if for all
k; k = 1, ..., n

k∑

j=1

x(j) ≤
k∑

j=1

y(j) (14)

where x(j) is the increasing arrangement of the components of x, and similarly for y.

In view of (13) the model inference problem may be cast as the problem of finding a regular
vine whose terms bij;K(ij) are non-dominated in the sense of majorization. In that case, setting
the smallest mutual informations equal to zero will change the overall mutual information as little
as possible. Pairs of variables whose (conditional) mutual information is zero, are (conditionally)
independent. Finding non-dominated solutions may be difficult, but a necessary condition for
non-dominance can be found by maximizing any Schur convex function.

Definition 6.3 A function f : Rk → R is Schur convex if f(x) ≥ f(y) whenever x majorizes y.

Schur convex functions have been studied extensively. A sufficient condition for Schur convexity
is given by [20].

Proposition 6.2 If f : Rk → R may be written as f(x) =
∑

fi(xi) with fi convex, then f is
Schur convex.

Vine Inference Strategy

The following strategy for model inference suggests itself:

1. Choose a Schur convex function f : R
n(n−1)

2 → R;

2. Find a regular vine V(n) whose vector bij;K(ij) maximizes f ;

3. Set the mutual informations in V(n) equal to zero for which the terms bij;K(ij) are smallest;

4. Associate copulae with the nodes in the vine, such that the non-zero mutual information
values are preserved.

This approach to model learning should be viewed as a research program rather than as an
applicable technique. Estimating mutual information, searching the set of regular vines, choosing
a Schur convex function and choosing a copula on the basis of mutual information are subjects
that require much future work.

7 Example

We illustrate features of dependence modelling with a simple example involving return on invest-
ment over 5 years. We invest equal amounts of money in stocks, bonds and real estate. The yearly
rates of return are uncertain; the return rates within each sector are correlated, and the sectors
themselves are correlated. We assume that the bond market is negatively correlated to the stock
market (rank correlation -0.8) and positively correlated to the real estate market (rank correla-
tion 0.5). Within each market, the successive yearly rates of return may be positively (stocks and
bonds) or negatively correlated (real estate); however non-adjacent years have reverse correlations.
Each of the markets is assigned a different copula, as shown in Figure (4). Starting with $100, 000
The fortune after 5years is

Fortune = 100, 000[(1 + s1) . . . (1 + s5) + (1 + b1) . . . (1 + b5) + (1 + r1) . . . (1 + r5)]
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Figure 3: Univariate beta densities for stocks, bonds and real estate.

where s1 is the return for the stocks in year 1, etc. The univariate densities are shown in Figure
3. The dependence structure is a tree connecting stocks, bonds and real estate, where each of the
latter are represented as a vine. This is shown in Figure 4.

In spite of the symmetry of the fortune function, the complex dependence structure causes the
variables to have different relations to the fortune. We see that variable stock4 has the highest
correlation with Fortune. The regression on some of the variables is non linear (Figure 5).

The entire joint distribution can be viewed as a cobweb plot. Figure 6 shows a cobweb plot in
which we have conditionalized on high and low values of Fortune. The strong relation with the
stock returns in years 3 and 4 is clearly visible. The distribution can also be modelled as a Bbn.
Figure 7 shows this, where we have conditionalized on a low return for stocks in year 1. The prior
marginal distributions are shown in grey, the updated distributions in black.
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Figure 4: Tree with three vines for stocks, bonds and real estate.

Figure 5: Conditional expectation
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Figure 6: Cobweb plot, conditional on high and low values of Fortune
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Figure 7: Bbn representation of Stocks, Bonds and Real estate, conditionalized on low value of
stocks in year 1
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8 Conclusions

This paper has illustrated the modelling resources and flexibility afforded by regular vines. Ap-
plications to date have been in uncertainty analysis, where, as in the example in section 7, we
explore the effects of different dependence structures. Applications to model learning are a topic
for the future. This would require a technique for estimating mutual correlation, a method for
searching vines and associating copulae with conditional bivariate distributions on the basis of
mutual information.
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