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BIOASSAY EXPERIMENT

� Biological assay – set of techniques relevant to the 
measurement of the potency of a stimulus; physical, chemical 

or biological, by means of the reactions that it produces in 
living matters.

� Bioassay data: 
• - set of doses (signifying the level of applied 

stimulus  e.g. drug, vitamin, hormone)
• - the number of subjects (rats, mice) which are 

administered dose x
• - the results of experiment are measured by quantal

responses (died or not), the numbers of affected

subjects at each dose
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STATISTICAL INFERENCE

� Estimation of the tolerance distribution 
P(x) (potency of the stimulus) for any dose level 
x (also for nonobserational dose levels).

� Study of an effective dose , such that for 
a fixed p,                 .

� The design of the experiment to 
accomplish in an optimal way the potency 
curve.
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NONPARAMETRIC BAYESIAN

� BAYES RULE:

Combination of two sources of information:

+  
prior information:                                             bioassay 

experiment:
(knowledge from experts                                         (bioassay data) 

ondistributimarginal  

priorlikelihood
posterior
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NONPARAMETRIC BAYESIAN

� Likelihood:
• The number of events at  follows the 

binomial distribution; the subjects respond 
independently. 

• The joint likelihood is a product :

� Nonparametric prior:
• Dirichlet process prior or Beta – product prior 
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DIRICHLET PROCESS PRIOR

� Random probability distribution P is generated by DP 
if for any partition                 of the sample space the 
vector                          follows a Dirichlet distribution:                                                 

� and

� and 

� Dirichlet is a conjugate family for the multinomial.
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PRIOR CONSTRAINT ON THE SHAPE 
OF POTENCY CURVE

� Convex prior : non-decreasing density function
� Concave prior : non-increasing density function
� Ogive prior :  convex and then concave

All of these shapes are commonly employed in 
the field of bioassay as reasonable shape
constraint on a dose – response relation.
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POSTERIOR

� Form of the posterior:

• It is a mixture of Dirichlet 
• It becomes increasingly intractable as the number of 

dose levels increases, especially for obtaining the 

marginals

There is need to find estimation methods 
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ESTIMATION METHODS

� Ramsey (1972); MLE method, the joint mode of 
the posterior is used to summarize the posterior 

distribution

� Gelfand and Kuo (1991); one of the MCMC 
method - Gibbs sampler, generating samples from 
the conditional distributions instead from the 
marginals. 

Gibbs sampler is used to obtain our results.
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GIBBS SAMPLER PROCEDURE

� Specify the initial values
� Generate draws                             from the conditionals:

Single iteration represents a transition from
to

� After r iterations the Gibbs sequence is generated. 
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GIBBS SAMPLING

The conditional distributions needed to Gibbs sampler:

� Conditional multinomial
,  for   

where:  with , and

Observe:                                

where:                           ,
with:                              ,                            
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GIBBS SAMPLING

The conditional distributions needed to Gibbs sampler:

� Conditional Beta

where:                                     
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GIBBS SAMPLING
Procedure:
� Specify the initial value

� for each                sample from multinomials:
� for each                sample from conditional beta  

distributions (using the results from multinomial)

Single iteration (the last two steps) represents a
transition from    to     - after r iterations:  

After v replications of this procedure (starting from the same
initial value)                            is calculated.
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EXPERIMENTS

� Bioassay data:

� Two base distributions:                    ,

� 4 values of precision parameter α : 0.1, 10, 50, 100

� Gibbs sampler with 1500 replications and 80 iterations
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RESULTS

� Prior mean and posterior mean with 
different values of α for
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RESULTS

� Prior mean and posterior mean with 
different values of α for
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RESULTS

� Model suitability to recover the observational 
probabilities

NPB for                    and with α = 10 (LHS) and α = 1 (RHS)
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RESULTS

NPB approach               BMD software and PI- dose 

1000  
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RESULTS

NPB approach             BMD software and PI–dose 

1500
dashed lines
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RESULTS

NPB approach             BMD software and PI–dose 

2000
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RESULTS

NPB approach             BMD software and PI–dose 

2500
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CONCLUSIONS

� Problems with specifying the precision parameter 
and base distribution for Dirichlet prior.

� If no prior information is available then the non 
informative prior can be used (e.g. Jeffreys prior ). 

� Model suits the data not so good at each of the dose 
levels.

� Useful extension in bioassay study is constraint on 
the shape of the potency curve. 
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QUESTIONS 


