

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics

Probabilistic Inversion in Priority Setting of Emerging Zöonoses

A thesis submitted to the Delft Institute of Applied Mathematics in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE in APPLIED MATHEMATICS

by

CĂTĂLIN ALEXANDRU BUCURA

Delft, the Netherlands June 2008

Copyright © 2008 by Cătălin Alexandru Bucura. All rights reserved.

June 2008

MSc THESIS APPLIED MATHEMATICS

"Probabilistic Inversion in Priority Setting of Emerging Zöonoses"

CĂTĂLIN ALEXANDRU BUCURA

Delft University of Technology

Daily supervisor	Responsible professor
Dr. Dorota Kurowicka	Prof. dr. Roger M. Cooke
Thesis committee members	
Dr. Dorota Kurowicka	Prof. Dr. Ir. Arie Havelaar
Prof. Dr. Roger M. Cooke	Dr. Ir. Frank van der Meulen

Delft, the Netherlands

Contents

C	onter	nts	i
1	Intr	oduction	3
	1.1	Expert Judgement	7
	1.2	Probabilistic Inversion	11
	1.3	Iterative Proportional Fitting (IPF) algorithm	13
	1.4	Multi-criteria decision making	16
	1.5	Outline	16
2	Toy	model	17
	2.1	Toy model description	17
	2.2	Analysis of the toy model	18
	2.3	Application of the toy model	20
	2.4	Sensitivity of results to the probabilities of preference	21
	2.5	Can the toy model be simplified?	22
	2.6	Conclusions	23
3	Mai	n analysis	25
	3.1	Group 2	26
	3.2	Group 1	40
	3.3	Group 3	41
	3.4	Group 4	45
	3.5	Group 5	47
	3.6	Group 6	49
	3.7	Results obtained under variant V	51
	3.8	Results obtained under the combination of variants	56
	3.9	Summary and conclusions	62
4	Ana	lysis of the rankings given by experts	63
5	Ext	ra analysis	67
	5.1	Weights for experts	67
	5.2	Transformations	74
	5.3	Weights	79
	5.4	Summary of obtained results	81

6	Con	clusions and future work	85
	6.1	Application of results - Priority of Zoonoses	85
	6.2	Conclusions and future work	89
Bi	bliog	graphy	95
\mathbf{A}	Crit	teria definitions	99
	A.1	Probability of introduction of a pathogen in the Netherlands	99
	A.2	Rate of transmission of pathogen in animal reservoirs	100
	A.3	Economic damage (animal)	100
	A.4	Probability of transmission of pathogen from animal to human	101
	A.5	Rate of spread of pathogen within human population	101
	A.6	Morbidity (human) - gravity of illness	102
	A.7	Mortality (human) - chances of dying	102
	A.8	Economic damage (human)	102
	A.9	Perception	103
в	Sce	narios list	105
\mathbf{C}	Met	thodology	115
\mathbf{Li}	st of	Figures	117
Li	st of	Tables	118

Acknowledgements

This thesis is the result of work of not only one person, but much more. I would like thank Prof. Dr. Arie Havelaar for all his support, encouragement and patience he has shown during this project. I would like to thank my two supervisors, Dr. Dorota Kurowicka and Prof. Dr. Roger Cooke for their confidence, guidance and feed-back throughout the project. Many thanks to Rabin Neslo, for his prompt support and for the software used, which made my life easier. Many thanks to Anca and Dana Hanea, who have shown lots of patience for reading all my drafts, and giving me constantly support. I would like to thank to all the people involved in the project, for their time and effort.

The decision to come to Delft for studying has improved my life significantly. A very big influence in taking this decision belongs to Remus Hanea. For this, and for all that he has done for me I would like to sincerely thank him. In the same time, sincerely thanks to Dana and Anca Hanea, and to Dan Ababei for their help, support and friendship. Many thanks for Prof. Dr. Ir. Arnold Heemink for his great support and prompt help. I would also like to thank Kasia J., Kasia K., Lukasz, Mihai, Iulia, Bogdan and Catalin for being my close friends. Last, but not least, special thanks to Asia, for supporting and encouraging me every day, no matter what. I hope I can return some day her help. I would also like to thank my mom for trusting in me and helping me during all this time. The list is long, and I apologise if I omitted anybody.

Introduction

"Complex and partially yet unknown risk factors will lead to the introduction of new infections in the human population. Although we do not know which disease will emerge next, recent emerging infections came predominantly from animal reservoirs. Therefore, animal populations are considered the main reservoir for emerging infectious diseases".[1]

"In Europe, zoonoses^{*} originating from wildlife sources transmitted by arthropods are considered to become more important in the future. Climate and ecological changes may favour already existing arthropods to expand to other regions and thus to introduce new pathogens to areas in Europe." [2]

Emerging zoonoses

In 1959, the World Health Organisation (WHO) defined an emerging disease as "a disease that has appeared in a human population for the first time, or has occurred previously but is increasing in incidence or expanding into areas where it has not previously been reported".[3] At the WHO Geneva conference in 2004, a new definition for emerging zoonoses was formulated: "An emerging zoonoses is a zoonosis that is newly recognised or newly evolved, or that has occurred previously but shows an increase in incidence or expansion in geographic, host, or vector range. It is noted that some of this diseases may further evolve and become effectively and essentially transmissible from human to human." In the current research the last definition is used.

Because mankind is more and more threatened by zoonoses, in 2007, The Dutch National Institute of Public Health and Environment (RIVM), as a result of its research, published the 'Zoonoses and Zoonotic Agents in Humans, Food, Animals and Feed in The Netherlands 2003 - 2006' report, which contains data that is reported annually to the European Commission, in accordance with the Directive 2003/99/EC on the monitoring of zoonoses and zoonotic agents. After the existing pathogens have been identified, a natural step to follow, with respect to public health, is to prioritise these pathogens based on their severity. A second aspect is to ensure a good prevention of the new (emerging) zoonoses.

^{*}zoonoses represent pathogens that are transmitted from animals to humans, e.g. bird flu

In 2007 the consortium consisting of institutes involved in veterinary medicine and infectious disease control in the Netherlands started the project of Emerging Zoonoses. This project aims to build a mathematical model that helps Dutch decision makers to establish the priority of emerging zoonoses.

In order to use the model to prioritise the pathogens, we first must choose different characteristics that will be used to describe the pathogen. We call this different characteristics, *attributes*. After a series of discussions between institutions participating in the project, nine attributes defining the most relevant aspects of risk of a pathogen were selected. Each attribute has four or five levels, and to each level corresponds a value. The convention is that the lowest level (level 1) corresponds to the least threatening case and the highest level (level 4 or 5) signifies the most threatening situation. The nine criteria used in this project are briefly described below. More details about the attributes can be found in Appendix A.

- 1. Probability of introduction the pathogen in the Netherlands
 - a) level 1 corresponds to 0% chances of introduction;
 - b) level 2 corresponds to 0.5% chances of introduction;
 - c) level 3 corresponds to 50% chances of introduction;
 - d) level 4 corresponds to 50% chances of introduction;
 - e) level 5 corresponds to 100% chances of introduction.
- 2. Speed of spread of the pathogen between animals
 - a) level 1 corresponds to 10,000 days (it takes 10,000 days for the pathogen to spread; 10,000 days was chosen by analyst to keep values of this attribute monotonic. This basically it means that it does not spread);
 - b) level 2 corresponds to 30 days;
 - c) level 3 corresponds to 10 days;
 - d) level 4 corresponds to 1 day.
- 3. Economic damage within animals
 - a) level 1 corresponds to 5 M \in^{\dagger} damage;
 - b) level 2 corresponds to 50 M \in ;
 - c) level 3 corresponds to 500 M \in ;
 - d) level 4 corresponds to 5000 M \in .
- 4. Probability of transmission of the pathogen from animals to humans
 - a) level 1 corresponds to 1:10,000 (one human must get in contact with 10,000 infested animals to catch the virus);
 - b) level 2 corresponds to 1:1,000;

[†]M€denotes million euros

- c) level 3 corresponds to 1:100;
- d) level 4 corresponds to 1:10.
- 5. Speed of spread of the pathogen between humans
 - a) level 1 corresponds to 10,000 days (it takes 10,000 days for the pathogen to spread);
 - b) level 2 corresponds to 30 days;
 - c) level 3 corresponds to 10 days;
 - d) level 4 corresponds to 1 day.
- 6. Gravity of illness, morbidity
 - a) level 1 corresponds to 0.02 gravity;
 - b) level 2 corresponds to 0.06;
 - c) level 3 corresponds to 0.2;
 - d) level 4 corresponds to 0.6.
- 7. Chances of dying, mortality of human population
 - a) level 1 corresponds to 0% chances of dying;
 - b) level 2 corresponds to 0.5%;
 - c) level 3 corresponds to 5%
 - d) level 4 corresponds to 50%
 - e) level 5 corresponds to 100%.
- 8. Economic damage within humans
 - a) level 1 corresponds to 5 M \in damage;
 - b) level 2 corresponds to 50 M \in ;
 - c) level 3 corresponds to 500 M \in ;
 - d) level 4 corresponds to 5000 M \in .
- 9. Risk perception
 - a) level 1 corresponds to 0;
 - b) level 2 corresponds to 2;
 - c) level 3 corresponds to 4;
 - d) level 4 corresponds to 6.

This last criterion describes the level in which subjective risk attributes influence the perception of the Dutch society. The following consequences are possible. Depending of how many out of possible aspects apply, the pathogen is considered not threatening, moderately threatening, etc:

• Involuntary exposure

- Inequity (who profits)
- Cannot be avoided through personal behaviour
- Unknown or new and unnatural risk
- Hidden, postponed and irreversible damage
- Possibility of identification with victims (e.g. children or pregnant women)

The pathogen is considered:

- Not threatening if 0 of 6 subjective aspects apply;
- Moderately threatening if 2 of 6 subjective aspects apply;
- Threatening if 4 of 6 subjective aspects apply;
- Very Threatening if 6 of 6 subjective aspects apply.

Looking on the above presented attributes, we notice that they are expressed in different units. We need to transform the scale of attributes such that we can represent all of them in a increasing scale from 0 to 1. More information about transformations can be found in Chapter 4.

We want to compare pathogens in terms of severity using these nine criteria. A solution for this, is to create random combinations of one the levels of each criteria, which we call *scenarios*. For our problem we randomly generate 30 different scenarios. The scenarios reflect hypothetical zoonoses. Note that scenarios have been generated such that none of them is "majorising" the others, which means there is no scenario for which all attributes have higher or equal value than any other scenario. The advantage of using randomly chosen scenarios, rather than designing them otherwise, is that the bias is not introduced.

The total number of scenarios is divided into 6 groups, each group consisting of 7 scenarios. Scenarios are overlapping within the groups. In the first five groups the last two scenarios of one group are repeated as being the first ones in the consecutive group. In the sixth group, the first four scenarios are the last ones from group 5. This way experts' consistency when ordering the same scenarios in different groups can be tested. In the Section 1.1 we will discuss experts' assessments, and in Chapter 5 we discuss their consistency. Scenarios in first groups are in general more severe then in last groups. This means that the attributes' values from these scenarios are in general higher.

Table 1.1 contains scenarios from the first group.

The first column in Table 1.1 represents the scenarios numbering, e.g. S_1 . Columns two and three contain information about the first attribute: column two shows the levels of the first attribute, whereas column three shows the value corresponding to this level.

We see that in scenario S_1 , the first attribute, the chance of introduction is at level 4 (50%), speed of spreading between animals is 3 (it takes 10 days for the virus to spread), the economical damage within animals is 3 (5000 million euros), probability of transmission of the pathogen from animal to human is 3 (one human must have contact with 100 animals to get the virus), speed of spread between humans is 3 (it takes 10 days for

								At	trib	utes								
		1		2		3		4		5		6		7		8	Ģ)
S_1	4	50	3	10	3	500	3	100	3	10	3	0.2	4	50	3	500	3	6
S_2	3	5	2	30	3	500	4	10	4	3	3	0.2	3	5	2	50	4	8
S_3	4	50	3	10	1	5	3	100	4	3	3	0.2	4	50	1	5	4	8
S_4	4	50	4	3	4	5000	4	10	3	10	2	0.06	3	5	2	50	1	2
S_5	4	50	1	0	3	500	2	1000	4	3	4	0.6	3	5	3	500	2	4
S_6	2	0.5	2	30	4	5000	3	100	3	10	3	0.2	4	50	2	50	4	8
S_7	3	5	3	10	2	50	3	100	4	3	3	0.2	4	50	2	50	3	6

Table 1.1: Group I - first seven scenarios

the virus to spread), the gravity of illness produced by the pathogen is 3 (average, 0.2), chances of dying once the pathogen has been caught are 4 (50%), and the risk perception is 3 (4).

The randomly chosen scenarios do not describe any particular pathogen, they are going to be ordered be experts, increasingly, in terms of severity. From experts assessments the model for scoring scenarios' severity will be recovered using *probabilistic inversion* (PI) technique. Before explaining PI, we need more information about experts, and how we obtain information from them.

1.1 Expert Judgement

In general, statistical data are an important base to build forecast, calculate estimates or support decisions. Unfortunately, it is common to find real life examples where data are not always available and/or complete. One possible solution to this situation is expert judgement.[11]

In September 2007 the elicitation[‡] took place, at RIVM headquarters. In this procedure 11 experts (9 male and 2 female) have participated. Due to confidentiality reasons, the names of experts are not revealed.

Prior to the elicitation, experts have been explained the procedure, the attributes and the scenarios, using a training set. The elicitation was organised as follows: each scenario from each group was written down on a cardboard. Experts were asked to arrange cards with scenarios in increasing order of severity. The cardboards corresponding to each of the six groups were coloured differently.

The experts were divided into two groups. The first group of experts started to order the cardboards with scenarios from the first three groups, whereas the second group of experts started ordering the last three groups of scenarios. This was done to avoid the case that expert might be tired when analysing the last groups.

Two weeks after the elicitation, another panel sesion was organised. Two out of six

[‡]Expert elicitation is the synthesis of opinions of experts of a subject where there is uncertainty due to insufficient data, when such data is unattainable because of physical constraints or lack of resources. Expert elicitation is essentially a scientific consensus methodology.

groups have been randomly chosen (and these two are group 2 and group 5), and they were sent by post mail to the eleven experts. They were asked to order again the seven scenarios, based on their severity. From 11 experts, only 9 have returned their assessments. Table 1.1 presents the ordering of scenarios from group 2, of experts 2 and 3. First column, denoted $e2_set2_1$ represents the ordering of expert two, of group 2, after the first elicitation. Next column, $e2_set2_2$ contains the ordering of the same expert, of the same group, but from the second panel session.

8 8	e2_set2_1	e2_set2_2	e3_set2 1	e3_set2_2
1	1	2	7	6
2	5	1	5	4
3	3	4	3	2
4	6	7	4	7
5	7	6	1	1
6	4	5	2	3
7	2	3	6	5

Figure 1.1: Experts assessments for Group I

To examine how experts agree with their own answers, during the panel session (measuring 1) and the panel session (measuring 2), we calculate the rank correlation of each expert, shown in Table 1.2.

Table 1.2:	Rank	correlation	coefficient	for	group	2	and	5,	for	each	expert

	Rank co	rrelation
\mathbf{expert}	group 2	group 5
2	0.61	0.71
3	0.75	0.86
4	0.64	0.39
5	0.64	0.32
8	0.32	0.25
9	0.82	0.82
1	0.86	0.32
6	0.75	0.50
7	0.46	0.76

It is visible that some of the experts obtained a very low correlation, which means their assessments for the same group, but at different time period was different.

Experts assessments for the first group are presented in Figure 1.2. We explain this first group, and all the other groups are presented in Appendix B.

The first column in Figure 1.2 is the numbering of scenarios. The second column contains the scenarios codification. In this thesis we replace this codification of scenarios by S_i , where i = 1...30. The top row shows the 11 experts. The rest of the columns represent orderings provided by experts. For instance, if we follow scenario number 1, QJ, we observe that it is ranked by expert number 1 on the fourth place, by expert 2 on the sixth position, by the third expert on the last position, and so on. We consider the

							EXPERTS					
S	CENARIOS	1	2	3	4	5	6	7	8	9	10	11
1	QJ	JR	WL	ZC	ZC	WL	ZC	VG	VG	JR	ZC	ZC
2	VG	VG	PX 🔨	VG	JR	VG	PX 🔪	ZC	ZC	VG	PX	VG
3	GF	PX 🖊	ZC	PX 🔪	VG	ZC	JR 🔪	JR	JR	ZC	JR	Y PX
4	JR	QI 🔪	VG	GF	WL	JR	GF	GF	WL	WL /	VG	JR
5	ZC	ZC	JR	JR	PX —	→ PX /	VG	PX —	→ PX —	→ PX /	WL	WL
6	WL	GF	Q1	WL	📕 QJ —	🗕 U 🗕	→ QJ 🗸	WL	📕 QJ —	🔸 QI 🔨	GF	GF
7	(PX)	WL	GF	🔪 fð 🔪	GF	GF	WL	🔪 G1 🔨	GF	GF	📕 Óì —	→ QJ

Figure 1.2: Experts assessments for Group I

last seventh place as the most severe state, whereas the first position denotes the least severe situation. Table 1.2 shows that experts considered scenario QJ relatively severe. We could compare it with the scenario PX which is considered slightly less severe than QJ.

Experts orderings for other groups have been obtained in a similar way as for group 1. This information has been summarised for further analysis in Tables 1.3 and 1.4.

		scores		1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
G	S_1	68	S_1				1		6	4
\mathbf{R}	S_2	28	S_3	2	5	1	2	1		
0	S_3	65	S_6				3		3	5
U	S_4	34	S_7	2	1	4	2	2		
Р	S_5	23	S_4	5	2	3		1		
	S_6	50	S_2	2			3	2	2	2
Ι	S_7	40	S_5		3	3		5		
G	S_6	34	S_{10}	2	4	2		1	1	1
\mathbf{R}	S_7	40	S_9	1	3	1		6		
0	S_8	32	S_{11}	3		5	2		1	
U	S_9	62	S_7		1		1	1	5	3
Р	S_{10}	64	S_6	1			2		1	7
	S_{11}	42	S_{12}	1	1	1	5	2	1	
II	S_{12}	34	S_8	3	2	2	1	1	2	
G	S_{11}	53	S_{16}		1	1	2	3	3	1
\mathbf{R}	S_{12}	17	S_{13}	10						1
0	S_{13}	55	S_{11}		2	1	1	2	1	4
U	S_{14}	46	S_{14}			4	3	2	2	
Р	S_{15}	38	S_{17}	1	2	2	4	1	1	
	S_{16}	56	S_{15}		2	1	1	2		5
III	S ₁₇	43	S_{12}		4	2		1	4	

Table 1.3: Experts assessments for the first three groups

Tables 1.3 and 1.4 contain the following information:

- 1. first column defines the six groups;
- 2. second column defines the scenarios, from S_1 to S_{30} ;
- 3. third column shows the rank scores of each scenario obtained from experts. The rank ordering technique gives an indication of the ordering of scenarios within each

		scores		1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
G	S_{16}	33	S_{20}	3	2	3		1	2	
\mathbf{R}	S_{17}	40	S_{21}			5	5	1		
0	S_{18}	49	S_{18}		3		1	4	2	1
\mathbf{U}	S_{19}	47	S_{19}	1		3	2	3		2
Р	S_{20}	67	S_{17}				2	2		7
	S_{21}	53	S_{16}	1	2			1	6	1
\mathbf{IV}	S_{22}	20	S_{22}	6	4				1	
G	S_{21}	60	S_{21}	2				2	1	6
\mathbf{R}	S_{22}	33	S_{23}	3	3	1	2		1	1
0	S_{23}	55	S_{26}	1	1		1	1	6	1
\mathbf{U}	S_{24}	38	S_{27}		2	5	2	1	1	
Р	S_{25}	32	S_{24}	4	2	1	1	2		1
	S_{26}	45	S_{22}		3	2	2	1	1	2
\mathbf{V}	S_{27}	45	S_{25}	1		2	3	4	1	
G	S_{24}	36	S_{29}	2	2	3	2		1	1
\mathbf{R}	S_{25}	35	S_{26}	4		2	1	3	1	
0	S_{26}	49	S_{27}	1	3		2		1	4
\mathbf{U}	S_{27}	47	S_{28}	2	1		2	3	1	2
Р	S_{28}	45	S_{30}		2	2	3	2	1	1
	S_{29}	56	S_{24}			2	1	2	6	
\mathbf{VI}	S_{30}	40	S_{25}	2	3	2		1		3

Table 1.4: Experts assessments for the last three groups

group. The scores are obtained by multiplying the number of experts who ranked scenario i as j^{th} by its rank order, thus j, j = 1, ...7 and summing over j;

- 4. fourth column shows scenarios ordered from most to least severe within the group based on rank order technique;
- 5. fifth column contains the number of experts that ranked a given scenario as first in the ordering hence the least severe, sixth column shows the number of experts that considered this scenario second in the ordering etc. and finally the eleventh column shows number of experts that considered a given scenario as the most severe.

Looking at scenario S_1 from Table 1.3, we can read that out of eleven experts **one** expert ranked the scenario S_1 as fourth, **six** experts ranked it as sixth and **four** experts ranked it on the seventh place. The rank score was calculated as:

$$1 \times 4 + 6 \times 6 + 4 \times 7 = 68 \tag{1.1}$$

Using the information that we obtained from experts we want to build the model which recovers their preferences. This is done using probabilistic inversion technique, which is presented in the next section.

1.2 Probabilistic Inversion

Expert judgement can be applied whenever the variables under consideration can be theoretically measured or observed. However, there are some complex situations where the variables of interest can neither be measured, nor observed. Therefore experts are not able to give either quantiles, or any approximation for the variables of interest. Instead trying to quantify an un-observable quantities, an analyst can find an observable variable that is related to the variable of interest through a function.

For example, the analyst might be interested in a parameter of a physical model that is not observable in the field. If the function relating the parameter and an observable variable is known, then it is possible to find information about the specific parameter. Based on this information probabilistic inversion, (PI), can be applied to obtain the parameter's distribution.

Before providing the mathematical definition of probabilistic inversion, we give a short intuitive explanation. Consider a given model M with input data, A and output, B, hence B = M(A). Assume that we can observe and measure the output B. Then probabilistic inversion inverts the information that we have about the output B, and this way we can obtain information about the input, A.

Figure 1.3: Intuitive scheme of probabilistic inversion

In our case, the output information (see Figure 1.3) is represented by the experts' assessments. Using PI, we invert information from experts, which in this case represent the input. Next we want to find a model such that using the obtained input information, we recover experts' preferences.

The mathematical definition of probabilistic inversion method is as follows: let X and Y be two random vectors in \mathbb{R}^m and \mathbb{R}^m respectively; and F a measurable function from \mathbb{R}^m to \mathbb{R}^m . If F(x) = y, then $x \in \mathbb{R}^m$ is the inverse of $y \in \mathbb{R}^m$ under F. Correspondingly, if F(X) (the function F does not have to be the same used before) shares the same distribution as Y (we say $F(X) \sim Y$), then X is the probabilistic inverse of Y under F.

The probabilistic inversion problem can be defined as follows: assume that vector

Y is the vector of the observable variables, and that the physical model relating the variables and the parameters is given by the set of functions F. Then the problem consists in finding the joint distribution of random vector X such that F(X) given by:

$$F(X) = [F_1(x), F_2(x), \dots F_n(x)]$$

has the same distribution as a random vector Y.

A solution to probabilistic inversion does not always have to exist, and if there is a solution then this solution does not have to be unique. If the problem is feasible it may have many solutions and we require a preferred solution [13]. In case of infeasibility we seek a random vector X such that such that the F(X) is as close as possible to Y distribution-wise[12]. Usually for measuring the differences between these two distributions the relative information is used.[14]

We explain probabilistic inversion on a simple example:

Suppose we have two independent uniformly distributed random variables: X_1 and X_2 such that $X_1 \perp X_2$, $(X_1, X_2) \sim U[0, 1]^2$. Since these two variables are independent then the probability of X_1 being bigger than X_2 (or X_2 being bigger than X_1) is 0.5, i.e.:

$$P(X_1 > X_2) = 0.5.$$

By sampling and plotting 10,000 samples of X_1 and X_2 we expect to have a uniform spread of mass on the unit square. Figure 1.4(a) confirms our expectation.

Figure 1.4: Scatter plot of 10,000 samples

Consider for $P(X_1 > X_2)$ a different value than 0.5, say 0.8. We solve probabilistic inversion method using the sampling re-weighting technique. An iterative algorithm called *iterative proportional fitting (IPF)*[19] is applied at this point to find weights for these samples such that after re-sampling the new imposed probability will be satisfied. This means that samples satisfying the constraint will get bigger weights, and after re-sampling we will see more mass concentrated in the bottom right corner of the unit square, see Figure 1.4(b) where X_1 is bigger than X_2 . This change can also be noticed on the plot of the cumulative distribution functions. In Figure 1.5 X_2 is represented with a dotted line, and X_1 with a solid one. If we look at the marked points in the same figure we see that with probability 0.5, X_2 is approximately equal to 0.32 whereas X_1 with probability 0.5 is almost 0.7. Hence $X_1 > X_2$.

Figure 1.5: Cumulative distribution functions of variables X_1 and X_2

1.3 Iterative Proportional Fitting (IPF) algorithm

Probabilistic inversion problems are solved using different types of algorithms. In the literature there are available few algorithms for this problems, namely: iterative proportional fitting algorithm (IPF)[19], parameter fitting for uncertain models (PARFUM)[15]. We use in our analysis iterative algorithms for numerically solving probabilistic inversion problems, because these methods do not require model inversion. They are based on sample re-weighting techniques. Their advantage is that they do not require special knowledge about the problem at hand, or complicated heuristic steering on the part of the user. Moreover, operations on the sample are performed one-at-a-time, so the entire sample does not need to be kept in memory.

The iterative methods are re-sampling methods that will start with a large set of samples of X and F(X) and re-weight the samples in the set such that F(X) is as close as possible to Y. The starting distribution for X can be any distribution such that the range of F(X) covers the domain of Y.

If the probabilistic inversion problem is feasible, then IPF[19] method is preferred over the other iterative methods, because it converges faster. In case of infeasibility PARFUM and PARFUM-like algorithms will converge to minimally infeasible solution. Further we continue explaining IPF algorithm. Looking at the previous example, before applying the algorithm the weight for each sample was equal to $\frac{1}{10000}$. After the inversion, the weights corresponding to samples which satisfy the constraint should change from $\frac{1}{10000}$ to $\frac{0.8}{0.5} \cdot \frac{1}{10000}$. For only one constraint, namely $P(X_1 > X_2) = 0.8$ it is easy to find how samples should be weighted. If more constraints are added, more sophisticated method have to be used.

In the previous example, we add one more constraint: $P(X_1 > 1 - X_2) = 0.8$. Next, we run IPF on these two constraints, and plot the scatter plot, in Figure 1.3. We notice now that samples have been re-weighted such that they satisfy also the second constraint, and hence we see mass concentrated in the top right corner as well.

Figure 1.6: Scatter plot of 10,000 samples, with two constraints

Consider now, in the previous example, another random variable, X_3 , also uniformly distributed. Our example is now as follows: we have three independent uniformly distributed random variables: X_1, X_2 and X_3 . We impose three constraints, which we denote s_1 , s_2 and s_3 . We also denote value taken by the probabilities by quantiles (Q).

$$s_1 = P(X_1 > X_2) = 0.8$$

$$s_2 = P(X_1 > 1 - X_2) = 0.8$$

$$s_3 = P(X_2 > X_3) = 0.2$$

Because of the software tool used, in our program we have to impose instead of 0.8 for instance, 1-0.8. Below we present the IPF algorithm for this small example. We present the probabilities we want to impose, see Table 1.5, first column, titled "imposed Q". Next, we will follow the evolution of IPF after several number of iterations.

Because there are more than one constraint and more than two variables, the probabilities are not recovered from the first iteration. However, it is visible that after 4 iterations, the obtained probabilities are relatively close to the ones which we imposed. IPF algorithm hence is re-weighting each sample such that they satisfy the imposed probabilities. Because IPF is an iterative procedure, errors do occur.

imposed Q		obtained Q							
	1^{st} iteration	2^{nd} iteration	3^{rd} iteration	4^{th} iteration					
0.2	0.13280	0.18902	0.19862	0.19982					
0.2	0.26530	0.20556	0.20065	0.20008					
0.8	0.80000	0.80000	0.79999	0.79999					
error	0.000183	$3.344 \cdot 10^{-5}$	$4.148 \cdot 10^{-5}$	$5.172 \cdot 10^{-5}$					

Table 1.5: IPF example

Last row from the tables presents the obtained error after each iteration. We say that the problem is feasible, or that IPF converges, when the obtained probabilities are as close as possible to the imposed ones. In this small example it is visible that IPF converges after 3 iterations. However, we show up to 20 iterations, where the differences between obtained and imposed probabilities are of order of 10^{-17} . (see Table 1.7 last row, last column).

Table 1.6: IPF example

imposed Q	obtained Q								
	5^{th} iteration	6^{th} iteration	7^{th} iteration	8^{th} iteration					
0.2	0.19997	0.19999	0.19999	0.19999					
0.2	0.20001	0.20000	0.20000	0.20000					
0.8	0.79999	0.79999	0.80000	0.79999					
error	$6.436 \cdot 10^{-8}$	$8.011 \cdot 10^{-10}$	$9.967 \cdot 10^{-10}$	$1.240 \cdot 10^{-11}$					

Table 1.7: IPF example

imposed Q	obtained Q					
	9^{th} iteration	10^{th} iteration		20^{th} iteration		
0.2	0.19999	0.19999		0.20000		
0.2	0.20000	0.20000		0.20000		
0.8	0.80000	0.79000		0.80000		
error	$1.543 \cdot 10^{-11}$	$1.920 \cdot 10^{-12}$		$1.561 \cdot 10^{-17}$		

The number of iterations needed for IPF to converge differs from case to case. This can be seen in Figure 1.7. The PI software provides us with the plot which contains the number of iterations against the error. On the X-axis we plot the number of iterations performed, and on the Y-axis the value of error obtained. Because the example is very simple, it is visible from the plot that the number of iterations necessary for convergence is approximately 4. For the example presented above, we performed in the end 100 iterations, although after 20 iterations the error obtained is very small. The same number of iterations (100) will be used further on in the analysis.

We have presented the approach that we are going to use in solving our problem. Briefly we recall our goal in this thesis: we want to build a model that can be used in prioritising pathogens based on their severity. We do not want to make any apriori assumptions about the model type, as linearity for instance.

Figure 1.7: An example of number of iterations versus the error

In literature other existing approaches for this problem can be found. In the next chapter we present one alternative and discuss its drawbacks very briefly.

1.4 Multi-criteria decision making

Another approach to solve our problem would be to use the multi-criteria decision making methods (MCDM). [5] Using MCDM, it is possible to find a linear model for scores. MCDM require assigning weights of importance to attributes. They are usually chosen by analyst or by discussion with experts. [6][9] Besides the intuitive way of choosing weights, and the assumptions about the model, there are more assumptions that have to be done.[4] We do not want to start make any assumptions, therefore we want to let mathematical procedures recover the model from experts' assessments.

1.5 Outline

The present document is organised as follows:

In Chapter 2, we introduce a simple model which we analyse in a similar way as the main analysis. This model is called toy model. Firstly, we want to explain our methodology using a simpler example, for a better understanding, and secondly we want to test if the procedure that we propose for analysis really works. Based on this research, in Chapter 3 we proceed with the analysis on the real data obtained from experts. Chapter 4 contains the justification of our decisions, taken while analysing the real data. Chapter 5 contains extra analysis that we have performed, and the corresponding results. The chapter ends with conclusions after the analysis. Finally, this thesis ends with the conclusions and future work, presented in Chapter 6.

Toy model

In this chapter we study a simple problem to explain and test the procedure that will be applied to the real data. We first construct a set of artificial scenarios containing three attributes and we compare these scenarios based on our preferences. We call this set of artificial scenarios "Toy Model". The chapter ends with our conclusions after analysis of this toy model.

2.1 Toy model description

We start with creating an artificial set of four scenarios which contain three attributes and we compare these scenarios based on our preferences. In this example the probabilities of preferences are chosen by the author for illustrative purpose only. In the real zoonoses project we obtain them from experts.

The scenarios are defined as follows:

Scenario 1 : $\{0 \ 1 \ 2\};$ (2)	.1))
-----------------------------------	----	---	---

- Scenario 2 : $\{0 \ 2 \ 1\};$ (2.2)
- Scenario $3 : \{1 \ 2 \ 0\};$ (2.3)
- Scenario $4 : \{2 \ 1 \ 0\}.$ (2.4)

The score of each scenario is defined as a linear combination of values attributes levels as follows:

$$S_i = B_1 X_{1i} + B_2 X_{2i} + B_3 X_{3i}, \quad i = 1, \dots, 4$$
(2.5)

where

• X_{ki} is a value of k^{th} attribute in i^{th} scenario. The possible values are $\{0, 1, 2\}$. The attributes have three levels, 0, 1 and 2, where 0 corresponds to the least severe and 2 corresponds to the most severe consequence (e.g. 0-nobody dies, 1-100 people die, 2- 1000 people die). • B_i 's are the starting uniformly distributed and independent coefficients of attributes in the linear model (2.5).

Below we briefly synthesise the steps of analysis. We analyse the real data which contains the 30 scenarios, in the same way.

- 1. we sample $(B_1, B_2, B_3) \sim U[0, 1]^3$, and compute the scores S_1, S_2, S_3, S_4 with (2.5);
- 2. in the next step we need the probabilities which we want to impose. Since in this artificial example we are playing the experts role, we specify what is our probability that a given scenario is more sever than another. In the real data we take these constraints from experts. The probabilities will be calculated as the number of experts that prefer scenario S_i to S_j , divided by the total number of experts.
- 3. we take the sample file obtained in step 1 and run probabilistic inversion algorithm with probabilities obtained in step 2.

This way we obtain a new distribution for (B_1, B_2, B_3) which satisfies constraints in the form of probabilities of preferences.

2.2 Analysis of the toy model

In this section we analyse the toy model.

Scenarios defined in relations (2.1-2.4) are chosen such that two consecutive scenarios differ on the values of only two attributes. When we know which scenario is more severe according to experts, we can deduce which attribute influences the severity of the given scenario the most. The coefficient of the more influential attribute in the final model should be bigger than the coefficient of the less influential one.

We start with the coefficients from model (2.5) being uniformly distributed and independent:

$$B_i \sim U[0,1], \ i=1,2,3$$

and we define the score of scenario S_i , $i = 1 \dots 4$ as follows:

- $S_1 = 0 \times B_1 + 1 \times B_2 + 2 \times B_3; \tag{2.6}$
- $S_2 = 0 \times B_1 + 2 \times B_2 + 1 \times B_3; \tag{2.7}$
- $S_3 = 1 \times B_1 + 2 \times B_2 + 0 \times B_3; \tag{2.8}$

$$S_4 = 2 \times B_1 + 1 \times B_2 + 0 \times B_3. \tag{2.9}$$

$$P(S_2 > S_3) = 0.8; (2.10)$$

- $P(S_2 > S_1) = 0.8; (2.11)$
- $P(S_3 > S_4) = 0.8; (2.12)$
- $P(S_1 > S_4) = 0.8. (2.13)$

The interpretation of relation 2.10 is that scenario S_2 was seen as more severe than the scenario S_3 ($S_2 > S_3$) by 80% of the experts. Scenario S_2 differs from S_3 on the values of the first and the third attribute. This means that bigger severity of the second scenario with respect to the third one is caused by bigger influence of the third attribute as compared to the first attribute. Similarly $S_2 > S_1$ leads to the conclusion that the second attribute is more important than the third one etc. Hence this example was constructed such that the most influential attribute is the second one and the least influential is the first attribute.

It is worth mentioning again that to make $P(S_2 > S_3) = 0.8$ the probabilistic inversion method would have to "reward" samples for which B_3 is bigger than B_1 (by giving them a larger weight). Similarly the coefficient of the second attribute would have to be bigger than B_3 . Table 2.1 presents the means and variances of B_i 's obtained after running the probabilistic inversion algorithm using constraints (2.10-2.13).

Table 2.1: Means and variances of B_i with 0.8

	mean	variance
B_1	0.3496	0.0683
B_2	0.6501	0.0680
B_3	0.5004	0.0684

Figure 2.1(a) represents the empirical cumulative distribution functions of B_i 's before re-weighting. In Figure 2.1(b), the new empirical cumulative distribution functions of B_i 's after re-weighting are showed. We see that B_i 's change significantly to accommodate preference information for the scenarios. In Figure 2.1(b) one can see that the curve of B_3 did not change too much, but according to the construction of this example, it does not mean that the third attribute is not influential. This means that even if the distribution function of the third attribute does not differ too much from the uniform distribution, we still cannot exclude this third attribute.

Probabilistic inversion made B_i 's slightly dependent. Table 2.2 contains the correlation matrix of B's obtained in Table 2.1. All correlations are rather small.

Figure 2.1: Cumulative distribution functions of B_i

	D	D	P
	B_1	B_2	B_3
B_1	1.00	0.01	0.17
B_2	0.01	1.00	0.17
B_3	0.17	0.17	1.00

Table 2.2: Correlation matrix of B_i with 0.8

2.3 Application of the toy model

In this section we want to show how to apply the model (2.1) in order to compute the score of each scenario. We also show how the ordering is done.

In applying the model to score different scenarios we can either use the joint distribution of (B_1, B_2, B_3) , or we can simplify the model by using only means of B_i 's, given in Table 2.1. Taking the means of B_i 's, give us the means of S's. With means from Table 2.1, the values of X_i from relations (2.1, 2.4), based on the model (2.1) we compute the sore of a scenario as follows:

$$S = 0.3496 \times X_1 + 0.6501 \times X_2 + 0.5005 \times X_3 \tag{2.14}$$

where X_i denotes the value of i^{th} attribute.

Scenario 2 is the most severe and it gets the highest score, as expected equal to 1.8007. Using the same procedure we compute the score of the other scenarios. Scenario 1 gets score equals to 1.6511, scenario 3 equals to 1.6498 and scenario 4 equals to 1.3493. Based on this values for scores, the ordering of scenarios is: 2,1,3,4.

We can now use the model (2.14) to compare some new scenarios. For example, if we consider a new scenario, $\{1, 1, 1\}$, its corresponding score is 1.5002. The score of this new scenario is therefore smaller than the score for the scenario 3 (1.6498) but bigger than the score for the scenario 4 (1.3493).

2.4 Sensitivity of results to the probabilities of preference

In the previous section we took the imposed probabilities all equal to 0.8. We want to check how sensitive is our model to the change of these probabilities. For instance, instead of 0.8 we take 0.9.

$$P(S_2 > S_3) = 0.9; (2.15)$$

$$P(S_2 > S_1) = 0.9; (2.16)$$

$$P(S_3 > S_4) = 0.9; (2.17)$$

$$P(S_1 > S_4) = 0.9. (2.18)$$

Table 2.3 contains the results obtained when using constraints (2.15 - 2.18). If we compare them with values from Table 2.1, the mean of B_1 becomes slightly smaller whereas B_2 increases a little. We notice no big difference in B_i 's means. Figure 2.2 shows the graph of cumulative distribution functions.

Table 2.3: Means and variances of B_i with 0.9

	mean	variance
B_1	0.3020	0.0555
B_2	0.6995	0.0554
B_3	0.5001	0.0597

Figure 2.2: CDF of re-weighted B_i 's with 0.9 probability

Naturally if all probabilities were taken to be 0.5, then probabilistic inversion would not have to adjust distribution of (B_1, B_2, B_3) at all. They would stay uniform and independent.

Based on the above investigation we conclude that the model is sensitive to the choice of probability.

2.5 Can the toy model be simplified?

We investigate whether it is possible to observe if an attribute can be removed from the model as being not important. We showed already in the previous section that even if the coefficient of the third attribute, after the probabilistic inversion does not change significantly the third attribute is the second in terms of importance. If the third attribute is removed from the model, the scores become:

$$S_1 = 0 \times B_1 + 1 \times B_2;$$

$$S_2 = 0 \times B_1 + 2 \times B_2;$$

$$S_3 = 1 \times B_1 + 2 \times B_2;$$

$$S_4 = 2 \times B_1 + 1 \times B_2.$$

This would lead to the situation where the score of the second scenario is always bigger than the score of the first scenario. We do not want any scenario to "majorise" any other scenarios. Similarly S_3 is always bigger than S_2 etc.

2.6 Conclusions

We have presented a technique to recover coefficients of attributes in a given model from preference assessments that can be obtained from experts. In the next part of this thesis we use this technique to analyse real data in the zoonosis project.

In this chapter we have used a simple example to give an intuition how the method works, to help the reader understand better the results obtained in the real application. We have showed that the method gives as results according to our intuition and allows us to build a model that can be later on, used to score and compare other scenarios.

Nevertheless the linear model which we built does work properly, in the sense that the ordering of our scenarios is satisfied and the results support our intuition. We conclude that this method provides a traceable and defendable way of quantifying the model for scores, using experts assessments.

Main analysis

In this chapter we analyse the real data obtained from experts and presented in Section 1.1.

Before we present the model that we plan to use in our analysis, we refer to Tables 1.3 and 1.4 from Section 1.1 and discuss the constraints that we include in the analysis. Columns 5 to 11 represent the constraints that we are taking into consideration in our analysis. For example scenario S_1 was ranked on the last place by 4 experts. Then we consider the probability that scenario S_1 is ranked on the last place on the last place, to be equal to $\frac{4}{11}$. In a similar way, for instance, the probability that the same scenario is ranked on the sixth place (6 experts ranked S_1 on the sixth place), equals to $\frac{6}{11}$.

The total number of constraints needed to combine all scenarios using all information provided by experts is 200 (all nonempty cells in columns 5 to 11 from Tables 1.3 and 1.4), would have to be imposed. Such analysis is impossible, because probabilistic inversion method will not work due to such a large number of constraints. More about the strategies that we use to reduce the number of constraints we discuss after we present the model and the transformations of attributes that we will use.

In Chapter 1 we presented the nine attributes that we use. Remember that they are expressed in different units. We need therefore to transform their scale such that we can represent all of them in a monotonic scale from 0 to 1. Transformations that we used can be found in Chapter 4.

We start our analysis by considering the simple linear model for scores. The score of each scenario is defined as a linear combination of values attributes levels as follows:

$$S_{i} = B_{1}X_{1i} + B_{2}X_{2i} + B_{3}X_{3i} + B_{4}X_{4i} + B_{5}X_{5i}$$

$$+ B_{6}X_{6i} + B_{7}X_{7i} + B_{8}X_{8i} + B_{9}X_{9i}, \quad i = 1, \dots, 30$$

$$(3.1)$$

where

- X_{ki} is a value of k^{th} attribute in i^{th} scenario.
- B_i 's are uniformly distributed and independent coefficients of attributes in the linear model (3.1).

Our goal is, after analysing all groups together, to recover the coefficients of attributes (B_i) 's from linear model (3.1), such that, after computing the scores of each scenario using the same model, we obtain the ordering obtained when using all constraints. Because it is impossible to use in the analysis all constraints, we will try to choose a variant that would allow good reconstruction of ranking order technique with minimum number of constraints. In our analysis we use 100 iterations of IPF algorithm, and 100,000 samples.

It is worth reminding that IPF is an iterative procedure, therefore the differences between probabilities that we imposed and the ones we obtained are acceptable.

Next we start presenting the variants we choose with their corresponding results.

3.1 Group 2

We first provide a detailed discussion of GROUP 2 and then we show results obtained in a similar way, for other groups.

There are 35 nonempty cells in group 2, see columns 3 to 9 from Table 3.1. Table 3.1 is a part from Table 1.3 containing summary of experts ordering. This means that we have 35 constraints to impose on the joint distribution of scores. They are of the following type: for the sixth scenario we have that the chance that S_6 is the smallest within the second group is equal to $\frac{2}{11}$, the chance that S_6 is second smallest is equal to $\frac{4}{11}$ etc., and finally the chance that S_6 is the most severe is $\frac{1}{11}$. (see Appendix ??)

We first impose all 35 constraints and check the ordering of scenarios obtained from this constraints. Then we consider few variants with smaller number of constraints and compare their performance. We start with the variant containing all constraints (variant I, $1 \div 7$), presented in Table 3.1.

= $\mathbf{2}^{nd}$ $\mathbf{3}^{rd}$ $\mathbf{5}^{th}$ $\mathbf{7}^{th}$ $\mathbf{1}^{st}$ $\mathbf{4}^{th}$ $\mathbf{6}^{th}$ scenario S_6 2 4 2 1 1 1 S_7 1 3 1 6 Г 3 S_8 5 $\mathcal{2}$ 1 S_9 1 3 Ц 1 51 \mathcal{Z} γ \triangleleft S_{10} 1 1 \geq 1 5 S_{11} 1 1 $\mathcal{2}$ 1 $\mathcal{2}$ S_{12} 3 $\mathcal{2}$ 1 1 $\mathcal{2}$

Table 3.1: Variant I of Group II - constraints used

Table 3.2: Variant I of Group II - results obtained

VARIANT I: $1\div7$									
ordering									
	mean	variance	scores	rank	PI	#	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$
B_1	0.7208	0.0643	$S_6 = 1.390$	S_{10}	S_{10}		0.818	0.82720	0.009
B_2	0.5865	0.0761	$S_7 = 1.326$	S_9	S_9	Ï	0.909	0.89764	0.011
B_3	0.2211	0.0637	$S_8 = 1.366$	S_{12}	S_{11}	Ï	0.727	0.79806	0.071
B_4	0.2885	0.0549	$S_9 = 1.503$	S_{11}	S_7		0.909	0.91177	0.003
B_5	0.2300	0.0443	$S_{10} = 1.529$	S_6	S_6		0.909	0.89769	0.011
B_6	0.3225	0.0453	$S_{11} = 1.434$	S_8	S_{12}		0.727	0.69834	0.029
B_7	0.5955	0.0626	$S_{12} = 1.435$	S_7	S_8		0.909	0.94041	0.031
B_8	0.5040	0.0971					0.727	0.75773	0.030
B_9	0.6055	0.0472					0.364	0.42983	0.066
							0.636	0.64914	0.013
							0.727	0.73881	0.012
							0.909	0.76784	0.041
							0.909	0.90126	0.008
							0.818	0.84296	0.025
							0.909	0.87689	0.032
						0	0.909	0.88544	0.024
						3	0.545	0.59949	0.054
						\mathbf{b}	0.909	0.90746	0.002
							0.909	0.89937	0.010
							0.818	0.83225	0.014
							0.818	0.83887	0.021
							0.909	0.90560	0.003
							0.545	0.61963	0.074
							0.909	0.87249	0.037
							0.818	0.82738	0.009
							0.909	0.92824	0.019
							0.455	0.54305	0.088
							0.909	0.90555	0.004
							0.818	0.79495	0.023
							0.909	0.91589	0.007
							0.818	0.81016	0.008
							0.909	0.92782	0.019
							0.818	0.85331	0.035
							0.545	0.54229	0.003
							0.909	0.90900	0.000
# -	the nu	mber of co	nstraints u	sed					

EQ - experts quantiles (experts assessments)

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ-OQ)

Table 3.2 provides us results of the probabilistic inversion (PI) analysis for 35 constraints.

Column 8 corresponds to "expert quantiles", hence the probabilities that we have we imposed. These values are computed as explained at the beginning of this section. Next column presents the "obtained quantiles". This represents the probabilities that we obtained after running probabilistic inversion. The last column provides the differences between the probabilities that we imposed and the ones that we obtained. We see that the differences for each quantile are of order 10^{-3} , which means that the problem is feasible.

After PI we compute the score of each scenario, corresponding to each sample. Next we take the mean of each distribution of B_i , and compute the mean scores. The second and third columns of Table 3.2 contain the means and variances of coefficients of attributes in the linear model for scenario scores. The fourth column shows the scores of each scenario computed with the linear model. Based on these scores we find an ordering from the most to the least sever scenario within the second group. These are given in the fifth column, titled PI. The sixth column shows the ordering of the scenarios in the second group based on rank ordering technique, titled RANK. Notice that these orderings are not the same but the most severe scenarios 10 and 9 are ranked as top ones for both methods.

We can also analyse the obtained sample file. We check for each score the frequency of occurrence, and then we compute the probability of each scenario to be ranked on each position. In other words, we imposed the probability of scenario S_6 to be ranked on the 1st place, to be $\frac{2}{11}$. We check from the sample file, the number of times when the score of S_6 had the smallest number. By dividing this number to the total number of samples, we obtain the probability that scenario S_1 was placed on the first place. We expect that this probability to be as close as possible to $\frac{2}{11}$. We call this procedure *in samples validation*. We perform the same analysis for the rest of the variants, and for each group. The complete results are presented in Appendix B. Table 3.3 contains the probabilities obtained for each scenario, before and after the inversion technique.

Based on this validation of samples we compute two root mean square errors:

- first, RMSE of "fitting", with which we check how good we fit the model to our data. This error represents the square root of the means of squared differences between the imposed probabilities and obtained ones. (i.e. we imposed for S_6 to be ranked on the first place probability 2/11, and we obtained 1.9059/11. We check all these squared differences, and take the square root of their mean)
- second, RMSE of samples validation. This error is computed as the square root of the means of squared differences between the obtained probability from each variant and obtained probabilities from variant I. (i.e. we subtract from

	scenar	$\mathbf{io1}^{st}$	\mathbf{obt}	2^{nd} obt	3^{rd} obt	4^{th} obt	5^{th} obt	6^{th} obt	7^{th} obt
			pbty	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	pbty
	S_6	2	1.9059	4 4.0464	2 1.8715	0.0605	1 0.8468	1 1.1464	1 1.1225
Г	S_7	1	1.1697	$3 \ 2.7366$	1 0.8804	0.4342	6 5.7790	0.0001	0
	S_8	3 3	2.9187	0	$5 \ 4.8386$	2 1.8168	0.3682	1 0.9668	0.0910
Я	S_9	(0.2680	1 0.8712	0.1118	1 0.9197	1 1.0177	$5 \ 4.8181$	3 2.9935
A	S_{10}	1	1.0276	0.4194	0.2111	2 1.8166	0.0001	1 1.1578	7 6.3674
\geq	S_{11}	1 (0.9140	1 1.0035	1 0.9231	$5 \ 4.9357$	2 2.0093	1 0.9044	0.3100
	S_{12}	3	2.7961	2 1.9229	2 2.1635	1 1.0165	1 0.9790	2 2.0064	0.1156
RMSE of fitting $= 0.2226$									
	RMSE of validation $= 0.0000$								

Table 3.3: Out of sample validation for Variant I of Group II

1.9059 (the obtained probability that S_6 is ranked on the first place, when considering all constraints) the probability that S_6 is ranked on the first place, but obtained in all other variants. For instance, in Table 3.5 this probability equals to 1.7595) Using this error we check how far we are from the validation obtained in the first variant. Due to lack of space, we will present here only the values of the two errors, and the complete results can be found in Appendix B.

We see in Table 3.3 that the probabilities computed from the sample file obtained after PI are close to the ones imposed. We will present the results for each variant of this second group.

We are interested in another variant with a smaller number of constraints and yet small differences between scores obtained in variant 1, and the scores obtained with the new variant. In the same time, we want the error of fitting and validation to be as small as possible.

Let us consider the second variant, in which we take constraints corresponding to the first three and the last three columns of Table 3.4. Hence we are taking into account all constraints except the ones that give percentages of experts that considered a given scenario as forth in terms of severity. This choice reduces the number of constraints from 35 to 30. We denote it as variant II (1,2,3,5,6,7). Table 3.4 contains cells used as constraints in PI procedure, and Table 3.6 provides the results after probabilistic inversion. We notice that both errors (validation and fitting) have increased in this case. We continue investigating the problem, by removing constraints and observing the evolution of these two errors.
	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
Ι	S_6	2	4	2		1	1	1
Ι	S_7	1	3	1		6		
	S_8	3		5			1	
R	S_9		1			1	5	3
Α	S_{10}	1					1	γ
Λ	S_{11}	1	1	1		\mathcal{Z}	1	
	S_{12}	3	$\mathcal{2}$	$\mathcal{2}$		1	$\mathcal{2}$	

Table 3.4: Variant II of Group II - constraints used

Table 3.5: Out of sample validation for Variant II of Group II

	scenari	$\mathbf{io1}^{st}$ obt	2^{nd} obt	3^{rd} obt	4^{th} obt	5^{th} obt	6^{th} obt	7^{th} obt			
		\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	pbty			
Ι	S_6	2 1.7595	4 4.0912	2 1.7219	0.5778	1 0.8000	1 1.1208	1 0.9287			
I	S_7	1 0.9833	3 2.6356	1 0.8007	0.6698	6 5.9106	0	0			
	S_8	3 2.9827	0	5 5.2307	(2)1.5581	0.2746	$1 \ 0.9536$	0.0003			
Я	S_9	0	1 0.9975	0.0007	(1)1.8285	1 1.0099	$5 \ 4.4587$	3 2.7047			
A	S_{10}	1 1.0047	0.0590	0.0006	(2)2.5877	0	1 1.1378	7 6.2102			
\geq	S_{11}	1 1.0695	1 1.2263	1 3.0609	(5)1.6032	2 2.0050	1 1.1148	0.9203			
	S_{12}	3 3.2003	2 1.9905	2 0.1846	(1)2.1747	1 0.9999	2 2.2142	0.2358			
RMSE of fitting $= 0.9154$											
	RMSE of validation $= 0.9298$										

We notice in columns 8, 9 and 10 from Table 3.6 the same type of information as for the first variant. The differences between the imposed probabilities and the obtained ones are relatively small, which means that the problem is feasible. We notice a new column in this table, the differences of scores. This represents the difference of the scores obtained in the first variant, and the scores obtained in this second variant. Because in variant II we include less constraints this means we omit some of the experts' assessments, which creates an error of the obtained scores. We measure this error with the Root Mean Square Error (RMSE). We want this error to be as small as possible. Considering variant with 30 constraints the RMSE of scores equals to 0.484768.

Table 3.5 presents the probabilities of each scenario computed from the sample file.

These errors can be compared for different variants, and the variant having the smallest number of constraints and in the same time the small error will be preferred for further analysis.

Our goal is to find a variant such that:

- our problem is feasible;
- we recover the ordering of scenarios given by experts;
- the scores differences with variant I to be as small as possible.

V	ARL	ANT	II: 1,2	2,3	5,0	6,7	7				
			,	orde	ring	,					
	mean	variance	scores	rank	\mathbf{PI}	#	$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	\mathbf{SD}	
B_1	0.7398	0.0568	$S_6 = 1.370$	S_{10}	S_{10}		0.818	0.83811	0.020	0.020	
B_2	0.6092	0.0846	$S_7 = 1.318$	S_9	S_9		0.909	0.91807	0.009	0.008	
B_3	0.1887	0.0301	$S_8 = 1.298$	S_{11}	S_{11}		0.727	0.72152	0.006	0.068	
B_4	0.2636	0.0412	$S_9 = 1.538$	S_6	S_7		0.909	0.91657	0.007	0.035	
B_5	0.2354	0.0571	$S_{10} = 1.541$	S_{12}	S_6		0.909	0.90069	0.008	0.012	
B_6	0.2388	0.0366	$S_{11} = 1.436$	S_7	S_{12}		0.727	0.70504	0.022	0.002	
B_7	0.6417	0.0510	$S_{12} = 1.345$	S_8	S_8		0.909	0.92436	0.015	0.090	
B_8 0.5485 0.0908 0.727 0.76561 0.038											
B_9 0.5989 0.0472 0.364 0.36151 0.002											
							0.636	0.65520	0.019		
							0.727	0.73355	0.006		
							0.909	0.91457	0.005		
							0.909	0.90652	0.003		
							0.818	0.80345	0.015		
							0.909	0.91904	0.010		
							0.909	0.91227	0.003		
						3	0.545	0.56320	0.018		
						0	0.909	0.91356	0.004		
							0.909	0.89817	0.011		
							0.818	0.80706	0.011		
							0.818	0.82560	0.007		
							0.909	0.91289	0.004		
							0.545	0.55328	0.008		
							0.909	0.90433	0.005		
							0.818	0.80938	0.009		
							0.909	0.91830	0.009		
							0.455	0.46307	0.009		
							0.909	0.90900	0.000		
							0.818	0.81800	0.000		
							0.909	0.90900	0.000		
# - the number of constraints used RMSE=0.484767986											
$\mathbf{E}\mathbf{Q}$	EQ - experts quantiles (experts assessments)										
ΟQ	- obtai	ned quanti	iles (after P	PI)							
$\mathbf{Q}\mathbf{D}$	\overline{QD} - quantiles differences (EQ – \overline{OQ})										
\mathbf{SD}	- scores	s difference	es (scores fr	om vai	riant	I –	scores	from var	iant II))	
$\mathbf{R}\mathbf{N}$	ISE - sq	uare root	of the sum	of scor	es di	ffere	nces				

30 constraints for each group would still be to much to use in combining all groups. Let us consider variant III in which only constraints corresponding to two least severe and two most severe rankings are included (1,2,6,7). Table 3.7 shows the included constraints and Table 3.9 presents results obtained for variant III.

In this case we reduced the number of constraints to 20. Looking in column 10

from Table 3.7 we find that the problem is feasible. The differences between scores obtained in this variant and the ones from variant I, are reflected in RMSE. We observe a slight increase of this value as compared to the previous variant.

	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
Ι	S_6	2	4				1	1
Π	S_7	1	3					
Н	S_8	3					1	
Ч	S_9		1				5	3
A	S_{10}	1					1	γ
\geq	S_{11}	1	1				1	
	S_{12}	3	2				2	

Table 3.7: Variant III of Group II - constraints used

Table 3.8: Out of sample validation for Variant III of Group II

	scenar	io 1^{st} obt	2^{nd} obt	3^{rd} obt	4^{th} obt	5^{th} obt	6^{th} obt	7^{th} obt				
		\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	pbty				
I	S_6	2 1.9766	4 4.0070	(2)0.7264	1.1607	(1)1.1681	1 0.9890	1 0.9722				
Ι	S_7	1 1.0081	3 2.9864	(1)4.9960	1.3396	(6)0.6409	0.0290	0				
Г	S_8	3 2.9817	0.0299	(5)1.3602	(2)2.3099	3.3080	1 1.0028	0.0076				
Я	S_9	0.0228	1 1.0025	0.5900	(1)0.8228	(1)0.5963	$5 \ 4.9721$	3 2.9934				
A	S_{10}	1 1.0050	0.0053	0.6008	(2)0.7726	0.6275	1 0.9839	7 7.0048				
\geq	S_{11}	1 1.0079	1 0.9827	(1)1.9866	(5)3.2245	(2)2.7718	1 1.0232	0.0032				
	S_{12}	3 2.9979	2 1.9862	(2)0.7400	(1)1.3698	(1)1.8874	2 1.9999	0.0188				
RMSE of fitting $= 2.0323$												
	RMSE of validation $= 2.1003$											

Table 3.9: Variant III of	Group II - results obtained
---------------------------	-----------------------------

\mathbf{V}	ARI	ANT	III: 1,	2 (6,7								
			,	order	ring								
	mean	variance	scores	rank	PI	#	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	\mathbf{SD}			
B_1	0.7301	0.0601	$S_6 = 1.356$	S_{10}	S_{10}		0.818	0.81839	0.000210	0.034			
B_2	0.5568	0.0797	$S_7 = 1.304$	S_9	S_9	Ï	0.909	0.90917	0.000083	0.022			
B_3	0.2120	0.0232	$S_8 = 1.312$	S_{11}	S_{11}		0.727	0.72733	0.000054	0.054			
B_4	0.2312	0.0321	$S_9 = 1.523$	S_6	S_7		0.909	0.90909	0.000004	0.020			
B_5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
B_6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
B_7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
B_8	0.5418	0.0828					0.727	0.72719	0.000086				
B_9	0.5477	0.0674				2	0.364	0.36400	0.000363				
						0	0.636	0.63665	0.000289				
							0.727	0.72728	0.000007				
							0.909	0.90907	0.000021				
							0.909	0.90905	0.000044				
							0.818	0.81800	0.000182				
							0.909	0.90924	0.000152				
							0.909	0.90922	0.000128				
							0.545	0.54549	0.000031				
							0.909	0.90907	0.000018				
						Ï	0.909	0.90905	0.000042				
							0.818	0.81800	0.000182				
# - the number of constraints used RMSE=0.494974747													
EQ - experts quantiles (experts assessments)													
OQ - obtained quantiles (after PI)													
QD - quantiles differences (EQ – OQ)													
SD - scores differences (scores from variant I $-$ scores from variant III)													
$\mathbf{R}\mathbf{N}$	ISE - sq	uare root	of the sum	of scor	es di	fere	nces						

Next we take out more constraints: the second and the sixth column, and this way we obtain variant IV, denoted (1,7). We only take into consideration experts opinions regarding the most sever and the least sever scenarios. As shown in the Table 3.10 the constraints' number reduces significantly from 20 in the previous variant to 9. The next important aspect is to check the RMSE which increases but not noticeable. Its value is now 0.558091845.

In variant II the error of scores equals to 0.484767986, and in variant IV to 0.558091845. The error in variant IV is larger than the one in Variant II, but only slightly. However, the gain in reduction of number of constraints is significant (we use 9 instead of 30).

	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	$oldsymbol{7}^{th}$
V	S_6	2						1
Ι	S_7	1						
	S_8	3						
R	S_9							3
Α	S_{10}	1						γ
Λ	S_{11}	1						
	S_{12}	3						

Table 3.10: Variant IV of Group II - constraints used

Table 3.11: Out of sample validation for Variant IV of Group II

	scenari	$\mathbf{io1}^{st}$ obt	2^{nd} obt	3^{rd} obt	4^{th} obt	5^{th} obt	6^{th} obt	7^{th} obt			
		\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	pbty			
$^{>}$	S_6	2 1.9546	(4) 0.5807	(2)1.2015	2.4484	(1)2.3003	(1)1.5365	1 0.9780			
Ι	S_7	1 0.9898	(3) 4.2375	(1)3.5070	1.2429	(6)0.7414	0.2813	0.0001			
	S_8	3 2.9849	2.4874	(5)1.5934	(2)1.3692	1.4083	(1)1.1510	0.0058			
Я	S_9	0.0331	(1) 1.0551	1.5291	(1)2.1561	(1)1.8277	(5)1.4160	3 2.9829			
A	S_{10}	1 1.0068	0.7738	0.6006	(2)0.5357	0.5970	(1)0.4777	$7 \ 7.0085$			
\geq	S_{11}	1 0.9861	(1) 0.6787	(1)1.4266	(5)1.9330	(2)2.3995	(1)3.5733	0.0029			
	S_{12}	$3 \ 3.0447$	(2) 1.1869	(2)1.1419	(1)1.3147	(1)1.7259	(2)2.5642	0.0217			
	RMSE of fitting = 3.5302										
	RMSE of validation $= 3.6110$										

Table 3.12: Variant IV of Group II - results obtained

VARIANT IV: 1 7

				order	ng	.,	-	0.0	0 D	GD
	mean	variance	scores	rank	ΡI	#	$\mathbf{E}\mathbf{Q}$	ΟQ	QD	SD
B_1	0.6757	0.0654	$S_6 = 1.448$	S_{10}	S_{10}		0.818	0.8139	0.00071	0.058
B_2	0.5294	0.0848	$S_7 = 1.372$	S_9	S_9		0.909	0.9094	0.00031	0.046
B_3	0.2208	0.0371	$S_8 = 1.301$	S_{11}	S_{11}		0.727	0.7277	0.00047	0.065
B_4	0.2531	0.0402	$S_9 = 1.536$	S_6	S_7		0.909	0.9092	0.00011	0.033
B_5	0.2658	0.0713	$S_{10} = 1.556$	S_{12}	S_6	9	0.909	0.9092	0.00007	0.027
B_6	0.2529	0.0393	$S_{11} = 1.473$	S_7	S_{12}		0.727	0.7270	0.00028	0.039
B_7	0.6356	0.0513	$S_{12} = 1.391$	S_8	S_8		0.909	0.9098	0.00076	0.044
B_8	0.5324	0.0804					0.727	0.7288	0.00151	
B_9	0.6355	0.0716					0.364	0.3640	0.00036	

- the number of constraints used

RMSE = 0.558091845

EQ - experts quantiles (experts assessments)

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ - OQ)

SD - scores differences (scores from variant I – scores from variant IV)

 $\ensuremath{\mathbf{RMSE}}$ - square root of the sum of scores differences

At the moment there is no statistical method to decide when we should stop removing constraints. Moreover, we do not have a structural way of deciding which constraints we should choose.

Next we present one more variant. It is called variant V (≥ 3). The idea here is that we take only those constraints for which at least 3 experts agreed that the scenario should have a certain ranking. For instance, looking at the sixth scenario from Table 3.13, this means that only the constraint that the chance that S_6 is second smallest is 4/11 is included. In the Table 3.13 the cells included in PI are presented.

	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
	S_6		4					
\sim	S_7		3			6		
	S_8	3		5				
К	S_9						5	3
Α	S_{10}							γ
\geq	S_{11}				5			
	S_{12}	3						

Table 3.13: Variant V of Group II - constraints used

Table 3.14: Out of sample validation for Variant V of Group II

	scenari	$\mathbf{io1}^{st}$ obt	2^{nd} obt	3^{rd} obt	4^{th} obt	5^{th} obt	6^{th} obt	7^{th} obt			
		\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	\mathbf{pbty}	pbty			
	S_6	(2)0.0278	4 3.9963	(2)1.1543	2.3857	(1)0.9133	(1)2.4702	(1)0.0524			
\geq	S_7	(1)1.5705	$3 \ 3.0278$	(1)0.3896	0.0334	6 5.9773	0.0014	0			
	S_8	3 3.0138	0.0773	5 5.0181	(2)1.0442	0.6866	(1)0.5027	0.0273			
Я	S_9	0.0979	(1) 0.5331	0.9481	(1)1.1331	(1)0.2735	5 5.0030	3 3.0114			
A	S_{10}	(1)2.9853	0.3935	0.2949	(2)0.2950	0.0066	(1)0.0252	$7 \ 6.9995$			
\geq	S_{11}	(1)0.2914	(1) 1.0193	(1)1.5893	$5 \ 4.9936$	(2)1.6948	(1)1.3362	0.0756			
	$ S_{12} = 3 3.0133 (2) \\ 1.3229 (2) \\ 1.6057 (1) \\ 1.1150 (1) \\ 1.4479 (2) \\ 1.6613 0.8339 $										
RMSE of fitting $= 1.6301$											
RMSE of validation $= 1.6914$											

Table 3.15:	Variant	V of	Group	II -	results	obtained
-------------	---------	------	-------	------	---------	----------

\mathbf{V}	ARL	ANT	$\mathbf{V}:\geq 3$								
			_	order	ring						
	mean	variance	scores	rank	\mathbf{PI}	#	$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	\mathbf{SD}	
B_1	0.6804	0.0556	$S_6 = 1.381$	S_9	S_{10}		0.727	0.7270	0.00027	0.009	
B_2	0.5133	0.0790	$S_7 = 1.314$	S_{10}	S_9		0.727	0.7270	0.00027	0.012	
B_3	0.2250	0.0399	$S_8 = 1.256$	S_{11}	S_{11}		0.727	0.7270	0.00027	0.110	
B_4	0.3183	0.0643	$S_9 = 1.474$	S_{12}	S_7		0.364	0.3640	0.00036	0.029	
B_5	0.2950	0.0928	$S_{10} = 1.464$	S_6	S_6	10	0.636	0.6360	0.00036	0.065	
B_6	$B_{6} 0.2546 0.0444 S_{11} = 1.409 S_{7} S_{12} 0.727 0.7270 0.00027 0.025$										
B_7	0.6232	0.0490	$S_{12} = 1.397$	S_8	S_8		0.909	0.9090	0.00009	0.038	
B_8	0.4811	0.0850					0.545	0.5450	0.00145		
B_9	0.6056	0.0754					0.455	0.4550	0.00045		
							0.545	0.5450	0.00045		
# -	the nu	mber of co	nstraints u	sed				RN	ASE = 0.53'	705847	
$\mathbf{E}\mathbf{Q}$	$\mathbf{E}\mathbf{Q}$ - experts quantiles (experts assessments)										
OQ	OQ - obtained quantiles (after PI)										
QD - quantiles differences (EQ – OQ)											
SD - scores differences (scores from variant I $-$ scores from variant V)											
$\mathbf{R}\mathbf{N}$	ISE - sq	uare root	of the sum	of scor	es di	fferei	nces				

When we compare variant V with variant IV we notice an increase in the number of constraints by 1. However the RMSE of scores is now smaller and equals to 0.53705847. This last variant also provides promising results. Moreover, the two errors (fitting and validation) have decreased significantly in this case (they are now approximately 1.69, see Table 3.14. In this group we conclude that the best variant to be considered for further analysis is the last variant.

For convenience we present results for all discussed variants for group 2 together in Table 3.16.

G	ROUP	TT			orde	ring		
G		mean	variance	scores	rank	PI	#	
	B_1	0.7208	0.0643	$S_6 = 1.326$	S_{10}	S_{10}		
	B_2	0.5865	0.0761	$S_7 = 1.366$	S_9	S_9		
I	B_3	0.2211	0.0637	$S_8 = 1.503$	S_{12}	S_{11}	-	
nt	B_4	0.2885	0.0549	$S_9 = 1.529$	S_{11}	S_7	3	
ria	B_5	0.2300	0.0443	$S_{10} = 1.434$	S_6	S_6	5	
Va	B_6	0.3225	0.0453	$S_{10} = 1.435$	S_8	S_{12}		
	B_7	0.5955	0.0626		S_7	S_8		
	B_8	0.5040	0.0971					
	B_9	0.6055	0.0472					SD
	B_1	0.7398	0.0568	$S_6 = 1.370$	S_{10}	S_{10}		0.020
	B_2	0.6092	0.0846	$S_7 = 1.318$	S_9	S_9		0.008
	B_3	0.1887	0.0301	$S_8 = 1.298$	S_{11}	S_{11}	-	0.068
lt]	B_4	0.2636	0.0412	$S_9 = 1.538$	S_6	S_7	3	0.035
riaı	B_5	0.2354	0.0571	$S_{10} = 1.541$	S_{12}	S_6	0	0.012
Vaj	B_6	0.2388	0.0366	$S_{11} = 1.436$	S_7	S_{12}		0.002
	B_7	0.6417	0.0510	$S_{12} = 1.345$	S_8	S_8		0.090
	B_8	0.5485	0.0908					RMSE
	B_9	0.5989	0.0472				(0.48476799
	B_1	0.7301	0.0601	$S_6 = 1.356$	S_{10}	S_{10}		0.034
	B_2	0.5568	0.0797	$S_7 = 1.304$	S_9	S_9		0.022
II	B_3	0.2120	0.0232	$S_8 = 1.312$	S_{11}	S_{11}	-	0.054
lt I	B_4	0.2312	0.0321	$S_9 = 1.523$	S_6	S_7	2	0.020
ian	B_5	0.2253	0.0557	$S_{10} = 1.524$	S_{12}	S_6	0	0.005
Var	B_6	0.2520	0.0335	$S_{11} = 1.409$	S_8	S_{12}		0.025
F	B_7	0.6346	0.0474	$S_{12}=1.350$	S_7	S_8		0.085
	B_8	0.5418	0.0828					RMSE
	9	0.5477	0.0674				(0.49497475
	B_1	0.6757	0.0654	$S_6 = 1.448$	S_{10}	S_{10}		0.058
	B_2	0.5294	0.0848	$S_7 = 1.372$	S_9	S_9		0.046
\geq	B_3	0.2208	0.0371	$S_8 = 1.301$	S_{11}	S_{11}		0.065
lt]	B_4	0.2531	0.0402	$S_9 = 1.536$	S_6	S_7	0	0.033
riaı	B_5	0.2658	0.0713	$S_{10} = 1.556$	S_{12}	S_6	9	0.027
Vaj	B_6	0.2529	0.0393	$S_{11} = 1.473$	S_7	S_{12}		0.039
	B_7	0.6356	0.0513	$S_{12} = 1.391$	S_8	S_8		0.044
	B_8	0.5324	0.0804					RMSE
	B ₉	0.6355	0.0716	0 1 001	G	0		0.55809184
	B_1	0.6807	0.0566	$S_6 = 1.381$	S_9	S_{10}		
	B_2	0.5133	0.0790	$S_7 = 1.314$	S_{10}	59 C		
\geq	В3 р	0.2230	0.0399	$S_8 = 1.230$	S_{11}	S ₁₁		
ant	\mathbf{D}_4	0.3183	0.0043	$S_9 = 1.474$	\mathfrak{S}_{12}	57 C	10	
ariɛ	Б5 D	0.2950	0.0928	$S_{10} = 1.464$	\mathfrak{D}_6	Σ_6	10	
Vŝ	В ₆ р	0.2546	0.0444	$S_{11}=1.409$	57 C	S_{12}	Ш	
	В7 Р	0.0232	0.0490	$S_{12}=1.397$	$\mathfrak{2}_8$	\mathfrak{D}_8		DMOD
	Б8 D	0.4811	0.0850					KM5E 52705947
	D9	0.0000	0.0704	ta ugad			(1.00100841
# ST		es differa	nces with	variant I				
	, 2001	so amore	VIOLO WIUII	, at tailty 1				

Table 3.16: Group II - all variants

Table 3.16 gives the relationship between the number of constraints and the root mean square error of scores. For instance, we see that using 30 constraints out of 35 the error is approximately 0.48. If we take 20 constraints, the error increases a little, and equals almost to 0.49, and so on. Another important aspect is that in all five variants we recover the ordering of scenarios, given by experts. Finally, the problem is feasible for all five variants.

Keeping in mind that the ordering of scenarios is recovered for all variants, we decide that "best variant" for group II is the last variant. We will use this last variant for further analysis.

Next we present the plots of the imposed and obtained probability, corresponding to each rank (position). Figure 3.1 shows the imposed probabilities, and the obtained ones in all of the 5 variants. We can see from this plot that the line corresponding to variant 5 follows the most accurate the line corresponding to imposed probabilities. In the same manner all the ranks are treated, and it is visible that for all ranks the variant V has performed the best. If we combine this knowledge with the obtained results for the two errors (fitting and validation), and with the error for scores, we conclude that the last variant is suitable for the further analysis.

Figure 3.1: Group II - first rank plot

Figure 3.2: Group II - second rank plot

Figure 3.3: Group II - third rank plot

Figure 3.4: Group II - fourth rank plot

Figure 3.5: Group II - fifth rank plot

We analyse similarly the other groups. The same variants as for group 2 are considered further.

3.2 Group 1

Figure 3.6: Group II - sixth rank plot

Figure 3.7: Group II - seventh rank plot

Taking first three and last three columns of constraints results in a small value of RMSE, but in a large number of constraints. Very good results are obtained in variant (III), where the value of RMSE is 0.50149932 and the number of constraints 14. In variant (IV) the number of constraints is small but RMSE increased significantly. This should be further investigated. The last variant is variant V with the number of constraints equal to 13 and RMSE equal to 0.54665841.

As a conclusion for this group, we state that variant III (1,2,6,7) and V (≥ 3) are suitable for the analysis, but we consider in our analysis variant V.

3.3 Group 3

In this group due to an error, scenario number 12 is not the same as scenario number 12 from group 2. The difference is in the value of the first attribute: "chance of introduction". This value was taken equal to zero by mistake ((1) corresponds to 0% chances of introduction, whereas (5) corresponds to 100% chances of introduction).

Because of this error 10 out of 11 experts considered this scenario the least sever, and one out of 11 experts considered this scenario as the most severe. This is a strange result, and this scenario might have been misunderstood. After the elicitation, the discussion with experts revealed that they were very confused about

G	ROUP	T			orde	ring		
G		mean	variance	scores	rank	ΡĪ	#	
	B_1	0.4849	0.1136	$S_1 = 1.584$	S_1	S_1		
	B_2	0.5460	0.0751	$S_2 = 1.263$	S_3	S_3		
П	B_3	0.5060	0.0940	$S_3 = 1.550$	S_6	S_6	_	
nt	B_4	0.1794	0.0211	$S_4 = 1.233$	S_7	S_7	2	
ria	B_5	0.4746	0.0880	$S_5 = 1.112$	S_4	S_2	8	
Va	B_6	0.4399	0.0803	$S_6 = 1.380$	S_2	S_4		
	B_7	0.6913	0.0551	$S_7 = 1.334$	S_5	S_5		
	B_8	0.4021	0.0776					
	B_9	0.3629	0.0662					\mathbf{SD}
	B_1	0.4847	0.1136	$S_1 = 1.580$	S_1	S_1		0.004
	B_2	0.5479	0.0751	$S_2 = 1.258$	S_3	S_3		0.005
Н	B_3	0.5034	0.0945	$S_3 = 1.546$	S_6	S_6		0.004
lt I	B_4	0.1784	0.0211	$S_4 = 1.229$	S_7	S_7	2	0.004
iar	B_5	0.4747	0.0881	$S_5 = 1.109$	S_4	S_2	3	0.003
Var	\mathbf{B}_{6}	0.4409	0.0807	$S_6 = 1.376$	S_2	\bar{S}_4		0.004
-	B_7	0.6895	0.0557	$S_7 = 1.331$	S_5	S_5		0.003
	B_8	0.4028	0.0779				ij	RMSE
	B_9	0.3616	0.0662				- C	0.16785829
	B_1	0.5321	0.1020	$S_1 = 1.626$	S_1	S_1	Ï	0.042
	B_2	0.5533	0.0766	$S_2 = 1.301$	S_3	S_3	- II	0.038
	B_3	0.5006	0.0938	$S_3 = 1.596$	S_6	S_6		0.046
t L	B_4	0.1864	0.0227	$S_4 = 1.274$	S_7	S_7	1	0.041
ian	B_5	0.4673	0.0855	$S_5 = 1.153$	S_4	S_2	4	0.041
/ar	\mathbf{B}_{6}	0.4460	0.0797	$S_6 = 1.403$	S_2	\bar{S}_4		0.023
	B_7	0.6726	0.0587	$S_7 = 1.354$	S_5	S_5		0.020
	B_8	0.4140	0.0785				Ï	RMSE
	B_9	0.3886	0.0734				(0.50149932
	B_1	0.5427	0.0946	$S_1 = 1.688$	S_1	S_1		0.104
	B_2	0.5532	0.0740	$S_2 = 1.451$	S_3	S_3		0.188
\geq	B_3	0.4520	0.0886	$S_3 = 1.683$	S_6	S_6		0.133
ιtΙ	B_4	0.2445	0.0317	$S_4 = 1.346$	S_7	S_2	_	0.113
iar	B_5	0.5064	0.0847	$S_5 = 1.233$	S_4	S_7	7	0.121
Var	B_6	0.4768	0.0803	$S_6 = 1.471$	S_2	S_4		0.091
-	B_7	0.6302	0.0671	$S_7 = 1.415$	S_5	S_5		0.081
	B_8	0.4692	0.0823					RMSE
	B_9	0.4758	0.0865				(0.91119084
	B_1	0.5074	0.0825	$S_1 = 1.612$	S_1	S_1		0.029
	B_2	0.5666	0.0760	$S_2 = 1.351$	S_3	S_3		0.088
\geq	B_3	0.4154	0.0844	$S_3 = 1.595$	S_6	S_6		0.045
nt.	B_4	0.2385	0.0439	$S_4 = 1.278$	S_7	S_7	1	0.045
ria.	B_5	0.5302	0.0826	$S_5 = 1.174$	S_4	S_2	3	0.062
Vai	B_6	0.5058	0.0796	$S_6 = 1.388$	S_2	S_4		0.005
	B_7	0.6618	0.0645	$S_7 = 1.360$	S_5	S_5		0.026
	B_8	0.4875	0.0829					RMSE
	B_9	0.3988	0.0809				<u> </u>).54665841
#	- the r	umber o	of constrain	nts used				
SI) - scor	res differ	ences with	variant I				

Table 3.17: Group I - all variants

this scenario, as costs and spread can be high only if the pathogen have been introduced. We had few alternatives that we could have chosen in order to solve this problem. One of them was to redo the elicitation process, with corrected scenario 12. Another alternative was to exclude the whole group 3 from our analysis. We could have also changed the model, or, the fourth alternative was that we found the most attractive to remove scenario 12 from our analysis.

Redoing the elicitation would probably be the best alternative to take. Unfortunately, the time constraints do not allow us to choose this alternative. To change the model, due to a mistake was not considered the best option. Moreover, if we have removed scenario 12 from the group, the linear model seems to fit. Because of this, we decided to remove scenario 12 from the group, in all considered variants.

GI	ROUP	II			order	ing		
01		mean	variance	scores	rank	ΡĪ	#	
	B_1	0.3617	0.0558	$S_{11} = 1.302$	S_{16}	S_{16}		
	B_2	0.2121	0.0716		S_{13}	S_{15}		
_	B_3	0.4194	0.0631	$S_{13} = 1.239$	S_{11}	S_{14}		
nt]	B_4	0.2215	0.0588	$S_{14} = 1.395$	S_{14}	S_{11}	3	
riaı	B_5	0.5048	0.1225	$S_{15} = 1.401$	S_{17}	S_{17}	1	
Vaj	\mathbf{B}_{6}	0.3664	0.0964	$S_{16} = 1.608$	S_{15}	S_{13}		
	B_7	0.5719	0.0842	$S_{17} = 1.254$				
	B_8	0.6336	0.0894				ij	
	B_9	0.3126	0.0968				ij	\mathbf{SD}
	B_1	0.4083	0.0729	$S_{11} = 1.299$	S_{16}	S_{16}	Ï	0.003
	B_2	0.1990	0.0456		S_{13}	S_{15}	ij	
П	B_3	0.4489	0.0759	$S_{13} = 1.268$	S_{11}	S_{14}		0.029
ιtΙ	B_4	0.2658	0.1044	$S_{14} = 1.444$	S_{14}	S_{11}	2	0.050
ian	B_5	0.4710	0.1050	$S_{15} = 1.468$	S_{17}	S_{13}	6	0.066
Var	\mathbf{B}_{6}	0.3509	0.0974	$S_{16} = 1.566$	S_{15}	S_{17}		0.042
-	$\tilde{B_7}$	0.5772	0.0698	$S_{17} = 1.261$	10	11		0.007
	\mathbf{B}_{8}	0.6678	0.0712	11			ij	RMSE
	\mathbf{B}_{9}	0.2253	0.0553				0.	44410977
	B_1	0.4687	0.1005	$S_{11} = 1.402$	S_{16}	S_{16}	Ï	0.099
	B_2	0.2503	0.0769		S_{13}	S_{14}	Ü	
	B_3	0.4315	0.0844	$S_{13} = 1.285$	S_{11}	S_{15}		0.046
t II	B_4	0.1698	0.0417	$S_{14} = 1.441$	S_{14}	S_{11}	1	0.047
ian	B_5	0.4913	0.0888	$S_{15} = 1.439$	S_{17}	S_{13}	4	0.038
/ar	\mathbf{B}_{6}	0.3616	0.0870	$S_{16} = 1.645$	S_{15}	S_{17}		0.037
	\mathbf{B}_7	0.5507	0.0928	$S_{17} = 1.273$				0.020
	B_8	0.6216	0.0812				ij	RMSE
	B_9	0.3668	0.0833				0.	53491265
	B_1	0.5689	0.0829	$S_{11} = 1.454$	S_{16}	S_{16}		0.0151
	B_2	0.3505	0.1060		S_{13}	S_{14}		
\geq	B_3	0.3825	0.0793	$S_{13} = 1.256$	S_{11}	S_{15}		0.016
τI	B_4	0.1972	0.0405	$S_{14} = 1.485$	S_{14}	S_{11}		0.090
ian	B_5	0.6004	0.0789	$S_{15} = 1.482$	S_{17}	S_{13}	4	0.081
/ar	B_6	0.4161	0.0810	$S_{16} = 1.674$	S_{15}	S_{17}		0.066
-	B_7	0.4739	0.0864	$S_{17} = 1.202$				0.052
	B_8	0.5872	0.0813					RMSE
	B_9	0.4797	0.0839				$\parallel 0.$	67568840
	B_1	0.4582	0.0969	$S_{11} = 1.361$	S_{16}	S_{16}		0.059
	B_2	0.3540	0.1009		S_{13}	S_{15}		
\geq	B_3	0.4541	0.0811	$S_{13} = 1.173$	S_{11}	S_{14}		0.066
nt	B_4	0.2016	0.0531	$S_{14} = 1.419$	S_{14}	S_{11}	0	0.024
ria	B_5	0.5064	0.0866	$S_{15} = 1.440$	S_{17}	S_{17}	9	0.039
Va	B_6	0.4043	0.0867	$S_{16} = 1.660$	S_{15}	S_{13}		0.052
	B_7	0.5566	0.0924	$S_{17} = 1.239$				0.015
	B_8	0.5909	0.0884					RMSE
	B ₉	0.3613	0.0802	-			$\parallel 0.$	50543491
#	- the nu	umber of	constraint	s used				
SD) - score	es differei	nces with v	variant 1				

Table 3.18: Group III - all variants

3.4 Group 4

In an analogous way we present the results for group 4 in Table 3.19.

GB	OUP I	V			order	ring					
GI		mean	variance	scores	rank	PI	#				
	B_1	0.5333	0.0966	$S_{16} = 1.235$	S_{20}	S_{20}					
	B_2	0.2234	0.0665	$S_{17} = 1.204$	S_{21}	S_{21}	Ï				
	B_3	0.6953	0.0429	$S_{18} = 1.187$	S_{16}	S_{16}					
l l	\mathbf{B}_4	0.6013	0.0619	$S_{19} = 1.188$	S_{17}	S_{17}	2				
iar	B ₅	0.1229	0.0385	$S_{20} = 1.468$	S19	S19	9				
Var	Be	0.1023	0.0351	$S_{21} = 1.275$	S_{18}	S_{18}	0				
r	\mathbf{B}_{7}	0.3754	0.0895	$S_{22} = 1.084$	S22	S22					
	\mathbf{B}_{8}	0.4140	0.0859		- 22	- 22	ii -				
	Bo	0.1906	0.0295				l	\mathbf{SD}			
	B ₁	0.5096	0.0902	$S_{16} = 1.252$	S_{20}	S_{20}		0.017			
	B_2	0.2182	0.0698	$S_{17} = 1.221$	S_{21}	S_{21}	ii -	0.017			
	$\tilde{B_3}$	0.7196	0.0406	$S_{18} = 1.206$	S ₁₆	S ₁₆		0.019			
t II	_3 B₄	0 5977	0.0601	$S_{10} = 1.202$	S17	S17	2	0.014			
an	B-	0.1256	0.0369	$S_{19} = 1.202$ $S_{20} = 1.473$	S_{10}	S_{10}	$\overline{5}$	0.0011			
ari	B_{c}	0.1250 0.1057	0.0305	$S_{20} = 1.475$ $S_{21} = 1.287$	S19	S18	0	0.000			
\geq	B_{π}	0.1007 0.3747	0.0555	$S_{21} = 1.201$ $S_{22} = 1.000$	Saa Saa	See	Ш	0.012			
	\mathbf{B}_{2}	0.0141	0.0823	522-1.055	022	022		BMSE			
	B ₀	0.4050 0.1912	0.0302					31584207			
	B ₁	0.5716	0.0002	$S_{1c} = 1.359$	Saa	See	0.1	0 124			
	B_2	0.2467	0.0590	$S_{16} = 1.333$ $S_{17} = 1.289$	S_{20} S_{21}	S_{20}	l	0.124 0.085			
	B_2	0.2101 0.7369	0.0000	$S_{10} = 1.265$ $S_{10} = 1.258$	S_{1c}	S_{1c}	Ш	0.000			
Π	B.	0.6176	0.0631	$S_{18} = 1.230$ $S_{18} = 1.272$	S10	S16	1	0.011			
ant	D ₄ D	0.0170	0.0031	$S_{19} = 1.272$ S = 1.569	S17 C	С С	ĥ	0.000			
aria	D5 D	0.1454 0.1479	0.0430	$S_{20} = 1.308$	S19 C	019 C	0	0.100 0.114			
\geq	D ₆ D.	0.1472	0.0420 0.0825	$S_{21}=1.369$ $S_{11}=1.157$	518 S	S18	Ш	0.114 0.074			
	D7 D.	0.3955	0.0825 0.1007	$5_{22}=1.157$	522	522					
	D8 Ba	0.4310 0.2258	0.1007					RIVISE 80744058			
	D ₉	0.2200	0.0443	S1 /16	S	S.	0.0	0 1 9 3			
	\mathbf{D}_1 \mathbf{B}_2	0.0492 0.2152	0.0903	$S_{16} = 1.410$ $S_{10} = 1.207$	520 S	S20		0.100			
	D2 D	0.3102 0.7202	0.0599	$S_{17} = 1.297$ S = 1.220	S21 C	016 C		0.095			
$\mathbf{I}\mathbf{V}$	D3 В.	0.1203 0.5708	0.0303	$S_{18} = 1.239$ $S_{12} = 1.270$	S16	S21	II	0.052			
int	D4 D	0.1202	0.0818	$S_{19} = 1.279$	S17 S	017 C	8	0.091			
ria	D5 D	0.1690 0.1697	0.0480 0.0272	$S_{20} = 1.374$	5 ₁₉	519 C	0	0.100			
Va	D ₆ D	0.1027	0.0373 0.1077	$S_{21}=1.557$	518 C	018 C	П	0.082			
	D7 D	0.4309 0.4209	0.1077	$5_{22}=1.104$	S_{22}	S_{22}					
	D8 D	0.4302 0.2605	0.0903					NIVISE 22270450			
	D9 D	0.2095	0.0550	C 1 405	C	C	0.0	0.250			
	D ₁ D	0.0507	0.0024 0.0715	$S_{16} = 1.495$ S = 1.212	S_{20}	520 C	II.	0.239 0.107			
	D2 D	0.2091	0.0713	$S_{17} = 1.312$ S = 1.242	S21 C	S21 C	II	0.107			
\geq	D3 D	0.0000	0.0001	$S_{18} = 1.242$	516 C	516 C	1	0.000			
ant	\mathbb{D}_4	0.5513	0.0748	$S_{19}=1.293$	S_{17}	\mathfrak{S}_{17}	1 0	0.100			
arić	B_5	0.1701	0.0343	$S_{20} = 1.598$	S_{19}	S_{19}	\angle	0.130			
ζ	B_6	0.2713	0.0886	$S_{21}=1.499$	S_{18}	S_{18}		0.224			
	B_7	0.4081	0.0821	$S_{22}=1.158$	S_{22}	S_{22}		0.074			
	B_8	0.4587	0.0922					RMSE			
	B ₉	0.2545	0.0671				∥0.	97731014			
# -	the nu	imber of	constraint	s used							
SD	SD - scores differences with variant I										

Table 3.19: Group IV - all variants

3.5. GROUP 5

Notice that in this group variant IV (1,7) performs better than variant V (\geq 3). In the former we have 8 constraints and we obtain an RMSE of 0.804259, whereas in the latter we have 12 constraints and obtain an RMSE of 0.977310. Both variant IV and V provide good results, but variant IV is better.

3.5 Group 5

CI	CROUP V ordering									
GI		mean	variance	scores	rank	PI	#			
	B_1	0.5255	0.0818	$S_{21} = 1.192$	S_{21}	S_{21}				
	B_2	0.2938	0.0615	$S_{22} = 0.901$	S_{23}	S_{23}				
_	B_3	0.2926	0.0609	$S_{23} = 1.129$	S_{26}	S_{26}				
nt .	B_4	0.3821	0.0747	$S_{24} = 0.923$	S_{27}	S_{24}	3			
ria	B_5	0.4996	0.0874	$S_{25} = 0.916$	S_{24}	S_{27}	8			
Vaj	\mathbf{B}_{6}	0.2936	0.0757	$S_{26} = 0.953$	S_{22}	S_{25}				
	B_7	0.5416	0.0703	$S_{27} = 0.923$	S_{25}	S_{22}				
	B_8	0.7221	0.0684				ij			
	B_9	0.1443	0.0288				Ï	\mathbf{SD}		
	B_1	0.5266	0.0822	$S_{21}=1.190$	S_{21}	S_{21}	Ï	0.002		
	B_2	0.2939	0.0614	$S_{22} = 0.900$	S_{23}	S_{23}	ij	0.001		
Н	B_3	0.2929	0.0606	$S_{23} = 1.126$	S_{26}	S_{26}		0.003		
ιtΙ	B_4	0.3826	0.0749	$S_{24} = 0.922$	S_{27}	S_{24}	3	0.001		
ian	B_5	0.4998	0.0875	$S_{25}=0.915$	S_{24}	S_{27}	2	0.002		
/ar	\mathbf{B}_{6}	0.2914	0.0745	$S_{26} = 0.952$	S_{22}^{-1}	S_{25}^{-1}		0.002		
-	B_7	0.5416	0.0704	$S_{27} = 0.920$	S_{25}	S_{22}		0.002		
	\mathbf{B}_{8}	0.7199	0.0691	21	20	22	ü	RMSE		
	\mathbf{B}_{9}	0.1456	0.0294				ü	0.11259413		
	B ₁	0.5106	0.0847	$S_{21} = 1.259$	S_{21}	S_{21}	- ii	0.067		
	\mathbf{B}_2	0.2947	0.0662	$S_{22}^{21} = 0.965$	S_{23}^{21}	S_{23}^{21}	ij	0.063		
н	$\bar{\mathrm{B}_3}$	0.3448	0.0719	$S_{23} = 1.190$	S_{26}^{-0}	S_{26}^{-0}		0.061		
II	B ₄	0.4129	0.0793	$S_{24} = 0.995$	S_{27}^{20}	S_{24}	2	0.072		
ant	B₅	0.5287	0.0811	$S_{25} = 0.976$	S24	S25	1	0.060		
ari	Be	0.2872	0.0746	$S_{26} = 1.025$	S_{24}	S_{22}	-	0.071		
\geq	B_7	0.5857	0.0659	$S_{27} = 0.955$	S_{25}	S_{27}		0.032		
	B ₈	0.7129	0.0672	821 01000	~25	~21	l	RMSE		
	B_9	0.1910	0.0380				ij	0.65403060		
	B ₁	0.4824	0.0861	$S_{21} = 1.303$	S_{21}	S_{21}		0.111		
	B_2	0.2952	0.0704	$S_{22} = 0.994$	S_{23}^{21}	S_{23}	ü	0.093		
5	$\bar{\mathrm{B}_3}$	0.4204	0.0871	$S_{23} = 1.220$	S_{26}^{-0}	S_{26}^{-0}		0.091		
Ľ	\mathbf{B}_{4}	0.4584	0.0837	$S_{24} = 1.032$	S_{27}^{20}	S_{24}	1	0.109		
ant	B5	0.5226	0.0850	$S_{25}=1.015$	S_{24}	S_{25}	0	0.099		
ari	B_6	0.2936	0.0821	$S_{26} = 1.066$	S_{22}	S_{22}		0.113		
\geq	B_7	0.6142	0.0689	$S_{27} = 0.955$	S_{25}	S_{27}		0.032		
	\mathbf{B}_{8}	0.6537	0.0778	- 21	~ 20	- 21	ü	RMSE		
	\mathbf{B}_{9}	0.2124	0.0370				ü	0.80573760		
	B ₁	0.5483	0.0809	$S_{21} = 1.428$	S_{21}	S_{21}	Ï	0.236		
	B_2	0.2920	0.0635	$S_{22} = 0.988$	S_{23}^{-1}	S_{23}	ij	0.087		
~	$\bar{\mathrm{B}_3}$	0.3176	0.0705	$S_{23}^{}=1.391$	S_{26}^{-5}	S_{25}	ü	0.262		
t V	$\tilde{B_4}$	0.3933	0.0748	$S_{24} = 1.012$	S_{27}^{20}	S_{24}^{-0}		0.089		
ian	B_5	0.4894	0.0822	$S_{25} = 1.021$	$S_{24}^{}$	S_{27}	9	0.105		
/ar	\mathbf{B}_{6}	0.4609	0.0935	$S_{26} = 1.958$	\tilde{S}_{22}	S_{22}^{2}	-	0.005		
-	\mathbf{B}_{7}	0.4967	0.0739	$S_{27} = 0.990$	$S_{25}^{$	S_{26}		0.067		
	\mathbf{B}_{8}	0.6870	0.0715			20	l	RMSE		
	$\tilde{\mathrm{B}_9}$	0.2484	0.0560				ij	0.92172131		
#	- the n	umber o	f constrain	ts used						
\mathbf{SD}) - scor	es differe	ences with	variant I						

Table 3.20: Group V - all variants

Table 3.20 presents results for group 5. We notice that when we take the first and the last column of constraints we obtain better results than in other cases. Variant IV has 10 constraints and a satisfactory RMSE of 0.769146 whereas the last one provides us with a lower number of constraints, 9, but a higher value of RMSE, 0.921721. For this group we would suggest variant IV to be chosen.

3.6 Group 6

Finally the last group is the 6th one. We discuss this last group in more details. In group 6 four scenarios from group 5 are repeated. Hence last group provides just three new scenarios: 28, 29 and 30. When we run probabilistic inversion with all constraints, the problem is not feasible. This can be seen in Table 3.21. The error in this case equals to 1.23695431, whereas for teach group, when analysing with all constraints, this error is on the order 10^{-3} . The linear model is not appropriate for this last group.

\mathbf{V}	VARIANT I: $1\div7$											
				ordei	ring							
	mean	variance	scores	rank	\mathbf{PI}	#	$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$			
B_1	0.4148	0.0531	$S_{24} = 1.073$	S_{29}	S_{30}		0.818	0.94337	0.1252			
B_2	0.3192	0.0478	$S_{25} = 1.018$	S_{26}	S_{24}	Ï	0.636	0.81995	0.1836			
B_3	0.3874	0.1086	$S_{26} = 1.027$	S_{27}	S_{26}	Ï	0.909	0.87676	0.0323			
B_4	0.3396	0.1000	$S_{27} = 0.913$	S_{28}	S_{25}		0.818	0.69024	0.1279			
B_5	0.3207	0.0883	$S_{28} = 1.003$	S_{30}	S_{28}		0.818	0.90444	0.0863			
B_6	0.2721	0.0315	$S_{29} = 0.861$	S_{24}	S_{27}		0.909	0.88508	0.0240			
B_7	0.6198	0.0848	$S_{30} = 1.090$	S_{25}	S_{29}		0.636	0.64227	0.0059			
B_8	0.5880	0.0775					0.818	0.88006	0.0619			
B_9	0.3838	0.0131					0.909	0.90807	0.0010			
							0.727	0.70230	0.0250			
							0.818	0.85672	0.0385			
							0.727	0.80746	0.0802			
							0.909	0.93611	0.0270			
							0.818	0.85234	0.0342			
							0.727	0.75167	0.0244			
							0.909	0.92236	0.0133			
						3	0.909	0.86796	0.0411			
						7	0.909	0.86682	0.0423			
							0.909	0.95580	0.0467			
							0.909	0.91511	0.0060			
							0.455	0.63805	0.1835			
							0.727	0.72874	0.0015			
							0.818	0.79951	0.0187			
							0.818	0.81207	0.0061			
							0.818	0.79123	0.0270			
							0.818	0.90856	0.0904			
							0.727	0.78409	0.0568			
							0.727	0.74012	0.0128			
							0.818	0.87588	0.0577			
							0.818	0.83603	0.0178			
							0.909	0.91390	0.0048			
							0.818	0.81258	0.0056			
							0.909	0.91346	0.0044			
							0.818	0.82679	0.0086			
							0.818	0.81882	0.0006			
							0.727	0.73411	0.0068			
							0.909	0.90900	0.0001			
								RMSE	$1.2369543\overline{1}$			

- the number of constraints used

EQ - experts quantiles (experts assessments)

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ-OQ)

We tried to increase the number of samples, but we were not successful. We investigated whether the change of the starting distributions of B_i 's would make the linear model feasible. Unfortunately, all these alternatives we tried led us to the same answer: not feasible.

There can be many reasons why the linear model does not fit properly the data from the last group. It can be due to experts fatigue that they gave preferences of scenarios differently than in other groups. It may be that for the attributes which have low values (the scenarios do not differ too much of each other), experts scored scenarios with different than linear model in mind, or just give their ordering randomly. This problem will be further investigated in Chapter 5. We will motivate there our decision of removing the sixth group from the analysis.

Our analysis is divided into two parts. In the first part, we make the analysis of all combined groups together using variant V for all of them. Taking this variant for all groups, leads to the reduction of number of constraints from 200 to 53, which is manageable for PI. In the second part, we combine all groups together but we consider variant V for the first three groups, and variant IV for the last two. This way we choose the variant which has performed the best within each group. In this case we reduce the number of constraints from 200 to 50.

In the following sections we present the results corresponding to both analyses.

3.7 Results obtained under variant V

This section presents results of analysis with variant V firstly for each group taken separately, and then with all scenarios considered together. For fair comparison we have used the same samples for all groups. Table 3.22 contains the mean and variances of B's, scores obtained, orderings obtained with probabilistic inversion and ordering with rank ordering technique.

In Table 3.22 the constraints included are shown in first column. For instance, in the second group, sixth scenario, has only one constraint included, denoted as $S_{6.2<2}$ (Table 3.23 first column, row 5). $S_{6.2<2}$ means that scenario 6, in group 2, must be second smallest in the ranking. This convention is used for all constraints. In column 2, row 5 of the same table we see that the chance of the sixth scenario to be second smallest within the second group should be $\frac{4}{11}$ (the value $1-\frac{4}{11}=0.636$ in the software). Next to 0.363 we see 0.3630 and 0.00036. The first one, 0.3630 is the value recovered by probabilistic inversion procedure for this constraint whereas the last one, 0.00036 represents the error obtained by subtracting the value obtained by probabilistic inversion from the value imposed by experts. RMSE_q expresses the error of values for quantiles imposed and obtained in this second group, and RMSE_s represents the error of scores computed by subtracting the scores obtained in variant V from scores obtained in variant I.

								:		
VAR	IANT	$\mathrm{V}:\geq 3$		GROUF	νI		order	ing		
	$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathrm{PI}\#$		
$S_{5.1<}$	0.545	0.5450	0.00044	$b_1 \ 0.5074$	0.0825	$S_1 = 1.612$	S_1	$S_1 \parallel$		
$S_{1.1>}$	0.636	0.6360	0.00032	$b_2 \ 0.5666$	0.0760	$S_2 = 1.351$	S_3	$S_3 \parallel$		
$S_{3.1>}$	0.545	0.5475	0.00208	$b_3 0.4154$	0.0844	$S_3 = 1.595$	S_6	$S_6 \parallel$		
$S_{2.1<2}$	0.545	0.5449	0.00059	$b_4 \ 0.2385$	0.0439	$S_4 = 1.278$	S_7	S_7		
$S_{7.1<2}$	0.727	0.7292	0.00197	$b_5 \ 0.5302$	0.0826	$S_5 = 1.174$	S_4	$S_2 1$		
$S_{1.1>2}$	0.455	0.4571	0.00254	$b_6 0.5058$	0.0796	$S_6 = 1.385$	S_2	S_4 3		
$S_{3.1>2}$	0.727	0.7278	0.00048	b ₇ 0.6618	0.0645	$S_7 = 1.360$	S_5	S_5		
$S_{4.1 < 3}$	0.636	0.6361	0.00028	$b_8 0.4875$	0.0829					
$S_{5.1 < 3}$	0.727	0.7274	0.00014	b ₉ 0.3998	0.0809					
$S_{7.1 < 3}$	0.727	0.7287	0.00142							
$S_{7.1>3}$	0.545	0.5449	0.00057							
$S_{3.1<4}$	0.727	0.7270	0.00028							
$S_{6.1 < 4}$	0.727	0.7270	0.00027							
		\mathbf{RMSE}_q	0.1064		\mathbf{RMSE}_{s}	0.5561				
# - t	he nun	ber of co	nstraints	used						
EQ -	expert	s quantile	s (exper	ts assessm	ents)					
OQ -	obtain	ed quanti	les (after	· PI)						
QD - quantiles differences (EQ – OQ)										
\mathbf{RMSE}_q - error of quantiles										
RMS	\mathbf{E}_s - \mathbf{er}_s	ror of sco	res							

Table 3.22: Final results for GROUP I when Variant V used

Tables 3.27 and 3.28 provide the results obtained when running the analysis with all groups together. Due to alignment in the document we split the table into two parts. It is visible that the RMSE is bigger than the ones we obtained for each group separately, and is now equal to 2.33273.

We have now many constraints and not all of them can be fitted properly. Nevertheless the ordering of scenarios is still quite good. When analysing the groups separately we have noticed that variant V is not always the best option to take. We investigate now the results obtained when we take for each group the best performing variant. These results are presented in the next section.

VAR	IANT	$\mathrm{V}:\geq 3$		GROUP	II		ordering			
	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathrm{PI}\#$		
$S_{8.2<}$	0.727	0.7270	0.00027	$b_1 \ 0.6807$	0.0566	$S_6 = 1.381$	S_{10}	$S_{10} \parallel$		
$S_{12.2<}$	0.727	0.7270	0.00027	$b_2 \ 0.5133$	0.0790	$S_7 = 1.314$	S_9	$S_9 \parallel$		
$S_{9.2>}$	0.727	0.7270	0.00027	$b_3 0.2250$	0.0299	$S_8 = 1.256$	S_{11}	$S_{11} \parallel$		
$S_{10.2>}$	0.364	0.3640	0.00036	$b_4 \ 0.3183$	0.0643	$S_9 = 1.474$	S_{12}	S_7		
$S_{6.2<2}$	0.636	0.6360	0.00036	$b_5 0.2950$	0.0928	$S_{10} = 1.465$	S_6	$S_6 1$		
$S_{7.2<2}$	0.727	0.7270	0.00027	$b_6 0.2546$	0.0444	$S_{11} = 1.409$	S_7	$S_{12} 0$		
$S_{9.2<2}$	0.909	0.9090	0.00009	$b_7 0.6232$	0.0490	$S_{12} = 1.397$	S_8	S_8		
$S_{8.2<3}$	0.545	0.5450	0.00145	$b_8 0.4811$	0.0850					
$S_{7.2>3}$	0.455	0.4550	0.00045	$b_9 \ 0.6056$	0.0754					
$S_{11.2<4}$	0.545	0.5450	0.00045							
		\mathbf{RMSE}_q	0.0572		\mathbf{RMSE}_s	0.5500				
# - the number of constraints used										
EQ - experts quantiles (experts assessments)										
OQ - obtained quantiles (after PI)										

Table 3.23: Final results for GROUP II when Variant V used

QD - quantiles differences (EQ - OQ) \mathbf{RMSE}_q - error of quantiles

 \mathbf{RMSE}_{s}^{T} - error of scores

Table 3.24: Final results for GROUP III when Variant V used

VAR	IANT	$\mathbf{V}:\geq 3$		GROUP	III		order	ing			
	$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathrm{PI}\#$			
$S_{13.3>}$	0.636	0.6360	0.00036	$b_1 0.4582$	0.0969	$S_{11} = 1.361$	S_{16}	$S_{16} \parallel$			
$S_{16.3>}$	0.545	0.5450	0.00045	$b_2 \ 0.3540$	0.1009		S_{13}	$S_{15} \parallel$			
$S_{17.3 < 2}$	0.636	0.6360	0.00036	$b_3 \ 0.4541$	0.0811	$S_{13} = 1.173$	S_{11}	$S_{14} \parallel$			
$S_{11.2>2}$	0.727	0.7270	0.00027	$b_4 \ 0.2016$	0.0531	$S_{14} = 1.419$	S_{14}	S_{11}			
$S_{17.3>2}$	0.636	0.6360	0.00036	$b_5 \ 0.5064$	0.0866	$S_{15} = 1.440$	S_{17}	S_{17} 9			
$S_{14.3 < 3}$	0.636	0.6360	0.00036	$b_6 0.4043$	0.0867	$S_{16} = 1.660$	S_{15}	S_{13}			
$S_{11.3>3}$	0.727	0.7270	0.00027	$b_7 0.5566$	0.0924	$S_{17} = 1.239$					
$S_{14.3<4}$	0.727	0.7270	0.00027	$b_8 0.5909$	0.0884						
$S_{15.3 < 4}$	0.636	0.6360	0.00036	b ₉ 0.3613	0.0802						
		\mathbf{RMSE}_q	0.0556		\mathbf{RMSE}_{s}	0.5039					
# - tł	# - the number of constraints used										
EQ -	experts	s quantiles	s (expert	s assessme	ents)						
00	abtain	ad amount:	an (after	DI)							

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ - OQ)

 \mathbf{RMSE}_q - error of quantiles

 \mathbf{RMSE}_s - error of scores

VARI	ANT	$V: \ge 3$		GROUP	IV		order	ing		
	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathrm{PI}\#$		
$S_{16.4<}$	0.727	0.7271	0.00021	$b_1 \ 0.6357$	0.0624	$S_{16} = 1.495$	S_{20}	$S_{20} \parallel$		
$S_{22.4<}$	0.455	0.4549	0.00040	$b_2 \ 0.2897$	0.0715	$S_{17} = 1.312$	S_{21}	$S_{21} \parallel$		
$S_{20.4>}$	0.364	0.3640	0.00034	$b_3 0.6966$	0.0601	$S_{18} = 1.242$	S_{18}	$S_{16} \parallel$		
$S_{18.4<2}$	0.727	0.7270	0.00028	$b_4 \ 0.5513$	0.0748	$S_{19} = 1.293$	S_{19}	S_{17}		
$S_{22.4<2}$	0.636	0.6360	0.00032	$b_5 0.1701$	0.0343	$S_{20} = 1.598$	S_{17}	$\mathrm{S}_{19}\ 1$		
$S_{21.4>2}$	0.455	0.4549	0.00040	$b_6 0.2713$	0.0886	$S_{21} = 1.499$	S_{16}	$S_{18} 2$		
$S_{16.4 < 3}$	0.727	0.7282	0.00094	$b_7 0.4081$	0.0821	$S_{22} = 1.158$	S_{22}	S_{22}		
$S_{17.4 < 3}$	0.545	0.5458	0.00033	$b_8 \ 0.4587$	0.0922					
$S_{19.4<3}$	0.727	0.7270	0.00030	$b_9 \ 0.2545$	0.0671					
$S_{18.4>3}$	0.636	0.6360	0.00039							
$S_{19.4>3}$	0.727	0.7270	0.00026							
$S_{17.4 < 4}$	0.545	0.5450	0.00045							
		\mathbf{RMSE}_q	0.0680		\mathbf{RMSE}_{s}	0.9773				
# - th	e num	ber of con	nstraints	used						
EQ - 6	experts	quantiles	s (expert	s assessme	\mathbf{nts})					
OQ - obtained quantiles (after PI)										
$\mathbf{Q}\mathbf{D}$ - quantiles differences ($\mathbf{E}\mathbf{Q}$ - $\mathbf{O}\mathbf{Q}$)										
\mathbf{RMSE}_q - error of quantiles										
RMSE	\mathbf{E}_s^{T} - \mathbf{err}	or of scor	\mathbf{es}							

Table 3.25: Final results for GROUP IV when Variant V used

Table 3.26: Final results for GROUP V when Variant V used

VAR	[ANT	$\mathrm{V}:\geq 3$		GROUP	\mathbf{V}		order	ing
	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathrm{PI}\#$
$S_{22.5<}$	0.727	0.7270	0.00027	$b_1 \ 0.5483$	0.0809	$S_{21} = 1.428$	S_{21}	$S_{21} \parallel$
$S_{25.5<}$	0.636	0.6360	0.00036	$b_2 \ 0.2920$	0.0635	$S_{22} = 0.988$	S_{23}	$S_{23} \parallel$
$S_{21.5>}$	0.455	0.4550	0.00045	$b_3 0.3176$	0.0705	$S_{23} = 1.391$	S_{26}	$S_{25} \parallel$
$S_{22.5<2}$	0.727	0.7270	0.00027	$b_4 \ 0.3933$	0.0748	$S_{24} = 1.012$	S_{27}	S_{24}
$S_{26.5<2}$	0.727	0.7270	0.00027	$b_5 \ 0.4894$	0.0822	$S_{25} = 1.021$	S_{24}	$S_{27} 9$
$S_{23.5>2}$	0.455	0.4550	0.00045	$b_6 0.4609$	0.0935	$S_{26} = 0.958$	S_{22}	S_{22}
$S_{24.5 < 3}$	0.545	0.5450	0.00045	$b_7 0.4967$	0.0739	$S_{27} = 0.990$	S_{25}	$S_{26} \parallel$
$S_{27.5>3}$	0.636	0.6360	0.00036	$b_8 \ 0.6870$	0.0715			
$S_{27.5 < 4}$	0.727	0.7270	0.00027	$b_9 \ 0.2484$	0.0560			
		\mathbf{RMSE}_q	0.0680		\mathbf{RMSE}_s	0.9217		
# - tł	ne num	ber of con	straints	used				
EQ - 0	experts	quantiles	s (expert	s assessme	$\mathbf{nts})$			

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ - OQ)

 \mathbf{RMSE}_q - error of quantiles

 \mathbf{RMSE}_s - error of scores

								order	ing
		$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathrm{PI}\#$
ŝ	$S_{5.1<}$	0.545	0.7095	0.16407	$b_1 \ 0.5570$	0.0930	$S_1 = 1.452$	S_1	$S_1 \parallel$
\wedge	$S_{1.1>}$	0.636	0.4890	0.14740	$b_2 \ 0.2210$	0.0295	$S_2 = 1.240$	S_3	$S_3 \parallel$
	$S_{3.1>}$	0.545	0.7927	0.24722	$b_3 0.2988$	0.0474	$S_3 = 1.357$	S_6	$S_4 \parallel$
	$S_{2.1<2}$	0.545	0.4942	0.05128	$b_4 \ 0.2965$	0.0825	$S_4 = 1.346$	S_7	S_2
	$S_{7.1 < 2}$	0.727	0.7027	0.02456	$b_5 \ 0.3394$	0.0608	$S_5 = 1.123$	S_4	$S_6 1$
Ч	$S_{1.1>2}$	0.455	0.7783	0.32372	$b_6 0.1521$	0.0261	$S_6 = 1.167$	S_2	$S_7 3$
Ω	$S_{3.1>2}$	0.727	0.6257	0.10154	$b_7 \ 0.5159$	0.1027	$S_7 = 1.151$	S_5	S_5
\circ	$S_{4.1 < 3}$	0.636	0.8631	0.22673	$b_8 \ 0.6207$	0.0883			
Я	$S_{5.1 < 3}$	0.727	0.5861	0.14115	$b_9 \ 0.2004$	0.0546			
U	$S_{7.1 < 3}$	0.727	0.7425	0.01523					
	$S_{7.1>3}$	0.545	0.6734	0.12793					
	$S_{3.1 < 4}$	0.727	0.6282	0.09907					
	$S_{6.1 < 4}$	0.727	0.7487	0.02142					
3	$S_{8.2<}$	0.727	0.9102	0.18293			$S_6 = 1.167$	S_{10}	$S_{12} \parallel$
\wedge	$S_{12.2<}$	0.727	0.9250	0.19769			$S_7 = 1.151$	S_9	$S_9 \parallel$
	$S_{9.2>}$	0.727	0.7162	0.01105			$S_8 = 1.196$	S_{11}	S ₈
7	$S_{10.2>}$	0.364	0.8090	0.44540			$S_9 = 1.351$	S_7	S_{10}
	$S_{6.2<2}$	0.636	0.7545	0.11813			$S_{10} = 1.185$	S_6	$S_{11} 1$
Ч	$S_{7.2<2}$	0.727	0.8390	0.11174			$S_{11} = 1.178$	S_{12}	$S_6 0$
Ω	$S_{9.2<2}$	0.909	0.8938	0.01524			$S_{12} = 1.408$	S_8	S_7
\circ	$S_{8.2 < 3}$	0.545	0.6556	0.12012					
Я	$S_{7.2>3}$	0.455	0.6655	0.21092					
IJ	$S_{11.2<4}$	0.545	0.6224	0.07695					
3	$S_{13.3>}$	0.636	0.7656	0.12928			$S_{11} = 1.178$	S_{16}	$S_{14} \parallel$
\wedge	$S_{16.3>}$	0.545	0.5879	0.04248			$S_{13} = 1.101$	S_{13}	$S_{15} \parallel$
ŝ	$S_{17.3 < 2}$	0.636	0.7895	0.15309			$S_{14} = 1.370$	S_{11}	$S_{16} \parallel$
	$S_{11.3>2}$	0.727	0.8021	0.07483			$S_{15} = 1.359$	S_{14}	S_{11}
Ч	$S_{17.3>2}$	0.636	0.6648	0.02846			$S_{16} = 1.201$	S_{17}	$S_{13} 9$
Ω	$S_{14.3 < 3}$	0.636	0.7614	0.12501			$S_{17} = 1.039$	S_{15}	S_{17}
\circ	$S_{11.3>3}$	0.727	0.6494	0.07783					
Я	$S_{14.3<4}$	0.727	0.7835	0.05618					
IJ	$S_{15.3 < 4}$	0.636	0.6973	0.06098					Ï

Table 3.27: Final results for ALL GROUPS when Variant V used (PART I)

								order	ing	
		$\mathbf{E}\mathbf{Q}$	OQ	$\rm QD$	mean	variance	scores	rank	PI #	
ŝ	$S_{16.4<}$	0.727	0.9163	0.18901			$S_{16} = 1.201$	S_{20}	$S_{20} \parallel$	
\wedge	$S_{22.4<}$	0.455	0.5278	0.07330			$S_{17} = 1.039$	S_{21}	$S_{16} \parallel$	
4	$S_{20.4>}$	0.364	0.3605	0.00309			$S_{18} = 0.930$	S_{18}	$S_{21} \parallel$	
	$S_{18.4<2}$	0.727	0.6395	0.08774			$S_{19} = 0.867$	S_{19}	S_{17}	
Ч	$S_{22.4<2}$	0.636	0.7187	0.08231			$S_{20} = 1.305$	S_{17}	$S_{18} 1$	
Ω	$S_{21.4>2}$	0.455	0.4332	0.02135			$S_{21} = 1.161$	S_{16}	$S_{22} 2$	
\circ	$S_{16.4 < 3}$	0.727	0.7972	0.06997			$S_{22} = 0.883$	S_{22}	S_{19}	
Я	$S_{17.4 < 3}$	0.545	0.7037	0.15827						
U	$S_{19.4 < 3}$	0.727	0.7060	0.02123						
	$S_{18.4>3}$	0.636	0.8288	0.19239						
	$S_{19.4>3}$	0.727	0.8555	0.12820						
	$S_{17.4 < 4}$	0.545	0.6398	0.09436						
33	$S_{22.5<}$	0.727	0.8281	0.10081			$S_{21} = 1.161$	S_{21}	$S_{21} \parallel$	
\wedge	$S_{25.5<}$	0.636	0.6045	0.03190			$S_{22} = 0.883$	S_{23}	$S_{23} \parallel$	
S	$S_{21.5>}$	0.455	0.4569	0.00232			$S_{23} = 1.034$	S_{26}	$S_{26} \parallel$	
	$S_{22.5 < 2}$	0.727	0.6740	0.05323			$S_{24} = 0.903$	S_{27}	S_{24}	
Ч	$S_{26.5 < 2}$	0.727	0.8317	0.10439			$S_{25} = 0.851$	S_{24}	$S_{22} 9$	
Ω	$S_{23.5>2}$	0.455	0.4236	0.03094			$S_{26} = 0.959$	S_{22}	S_{25}	
\circ	$S_{24.5 < 3}$	0.545	0.5850	0.0.958			$S_{27} = 0.839$	S_{25}	$S_{27} \parallel$	
Я	$S_{27.5>3}$	0.636	0.6637	0.02733						
J	$S_{27.5 < 4}$	0.727	0.7270	0.00027						
			\mathbf{RMSE}_q	2.33273						
#	- the nu	mber of	f constrair	nts used						
EG	EQ - experts quantiles (experts assessments)									
OQ - obtained quantiles (after PI)										
\mathbf{QI}	QD - quantiles differences $(EQ - OQ)$									
RN	ASE_s - e	rror of	scores							

Table 3.28: Final results for ALL GROUPS when Variant V used (PART II)

3.8 Results obtained under the combination of variants

As mentioned previously, in this section we present the results obtained when we combine variants with the best performance in terms of the number of constraints and RMSE, in the group. For groups I, II and III the best results are obtained with Variant V, while for the group IV and V the best results are obtained under variant IV.

Just like in the previous section, means and variances of B's, scores obtained, orderings obtained with probabilistic inversion and ordering obtained with rank ordering technique, and constraints that we have included in the analysis of the five groups are shown in Tables 3.29, 3.30, 3.31, 3.32 and 3.33 respectively.

For the first three groups nothing changes relative to results obtained in the previous section. In the last two we notice a decrease of RMSE. Noticeable is that in group 4 we have 8 constraints instead of 12 and in group 5, 10 instead of 9.

VAR	IANT	$V: \ge 3$		GROU	JP I		order	ing
	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	mean	variance	e scores	rank	$\mathrm{PI}\#$
$S_{5.1<}$	0.545	0.5450	0.00044	$b_1 \ 0.50$	74 0.0825	$S_1 = 1.612$	S_1	$S_1 \parallel$
$S_{1.1>}$	0.636	0.6360	0.00032	$b_2 \ 0.56$	66 0.0760	$S_2 = 1.351$	S_3	$S_3 \parallel$
$S_{3.1>}$	0.545	0.5475	0.00208	$b_3 0.41$	54 0.0844	$S_3 = 1.595$	S_6	$S_6 \parallel$
$S_{2.1<2}$	0.545	0.5449	0.00059	$b_4 \ 0.23$	85 0.0439	$S_4 = 1.278$	S_7	S_7
$S_{7.1 < 2}$	0.727	0.7292	0.00197	$b_5 \ 0.53$	02 0.0826	$S_5 = 1.174$	S_4	$S_2 1$
$S_{1.1>2}$	0.455	0.4571	0.00254	$b_6 0.50$	58 0.0796	$S_6 = 1.385$	S_2	S_4 3
$S_{3.1>2}$	0.727	0.7278	0.00048	b ₇ 0.66	18 0.0645	$S_7 = 1.360$	S_5	S_5
$S_{4.1 < 3}$	0.636	0.6361	0.00028	$b_8 0.48$	75 0.0829			
$S_{5.1 < 3}$	0.727	0.7274	0.00014	b ₉ 0.39	98 0.0809			
$S_{7.1 < 3}$	0.727	0.7287	0.00142					
$S_{7.1>3}$	0.545	0.5449	0.00057					
$S_{3.1 < 4}$	0.727	0.7270	0.00028					
$S_{6.1 < 4}$	0.727	0.7270	0.00027					
		\mathbf{RMSE}_q	0.1064		\mathbf{RMSE}_{s}	0.5561		
# - t	he nun	nber of co	nstraints	used				
EQ -	expert	s quantile	s (expert	ts assess	$\mathbf{ments})$			
OQ -	obtain	ed quanti	les (after	· PI)				
QD -	quanti	iles differe	ences (EC	$\mathbf{Q} - \mathbf{O}\mathbf{Q}$				
\mathbf{RMS}	\mathbf{E}_q - \mathbf{er}	ror of qua	\mathbf{ntiles}					
\mathbf{RMS}	\mathbf{E}_s - \mathbf{er}	ror of sco	res					

Table 3.29: Final results for GROUP I when Combined Variant used

Table 3.30: Final results for GROUP II when Combined Variant used

VAR	IANT	$\mathrm{V}:\geq 3$		GROUP	, II		ordering		
	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathbf{PI}\#$	
S _{8.2}	0.727	0.7270	0.00027	$b_1 \ 0.6807$	0.0566	$S_6 = 1.381$	S_{10}	$S_{10} \parallel$	
$S_{12.2<}$	0.727	0.7270	0.00027	$b_2 \ 0.5133$	0.0790	$S_7 = 1.314$	S_9	$S_9 \parallel$	
$S_{9.2>}$	0.727	0.7270	0.00027	$b_3 0.2250$	0.0299	$S_8 = 1.256$	S_{11}	$S_{11} \parallel$	
$S_{10.2>}$	0.364	0.3640	0.00036	$b_4 \ 0.3183$	0.0643	$S_9 = 1.474$	S_{12}	S_7	
$S_{6.2<2}$	0.636	0.6360	0.00036	$b_5 0.2950$	0.0928	$S_{10} = 1.465$	S_6	S_{6} 1	
$S_{7.2<2}$	0.727	0.7270	0.00027	$b_6 0.2546$	0.0444	$S_{11} = 1.409$	S_7	$S_{12} 0$	
$S_{9.2<2}$	0.909	0.9090	0.00009	$b_7 0.6232$	0.0490	$S_{12} = 1.397$	S_8	S_8	
$S_{8.2 < 3}$	0.545	0.5450	0.00145	$b_8 0.4811$	0.0850				
$S_{7.2>3}$	0.455	0.4550	0.00045	$b_9 \ 0.6056$	0.0754				
$S_{11.2<4}$	0.545	0.5450	0.00045					Ï	
		\mathbf{RMSE}_q	0.0572		\mathbf{RMSE}_{s}	0.5500			

- the number of constraints used

EQ - experts quantiles (experts assessments)

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ - OQ)

 \mathbf{RMSE}_q - error of quantiles

 \mathbf{RMSE}_{s}^{T} - error of scores

VARI	ANT	$\mathrm{V}{:}\geq 3$		GR	OUP	III		orderi	ing
	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	me	ean	variance	scores	rank	$\mathrm{PI}\#$
$S_{13.3>}$	0.636	0.6360	0.00036	$b_1 0$.4582	0.0969	$S_{11} = 1.361$	S_{16}	$S_{16} \parallel$
$S_{16.3>}$	0.545	0.5450	0.00045	$b_2 0$.3540	0.1009		S_{13}	$S_{15} \parallel$
$S_{17.3 < 2}$	0.636	0.6360	0.00036	b ₃ 0	.4541	0.0811	$S_{13} = 1.173$	S_{11}	$S_{14} \parallel$
$S_{11.2>2}$	0.727	0.7270	0.00027	b ₄ 0	.2016	0.0531	$S_{14} = 1.419$	S_{14}	S_{11}
$S_{17.3>2}$	0.636	0.6360	0.00036	$b_5 0$.5064	0.0866	$S_{15} = 1.440$	S_{17}	$S_{17} 9$
$S_{14.3 < 3}$	0.636	0.6360	0.00036	b ₆ 0	.4043	0.0867	$S_{16} = 1.660$	S_{15}	S_{13}
$S_{11.3>3}$	0.727	0.7270	0.00027	$b_7 0$.5566	0.0924	$S_{17} = 1.239$		
$S_{14.3<4}$	0.727	0.7270	0.00027	$b_8 0$.5909	0.0884			
$S_{15.3 < 4}$	0.636	0.6360	0.00036	b ₉ 0	.3613	0.0802			
		\mathbf{RMSE}_q	0.0556			\mathbf{RMSE}_{s}	0.5039		
# - th	ne num	ber of con	straints	used					
EQ - 6	experts	quantiles	(expert	s asse	ssme	nts)			
OQ -	obtaine	ed quantil	es (after	PI)					
QD -	quantil	es differei	nces (EQ	- 00	\mathbf{Q})				
RMSI	E_q - err	or of quai	\mathbf{tiles}						
RMSE	E_s^{-} - err	or of scor	es						

Table 3.31: Final results for GROUP III when Combined Variant used

Table 3.32: Final results for GROUP IV when Combined Variant used

VAR	IANT	IV: (1,7)		GRO	UP	IV		order	ing
	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	mea	n	variance	scores	rank	$\mathrm{PI}\#$
$S_{16.4<}$	0.727	0.7289	0.00162	$b_1 \ 0.5$	6492	0.0963	$S_{16} = 1.418$	S_{20}	$S_{20} \parallel$
$S_{19.4<}$	0.909	0.9096	0.00046	$b_2 \ 0.3$	152	0.0599	$S_{17} = 1.297$	S_{21}	$S_{16} \parallel$
$S_{21.4<}$	0.909	0.9095	0.00038	$b_3 \ 0.7$	203	0.0505	$S_{18} = 1.239$	S_{18}	$S_{21} \parallel$
$S_{22.4<}$	0.455	0.4550	0.00046	$b_4 \ 0.5$	798	0.0818	$S_{19} = 1.279$	S_{19}	$S_{17} \parallel$
$S_{18.4>}$	0.909	0.9098	0.00072	$b_5 \ 0.1$	898	0.0486	$S_{20} = 1.574$	S_{17}	S_{19}
$S_{19.4>}$	0.818	0.8193	0.00111	b ₆ 0.1	627	0.0373	$S_{21} = 1.357$	S_{16}	$S_{18} 8$
$S_{20.4>}$	0.364	0.3646	0.00093	b ₇ 0.4	569	0.1077	$S_{22} = 1.154$	S_{22}	S_{22}
$S_{21.4>}$	0.909	0.9090	0.00009	$b_8 0.4$	302	0.0965			
				b ₉ 0.2	695	0.0550			
		\mathbf{RMSE}_q	0.0058			\mathbf{RMSE}_{s}	1.0931		
# - t	he nun	ber of co	nstraints	used					
EQ -	expert	s quantile	es (expert	ts asses	ssme	ents)			
OQ -	obtain	ed quanti	les (after	· PI)					
QD -	quanti	les differe	ences (EQ	$\mathbf{Q} - \mathbf{Q}$	2)				
RMS	\mathbf{E}_q - \mathbf{er}	ror of qua	ntiles						

 \mathbf{RMSE}_{s}^{T} - error of scores

Finally Tables 3.34 and 3.35 present the results obtained by taking all groups together. RMSE shows that indeed, taking for each group the variant which has performed the best is a better approach. From Table 3.35 we read he error equal to 1.91919. When we took variant V for all five groups we obtained an error equal to 2.33273.

VARIANT IV: (1,7)GROUP V ordering $\mathbf{Q}\mathbf{D}$ variance rank PI# EQ **OQ** mean scores $S_{21.5<}$ 0.8180.0861 $S_{21} = 1.303$ S_{21} S_{21} 0.8198 0.00159 $b_1 \quad 0.4824$ $S_{22} = 0.994$ $S_{22.5<}$ 0.7270.72870.00139 $b_2 \ 0.2952$ 0.0704 S_{23} $S_{23} \parallel$ $S_{23} = 1.220$ $S_{23.5<}$ 0.909 0.90950.00039 $b_3 0.4204$ 0.0871 S_{26} $S_{26} \parallel$ $S_{24} = 1.032$ $S_{25.5<}$ 0.6360.63630.00002 $b_4 \quad 0.4584$ 0.0837 S_{27} S_{24} S_{25} 1 $S_{25} = 1.015$ $S_{27.5 <}$ 0.909 0.90900.00010 $b_5 \ 0.5226$ 0.0850 S_{24} $S_{21.5>}$ $b_6 0.2936$ $S_{26} = 1.066$ S_{22} $S_{22} 0$ 0.4550.45740.00282 0.0821 $S_{27} = 0.955$ $S_{22.5>}$ 0.909 0.90930.00023 b₇ 0.6142 0.0689 S_{25} S_{27} $S_{23.5>}$ 0.9090.90920.00015 $b_8 \quad 0.6537$ 0.07780.909 0.00007 $b_9 \ 0.2124$ 0.0370 $S_{25.5>}$ 0.9092 0.8180.8180 0.00018 $S_{26.5>}$ \mathbf{RMSE}_{q} 0.0832RMSE_s 0.86557 # - the number of constraints used EQ - experts quantiles (experts assessments) OQ - obtained quantiles (after PI) QD - quantiles differences (EQ - OQ) \mathbf{RMSE}_q - error of quantiles \mathbf{RMSE}_s - error of scores

Table 3.33: Final results for GROUP V when Combined Variant used

								order	ing
		$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathrm{PI}\#$
3	$S_{5.1<}$	0.545	0.4946	0.05090	$b_1 \ 0.4763$	0.0959	$S_1 = 1.491$	S_1	$S_1 \parallel$
\wedge	$S_{1.1>}$	0.636	0.4510	0.18535	$b_2 \ 0.3235$	0.0688	$S_2 = 1.240$	S_3	$S_3 \parallel$
	$S_{3.1>}$	0.545	0.7783	0.23283	$b_3 0.3395$	0.0921	$S_3 = 1.397$	S_6	$S_6 \parallel$
	$S_{2.1<2}$	0.545	0.5919	0.04642	$b_4 \ 0.1808$	0.0249	$S_4 = 1.241$	S_7	S_4
	$S_{7.1 < 2}$	0.727	0.7836	0.05637	$b_5 \ 0.2894$	0.0788	$S_5 = 1.072$	S_4	$S_7 \ 1$
Ч	$S_{1.1>2}$	0.455	0.6568	0.20221	$b_6 0.1839$	0.0415	$S_6 = 1.253$	S_2	S_2 3
Ω	$S_{3.1>2}$	0.727	0.7109	0.01633	$b_7 \ 0.5692$	0.1043	$S_7 = 1.217$	S_5	S_5
\circ	$S_{4.1 < 3}$	0.636	0.7777	0.14129	$b_8 \ 0.6084$	0.1290			
Я	$S_{5.1 < 3}$	0.727	0.7490	0.02174	$b_9 \ 0.2560$	0.0508			
U	$S_{7.1 < 3}$	0.727	0.7349	0.00764					
	$S_{7.1>3}$	0.545	0.6414	0.09596					
	$S_{3.1 < 4}$	0.727	0.7253	0.00196					
	$S_{6.1 < 4}$	0.727	0.7827	0.05546					
3	$S_{8.2<}$	0.727	0.7831	0.05585			$S_6 = 1.253$	S_{10}	$S_9 \parallel$
\wedge	$S_{12.2<}$	0.727	0.8661	0.13882			$S_7 = 1.217$	S_9	$S_{12} \parallel$
	$S_{9.2>}$	0.727	0.7047	0.02260			$S_8 = 1.211$	S_{11}	$S_{10} \parallel$
2	$S_{10.2>}$	0.364	0.7417	0.37804			$S_9 = 1.378$	S_7	S_6
	$S_{6.2<2}$	0.636	0.6791	0.04271			$S_{10} = 1.257$	S_6	S_{7} 1
Ч	$S_{7.2<2}$	0.727	0.9203	0.19305			$S_{11} = 1.203$	S_{12}	$S_8 0$
Ω	$S_{9.2<2}$	0.909	0.8972	0.01186			$S_{12} = 1.375$	S_8	S_{11}
\circ	$S_{8.2 < 3}$	0.545	0.7322	0.18678					
Я	$S_{7.2>3}$	0.455	0.6150	0.16042					
IJ	$S_{11.2<4}$	0.545	0.5798	0.03439					
3	$S_{13.3>}$	0.636	0.7997	0.16334			$S_{11} = 1.203$	S_{16}	$S_{16} \parallel$
\wedge	$S_{16.3>}$	0.545	0.5468	0.00137			$S_{13} = 1.023$	S_{13}	$S_{14} \parallel$
3	$S_{17.3 < 2}$	0.636	0.6278	0.00861			$S_{14} = 1.283$	S_{11}	$S_{15} \parallel$
	$S_{11.3>2}$	0.727	0.8535	0.12618			$S_{15} = 1.275$	S_{14}	S_{11}
Ч	$S_{17.3>2}$	0.636	0.7201	0.08377			$S_{16} = 1.334$	S_{17}	$S_{17} 9$
Ω	$S_{14.3 < 3}$	0.636	0.6623	0.02592			$S_{17} = 1.106$	S_{15}	S_{13}
\circ	$S_{11.3>3}$	0.727	0.7045	0.02276					
Я	$S_{14.3<4}$	0.727	0.8096	0.08229					
IJ	$S_{15.3 < 4}$	0.636	0.6193	0.01708					

Table 3.34: Final results for ALL GROUPS when Combined Variant used (PART I)

								order	ing		
		$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	mean	variance	scores	rank	$\mathrm{PI}\#$		
2	$S_{16.4<}$	0.727	0.9393	0.21205			$S_{16} = 1.334$	S_{20}	$S_{20} \parallel$		
1,	$S_{19.4<}$	0.909	0.8391	0.07001			$S_{17} = 1.106$	S_{21}	$S_{16} \parallel$		
4	$S_{21.4<}$	0.909	0.8187	0.09038			$S_{18} = 0.991$	S_{18}	$S_{21} \parallel$		
	$S_{22.4<}$	0.455	0.4559	0.00132			$S_{19} = 1.006$	S_{19}	S_{17}		
Ч	$S_{18.4>}$	0.909	0.8757	0.03343			$S_{20} = 1.341$	S_{17}	$S_{19} 8$		
Ω	$S_{19.4>}$	0.818	0.9262	0.10806			$S_{21} = 1.160$	S_{16}	S_{18}		
\circ	$S_{20.4>}$	0.364	0.4722	0.10861			$S_{22} = 0.938$	S_{22}	$S_{22} \parallel$		
Я	$S_{21.4>}$	0.909	0.8956	0.01353					ii ii		
IJ									Ï		
7	$S_{21.5<}$	0.818	0.8571	0.03892			$S_{21} = 1.160$	S_{21}	$S_{21} \ $		
1,	$S_{22.5<}$	0.727	0.8105	0.08318			$S_{22} = 0.938$	S_{23}	$S_{23} \parallel$		
	$S_{23.5<}$	0.909	0.9412	0.03210			$S_{23} = 1.117$	S_{26}	$S_{22} \parallel$		
Ŋ	$S_{25.5<}$	0.636	0.6449	0.00857			$S_{24} = 0.930$	S_{27}	S_{24}		
	$S_{27.5<}$	0.909	0.9196	0.01052			$S_{25} = 0.885$	S_{24}	$S_{26} 9$		
Ч	$S_{21.5>}$	0.455	0.4550	0.00048			$S_{26} = 0.927$	S_{22}	S_{25}		
Ω	$S_{22.5>}$	0.909	0.9092	0.00009			$S_{27} = 0.843$	S_{25}	$S_{27} \parallel$		
\circ	$S_{23.5>}$	0.909	0.9100	0.00092					ij		
Я	$S_{25.5>}$	0.909	0.9097	0.00062					İ		
IJ	$S_{26.5>}$	0.818	0.8180	0.00018					ij		
			\mathbf{RMSE}_q	1.91919							
#	# - the number of constraints used										
EQ - experts quantiles (experts assessments)											
00	OQ - obtained quantiles (after PI)										
QI	QD - quantiles differences (EQ – OQ)										
BN	ASE e	error of	scores								

Table 3.35: Final results for ALL GROUPS when Combined Variant used (PART II)

We started with B'i's independently distributed. Probabilistic inversion made B_i 's dependent. Table 3.36 contains the correlation matrix of B's obtained in Table 3.34.

	B_1	B_2	B_3	B_4	B_5	B_6	B ₇	B ₈	B_9
B_1	1.0000	-0.1806	-0.3992	-0.0172	-0.0730	-0.2817	-0.1100	-0.1316	0.2597
B_2	-0.1806	1.0000	0.4664	-0.1096	-0.2143	-0.2089	-0.3034	-0.4633	0.2486
B_3	-0.3992	0.4664	1.0000	-0.0915	0.0387	0.0256	-0.4929	-0.2265	-0.0322
B_4	-0.0172	-0.1096	-0.0915	1.0000	-0.1256	-0.2352	0.0481	0.1229	-0.0118
B_5	-0.0730	-0.2143	0.0387	-0.1256	1.0000	-0.0525	0.2031	0.4128	-0.3785
B_6	-0.2817	-0.2089	0.0256	-0.2352	-0.0525	1.0000	0.2415	0.1135	-0.0201
B_7	-0.1100	-0.3034	-0.4929	0.0481	0.2031	0.2415	1.0000	0.3864	0.0849
B_8	-0.1316	-0.4633	-0.2265	0.1229	0.4128	0.1135	0.3864	1.0000	-0.0721
B_9	0.2597	0.2486	-0.0322	-0.0118	-0.3785	-0.0201	0.0849	-0.0721	1.0000

Table 3.36: Correlation matrix of B_i

Figure 3.8 shows the cumulative distribution functions of B_i 's obtained in Table 3.34.

Figure 3.8: Cumulative distribution functions of B_i 's

3.9 Summary and conclusions

Our goal in this thesis as part of Emerging Zoonoses project is to find out the model based on which the pathogens transmitted from animals to humans can be prioritized.

We had available for analysis 30 scenarios representing hypothetical pathogens, which have been ordered based on their severity by experts. These scenarios were divided into 6 groups, each group consisting of 7 scenarios. Due to several reasons, which have been explained during the chapters, 5 groups out of 6 have been analysed. Our purpose was to combine all groups together, and due to software constraints, it was not possible to include all constraints. We investigated therefore each group, to find out a way of removing the constraints, without a too big loss of information.

The linear model that we used was feasible for these five groups.

Analysis of the rankings given by experts

In Chapter 3 we obtained a linear model of scores from experts' ordering, summarised in Tables 1.3 and 1.4 (see Section 1.1). We have encountered problems with fitting the linear model to the data from the last set. Many reasons which could cause this problem were proposed. In this chapter we investigate experts' ordering with the help of the statistical method that checks if orderings were given at random or not. For this purpose we use the coefficient of concordance (W). We test the null hypothesis that the preferences are at random. [11][22].

We first explain the coefficient of concordance method and then apply it to experts' orderings.

We use the following notations:

n	the number of experts
A(1),,A(t)	objects to be compared
t	the number of objects to be ranked
R(i,e)	the rank of $A(i)$ obtained from the responses of expert e
	the value of $R(i,e)$ ranges from 1 to t

We denote the sum over all experts from their assessments for each scenario, by R(i)[11]:

$$R(i) = \sum_{e} R(i, e)$$

The sum of squares of the observed deviations from the mean of R(i), is denoted by S and equals to:

$$S = \sum_{i} \left[R(i) - \frac{1}{t} \sum_{j} R(j) \right]^2$$

Siegel [22] defines W:

$$W = \frac{S}{\frac{1}{12}n^2(t^3 - t)}$$

In case of complete agreement, W equals to 1,[11] and gets smaller as the experts agreement diminishes.

For the null hypothesis that experts gave their preferences at random, in [22] we find a table which contains the critical values * of S, for t between 3 and 7 and n between 3 and 20. [11]

n			\mathbf{t}		
	3	4	5	6	7
3			64.4	103.9	157.3
4		49.5	88.4	143.3	217.0
5		62.6	112.3	182.4	276.2
6		75.7	136.1	221.4	335.2
8	48.1	101.7	183.7	299.0	453.1
10	60.0	127.8	231.2	376.7	571.0
15	89.8	192.9	349.8	570.5	864.9
20	119.7	258.0	468.5	764.4	1158.7

Table 4.1: Critical values of S at .05 level of significance

In Table 4.1, n represents the number of experts (in our case 11), and t the number of objects to be ranked (in our case 7). In case n is larger than 20, the corresponding values should be computed like described in [24].

We compute the values of S and W obtained for each group:

Table 4.2: Values of S and W for each group

	GROUP 1	GROUP 2	GROUP 3	GROUP 4	GROUP 5	GROUP 6
S	1866	1088	1116	1356	680	340
W	0.5508	0.3211	0.3294	0.4005	0.2007	0.1004

In our problem experts had to order 7 scenarios in each group. We used 11 experts in our analysis. For each group we computed the values of S and W, shown in Table 4.2. These values have to be compared with the values in the 7th column of Table 4.1. However, Table 4.1 does not contain the case of n=11 experts, hence we can check our results against values for n=10 or n=15. If the hypothesis is rejected on level n=15, it is surely rejected for n=11. On the other hand, if we accept the hypothesis on level n=10, than it must surely be accepted for n=11. For the first 4 groups, the obtained values of S are significantly bigger than 864.9 (critical value for 15 experts).

^{*}Critical value is the values which corresponds to a given *significance level*. This value determines the boundary between those samples resulting in a test statistic that lead to rejecting the null hypothesis, and those which lead to a decision not to reject the null hypothesis. The corresponding values for .01 level of significance are larger than the ones for .05, hence we choose .01

We can see that for the last group, the hypothesis that experts gave their orderings at random is accepted, as the value of S is much smaller than 571.0 (critical value for 10 experts).

For group 5, S equals to 680 which is smaller than significance level for 15 experts (864.9), but larger than for 11 experts (571.0). Hence this group is on a verge of acceptance. In this case we would need to find the exact critical value for n=11. We have not done this, and, as a simple observation, we show in Figure 4.1 the relationship between the number of experts, n and the critical value of S for 7 objects to be rank, from Table 4.1.

Figure 4.1:

The following line equation:

$$y = ax + b \tag{4.1}$$

is roughly satisfied by each pair of points which form the above plot, where $a \sim 59$ and $b \sim 19.7$. Using this equation, we find out the approximate value of S for 11 experts, which is 629,78.

For the first five groups, based on the values obtained for S, we reject the null hypothesis. Moreover, coefficient of concordance, W,[11] shows the same facts: for the first group its value equals to 0.5508 whereas for the sixth group decreases up to 0.1004. This means that experts agreed the most in the first group, and their agreement diminishes while advancing in the groups.

In the first group, for instance, there are bigger differences between scenarios (least severe - more severe), hence the experts could differentiate them easier. In

the following groups these differences become smaller and smaller.

In Chapter 1 we mentioned that in the first five groups the last two scenarios of one group are repeated as being the first ones in the consecutive group. This was done to see if experts are consistent when ordering the same scenarios in different groups. Looking at the table with experts' assessments from Appendix B, we can follow expert number 1. Scenario PX from the first group is identical with NA from the second group, and WL from the first group with SK from the second group. Expert was consistent if he kept his preference while ordering these two scenarios in each group. This means, that in group 1, expert number 1 considered PX more severe than WL. In the second group, the same expert considered NA more severe than SK. (he ordered the same these two identical scenarios from different groups). However, there are cases in which experts were not consistent. The same expert, in group 3 ordered GU as more severe than BE, and in fourth group he ordered BY more severe than AG, where GU=AG and BE=BY. In this case he reversed the ordering.

Table 5.1 presents each expert's consistency within each group. We notice that expert 7 was consistent during all analysis, whereas expert 11 was not consistent at all.

-	Experts										
Groups	1	2	3	4	5	6	$\overline{7}$	8	9	10	11
gr.1-gr.2		\checkmark	\checkmark	\checkmark	\checkmark						
gr.2-gr.3											
gr.3- $gr.4$											
gr.4- $gr.5$											
gr.5-gr.6											

Table 4.3: Experts' consistency within each group

Based on the consistency of experts we can assign to each expert a weight. Next, with this weight, we perform the analysis of one group, and check the results. This approach is presented in the next chapter.
Extra analysis

In this chapter we perform extra analysis to check sensitivities of the procedure that we have used in previous chapter to find the model to score pathogens. Firstly we test if our procedure is sensitive to different choices of transformations for attributes. Then we test how the results change with different choice of starting distributions of B_i 's. Moreover, we analyse Group 2 by considering weights for experts, as stated in the previous chapter.

5.1 Weights for experts

We recall from the previous chapter the table presenting experts' consistency. Based on this results, we assign to each expert a weight. These weights are shown in Table 5.2. In this section we present the results obtained by considering weights for experts, for Group 2.

		Experts										
Groups	1	2	3	4	5	6	7	8	9	10	11	
gr.1-gr.2								\checkmark				
gr.2- $gr.3$												
gr.3- $gr.4$												
gr.4- $gr.5$												
$\operatorname{gr.5-gr.6}$							\checkmark					

Table 5.1: Experts' consistency within each group

Table 5.2: Experts' weights

experts	1	2	3	4	5	6	7	8	9	10	11
weights	0.0869	0.1739	0.0435	0.1304	0.1739	0.0435	0.2174	0.0435	0.0435	0.0345	0

The weights from the previous table have obtained as follows: we sum the number of times that experts have been consistent, and this number equals to 23. Next, for each expert, we divide the number of times that he/she was consistent, to the total number of times that all expert have been consistent (23). For instance, for the first expert: 2/23=0.0869, and this number represent the weight of the first expert. In a similar way we obtained all the other experts' weights. Because we assign a weight to each expert, the constraints from the second group, which we have to impose are changed. Table 5.3 shows the constraints obtained for each scenario, considering weights for experts. We explain briefly how these new constraints have been obtained. For instance, we know that S_6 was ranked on the first place by two experts. We check in the table which contains experts' assessments from Appendix B, which experts ranked S_6 on the first place, and then sum their weights. S_6 was ranked on the first place by expert 2 and expert 11. We look in the table which contains the weights for experts, and see that expert 2 obtained weight 0.1739, and expert 11 obtained weight 0. By summing these two weights, we obtain the probability of scenario S_6 to be ranked on the first place. In a similar way we obtained all the constraints from Table 5.3.

	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
	S_6	0.1739	0.4783	0.2173		0.0435	0.0435	0.0435
Ι	S_7	0.2174	0.1304	0.0435		0.6087		
	S_8	0.2174		0.4783	0.3043			
Я	S_9		0.0435		0.0435	0.0869	0.6087	0.2174
A	S_{10}	0.0435			0.0435		0.1739	0.7391
$^{>}$	S_{11}	0.0345	0.0435	0.0435	0.5652	0.2174	0.0869	
	S_{12}	0.3043	0.3043	0.2174	0.0435	0.0435	0.0870	

Table 5.3: Group II - updated constraints

We analyse this second group in a similar way as we did before, by considering the 5 variants. In the first variant we performed the analysis considering all constraints. Table 5.4 contains the means, variances and scores obtained in this first variant. The out of samples validation has also been performed for this group, and due to space constraints we do not provide this table here, they are presented in Appendix B.

Table 5.4 :	Variant	I of	Group	II -	results	obtained	with	weights	for	experts
---------------	---------	------	-------	------	---------	----------	------	---------	-----	---------

\mathbf{V}	ARI	ANT	I: 1÷	7					
				ordei	ring				
	mean	variance	scores	rank	PI	#	$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$
B_1	0.6504	0.0811	$S_6 = 1.216$	S_{10}	S_9		0.826	0.87353	0.047
B_2	0.6113	0.0683	$S_7 = 1.180$	S_9	S_{10}	Ï	0.783	0.69382	0.089
B_3	0.2371	0.0582	$S_8 = 1.147$	S_{12}	S_{11}		0.783	0.75237	0.030
B_4	0.2217	0.0449	$S_9 = 1.397$	S_{11}	S_6		0.957	0.93833	0.018
B_5	0.2353	0.0561	$S_{10} = 1.346$	S_6	S_{12}		0.957	0.96491	0.008
B_6	0.1773	0.0201	$S_{11} = 1.268$	S_8	S_7		0.696	0.79467	0.099
B_7	0.6127	0.0469	$S_{12} = 1.196$	S_7	S_8		0.957	0.90505	0.051
B_8	0.4940	0.0926					0.783	0.72892	0.054
B_9	0.4800	0.0707					0.261	0.50813	0.247
							0.522	0.53898	0.017
							0.870	0.92860	0.059
							0.957	0.94287	0.014
							0.957	0.91605	0.040
							0.696	0.75942	0.064
							0.957	0.93010	0.026
						0	0.391	0.55255	0.161
						3	0.826	0.69664	0.129
						4	0.913	0.96461	0.052
							0.913	0.91279	0.001
							0.783	0.85812	0.075
							0.957	0.97325	0.017
							0.522	0.64177	0.120
							0.957	0.96017	0.004
							0.783	0.69768	0.085
							0.957	0.98237	0.026
							0.391	0.42196	0.031
							0.913	0.90527	0.008
							0.783	0.81384	0.031
							0.957	0.94936	0.007
							0.696	0.77233	0.077
							0.957	0.96747	0.011
							0.957	0.96792	0.011
							0.435	0.44104	0.006
							0.957	0.95700	0.001
# -	the nu	mber of co	onstraints u	sed					
$\mathbf{E}\mathbf{Q}$	- exper	ts quantile	es (experts	assessr	nents)			

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ-OQ)

The following tables contain the constraints considered in each variant and the results obtained.

	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
Ι	S_6	0.1739	0.4783	0.2173		0.0435	0.0435	0.0435
Ι	S_7	0.2174	0.1304	0.0435		0.6087		
	S_8	0.2174		0.4783				
Я	S_9		0.0435			0.0869	0.6087	0.2174
A	S_{10}	0.0435					0.1739	0.7391
\geq	S_{11}	0.0345	0.0435	0.0435		0.2174	0.0869	
	S_{12}	0.3043	0.3043	0.2174		0.0435	0.0870	

Table 5.5: Variant II Group II - constraints used

Table 5.6: Variant III Group II - constraints used

	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
Ι	S_6	0.1739	0.4783				0.0435	0.0435
Ι	S_7	0.2174	0.1304					
Ι	S_8	0.2174						
R	S_9		0.0435				0.6087	0.2174
Α	S_{10}	0.0435					0.1739	0.7391
$^{>}$	S_{11}	0.0345	0.0435				0.0869	
	S_{12}	0.3043	0.3043				0.0870	

Table 5.7: Variant IV Group II - constraints used

	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
V	S_6	0.1739						0.0435
Ι	S_7	0.2174						
	S_8	0.2174						
R	S_9							0.2174
A	S_{10}	0.0435						0.7391
\sim	S_{11}	0.0345						
	S_{12}	0.3043						

Table 5.8: Variant V Group II - constraints used

	scenario	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
Λ	S_6 S_7		0.4783 0.1304			0.6087		
	S_8	0.2174	0.1004	0.4783		0.0007		
A R	S_9						0.6087	0.2174
\mathbf{V}_{F}	S_{10} S_{11}				0.5652			0.7391
	S_{12}	0.3043						

Table 5.9 :	Variant	II of	Group	II -	results	obtained	with	weights	for	experts
---------------	---------	-------	-------	------	---------	----------	------	---------	-----	---------

\mathbf{V}	ARI	ANT	II: 1,2	2,3	5,0	6,7	7			
			,	order	ring	/				
	mean	variance	scores	rank	\mathbf{PI}	#	$\mathbf{E}\mathbf{Q}$	OQ	$\mathbf{Q}\mathbf{D}$	\mathbf{SD}
B_1	0.6752	0.0741	$S_6 = 1.085$	S_{10}	S_9		0.836	0.88599	0.060	0.130
B_2	0.6558	0.0652	$S_7 = 1.063$	S_9	S_{11}	Ï	0.783	0.72996	0.053	0.116
B_3	0.1606	0.0485	$S_8 = 1.048$	S_{11}	S_{10}		0.783	0.79675	0.014	0.100
B_4	0.2434	0.0350	$S_9 = 1.303$	S_6	S_6		0.957	0.96270	0.006	0.094
B_5	0.2621	0.0608	$S_{10} = 1.227$	S_6	S_7		0.957	0.95294	0.004	0.119
B_6	0.1290	0.0232	$S_{11} = 1.233$	S_{12}	S_8		0.696	0.67166	0.024	0.035
B_7	0.4939	0.0538	$S_{12} = 1.015$	S_8	S_{12}		0.957	0.95156	0.005	0.181
B_8	0.4892	0.0908					0.783	0.80032	0.018	
B_9	0.5264	0.0472					0.261	0.54394	0.283	
							0.522	0.53099	0.009	
							0.870	0.92010	0.050	
							0.957	0.96393	0.007	
							0.957	0.91464	0.042	
							0.696	0.67035	0.025	
							0.957	0.94782	0.009	
						_	0.391	0.49200	0.101	
						2	0.826	0.75188	0.074	
						9	0.913	0.92877	0.016	
							0.913	0.93689	0.024	
							0.783	0.83151	0.049	
							0.957	0.97288	0.016	
							0.522	0.51288	0.009	
							0.957	0.97134	0.015	
							0.783	0.80015	0.018	
							0.957	0.97319	0.017	
							0.391	0.40388	0.013	
							0.913	0.91324	0.000	
							0.783	0.78305	0.000	
							0.957	0.95700	0.000	

- the number of constraints used

RMSE=0.881088997

EQ - experts quantiles (experts assessments)

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ - OQ)

SD - scores differences (scores from variant $\rm I$ – scores from variant $\rm II)$

RMSE - square root of the sum of scores differences

Table 5.10: Variant III of Group II - results obtained with weights for experts

V	VARIAN'I' III: $1,2$ 6,7												
				order	ring								
	mean	variance	scores	rank	\mathbf{PI}	#	$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	\mathbf{SD}			
B_1	0.7810	0.0400	$S_6 = 1.257$	S_{10}	S_{10}		0.826	0.82605	0.00005	0.041			
B_2	0.5859	0.0741	$S_7 = 1.209$	S_9	S_9		0.783	0.78305	0.00045	0.030			
B_3	0.2783	0.0642	$S_8 = 1.251$	S_{11}	S_{11}		0.783	0.78302	0.00042	0.104			
B_4	0.1764	0.0256	$S_9 = 1.475$	S_6	S_6		0.957	0.95701	0.00050	0.078			
B_5	0.1495	0.0312	$S_{10} = 1.499$	S_7	S_8		0.957	0.95700	0.00050	0.153			
B_6	0.2114	0.0241	$S_{11} = 1.331$	S_{12}	S_{12}		0.696	0.69600	0.00030	0.064			
B_7	0.6546	0.0442	$S_{12} = 1.238$	S_8	S_7		0.957	0.95734	0.00084	0.041			
B_8	0.4458	0.0995					0.783	0.78438	0.00178				
B_9	B_9 0.4627 0.0651 0.261 0.26088 0.00002												
							0.522	0.52381	0.00210				
							0.870	0.87037	0.00076				
							0.957	0.95712	0.00061				
							0.957	0.95710	0.00060				
							0.696	0.69603	0.00033				
							0.957	0.95741	0.00091				
							0.391	0.39304	0.00173				
						2	0.826	0.82630	0.00019				
						9	0.913	0.91307	0.00002				
							0.913	0.91300	0.00000				
# -	the nu	mber of co	nstraints u	sed				RM	/ISE=0.714	446919			
$\mathbf{E}\mathbf{Q}$	- exper	ts quantile	es (experts	assessn	nents)							
OQ	OQ - obtained quantiles (after PI)												
$\mathbf{Q}\mathbf{D}$	QD - quantiles differences $(EQ - OQ)$												
\mathbf{SD}	- scores	difference	es (scores fr	om vai	riant	I –	scores	from var	iant III)				
$\mathbf{R}\mathbf{M}$	ISE - sq	uare root	of the sum	of scor	es di	ffere	nces		,				

After analysing Group 2 considering weights for experts we observed some interesting results. Variant I (when we considered all constraints) did not perform too well, and the differences between imposed and obtained probabilities are bigger than the ones obtained for the same variant, but without weights for experts. However, interesting is that the more constraints we take out (see variant II, III, IV and V), the differences between imposed and obtained probabilities become smaller than for the same variants, but without weights of experts. We believe that better results could be obtained if all groups are analysed together using variant V, and considering weights for experts. However we leave this as an open question, regarding future work.

ъ т.

*** 7 4 TO T 4 N TOTO T 7**

Table 5.11: Var	iant IV of	Group II -	results obtained	with weights	for experts
-----------------	------------	------------	------------------	--------------	-------------

V	VARIANT IV: 1,7									
				order	ring					
	mean	variance	scores	rank	\mathbf{PI}	#	$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	\mathbf{SD}
B_1	0.7366	0.0487	$S_6 = 1.588$	S_{10}	S_{10}		0.826	0.8268	0.00065	0.372
B_2	0.5387	0.0845	$S_7 = 1.474$	S_9	S_9		0.783	0.7837	0.00108	0.294
B_3	0.4028	0.0781	$S_8 = 1.485$	S_{11}	S_{11}		0.783	0.7834	0.00083	0.338
B_4	0.2363	0.0379	$S_9 = 1.657$	S_6	S_6	9	0.957	0.9571	0.00058	0.260
B_5	0.1978	0.0401	$S_{10} = 1.761$	S_7	S_{12}		0.957	0.9571	0.00057	0.415
B_6	0.2463	0.0365	$S_{11} = 1.655$	S_{12}	S_8		0.696	0.6960	0.00030	0.387
B_7	0.5584	0.0624	$S_{12} = 1.534$	S_8	S_7		0.957	0.9573	0.00083	0.338
B_8	0.5384	0.0824					0.783	0.7843	0.00169	
B_9	0.6166	0.0808					0.261	0.2610	0.00010	
# -	the nu	mber of co	nstraints u	sed				RM	SE = 1.5502	230825
$\mathbf{E}\mathbf{Q}$	- exper	ts quantile	es (experts	assessn	nents)				
$\mathbf{O}\mathbf{Q}$	- obtai	ned quanti	les (after P	PI)						
QD - quantiles differences (EQ – OQ)										
SD - scores differences (scores from variant $I - scores$ from variant IV)										
$\mathbf{R}\mathbf{N}$	ISE - sq	uare root	of the sum	of scor	es di	ffere	nces			

Table 5.12: Variant V of Group II - results obtained with weights for experts

VARIANT V: ≥ 3

				order	ng		-	~ ~		ab
	mean	variance	scores	rank	ΡI	#	$\mathbf{E}\mathbf{Q}$	OQ	QD	SD
B_1	0.6015	0.0884	$S_6 = 1.391$	S_{10}	S_9		0.783	0.7830	0.00040	0.176
B_2	0.6063	0.0869	$S_7 = 1.338$	S_9	S_{10}		0.696	0.6960	0.00030	0.159
B_3	0.2800	0.0576	$S_8 = 1.253$	S_{11}	S_6		0.783	0.8446	0.06203	0.105
B_4	0.2415	0.0620	$S_9 = 1.510$	S_6	S_{12}		0.261	0.2959	0.03503	0.113
B_5	0.2868	0.1025	$S_{10} = 1.450$	S_7	S_{11}		0.522	0.5074	0.01433	0.104
B_6	0.2207	0.0320	$S_{11} = 1.375$	S_{12}	S_7		0.870	0.8761	0.00654	0.108
B_7	0.6813	0.0334	$S_{12} = 1.381$	S_8	S_8		0.391	0.4684	0.07715	0.185
B_8	0.5498	0.0889					0.522	0.5294	0.00765	
B_9	0.5290	0.0958					0.391	0.3910	0.00030	
							0.435	0.4350	0.00020	

- the number of constraints used

RMSE=0.974351082

EQ - experts quantiles (experts assessments)

OQ - obtained quantiles (after PI)

QD - quantiles differences (EQ - OQ)

SD - scores differences (scores from variant I – scores from variant II)

RMSE - square root of the sum of scores differences

5.2 Transformations

In this section we first present the transformations that we have used in the project, and afterwards we discuss their interpretation. Next, we investigate the sensitivity of results with respect to these transformations, and present the results obtained. Table 5.13 shows the transformations that we have used for our analysis.

We need to transform the scale of attributes such that we can represent all of them in a monotonic increasing scale from 0 to 1.

Because some attributes values are very large (for instance the economic damage - five thousand million \in) we transform these numbers using a logarithmic scale. This way we deal with more convenient values. These attributes are: "animal spreading speed", "animal economic damage", "human spreading speed" and "human economic damage". The log-transformed values corresponding to these criteria are shown in column 4 of Table 5.13. Note that for the rest of the attributes column 4 contains the same values as the third column (no transformation was applied).

First column from Table 5.13 expresses the levels of each attributes. Second column contains the point estimates of each level of the attributes. And, finally, third column contains the numerical expression of the point estimates.

It is also worth mentioning that all attributes, except second and fifth, have after transformation an increasing monotonic scale. The convention is the higher the value of the attribute, the higher the threat. The second and fifth attributes have decreasing monotonic scale. The convention here is the less the value, the higher the threat. This is explained by the nature of the attribute. For instance, a high value, say 30 means that it takes 30 days for the pathogen to spread, where as for a low value, say 3, it takes only 3 days. For this reason we used minus sign in computing the scores.

The first value of the second attribute is null. This means that the pathogen does not spread. In our mathematical model we took this value equal to 10,000 days, therefore we approximate zero by a very small probability of occurrence. We took 10,000 days because we want to have monotonicity. 10,000 days is our choice, and is equivalent to almost 27 years and we consider that if a pathogen does not spread in this period, then it does not spread at all. Also we used a logarithmic scale for this attribute.

These transformations were chosen by analysts. Many other transformations could have been used. Few questions can be posted at this point:

- 1. Do these transformations influence the results (which would be ordering of scenarios)? If yes,
- 2. Can we propose transformations in some sense, optimal for the analysts?

5.2. TRANSFORMATIONS

We notice that the transformations used, presented in Table 5.13, do not lead to values of the attributes that are uniformly spread. For PI procedure it would be advantageous to have them "nicely" spread (it would be easier to get samples in all the intervals). This is why we now investigate what the result would be if instead of the values of levels (e.g. 50%, 5,000 million \in , etc.) we take the levels themselves (e.g. 1, 5, 4, 3 etc.) and normalise them. By doing this, we imposed a uniform spread of each level attribute. This means, for instance, that for first attribute we used for level 1, the value 0.25, for level 2, 0.5, for level 3, 0.75, and for level 4, 0.75, instead of 0%, 0.5%, 50% and 100% (attribute one has four levels). Obviously it would be very difficult to find transformations for all attributes that would give us similar result. But if this would really help improving feasibility of the problem in PI procedure, than it is worth investigating further.

Next we present the results obtained using this uniform spread of attributes values. We skip presenting the results for each group taken separately, and provide the results obtained when all the groups are placed together. Tables 5.14 and 5.15 show the obtained scores of each scenario and the means of B_i 's. We used these changed transformations in "combined variant" (i.e. we take groups I, II and III with variant V, (≥ 3), and groups IV and V with variant IV, (1,7)).

	Attributes	F	Range	f(x)
	I chances of introduction			
1	0%	0	0	0.000
2	0.5%	0.005	0.005	0.005
3	5%	0.05	0.05	0.050
4	50%	5	5	0.500
5	100%	1	1	1.000
	II animal spreading speed			
1	0	10,000	4	1.000
2		30	1.47712125	0.369
3	10	10		0.250
4		3	0.47712125	0.119
1	III animal economic damage	5,106	6 60907	0.601
1	5M€per year	$5 \times 10^{\circ}$	6.69897 7.60807	0.691
2 9	500Meper year	$5 \times 10^{\circ}$	1.09897	0.794
ა ⊿	5000M = per year	$5 \times 10^{\circ}$ 5×10^{9}	0.09097	0.897
4 TV	animal to human transmitting chance	0×10*	9.09697	1.000
1		0.0001	0.0001	0.001
1 2	1.10,000	0.0001	0.0001	0.001
2 3	1.1,000	0.001	0.001	0.010
4	1:10	0.01	0.01	1 000
	V human spreading speed	0.1	0.1	1.000
1	0	10.000	4	1.000
2	30	30	1.47712125	0.369
3	10	10	1	0.250
4	3	3	0.47712125	0.119
	VI gravity of illness			
1	0.02	0.02	.204	1.000
2	0.06	0.06	1.47712125	0.369
3	0.20	0.20	1	0.250
4	0.60	0.60	0.47712125	0.119
	VII chances of dying			
1	0%	0	0	0.000
2	0.5%	0.005	0.005	0.005
3	5%	0.05	0.05	0.050
4	50%	5	5	0.500
5		1	1	1.000
1	VIII human economic damage	5.106	6 60007	0.001
1	50M€per year	5×10^{3}	0.09897	0.091
2 9	500M per year	$3 \times 10^{\circ}$	(.0989/ 8 60007	0.794
ა ⊿	5000Meper year	$3 \times 10^{\circ}$ 5×10^{9}	0.09897	0.897
4		9 X 10°	9.09097	1.000
1		0	0	0
т 9	2	2	9	0 333
⊿ 3		∠ 1	2 1	0.555 0.667
4	6	т б	т 6	1 000
+		0	0	1.000

Table 5.13: Transformations of values of attributes

								ord	ering
		$\mathbf{E}\mathbf{Q}$	OQ	QD	mean	scores	rank	PI	#
ŝ	$S_{5.1<}$	0.545	0.5690	0.02359	$B_1 \ 0.5807$	$S_1 = 1.9859$	S_1	S_1	
$\wedge $	$S_{1.1>}$	0.636	0.4350	0.20139	$B_2 \ 0.3397$	$S_2 = 1.7953$	S_3	S_3	ii ii
	$S_{3.1>}$	0.545	0.7801	0.23463	$B_3 0.2303$	$S_3 = 1.8175$	S_6	S_2	ii -
	$S_{2.1<2}$	0.545	0.5756	0.03014	$B_4 \ 0.2749$	$S_4 = 1.6872$	S_7	S_6	
	$S_{7.1 < 2}$	0.727	0.6965	0.03077	$B_5 \ 0.3031$	$S_5 = 1.5304$	S_4	S_7	1
Ч	$S_{1.1>2}$	0.455	0.5816	0.12706	$B_6 0.2992$	$S_6 = 1.7762$	S_2	S_4	3
U	$S_{3.1>2}$	0.727	0.7482	0.02088	$B_7 \ 0.6929$	$S_7 = 1.7600$	S_5	S_5	
0	$S_{4.1 < 3}$	0.636	0.6974	0.06103	$B_8 \ 0.3302$				
Ц	$S_{5.1 < 3}$	0.727	0.7341	0.00678	$B_9 \ 0.3262$				ii -
J	$S_{7.1 < 3}$	0.727	0.7461	0.01886					ii -
	$S_{7.1>3}$	0.545	0.6354	0.08994					ii ii
	$S_{3.1 < 4}$	0.727	0.6969	0.03036					ii -
	$S_{6.1<4}$	0.727	0.7475	0.02023					Ï
ŝ	$S_{8.2<}$	0.727	0.7775	0.05019		$S_6 = 1.7762$	S_{10}	S_6	
\wedge I	$S_{12.2<}$	0.727	0.8512	0.12394		$S_7 = 1.7600$	S_9	S_7	
	$S_{9.2>}$	0.727	0.8369	0.10958		$S_8 = 1.5969$	S_{11}	S_{12}	
5	$S_{10.2>}$	0.364	0.5022	0.13853		$S_9 = 1.7100$	S_7	S_{10}	
	$S_{6.2<2}$	0.636	0.7667	0.13033		$S_{10} = 1.7162$	S_6	S_9	1
Ч	$S_{7.2<2}$	0.727	0.8102	0.08296		$S_{11} = 1.6583$	S_{12}	S_{11}	0
U	$S_{9.2<2}$	0.909	0.9096	0.00047		$S_{12} = 1.7274$	S_8	S_8	
0	$S_{8.2 < 3}$	0.545	0.4794	0.06602					
Ц	$S_{7.2>3}$	0.455	0.4998	0.04522					
U	$S_{11.2<4}$	0.545	0.6826	0.13719					
က	$S_{13.3>}$	0.636	0.7176	0.08126		$S_{11} = 1.6583$	S_{16}	S_{14}	
\wedge	$S_{16.3>}$	0.545	0.5250	0.02049		$S_{13} = 1.5733$	S_{13}	S_{17}	ii -
ŝ	$S_{17.3 < 2}$	0.636	0.7474	0.11100		$S_{14} = 1.7760$	S_{11}	S_{15}	ii -
	$S_{11.3>2}$	0.727	0.7883	0.06107		$S_{15} = 1.6646$	S_{14}	S_{11}	
Ч	$S_{17.3>2}$	0.636	0.6168	0.01959		$S_{16} = 1.6088$	S_{17}	S_{16}	9
D	$S_{14.3 < 3}$	0.636	0.7266	0.09026		$S_{17} = 1.6654$	S_{15}	S_{13}	
0	$S_{11.3>3}$	0.727	0.7721	0.04480					
Ц	$S_{14.3 < 4}$	0.727	0.7763	0.04903					Ï
U	$S_{15.3 < 4}$	0.636	0.5976	0.03875					Ï
		\mathbf{RMSE}_q	0.1064						
\mathbf{RMSE}_s	\mathbf{RMSE}_s 0.5561								
# - the	# - the number of constraints used								
EQ - exp	EQ - experts quantiles (experts assessments)								
OQ - ob	OQ - obtained quantiles (after PI)								
QD - qu	antiles di	fferences ($(\mathbf{EQ} - \mathbf{O})$	\mathbf{Q})					
RMSE _s	- error of	f scores							

Table 5.14: Results for ALL GROUPS with transformations (PART I)

							orde	ering
		$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\rm QD$	scores	rank	\mathbf{PI}	#
4	$S_{16.4<}$	0.727	0.7472	0.01997	$S_{16} = 1.6088$	S_{20}	S_{20}	
1,	$S_{19.4<}$	0.909	0.9019	0.00714	$S_{17} = 1.6654$	S_{21}	S_{17}	ii -
4	$S_{21.4<}$	0.909	0.8842	0.02493	$S_{18} = 1.5751$	S_{18}	S_{16}	- II
	$S_{22.4<}$	0.455	0.4798	0.02524	$S_{19} = 1.5201$	S_{19}	S_{18}	
Ъ	$S_{18.4>}$	0.909	0.8846	0.02445	$S_{20} = 1.7883$	S_{17}	S_{19}	8
Ŋ	$S_{19.4>}$	0.818	0.8845	0.06633	$S_{21} = 1.4673$	S_{16}	S_{21}	
0	$S_{20.4>}$	0.364	0.4604	0.09681	$S_{22} = 1.3781$	S_{22}	S_{22}	
В	$S_{21.4>}$	0.909	0.8981	0.01095				
U								
-1	$S_{21.5<}$	0.818	0.8354	0.01726	$S_{21} = 1.4673$	S_{21}	S_{23}	
1,	$S_{22.5<}$	0.727	0.7635	0.03625	$S_{22} = 1.3781$	S_{23}	S_{21}	
	$S_{23.5<}$	0.909	0.9174	0.00832	$S_{23} = 1.5024$	S_{26}	S_{24}	
Ŋ	$S_{25.5<}$	0.636	0.7168	0.08047	$S_{24} = 1.3980$	S_{27}	S_{22}	
	$S_{27.5 <}$	0.909	0.9007	0.00838	$S_{25} = 1.3427$	S_{24}	S_{25}	9
Ч	$S_{21.5>}$	0.455	0.4563	0.00174	$S_{26} = 1.3093$	S_{22}	S_{27}	
N	$S_{22.5>}$	0.909	0.9061	0.00302	$S_{27} = 1.3245$	S_{25}	S_{26}	
0	$S_{23.5>}$	0.909	0.9111	0.00198				
В	$S_{25.5>}$	0.909	0.9088	0.00025				
J	$S_{26.5>}$	0.818	0.8180	0.00018				
			\mathbf{RMSE}_q	1.65227				
\mathbf{RMSE}_s	RMSE_s 0.5561							
# - the	# - the number of constraints used							
EQ - experts quantiles (experts assessments)								
OQ - obtained quantiles (after PI)								
QD - qu	antiles di	fference	es (EQ $-$ 0	$\mathbf{OQ})$				
\mathbf{RMSE}_s	- error of	\mathbf{scores}						

Table 5.15: Results for ALL GROUPS with transformations (PART II)

The results that we presented in this section show that indeed, the choice of transformations does influence the results. More explicitly, when we look at RMSE in this case, it equals to 1.65227. When we used previous transformations, we obtained for RMSE a larger value, 1.91919. This result shows that because we transformed the values of attributes such that they are uniformly spread, PI performed much better. however, even if we obtained a smaller value for RMSE, the ordering obtained is not so accurate, because we do not follow the reality for those values. We emphasise that we wanted to show that the more uniformly spread are the values of attributes after transformations, the less error we obtain.

Further we try to answer to the second question: can we propose any transformations? It is difficult to assume what it should be done. However, our proposal is that, first of all the attributes values should be chosen such that they express as accurate as possible the reality. Secondly, the transformation can be done using any kind of relation, function, etc, such that they lead to a uniform spread of the attributes values.

5.3 Weights

In this section we present another approach. Instead of starting with uniform distribution for B_i 's, we start with Dirichlet distribution, to get weights for B_i 's. Let B be a random vector, where each of the elements are independent and have Gamma distribution with scale equal to 1.

$$B \sim Gamma(shape = \alpha_i, scale = 1),$$

for i = 1, ..., 9. Then, the random vector $V = (B_1/T, B_2/T, B_3/T, ..., B_9/T)$, where

$$T = \sum_{i=1}^{9} B_i$$

has a Dirichlet distribution with parameters α_i , i = 1, ..., 9

We skip presenting the results for each group taken separately, and provide just the results obtained when all the groups are placed together. Tables 5.16 and 5.17 show the obtained scores of each scenario and the means of B_i 's.

We specify that we started from "combined variant" (i.e. we take groups I, II and III with variant V, (≥ 3), and groups IV and V with variant IV, (1,7)), and we took B_i 's as weights.

In this approach we investigated the sensitivity of the results with respect to starting distribution. The results are shown in Tables 5.16 and 5.17.

								orde	ering
		$\mathbf{E}\mathbf{Q}$	OQ	QD	mean	scores	rank	PI	#
S	$S_{5.1<}$	0.545	0.5849	0.03943	$B_1 \ 0.2193$	$S_1 = 0.463$	S_1	S_1	
\wedge	$S_{1.1>}$	0.636	0.6518	0.01542	$B_2 \ 0.0786$	$S_2 = 0.329$	S_3	S_3	
	$S_{3.1>}$	0.545	0.6647	0.11928	$B_3 0.0763$	$S_3 = 0.439$	S_6	S_4	
Η	$S_{2.1<2}$	0.545	0.5925	0.04700	$B_4 \ 0.0782$	$S_4 = 0.394$	S_7	S_6	
	$S_{7.1 < 2}$	0.727	0.7374	0.01018	$B_5 \ 0.0685$	$S_5 = 0.303$	S_4	S_7	1
Ч	$S_{1.1>2}$	0.455	0.5666	0.11208	$B_6 0.0257$	$S_6 = 0.352$	S_2	S_2	3
Ω	$S_{3.1>2}$	0.727	0.7330	0.00572	$B_7 0.2322$	$S_7 = 0.349$	S_5	S_5	
\circ	$S_{4.1 < 3}$	0.636	0.6829	0.04650	$B_8 \ 0.1598$				
Я	$S_{5.1 < 3}$	0.727	0.8037	0.07646	$B_9 \ 0.0614$				
IJ	$S_{7.1 < 3}$	0.727	0.7421	0.01482					
	$S_{7.1>3}$	0.545	0.5867	0.04122					
	$S_{3.1 < 4}$	0.727	0.6767	0.05062					
	$S_{6.1 < 4}$	0.727	0.7968	0.06954					
S	$S_{8.2<}$	0.727	0.7515	0.02422		$S_6 = 0.352$	S_{10}	S_9	
\wedge	$S_{12.2<}$	0.727	0.7374	0.01015		$S_7 = 0.349$	S_9	S_{10}	
	$S_{9.2>}$	0.727	0.7233	0.00400		$S_8 = 0.337$	S_{11}	S_{12}	
2	$S_{10.2>}$	0.364	0.4787	0.11505		$S_9 = 0.438$	S_7	S_6	
	$S_{6.2<2}$	0.636	0.5735	0.06285		$S_{10} = 0.412$	S_6	S_1	1
Ч	$S_{7.2<2}$	0.727	0.8043	0.07706		$S_{11} = 0.352$	S_{12}	S_7	0
Ω	$S_{9.2<2}$	0.909	0.8835	0.02556		$S_{12} = 0.402$	S_8	S_8	
\circ	$S_{8.2 < 3}$	0.545	0.5162	0.02923					
Я	$S_{7.2>3}$	0.455	0.5402	0.08564					
Ç	$S_{11.2<4}$	0.545	0.5715	0.02607					
3	$S_{13.3>}$	0.636	0.7450	0.10865		$S_{11} = 0.352$	S_{16}	S_{14}	
\wedge	$S_{16.3>}$	0.545	0.5024	0.04305		$S_{13} = 0.309$	S_{13}	S_{15}	
ŝ	$S_{17.3 < 2}$	0.636	0.6408	0.00439		$S_{14} = 0.404$	S_{11}	S_{16}	
	$S_{11.3>2}$	0.727	0.7668	0.03949		$S_{15} = 0.394$	S_{14}	S_{11}	
Ч	$S_{17.3>2}$	0.636	0.6471	0.01073		$S_{16} = 0.357$	S_{17}	S_{17}	9
Ω	$S_{14.3 < 3}$	0.636	0.6246	0.01172		$S_{17} = 0.323$	S_{15}	S_{13}	
\circ	$S_{11.3>3}$	0.727	0.7321	0.00485					
Я	$S_{14.3 < 4}$	0.727	0.7780	0.05070					
Ç	$S_{15.3<4}$	0.636	0.6646	0.02820					

Table 5.16: Results for ALL GROUPS with weights (PART I)

							orde	ering	
		$\mathbf{E}\mathbf{Q}$	$\mathbf{O}\mathbf{Q}$	$\mathbf{Q}\mathbf{D}$	scores	rank	\mathbf{PI}	#	
4	$S_{16.4<}$	0.727	0.7895	0.06218	$S_{16} = 0.357$	S_{20}	S_{20}		
1,	$S_{19.4<}$	0.909	0.8845	0.02457	$S_{17} = 0.323$	S_{21}	S_{21}	ii –	
4	$S_{21.4<}$	0.909	0.8958	0.01328	$S_{18} = 0.256$	S_{18}	S_{16}	Ü.	
	$S_{22.4<}$	0.455	0.4683	0.01374	$S_{19} = 0.298$	S_{19}	S_{17}		
Ч	$S_{18.4>}$	0.909	0.9077	0.00138	$S_{20} = 0.431$	S_{17}	S_{19}	8	
Ω	$S_{19.4>}$	0.818	0.8739	0.05569	$S_{21} = 0.365$	S_{16}	S_{18}		
\circ	$S_{20.4>}$	0.364	0.4100	0.04632	$S_{22} = 0.236$	S_{22}	S_{22}		
Я	$S_{21.4>}$	0.909	0.9094	0.00028				- II	
IJ								Ï	
4	$S_{21.5<}$	0.818	0.8222	0.00403	$S_{21} = 0.365$	S_{21}	S_{21}		
1,	$S_{22.5<}$	0.727	0.7946	0.06729	$S_{22} = 0.236$	S_{23}	S_{26}	Ü.	
	$S_{23.5<}$	0.909	0.9129	0.00379	$S_{23} = 0.265$	S_{26}	S_{23}	Ü.	
5	$S_{25.5<}$	0.636	0.6366	0.00024	$S_{24} = 0.233$	S_{27}	S_{22}		
	$S_{27.5 <}$	0.909	0.9120	0.00287	$S_{25} = 0.217$	S_{24}	S_{24}	9	
Ч	$S_{21.5>}$	0.455	0.4600	0.00548	$S_{26} = 0.282$	S_{22}	S_{25}		
Ω	$S_{22.5>}$	0.909	0.9108	0.00170	$S_{27} = 0.212$	S_{25}	S_{27}		
\circ	$S_{23.5>}$	0.909	0.9124	0.00330				Ü.	
Я	$S_{25.5>}$	0.909	0.9094	0.00033				Ü.	
U	$S_{26.5>}$	0.818	0.8180	0.00018					
			\mathbf{RMSE}_q	1.31016					
#	# - the number of constraints used								
$\mathbf{E}\mathbf{Q}$	EQ - experts quantiles (experts assessments)								
00	OQ - obtained quantiles (after PI)								
QI) - quan	tiles di	fferences ($(\mathbf{EQ} - \mathbf{OQ})$					
\mathbf{RN}	ASE_q - e	error of	quantiles						

Table 5.17: Results for ALL GROUPS with weights (PART II)

Looking at Table 5.17 we notice that error obtained using weights equals to 1.31016. This value is the lowest error that we have obtained in in this analysis. However, there are cases when recovery of ordering that we obtain is poor (i.e. group 3). This problem should be further investigated.

5.4 Summary of obtained results

We present in this section four tables containing the results obtained under the four strategies that we performed in this thesis. Table 5.18 contains scores obtained by each scenarios, the ordering obtained from rank ordering technique, and the one obtained with PI. For a fair comparison, we normalise the values of means and scores of each scenario. In Table 5.19 we present the scores obtained by each scenario in the four strategies we used. For each strategy we define a minimum and maximum score, and we normalised the scores with respect to this minimum and maximum, to make the comparison possible. Minimum score is obtained with means from each variant, and all attributes having the smallest values. Similarly, the maximum score is computed using the maximum values for the attributes.

We denote by A the strategy in which we used for all groups together variant V (≥ 3) . With B we denote the strategy in which we considered "combined variant"

(for groups 1,2,3 - variant V, \geq 3, and for groups 4, 5 - variant IV, 1,7). With C we denote the strategy in which we used weights, and D presents results obtained when we changed the transformations.

We notice that scores obtained for strategy A and B are close to each other. This is because the two strategies are pretty similar (in A we use for all groups variant V, whereas in B we use for group 1 to 4, variant V, and for groups 5 and 6 variant IV). For the other two strategies, we notice a slightly difference of scores. This difference appears to be higher for D, because, as shown in the previous section, the results are sensitive to the choice of transformations. Different transformations, better developed and quantified, may lead to better results. However, the scores obtained in the four strategies do not differ from each other too much.

A		В		С		D		
scores	PI	scores	PI	scores	PI	scores	PI	rank
$S_1 = 1.452$	S_1	$S_1 = 1.491$	S_1	$S_1 = 0.463$	S_1	$S_1 = 1.986$	S_1	S_1
$S_2 = 1.240$	S_3	$S_2 = 1.240$	S_3	$S_2 = 0.329$	S_3	$S_2 = 1.795$	S_3	S_3
$S_3 = 1.357$	S_4	$S_3 = 1.397$	S_6	$S_3 = 0.439$	S_4	$S_3 = 1.818$	S_2	S_6
$S_4 = 1.346$	S_2	$S_4 = 1.241$	S_4	$S_4 = 0.394$	S_6	$S_4 = 1.687$	S_6	S_7
$S_5 = 1.123$	S_6	$S_5 = 1.072$	S_7	$S_5 = 0.303$	S_7	$S_5 = 1.503$	S_7	S_4
$S_6 = 1.167$	S_7	$S_6 = 1.253$	S_2	$S_6 = 0.352$	S_2	$S_6 = 1.776$	S_4	S_2
$S_7 = 1.151$	S_5	$S_7 = 1.217$	S_5	$S_7 = 0.349$	S_5	$S_7 = 1.760$	S_5	S_5
$S_6 = 1.167$	S_{12}	$S_6 = 1.253$	S_9	$S_6 = 0.352$	S_9	$S_6 = 1.776$	S_6	S_{10}
$S_7 = 1.151$	S_9	$S_7 = 1.217$	S_{12}	$S_7 = 0.349$	S_{10}	$S_7 = 1.760$	S_7	S_9
$S_8 = 1.196$	S_8	$S_8 = 1.211$	S_{10}	$S_8 = 0.337$	S_{12}	$S_8 = 1.597$	S_{12}	S_{11}
$S_9 = 1.351$	S_{10}	$S_9 = 1.378$	S_6	$S_9 = 0.438$	S_6	$S_9 = 1.710$	S_{10}	S_7
$S_{10} = 1.185$	S_{11}	$S_{10} = 1.257$	S_7	$S_{10} = 0412.$	S_{11}	$S_{10} = 1.716$	S_9	S_6
$S_{11} = 1.178$	S_6	$S_{11} = 1.203$	S_8	$S_{11} = 0.0000000000000000000000000000000000$	S_7	$S_{11} = 1.658$	S_{11}	S_{12}
$S_{12} = 1.408$	S_7	$S_{12} = 1.375$	S_{11}	$S_{12} = 0402.$	S_8	$S_{12} = 1.727$	S_8	S_8
$S_{11} = 1.178$	S_{14}	$S_{11} = 1.203$	S_{16}	$S_{11} = 0.352$	S_{14}	$S_{11} = 1.658$	S_{14}	S_{16}
$S_{13} = 1.101$	S_{15}	$S_{13} = 1.023$	S_{14}	$S_{13} = 0.309$	S_{15}	$S_{13} = 1.573$	S_{17}	S_{13}
$S_{14} = 1.370$	S_{16}	$S_{14} = 1.283$	S_{15}	$S_{14} = 0.404$	S_{16}	$S_{14} = 1.776$	S_{15}	S_{11}
$S_{15} = 1.359$	S_{11}	$S_{15} = 1.275$	S_{11}	$S_{15} = 0.394$	S_{11}	$S_{15} = 1.665$	S_{11}	S_{14}
$S_{16} = 1.201$	S_{13}	$S_{16} = 1.334$	S_{17}	$S_{16} = 0.357$	S_{17}	$S_{16} = 1.609$	S_{16}	S_{17}
$S_{17} = 1.039$	S_{17}	$S_{17} = 1.106$	S_{13}	$S_{17} = 0.323$	S_{13}	$S_{17} = 1.665$	S_{13}	S_{15}
$S_{16} = 1.201$	S_{20}	$S_{16} = 1.334$	S_{20}	$S_{16} = 0.357$	S_{20}	$S_{16} = 1.609$	S_{20}	S_{20}
$S_{17} = 1.039$	S_{16}	$S_{17} = 1.106$	S_{16}	$S_{17} = 0.323$	S_{21}	$S_{17} = 1.665$	S_{17}	S_{21}
$S_{18} = 0.930$	S_{21}	$S_{18} = 0.991$	S_{21}	$S_{18} = 0.256$	S_{16}	$S_{18} = 1.575$	S_{16}	S_{18}
$S_{19} = 0.867$	S_{17}	$S_{19} = 1.006$	S_{17}	$S_{19} = 0.298$	S_{17}	$S_{19} = 1.502$	S_{18}	S_{19}
$S_{20} = 1.305$	S_{18}	$S_{20} = 1.641$	S_{19}	$S_{20} = 0.431$	S_{19}	$S_{20} = 1.788$	S_{19}	S_{17}
$S_{21} = 1.161$	S_{22}	$S_{21}=1.160$	S_{18}	$S_{21} = 0.365$	S_{18}	$S_{21} = 1.467$	S_{21}	S_{16}
$S_{22} = 0.883$	S_{19}	$S_{22} = 0.938$	S_{22}	$S_{22} = 0.236$	S_{22}	$S_{22} = 1.378$	S_{22}	S_{22}
$S_{21} = 1.161$	S_{21}	$S_{21} = 1.160$	S_{21}	$S_{21} = 0.365$	S_{21}	$S_{21} = 1.467$	S_{23}	S_{21}
$S_{22} = 0.883$	S_{23}	$S_{22} = 0.938$	S_{23}	$S_{22} = 0.236$	S_{26}	$S_{22} = 1.378$	S_{21}	S_{23}
$S_{23} = 1.034$	S_{26}	$S_{23} = 0.117$	S_{22}	$S_{23} = 0.265$	S_{23}	$S_{23} = 1.502$	S_{24}	S_{26}
$S_{24} = 0.903$	S_{24}	$S_{24} = 0.930$	S_{24}	$S_{24} = 0.233$	S_{22}	$S_{24} = 1.398$	S_{22}	S_{27}
$S_{25} = 0.851$	S_{22}	$S_{25} = 0.885$	S_{26}	$S_{25} = 0.217$	S_{24}	$S_{25} = 1.343$	S_{25}	S_{24}
$S_{26} = 0.959$	S_{25}	$S_{26} = 0.927$	S_{25}	$S_{26} = 0.282$	S_{25}	$S_{26} = 1.309$	S_{27}	S_{22}
$S_{27} = 0.839$	S_{27}	$S_{27} = 0.843$	S_{27}	$S_{27} = 0.212$	S_{27}	$S_{27} = 1.325$	S_{26}	S_{25}
RMSE):	RMSE	:	RMSE	:	RMSE:		
RMSE:2.2	3273	1.91919	9	1.91919	9	1.6522	7	

Table 5.18: Results of scores for ALL GROUPS in four strategies

A		В		С		D		
scores	PI	scores	\mathbf{PI}	scores	\mathbf{PI}	scores	\mathbf{PI}	rank
$S_{min}=0.24$	173	$S_{min}=0.23$	666	$S_{min}=0.19$	969	$S_{min}=0.16$	545	
$S_1 = 0.4534$	S_1	$S_1 = 0.4621$	S_1	$S_1 = 0.4632$	S_1	$S_1 = 0.5880$	S_1	S_1
$S_2 = 0.3872$	S_3	$S_2 = 0.3669$	S_3	$S_2 = 0.3288$	S_3	$S_2 = 0.5316$	S_3	S_3
$S_3 = 0.4237$	S_4	$S_3 = 0.4330$	S_6	$S_3 = 0.4388$	S_4	$S_3 = 0.5382$	S_2	S_6
$S_4 = 0.4205$	S_2	$S_4 = 0.3847$	S_4	$S_4 = 0.3940$	S_6	$S_4 = 0.4996$	S_6	S_7
$S_5 = 0.3507$	S_6	$S_5 = 0.3323$	S_7	$S_5 = 0.3034$	S_7	$S_5 = 0.4532$	S_7	S_4
$S_6 = 0.3643$	S_7	$S_6 = 0.3883$	S_2	$S_6 = 0.3520$	S_2	$S_6 = 0.5260$	S_4	S_2
$S_7 = 0.3594$	S_5	$S_7 = 0.3771$	S_5	$S_7 = 0.3491$	S_5	$S_7 = 0.5211$	S_5	S_5
$S_6 = 0.3643$	S_{12}	$S_6 = 0.3883$	S_9	$S_6 = 0.3520$	S_9	$S_6 = 0.5260$	S_6	S_{10}
$S_7 = 0.3594$	S_9	$S_7 = 0.3771$	S_{12}	$S_7 = 0.3491$	S_{10}	$S_7 = 0.2155$	S_7	S_9
$S_8 = 0.3734$	S_8	$S_8 = 0.3753$	S_{10}	$S_8 = 0.3371$	S_{12}	$S_8 = 0.4728$	S_{12}	S_{11}
$S_9 = 0.4220$	S_{10}	$S_9 = 0.4270$	S_6	$S_9 = 0.4383$	S_6	$S_9 = 0.5063$	S_{10}	S_7
$S_{10} = 0.3702$	S_{11}	$S_{10} = 0.3894$	S_7	$S_{10} = 0.4118$	S_{11}	$S_{10} = 0.5082$	S_9	S_6
$S_{11} = 0.3678$	S_6	$S_{11} = 0.3727$	S_8	$S_{11} = 0.3518$	S_7	$S_{11} = 0.4910$	S_{11}	S_{12}
$S_{12} = 0.4398$	S_7	$S_{12} = 0.4259$	S_{11}	$S_{12} = 0.4017$	S_8	$S_{12} = 0.5115$	S_8	S_8
$S_{11} = 0.3678$	S_{14}	$S_{11} = 0.3727$	S_{16}	$S_{11} = 0.3518$	S_{14}	$S_{11} = 0.4910$	S_{14}	S_{16}
$S_{13} = 0.3437$	S_{15}	$S_{13} = 0.3170$	S_{14}	$S_{13} = 0.3094$	S_{15}	$S_{13} = 0.4659$	S_{17}	S_{13}
$S_{14} = 0.4279$	S_{16}	$S_{14} = 0.3976$	S_{15}	$S_{14} = 0.4044$	S_{16}	$S_{14} = 0.5259$	S_{15}	S_{11}
$S_{15} = 0.4244$	S_{11}	$S_{15} = 0.3950$	S_{11}	$S_{15} = 0.3940$	S_{11}	$S_{15} = 0.4929$	S_{11}	S_{14}
$S_{16} = 0.3752$	S_{13}	$S_{16} = 0.4132$	S_{17}	$S_{16} = 0.3574$	S_{17}	$S_{16} = 0.4764$	S_{16}	S_{17}
$S_{17} = 0.3246$	S_{17}	$S_{17} = 0.3427$	S_{13}	$S_{17} = 0.3226$	S_{13}	$S_{17} = 0.4931$	S_{13}	S_{15}
$S_{16} = 0.3752$	S_{20}	$S_{16} = 0.4132$	S_{20}	$S_{16} = 0.3574$	S_{20}	$S_{16} = 0.4764$	S_{20}	S_{20}
$S_{17} = 0.3426$	S_{16}	$S_{17} = 0.3427$	S_{16}	$S_{17} = 0.3226$	S_{21}	$S_{17} = 0.4931$	S_{17}	S_{21}
$S_{18} = 0.2904$	S_{21}	$S_{18} = 0.3070$	S_{21}	$S_{18} = 0.2563$	S_{16}	$S_{18} = 0.4664$	S_{16}	S_{18}
$S_{19} = 0.2707$	S_{17}	$S_{19} = 0.3116$	S_{17}	$S_{19} = 0.2979$	S_{17}	$S_{19} = 0.4501$	S_{18}	S_{19}
$S_{20} = 0.4075$	S_{18}	$S_{20} = 0.4157$	S_{19}	$S_{20} = 0.4306$	S_{19}	$S_{20} = 0.5295$	S_{19}	S_{17}
$S_{21} = 0.3627$	S_{22}	$S_{21} = 0.3594$	S_{18}	$S_{21} = 0.3653$	S_{18}	$S_{21} = 0.4345$	S_{21}	S_{16}
$S_{22} = 0.2758$	S_{19}	$S_{22} = 0.2906$	S_{22}	$S_{22} = 0.2361$	S_{22}	$S_{22} = 0.4081$	S_{22}	S_{22}
$S_{21} = 0.3627$	S_{21}	$S_{21} = 0.3594$	S_{21}	$S_{21} = 0.3563$	S_{21}	$S_{21} = 0.4345$	S_{23}	S_{21}
$S_{22} = 0.2758$	S_{23}	$S_{22} = 0.2906$	S_{23}	$S_{22} = 0.2361$	S_{26}	$S_{22} = 0.4081$	S_{21}	S_{23}
$S_{23} = 0.3230$	S_{26}	$S_{23} = 0.3462$	S_{22}	$S_{23} = 0.2649$	S_{23}	$S_{23} = 0.4449$	S_{24}	S_{26}
$S_{24} = 0.2821$	S_{24}	$S_{24} = 0.2882$	S_{24}	$S_{24} = 0.2333$	S_{22}	$S_{24} = 0.4140$	S_{22}	S_{27}
$S_{25} = 0.2658$	S_{22}	$S_{25} = 0.2741$	S_{26}	$S_{25} = 0.2168$	S_{24}	$S_{25} = 0.3976$	S_{25}	S_{24}
$S_{26} = 0.2996$	S_{25}	$S_{26} = 0.2873$	S_{25}	$S_{26} = 0.2816$	S_{25}	$S_{26} = 0.3877$	S_{27}	S_{22}
$S_{27} = 0.2621$	S_{27}	$S_{27} = 0.2611$	S_{27}	$S_{27} = 0.2121$	S_{27}	$S_{27} = 0.3922$	S_{26}	S_{25}
$S_{max}=3.20$)18	$S_{max} = 3.22$	270	$S_{max}=1$		$S_{max} = 3.37$	777	

Table 5.19: Results of scores for ALL GROUPS in four strategies - normalised values

Conclusions and future work

6.1 Application of results - Priority of Zoonoses

Effective surveillance, prevention and control of zoonoses require focusing on the most relevant ones. To establish a list in which all relevant zoonoses are ranked, a priority setting procedure must be followed. Several priority setting procedures can be used to acquire a final prioritized list including discussions, voting, and group consensus or with an online survey (Public Health Foundation, 2006). Another method of prioritizing is to build a model used to score each pathogen, and based on this score, the ordering of pathogens from most to least severe is obtained.

Our goal in this thesis was to build a model such that it can be used for prioritising the zoonoses based on their severity. In this project, 92 emerging zoonotic agents are considered for their importance for The Netherlands. Technical experts (e.g. scientists of the Central Veterinary Institute[21]) scored these 92 pathogens on nine criteria. We use this information to recover the coefficients of the attributes, using PI technique. We proposed as a starting model, a linear one. After testing this model, we found out that this linear model can be used in analysis of the real data. Because of software constraints we could not use all constraints in our analysis. We have investigated few strategies for removing constraints, and we obtained the best one to combine all groups. This variant performed the best with respect to error obtained and number of constraints used. Table 6.1 shows the means used in the prioritising of pathogens.

For each pathogen, information necessary to score the pathogens on the nine criteria was acquired from websites of the organizations such as (governmental) organisations that are concerned with animal or human health and welfare like WHO (World Health Organisation), OIE (World Organisation for Animal Health), ECDC (European Centre for Disease Prevention and Control), CDC (Centres for Disease Control and Prevention in the USA), RIVM (National Institute For Public Health and Environment in The Netherlands), HPA (Health Protection Agency in the UK)

Table 6.1: Means of B_i used for prioritising pathogens

B_1	0.4763
B_2	0.3235
B_3	0.3395
B_4	0.1808
B_5	0.2894
B_6	0.1839
B_7	0.5692
B_8	0.6084
B_9	0.2560

and VLA (Veterinary Laboratory Agency in the UK)[21]. In some instances, recent articles and books were used to acquire information. The information that was missing was obtained by more specific sources.

For some of the criteria, not enough or even no information was available. These criteria have an uncertainty; the exact score of the criteria is somewhere between the lowest and the highest score. For example, the costs involved with a human infection with a particular pathogen are not precisely known. However, around 5-15% of the patients will visit their physician and the duration of the illness varies between one and two weeks. In this case, the costs are estimated to be between 5 and 50 M Euro a week. The scores of the criteria were added to a database in which general information (taxonomy, disease, reservoir, transmission routes and distribution) of each pathogen was already gathered. For each criterion, the exact or estimated ranges of the scores were filled-in and information used from the source was added. The references were added to be able to retrace the information.

Monte Carlo simulation is a technique that involves using random numbers and probabilities to solve statistical problems. The goal of a Monte Carlo simulation is to determine how random variation (lack of information, or error) affects the sensitivity, performance, or reliability of the system that is being modelled. The data generated from the simulation can be represented as probability distributions, converted to error bars, reliability predictions, tolerance zones, or confidence intervals. Any given sample may fall anywhere within the range of the input distribution. The simulation can involve over 10000 evaluations[21]. This is the first time that a Monte Carlo simulation is used for prioritising of the emerging zoonotic pathogens in this project. The estimated range of the scores were included in the prioritising process by randomly choosing a number out of the range (10000 times) with help of the Monte Carlo simulation (software tools[21], using 10000 simulations). The output of the Monte Carlo simulation is multiplied by the weight for each criterion (which was received from the panel sessions with the policy makers). The scores are normalised to the maximum high threat that was set at 1 and the minimum threat that was set as 0. The scores of criteria 1, 4, 6, 7, and 9 were linear-transformed and the scores of criteria 2, 3, 5 and 8 were log-transformed.

The virus Crimean-Congo Haemorrhagic Fever Virus (CCHFV), an emerging pathogen, is discussed in more detail and serves as an illustrative example of the scoring process using the nine criteria. In short, CCHFV is not present in The Netherlands, but the chance of introduction is high because the agent is already present in other parts of Europe (criterion 1 = 50%). Arthropod borne zoonoses, like CCHFV, have an average rate of spread within the animal population (criterion 2 = 10 days). Economic damage for spread in animals is smaller than 10 M Euro per vear as control can be performed at farm level (criterion 3 = 5 M. Euro). The probability of transmission of pathogen from a vertebrate animal to human is not found in any source. This criterion is therefore scored from the lowest (1:10000) till the highest (1:10) (criterion 4 = 1:10000 till 1:10). Humans who become infected with CCHFV acquire the virus from direct contact with blood or other infected tissues from livestock during this time, or they may become infected from a tick bite (criterion 5 = 10 days). CCHF is a hemorrhagic and a toxic syndrome disease (criterion 6 = 0.6) and has a case fatality rate of 30% (criterion 7 = 50%). According to the decision rules, the costs of hospital admission, which is required with CCHFV, infections are high (criterion 8 = 500 M. Euro). In the perception criterion 4 out of 6 risk attributes appear to be valid (criterion 9 = 4). After normalisation, weighing and aggregation of the scores of all criteria, CCHFV ranked 7th on the preliminary prioritised list of emerging zoonoses.

The results of the priority setting process are shown in Figure 6.1. For comparison, the scores of two additional scenarios are also included, i.e. high and low threat, respectively. These represent (hypothetical) zoonoses that would have all variables set to the maximum (1.00) or minimal (0.00) threat level. Scores for all 92 zoonotic pathogens have been normalised to this range.

Figure 6.1: Final results of prioritising of Zoonoses

The uncertainty of some of the information resulted in large confidence intervals for the normalized score of almost all zoonotic pathogens as shown by the error bars in Figure 6.1. This overall uncertainty was mainly due to the fact that hardly any information was available to score criterion four. As a result for nearly all zoonotic pathogens, criterion four was scored as an interval between the lowest and highest possible score (from 1:10000 till 1:10), which gives rise to a high uncertainty. However, for a few new discovered pathogens, information on any of the criteria was hard to find, which left us with very high uncertainty in the scores. Criterion four was changed from 'number of infected animals needed to infect one person' into 'transmission route from animal to human' and information has been processed for this new criterion. The score for the new criterion four is calculated differently. The score is now log-transformed (instead of linear-transformed), and a high value for the scores for this new criterion indicate now low thread (same as for criteria 2 and 5). From now on all results include the modified criterion four.

With Monte Carlo simulation the 43 variable weight factors were included in the scoring process (instead of the mean weight scores[21]), which resulted in an additional uncertainty (see Figure 6.1). To obtain normalised scores including the variable weight factors, new estimations were made. For each pathogen the score for each criterion is multiplied by the sample of weights which is the unique combination for each criterion linked to the number of occurrences (with use of a software tool[21]). For more details about the unique combinations and the number of occurrences see [21].

6.2 Conclusions and future work

Conclusions The world that we are living in, is changing constantly. Human mankind is also evolving constantly, while the time passes by. Unfortunately for us, we are not the only organisms that are evolving. During the history, man had been the victim of different influential factors, which caused sometimes severe consequences, other times less severe consequences. Diseases represent one of the category that put human mankind under danger.

There exist, nowadays, many types of diseases, some of them lethal, some of them less dangerous. Unfortunately not even the modern medicine research is not able to provide medicines and treatments for all existing diseases. Thus it is very important for us to give a lot of interest in rather prevention, than treatment of diseases.

Diseases, in general, are provoked by viruses, or pathogens. One category of diseases is represented by the ones that come from the animal reign. These pathogens, which are transmitted from animals to humans are called *zoonoses*. The National Institute for Public Health and the Environment (RIVM) has been allocating for many years, a lot of resources in this direction. A first step was to identify the existing zoonoses, all over the world, and more important the ones from Europe and The Netherlands. At the moment there are many institutions and organizations which are constantly updating this list of pathogens.

Once the pathogens have been identified, a natural step would be to develop a method such that their severity can be quantified. This way the prevention of infecting with these pathogens would be easier.

Within this thesis, RIVM in collaboration with Technical University of Delft, has performed a research, having as result, building a model that can be used in prioritising the existing pathogens, and, moreover, that can be used in prioritising the new (emerging) pathogens that may occur. The method used for ranking the zoonotic pathogens has many advantages. The used quantitative method is transparent, repeatable and more objective. The normalised scores for each zoonotic pathogen can help in the effective policy making, control and surveillance. Surveillance and control systems can be improved or developed for those pathogens having the highest normalised score. And also, human and animal medication and vaccines, for those pathogens, can be improved or developed. Making decisions based on the normalised score would be better than using the ranking. This is because the difference between normalised score of the disease ranked number 20 and the one ranked number 30 is very small. Therefore, it would be better to focus on the zoonotic pathogens above a certain normalised score instead of focusing on, for example, the top 20. The methods used for quantifying the information corresponding to each attribute need some improvement and also the weight values need more attention. After improving the method, the final normalised scores can be used for policy making. However, the model must than be kept up to date, newly available or updated information about the pathogens have to be included in the model. Only then the model is reliable and can be used.

Future work One proposal for future work is that another eilicitation procedure should be organised. In further research more people from different backgrounds (e.g. students, doctors or civilians) can take part in these sessions, which may give a more universal outcome. It is interesting to include in the model which criterion or criteria the Dutch citizens find more or less important. Next it would be interesting to find a statistical test to check whether the assessments of the two types of experts differ or not. During the elicitation procedure, we suggest that everything should be checked very well, to avoid any mistakes in formulating the scenarios, for example (as we did with scenario 12). It is worth investigating if using a different number of groups, and maybe less than 7 scenarios in each group would make a difference. We also suggest that scenarios should be constructed such that it would be easier to differentiate them (i.e. if two scenarios have attributes with similar values, for instance, low, then it is difficult to choose between these two scenarios). In the same time, it should be avoided the situation in which there are scenarios with high values for all attributes.

Another suggestion is related to the software which we used. A favourable case would be that the software allows using more than 100,000 samples for big number of constraints which we used.

Transformations of the attributes values consist another research direction. As we have seen in the previous chapters, transformations do influence the accuracy of results. We believe that they should be chosen such that the values of attributes, after transformation, have a uniform spread. This would be very advantageous for PI program, as samples would be distributed uniformly.

As mentioned in the end of the previous section, the decision under uncertainty about the prioritisation of the pathogens should be further investigated.

There may exist the possibility of building a integrated system available on the Internet, where information about the attributes can be updated in real time, by anybody who has knowledge and access the web page. The program will automatically include the new information and generate the updated list with the prioritised pathogens. For the moment however, the list provided contains the latest information.

Appendices

Bibliography

[1] [cited at p. 3]

Concept report Emerging Zoonoses. January 2008. Rijksinstituut voor Volksgezondheid en Milieu (The National Institute for Public Health and the Environment).

- [2] [cited at p. 3]Van der Giessen J.B.W., Isken L.D., and Tiemersma E.W. 2004 Zoonoses in Europe: a risk to public health. RIVM report 330200002/2004
- [3] [cited at p. 3]WHO, 1959. Zoonoses: Second report on the joint WHO/FAO expert committee Geneva, Switzerland, World Health Organisation.
- [4] Winterfeld, D. von and Edwards, W. (1986). Decision analysis and Behavioural Research. Cambridge, England: Cambridge University Press. [cited at p. 16]
- [5] Triantaphyllou, E., (2000), Multi-Criteria Decision Making Methods: A Comparative Study. Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. [cited at p. 16]
- [6] Barron, F. H. and Barrett, B. E. 'Decision quality using ranked attribute weights', Management Science, 42 (1996). [cited at p. 16]
- [7] Einhorn, H. and McCoach, W. 'A simple multiattribute utility procedure for evaluation', in Zionts, S. (ed.), Multiple Criteria Problem Solving, Proceedings of a Conference, Buffalo, NY, 1977. [cited at p. -]
- [8] Stillwell, W. G., Seaver, D. A. and Edwards, W. 'A comparison of weight approximation techniques in multi- attribute utility decision making', Organizational Behavior and Human Performance, 28 (1981), 62-77. [cited at p. -]
- [9] Jia J., Fischer G. W., Dyer J., Attribute Weighting Methods and Decision Quality in the Presence of Responce Error: A simulation Study. Chinese University of Hong Kong, Hong Kong; Duke University, Durham, NC, USA; The University of Texas as Austin, Austin, TX; USA. [cited at p. 16]
- [10] _[cited at p. -]Mourits M.C.M. and Huinre R.B.M., 2005. Multi-criteria analysis in Prevention and Control of FDM, CSF and AI in the EU: An integrated analysis

of veterinary, economic, social-ethical issues. Van Asseldonk, M.A.P.M., De Jong, M.C.M., De Vlieger, J.J. and Huirne, R.B.M. (Eds).EU research report, publication in progress, pp 54-68

- [11] Cooke, R.M. Experts in Uncertainty. Opinion and Subjective Probability in Science. oxford University Press, 2001. [cited at p. 7, 63, 64, 65]
- [12] [cited at p. 12]Kurowicka D., Cooke R.M. Techniques for Generic Probabilistic Inversion. Probabilistic Safety Assessment and Management. Elsevier. Pg/; 1543-1550.2002
- [13] Du C., Kurowicka D., Cooke R.M Techniques for generic Probabilistic Inversion. Department of Applied Mathematics, Delft University of Technology, The Netherlands [cited at p. 12]
- [14] Kullback, S., 1959. Information Theory and Statistics.Wiley, NewYork. [cited at p. 12]
- [15] Cooke, R.M., 1994. Parameter fitting for uncertain models: modelling uncertainty in small models. Reliab. Engrg. System Safe. 44, 89- 102. [cited at p. 13]
- [16] Harper, F., Goossens, L., Cooke, R.M., Hora, S., Young, M., Pasler-Ssauer, J., Miller, L., Kraan, B., Lui, C., McKay, M., Helton, J., Jones, A., 1994. Joint US-NRC CEC consequence uncertainty study: summary of objectives, approach, application, and results for the dispersion and deposition uncertainty assessment. NUREG/CR-6244, EUR 15755 EN, SAND94-1453, vol. III. [cited at p. -]
- [17] Kraan, B.C.P., Cooke, R.M., 2000a. Processing expert judgements in accident consequence modelling. Radiat. Prot. Dosim. 90 (3), 311-315. Kraan, B.C.P., Cooke, R.M., 2000b. Uncertainty in compartmental models for hazardous materials-a case study. J. Hazard. Mater. 71, 253-268. [cited at p. -]
- [18] Neslo R.E.J., Iterative Methods for Minimal Informative Distributions, Department of Applied Mathematics, Delft University of Technology, The Netherlands [cited at p. -]
- [19] Kruithof J 1937 Telefoonverkeersrekening. De Ingenieur 52(8), E15-E25.
 [cited at p. 12, 13]
- [20] Uncertainty Analysis with High Dimensional Dependence Modelling Dorota Kurowicka and Roger Cooke. Department of Applied Mathematics, Delft University of Technology, The Netherlands [cited at p. -]
- [21] [cited at p. 85, 86, 89, 99]Emerging Zoonoses: Surveillance and response systems for infectious diseases and the validation and improvement of the priority setting of emerging zoonoses. Quantitative Veterinary Epidemiology. (QVE-80436) Milou Toetenel, Wageningen University, November '07- June '08

- [22] _[cited at p. 63, 64]Siegel, 1956, M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, 1940.
- [23] "A comparison of alternative tests of significance for the problem of m rankings", The Annals of Mathematical Statistics, Vol. 11, No.1 (Mar. 1940), pp86-92 M. Friedman. [cited at p. -]
- [24] [cited at p. 64][I] M. G. Kendall and B. Bnbington Smith, "The Problem of m Rankings," Annals of math. Stat., Vol. X (1939), pp. 275-87.

Criteria definitions

This chapter is published with the permission of the authors. We briefly present the nine criteria used in this project. For the full description of criteria along with the decision rules on which the estimation of criteria relies on please refer to [21].

A.1 Probability of introduction of a pathogen in the Netherlands

Significance: Probability of introduction of pathogen, percentage [%]

Definition: This criterion describes the probability that a zoonotic pathogen will be introduced in the Netherlands in the following year. This probability depends on the introduction of an infected entity. Moreover, it depends on the prevalence of an infection in such an entity and the intensity in which those entities enter the Netherlands. The result depends on the type of entity in question.

Point estimates: The probability of introduction of a pathogen will be estimated using the decision rules described below appointing it to one of five probability intervals:

- 0%;
- < 1%, point estimate 0,5%;
- 1-9, point estimate 5%;
- 10-99%, point estimate 50%;
- 100%.

The explanation and translation between the probability intervals is described in [21]. We just present the possible values of each coefficient.

A.2 Rate of transmission of pathogen in animal reservoirs

Significance: Time between new infections in animals [days]

Definition: This criterion describes the rate by which an infection spreads in a sensitive animal population. This rate depends on many factors including the infectiousness of the disease and duration of the infectious period. The rate is expressed as the time that passes between a primary and secondary infection. The estimate is based on the level of section of the pathogen or its transmission route.

Point estimates: The rate of spread of a pathogen will be estimated using the decision rules described below appointing it to one of four intervals:

- null (in the mathematical model we use 10.000 days);
- 30 days;
- 10 days;
- 3 days.

A.3 Economic damage (animal)

Significance: Criterion: Costs ([MEuro/ year])

Definition: This criterion describes the costs for the Dutch society given the discovery of an infection in the Dutch animal reservoir, and transmission between animals has occurred. The costs relate to the agricultural sector (production animal farms, suppliers, slaughter houses, and food industry) and the government. The costs include costs associated with control of the disease (culling, vaccination, compensation etc) and the costs of lack of occupancy of stables, loss of breeding animals, lost returns and the damage to the market though the loss of a share in the market for long period of time and loss in the tourist industry. These costs depend on preceding criteria, because a zoonotic agent that also causes animal diseases and spreads quickly will demand more intense and expensive control measures.

Point estimates: The costs of the emerging pathogen will be estimated using the decision rules described below appointing it to one of four intervals:

- < 10 MEuro per year, point estimate 5 M.Euro per year;
- 10 100 MEuro per year, point estimate 50 M.Euro per year;
- 100 1,000 MEuro per year, point estimate 500 M.Euro per year;
- 1,000 MEuro per year, point estimate 5000 M.Euro per year.

A.4 Probability of transmission of pathogen from animal to human

Significance: The number of human cases due to one infected animal

Definition: This criterion describes the probability that an infection is transmitted from a vertebrate animal to a human, given that infected animals are present. For example, with a probability of 1:1000, one human gets ill for every 1000 infected animals. For this, the current hygienic practises, level of contact between human and animals and the level of infectiousness for humans are taken into account. The probability on transmission is the result of a complex relationship between the different factors. This phenomenon is difficult to describe with simple decision rules. This criterion is scored on ground of observations/estimates in countries where the infection is endemic.

Point estimates:

- 1:10,000;
- 1:1,000;
- 1:100;
- 1:10.

A.5 Rate of spread of pathogen within human population

Significance: Time between new infections in humans ([days])

Definition: This criterion describes the rate in which an infection spreads in a sensitive human population. This rate depends on many factors including the infectiousness of the disease and duration of the infective period. The rate is expressed in the time that passes between a primary and secondary infection. The estimate is based on the level of section of the pathogen or its transmission route.

Point estimates: The rate of spread of a pathogen will be estimated using the decision rules described below appointing it to one of following four intervals):

- null (in mathematical model we use 10.000 days);
- 30 days;
- 10 days;
- 3 days.

A.6 Morbidity (human) - gravity of illness

Significance: Loss of health related quality of life

Definition: This criterion reflects the effect of the disease on the health related quality of life and it is expressed in the number of years in which the disease appears. The value of the criterion is anchored between 0 (full health) and 1 (worst possible health state) and depends on both the severity and the duration of the disease.

Point estimates: Four intervals for the morbidity are used:

- disability weight ; 0.03; point estimate 0.02;
- 0.03 ; disability weight ; 0.1; point estimate 0.06;
- 0.1 ; disability weight ; 0.3; point estimate 0.2;
- disability weight ¿ 0.3; point estimate 0.6.

A.7 Mortality (human) - chances of dying

Significance: Case fatality rate (percentage [%])

Definition: This criterion describes the case-fatality rate of the illness, which depends on the nature of the infection and the health status of the infected person.

Point estimates: Four intervals for the mortality are used:

- 0%;
- < 1%, point estimate 0,5%;
- 1-10%, point estimate 5%;
- 10-100%, point estimate 50%;
- 100%.

A.8 Economic damage (human)

Significance: Costs ([MEuro/ year])

Definition: This criterion describes the costs for the Dutch society involving with the presence of the infection within the Dutch human population. The costs relate to the health care sector (physicians, hospitals, drugs etc) and not-health care costs including lost of productivity due to illness or untimely death, but also costs to control an epidemic like closing schools or industries, closing airports etc. These
costs depend on preceding criteria. A zoonotic agent that spreads quickly between humans will demand more intense and expensive control measures. Similarly, a more serious illness will result in more costs than less severe ones.

Point estimates: The costs of the emerging pathogen will be estimated using the decision rules described below appointing it to one of following four intervals):

- < 10 M.Euro per year, point estimate 5 M.Euro per year;
- 10 100 M.Euro per year, point estimate 50 M.Euro per year;
- 100 1000 M.Euro per year, point estimate 500 M.Euro per year;
- 1000 M.Euro per year, point estimate 5000 M.Euro per year.

A.9 Perception

Significance: Number of applicable risk attributes

Definition: This criterion described the level in which subjective risk attributes influence the perception of the Dutch society.

Point estimates:

- Involuntary exposure;
- Unknown or new and unnatural risk;
- Hidden, postponed and irreversible damage;
- Possibility of identification with victims (e.g. children or pregnant women).

Scenarios list

ORDER	1	2	3	4	5	6	7	8	9	10	11
1	JR	WL	ZC	ZC	WL	ZC	VG	VG	JR	ZC	ZC
2	VG	PX	VG	JR	VG	PX	ZC	ZC	VG	PX	VG
3	PX	ZC	PX	VG	ZC	JR	JR	JR	ZC	JR	PX
4	QJ	VG	GF	WL	JR	GF	GF	WL	WL	VG	JR
5	ZC	JR	JR	PX	PX	VG	PX	PX	PX	WL	WL
6	GF	QJ	WL	QJ	QJ	QJ	WL	QJ	QJ	GF	GF
7	WL	GF	QJ	GF	GF	WL	QJ	GF	GF	QJ	QJ
1	LQ	SK	AS	FZ	LQ	FZ	NA	FZ	OS	LQ	SK
2	NA	LQ	OS	LQ	SK	EV	SK	SK	SK	NA	NA
3	SK	FZ	FZ	SK	FZ	NA	LQ	OS	FZ	FZ	LQ
4	FZ	OS	EV	OS	OS	OS	FZ	LQ	AS	OS	AS
5	EV	NA	NA	NA	NA	LQ	OS	NA	NA	SK	OS
6	OS	EV	LQ	EV	AS	SK	EV	EV	LQ	EV	FZ
7	AS	AS	SK	AS	EV	AS	AS	AS	EV	AS	EV
1	RZ	KC	RZ								
2	GU	BE	YU	GU	CI	GU	BE	KC	KC	GU	YU
3	BE	GU	KC	YU	DP	DP	KC	DP	CI	DP	GU
4	KC	KC	DP	CI	KC	KC	DP	YU	DP	CI	BE
5	CI	DP	GU	KC	BE	YU	CI	CI	YU	BE	DP
6	DP	CI	CI	DP	GU	CI	GU	GU	GU	YU	KC
7	YU	YU	BE	BE	YU	BE	YU	BE	BE	RZ	CI
1	FV	BY	MF	FV	FV	EW	FV	FV	FV	BY	BY
2	BY	FV	EW	EW	JD	FV	BY	JD	JD	FV	FV
3	AG	MF	BY	AG	BY	AG	AG	BY	MF	MF	AG
4	MF	AG	AG	KD	AG	KD	JD	MF	AG	AG	EW
5	JD	JD	KD	JD	MF	BY	MF	AG	KD	JD	MF
6	EW	EW	FV	BY	EW	JD	EW	EW	BY	EW	JD
7	KD	KD	JD	MF	KD	MF	KD	KD	EW	KD	KD
1	PT	PT	LO	TB	DI	PT	DI	RY	DI	PT	LO
2	XN	DI	PT	XN	UB	RY	PT	DI	UB	DI	XN
3	TB	UB	XN	UB	TB	DI	UB	UB	PT	XN	UB
4	DI	TB	DI	RY	XN	UB	TB	TB	XN	UB	PT
5	UB	XN	TB	LO	PT	LO	RY	PT	TB	TB	TB
6	RY	RY	UB	DI	RY	TB	XN	LO	RY	RY	RY
7	LO	LO	RY	PT	LO	XN	LO	XN	LO	LO	DI
1	IA	IA	СМ	СМ	NW	QX	IA	NW	QX	IA	MJ
2	MJ	СМ	QX	MJ	СМ	СМ	QX	MJ	NW	OE	OE
3	QX	OE	OE	IT	QX	IA	СМ	СМ	IA	QX	IT
4	OE	QX	MJ	OE	IA	NW	NW	IT	OE	MJ	QX
5	NW	IT	IA	NW	OE	OE	IT	IA	СМ	NW	IA
6	IT	MJ	IT	IA	IT	IT	OE	QX	IT	IT	NW
7	СМ	NW	NW	QX	MJ	MJ	MJ	OE	MJ	СМ	СМ

-									LA	LTRIBUTE	6								
Scenario	~	-		7		3		4		5		9		7		8		6	
		Intro Kans		Vrspr.Dier		\$Dier		OvrdMens		Vrspr.Mens		ZkErnst		KansDood		\$Mens		Perceptie	
		IK(1-5)		VD(1-4)		ESD(1-4)		Ok(1-4)	-	VM(1-4)		ZE(1-4)		OVK(1-5)		ESM(1-4)		P(1-5)	
-	QJ	4	50	3	10	3	500	3	100	3	10	3	0.2	4	50	3	500	3	6
7	NG	с	5	2	30	3	500	4	10	4	3	33	0.2	3	5	2	50	4	8
ო	GF	4	50	3	10	1	5	3	100	4	3	3	0.2	4	50	1	5	4	8
4	JR	4	50	4	з	4	5000	4	10	3	10	2	0.06	3	5	2	50	1	2
2	ZC	4	50	1	niet	3	500	2	1000	4	3	4	0.6	3	5	3	500	2	4
9	ML	2	0.5	2	30	4	5000	3	100	3	10	3	0.2	4	50	2	50	4	8
7	PX	°	5	3	10	2	50	3	100	4	3	3	0.2	4	50	2	50	3	6
2									Ā	TTRIBUTE	6								
Scenario	~	-	-		~	'n		ч	_	5		9		~		~	~	6	
		Intro	Kans	Vrspr	.Dier	\$Di	er	Ovrd	Vens	Vrspr.I	Vens	ZKEI	nst	Kansl	Dood	\$M	sue	Percel	otie
		IK(1-5)	, ND(1-4)	ESD((1-4)	Ok(1-4)	VM(1	4)	ZE(I-4)	OVK	(1-5)	ESM	(1-4)	-1)-	5)
9	SK	7	0.5	2	30	4	5000	3	100	3	10	3	0.2	4	50	2	50	4	8
7	NA	3	5	3	10	2	50	3	100	4	3	3	0.2	4	50	2	50	3	6
8	FZ	4	50	4	3	2	50	3	100	3	10	4	0.6	2	0.5	3	500	1	2
6	EV	4	50	4	3	1	5	2	1000	4	3	2	0.06	4	50	3	500	2	4
10	AS	4	50	2	30	3	500	3	100	1	niet	2	0.06	4	50	3	500	4	8
11	OS	4	50	3	10	e	500	2	1000	4	e	1	0.02	°.	5	2	50	4	œ
12	ΓG	2	0.5	2	30	4	5000	4	10	2	30	4	0.6	4	50	3	500	-	2
ო									LA	LTRIBUTE	6								
Scenario	~	-		7		e		4		5		9		7		8		6	
		Intro Kans		Vrspr.Dier		\$Dier		OvrdMens		Vrspr.Mens		ZkErnst		KansDood		\$Mens		Perceptie	
		IK(1-5)		VD(1-4)		ESD(1-4)		Ok(1-4)	-	VM(1-4)		ZE(1-4)		OVK(1-5)		ESM(1-4)		P(1-5)	
1	CI	4	50	3	10	3	500	2	1000	4	3	1	0.02	3	5	2	50	4	8
12	RZ	1	0	2	30	4	5000	4	10	2	30	4	0.6	4	50	3	500	1	2
13	YU	4	50	-	niet	-	5	e	100	4	ю	e	0.2	°	5	4	5000	e	9
14	DP	4	50	2	30	3	500	4	1000	2	30	2	0.06	3	5	2	50	4	8
15	KC	4	50	3	10	e	500	4	1000	2	30	3	0.2	2	0.5	2	50	°.	9
16	BE	2	0.5	4	3	1	5	1	10	3	10	4	0.6	4	50	2	50	4	8
17	GU	3	5	2	10	7	50	3	100	2	30	3	0.2	4	50	2	50	3	6

APPENDIX B. SCENARIOS LIST

				8	9	4	œ	ω	9	9					9	9	8	9	4	2	2					9	4	2	2	
	5	Perceptie	P(1-5)	4	e	2	4	4	e	e		5	Perceptie	P(1-5)	3	3	4	3	2	1	-		5	Perceptie	P(1-5)	e	7	-	-	
				50	20	5000	5	50	5	500					2	500	2000	500	50	2000	5000					200	50	5000	5000	
	8	\$Mens	ESM(1-4)	2	2	4	1	2	1	3		8	\$Mens	ESM(1-4)	1	3	4	3	2	4	4		8	\$Mens	ESM(1-4)	£	2	4	4	
				50	50	5	50	50	50	0.5					50	0.5	0	0.5	0.5	50	0.5					0.5	0.5	50	0.5	
	7	KansDood	OVK(1-5)	4	4	e	4	4	4	2		7	KansDood	OVK(1-5)	4	2	1	2	2	4	2		7	KansDood	OVK(1-5)	2	5	4	2	
				0.6	0.2	0.02	0.2	0.06	0.6	0.06					0.6	0.06	0.6	0.06	0.2	0.02	0.2					0.06	0.2	0.02	0.2	
	9	ZkErnst	ZE(1-4)	4	3	-	e	2	4	2		9	ZkErnst	ZE(1-4)	4	2	4	2	3	1	3		9	ZkErnst	ZE(1-4)	2	e S	-	3	
6				10	30	30	niet	30	30	10	6				30	10	30	3	3	10	3	6				с	e	10	с	
TRIBUTE	5	rspr.Mens	/M(1-4)	°.	2	2	-	2	5	e	TRIBUTE	5	'rspr.Mens	/M(1-4)	2	3	2	4	4	3	4	TRIBUTE	5	'rspr.Mens	/M(1-4)	4	4	e	4	
AT		2	-	10000	100	1000	100	100	1000	100	AT		-	-	1000	100	1000	100	100	100	1000	AT		2	-	100	100	100	1000	
	4	OvrdMens	Dk(1-4)	-	e	7	e	с	7	e		4	OvrdMens	Dk(1-4)	2	3	2	3	3	3	2		4	OvrdMens	Dk(1-4)	с	e	e	7	
			•	5	50	5000	50	50	50	50				J	50	50	50	500	500	5000	5				J	500	500	5000	5	
	°	\$Dier	ESD(1-4)	1	2	4	2	2	5	2		e	\$Dier	ESD(1-4)	2	2	2	3	3	4	٢		ę	\$Dier	ESD(1-4)	°	e	4	-	
				з	30	с	e	30	niet	e					niet	3	30	30	10	niet	30					30	10	niet	30	
	2	Vrspr.Dier	/D(1-4)	4	2	4	4	2	-	4		7	Vrspr.Dier	/D(1-4)	1	4	2	2	3	1	2		7	Vrspr.Dier	/D(1-4)	2	e S	-	2	
		-	-	0.5	5	5	5	50	50	0.5			-	-	50	0.5	5	0.5	0.5	0.5	5			-	-	0.5	0.5	0.5	5	
	-	Intro Kans	IK(1-5)	2	3	3	e	4	4	7		-	Intro Kans	IK(1-5)	4	2	3	2	2	2	3		-	Intro Kans	IK(1-5)	2	2	2	3	
			-	BY	AG	E	MF	KD	EW	FV				-	LO	DI	RY	UB	PT	XN	TB				-	QX	IA	MJ	NW	
4	Scenario		I	16	17	9	19	8	7	ដ	5	Scenario			2	23	3	54	22	26	27	9	Scenario			24	55	26	27	

	un error fit	0.00011	0.00068	0.00114	1.6E-05	4E-08	0					un error fit	52 0.00015	0.00047	48 0.00014	12 1:2E-05	34 0.0065	0					am error fit	/2000:0 50	05 0.0003	1 1 4E-05	17 2.2E-05	05 1.5E-05	0				m arror fit	24 0.00209	15 0.00091	32 2.6E-05	0.00047	05 5.3E-05	05 6.9E-05	, ,			m arror fit	15 3,4E-05	9 0.57169	14 1.8E-05	38 0.40602	38 0.04149	3 2.54594	0			
	/ error st	0	0				0					/ error st	0.000	1.9E4	0.000	0.000	0000	0					/ error st	3.6E-0	7.7E-0	00000	4 9F-C	1.4E-0	0				arror co	0.001	1.7E-0	0.000	5.3E-(1.1E-(6.6E-(, ,			Perfor S	2.2E-(0.532	0.001	0.3878	0.0398	2.545	0			
	obt pbty	3.9895	0.0261	4.9003	0.004	1.9998	0					obt pbty	4.0122	0.0217	4.9882	0.0034	1 9745	0					obt pbty	3.9835	0.0173	4:9947	0.0047	1.9961	0				oht nht	3.9543	0.0302	4.9949	0.0217	0.0073	1.9917	, ,			I oht nhts	3.9942	0.7561	5.0043	0.6372	0.2037	0.4044	0			
	7th	4		0		2						7th	4	v	0		c	1					7th	4	ų	c		2					7th	4		5			2				7th	1 1		5			2				
	error fit	0.00255	0.00058	0.00033	1.6E-05	7.9E-05	4E-08					error fit	0.00449	0.00044	0.00024	5.2E-U5	0.00061	0					error fit	0.00138	0.00015	0.0002 8 1E-05	4.6E-05	4.1E-05	1.2E-06				arror fit	2.03148	2.05435	0.0109	0.57943	0.32433	2.3354	1210000			arror fit	0.00069	0.17049	0.00016	0.02176	0.00815	0.37491	6.4E-07			
	error sam	0	0		00	0	0					error sam	0.00027	9.6E-06	0.42-00	0.00015	0.00112	4E-08					error sam	0.00018	0.00014	8 3E-06	7.8E-06	6.2E-06	8.1E-07				arror com	1.89008	1.98584	0.00835	0.5522	0.31979	2.30827	120000			APPOPT SAM	0.00059	0.15117	0.00067	0.01674	0.00745	0.36409	3.6E-07			
	obt pbty	5.9495	0.0241	5.015	0.004	119911	0.0002					obt pbty	5.933	0.021	2:0122	/2000.0	2 0746	0					obt pbty	5.9628	0.0124	0.009	0.0068	1.9936	0.0011				oht nhtv	4.5747	1.4333	3.1044	0.7612	0.5695	0.4718	100000			oht nhtv	5.9737	0.4129	2.9872	0.1475	0.0903	1.3877	0.0008			
	6th	9		'n		2						6th	9	~	°		~	,					6th	•	,	°		5					4th	9	,	e			2				6th	9		3			2				
	ror fit	00263	00024	.46-05	00116	8E-05	9E-08					ror fit	0.0013	00103	1/000	00039	100010	00024					ror fit	1.095.0	0.30991	96060	1.2508	63314	29498				nor fit	08881	.89832	.85475	0.0736	0.0632	6 5836	00000			war fit	43824	0.18122	00043	.61544	0.13838	0.28441	2E-06			
litting	rror sam ei	0	0			0	0					rror sam ei	0.00023	0.00226 (1,000,0	0./E-05 (8E-05	0.00025 (rror sam er	1.48651	0.29301 (0 2705	128601	0.61827 (3.29325 8				ror cam a	0.91112	0.86937	2.83821 2	0.05924	0.08145	0.08597 (-			ror cam er	37295 (0.16835 (0.00025 (1.5453 1	0.11424 ().29452 (2.9E-06			
ors od	obt pbty e	0.0513	1.0154	0.0049	0.966	9060	4.9997					obt pbty e	0.036	0.9679	0.0200	1.9805	001610	5.0156					obt pbty e	0.7488	1.5567	C/ 1C-1	1 5008	1.2043	2.1199				sht nhtv la	1.7575	1.9478	1.6896	1.7287 (1.2514 (0 0077				sht nhtv e	0.662	1.4257	0.0207	0.729	0.628 (2.5333 (5.0014			
d erro	5th o		_	,	4	2	2					5th o	-	_		.7 -	- ~	2					5th c		_	6		2	5				5th 1,				2		2	,			5 th	0	_		2	-	2	5			
ion an	or fit	4E-06	00059	00030 6E-05	00082	1E-05	8E-05					or fit	00024	00066	10024	00387	0000	0005					or fit	54/6	55726 40000	49969 09413	27103	42826	72379				or fit	14746	03587	62551	11567	12508	87684	1000			or fit	43983	12595	00028	82265	48036	E-06	00034			
alidati	or sam err	0	0	0		0 3	0 3.					or sam err	00279 0.	0025 00	0 4460	0.5387 0.	011046 0	00262 0					or sam err	45825 0	21573 0.	0 1688 0	07142 1	44168 1.	85166 9.				vr cam arn	46536 0.	45668 0.	44145 4.	18405 0.	65024 1.	87364 0. 27003 6	20017			r cam Pri	38244 0.	43793 0.	34E-06 0.	29921 0.	11344 1.	4E-05 9	00151 0.			
ples v	bty erro	988	9757	040	040	0.56	062					bty erro	0155 0.0	0257 0	0.0 0.0	0.0	0005 0.0	0.0224 0.0					bty erro	2600 0.	2535 0.5	3068 0.0	1274 13	8049 1.	1183 9.6				shru are	5160 0.1	1894 0.0	8493 4.5	5599 0.1	0607 1.0	0636 0.8 5610 64				det of the	3368 0.4	3549 0.1	9832 4.8	030 0.8	2167 1.4	970 7.	0.0			
of sam	th obt J	ö			i C		6					th obt J	-	61 C		2	000						th obt J	0			i						the lobe	00	6	.0	2 1.	=	2 5	i			th oht r	0.0	2	5		1	3.	0			
TOTS (r fit 4	-02	034	770	014	-05	018					r fit 4	05	-05	/ 60	10	202	-02					r fit	202	059	11+	758	415	927				efit A	168	442	457 3	332	017	071	1			- fit 4	048	086	90	023	037	385	075			
ion, eı	sam erro	0 9.6E	0.00	0.00	000	0.6F	0.00					sam erro	3-05 1E-	0017 2.8E	00.0 00-5	0.00 0.00	000 2010	031 1.5E					sam erro	0123 0.00	8736 0.03	063 0.60	961 2.60	577 3.85	623 0.06				one mes	0.00 0716 0.00	6152 1.61	5722 0.06	0439 7.35	5943 3.00	2064 3.02				oma lmea.	0014 0.00	389 0.55	019 1E-	3-05 0.00	3-05 0.00	923 0.56	00.9 0.00			
alidat	pbty erroi	- 860	816	149	882	860	864					pbty erroi	032 4.41	947 0.00	2.39 8.11	801 0.00 187 0.00	155 0.00	0.00					pbty erroi	149 0.00	749 0.00	216 0.6	852 256	532 3.8	368 0.0				nhtu arroi	944 0.00	706 1.66	541 0.05	883 7.40	579 2.9	478 3.02 769 1.15				when error	218 0.00	578 0.52	01 0.00	151 3.21	808 5.51	509 0.54	726 0.00			
ples v	obtj	0.0	0.9	0.0	2.95	0.0	2.9					obt	0.0	6.0	0.0	8.°	100	3.00					obt	0.0	1.1	3.2,	-	6.1	2.7				ohti	0.0	2.2	0.2	1.28	1.2	1.7				I oht	0.0	0.2	0.0	4.0	2.98	0.75	2.9			
- sam	fit 3rd	90	12	4 1	³⁰ t	33	3 36 3					fit 3rd	~	1	0,	4 0		77 3					fit 3rd		28	5	90	10)5 3				ft 3rd	200	1	6	54 4)5 3	1				64 3rd	11 J	05 1	90	4	3 3	86)5 3			
UP 1	am error i	1.4E-(0.001	0.000	0.000	0000	7.8E-(am error i	06 IE-0	05 0.001	000.0 000	12 7E-0	0000 61	02 0.001					am error 1	0	13 0.000	05 9 4E-(57 4 8F-(14 0.000	07 1.2E-(am arror	6 1E-0	17 15.05	18 0.011	08 6.5090	67 0.0200	24 1.089 97 0.100	0010			am Arror	0.5 9.6E-(83 7.9E-(05 3.2E-(83 0.032	64 1.277	33 1.7189	05 1.3E-(
GRC	ty error s	2 0	3		0 0	0	8					ty error s	1 1.2E-	2 1.5E-	0.3E	0.000	0000	9 0.002					ty error s	1.4E-	9 0.000	4 5.1E ⁻ 6 44E-	0000	0.000	4 3.6E ^J				tv arror c	2 4E-0	2 14.76	8 0.009	4 6.593	4 0.026	6 1.051 24 0.008	-			to arror s	8 7.4E-	1 0.000	8 6.7E-	9 0.026	9 1.326	1 1.671	4 4.1E ²			
	obt pb	0.001	4.962	0.01	2.021	0.018	3.002					obt pb	0.000	4.966	0.012	2000	0.054	2.957					obt pb	•	4.973	0.990	1 997	0.030	3.003				ohtnih	0.003	1.120	0.105	3.551	1.858	3 3 1 7	1100			I obt nb	0.009	4.991	0.001	0.819	0.869	1.311	2.996			
	2nd		5	-	- 2		3					2nd	, 	2			4						2nd		2	-	~						Duc	7117	5		-	2	"	, ,			2nd	20	5		-	2		3			
	n error fit	0	0.00022	2 0E-05	0.00016	0.00023	2.2E-05					n error fit	0	1 8.4E-06	0.00080	7 3 5 0 6	3.6E-07	4E-08					n error fit	-	0.00013	0.00056	0.00052	6.1E-05	0.00042			1	A arror fit	0	7.1E-05	3.6E-06	0.00012	0.00023	0.00025	101000			A Prese fit	3.2E-06	1.43664	3.6E-06	2.4283	0.00011	0.14761	0.00011	 _		
	error san	0	0			0	0	traints	34			error san	0	0.00014	0.00032	0.00084	0.00055	2E-05	traints	29			error san	-	1.2E-05	0.00048	0.0001	0.00053	0.00025	traints	29		aror can	0	4.1E-05	6.4E-05	8.8E-05	6.8E-06	3.6E-07 0.00073	traints	29		PITOP SAN	3.2E-06	1.47234	6.4E-05	2.4336	0.00053	0.13616	3.1E-05	traints	67	
	obt pbty	0	2.0148	1 9983	4.9875	1.9848	0.0047	consi				obt pbty	0	2.0029	0.0294	1.9697	2 0006	0.0002	const	. 4			obt pbty	-	2.0114	0.0000	4 9772	2.0078	0.0205	const	. 4		oht nhtv	0	2.0084	0.0019	1.9889	4.9849	1.9842	const	. 1		oht nhtv	0.0018	0.8014	0.0019	3.5583	5.0106	1.6158	0.0103	cons		
	o lst	-	2 2	с 1 С	4 V	6 2	7	000	000	171	1225	o 1st	-	2 2	с . с	4 2 4	0 0	- 1	416	1379	1545	434	o Ist	-	2 2	C 17	2	6 2	7	742	199	104	1c7	107	2 2	6	4 2	5 5	7 2	092	885	270 071	1st	0	2 2	3	4 2	5 5	6 2	7	5975 200	476	ŀ
	scenaric							1 0.0	0.0	0.0	0.0	scenaric		4					0.0	0.0	0.0	0.0	scenaric		1					1 36.3	1.1	36.7	1.1	anna a						1 82.6	1.6	83.5	scenario	- milano	F	F			H		1 16.6	16.9.	
		3	DA	5	ZC	MI	ЪХ	r validation	validation	ror fitting	E fitting		2	DA DA	5 6	JK	MI	Xd	r validation	validation	ror fitting	E fitting	10	3	DA DA	5 2	ZC	ML	ΡX	r validation	validation	ror fitting	E nung	ī	DV DV	GF	JR	ZC	WL PX	r validation	validation	Tor fitting	E numb	īc	DA	GF	JR	ZC	WL	ΡX	r validation	"or fitting	- A
	I	T	N	٧I	Я	٧	۱	sum erro	RMSE	sum en	RMS.	n	[]	LN	V	19	(V	Λ	sum errol	RMSE	sum en	RMS.	J	LN	l VV	III T	I¥	Λ		sum erro	RMSE	sum en	KIND	١	T	N٦	۷I	Я	ZΛ	sum erroi	RMSE	sum en	LIND Y	Λ.	LN	N	71	ы	٧N	1	Sum erro	Sum en	DAAC

APPENDIX B. SCENARIOS LIST

									S	100		1:404		Dia Cara		- John we	- india	action .	0	04.04	19 20									
									1	Impe		inual 1	2 (1101		01.941	bidm		auoi		1013		20				e	i			
I.J	3.K	scenario	181	001 001	error sa	0.00	85 4	4 04	64 err	0 0	00215	2 DTU 0	01 p01y e. 8715	nor sam	0.01651	10 11 0	0 0605 er	TOT SAIL EL	00366		A68 effic	1 sam erro	7347 1	1 146	4 error se	am error m 0.02143		00 ppty en	OT SAID CIT	01501
LN	AA	2	1	1.1697	0	0.02	88 3	2.73	100	0	06938	1 -	8804	0	0.0143	0	0.4342	0	.18853	6 5.	644	0.0	4884 0	0.000	0	1E-08	- 0	0	0	0
IV	Zb	8	3	2.9187	0	0.00	561 0	0		0	0	5 4	.8386	0	0.02605	5	1.8168	0	.03356	0 03	3682	0 0.15	3557 1	0.966	0	0.0011	0	0.091	0	00828
15	BV	6	0	0.268	0	0.07.	182 1	0.87	712	0	01659	0	0.1118	0	0.0125	-	0.9197	0	00645	1.0	177	0 0.00	0031 5	4.818	0	0.03309	3	.9935	0 4.	2E-05
IV	AS	9	-	1.0276	0	0.00	0 0	0.41	8	0	0.1759	0,	1.2111	0	0.04456		1.8166	0	03364	0.0	1000	0 IE	1 .	1.157	8	0.0249		3674	0	40018
Ά	SO		- •	0.914	0	0.00	74 1	1.00)35	0	.2E-05		.9231	0	0.00591	5	4.9357	0	00413	2 2.(093	0 8.6	E-05 1	0.904	4 : 0 0	0.00914	0	0.31	0	1960
	g	12	6	2.7961	0	0.04	158 2	1.92	229	0	0.00594	2 2	.1635	0	0.02673	-	1.0165	0	.00027	1 0.	979	0 0.0	0044 2	2.006	4	4.1E-05	0	.1156	0	01336
sum e.	rror validation	0.0000	_	con	straints																									
RMS	SE validation	0.000			34																									
DA	ASE fitting	0.7776	_																											
2	ginnit acti	0.2220	1 of	oht nhtv	or the pa	anana m	fit 2nd	1 obt n	the are	a mpano	more fit	2rd of	vt nhtv av	mps ava	arror fit	44P 44P	st shter lar	an mean	tit	th Lob	when area	anala mpa -	, fit – fit	a lobt m	ty arror of	arror fit	245	ht nhtu lan	or cam are	or fit
п,	3K	9	5	1.7595	0.02143	13 0.05	784	4.05	12 0.0	02007 0	00832	2	7219 0	02238	0.07734	-	0.5778 0.	267599 0	33385	1	1.8 0.00	1219 0.	1	1.120	8 0.006	56 0.01459	-	.9287 0.	03756 0.0	00508
LN	AA	7	-	0.9833	0.03474	15 0.00)28 3	2.65	356 0.0	10201 0	13279	-	.8007 0.	006352	0.03972		0.6698 0.	055507 0	.44863	6 5.5	3106 0.0	1732 0.00	0799	0	1E-0	0		0	0	0
11	Zb	8	3	2.9827	0.00405	96 0.0C	03	0		0	0	5 5	.2307 0.	153742	0.05322	2	1.5581 0.	.066926 C	.19528	0.2	2746 0.00	0.0.0	7541 1	0.953	6 0.0001	17 0.00215	9	0003 0.	00823 9	E-08
- T	BV	6		0	0.07182	24 C	-	96.0	975 0.0.	159517 6	5.2E-06		0.0007 0.	012343	4.9E-07	_	1.8285 0	.825917 C	.68641		0099 6.1.	E-05 9.8	E-05 5	4.458	7 0.1291	17 0.29301	сч С	7047 0.	08341 0.	.0872
J.	AS	9	- -	1.0047	0.00052	24 2.2E	8 8 -	- 0.0	69 0.1:	298882 (0.00348	-	0000	0.04431	3.6E-07 4.24721	0	2.5877 0	.594595 (1 57 87	, ,	0 IE	2.05	0	1.137	8 0.000	4 0.01899	-	.2102 0.	02471 0.	62378 04605
7Λ		= =	- 6	2 2002	0.0241	0.00	1 21	77.1	10.0 202	115600	17100		1946 2	6810/0	2 20569	n -	1.0032 1	1 00001.1	27007	7	000 000	E-U2 2.2	1 00 1	2.114	8 0.0442 2 0.043	2/ 0.01518		0 27250 0.	5/24/ 03	26042
	2	11 12	n	c002.c	0.1025	/8 0.04	7 716	1.95	nn cne	86000	0-96	7	0.1010	C+0016	\$0CK7.6	-	2.1/4/ 1		76615	1 0.5	0.0 6666	J044	7 20-2	7.214	-2 0.0451	88040.0		0 8007.	01445 0.	0000
Sume	Tror validation	24.3028		con	Straints																									
SIIM	error fitting	25.0702	_		73	1																								
RN	ASE fitting	0.9298																												
		scenario	1st	obt pbty	error sa	m error	fit 2n	d obt p	obty err	or sam	stror fit	3rd of	ot pbty er	TOT Sam	error fit	4th lot	ot pbty len	tor sam ler	ror fit	5th obt	pbty erro	r sam error	r fit 6th	a obt pb	ty error sa	am error fit	t 7th o	bt pbty en	for sam err	or fit
T	SK	9	2	1.9766	0.00495	00.0	155 4	4.0	07 0.00	015524 4	1.9E-05	2 0	7264 1.	311254	1.62206		1.1607	.21044 1	.34722	-	681 0.10	0323 0.01	2826 1	86.0	9 0.0247	77 0.00012	-	.9722 0.	02259 0.0	77000
N	AA	7	-	1.0081	0.02611	5 6.6E	-05 3	2.98	364 0.	0624 0	00018	-	1.996 10	5.93816	15.968		1.3396 0.	819749 1	.79453	6 0.6	5409 26.4	1001 28	3.72	0.02	9000.0 6	34 0.00084		0	0	0
U V	Zb	8	3	2.9817	0.00396	59 0.000	133	0.02	2.0 0.0	00894 0	00089	5 1	.3602 15	2.09927	13.2481	2 2	2.3099 0.	243148 0	.09604	3.	308 8.6	1242 10.5	9429 1	1.002	8 0.001	3 7.8E-06	9	0076 0.	00696 5.	8E-05
11 [1]	EV	6		0.0228	0.06012	23 0.00)52 1	1.00	0.0	172397 6	5.2E-06		0.59 0.	228675	0.3481	-	0.8228 (0.00939 (0.0314	1 0.5	5963 0.1	7758 0.1	6297 5	4.972	1 0.0237	72 0.00078	3 2	.9934 1	E-08 4.	4E-05
V.	AS	9	-	1.005	0.00051	11 2.5E	-05	0.00)53 0.1	714788 2	2.8E-05		.6008 0.	151866	0.36096	6	0.7726 1	089936 1	50651	0.0	5275 0.3	9363 0.3	9376 1	0.983	9 0.0302	24 0.00026	-	.0048 0.	40628 2.	3E-05
Δ	SO	= 5	-,	1.0079	0.00881	17 6.2E	98	36.0	827 0.04	004326	0.0003	- (.9866 1.	131032	0.97338	s -	3.2245 2	.928205	3.1524	2 2.7	7718 0.5	8141 0.5	9568 1	1.023	2 0.0141	1 0.00054		0.0032 0.	09413 1	.E-05
-	2	12	m	2.9979	0.04072	23 4.4E	-06 2	1.98	362 0.0	040069 (00019	2	0.74 2.	026352	1.5876	-	1.3698 0	.124821 (.13675	1 1.8	8874 0.8.	2519 0.7	8748 2	1.995	9 4.2E-(5 IE-08		0.0188 0.	00937 0.0	00035
RMS	TOT Validation	7 0323	_	con	straints																									
MIIS	error fitting	83 8111	_		-	1																								
RN	4SE fitting	2.1003																												
	9	scenario	lst	obt pbtv	error sa	m error	fit 2nd	1 obt p	btv err	orsame	tror fit	3rd ol	t pbtv ei	TOT Sam	error fit	4th lot	ot obtv leri	or sam ler	ror fit	5th obt	pbtv erro	r sam error	r fit 6th	n obt pb	tv error si	am error fit	t 7th o	bt pbtv en	tor sam err	or fit
L	3K	9	2	1.9546	0.00237	72 0.00	206 4	0.58	307 12.0	011076 1	1.6916	2	2015	0.4489	0.6376		2.4484 5.	702066 5	.99466	1 2.3	3003 2.1	1266 1.6	9078 1	1.536	5 0.1521	18 0.28783		0.978 0.	02088 0.0	00048
N	AA	7	-	0.9898	0.03236	54 0.00	01 3	4.23	375 2.2	527008 1	.53141	-	3.507 6.	899028	6.28505		1.2429 0.	653996	1.5448	6 0.5	7414 25.	3774 27.4	6529	0.281	3 0.0790	0.07913		0001	E-08 1	E-08
Λ VI	Zb	8	3	2.9849	0.00438	32 0.00	123	2.48	374 6.18	871588 6	.18716	5	.5934 10	0.53132	11.6049	2	1.3692 0.	200346 0	39791	1.4	1.06	8181 1.9	8331 1	1.15	1 0.0335	33 0.0228		0058 0.	00726 3.	4E-05
I N	EV	6		0.0331	0.05515	78 0.00	1	1.05	551 0.0	338192 0	.00304	-	5291 2.	008739	2.33815		2.1561 1	528685 1	.33657	1.8	8277 0.6	561 0.6	8509 5	1.410	5 11.574	12.8451	ς 1 Γ	.9829 0.	00011 0.0	00029
₹1	AS	01:		1.0068	0.0004	53 4.0E	e e	0.7	/38 0.1	0 20020	11866.		0.000	1/101.0	0.36072		0.3357 1	2 CU/0500	.14417	ö	<u>597 0.5</u>	0.3	1 1 201	0.477	7 0.4625	0.2728	-	.0085 0.	41101 7.	2E-05
1	sic	1	- "	3 0/47	0.00515	0.00 86	19 1 17 7	0.67	1.0 1.8/	05495 0	66113		1/10 1	253512	0.18199	n -	1.933 9	01620/ 5	00004	2 23	5995 0.L	786 05	1596 I	3.573	3 7.1230 2 0.3111	03 6.6218/ 0 31837		0 2100	09431 8.	4E-06
1 milio	rror validation	112 1600	2	100	atrainte	70	4	1111		1 n/nTL	CITOO	4	1 1111	I INNOLN	100010	-	A 14101	1 C7/000	LOCCO	-	N.V.	C'N 0010	4 0107	L02-17	TICO 3	7001000 1-1	-	0 1770	70000	1000
RMS	SE validation	3.5302			9																									
sum	error fitting	117.3546	_			1																								
RN	ASE fitting	3.6110																												
Λ		scenario	lst	obt pbty	error sa	m erro	fit 2n	d obt p	obty err	Or sam	error fit	3rd o	bt pbty ei	rror sam	error fit	4th of	bt pbty er	ror sam et	ror fit	5th obt	pbty erro	r sam erro	r fit 6ti	a obt pb	ty error st	am error fit	t 7th 0	bt pbty en	for sam err	or fit
T	NG NG	0	7 -	1 5705	7176.6	0 2.00	4 100	30.5	10 006	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00077	7	3806 0	0/0882	1701/0		0 7280.0	160641 0	00160	4 2 C	0.0 CCL6	1932 0.0	1 200	0.001	4 1 7F-0	VE 2E-06	-	-1 +7c0.	0 11691	0
N	Ze	8		3.0138	0.00904	14 0.00	610	0.70	173 0.50	002733 0	50027	5	0181 0	03222 (0.00033	6	1.0442 0.	596911 0	91355	0.6	866 0.10	1138 0.4	7142 1	0.502	7 0.2153	39 0.24731		0273 0.	00406 0.0	00075
۷I	AE	6		0.0979	0.02893	14 0.00	158 1	0.53	131 0.1	143116	0.218		9481 0.	699398	0.89889	-	1.1331 0	0.04554 0	01772	1 0.2	735 0.5	5383 0.5	\$278 5	5.00	3 0.0341	9E-06	с. С	.0114 0.	00032 0.0	00013
<u>я</u>	4.S	10	-	2.9853	3.83258	39 3.94	142	0.35	935 0.00	006708 0	0.15484		0.2949 0.	007022	0.08697	2	0.295 2.	315267 2	.90703	0.0	0066 4.2	E-05 4.4.	E-05 1	0.025	2 1.2827	78 0.95024	-	.9995 0.	39955 2.	5E-07
V/	SC	11	-	0.2914	0.38765	31 0.50	1 113	1.01	193 0.00	002496 0	00037	_	.5893 0.	443822	0.34727	5 4	4.9936 0.	003352 4	. IE-05	2 1.6	5948 0.0	9891 0.0	9315 1	1.336	2 0.1864	15 0.11303		0.0756 0.	05494 0.0	00572
۸	5	12	3	3.0133	0.04715	76 0.00)18 2	1.32	29 (0.36 C	0.45846	2 1	.6057 0.	311141	0.15547	1	1.115 0.	009702 0	01323	1 1.4	1479 0.2	1987 0.20	0061 2	1.661	3 0.1190	9 0.11472	0	.8339 0.	51595 0.	69539
sum e.	rror validation	14.2183		con	straints																									
SIIT	error fitting	15.2467	_		10																									
RN	ASE fitting	1.2348																												
			-																											

VARIANT II NARIANT II Name error validation RMSE validation RMSE validation RMSE validation Name error validation RMSE validation Name error validation RMSE validation Name error validation RMSE validation RAME fitting RMSE validation	Acenurio 12 13 14 15 16 17 17 18 19 11 11 12 13 14 15 16 17 18 19 11 12 13 14 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 10 11		bt pbty errcr 0.0079 0.0079 0.0079 0.0079 0.0079 0.0073 0.0079 0.0073 0.0079 0.0073 0.0079 0.0073 0.0079 0.0018 0.0073 0.001 0.0073 0.001 0.0073 0.001 0.00751 2.33 0.001051 2.33 0.001051 2.33 0.001051 2.33 0.0010 0.001 0.0010 0.001 0.0010 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.004 0.002	Tsum error 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	rft 2nd 367 1 367 1 367 1 367 1 367 1 367 1 367 2 367 1 367 2 367 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 373 2 370 2 370	GR 0.0923 0.0923 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0925 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0925 0.0924 0.0925 0.0924 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0925 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 0.0956 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.	OUP3 or of the second	 Sample construction Sample construction<	Jes value 3rd - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <th>lidatic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>III. Entry 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<</th> <th>OTS of S OOTS of S 70018 74 70018 73 70170 73 70170 73 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 71757 1 71757 1 71757 1 71757 1 71757 1 71757 1 71757 1 71757 1 71757 1</th> <th>ample 0064 0064 108 0064 1091 1091 1091 1091 1091 1092 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 002 002 002 002 002 002 002 002 002 002 002 002 002 0</th> <th>S Valid S O 0 0 0 7 0 0 9 0 0 7 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 17 10 0 17 131342 0 17 13143 0 1 0.03010 0 1 0.03010 0 1 0.03010 0 1 0.03010 0 1 0.04010 0 1 0.05010 0 0 0.05010 0 0 0.05010 0</th> <th>attion : 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 100139 100139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 111114 111114 111114 111114 111114 111114 111114 111114 111114 111114</th> <th>and er and er and er and er an an an an an an an an an an</th> <th>FOFS 0 oly phyy 2.6957 0.7775 3.1099 0.999 0.999 0.999 0.97775 2.6957 0.97775 2.6957 0.97775 2.0999 0.999 0.999 0.999 0.999 0.999 0.9006 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005</th> <th>d fitti error sami s 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>18 19 19 19 19 19 19 19 19 19 19</th> <th></th> <th>Bit pbity erm 5 195 5 195 5 195 5 195 5 195 5 195 5 103 5 195 5 195 5 457 10.0262 10.0345 5 457 5 457 10.0345 5 457 10.0345 10.0345 6 6071 10.0345 10.0345 7 5 457 20.0006 0.01000 10 06 0.01000 0.01000 10 06 0.01000 0.01000 10 0 0.01000 0.01000 11 00 0.01000 0.0100 12 3993 8 000 0.0100 13 926 0.0100 0.0100 13 926 0.0100 0.0100 13 926 0.0100 0.0100 13 92 10.010 0.0100 13 913 9.0100 0.0100 13 913 9.013 9.013 10 913 9.013 9.013</th> <th>TS-SMIM ETRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>Trifi 7th 000 11 0110 11 0100 11 0100 11 0100 11 0110 11 0100 11 0100 11 0100 11 0100 11 0100 11 0100 11 0100 11 0100 11 0101 5 0101 11 0101 5 0101 5 0101 11 0101 11 0101 11 0101 11 011 11 011 11 011 11 011 11 011 11 011 11 011 11 011 11 011 11</th> <th>001 pl 0.84k 0.084 pl 0.300 3.209 0.084 pl 0.300 1.132 0.044 pl 0.300 1.010 pl 1.010 pl 0.333 0.044 pl 0.333 0.047 pl 1.010 pl 0.333 0.040 pl 0.333 0.047 pl 0.333 0.040 pl 0.333 0.047 pl 0.333 0.040 pl 0.333</th> <th>No Control No Control No No</th> <th>Image: constraint of the second state of th</th> <th></th>	lidatic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	III. Entry 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	OTS of S OOTS of S 70018 74 70018 73 70170 73 70170 73 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 7170 74 71757 1 71757 1 71757 1 71757 1 71757 1 71757 1 71757 1 71757 1 71757 1	ample 0064 0064 108 0064 1091 1091 1091 1091 1091 1092 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 0022 002 002 002 002 002 002 002 002 002 002 002 002 002 0	S Valid S O 0 0 0 7 0 0 9 0 0 7 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 17 10 0 17 131342 0 17 13143 0 1 0.03010 0 1 0.03010 0 1 0.03010 0 1 0.03010 0 1 0.04010 0 1 0.05010 0 0 0.05010 0 0 0.05010 0	attion : 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 107226 100139 100139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 1010139 111114 111114 111114 111114 111114 111114 111114 111114 111114 111114	and er and er and er and er an an an an an an an an an an	FOFS 0 oly phyy 2.6957 0.7775 3.1099 0.999 0.999 0.999 0.97775 2.6957 0.97775 2.6957 0.97775 2.0999 0.999 0.999 0.999 0.999 0.999 0.9006 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005 0.9005	d fitti error sami s 0 0 0 0 0 0 0 0 0 0 0 0 0	18 19 19 19 19 19 19 19 19 19 19		Bit pbity erm 5 195 5 195 5 195 5 195 5 195 5 195 5 103 5 195 5 195 5 457 10.0262 10.0345 5 457 5 457 10.0345 5 457 10.0345 10.0345 6 6071 10.0345 10.0345 7 5 457 20.0006 0.01000 10 06 0.01000 0.01000 10 06 0.01000 0.01000 10 0 0.01000 0.01000 11 00 0.01000 0.0100 12 3993 8 000 0.0100 13 926 0.0100 0.0100 13 926 0.0100 0.0100 13 926 0.0100 0.0100 13 92 10.010 0.0100 13 913 9.0100 0.0100 13 913 9.013 9.013 10 913 9.013 9.013	TS-SMIM ETRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trifi 7th 000 11 0110 11 0100 11 0100 11 0100 11 0110 11 0100 11 0100 11 0100 11 0100 11 0100 11 0100 11 0100 11 0100 11 0101 5 0101 11 0101 5 0101 5 0101 11 0101 11 0101 11 0101 11 011 11 011 11 011 11 011 11 011 11 011 11 011 11 011 11 011 11	001 pl 0.84k 0.084 pl 0.300 3.209 0.084 pl 0.300 1.132 0.044 pl 0.300 1.010 pl 1.010 pl 0.333 0.044 pl 0.333 0.047 pl 1.010 pl 0.333 0.040 pl 0.333 0.047 pl 0.333 0.040 pl 0.333 0.047 pl 0.333 0.040 pl 0.333	No Control No Control No No	Image: constraint of the second state of th	
VARIANT CI CI VU VU VU BE GU BE BE BE RUSE validation	11 12 13 13 14 15 17 17 17 16 17 17 16 17	9 -	0 0.845 0.02 0.0004 0 0.0004 1.60 0.0004 1.60 0.0004 1.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 403 1 375 2 507 2 507 2	0.5578 0.1393 5.7059 0.4588 0.4118 0.8127 2.9137	11.74756 0.017161 7.7350734 0.8981353 0.8981353 0.5568144 0.0476549 3.9632846	0.19554 0.0194 13.7337 0.2105 2.52238 1.40968 1.18005		1.7908 0 0.0143 0 0.6215 1. 1.7027 0 1.4101 0 1.4433 0 3.9767 0	646898 0. 000204 0. 949066 5. 591053 0. 042395 0. 26605 3.	62536 2 0002 1 14326 1 27759 3 34798 4 90734 1	2.512 0.000 0.402 2.723 1.245 0.103	5 2.3963 6 3.6E-0 6 0.3672 6 0.3672 2 0.5858 2 0.5858 6 3.5656	04 0.26266 7 3.6E-07 86 0.35689 84 1.02495 87 1.63022 86 0.06012 96 0.06012 97 0.01073		2.9922 0.0001 0.0922 2.9988 4.0242 0.8882 0.0042	0.08791 1E-08 0.46964 0.3468 0.3468 0.33613 0.83613 1.02617	6.1E-05 1E-08 3.6397 9.14579 9.14579 1.2361 0.99162	8	3.013 2.2. 0.0008 6.4 0.0091 1.0 9.837 1.1 1.4385 0.0 4.3535 6.1 1.0014 0.1	23054 0.00 HE-07 6.4E 03449 0.98 0418 1.03 02941 0.19 02941 0.19 1E-05 2.41 15547 2E-	0017 1 3-07 1 3188 4 3287 4 2228 5 1336 5 -06 5	0.133 0 0 0.843 0.992 5.010 5.010 0 0	66 0.5110 0 0 66 0.5100 81 0.2888 91 0.2888 91 0.113 93 0.0402 94 0.0402 0 0	08 0.75065 1 1 94 0.00021 59 0.71082 16 0.98446 36 0.00027 0 0	
RMSE validation sum error fitting	1.6572 57.1339 2.2002		10																								

APPENDIX B. SCENARIOS LIST

					GR	4 10	1 - sa	mple	s valid	latior	h, err(ors of	samp	les va	lidati	on and	l erro	rs of i	litting	s, usir	lg wei	ghts fo	or exp	erts					
I		scenario	Ist	obt pbty e	rror sam	error fit	2nd c	bt pbty e	rror sam	error fit	3rd (bt pbty ei	TOT Sam	error fit	4th 0.	bt pbty er	ror sam	rror fit	5th (obt pbty (error sam e	ror fit	6th of	of pbty erro	or sam error	fit 7th	obt pbty	error sam	en en
T	SK		0.174	0.1285	-	80700.0	0.4/85	26670	-	22000.0	0.21/5	0.1418		10000		0.088/		18/00/0	0.0455	C/10/0		0.00064	0.0455 0	10/0	0000	0.0455	1460.0		5
N	NA		0.21/4	0.0450	-	0.00//4	0.1304	10/07		000000	0.0455	00700		670001	0000	C/10.0		100000	1.000/	86/00	-	0.00054		0000	0 0	0	0.000	•	4
۷I	FZ	0	0.21/4	0.0175		0.00031	0.0435	20201		2 0000.0	0.4/02	10793		00629	0.0435 (0.0225		0.00012	0.0869	0.0946		67cm	0 6087 0	4473	0.026	05 0.2174	1020		50
Я	AS	10	0.0435	0.0630	0	0.00038		0.0599	0	0.00359		0.0509	0	00259	0.0435	0.0322	0	0.00013		0.0000	0	0	0.1739 0	3038	0 0.016	87 0.7391	0.4903	0	0
٧V	OS	11	0.0435	0.0355	0	6.4E-05	0.0435 (0.0859	0	0.0018	0.0435	0.0394	0	.7E-05	0.5652	0.5570	0	6.7E-05	0.2174	0.1854	0	0.00102 0	0.0869 0	.0358	0 0.002	61	0.0609	0	õ
	ГQ	12	0.3043	0.2045	0	0.00996	0.3043	0.2411	0	0.00399	0.2174	0.3031	0 (0.00734	0.0435	0.0435	0	0	0.0435	0.0499	0	1.1E-05 0	0.0870 0	.0866	0 1.6E4	07	0.0713	0	0
	sum error	validation	0.0000				constra	unts																					
	KMSEV.	alidation r fitting	0.0000				34																						
	RMSF	fitting	0.0804																										
I		scenario	lst	obt pbtv e	TOT Sam	error fit	2nd o	ot pbtv ei	TOT Sam	error fit	3rd c	bt pbtv ei	ror sam	uror fit	4th of	t pbtv er	for sam	rror fit	5th (obt pbtv	error sam e	ror fit	6th ob	t pbtv err	or sam error	fit 7th	obt pbtv	error sam	en
1.	SK	6	0.1739	0.1135 ().00022	9.00365	0.4783 (0.4688 8	:.6E-05	9E-05	0.2173	0.1707 0	.00084 0	.00217		9.1204 0	001005	0.0145	0.0435	0.0267	8.5E-05 (0.00028 C	0.0435 0	0524 0.0	0031 7.9E4	05 0.0435	0.0476	0.00216	2
LN	NA	7	0.2174	0.2695 (0.00129	9.00271	0.1304 (0.0818 (00012	0.00236	0.0435	0.027 1	.6E-07 C	00027		9.0267 8	.46E-05	0.00071	0.6087	0.5951	0.00023	0.00018		0	0 0		0	0	
JV	FZ	8	0.2174	0.2022 (00191	0.00023		0	00069	0	0.4783	9.4866 C	01631 6	5.9E-05	0.3043	0.221 5	.78E-05	0.00694		0.0302	0.00181 (0.00091		0.058 2.0	6E-06 0.003.	36	0.002	8.6E-05	4
IS	EV	5 01	0.0435	0.0000	0.00031	1 0 1	0.0435 \	0.0353 (0.00045	6.7E-05		00	00629	0 0	0.0435	0.1693 0	051438 4	0.01583	0.0869	0.0882	4.1E-05	0 0 0	0 1739 0	5088 0.0	0378 0.009	98 0.2174 57 0.7301	0.1984	0.00543	0.0
V.	SO		0.0435	0.0470	00013	1.2E-05 (0.0435 (0.0845	2E-06	0.00168	0.0435	0.2311 0	03675 0	03519	0.5652	0.0762 0	231169 (0.23912	0.2174	0.2163	0.00095	.2E-06 0	0 869 0	0724 0.0	0134 0.000	01	0.2726	0.04482	800
Λ	ГQ	12	0.3043	0.3302	0.0158	0.00067	0.3043 (3296 (00783	0.00064	0.2174	0.0846 G	.04774 C	01764	0.0435	0.1274 0	007039	0.00704	0.0435	0.0436	4E-05	1E-08 0	0.0870 0	.0624 0.0	00059 0.000	61	0.0222	0.00241	0.0
	sum error	validation	0.5216				constra	ints																					
	KMSE v. sum erro	r fitting	0.1341 0.5735				67.																						
	RMSE	fitting	0.1406																										
		scenario	lst	obt pbty e	rror sam	error füt	2nd c	bt pbty e.	TOT Sam	error fit	3rd c	bt pbty ei	ror sam	arror fit	4th oi	ot pbty er	ror sam e.	rror fit	5th o	obt pbty 6	error sam e	rror fit	6th ob	t pbty err	or sam error	fit 7th	obt pbty	error sam	erro
IN	SK	91	0.1739	0.1741	0.0021	4E-08	0.4783 (1200	0.0003	2.6E-06	0.2173	0.0459	0.0092 0	0.2938		0.0997 0	000121	0.00994	0.0435	0.1189	0.01028	0.00569 0	0.0435 0	0432 0.0	0072 9E-0	0.0435	0.0415	0.00277	4
I V	FZ	8	0.2174	0.2161 (0.0000	0.4E-07	+0cT-0	0042 0	00048	3.0E-0/ 1.8E-05	0.4783	0.1236 0	05537 0	0.248	9.3043	0.0810 0	000625	0.00057	/ 90000	0.399	0.10647	0.1592		0026 0.0	0289 6,8E4	90	0.0008	0.00011	9
ы ы	EV	6		0.0022 (0.00023	4.8E-06	0.0435 (0.0428 0	00019	4.9E-07		0.0361 0	.00187 (0.0013	0.0435	0.0549 0	000502	0.00013	0.0869	0.0425	0.00271	0.00197 0	0.6087 0	6052 0.0	02493 1.2E-4	05 0.2174	0.2163	0.00311	-
¥.	AS	10	0.0435	0.0433 (0.00039	4E-08		0.0002 (0.00356	4E-08		0.0129 0	00144 6	00017	0.0435	0.0166 0	000243	0.00072		0.0146	0.00021	0.00021 0	0.1739 0	.1731 0.0	01708 6.4E-4	07 0.7391	0.7395	0.0621	-
1	S0 01	1	0.0455	0.0451	0.8E-05	1.0E-0/	0.0435	13030 0	0.0019	1.4E-06	0.0455	0.176	01200	02/10/0	0.2652	0.391 0	003493	0.03035	0.0435	1802.0	0.0035/	0 01/100.0	0 0800	0.0884 0.0	02// 2.3E4	90 8	0.0004	0.00366	- 6
	sum error	validation	1 0419	2020	1 0000		constra	ints	-				111100		20100				201000	0.0010			0 0001	-		2		1010010	i
	RMSE vi	alidation	0.2342				19	0																					
	Sum erro	or fitting	1.0139																										
		scenario	lst	obt pbty e	rror sam	error fit	2nd o	ot pbty ei	TOT Sam	error fit	3rd c	bt pbty er	ror sam e	uror fit	4th of	t pbtv er	ror sam	rror fit	5th (obt pbty 6	error sam e	ror fit	6th ob	t pbty err	or sam error	fit 7th	obt pbty	error sam	en
T	SK	9	0.1739	0.1737 (0.00206	4E-08	0.4783 (0.0687 6	.15272	0.16777	0.2173	0.125 0	00028 0	00852		0.244 0	024118	0.05954	0.0435	0.2191	0.04064 (0.03084 0	0.0435 0	.1266 0.0	0319 0.006	91 0.0435	0.0428	0.00263	4
N	NA	7	0.2174	0.2183 (0.00759	8.1E-07	0.1304 (3615 (0.08456	0.05341	0.0435	9.2917 C	07028	0.0616		0.0777 0	003624	0.00604	0.6087	0.0387	0.29279	0.3249	0	0121 0.0	0015 0.000	15	0	0	
Λ] /Γ	FZ	~ ~	0.2174	0.2148	00007	6.8E-06	20100	1082 0	0.0461	0.05803	0.4783	0.1654 0	03744 (197910	0.3043	0.1429 0	007344	0.02605	0.00.0	0.1287	0.00314 0	0.01656	0 2002	.1066 0.(0252 0.011	36 0.017.4	0.0007	0.00011	4
I NB	AS	10	0.0435	0.0424 (0.00042	1.2E-05	CCHO'D	0.0548 2	.00200 .6E-05	0.003	T	0.0437 5	.2E-05 0	16100	0.0435	0.0411 7	.92E-05	5.8E-06	6000.0	0.0438	0.00192	0.00192 0	0.1739 0	0351 0.	0722 0.019	27 0.7391	0.7392	0.06195	- -
Λ	OS	II	0.0435	0.0432	5.9E-05	9E-08	0.0435 (0.0615	0.0006	0.00032	0.0435	0.1341 0	0 70800	0.00821	0.5652	0.1734 0	147149	0.15351	0.2174	0.2238	0.00147	4.1E-05 0	0.0869 0	3637 0.1	0752 0.076	62	0.0003	0.00367	6
	LQ	12	0.3043	0.3034 (0.00978	8.1E-07	0.3043 (0.1044 (0.01869	0.03996	0.2174	0.1027 0	.04016 (0.01316	0.0435	0.1178 (0.00552	0.00552	0.0435	0.1611	0.01237 0	0.01383 0	0.0870 0	2085 0.0	01486 0.014	36	0.0021	0.00479	4.
	Sum error	validation	1.4312				constra	unts																					
	sum erro	r fitting	1.5527																										
	RMSE	fitting	0.4154																										
Λ		scenario	lst	obt pbty e	rror sam	error fit	2nd c	bt pbty e.	TOT Sam	error fit	3rd c	bt pbty ei	ror sam	error fit	4th oi	bt pbty er	ror sam e.	rror fit	5th (obt pbty 6	error sam e	rror fit	6th ob	t pbty erre	or sam error	fit 7th	obt pbty	error sam	err
T	SK		0.1739	0.0007	0.01628	0.03	0.4783 1	1.4928 (00111	0.00021	0.2173	0.0621 0	.00635 (02409		0.0875 1	.44E-06	0.00766	0.0435	0.0353	0.00032	5.7E-05 0	0.0435 0	3191 0	062 0.075	96 0.0435	0.0026	0.00837	0
N	NA	0	0.2174	0.2232	0.00676	3.4E-05	0.1304	0.1225 (00268	6.2E-05	0.0435	0.0439	0.0003	.6E-07	3 30.43	0.0002 0	0100299	4E-08	0.6087	0.6102	0.00092	2.2E-06	-	0	0 0	16	0	0 4E-05	¢
٧I	EV	6	1	0	0.00031	0	0.0435	0.0582 2	.6E-06	0.00022	00110	0.0976 0	00033 0	.00953	0.0435	0.1588 0	015952	0.01329	0.0869	0	0.00895	0.00755 0	0 2000	5291 0.0	0069 0.006	34 0.2174	0.1564	0.01339	10
Я	AS	10	0.0435	0.2378	0.03056	0.03775		0.0128 0	00222	0.00016		0.021 0	0 68000.	00044	0.0435	0.0233 7	.92E-05	0.00041		0	0	0	0.1739 0	.0007 0.0	9187 0.03	3 0.7391	0.7043	0.0458	Ö
٧A	OS	=	0.0435	0.0157	0.00039	0.00077	0.0435	0.1101 0	00059	0.00444	0.0435	9.1628 C	01523 0	0.01423	0.5652	0.5658 7	.74E-05	3.6E-07	0.2174	0.0955	0.00808	0.01486 0	0 0869 0	0405 2.2	E-05 0.002	15	0.0097	0.00262	9.
•	ГС	12	0.3043	0.303	1600.0	1.7E-06	0.3043	0.1224 (01409	0.03309	0.2174	0.1434	0.0255 (0.00548	0.0435	0.0771 0	001129	0.00113	0.0435	0.1558	0.01121	0.01261 0	0 0/8070	.0762 0.0	0011 0.000	12	0.122	0.00257	0
	RMSE vi	Validation	0.2124				constr:	mts																					
	sum errc	r fitting	0.4198				24]																					
	RMSE	fitting	0.2049																										

Methodology

In elicitation procedure experts are required to order the scenarios based on their severity. After that, we compute the scores using 2.5. We need to have a starting distribution for B_i 's, on which we apply probabilistic inversion. The natural choice for the starting distribution is the uniform distribution.

When we say that "scenario *i* is bigger than scenario *j*" we refer to the score of scenario *i* having a higher value than score of scenario *j*. For this we use the notation $S_1 > S_2$. The scores of scenarios *i* and *j* are computed using 3.1. We used indicator functions to obtain set of samples for which scenario *i* is on *j*th position within a group of scenarios.

For instance, given k scenarios, we define the following functions for scenario S:

$$S_1 R_1 = \mathbb{1}\{k, \#\mathbb{1}\{0, S_2, \dots, S_k, S_1\}, k\}$$
(C.1)

$$S_1 R_2 = \mathbb{1}\{k - 1, \#\mathbb{1}\{0, S_2, \dots, S_k, S_1\}, k - 1\}$$
(C.2)

$$S_1 R_3 = \mathbb{1}\{k - 2, \#\mathbb{1}\{0, S_2, \dots, S_k, S_1\}, k - 2\}$$
(C.3)

In relation C.1 S_1R_1 is understood as: scenario S_1 is ranked on the first position (rank 1, R_1). We first explain the second indicator function.

$$\mathbb{1}\{0, S_2, \dots, S_k, S_1\} = \begin{cases} 1 & \text{if } S_1 \ge S_i, \ i = i \dots k \\ 0 & \text{otherwise} \end{cases}$$

This function returns 1 if all scenarios from S_2 to S_k are between 0 and S_1 , hence S_1 is bigger than all of them, and 0 otherwise. Next we count the number of times for which S_1 is bigger than all the rest. In case this number is k (this means S_1 is bigger than all the rest), and the second indicator function returns 1.

$$\mathbb{1}\{k, \#, k\} = \begin{cases} 1 & \text{if } S_1 \ge S_i, \ i = i \dots k \\ 0 & \text{otherwise} \end{cases}$$

In case this number is smaller than k, for instance k - 1 the function returns 0. The number k - 1 signifies that there is *one* scenario which is bigger than S_1 . (if the number would be k-2 this means *two* scenarios are bigger than S_2).

 S_1R_2 means that scenario S_1 is ranked on the second position (rank 2, R_2). The first indicator function returns 1 if S_1 is bigger than k - 1 scenarios (hence there is *only one* scenario which is bigger than S_1 , all the rest are smaller than S_1), and zero otherwise. Similarly we count the number of times for which S_1 is bigger than k - 1 scenarios, and if this number is k - 1 the first indicator functions returns 1, otherwise it returns 0.

In an analogous way we express the rankings of all scenarios. Next we proceed with generating samples from uniformly distributed random variables, B_i , necessary for probabilistic inversion. After the samples have been generated, we take the samples file and run probabilistic inversion program. We re-sample the file but imposing for each ranking of scenarios the experts assessments. In other words, if say 4 experts ranked S_1 on the first place, then the probability of S_1 to be on the first place is $\frac{4}{11}$ (remember that the total number of experts used in our project is 11). In probabilistic inversion program we impose $1-\frac{4}{11}$. The same procedure is used for all scenarios rankings by experts. When we want to input probability x in our software tool used for probabilistic inversion, we must input 1-x. (i.e. if we want to input the probability $\frac{6}{11}$, we use in the program $1-(\frac{6}{11})$). We will impose these constraints by imposing them on indicator functions

In other words, probabilistic inversion algorithm re-weights the samples by imposing the experts preference on the scenarios, such that the probability of scenario 1 being bigger than all the other equals to the total number of experts who ranked scenario 1 as being bigger over the all the others divided by the total number of experts:

$$P\{S_1 > \{S_2, S_3, S_4\}\} = \frac{\#\{S_1 > \{S_2, S_3, S_4\}\}}{\text{the total number of experts}}$$
(C.4)

This way we obtain a new distribution for (B_1, B_2, B_3) which satisfies constraints in the form of probabilities of preferences.

List of Figures

1.1	Experts assessments for Group I
1.2	Experts assessments for Group I
1.3	Intuitive scheme of probabilistic inversion
1.4	Scatter plot of 10,000 samples
1.5	Cumulative distribution functions of variables X_1 and X_2
1.6	Scatter plot of 10,000 samples, with two constraints
1.7	An example of number of iterations versus the error $\ldots \ldots
2.1	Cumulative distribution functions of B_i
2.2	CDF of re-weighted B_i 's with 0.9 probability
3.1	Group II - first rank plot
3.2	Group II - second rank plot
3.3	Group II - third rank plot
3.4	Group II - fourth rank plot
3.5	Group II - fifth rank plot
3.6	Group II - sixth rank plot
3.7	Group II - seventh rank plot
3.8	Cumulative distribution functions of B_i 's $\ldots \ldots
4.1	
6.1	Final results of prioritising of Zoonoses

List of Tables

1.1	Group I - first seven scenarios	7
1.2	Rank correlation coefficient for group 2 and 5, for each expert	8
1.3	Experts assessments for the first three groups	9
1.4	Experts assessments for the last three groups	0
1.5	IPF example	õ
1.6	IPF example	õ
1.7	IPF example	5
2.1	Means and variances of B_i with 0.8	9
2.2	Correlation matrix of B_i with 0.8	0
2.3	Means and variances of B_i with 0.9	1
0.1		_
3.1	Variant I of Group II - constraints used	(
3.2	Variant I of Group II - results obtained	3
3.3	Out of sample validation for Variant I of Group II)
3.4	Variant II of Group II - constraints used	1
3.5	Out of sample validation for Variant II of Group II	1
3.6	Variant II of Group II - results obtained	2
3.7	Variant III of Group II - constraints used	3
3.8	Out of sample validation for Variant III of Group II	3
3.9	Variant III of Group II - results obtained	4
3.10	Variant IV of Group II - constraints used	õ
3.11	Out of sample validation for Variant IV of Group II	5
3.12	Variant IV of Group II - results obtained	5
3.13	Variant V of Group II - constraints used	δ
3.14	Out of sample validation for Variant V of Group II 30	δ
3.15	Variant V of Group II - results obtained	7
3.16	Group II - all variants	8
3.17	Group I - all variants	2
3.18	Group III - all variants	4
3.19	Group IV - all variants	б
3.20	Group V - all variants	8
3.21	Variant I of Group VI - results obtained	0

3.22	Final results for GROUP I when Variant V used	52
3.23	Final results for GROUP II when Variant V used	53
3.24	Final results for GROUP III when Variant V used	53
3.25	Final results for GROUP IV when Variant V used	54
3.26	Final results for GROUP V when Variant V used	54
3.27	Final results for ALL GROUPS when Variant V used (PART I)	55
3.28	Final results for ALL GROUPS when Variant V used (PART II)	56
3.29	Final results for GROUP I when Combined Variant used	57
3.30	Final results for GROUP II when Combined Variant used	57
3.31	Final results for GROUP III when Combined Variant used	58
3.32	Final results for GROUP IV when Combined Variant used	58
3.33	Final results for GROUP V when Combined Variant used	59
3.34	Final results for ALL GROUPS when Combined Variant used (PART I) .	60
3.35	Final results for ALL GROUPS when Combined Variant used (PART II)	61
3.36	Correlation matrix of B_i	61
4.1	Critical values of S at .05 level of significance	64
4.2	Values of S and W for each group $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	64
4.3	Experts' consistency within each group	66
5.1	Experts' consistency within each group	67
5.2	Experts' weights	67
5.3	Group II - updated constraints	68
5.4	Variant I of Group II - results obtained with weights for experts	69
5.5	Variant II Group II - constraints used	70
5.6	Variant III Group II - constraints used	70
5.7	Variant IV Group II - constraints used	70
5.8	Variant V Group II - constraints used	70
5.9	Variant II of Group II - results obtained with weights for experts	71
5.10	Variant III of Group II - results obtained with weights for experts	72
5.11	Variant IV of Group II - results obtained with weights for experts	73
5.12	Variant V of Group II - results obtained with weights for experts	73
5.13	Transformations of values of attributes	76
5.14	Results for ALL GROUPS with transformations (PART I) $\ \ldots \ \ldots$	77
5.15	Results for ALL GROUPS with transformations (PART II)	78
5.16	Results for ALL GROUPS with weights (PART I)	80
5.17	Results for ALL GROUPS with weights (PART II)	81
5.18	Results of scores for ALL GROUPS in four strategies	83
5.19	Results of scores for ALL GROUPS in four strategies - normalised values	84
6.1	Means of B_i used for prioritising pathogens	86