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In many scientific publications the analysis of biological assays has 
received the attention of statisticians. This thesis presents a review of the 
nonparametric Bayesian techniques with the aim to explain the relation 
between the response probability and the dosage in quantal bioassays. The 
approach for nonparametric dose response curves with Dirichlet process 
priors as well as with product of beta priors is proposed. We show here 
how the problem of estimating potency curves may be handled by using 
two techniques: MLE-type algorithms and Markov Chain Monte Carlo 
methods. We extend our investigation to an analysis of prior constraints on 
the shape of the potency curve. The nonparametric Bayesian bioassay 
including ordered polytomous response will be discussed. Our interest is 
focused also on inference about the unknown dose level or efficacy dose 
level corresponding to prespecified rate. The illustrative examples with 
different design strategies are provided to emphasize the importance of 
selecting optimal parameters. Applications consist of data analysis  using 
the Gibbs sampler method.  
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Chapter 1 
 

Introduction 
 

The use of animals in scientific investigation has been traced back to several centuries 

BC. For instance, the writings of Aristotle (384-322 BC) and Erasitratus (304-258 BC) 

indicate that they had studied the anatomy of various animals. Early investigations such 

as these were the beginning of the basic sciences that today form the foundations for new 

drug development. Nowadays, in the epoch of many incurable, fatal diseases, the 

pharmaceutics laboratories conduct extensive studies in order to find suitable drugs or 

vacines. The experiments on living animals are a very important part of a drug 

development. They enable to test new drugs in order to understand how they work. This 

type of scientific experiment is called biological assay. Finney1 introduces the biological 

assay as “a set of techniques relevant to … the measurement of the potency of a stimulus; 

physical, chemical or biological, …by means of the reactions that it produces in living 

matters”. By conducting this kind of experiment, scientists can make more rapid progress 

than would otherwise have been possible. However, it is important to know how to use 

the information these experiments provide. As it will be shown in this thesis, statistical 

methods play a crucial role in bioassay. The issues facing statistician include: 

 

                                                 
1D.J.Finney (1971) “Probit analysis”  

http://en.wikipedia.org/wiki/Experiment
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• estimation of the tolerance distribution (potency of the stimulus) )(xP  for any 

dose level x ; 

• distribution of an effective dose x̂  such that for a fixed p, pxP =)ˆ( ; 

• the design of biological experiment to accomplish in an optimal way the 

potency curve and the distribution of an effective dose; 

 

We can distinguish different types of biological assay. In this thesis we emphasize an 

indirect assay based on quantal response, recorded as the response “all or nothing” for 

example whether a death does or does not occur. More generally, each experimental 

subject possesses a threshold or tolerance level. If the dose is less than the tolerance level, 

the subject does not respond; otherwise a response is observed. The relationship between 

stimulus and response can be used to study the potency of a dose from produced response. 

Note that many dose – response studies are conducted during the early phase evaluation 

of a new drug, and therefore little is know about the behavior of this drug at that stage. 

The statistical inference can be sensitive to the choice of the parametric form. A 

nonparametric approach with the flexible and adaptive modeling property to estimate the 

dose – response relation is therefore of considerable interest.  

 

 

1.1 Objectives of the thesis 
 

The main purpose of this thesis is:  

• to review the nonparametric Bayesian approach to bioassay problems with 

emphasis on the techniques for estimating the tolerance distribution  

• to present the application of one of the Markov Chain Monte Carlo 

methods, namely Gibbs sampler, to bioassay data.  
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1.2 Outline of the thesis 
 

The thesis is organized as follows. In chapter 2 the terminology of typical bioassay will 

be described and the prior of the response curve will be proposed. The main interest 

focuses on family of the Dirichlet process prior (Ferguson, 1973), however we also 

present the alternative class of priors based on the product-Beta family (Gelfand and Kuo, 

1991). The study about properties of prior we will extend to a discussion about different 

shapes of the potency curve (Ramgopal, Laud and Smith, 1993). We provide also a useful 

extension of the quantal bioassay model which allows for ordered and polytomous 

response arising from the stochastically ordered potency curves (Gelfand, Kuo, 1991). 

Chapter 3 deals with the problem of estimating potency curve. We shall illustrate here 

how Markov Chain Monte Carlo procedures such as Gibbs sampling and the MLE 

method can be used to carry out Bayesian inference in order to explain the relation 

between the response probability and the dosage in a quantal bioassay. The reader 

interested in obtaining the posterior distribution of an effective dose (ED) is intended to 

read the next chapter. Chapter 5 provides few examples of different design strategies. We 

present here discussion about parameters: the “best” thresholds for testing and the 

optimal number of experimental subjects required to test at each threshold. The 

application part is provided in chapter 6, where the bioassay data are analyzed by using 

Gibbs sampler. Conclusions are presented in chapter 7. 
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Chapter 2  

 

 

Prior specification 
 

 

2.1 Experiment 
 

In a typical experiment a set of doses, the numbers signifying the level of applied 

stimulus (for example, a vitamin, a hormone or a drug) are selected and administered to 

experimental subjects. Denote these dose levels by Mxxx ,,, 21 K  assuming that they are 

listed in the order of increasing values. Suppose that in  subjects receive dose ix  

( 1,...,i M= ). The results are measured by quantal responses, the numbers of affected 

subjects at each dose. Let us denote by is  the number of affected subjects at dose level ix . 

Finally define )(xP  - the tolerance distribution which can be viewed as the expected 

proportion of the experimental subjects with tolerance level less than or equal to the dose 

level x. We consider potency curves P (often called response curves), which are 

nondecreasing and such that (0) 0P =  and ( ) 1P ∞ = . Furthermore, we assume that P is 

right-continuous so that P  is a distribution function. Biological experiments provide very 

useful information about the potency curve. If )( ii xPp =  denotes the true ‘response rate’ 

at dose ix , the number of events at ix  follows the binomial distribution ),( ii pnBi . We 

shall further assume that the subjects respond independently. Therefore the joint 
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likelihood function of 1( , , )Mp p p= K  at the observational doses ),,( 1 Mxxx K=  can be 

expressed as the product: 

 

1

( | ) (1 )i i i

M
i s n s

i i
i i

n
L s p p p

s
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∏ , (2.1) 

 

 

2.2 Families of priors 
 

As we have already mentioned in chapter 1, this work provides a study of the 

nonparametric Bayesian approach. An essential ingredient of Bayesian analysis is the 

prior distribution. It plays a major role in determining the final results. Traditional 

parametric inference considers models for the unknown P that can be indexed by the 

finite dimensional parameters (for example; mean and covariance matrix for a 

multivariate normal distribution). However, in many cases, constraining inference to a 

specific parametric form may limit the range and type of inferences that can be drawn 

from such model. It is often felt that statistical models based on conventional parametric 

distributions are not sufficiently flexible to provide a realistic description of the 

data.,especially in case of bioassay data provided from the studies which are conducted 

during the early phase evaluation of a new drug. This leads to widespread use of 

nonparametric estimators. In such an inference, we assume that the unknown P belongs to 

a nonparametric class of right continuous, non-decreasing functions taking values in [ ]1,0  

(no specific parametric form is assumed) with the requirement that our prior reflects prior 

information as accurately as possible. Thus a prior may be thought of as a stochastic 

process taking values in the given function space. Ferguson (1973) states two important 

desirable properties for this class of priors:  

• their support should be large 

• posterior inference should be “analytically manageable” 
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Gelfand and Kuo (1991) proposed two families of such priors. The first one is frequently 

referenced in the literature as ‘Ferguson’s Dirichlet process prior’. The second class of 

priors, which is less popular than the previous one, is the product-Beta family. Below we 

focus on aforementioned classes of priors. 

 

 

2.2.1 Dirichlet process prior 
 

The Dirichlet process is an important tool for the treatment of nonparametric statistical 

problems from a Bayesian point of view. This class of prior distributions has been studied 

by for example: Ramsey (1972), Antoniak (1974), Disch (1981), Ammann (1984). 

However, the most comprehensive and extensive studies about Dirichlet processes (DP) 

were presented by Ferguson (1973). He introduce DP as a prior distribution on the 

collection of all probability measures. We define it as follow: a random probability 

distribution P is generated by DP if for any partition MBB ,,1 K  of the sample space, the 

vector of random probabilities )( iBP  follows a Dirichlet distribution: 

))(,),((~))(,),(( 0101 MM BPBPDBPBP αα KK . Note that in order to specify DP prior; a 

precision parameter 0>α  and base distribution 0P  are required. Here 0P defines the 

expectation: 0[ ( )] ( )i iE P B P B= , whereas parameter α  appears in the expression of 

variance: 0 0var[ ( )] [ ( )(1 ( ))] /[ 1]i i iP B P B P B α= − + .  

In our study we assume that the P has an Ordered Dirichlet distribution, with 

density at ( )1, , Mp pK as stated below:  

 

1 2 1

1

1 1 1 11
1 1 2 1 11

1

( )
( , , ) ( ) ( ) (1 )

( )

M M

M

i
i

D M M M MM

i
i

p p p p p p p pαξ αξ αξ αξ
αξ

π
αξ

+

+

− − − −=
−+

=

Γ
= − − −

Γ

∑

∏
K K , (2.2) 
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where 10 1Mp p≤ ≤ ≤ ≤K  and 0 0 1( ) ( )i i iP x P xξ −= −  ( 1,i M= K ). Note that the 

constraints on 0 ( )iP x  ( 0 0( ) 0P x ≡  and 0 1( ) 1MP x + ≡  where 0 10, Mx x += = ∞ ) require that 

1 1( , , ) 0Mξ ξ ξ += >K  and 
1

1
1

M

i
i
ξ

+

=

=∑ .  

The reason for which this family of priors is so attractive from the Bayesian point of 

view, is the very useful properties of DP. For example, the marginal distributions are 

known. Namely, ( )iP B  for any i is a Beta distribution, 

)))(1(),((~)( 00 iii BPBPBetaBP −αα . Moreover, the Dirichlet distribution is conjugate 

family for the multinomial distribution. Note that these properties are used in the next 

chapter in order to estimate the potency curve. Now let us stress the interpretation of the 

precision parameter and base distribution. The question arises how to select them in an 

efficient, smart way and how sensitive our results will be for different selections. Gelfand 

and Kuo (1991) suggest that the 0P  distribution should be taken to be the standard 

distribution whose median agrees with our prior guess for the ED50 (a dose for which 

probability of respond is 50%) and whose spread provides rough agreement with our 

prior expectation at other dosage levels. To aid in selecting a precision parameter, it is 

helpful to observe the density functions for marginals. We plot one of these densities with 

different values of precision parameter for 1 0.25i iξ ξ += = . The results are presented in 

the figure 2.1. As can be verified, this density function approaches to the uniform 

as
25.0
1

→α  (we plot then pdf of )1,1(Beta ), whereas as α  increases, the density 

concentrates at the interior of the interval )1,0( . In general, in case where )( ixP is 

restricted to the interval ))(),(( 11 +− ii xPxP , this parameter controls the probability that 

)( ixP  will be close to )( 1−ixP  or )( 1+ixP  and thus it controls the degree of smoothness to 

be expected for the posterior estimates of )(xP . This parameter can be thought of as the 

assessor’s strength of belief in the prior guess. A large value of it reflects that P is tightly 

concentrated about 0P . In chapter 6, results from the analysis of bioassay data confirm all 

of the theoretical interpretations.  
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Figure 2.1. Density functions ),( 1+iiBeta αξαξ  for varying value α  and 1 0.25i iξ ξ += = . 

 

As we have already mentioned, the DP is the most popular prior in nonparametric 

Bayesian study. Consequently, our Bayesian inference about the potency curve will be 

mostly based on that class of priors. However we shall also introduce an alternative 

family of priors discussed by Gelfand and Kuo (1991).  

 

 

2.2.2 Product – Beta priors 
 

We shall now to investigate another class of priors, the product – Beta family. The 

density of p can be expressed as:  

 

1 1

1

( ) ( , ) (1 )i i

M

B M i i
i

p c p pα βπ α β − −

=

= −∏ , (2.3) 

 

where ),,( 1 Mααα K= , ),,( 1 Mβββ K= and kc  is the normalizing constant under 

restriction to { }10: 1 ≤≤≤≤= M
M pppS K .  
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Although the product - Beta family is a very flexible class of priors, it is not obvious how 

to select parameters α  and β  in accordance with prior information. Gelfand and Kuo 

(1991) propose some intuitive specification of these parameters. Let us first define )(ie , a 

row vector having 1 at the i-th coordinate and zero elsewhere. The expectation involving 

the 'ip s  may be formally given as: 

),(
),(

)( )( βα
βα
i

k

k
iB ec

c
pE

+
= . 

 

This suggests equating )()( ioiB xPpE =  for Mi ,,1K= . Moreover, authors define a 

precision parameter iiiM βα +=  analogous to α  from DP class of priors. The value of 

this parameter reflects our confidence in the value )(0 ixP . Unfortunately, an explicit 

calculation of )( iB pE  may be infeasible as indicated by Gelfand and Kuo. However, the 

conditional distribution of )(| jipp ji ≠ is evidently a Beta distribution, ),( iiBeta βα  

restricted to ],[ 11 +− ii pp . Though, again, the mean of this conditional distribution is not 

available explicitly, its mode is 
2
1

−
−

=
i

i
i M

α
ρ  provided 1,  1i iα β> > and 11 +− ≤≤ iii pp ρ . 

Finally, taking iρ  as an approximation to the marginal mode for ip  we obtain  

)(
2
1

0 i
i

i
i xP

M
=

−
−

=
α

ρ . 

This implies that  

1)()2( 0 +−= iii xPMα , 

and         iii M αβ −= . 

 

Gefland and Kuo (1991) provide a discussion about advantages and disadvantages of 

using the aforementioned families of priors. For example, they note that Bπ  is convenient 

being the conjugate with respect to (2.1) while Dπ  is not. However, to specify a product 

– Beta prior we shall encounter some difficulties in the cases of selecting appropriate 

parameters.  
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2.3 Prior constraint on the shape of the potency curve 
 

The motivation for extending our studies about DP prior was the discussion provided by 

Ramgopal, Laud and Smith (1993). They propose to consider a prior constraint on the 

shape of potency curve. Note that convexity and concavity constraints are commonly 

employed in the field of bioassay as reasonable shape constraint on a dose – response 

relation. Shaked and Singpurwalla (1990) present extensive discussion about these two 

cases. Moreover, Ramgopal, Laud and Smith (1993) propose one more shape constraint, 

called ogive, which is based on the previous two.  

 

Since all of the aforementioned cases occur frequently in pharmacodynamic studies 

(where the response of subjects to varying levels of some stimulus is examined) we shall 

discuss each of them separately. Note that our investigation is based on Ramgopal, Laud 

and Smith (1993) and the following three cases are considered. 

• )(xP  is convex, corresponding to non-decreasing density function  f; 

• )(xP  is concave, corresponding to non-increasing density function  f; 

• )(xP  is ogive, corresponding to f which, is non-decreasing in [ ]',0 xx  for some 

unknown x’ and then non-increasing in ],'( 1+Mxx ;  

Let 0 0x ≡  and 1Mx +  be the right endpoint of the support of P such that 

{ }1 sup ; ( ) 1 ;Mx x P x+ = < note that . 1Mx +  may be ∞ .  

Before we start to describe each of the cases above let us first define ‘slope parameters’ 

iz  given as follow: 

  
1

1 )()(

−

−

−
−

=
ii

ii
i xx

xPxP
z ,      for 1,,1 += Mi K . 

Note that if 1Mx + = ∞ , then 1M Mx x+ − = ∞  thus we assume in this case that 1 0Mz + = . 
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2.3.1 Convex priors 
 

For the description of convex priors, we start with the definition of convex function. 

 

Definition: A function g is convex on an interval [ ],a b  if for any two points 1x  and 

      2x  in [ ],a b  and any λ  ( 0 1λ< < ),  

1 2 1 2[ (1 ) ] ( ) (1 ) ( )g x x g x g xλ λ λ λ+ − < + − . 

 

Remark: If g has a second derivative in [ ],a b , then a necessary and sufficient condition 

for it being convex on that interval is that the second derivative ( ) '' 0g x >  for all x in 

[ ],a b . 

 

It follows from the remark above that convex shape of P(x), corresponds to a non - 

decreasing density function. 

 

Define now the following parameters: 

• 1i i iy z z −= − ,  for 1,,1 += Mi K ,  with 0 0z = ; 

Notice that the convexity assumption implies that 0≥iy  for all i.  

• 1 1( )i M i iU x x y+ −= − ,  for all i,  with 1 1 1MU U ++ =K ; 

It is straightforward to verify that 0iU ≥  for all i 

From the definition above it follows that 1 1( , , )MU U U += K  can be regarded as a vector of 

probabilities. Therefore, Ramgopal, Laud and Smith (1993) assign a Dirichlet prior to U 

analogously to Shaked and Singpurwalla (1990), with the density at ),,( 11 += Muuu K  as 

follows. 
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1 2 1

1

1 1 1 11
1 2 1 11

1

( )
( ) ( ) ( ) (1 )

( )

M M

M

i
i

M M MM

i
i

u u u u u u uα α α α
α

π
α

+

+

− − − −=
−+

=

Γ
= − − −

Γ

∑

∏
K , (2.4) 

for some 0>iα . 

 

An attractive property of this prior is the knowledge about the conditional distribution of 

each iU . Note that it can be expressed as:  

 
1 1

1 1
1 1

| , ~ ( , ;0,1 ),
M i

i i i j j
j i j

U U U Beta uα α
+ −

−
= + =

−∑ ∑K  (2.5) 

where 00 =u  and ),;,(~ dcbaBetav  means that wcdcv )( −+= , for dc < , where w is 

a standard ),( baBeta . 

By writing ( )1 1, , Mp p p += K as a transformation of u it follows from (2.5), after some 

algebra, that, for Mi ,,1K= , 

 
1

1 1
1

| , ~ ( , ; , ),
M

i i i j i i
j i

p p p Beta c dα α
+

−
= +
∑K  (2.6) 

where 

1
1 1 2

1 2

( ),i i
i i i i

i i

x xc p p p
x x

−
− − −

− −

−
= + −

−
 1

1 1
1 1

(1 ),i i
i i i

M i

x xd p p
x x

−
− −

+ −

−
= + −

−
 

with 01 =−p . 

 

As it will be pointed out later on, the conditional distribution (2.6) allows us to avoid to a 

large extent, difficult computations in estimation of the potency curve. 
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2.3.2 The concave prior 
 

We start here with the definition of a concave function. 

 

Definition: A function g is concave on an interval [ ],a b  if for any two points 1x  and  

                    2x  in [ ],a b  the function -g is convex. 

 

Remark: If g has a second derivative in [ ],a b , then a necessary and sufficient condition 

for it to be concave on that interval is that the second derivative ''( ) 0g x <  for all x in 

[ ],a b , which corresponds to a non – increasing density function.  

 

Define analogous to the previous case  

• 1+−= iii zzy ,    for  1,,1 += Mi K , with 02 =+Mz ; 

Note that the concavity assumption implies 0≥iy  for all i.  

• 0( )i i iU x x y= − ,   for all i, with 1 1 1MU U ++ =K ; 

It is straightforward to verify that 0iU ≥  for all i. 

 

Analogous to the previous case we assign a Dirichlet prior to U. Then the conditional 

distributions for 2,,1K+= Mi  can be expressed as below 

 
1 1

1 1
1 1

| , ~ ( , ;0,1 ),
i M

i i M i j j
j j i

u u u Beta uα α
− +

+ +
= = +

−∑ ∑K  (2.7) 

 

where 02 =+Mu . It follows now from (2.7), after some algebra and manipulations that, 

for 1,,KMi = , 

1 1
1

| , , ~ ( , ; , ),
i

i i M j i i i
j

p p p Beta c dα α+ +
=
∑K  (2.8) 
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where 

1
1 1 0

1 0

( ),i i
i i i

i

x xc p p p
x x

+
+ +

+

−
= − −

−
 1

1 2 1
2 1

( ),i i
i i i i

i i

x xd p p p
x x

+
+ + +

+ +

−
= − −

−
 

with 12 =+Mp . 

 

 

2.3.3 The ogive prior 
 

The ogive case is the most general case. The appropriate prior forms are defined, 

conditional on some unknown *i  ( 10 * +≤≤ Mi ). Note that *i  represents the index of 

the dose level acting as the turning point, The ogive shape is simply based on the 

combination of the convex formulation for iU  with *,,1 ii K= , and the concave 

formulation for iU  with 1,,1 * ++= iMi K . Observe that the case with 1* += Mi  and 

0* =i  corresponds to the convex and concave assumptions, respectively. If the first 

derivative of an ogive function P exists, then the ogive will be unimodal, with a 

maximum at the *i
x .  

For the case Mi ≤≤ *1  the prior for the sui '  written in terms of successive conditioning 

are presented below: 

 
1 1

1 1
1 1

| , ~ ( , ;0,1 ),   
M i

i i i j j
j i j

u u u Beta uα α
+ −

−
= + =

−∑ ∑K  (2.9) 

where 00 =u , and *,,1 ii K=  and  

 
* *

*

1 1

1 1 1
1 1 1 1

| , , , , ~ ( , ;0,1 ( )),   
i i i M

i M i i j j j ji
j j j j i

u u u u u Beta u uα α α
− +

+ +
= = = = +

− − +∑ ∑ ∑ ∑K K  (2.10) 

for 1,,1 * ++= iMi K  
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The exact derivations of the forms (2.9) and (2.10) can be found in Appendix A. 

Moreover, after some algebra and manipulations, it follows that the prior induced for the 

'ip s, conditional on the known *i , implies the conditional distributions (see Appendix A): 

 
1

*
1 1

1

| , , ~ ( , ; , ),
M

i i i j i i
j i

p i p p Beta c dα α
+

−
= +
∑K  (2.11) 

for *,,1 ii K= , with ic  and id  defined as below 

 

)( 21
21

1
1 −−

−−

−
− −

−
−

+= ii
ii

ii
ii pp

xx
xx

pc , )1( 1
11

1
1 −

−+

−
− −

−
−

+= i
iM

ii
ii p

xx
xx

pd , 

 

and also the conditional distribution  

 
*

*
*

1 1 1 1,
1 1

| , , , , ~ ( , ; , ),
i i

i M i j j i i ii
j j

p i p p p p Beta c dα α α+ + +
= =

−∑ ∑K K  (2.12) 

for 1,, * += iMi K , with ic  and id  defined as below 

 

1
1 1 0

1 0

( ),i i
i i i

i

x xc p p p
x x

+
+ +

+

−
= − −

−
 1

1 2 1
2 1

( ),i i
i i i i

i i

x xd p p p
x x

+
+ + +

+ +

−
= − −

−
 

 

In case of the unknown *i , the prior specification is completed by assigning iiiP π== )( * , 

where 0≥iπ  for 1,,0 += Mi K  and 110 =++ +Mππ K . 
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2.4 Ordered potency curves 
 

Gelfand and Kuo (1991) present a useful extension of our studies about DP priors which 

treats the case of ordered polytomous response. The idea is based on the nested events. 

Let us present the illustrative example from Gelfand and Kuo (1991). Suppose that event 

A is identified by ‘patient died’ while the event C means that ‘patient’s condition has 

been worsened’. Note that CA ⊂ . Now suppose that at some dose level ix  we observe 

in  subjects. During this experiment event A occurred iZ  times whereas event C, iY  times. 

Since the events are nested we have implies that ii YZ ≤ . Gelfand and Kuo proposed to 

model this situation with two underlying potency curves )(xPA  and )(xPC  which are 

stochastically ordered, namely )()( xPxP CA ≤ . Moreover they assume that the joint 

distribution of iZ  and iY  is specified via 

 

( , ) ~ ( ; , ,1 )i i i i i i i iZ Y Z Mult n p q p q− − − , (2.13) 

 

where )( iAi xPp =  and )( iCi xPq = . 

Hence, with ),,( 1 Mppp K=  and ),,( 1 Mqqq K=  the likelihood at yYzZ == ,  is  

 

1

! ( ) (1 ) ,
!( )!( )!

i i i i i

M
z y z n yi
i i i i

i i i i i i

n p q p q
z y z n y

− −

=

− −
− −∏  (2.14) 

 

Next, they consider two families of priors: Dirichlet process priors and Beta product 

priors (described in more details in section 2.2.1 and 2.2.2). We assume that the prior 

specifications are restricted to the set: 

1 1{( , ) : 0 1,   0 1,      }.M
M M i iT p q p p q q p q for all i= ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤K K  
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Dπ  the Dirichlet process prior is replaced by a product of Dirichlet process prior with 

stochastic order: 

 
1

1 1

1

( , ) ( , ) ,i i

M

D i i
i

p q c γ ηπ γ η ε
+

− −

=

= Δ∏  (2.15) 

 

where    1−−=Δ iii pp ,    1−−= iii qqε ,   )}()({ 10,0, −−= iAiAAi xPxPMγ ,      

    )}()({ 10,0, −−= iCiCCi xPxPMη , 

 

 with base distributions 0,AP , 0,CP  and precision parameters AM , CM  and the 

standardizing constant ),( ηγc .  

Whereas Bπ  is extended to produce a form over MT  which is conjugate with (2.14)  

 

1 1 1

1

( , ) ( , , ) ( ) (1 ) ,i i i

M

B i i i i
i

p q c p q p qα β δπ α β δ − − −

=

= − −∏  (2.16) 

 

where ),,( δβαc  is the standardizing constant.  

 

The parameters δβα   , and  can be selected by using the conditional modes of ip  and 

ii pq − . Assuming iiii M=++ δβα , where iM  is specified and 1 ,, >iii δβα  we obtain  

),()3( 0, iAii xPM −=α  )),()()(3( 0,0, iAiCii xPxPM −−=β  iiii M βαδ −−= . 
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Chapter 3  
 

 

Bayesian inference 
 

This section concerns the main problem of our study. As we have pointed out at the 

beginning, one of the most important problems of the biologist is to predict the tolerance 

curve, in order to explain the probability of a positive response (death, tumor, etc.) as a 

function of the concentration of the toxic substance. Bayes’ theorem, one of the most 

powerful tools, provides the mechanism to combine the information in the data with the 

prior to produce an updated probability distribution. Recall that in our study, data are 

provided from the biological experiments whereas prior is assumed to be Dirichlet 

process or product beta as an alternative. Unfortunately, in this case Bayesian approach 

has suffered from the difficulties of analytical, intractable form of the posterior. All of 

these problems were considered by numerous authors. In this work we propose two 

methodologies; MLE-type methods and Markov Chain Monte Carlo techniques, in order 

to estimate the unknown potency curve P.  
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3.1 Form of the posterior distribution 
 

Bayesian methods propose an optimal way to make consistent decisions in the face of 

uncertainty. The reason behind this is that Bayesian statistics seek to optimally combine 

information from two sources: the information that we have or believe at the start of the 

research (in our case Dirichlet Process prior) and the information in the observed data. 

Bayes’ theorem provides the mechanism to combine these sources of information in order 

to improve our statistical inference. According to the Bayesian rule (see appendix B), 

multiplication of the likelihood (2.1) and the prior density (described in chapter 2) gives 

us the kernel of the posterior density of ),,( 1 Mppp K= . For example; if we assign the 

Dirichlet process as a prior then the posterior takes the form    

 
1

1
1 1

1 1

( , , | ) { (1 ) } ( ) ,i i i i

M M
s n s

M i i i i
i i

f p p s C p p p p αξ
+

− −
−

= =

= − −∏ ∏K  (3.1) 

where C is a normalizing constant . 

An interesting study about the nature of a posterior based on the class of Dirichlet 

process as a prior was provided by Antoniak (1974). He noticed that the exact form of 

(3.1) has an extremely complicated support region, due to inequality constraints on the 

spi '  induced by the prior ( 10 1Mp p≤ ≤ ≤ ≤K ). Moreover, he showed that the posterior 

distribution of P given data is a mixture of Dirichlet process distributions. Unfortunately 

this posterior becomes increasingly intractable when the number of stimulus levels 

increases. To illustrate this problem we follow two simple examples which were 

presented by Antoniak. 

First, let us consider the simplest case where data are available only from one 

stimulus level. Suppose that P is chosen to be a Dirichlet process with parameterα and 

distribution 0P , and the dosage level x is selected in order to administer this dosage to n 

animals. Obviously, the prior distribution of P(x) is 0 0( ( ), (1 ( )))Beta P x P xα α − and the 

posterior distribution of P(x) given s positive responses in n trials is 

0 0( ( ) , (1 ( )))Beta P x s n s P xα α+ − + − (see appendix C). The case with one dosage level 

does not cause us any problems. However, things become more complicated as the 
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number of thresholds which we include to our analysis increases. The study with two 

levels confirms this conjecture. Following Antoniak, assume now that 1 2x x<  and let is  

be the number of successes among the in  trials at ix . Then the joint density of 

1 2 1 2, , ( ), ( )S S P x P x  is easily expressed in terms of sYi ' , where 1 1( )Y P x= , 

2 2 1( ) ( )Y P x P x= − , 3 21 ( )Y P x= − and 'i sβ where 1 0 1( )P xβ α= , 

2 0 2 0 1( ( ) ( ))P x P xβ α= − and 3 0 2(1 ( ))P xβ α= − . Then the joint density of 

1 2 1 2, , ( ), ( )S S P x P x  takes the following form  

 

31 1 1 2 2 2 1 21 2 11 1
1 1 1 2 1 2 1 2 3

1 2 1 2 3

( )  y (1 ) ( ) (1 ) ,
( ) ( ) ( )

s n s s n sn n My y y y y y y y
s s

ββ β

β β β
−− − − −⎛ ⎞ ⎛ ⎞ Γ

− + − −⎜ ⎟ ⎜ ⎟ Γ Γ Γ⎝ ⎠ ⎝ ⎠
 (3.2) 

 

over the set 1 2 3 1 2 3{ , , | 0, 0, 0}S y y y y y y= ≥ ≥ ≥   

As it was noticed in Antoniak (1974) the form (3.2) can be recalculated in order to 

obtain more meaningful interpretation of its structure. Indeed, he transformed this 

expression into a mixture of Dirichlet distribution by making the 

substitutions 3211 yyy +=− , and expanding 1 1
2 3( )n sy y −+  and 2

1 2( )sy y+ using the 

Binomial formula. This leads finally to an expression for the conditional distribution of 

21,YY  given 1 1 2 2,  SS s s= =  as 

 
2 1 1

1 1 2 1 1 2 3 2 2
0 0

( , , )
s n s

ij
i j

a D s i n s s i j n s jβ β β
−

= =

+ + + − + − − + − +∑∑ , (3.3) 

 

where    
2 1 1

0 0

ij
ij s n s

ij
i j

b
a

b
−

= =

=

∑∑
, 

 

and       1 1 2 1 1 2 1 1 2 3 2 2

1 2 3

( ) ( ) ( )
( ) ( ) ( )ij

n s s s i n s s i j n s jb
j i

β β β
β β β

−⎛ ⎞⎛ ⎞ Γ + + Γ + − + − − Γ + − +
= ⎜ ⎟⎜ ⎟ Γ Γ Γ⎝ ⎠⎝ ⎠

. 
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Summarizing the investigation of Antoniak; he found the form of posterior distribution of 

the tolerance curve (which is mixture of Dirichlets) but examples, which are presented 

above, showed how sensitive this form is to increasing number of dose levels. 

 

 

3.2 Estimation methods 
 

The previous study showed us that the joint posterior distribution which is based on 

Dirichlet process prior, is too complicated to allow an analytical solution, especially for 

obtaining the marginals. This forces us to use some approximating techniques. Therefore, 

in this part we propose two methodologies; the MLE – type algorithm and the Markov 

Chain Monte Carlo algorithm (MCMC). The former is deterministic in nature and design 

to obtain the modes of the posterior distributions in Bayesian contexts. MCMC 

algorithms aim to approximate the full distribution, which is a more ambitious task than 

the point estimation in case of MLE algorithm. There is an extensive literature on the 

subject of the aforementioned techniques. Therefore the next sections provide a detailed 

discussion.  

 

 

3.2.1 MLE approach 
 

The primary contributions in the nonparametric Bayesian inference have come from 

Ramsey. His publication (1972) pioneers the study of estimating the potency curve based 

on Dirichlet process prior. In this part we illustrate the method of estimating potency 

curve, which consists of maximizing the likelihood. Note that in order to adapt this 

procedure to the Bayesian situation, the prior distribution is treated as ‘prior’ observations. 

Therefore, we maximize the joint posterior density given by (3.1) and as a result the joint 

mode ( )1( ), , ( )MP x P x
) )

K  (the most probable value) is calculated. Ramsey suggests to use 

this joint mode to summarize the posterior distribution. Add that, the joint mode 

( )1( ), , ( )MP x P x
) )

K  is understood as the k-dimensional point which for any set of doses 



Nonparametric Bayesian Bioassay 
 

 23

1, , Mx xK  maximizes the joint posterior density of ( )1( ), , ( )MP x P xK . Therefore, our 

problem of estimating the potency curve is reduced to the problem of finding the mode 

function. Ramsey stressed that different cases with respect to different values of precision 

parameter α  should be considered. The reason for that are different ways of obtaining 

modes. Before we present each of these cases it is important to note that prior which is 

used by Ramsey differs from the prior expressed by (2.2). Indeed, he assumes that the 

successive differences in potency have a Dirichlet distribution with density function: 

 
1

1 1
1

( , , ) { ( ) } ,i

M

M i i
i

f p p p p ξ α
+

−
=

∝ −∏K  (3.4) 

for 10 1Mp p≤ ≤ ≤ ≤K .  

 

Below we present three different ways of obtaining modes with respect of different 

values of α . 

 

• If ∞→α  the posterior distribution is dominated by the prior distribution and the 

prior distribution approaches a degenerate distribution giving probability one to 

the prior mode; 

 

• If 0=α  the mode of the joint density is the isotonic regression estimator; 

Ramsey referred here to Ayer (1955) and suggested that the solution may be 

written as follows 

  

,0)(ˆ =xP   1  xxfor <  

, max min)(ˆ ri

ir1

∑

∑

=

=

≤≤≤≤
= s

ri
i

s

i

Msi
n

s
xP  M),1,i (where    x 1i K=<≤ +ixxfor

 

Notice that this modal function is uniquely defined only at the observational doses. 

The interpolation procedure is arbitrary, subject to the constraint of monotonicity. 
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• If ∞<< α0  the joint posterior densities are convex and unimodal; 

)(ˆ xP  is an uniquely defined non-decreasing function; such that for any collection 

of },,{ 1 Mxx K  it is the mode of the joint posterior density.  

 

According to Govindarajulu (1988) “the estimates based on the mode of the posterior are 

easier to compute than for example those based on the quadratic loss and seem to give 

estimates very close to those obtained from the mean of the posterior“. 

 

Let us now present the method of estimating the mode function for ∞<< α0  proposed 

by Ramsey. The posterior density based on the prior (3.4) is expressed as:  

 
1

1 1
1 1

( , , ) { (1 ) }{ ( ) } ,i i i i

M M
s n s

M i i i i
i i

f p p C p p p p ξ α
+

−
−

= =

= − −∏ ∏K  (3.5) 

 

Observe that the constant C , does not affect the location of the mode and therefore it 

plays no role in the optimization schema and it can be omitted. Note also that the 

logarithm of the joint posterior (3.5) is proportional to the expression below 

 
1

1 1
1 1 1

ln{ ( , , )} ln( ) ( ) ln(1 ) ln( ),
M M M

M i i i i i i i i
i i i

f p p s p n s p p pα ξ
+

−
= = =

∝ + − − + −∑ ∑ ∑K  (3.6) 

 

Now, we can reparametrize the posterior density (3.5) by setting 1−−=Θ iii pp  into (3.6) 

for each 1,,1 += Mi K  with the assumption; 1  and  0 10 == +Mpp . Observe that ip  can 

be expressed by terms of jΘ ’s as ∑
=

Θ=
i

j
jip

1

and the iΘ ’s are a subject to the 

constraints 1
1

=Θ∑
=

M

i
i . Now, we maximize the natural logarithm of the posterior density, 

subject to the constraint by using the Lagrange method. Let us consider the following set 

of equations: 
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The partial derivatives with respect to kΘ  and 1+Θk  yield  

 

1 1

( ) 1 1( ) 0,
1

M M
k

j j jj j
j k j kk k

m m
m m

s n s αξ λ
= =

= =

∂Φ Θ
= − − + + =

∂Θ ΘΘ − Θ
∑ ∑

∑ ∑
 

(3.7a) 

and  

1

1 11 1

1 1

( ) 1 1( ) 0,
1

M M
k

j j jj j
j k j kk k

m m
m m

s n s αξ λ+

= + = ++ +

= =

∂Φ Θ
= − − + + =

∂Θ ΘΘ − Θ
∑ ∑

∑ ∑
 

(3.8a) 

Setting ∑
=

Θ=
i

j
jip

1
into (3.7a) and (3.8a) we obtain  

1 1( ) 0,
1

M M
k

j j j
j k j kj j k

s n s
p p

αξ λ
= =

− − + + =
− Θ∑ ∑  (3.7b) 

1

1 1 1

1 1( ) 0,
1

M M
k

j j j
j k j kj j k

s n s
p p

αξ λ+

= + = + +

− − + + =
− Θ∑ ∑  (3.8b) 

 

As a result, the formulas (3.7b) and (3.8b) give us the relation between the corresponding 

potencies, which maximizes the joint posterior density (3.5). 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

=⎥
⎦

⎤
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⎡
−

− −+

+

11

1

ˆˆˆˆ
ˆ

)ˆ1(ˆ kk

k

kk

k
k

k

k

kk

k

pppp
p

n
s

pp
n ξξ

α , (3.9) 

where for each 1, ,i M= K , ˆ ( )k kp P x=
)

, with the assumptions that 0 0p =)  and 1 1Mp + =) .  

Note that in order to determine ( )P x
)

, we need to solve M simultaneous equations (3.9) 

for the ˆ kp . A way to accomplish this is for example Newton – Raphson method.  
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Moreover, Ramsey proposes also estimation of the tolerance curve at the non-

observationed doses. Notice that, if we take into consideration the fact that for some x 

such that 1+<< ii xxx  the prior is still defined (by replacing the interval );( 1+ii xx by the 

two intervals );( xxi  and );( 1+ixx ) and that the likelihood does not have the term 

associated with x; we can still derive a formula similar to (3.9). The relation (3.10) can be 

thought of as the way of interpolation and extrapolation. 

 

0
ˆˆˆˆ 1

***

=
−

−
− + pppp ii

ξξ  (3.10) 

 

where p̂ is the mode at the non-observationed dose x and )()( 00
*

ixPxP −=ξ , 

)()( 010
** xPxP i −= +ξ . After some calculations relation (3.10) takes the following form 

 

***

**
1

* ˆˆ
ˆ

ξξ
ξξ

+
+

= + ii pp
p , (3.11) 

 

which describes the way for calculating the mode at the non-observed dose x. Notice that 

formula (3.9) and (3.11) enables us to obtain only a point estimate for tolerance curve. 

Further studies (section 3.2.2) show us more advanced investigations. 

 

Since we have already known one of the techniques to estimate the potency curve we can 

extend the discussion from section 2.2.1 about the strategy of choosing appropriate 

parameters which are required to specify a DP prior. Ramsey (1972) and Disch (1981) 

consider the following investigation. The main idea of both authors is based on the so 

called a ‘Bayes two step’ rule. Let us first describe the methodology presented by 

Ramsey. Suppose that previous experiment was run with 0n observations at each dose, 

and that no prior information was available )0( =α . The following question arises: what 

prior should be assessed for a second experiment. Ramsey’s answer for this question is 

formalized for our purpose as a rule1. 

 



Nonparametric Bayesian Bioassay 
 

 27

Rule 1.  If a previous experiment based on 0n observations per dose gave a posterior 

mode of 0 ( )P x , then adopt 0 ( )P x as the current prior mode and use 0n=α . 

 

To illustrate this rule we present example 1 taken from Ramsey (1972).  

 

Example 1. The results from the previous experiment are placed in the table below: 

 

doses 1 2 3 4 5 

affected 5 6 7 8 9 

Sample size 10 10 10 10 10 

Posterior mode 0.5 0.6 0.7 0.8 0.9 

Table 3.1. The results from the previous experiment with 0α =  

 

In the current experiment the same doses are used and 50 observations at each dose 

produce the following results: 

 

doses 1 2 3 4 5 

affected 5 10 15 20 25 

Sample size 50 50 50 50 50 

Table 3.2. The results from the current experiment  
 

Ramsey proposed two possible ways to proceed. The first one is based on pooling data 

set and the next is related to Bayes two steps rule. Assume first that the data sets are 

pooled and the posterior mode for 0=α  is determined. The results are placed in the table 

below. 

 

 

doses 1 2 3 4 5 

affected 10 16 22 28 34 

Sample size 60 60 60 60 60 
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Posterior mode 0.1667 0.2667 0.3667 0.4667 0.5667 

Table 3.3. The results from the pooled data set 

An alternative way is provided by the rule 1. We adopt the posterior mode from the 

previous experiment as the prior mode for use with the second set with assumption that 

0n=α  in order to reflect the strength belief in prior information. The next table presents 

results which are obtained from this methodology. Additionally we compare posteriors 

for other choices ofα .  

 

doses 1 2 3 4 5 

Prior mode 0.5 0.6 0.7 0.8 0.9 

0=α  0.1 0.2 0.3 0.4 0.5 

10=α  0.1474 0.2138 0.3051 0.4077 0.5301 

20=α  0.1721 0.2331 0.3180 0.4209 0.5529 

30=α  0.1899 0.2501 0.3325 0.4356 0.5627 

40=α  0.2044 0.2652 0.3469 0.4503 0.5906 Po
st

er
io

r 
m

od
es

 

50=α  0.2170 0.2788 0.3605 0.4645 0.6069 

Table 3.4. The results obtained by using Rule1 
 

Ramsey pointed out that the prior distribution is not a ‘conjugate’ prior and it is not, 

therefore, equivalent to a posterior distribution from a previous experiment. Thus the 

procedure of rule 1 leads to the conclusion that the parameters of the prior distribution 

may result in loss of information from the first experiment. Another problem, which was 

noticed by Disch is that the choice of α  in rule 1 is too conservative in its use of the 

prior information. Since precision parameter can be regarded as the assessor’s prior 

strength of belief measured in number of pieces of data at a particular dose level, Dish 

suggests making a modification to this rule. We call it rule 2.  

Rule 2. Approximate the posterior of the ip by a Dirichlet distribution with 

parameters ),,( 11 += Mξξξ K , calculated from the posterior mode and 
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)(min ii Dprior += αα , where ii nD = + number of successes at the dose levels less than 

ix + the number of failures at dose levels greater than ix . 

The next two examples, proposed by Ramsey, illustrate the advantage of having a 

smoothing procedure. Ramsey provides interesting experiments of estimating the potency 

curve with respect to different values of precision parameter. The results and conclusions 

are presented below. 

 

Example 2. Suppose that the actual effective curve is 

)
25.0

6.0()( −
Φ=

xxP , 

Where Φ  is the standard cumulative normal. Moreover, we selected for the experiment 

40 equally spaced doses as follows  

   ixi 025.0=  for .40,,1K=i  

Where at each dose, one subject is put on trial. The data consist of 40 independent 

observations 1    0iY or=  according to whether a randomly chosen observation from a 

)1,0(Uniform  did not or did exceed )( ixP . The prior mode is assumed as below 

 

0 , if 0<x ,  

2x , if 025.00 ≤≤ x , 

0.05 1.6( 0.025)x+ − , if 075.0025.0 ≤≤ x , 

0.13 1.2( 0.075)x+ − , if 125.0075.0 ≤≤ x , 

0.19 0.8( 0.125)x+ − , if 9.0125.0 ≤≤ x , 

0.81 1.2( 0.9)x+ − , if 950.09.0 ≤≤ x , 

0.87 1.6( 0.95)x+ − , if 000.1950.0 ≤≤ x , 

0.95 2( 1)x+ − , if 025.11 ≤≤ x , 

0 ( )P x

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪= ⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

 

1, if x≤025.1 , 

 



Nonparametric Bayesian Bioassay 
 

 30

The prior mode and the actual curve obtained by Ramsey are displayed in the figure 3.1 

together with posterior with different choices of α . The effect of smoothing with the 

Bayesian approach is summarized in the table 3.5.  

 

α  0 1 5 10 ∞+  

K-S distance  0.325 0.274 0.184 0.159 0.220 

|5050ˆ| EDDE −  0.100 0.095 0.055 0.010 0.0875 

Table 3.5. The effect of smoothing with the Bayesian approach 

 

Note that K-S distance relates to Kolmogorov-Smirnov distance and it is based on the 

maximum distance between two curves. Whereas '50' ED  is understand as a dose level x 

for which 5.0)( =xP  (more about effective dose reader can find in chapter 4). As we can 

observe from the table above,  some degree of smoothing the isotonic regression 

improves both the K-S distance and the error in the ED50 estimate. Moreover, Ramsey 

showed also that advantages of smoothing procedure are relatively insensitive to the 

choice of prior parameters. This property is illustrated by the next example. 
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Figure 3.1. Smoothing procedure. 

 

Example 3. Let us repeat the example 2 but with the worst prior such as it is presented 

below  
 

0 , if 0<x ,  

0.4x , if 025.00 ≤≤ x , 0 ( )P x
⎧
⎪= ⎨
⎪
⎩

 

1, if 1,x ≥ , 
 

Figure 3.1 illustrates the results obtained from this experiment. We summarize them also 
in table 3.6.  
 

α  0 5 ∞+  

K-S distance  0.325 0.240 0.600 
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|5050ˆ| EDDE −  0.100 0.090 1.250 

Table 3.6. The effects of smoothing with the Bayesian approach 

From table above we can draw the conclusion that an improvement in both K-S distance 

and ED50 estimation error is still observed. 

 

 
Figure 3.2. Smoothing procedure 

 

 

3.2.2 Markov Chain Monte Carlo techniques 
 

An important computational issue in many statistical problems is the calculation of the 

marginal distributions. The previous section showed us that the joint posterior 

distribution is too complicated to allow an analytical solution, especially for obtaining the 

marginals. Derivations of the exact marginal posteriors, based on the ordered Dirichlet 

prior were presented by Disch (1981). He noticed that the integrations needed to calculate 
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marginals are extremely difficult to perform, either analytically or numerically. The goal 

of this part is to introduce the Markov Chain Monte Carlo technique which allows 

estimation of the complex models that are difficult to estimate with classical methods. In 

particular, Gibbs sampling, the most commonly used MCMC method, can be a useful 

tool in bioassay analysis for the reconstruction of the marginal posterior densities. For an 

extensive discussion of the MCMC approach we refer also to Castella and George (1992). 

Gibbs sampling provides a method for calculating the marginals without having their 

exact form. Through the use of this technique, we are able to avoid difficult calculations, 

replacing them instead with a sequence of easier calculations. The main idea of this 

methodology is based on generating a large sample of independent draws from the full 

conditional distributions, which are in many cases well known. The procedure of a 

sampler proceeds as follows 

 

• Specify the initial values (0)
1( , , ),Mp p p= K  

• Generate draws (1)
1( , , )Mp p p= K  from the conditional distributions:  

 

   -  (1)
1p  from  (0) (0)

1 2( | , , ),Mp p pπ K  

   M  

 -  (1)
ip  from  (1) (1) (0) (0)

1 1 1( | , , , , , ),i i i Mp p p p pπ − +K K  

   M  

 -  (1)
Mp  from  (1) (1)

1 1( | , , ),M Mp p pπ −K  

 

As we can observe from the above schema, we generate a sample from the marginals by 

sampling instead from the conditional distributions. A result of a single iteration is a 

vector 1( , , )Mp p p= K which represents a transition from initial values (0)
1( , , )Mp p p= K  

to (1)
1( , , )Mp p p= K . If this iteration is repeated r times, the Gibbs sequence 

(0) (1) ( ), , , kp p pK  is generated. It turns out that under reasonably general conditions, the 

distribution of ( )r
ip converges to ( )ipπ (the marginal of ip ) as r →∞ . Thus, for k large 

enough, the final result ( )
1( , , ),r

Mp p p= K  is effectively a sample from marginals. The 



Nonparametric Bayesian Bioassay 
 

 34

convergence of Gibbs sequence can be exploited in different ways to obtain an 

approximate sample from the marginals. An interesting idea was provided by Gelfand 

and Kuo (1991). They conducted the Gibbs sampling with v independent parallel 

replications each taken to r iterations. Whereas the choice of v determines how close our 

density estimate is to the exact density at the rth iteration. Choice of r determines how 

close the latter density is to the actual marginal posterior density.  

 

Our further study provides detailed explanation of sampling approach for ordered 

Dirichlet prior. We will follow the investigation of Gelfand and Kuo (1991) who 

proposed Gibbs sampling as a very successful method in estimating the tolerance 

distribution in a quantal bioassay. After it we will extend also our study about this 

technique to the case of Dirichlet prior with shape constraint. Note that comprehensive 

discussion which refers to this subject can be found in Ramgopal, Laud, Smith (1993).  

 

 

Ordered Dirichlet prior  
 

We begin our investigation of Gibbs sampling procedure with estimation of a potency 

curve based on the Dirichlet prior. Since the Dirichlet distribution is conjugate family for 

the multinomial distribution, the posterior distribution is again a Dirichlet distribution. 

This attractive property enables us to use standard sampling method in order to estimate 

the potency curve.  

 

As we have already noticed, in order to use Gibbs sampling, we need to first specify the 

complete conditional distributions. Thus, let us define: 

• 1| , , , ,Mp S Z Z nK  

• )(,,| jiZpSZ ji ≠ . 

 

To specify the second aforementioned conditional distribution, let us introduce the set of 

unobserved multinomial variables in order to simplify a sampling procedure.  

 



Nonparametric Bayesian Bioassay 
 

 35

 

 

Let  

1 , 1( , , , , ) ~ ( , )i i ij i M iZ Z Z Z Mult n λ+= K K , for Mi ,,1K=  

 

where 1 1( , , , , )j Mλ λ λ λ += K K  with 1j j jp pλ −= − , 00 ≡p  and 11 ≡+Mp . The variable ijZ  

denotes, amongst the in  individuals receiving dosage level ix , the unobserved number 

who would have responded to dosage level jx  but not to dosage level 1−jx . Notice that iZ  

is a concatenation of two multinomials )}2(),1({ iii ZZZ = such that: 

 

),,()1( 1 iiii ZZZ K=  and ),,()2( 1,1, ++= Miiii ZZZ K ,  

 

where         1(1) ~ { , (1)}i i iZ Mult s p λ−  and 1(2) ~ { , (1 ) (2)}i i i iZ Mult n s p λ−− − , 

 

         with  ),,()1( 1 iλλλ K= and ),,()2( 11 ++= Mi λλλ K . 

 

Whereas the former conditional distribution is an ordered Dirichlet updating (2.2)  

 

( )

1

1
11

11
1

1

( )
( ) ,j

k

j k
j

j jk
j

j
j

p p ξ
ξ

ξ

+

+
−=

−+
=

=

Γ
−

Γ

∑
∏

∏
 (3.12) 

where 
1

M

j j ij
i

Zξ ξ
=

= +∑ .  

Thus, the complete conditional density for ip , over the set [ ]11 , +− ii pp , denoted by 

1( | , , , , , ),D i M jg p S Z Z p j i≠K  is 1( , )i iBeta ξ ξ + . In other words, 

1 1 1 1~ ( ) ( , )i i i i i ip p p p Beta ξ ξ− + − ++ − . 
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Given the aforementioned conditional distributions we can execute the Gibbs sampling as 

follow: 

• specify the initial value (0)
1( , , ),Mp p p= K  

• for each 1, ,i M= K , sample from:  

 

 ( )(0) (0) 1(1) ~ , ( ) (1)i i iZ Mult s p λ−  with (0) (0) (0) (0) (0)
1 2 1 1(1) ( , , , ),i ip p p p pλ −= − −K  

( )(0) (0) 1(2) ~ , (1 ) (2)i i i iZ Mult n s p λ−− −  with (0) (0) (0)
1(2) ( , ,1 ),i i Mp p pλ += − −K  

 

• for each 1, ,i M= K , sample from  
(1) (1) (0) (1)

1 1 1 1~ ( ) ( , )i i i i ij jp p p p Beta ξ ξ− + − ++ − , 

where (0)

1

M

j j ij
i

Zξ ξ
=

= +∑  and with 00 =p  and 11 =+Mp . 

 

Then we sample again from Multinomials (using (1) (1) (1)
1( , , )Mp p p= K ) in order to 

calculate (2) (2) (2)
1( , , )Mp p p= K . This schema is repeated r times and as a result we 

obtain ( ) ( ) ( )
1( , , , )r r r

Mp Z ZK . 

 

Moreover, Gelfand and Kuo (1991) proposed to calculate v replications of this procedure 

(each to the r-th iteration, with the same initial value of (0)p ), such that the results from it: 

),,,( )()(
1

)( r
Ms

r
s

r
s ZZp K  for vs ,,1K= , can be used to calculate the estimate of the marginal 

posterior density of each ip  as stated below: 

 

1 ( ) ( ) ( )
1

1

ˆ ( | ) ( | , , , , , ),
v

r r r
D i D i s Ms js

s
f p S v g p S Z Z p j i−

=

= ≠∑ K  (3.13) 

 

Similarly the posterior mean of ip  is estimated using the mean of Dg  leading to  
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1 ( ) ( ) ( )
1, 1, 1, 1,

1
( | ) [ ( ){ /( )}],

v
r r r

D i i s i s i s is is i s
s

E p S v p p p ξ ξ ξ−
− + − +

=

= + − +∑  (3.14) 

where     ( )

1

M
r

js j ijs
i

Zξ ξ
=

= +∑ ,  for 1,,1 += Mj K . 

 

Moreover, Gelfand and Kuo (1991) provide also the posterior density estimation for non-

observed dose level *x ( 1
*

+≤≤ ii xxx ) by including )( *xP  as an additional model 

parameter. More precisely we revise the prior to include )( *xP  and to take the form 

).|)(()( * pxPhp DDπ  Where h is naturally the density of ,*Δ+ip  with 

* * *
1 1~ ( ) ( , )i i ip p Be ξ ξ ξ+ +Δ − −  and * *

0 0( ( ) ( ))iM P x P xξ = − . Since there are no data at 

dosage level *x , the complete conditional distribution for )( *xP  is )|)(( * pxPhD . And 

therefore the posterior density estimate for )( *xP  is as follow 

 

∑
=

−=
v

s

r
sDD pxPhvxPf

1

)(*1* ),|)(())((ˆ
 

(3.15) 

 

Whereas the expected value of the conditional density is expressed by 

 
* *

* * 1
1 1 1

1 1

( | ) { ( ) / | } ( | ) ( | ),i
D D i i i i D i D i

i i

E p S E p p p S E p S E p Sξ ξ ξξ ξ
ξ ξ
+

+ + +
+ +

−
= + − = +  (3.16)

 

Note that the analysis of data sets in chapter 6 is based on the procedure which was 

described above. 

 

 

The ogive prior 
 

In this part we would like to present how the Gibbs sampler technique can be used in 

order to estimate the posterior in case where the prior is assumed to have ogive shape. 
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Recall that this shape is a generalization of convex and concave case. Therefore the 

procedure of sampling also suits to these two shapes.  

Notice that in the previous case the property about conjugate family was used, 

which simplify significantly the computations. Here the Gibbs sampler needs to be 

combined with one of the sampling – importance – resampling technique. Let us first 

describe a Gibbs sampling approach to simulating from the joint posterior for p and i*, 

where i* is the turning point from convex shape to concave. Given arbitrary starting 

values, a long iteration of successive random variate generations from  

 
*

*

| , , , ,  j i,

| , , ,
i jp i s n p

i p s n

≠
 (3.17) 

 

results in eventual *( , )p i realizations which are close to being drawings from the joint 

posterior. Below we present the conditional forms (3.17).  

Let us start from the conditional distribution for the turning point. Observe that 
* | , ,i p s n  does not, in fact, depend on s and n. Therefore the distribution of i*, can be 

expressed as follow: 
*

0 0( | ) ( ) ( |{ 1, }),i ipr i i p f p I i i iπ= ∝ −  (3.18) 

 

where 

1 1
0

1 1

min{ ;1 1  },i i i i

i i i i

p p p pi i i M and
x x x x

− +

− +

− −
= ≤ ≤ + >

− −
 

1 1
1 1

( ) ( | , , , ) ( | , , , ),
i M

i j j j j j j j i j j j
j j i

f p g p c d g p c dα ξ ξ ξ α+ +
= = +

= −∏ ∏  

 

for 1, , ,i M= K where ( )jjjjj dcpg ,,,| 1+ξα  and ( )jjjijj dcpg ,,,| 1+− αξξ  define the 

conditional densities (2.11) and (2.12). In case of 0=i  or 1+= Mi , 0 1( ),  ( )Mf p f p+ are 

given by the product of the beta densities corresponding to (2.6) and (2.8), respectively. 

The form (3.20) specifies a simple discrete distribution over the two points 0 1i −  and 0i , 
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which are easily seen to be the only possible ‘switch points’ from convex to concave if, 

given p, 0i  is the smallest stimulus value at which the ‘slope’ is subsequently decreasing.  

 

Simulation from *| , , ,p i s n an M-dimensional joint density is clearly not so directly 

straightforward. With ( )π ⋅ as generic notation for probability density functions, we 

calculate the following formulas for: 

 

• * *1, , 1, ( 2)i i i= − ≥K  
2

*
1( , )( | , , , , ) (1 ) ( ){ ( | , , , )},i i i

i i

i
s n s

i j i i i j j j j ja b
j i

p i s n p j i p p I p g p c dπ α ξ
+

−
+

=

≠ ∝ − ∏  (3.19) 

where  

1
1 1 2 1 2 1

1 2

1
1 1

1

max{ ( ), ( )},

,

i i
i i i i i i i

i i

i
i i i i

i i

a p p p p p p

pb p

+
− − − + + +

− +

+
+ −

+

Δ Δ
= + − − −

Δ Δ

= Δ + Δ
Δ + Δ

 

    1i i ix x −Δ = − , 

       and  
1

1
1

M

i j
j i

ξ α
+

+
= +

= ∑ . 

 

• * *1, , , ( 1)i i M i M= + ≤ −K  

*
*

( , ) 1
2

( | , , , , ) (1 ) ( ){ ( | , , , )},i i i

i i

i
s n s

i j i i a b i j j j j ji
j i

p i s n p j i p p I p g p c dπ ξ ξ α−
+

= −

≠ ∝ − −∏ (3.20) 

 

where 

1
1 1

1

1
1 2 1 1 1 2

2 1

,

min{ ( ), ( )};

i
i i i i

i i

i i
i i i i i i i

i i

pa p

b p p p p p p

−
+ +

+

+
+ + + − − −

+ −

= Δ + Δ
Δ + Δ

Δ Δ
= − − + −

Δ Δ
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• At i* 
* * *

* * * * * *

* * * * * *
*

* *
( , )

11
1

( | , , , , ) (1 ) ( )

( | , , , ){ ( | , , , )},

i i i
s n s

ji i i a b i

M

j j j j ji i i i i i
j i

p i s n p j i p p I p

g p c d g p c d

π

α ξ ξ ξ α

−

++
= +

≠ ∝ −

× −∏
 (3.21) 

where 

* *

* * * * * *

* *

* * 1
1 1 2 1 2 1

1 2

( ),   ( );i i
i i i i i i

i i

a p p p b p p p+
− − − + + +

− +

Δ Δ
= + − = + −

Δ Δ
 

 

A drawing from *| , , ,p i s n  is then obtained by successively drawing Mpp ,,1 K  from the 

forms defined by (3.19) - (3.21). It remains only to sample efficiently from each of these 

one-dimensional truncated forms. As Ramgopal, Laud and Smith noticed a number of 

methods are available and easily implemented, including classical rejection and ratio – of 

– uniforms techniques. For details, the authors refer to for example Devroye (1986).  

Now given the forms (3.19) - (3.21) we can execute simulations. Numerous methods are 

available and easily implemented, including the classical rejection and the ratio-of-

uniforms techniques. 

Moreover the studies of Ramgopal, Laud and Smith (1993) involves also inference about 

* *( )p P x= for a specified *x with * 1i ix x x +< < . The relationship below enables us to 

compute the potency curve at any non-observed dose level.  

 

*

* *
* *( | , ) ( | , ) ( , | , ) ,

i

p s n p i p i p s n dpπ π π=∑∫  (3.22) 

 

Whereas the left – hand side can be approximated by averaging the form *
*( | , )p i pπ over 

the random sample of *( , )i p pairs from the posterior. For any given *,i  

* *
*

* *

( | )( | , ) ,
( | )
p ip i p
p i

ππ
π

=  

where *
1 * 1( , , , , , , ),i i Mp p p p p p+= K K  so that the required form can be identified from 

the forms given in parts 2.3.1. - 2.3.3 and analogous forms for the extended *p .  
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Chapter 4 

 

 

Effective Dose  
 

In bioassays, different concentrations of stimuli are applied to experimental animals, and 

the all – or – none reaction of the animals are then recorded. For example, in 

pharmacology, the effective action of a drug or vaccines is treated by an animal 

experiment, where death or other all – or – none reactions of the animals are recorded 

after exposure to the drug at various levels. The previous chapter is devoted to the 

approximation of the distribution of this tolerance. However, the literature shows that 

many researchers in biostatistics are often interested in a particular dose level, at where 

100 %γ (where 0 1γ< < ) of the subjects react. Notice that this dose level (called effective 

dose) is known in the literature as 100ED γ . 100ED γ  summarizes the potency of the 

concentration of the stimulus and may subsequently form the basis of comparison 

between different levels of stimuli. Let us formalize definition of 100ED γ  for our 

purpose, by the definition which was proposed by Disch (1981).  

 

Definition: For 10 << p , EDp is the (unique) pth effective dose 

if inf{ : ( )}EDp x p P x= ≤ . 
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To conform to more common notation we will understand for example ED(0.5) as ED50, 

etc. Notice also that )(⋅p denotes the response curve which is strictly monotone increasing, 

so the functional 1( )p γ− , which is referred to as 100ED γ , is well defined for 0 1γ< < . 

This section is devoted to the estimation of 1( )p γ− . We present here few approaches 

which are related to this problem.  

 

 

4.1 Ramsey’s approach 
 

As one of the first who provoked the discussion about the nonparametric Bayesian 

bioassay was Ramsey (1972). In his work he provided also a small discussion about the 

problem of deriving the dose level which is assigned to some particular reaction of 

examined subjects. Let us now present his investigation.  

 

Suppose that, given probability γ , we are interested in a dose level x such that the 

posterior mode at this level is γ=)(ˆ xP . Notice that, if for some observational dose ix , 

ˆ ( )iP x γ= , then the problem is trivial. Otherwise (the case where ˆ( )P xγ =  for some non-

observed dose level x), we need to apply some interpolation technique. Ramsey proposed 

the following procedure. 

 

Let us first determine the pair of observational doses ),( 1+ii xx , such that the inequality 

)(ˆ)(ˆ
1+<< ii xPxP γ  is satisfied. Note that the potency at the dose x between ix  and 1+ix  

may be included in the prior, and this has no effect on the posterior at the observational 

doses. According to the chapter 3.2.1, the relations (3.10), stated below: 

 

0 1 0 0 0

1

( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

i i

i i

P x P x P x P x
P x P x P x P x

+

+

− −
=

− −
, 
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can be used to find the dose level x such that )(ˆ xP=γ . Note that if we rewrite this 

equation as: 

0 1 0 1

0 0

ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( )

i i

i i

P x P x P x P x
P x P x P x P x

+ +− −
=

− −
, 

 

we are able to find the dose level x by following the schema below: 

 

• calculate the ratio 1
ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

i

i

P x P x a
AP x P x

δ+ −
= =

−
,  

• determine 0 ( )P x  on the prior mode such that 0 1 0

0 0

( ) ( )
( ) ( )

i

i

P x P x b
P x P x B

δ + −
= =

−
.  

• finally we are able to find the dose level x such that 0 ( )P x (see figure 4.1.) 

 

Notice that this method requires the posterior mode )(ˆ xP  to have the same shape as the 

prior mode )(* xP  piecewise between observational doses.  

 

 
Figure 4.1.Interpolation procedure. 
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4.2 Disch’s approach 
  

Note that Ramsey (1972) described how to estimate any particular effective dose. 

However, Dish (1981) went further and he has obtained the posterior distribution of an 

ED, rather than simply a point estimate. Thus, the researcher would gain an idea of the 

precision of his estimate. We provide here the derivation of the prior and posterior 

distribution of the ED follows the investigation of Disch. 

 

Let us first define for a random variable X with cumulative distribution function ,XF  

)()(lim)( tXprsFtF XtsX <==−
→

. 

Recalling that for a fixed dose x, )(xP  is random, we have the following theorem 

 

Theorem:  For a fixed dose x, if ),(xPq =  then { } 1 ( )qpr EDp x F p≤ = − − .  

 

We can easily prove this theorem by using the definition of EDp  and the monotonicity of 

P. Indeed, it follows that EDp x≤  if and only if qxPp =≤ )(  and hence 

{ } ( ) 1 ( )qpr EDp x pr p q F p≤ = ≤ = − − . 

 

The theorem above implies that the prior distribution for the EDp  can be obtained from 

the prior distribution for )(xP . As it is well known, the prior distribution of ),(xPq =  

with fixed x such that 1+≤< kk xxx , is ),( baBeta , where )()( *

1

* xPa
k

i
i αξξα =+= ∑

=

 and 

1
** *

2
( ) (1 ( )),

M

i
i k

b P xα ξ ξ α
+

= +

= + = −∑ with * * *( ) ( )iP x P xξ = − and ** * *
1( ) ( )iP x P xξ += − . 

Hence the cdf of q is continuous and 

∫ =−
ΓΓ
+Γ

==− −−
p

o
p

ba
qq baIdxxx

ba
bapFpF ),()1(

)()(
)()()( 11  Moreover, the prior cdf of 

the )( pED is then given by; 
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1( ) { } 1 ( , ) ( , )EDp p pF x pr EDp x I a b I b a−= ≤ = − = , (4.3) 

 

Where, the final term in (4.3) was obtained by using the property of the incomplete beta 

function. 

 

Moreover, we can calculate the posterior cdf of EDp  by the formula 

 

|
0

( ) 1 ( ) ,
p

EDp dataF x f q dq= − ∫  (4.4) 

 

where f(q) is the posterior marginal density. However, as it has been pointed out in the 

previous section, the theoretical inference on the effective dose enjoyed limited success 

since, in application; the exact form of the posterior marginal becomes unmanageable. 

Therefore, the problem of estimating the posterior of an effective dose reduces to 

problem of estimation the posterior marginal of the potency curve.  

 

 

4.3 Mukhopadhyay’s approach 
 

An interesting study of Bayesian nonparametric inference on the unknown dose level for 

a prespecified response rate was provided by Mukhopadhyay (2000). He developed a 

closed form for the conditional posterior distribution of the EDγ  given 1( , , )Mp p p= K . 

Notice that this theorem follows from a general result that, given 1( , , )Ms s s= K  and 

1( , , )Mp p p= K , the conditional distribution of the random segment of P between two 

adjacent dose levels follows a scaled DP. For our purpose we present the form of this 

conditional distribution in the theorem below. 
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Theorem: The conditional posterior c.d.f. of EDγ  at x given p and s can be obtained by 

identifying k )0( Mk ≤≤  such that 1+≤< kk pp γ  and the exact form of it is given by  

 

1, if 1+> kxx , 

* **
1* **

1 1
* **

( ( )) (1 )
( ) ( )

w w dwαξ αγ

τ

α ξ ξ
αξ αξ

− −Γ +
−

Γ Γ ∫ , if 1+≤< kk xxx ,   ( | , )P ED x p sγ

⎧
⎪
⎪≤ = ⎨
⎪
⎪⎩

 0, if ,kxx ≤  

(4.6) 

where 
1

,k

k k

p
p p
γτ
+

−
=

−
 )()( 00

*
kxPxP −=ξ  and  )()( 010

* xPxP k −= +ξ . 

 

All technical derivations are in the appendix D and reader is encouraged to look at this 

before proceeding.  

 

Notice that the numerical inference on EDγ  is obtained in two steps. The first one is to 

draw a posterior sample 1( , , )Mp p p= K  given by (3.1) and the second step is a 

conditional draw from ( | , )P ED x p sγ ≤  using (4.6).  

 

 

 

 

 



Nonparametric Bayesian Bioassay 
 

 47

 
 
 
 
 
 
 
 
Chapter 5 

 

 

Experimental design strategy 
 

The design of experiments is an important part of scientific research. In many cases 

appropriate techniques are able to reduce trial duration and costs, such that the 

experiments still provide reliable results. The relevant issues in bioassay design are; 

choosing the sample size of the experimental subjects, determining the level of the 

stimuli and allocating the subject to different levels of these stimuli. Unfortunately like 

many areas of Bayesian statistics, applications to actual experiments still lag behind the 

theory. However there are few examples of examining an experiment in nonparametric 

Bayesian design framework. In this section we provide a short discussion about design 

strategy which was provided by Ramsey (1972).  

 

 

Example 4. Assume that the prior mode is the standard cumulative normal distribution 

function. Further assume that the actual potency curve is a shifted standard normal c.d.f.  

0 ( ) ( )P x x= Φ , 

     ).()( Θ−Φ=Θ xxP  

Ramsey suggests interpreting Θ  as the difference between the actual and prior sED '50 . 
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The idea of this example is to illustrate four different experimental designs; 

 

• Design A is arranged as follows; six dose levels are spaced in such a way that 

61 ξξ ==K , where 0 0 1( ) ( )i i iP x P xξ −= −  and at each dose one experimental 

subject is examined; 

 

• Design B is arranged as follows; six dose levels are equally spaced and at each 

dose one experimental subject is examined; 

 

• Design C is arranged as follows; three dose levels are spaced in such a way that 

31 ξξ ==K , where 0 0 1( ) ( )i i iP x P xξ −= −  and at each dose two experimental 

subjects are examined; 

 

• Design D is arranged as follows; two dose levels are spaced in such a way that 

31 ξξ ==K , where 0 0 1( ) ( )i i iP x P xξ −= −  and at each dose three experimental 

subjects are examined; 

 

To illustrate the idea of the aforementioned design strategies we present illustrations 

below. 
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Figure 5.1. Design strategies of experiment 

 

 

Ramsey provides here a comparison of the posterior estimate of sED '50 , for each of the 

strategies by using the methods which are describe in section 3.2.1. Pictures below 

present the bias, standard deviation and the square root of the mean square error in the 

estimators over a range of Θ .  
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Figure 5.2.Comparison of different strategies.  

 

 

From the figure 5.2 we can draw a few conclusions. If we compare designs A and B; both 

with six dose levels but with different ways of spacing, it can be observed that design A 

is the superior design if the prior 50ED  is a good guess of the actual 50ED . However, if 

the prior 50ED  is a poor guess, it is better to spread out the doses as in design B. The 

results for the comparison of design A, C and D (all using equal iξ ) also give as very 

interesting conclusions. As it can be seen from the pictures it seems that the less 

observations per dose, the better. Recall that design A uses only one observation per dose. 
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Chapter 6 

 

 

Applications 
 

 

Motivation of using the Gibbs sampler procedure proposed by Gelfand and Kuo (1991). 

 

This chapter is addressed to the application of the nonparametric Bayesian approach. Our 

analysis is based on the ordered Dirichlet process prior described in more details in 

subsection 2.2.1. The reasons for using this prior are its very attractive and useful 

properties. Firstly, Dirichlet process prior is a conjugate family for the multinomial 

distribution. In the Bayesian context it means that the exact form of the posterior is 

known. A second attractive property relates to the form of the marginal distributions. 

Recall that if a random probability distribution ( ))(,),( 1 MxPxPP K=  is generated by 

Dirichlet process with precision parameter α  and base distribution 0P , then the marginal 

of )( ixP for Mi ,,1K=  is )))(1(),(( 00 ii xPxPBeta −αα . Moreover, the conditional 

distributions for )( ixP  given )( 1−ixP  and )( 1+ixP are Beta as well, with parameters 

)))()(()),()((( 010100 iiii xPxPxPxP −− +− αα . The aforementioned properties can be 

successively used in MCMC methods. In this part the Gibbs sampling technique (one of 

the MCMC methods) is examined,  based on Gelfand and Kuo (1991) where this 
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approach is used in bioassay context. More details about this methodology are in 

subsection 3.2.2.  

 

 

Description of the data  

 

For the purpose of discussion, two bio assay data sets are provided. We present them in 

the tables below. 

 

 

Dose 
Nr 

subjects 

Nr 

responses

0 50 1 

21 49 15 

60 45 20 
 

Table 6.1. Data set 1 

 

Dose Nr subjects Nr responses 

1000 30 1 

1500 30 6 

1750 10 7 

2000 30 20 

2500 20 17 

3000 10 10 
 

Table 6.2. Data set 2. 

 

Note that the first one consists only three dose levels at which 50, 49 and 45 experimental 

subjects were observed. An interesting situation we can notice at zero dose level. The 

data set provides the information that at this dose level, one (from among 50) 

experimental subject reacted. Thus, we can suspect that the experimental animals react 

also on some different stimuli. Recall that Dirichlet prior is based on the assumption that 

the expected value of response at zero level is zero. However the probability of response 

at this level is not so high (0.02), therefore it should not be the reason for any additional 

problems. Notice also that at the last dose level we can observe 20 responses from among 

45 experimental subjects. This suggests us that data set 1, does not provide the 

information about the whole potency curve. We do not know for example what amount of 
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examined substance is enough to induce the response of all experimental subjects which 

are under the observation. 

 

Data set 2, presented by the table 6.2, consists of 6 dose levels. Note that at the first level 

equal to 1000, one response from among 30 experimental subjects were observed, 

whereas at the last dose level equal to 3000 10 responses from among 10 experimental 

subjects are observed. Unlike the previous data set, in this case the information about the 

whole potency curve is provided. However, one worrying situation can be observed. If 

we look at the data presented in the table 6.2 at the dose levels 1750 and 2000, the 

following conclusion can be drawn: the probability of response increases as the dose level 

decreases. To be more precise; at dose level 1750 we observe 7 responses by testing 10 

animals (the probability of response is 0.7) whereas at the dose 2000 we observe 20 from 

among 30 subjects (the probability of response is 0.67). This observation causes conflict 

with our assumption that the response curve is non-decreasing. Therefore at this dose 

levels we can suspect some problems. The further analyses of the data verify all of our 

conjectures.  

 

 

Stability of the results. 

 

Before we start to execute the Gibbs sampling method, two parameters need to be 

specified. As we have mentioned in subsection 3.2.2 this sampling procedure is 

conducted with v parallel replications each taken to r iterations. Note that the choice of v 

determines how close our density estimates is to the exact density at the r-th iteration, 

whereas the choice of r determines how close the density estimate at r-th iteration is to 

the actual marginal posterior density. Therefore, setting for r and v to obtain smoothly 

converged estimates is strictly dependent on the application and the prior information 

about the studied problem. In order to find suitable parameters for our case, we perform 

the Gibbs sampler for an extensive experimental range of the iteration-replication 

combinations.  
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Three values of parallel replications (1000, 1250, and 1500) together with four values of 

iterations (20, 40, 60, and 80) were used in order to find the stable estimates. The results 

of these experiments (posterior mean computed by the formula (3.14)) were stored in the 

tables. As an example, we present below one of the experiments for the 2nd data set with 

two choices of precision parameter: 1.0=α , 10=α  and the base distribution 

3

3

3000
)( xxPo = . 

 

Iterations 

and α  
replications Dose levels 

1.0
1000
=
=

α
v

 

 

 

r=20 

r=40 

r =60 

r =80 

 

 

0.044128       0.193313       0.417062       0.659130       0.846099       1.0000 

0.042576       0.219189       0.493654       0.615683       0.794841       1.0000 

0.058682       0.19910         0.545650       0.689910       0.806278       1.0000 

0.062037       0.192590       0.567986       0.696272       0.797298       1.0000 

 

10
1000
=
=

α
v

 

r =20 

r =40 

r =60 

r =80 

 

0.04637          0.191870      0.417249       0.658330       0.848490       1.0000 

0.041967        0.216300      0.492210       0.615607       0.796974       1.0000 

0.044247        0.217422      0.506223       0.616470       0.801920       1.0000 

0.044567        0.226121      0.509834       0.614833       0.798842       1.0000 
 

 

Table.6.3 Experiments with different values of replications and iterations for the 2st data set. 
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Iterations 

and α  
replications Dose levels 

1.0
1250
=
=

α
v

 

r =20 

r =40 

r =60 

r =80 

    

0.045540         0.194101       0.419390      0.663003       0.852585      1.0000 

0.049150         0.204076       0.499200      0.685549       0.829161      1.0000 

0.058147         0.198961       0.547940      0.694183       0.810467      1.0000 

0.061973         0.193056       0.564190      0.693343       0.801165      1.0000 

 

10
1250
=
=

α
v

 

r =20 

r =40 

r =60 

r =80 

   

0.043136         0.199385       0.413685      0.604449       0.801443      1.0000 

0.042713         0.220199       0.488546      0.617270       0.799830      1.0000 

0.044182         0.221295       0.507928      0.617228       0.799390      1.0000 

0.042458         0.220024       0.512013      0.617808       0.800769      1.0000 

 

 

Table.6.4 Experiments with different values of replications and iterations for the 2st data set. 

 

Iterations 

and α  
replications Dose levels 

1.0
1500
=
=

α
v

 

r =20 

r =40 

r =60 

r =80 

    

0.043025       0.194562        0.413692       0.657564      0.852350      1.0000 

0.050290       0.199979        0.504819       0.688928      0.828148      1.0000 

0.056635       0.195852        0.546117       0.694637      0.815175      1.0000 

0.061405       0.192079        0.557603       0.69808        0.796617      1.0000 

 

10
1500
=
=

α
v

 

r =20 

r =40 

r =60 

r =80 

0.041570      0.198264       0.414907       0.603066       0.800648      1.00000 

0.042782      0.220508       0.491382       0.617719       0.799482      1.00000 

0.043374      0.221569       0.507544       0.618003       0.799999      1.00000 

0.044146      0.219520       0.505901       0.612969       0.798149      1.00000 

 

 

Table.6.5 Experiments with different values of replications and iterations for the 2st data set. 

 

From the tables above we can draw a few conclusions which are very useful in the 

process of choosing values for parameters v and r. If we look more carefully on each of 
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the tables 6.3-6.5; experiments with the same number of parallel replications but different 

values of iterations of the Gibbs sampler, we can observe that as the parameter r increases, 

the results become more stable. To be precise, the differences between the results 

obtained from Gibbs sampler with ir *20= , ( )3,2,1=i  and )1(*20 += ir , are smaller 

as the value of parameter r increases. This can be easily seen for example in the first table, 

where the differences between the results obtained by using 60=r  and 80=r  are 10 

times smaller than the differences between the results with 40=r  and 60=r . Moreover, 

we observe that these differences become even smaller as the number of parallel 

replications increases. Indeed, in case of the results obtained by using 1500=v  and 

80=r  they are smaller or equal to 310− , whereas for 1250=v  and 1000=v ( 80=r ) the 

differences are of the accuracy 210− . This suggests that stable estimate for the posterior 

mean could be obtained by using 1500 replications and 80 iterations of the Gibbs sampler. 

For comparison, Gelfand and Kuo (1991) use the Gibbs sampler with total of 

20=r  iterations and 1000=v  replications, whereas Ramgopal, Laud and Smith (1993) 

use 25=r  iterations and 1500=v  replications. Recall that the values of these 

parameters are dependent on the application and the prior information, available before 

the experiments. Indeed, the reason for such small numbers of iterations and replications 

in the aforementioned examples is connected with very good prior information. The base 

distribution used in these examples reflects the data quite well.  

 

 

Analysis of the data. 

 

As mentioned in subsection 2.2.1, to specify the Dirichlet process prior it is required to 

choose the precision parameter α  and the base distribution 0P . A brief interpretation of 

α  and 0P  is provided after the introduction of DP. Now, let us complete it by the 

experiments based on the Gibbs sampler technique. In order to examine their impact on 

the results, we perform the analysis of both data sets, each with two base distributions. 

Note that choice of these distributions should not be influenced by the available data 

which in fact we wish to analyze. Recall that the prior information should base, for 
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example on the prior experiments or the knowledge of the scientists of the problem. In 

our investigation we assume the following prior shape distributions: 

•  1st data set: ,
200

)(0
xxP =  ( ) ;

4
3,

4
2,

4
1)(),(),()( 3020100 ⎟

⎠
⎞

⎜
⎝
⎛== xPxPxPxP  

• 2nd data set: 3

3

0 3000
)( xxP = , 

3000
)(0

xxP = ; 

Note that our choice of these distributions was motivated only by the assumption that 

these functions are non-decreasing and by the assumption that at dose level zero the 

potency is equal to zero. In order to compare how far the prior information is from the 

data, in the table below we present the values of the base distributions at the 

observational dose levels together with the maximum likelihood ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

i

n
s

. Moreover we 

examine also the impact of the precision parameterα . We perform the experiments with 

1.0=α , 10=α , 50=α , 100=α  and the results are summarize in the tables. To make 

our analysis simpler and clearer we illustrate graphically these results by plots of the prior 

mean together with the posterior mean obtained by using different values of precision 

parameter. Note that the Gibbs sampling procedure is provided with 1500 replications 

and 80 iterations. The choice of these values is motivated by the numerous tests of 

iteration-replication combinations, from which it follows that the results are stable.  

 

 

 

 

 

 

 

 

 

 

Analysis of data set 1  
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As a first we examine data set 1 with the following base distributions:  

 

• 
200

)( xxPo = ; 

 

 Dose levels 

MLE 

oP  

0.02000           0.30612            0.44444 

       0                      0.10500            0.30000 

Table.6.6..MLE and prior. 

 

α  Dose levels 

0.1  0.022287 0.364330 0.404044 

 1.0e-003 * 0.139757 0.166319 0.206954 

10  0.019993 0.278240 0.434851 
 1.0e-003 * 0.112056 0.587708 0.764273 

50  0.013641 0.216150 0.403991 
 1.0e-003 * 0.063066 0.486889 0.724020 

100  0.009083 0.183088 0.378432 
 1.0e-003 * 0.034203 0.370174 0.604455 

Table.6.7. Posterior mean and SD. 
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Figure 6.1 Nonparametric Bayes of potency curve for different value of precision parameter. 

 

 

• ( ) ⎟
⎠
⎞

⎜
⎝
⎛==

4
3,

4
2,

4
1)(),(),( 321 xPxPxPP oooo ; 

 

 Dose levels 

MLE 

oP  

0.02000           0.30612            0.44444 

       0.25000           0.50000            0.75000 

Table.6.8 .MLE and prior. 
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α  Dose levels 

0.1  0.022188 0.368366 0.406662 

 1.0e-003 * 0.137191 0.160749 0.197812 

10  0.058091 0.297545 0.482478 
 1.0e-003 * 0.285003 0.629629 0.847534 

50  0.118718 0.333171 0.571970 
 1.0e-003 * 0.385860 0.571229 0.775596 

100  0.151851 0.371416 0.620980 
 1.0e-003 * 0.363077 0.473378 0.611281 

Table.6.9 .Posterior mean and SD. 
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Figure 6.2 Nonparametric Bayes of potency curve for different value of precision parameter. 

 

The simple conclusion follows from these two experiments. As the value of precision 

parameter decreases the posterior approaches the maximum likelihood. Recall that this 

parameter controls the strength of belief in the prior guess. A large value reflects that 
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posterior is tightly concentrated about 0P . The worrying situations which can be observe 

here are the results for 1.0=α  in both choices of the base distribution. If we compare the 

results obtained by Gibbs sampler with 1.0=α  and 10=α  it follows that the 

interpretation of this parameter is wrong. Indeed, the posterior at the observational dose 

levels obtained from the nonparametric Bayesian inference with 10=α  is closer to the 

maximum likelihood values than the posterior obtained by using 1.0=α . We suspect that 

in case of α  closer than zero, the numerical errors occurred.  

 

 

Analysis of data set 2 

 

Below we present the analysis of the second data set with the following base distributions: 

• 3

3

3000
)( xxPo = ; 

 

 Dose levels 

MLE 

oP  

0.033333    0.200000    0.700000    0.666667    0.850000 

0.037037    0.125000    0.198495    0.296296    0.578704 

Table.6.10  .MLE and prior. 

 

α  Dose levels 

0.1  0.061502 0.192479 0.567631 0.699036 0.800125 
 1.0e-003 *         0.135078 0.427997 0.141957 0.119417 0.278851 

10  0.045389 0.218772 0.509655 0.614589 0.797997 

 1.0e-003 * 0.212752 0.672610 0.427537 0.389943 0.630650 

50  0.050816 0.214445 0.362687 0.484385 0.715609 

 1.0e-003 *         0.198351 0.401370 0.343521 0.427121 0.694450 

100  0.050528 0.190148 0.304349 0.422557 0.672873 

 1.0e-003 *         0.154980 0.261726 0.240840 0.342140 0.611245 

Table.6.11 .Posterior mean and SD 
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Figure 6.3 Nonparametric Bayes of potency curve for different value of precision parameter. 

 

 

• 
3000

)( xxPo = ; 

 

 Dose levels 

MLE 

oP  

0.033333   0.200000    0.700000    0.666667    0.850000 

0.333333   0.500000    0.583333    0.666667    0.833333 

Table.6.12  MLE and prior. 
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α  Dose levels 

0.1  0.087610 0.229636 0.611674 0.667944 0.790502 

 1.0e-003 *         0.136916 0.430580 0.078035 0.052970 0.337731 

10  0.105236 0.256820 0.558855 0.659161 0.834435 

 1.0e-003 * 0.390561 0.632242 0.423279 0.362307 0.524026 

50  0.204155 0.368270 0.508066 0.622774 0.820390 

 1.0e-003 *         0.491958 0.395523 0.321041 0.380531 0.500737 

100  0.247526 0.413180 0.525832 0.626234 0.817303 

 1.0e-003 *         0.429004 0.282898 0.218388 0.277797 0.397961 

Table.6.13 .Posterior mean, SD  
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Figure 6.4 Nonparametric Bayes of potency curve for different value of precision parameter. 

 

The role of controlling the strength of belief in the prior guess is visible also in the 

analysis of the 2nd data set. However, some worrying results are observed at the dose 

level 1750. As we have already note on the beginning of this part, the “conflict” between 

the data at the dose level 1750=x  and 2000=x occurs. Recall that it follows from the 
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data that the probability of response at level 1750 is a little bit bigger than at the higher 

dose level 2000. Therefore, the posterior mean at dose 1750 is in both cases quite far 

from the maximum likelihood at this dose level. 

 

During these experiments the following question has arisen: does the nonparametric 

Bayesian procedure can be used in case when the prior information is not available? In 

other words, we try to consider the situation when the analysis is based only on the data, 

due to the lack of prior information about the problem. The answer to this question reader 

can find for example in subsection 3.2.1 where the idea of Ramsey is presented. The 

solution for this case could be the noninformative prior such as Jefrreys prior. 

 

 

How the model fits the data  

 

The purpose of the next part of this chapter is to analyze the model suitability to recover 

the observational probabilities. Therefore, the results from the nonparametric Bayesian 

approach (NB) together with the results obtained from the U.S. Environmental Protection 

Agency (EPA) Benchmark Dose Software (BMD) are compared with the results from 

marginal likelihood method. Note that the marginal likelihood method (known also as the 

probabilistic inversion) seeks a distribution over parameters in a dose response model 

which recovers the uncertainty in bioassay data. The distribution is fit (by using 

probabilistic inversion with variant of the iterative proportional fitting algorithm) to the 

parameters so that the number of responding has a distribution which matches as closely 

as possible the binomial distribution with parameters from data set. Whereas the BMD 

software gives a distribution of maximum likelihood estimates of a selected model. Note 

that now, the BMD software offers models that are appropriate for the analysis of 

dichotomous (quantal) data (Gamma, Logistic, Log-Logistic, Multistage, Probit, Log-

Probit, Quantal-Linear, Quantal-Quadratic, Weibull), continuous data (Linear, 

Polynomial, Power, Hill) and nested developmental toxicology data (NLogistic, NCTR, 

Rai & Van Ryzin). It is worth to stress that this method is not intended to recover the 

bioassay uncertainty, what can be easily verified by the further analysis. 
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In the figures below, “stairs” represents cumulative distribution functions for the 

binomial distribution, giving the number of individuals showing response, if the 

probability of response is given by the percentage observed on the experiments in table 

6.1 and 6.2, and the number of subjects given in the data sets. Whereas, the solid lines are 

the results of sampling:  

• the probabilities of responses at each observational dose level form nonparametric 

Bayesian model and multiplying by the number of exposed animals (red lines for 

both data sets); 

• the parameters from the model used in the BMD software, substituting these into 

the formula describing the probability of response and multiplying by the number 

of exposed animals (red lines for the 1st data set and black lines for the 2nd data 

set). 

 

 

 

Data set 1 
 

The nonparametric Bayesian estimates based on the 1st data set are presented with two 

base distributions and two precision parameters ( 10=α , 1=α ). Note that in case of 

1.0=α  the previous studies indicate some worrying results (probably due to numerical 

errors), which in fact it has also impact on the shape of cumulative distribution function 

of the number of responses. Thus, in order to examine the effect of different choices of 

this parameter on the results we omit this value. 
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Figure 6.5 NB inference of data set 1, 10=α .  
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Figure 6.6 NB inference of data set 1, 1=α . 
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Figure 6.7 NB inference of data set 1, 10=α . 
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Figure 6.8 NB inference of data set 1, 1=α . 
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Figure 6.9 presents the results from parametric methods: marginal likelihood (blue lines) 

and the results obtained by the BMD software (red lines). The recommended model, for 

the data set 1 is the log logistic model.   

 

 
Figure 6.9 Parametric methods (PI and BMD software) used to data set 1. 

 

The analysis of the nonparametric estimates confirms our previous conclusions about the 

role of the precision parameter. In each of the choices of base distribution, results 

obtained from the Gibbs sampler with 1=α  fit the binomial distributions better than in 

case of 10=α . As we can observe the fit of CDF of the number of responses at dose 

level zero to the binomial distribution with parameters in table 6.1 is decent for 

nonparametric Bayesian method (with 1=α  ) as well as for both parametric methods. 

However, note that around 15% of the predicted responses are negative. Distributions 

obtained for dose level 21 and 60 from Gibbs sampling and the BMD software do not 

follow the binomial distribution so well. Note that in case of the NB method, the range of 

the number of responses for which the probability is bigger than zero and less than 1 is 

quite narrow; around 5 (the ‘binomials range’ around 17). Recall that the probabilities 

needed to calculate numbers of responses are sampled from the conditional beta 

distributions with very condensed density. If we compare the biggest distance between 
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binomial distributions and CDF obtained from sampling, it follows that better fit is 

obtained by the results from the BMD software, than from the NB method. We can also 

observe that in case of BMD, prediction of the number of responses at dose level 21 is 

more optimistic (in sense that an event is more probable) than in case of NB. Whereas, at 

dose level 60 this prediction is more pessimistic, than the results obtained from Gibbs 

sampler. Obvious conclusion is that the marginal likelihood fits the binomial distribution 

much better than the other methods.  

 

 

Data set 2 
 

Pictures 6.10-6.13 illustrate the results obtained from the analysis of data set 2 by using 

Gibbs sampler with two base distributions and two values of precision parameter 

( 10=α , 1=α ). Note that in case of 1.0=α  the cumulative distribution function of the 

number of responses at each dose level is almost the same as in case of 1=α . According 

to our earlier observations this CDF should approach the binomial distributions with 

parameters in table 6.2. along with the value of precision parameter decreases. Note also 

that each of the pictures consists of the results obtained at the dose levels starting from 

the left hand side: 1000=x , 1500=x (dashed lines), 1750=x , 2500=x and 2000=x . 
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Figure 6.10. NB inference of data set 2, 10=α .                   Figure 6.11 NB inference of data set 2, 1=α  
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Figure 6.12 NB inference of data set 2, 10=α .                   Figure 6.13 NB inference of data set 2, 1=α  

 

Figures 6.14-6.18 present the results from parametric methods: marginal likelihood (blue 

lines) and the results obtained by the BMD software (black lines). Note that the marginal 
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likelihood found the best fit using the loglogistic model, whereas the results from the 

BMD software are based on the logProbit model.  

 

 

Figure 6.14  Parametric methods (PI and the BMD software) 

                        used to data set 2 at dose 1000. 

 

   Figure 6.15  Parametric methods (PI and the BMD 

software) 

                        used to data set 2 at dose 1500. 

 

Figure 6.16  Parametric methods (PI and the BMD software) 

 
 
Figure 6.17  Parametric methods (PI and the BMD software) 
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                        used to data set 2 at dose 1750.                         used to data set 2 at dose 2000. 

 
 

Figure 6.18  Parametric methods (PI and the BMD software) 

used to data set 2 at dose 2500. 

 

 

Analogous to the conclusions of the results for data set 1 from the nonparametric 

Bayesian model, we can observe that better fits is obtained by using lower value of 

precision parameter. Analysis of recoverage (the ability of a parameter distribution to re-

capture the uncertainty in the observed data) shows us that also in case of data set 2 the 

BMD distribution is more flexible, than the CDF obtained from the Gibbs sampling. It 

can be observed especially at the last two dose levels: 2000 and 2500. The ranges for the 

number of responses - for which the probability is bigger than zero and less than 1, are 

even smaller (around 1.5) than in case of the 1st data set. However, it seems that the CDF 

obtained from NB methodology at the first two dose levels (1000 and 1500) track the 

binomial distributions closely than the CDF obtained from the BDM software. The lack 

of fit at dose level 1750 can be easily explained by the ‘conflict’ in data at dose level 
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1750 and 2000. Note that this situation is however more visible in case of parametric 

method. 
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Chapter 7 

 

 

Conclusions 
 

The problem of estimating a distribution function without assuming a specific parametric 

form for the distribution is a familiar problem in various branches of statistical endeavor. 

The main focus of this thesis is to present a nonparametric Bayesian inference in order to 

explain the relation between the response probability and the dosage in quantal bioassay. 

Many bioassay studies are conducted during the early phase evaluation of a new drug, 

and therefore we have a little knowledge about the dose – response behavior of the drug 

which is under test. Thus, a nonparametric approach with flexible and adaptive modeling 

property can be considered here. This can be done by assigning the Dirichlet process or 

Beta product family as a prior. As we have underlined in chapter 2, the problem which 

can arise here could be specification of the required ‘parameters’; precision parameter 

and based distribution. The discussion in chapter 2 gives an intuitive meaning to these 

parameters which  could facilitate the appropriate selection of these parameters. The 

Bayesian approach is then used to derive the posterior distribution of the potency curve. 

We showed that this posterior has a form of mixed Dirichlet. However, it has an 

extremely complicated form, often analytically infeasible. This leads to many difficulties; 

for example in obtaining marginal distributions from the joint densities. Therefore some 

estimation techniques for exploring the tolerance distribution are called for. There is an 

extensive literature on this subject. In this work we illustrate the Markov Chain Monte 
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Carlo approach and maximum likelihood techniques. The former method seems to be 

more efficient, owing to the wide availability of the high – speed computations. We 

propose here a Gibbs sampler (one of the most commonly used MCMC method) as a 

technique for generating random variables from a (marginal) distribution indirectly, 

without having to calculate the density. It avoids difficult calculations, replacing them 

instead with a sequence of easier calculations. However, in order to obtain stable results 

by using Gibbs sampler we need to perform an extensive range of replication-iteration 

combinations. In some cases the stable results can be never obtained. The MLE 

estimation could be often difficult to perform, due to the extremely complicated form of 

the joint posterior distribution. Moreover, the procedure of calculating the joint mode of 

posterior required some numerical methods such as Newton – Raphson method. In this 

method, the operation of matrix inversion is performed, which in case of very bad 

conditioned matrix returns very inaccurate results. Useful extensions in bioassay study 

are constraints on shape of the potency curve. In many cases this analysis provides a real 

description of the bioassay data. However, the forms of the conditional posterior are very 

complicated. As we have mentioned in chapter 3, the Gibbs sampler needs to be 

combined with some sampling resampling methods. Therefore the time of computations 

increases considerably. 

 

One of the contributions which statisticians can make in bioassay studies is the analysis 

of an effective dose. We provide here an exact form of the distribution of an effective 

dose conditional on the estimated potency. Moreover we present also some discussion 

about the design of experiment. The relevant aspects of the design strategy such as; 

choosing the sample of experimental subjects and system of allocating them, 

specification of the number and magnitudes of doses to be tested, are analyzed. We 

illustrate here few different strategies and show the way how they can be compared.    

Summarizing, this report reviews the nonparametric Bayesian approach which can be 

successively used to analyzing the quantal bioassay data. 
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Appendix A:  Proof of conditional densities in section 2.3.3  
 
 
Assume that 1 1( , , )Mu u u += K is Dirichlet with density function   
 

1
1

1

( ) ,i

M

i
i

u uαπ
+

−

=

∝∏  (A.1) 

 
Then, the conditional distributions for each ui are as follows:  
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Moreover, it can be shown that: 
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with ,i ic d  and ,i ic d  defined in section 2.3.3. 

 
Note also that, omitting the normalizing constant, a ~ ( , ; , )w Beta a b c d  random variable has 
density  
  

( ) ( )1 1( | , , , ) ,a bg w a b c d w c d w− −∝ − −  (A.6) 
   
Moreover, 

( ) ( ) ( )1 1 1,
d

a b a b

c

w c d w dw d c− − + −− − ∝ −∫  (A.7) 

 
 
Proof of conditional densities (A.2) 
 
Notice that the conditional density can be express as follows  
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Note that the property (A.7) is used here to each integration. 
The relation above enable us to calculate the conditional density as follows 
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According to definition (A.6), the expression above implies that   
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In order to prove the expression (A.4) recall that:  
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And after few manipulations it follows that: 
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It follows from the expression above that: 
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This implies the from (A.4). 
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Proof of conditional densities (A.3) 
 
In order to prove conditional density A3, we use the following property of Dirichlet 
distribution: 
 
Property: Let C be any index set and let CP  be a subvector of ( )kPPP ,,1 K= , i.e.  
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Note that the density above was obtained from the properties of Dirichlet distribution. Recall 
also that the assumption 02 =+Mu , implies that 02 =+Mα .  
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Thus, the relation above enables us to calculate the conditional density as follows 
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According to definition (A.6), the expression above implies that 
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In order to prove expression (A.5), recall that:  
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And after few manipulations it follows that: 
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Appendix B: Bayes theorem   
 
 
Let random vectors X, Y have joint density ),( yxf . It is well known that 

)|()()|()(),( || yxfyfxyfxfyxf YXYXYX ==  then  
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Appendix C: Beta is a family of conjugate priors to binomial 
 

 
Suppose that: 

• the prior distribution of p is ),( baBeta , i.e. 
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• Likelihood has a binomial distribution  
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Appendix D: Proof of the theorem for the conditional posterior 
     distribution of the percentile.   

 
 
For a fixed p and any fixed k ),0( Mk ≤≤ define a c.d.f )(* xPk with the support on 

],( 1+kk xx as 
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k
k pp
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=
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* )(
)( if 1+≤< kk xxx ; the randomness of )(~ 0PDPP α is also 

inherited in *
kP . Now let us define another c.d.f )(*

,0 xP k  on the same support ],( 1+kk xx as 
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if 1+≤< kk xxx (assuming known base distribution 0P ). With such 

a c.d.f. we present the following lemma 
 
  
LEMMA:

0 0

* *
0,| , ~ ( )k k kP s p DP Pα . 

Proof: Let )(xP  be denoted by .xp  Then, with the prior model )(~ 0PDPP α and using the 
property of the Dirichlet process, the joint posterior distribution of ),( xpp is given by  
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Where 10 1110 =<<<≤<<<<= ++ Mkkxk ppppppp KK  and, as defined before, 
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the conditional posterior density of xp is given by  
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Now using the transformation ,*
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Therefore, for any given x such that ,1+≤< kk xxx  *( | , )xp p sπ is beta density with parameters 
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Proof of theorem.  
Note that the absolute continuity assumed for 0P assures 

10 110 =<<<<= +MM pppp K with probability one and therefore, for any given γ  
)10( << γ , there exists k )0( Mk ≤≤ such that ,1+≤< kk pp γ i.e., 1k kx ED xγ +< ≤ with 

probability one. Thus, if kxx ≤ , then ( | , ) 0,P ED x s pγ ≤ = and if 
,1+> kxx then ( | , ) 1P ED x s pγ ≤ = . Finally, when 1+≤< kk xxx , 
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(by using (A.2) in the above lemma). Hence, the theorem follows. 
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