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Abstract

Increasing performance demands have lead to the need for better modelling of the behavior of
products and constructions. These models are needed to design and construct these constructions
or products, as well as to verify that they meet the demands (or will in the future). The models that
are used are subject to uncertainties. As a result of these uncertainties products and constructions
are over-designed (safety margins are used) or are very conservative modelled. This increases the
cost of these products and constructions. Therefore it is investigated if performing tests can lower
these costs, by reducing the uncertainties. Note that tests are not for free. Therefore the expected
savings in costs of the product or construction by reducing the uncertainties have to be weighed
against the cost of performing the tests.

The following method has been formulated to handle this problem.

General Method for Testing

Problem definition

1. Define testing objectives and decision problem,
2. Create models,
3. Define primary variables,

Interpretation of test results

4. Apply Bayesian method,
5. Validation of Bayesian method and models,

Test plan

6. Define optimal test plan,

Evaluation

7. Interpret results.

In this method there are two main steps, respectively ‘Apply Bayesian method’ and ‘Define optimal
test plan’. These two steps are discussed separately in much detail, and for both, different approaches
have been derived and reviewed by application to two cases, respectively the timber case and the
humidity case.

The Bayesian method makes it possible to interpret test results and reduce the uncertainties. A
visualization of this method is given in figure 1. To implement the Bayesian method the following
four approaches have been discussed;
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Figure 1: A graphical representation of the Bayesian method

• Analytical approach (conjugate analysis),

• Direct numerical integration approach,

• Bayesian belief net approach,

• Bayes linear approach.

The Bayesian belief net(BBN) approach was chosen to use for modelling a general case.
To obtain the optimal number of tests a decision problem has to be defined. This decision problem

can be solved using Savage’s decision theory, which needs a utility function to measure the effects
of tests. In order to help defining this utility function two possible approaches have been proposed
and applied to two cases, respectively the producers and designers approach. Both use a different
perspective to define the utility function, where the one uses sales revenues and production costs
the other uses maintenance/repair costs and costs of failure to solve the problem. For calculating
the solution to the decision problem three approaches have been investigated:

• Decision tree approach,

• Fixed size test plan approach,

• Value of information approach.

One of the main deliverables of this thesis is the numerical tool that was created in MATLAB to
solve such decision problem. This program uses the BBN-approach and the fixed size test plan to
solve the decision problem. In order to write this code HUGIN, a program that can handel BBNs,
has been linked to MATLAB using the HUGIN API. A manual explaining how this is done is added
in the Appendix.
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Introduction

Modern day products and constructions are subject to increasing performance demands. More
precisely a construction is expected not to fail during its intended lifetime. Therefore during design
models are used to show whether a construction’s performance can meet the issued demands. The
models used are subject to uncertainties which can vary from correctness of the model to uncertainty
over input parameters. This introduces uncertainty over the performance. In order to fulfill the
performance demands, safety margins are used in the design of the constructions or products. This
makes the construction or product more costly. If these undertenancies can be reduced the design
can be done more efficiently, and still fulfill the performance demands.

In many cases empirical data obtained from tests can be used to reduce these uncertainties.
This requires a method that incorporates the empirical data received from observations with the
(mathematical) models that are used for modelling the performance of the construction or product.
This thesis shows our contributions towards identifying that methodology and extending it.

Objectives

Therefore the objectives of this thesis are stated as to identify and extend the methodology that can
incorporate empirical data in the reliability models. This methodology will be extended such that
it can also address the decision-dilemma, mentioned above, to either perform a number of tests or
not. This with the aim to increase, better determine, the reliability of a product or construction by
reducing the uncertainties via testing. Subsequently, a secondary objective is to create a (generic,
numeric) tool which helps to apply this methodology.

Outline of the Report

This report can be divided into three parts. The first part consists of Chapters one to five. This
part addresses the issue of how to incorporate the observations into the mathematical models when
observations have been obtained(updating). This means that the observations are considered as
given. It explains the Bayesian method and discusses four different approaches, subsequently they
are applied to a specific case. In the second part consisting of Chapter six and seven, a decision
problem is defined to determine the testing procedure. This means that the observations are seen
as random variables. The third part, Chapter eight, will describe the entire derived methodology of
testing for reliability. It does so by an application of the most suitable approaches derived in the
first two parts and combines them. The thesis ends with a conclusion in Chapter nine.

The appendix consists of some sections containing additional mathematical details to the text in
the previous chapters, such as proofs and (long) calculations. The appendix also contains the codes
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implemented in MATLAB (and DPL). Further a list of used notation is added, as is a bibliography
and index.

Previous work

TNO Building and Construction Research has often investigated and/or validated the reliability
of existing constructions using measurements. This has resulted in many case reports, in which
an individual method is applied to solve the problem. These reports1 gave insight to the problems
under investigation and the methods(methodology) already used at TNO Building and Construction
Research, which will be identified as the ‘Bayesian method’. There were also some documents that
addressed the issue more general [5], [18], these documents mostly used models based on the normal
distribution. These documents showed me that there is a lot of knowledge on specific areas of
application which also explains the need to combine these individual methods into this general
methodology.

During the research for this thesis at TNO Building and Construction Research, a lot of work
was done on a specific case discussed in this report as the timber case. This case has proven a good
application of the theory discussed in this thesis. Where needed references are given to the previous
work done at TNO Building and Construction Research and to the studied literature.

1See for instance [22], [8], and [9].
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Chapter 1

Bayesian Theory

This chapter will set forth the theory needed to deal with the issue of interpreting test results1

in concordance to the information that was at hand before testing. This is needed to define an
approach that will be used to make inferences on the reliability of a structure. The needed theory
is called Bayesian theory, which can not be discussed without the notion of Subjective Probability.
Therefore this topic will be handled first.

1.1 Subjective Probability

Bayesian Theory is based on the notion of subjective probability . This is different from the classical
and frequentist perception of probability. In the classical view the probability of an event is defined
(by Laplace) as the number of equally likely outcomes obtained from repeated trails that lead to the
event, divided by the total number of equally likely outcomes. Underlying this view of probability is
the notion of symmetry. Physical symmetry implies equal probability and if it is impossible to tell
which outcome is more likely they should be assigned equal probability. This view on probability
posed some problems resulting in defining the frequentist interpretation. This interpretation defines
the probability of an event as the frequency of occurrence of that event (in an infinite sequence of
hypothetical trials).

Subjective probability does not necessarily do so. The probability of A, denoted as P (A), reflects
a persons degree of belief of occurrence of A measured on a scale [0, 1]. The assignment P (A) = 1
means A occurs, P (A) = 0 means A does not occur. Furthermore all the rules of probability still
apply. Notice that A need not be an event or a result of (an infinite sequence of) repeated trials.
Therefore the notion of subjective probability is richer than the classical or frequentist. Using the
subjective probability interpretation can lead to the same probability as when using the other views
if it is believed that A can be observed by trials. The notion of subjective probability was developed
into a full axiomatic theory by Leonard J. Savage [14].

1Throughout this report the terms observations, measurements, and test results will be used interchanged.

1
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1.2 Bayes’ Theorem

’Bayesian methods’ is a general name for methods that use the (implications of the) theorem defined
by reverend Thomas Bayes . Bayes lived from 1702 to 1761 and formulated his theorem to answer
the problem of inverse probability. Many applications of this theorem have only recently been found.
For more historical details on Bayesian Methods and Thomas Bayes, we refer to [1], [2].

Figure 1.1: Reverend Thomas Bayes (1702-1761)

The basic form of Bayes’ theorem (for events) is given by the theorem below.

Theorem 1.2.1 (Bayes’ Theorem for single events). Let A and B be two events with P (A) > 0,

then

P (B|A) =
P (A|B)
P (A)

P (B). (1.2.1)

Proof. This theorem is a direct result of the following identity in probability theory

P (A,B) = P (A|B)P (B) = P (B|A)P (A). (1.2.2)

From the above proof it can be seen that Bayes’ theorem is a direct result of the definition of con-
ditional probability. Many people would think that this therefore is a trivial theorem. Nevertheless,
the interpretation that can be given to Equation (1.2.1) is not trivial (and this is what Bayes did!).
Bayes interpreted the left hand side (lhs.) of this equation as the revised probability of occurrence
of event B after observing event A. He called this conditional probability P (B|A) the posterior
(probability) of B. This makes it possible to revise probabilities with the help of observations. The
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probability P (B) on the right hand side (rhs.) of this equation is called the prior (probability),
representing the probability of B before the observation is performed and P (A|B) is called the like-
lihood (function)2 reflected as the probability of the occurrence of event A (the observation) under
the hypotheses (B has occurred). The term P (A) is just considered as a scaling factor. Thus by
using Equation (1.2.1) it is possible to make inference on the event B by observing event A. Notice
that if A and B are independent no inference can be made.

However most inference problems do not concern discrete events. Therefore Bayes’ theorem is
usually stated in terms of density functions, called Bayes’ rule. When interested in making inference
on the parameter θ by observing X, the data, both considered as random variables, Bayes rule can
be formulated as follows.

Theorem 1.2.2 (Bayes’ rule). Let fΘ(θ), fX(x) be the density function of Θ, X respectively, then

fΘ|X(θ;x) =
fX|Θ(x; θ)fΘ(θ)

fX(x)
. (1.2.3)

Remark 1.2.1. Sometimes Equation (1.2.3) is also denoted as

fΘ|X(θ;x) = C1fX|Θ(x; θ)fΘ(θ), (1.2.4)

where C1 = fX(x) =
∫
fX|Θ(x; θ)fΘ(θ)dθ is a normalizing constant.

An often used theorem in Bayesian methods is the Law of Total Probability(LTP). This theorem
will be stated here for completeness. The application of LTP is first performed in Chapter 3.

Theorem 1.2.3 (The Law of Total Probability). Let Ai, i = 1...n be a sequence of countable

mutually exclusive events3and
n
∪

i=1
Ai ⊇ B and let B also be an event. Then

P (B) =
n∑

i=1

P (B|Ai)P (Ai). (1.2.5)

Proof. Because
n
∪

i=1
Ai ⊇ B and the definition of conditional probability

P (B) =
n∑

i=1

P (Ai ∩B). (1.2.6)

Using the definition of conditional probability on the term in the sum gives the stated theorem. This

proof has been taken from [21].

Remark 1.2.2. The LTP can also be rephrased in terms of density functions. Then, LTP reads

fB(b) =
∫
fB|A(b; a)fA(a)da. (1.2.7)

2‘In a sense, likelihood works backwards from probability: given B, we use the conditional probability P (A|B) to
reason about A, and, given A, we use the likelihood function P (A|B) to reason about B’. This text was taken from
[3].

3Two events are mutually exclusive when they have no outcomes in common, e.g., Ai ∩Aj = ∅ for i 6= j.
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Chapter 2

The Timber Case

This chapter describes the (general) timber case. The aim in this case is to classify the strength(R)
of a population of beams of a certain kind of timber. The following model is used to describe the
strength of such a beam from this population. The strength (resistance) of a randomly selected
beam from this population is assumed to follow a normal distribution1, where the two parameters
of the normal distribution can be interpreted as follows; the mean as the average strength of all the
beams from that kind of timber and the standard deviation as the spread in the strengths among all
the beams. This spread is the natural variation in the strength of the timber. This natural variation
arises from the natural growth process of the timber. This model is denoted as

R|(µ, σ) ∼ N (µ, σ). (2.0.1)

The parameters of this normal distribution µ and σ are both unknown and are modelled as stochas-
tic variables themselves2 to incorporate uncertainty into the model. This is implemented in the
notation by denoting them with capital letters. This as capital letters denote stochastic variables
and lowercase letters denote realizations or integration variables of the stochastic variables. The
model is denoted as

R|(M,Σ) ∼ N (M,Σ). (2.0.2)

Next we want to use the prior information (if available) and tests/measurements to determine
the strength by determining the distributions over the parameters. Different (Bayesian) approaches
can be implemented. For instance different distributions can be chosen to model the distribution
over the parameters, different data and computational methods can be used. Some of these different
settings will be discussed in the following chapters.

A simplification that will also be used as an example in the following chapters is called the
simplified timber case. This is actually the same setting as the (general) timber case with the
difference that not both parameters of the (normal) distribution over the strength of the timber(R)
are modelled as stochastic variables, only the mean(M) is modelled as a stochastic variable,

Rsimp|(M,σ) ∼ N (M,σ). (2.0.3)

The data that is available in the timber case can be categorized in two groups. The first,
destructive data(D) is data derived from destructively strength testing of a random selected beam

1The verification of this model has been done in [19].
2Which on its own relegates to the Bayesian approach. In classical/frequentative approaches these parameters can

only be a fixed value.
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from the population. Note that in this case each beam tested can not be used after testing. If more
then one measurement is available it consists of tests done on different beams (random) selected
form the population of beams. The destructive data, can be represented as random (independent)
realizations or samples from the distribution of the strength of the timber,

Di = ri. (2.0.4)

This causes the likelihood to be a normal distribution with parameters M , and Σ, e.g.,

LD|M,Σ(d;µ, σ) = fR|M,Σ(d;µ, σ)

=
1
σ
ϕ(
d− µ

σ
), (2.0.5)

in which the Greek letter, ϕ, denotes the standard normal distribution. Due to conditional inde-
pendence given the parameters of the distribution, the multi-dimensional likelihood which needs to
be used when multiple destructive measurements are used is the product of normal densities with
parameters M , and Σ.

LD|M,Σ(d;µ, σ) =
n∏

i=1

fR|M,Σ(di;µ, σ)

=
1
σn

n∏
i=1

ϕ(
di − µ

σ
). (2.0.6)

Censored data derived from destructive measurements can also be used in this setting, it was
discussed in [18]. This type of data will not be used in this thesis.

The second group of data is that of the non-destructive data . The data in this group is derived
from non-destructive testing on a beam of timber. Notice that this implies that a beam can be tested
and can also be used after testing, which is an important difference compared to destructive testing.
To model this type of data received from non-destructive tests two different models are generally
used. Unlike destructive testing non-destructive testing is subjected to a measurement error. The
following two models are generally used to model this error:

• Additive Error Model,

• Multiplicative Error Model.

In the first error model, the additive model is used to model the error in the non-destructive mea-
surements. The following equation can be formulated for the non-destructive Data(Υ) obtained from
testing a randomly selected beam,

Υ = R+ ε, (2.0.7)

where the ’error-term’(ε) is assumed to have mean 0 and follow a normal distribution, thus N (0, σε).
When the second model is used the equation reads

Υ = R ∗ ε, (2.0.8)

where the ’error-term’ is assumed to have mean 1 and follow a normal distribution, thus N (1, σε).
The likelihood of the non-destructive data is a bit different then for destructive data, to derive it we
need application of the ‘law of total probability3’. This is discussed in Chapter 5 where the timber
case is used to implement the Bayesian method.

3This theorem was given in Chapter 1.
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The two models for the error, Equations (2.0.7) and (2.0.8) falsely look in formula more or less
the same. However, this seemingly small difference has a large influence on the complexity of the
calculations needed to be performed when doing a Bayesian update as will be shown in Chapter 5.
From a modelling perspective the two models are also very different as the source underlying the
error in both cases differs.

The case specifics defining the decision problem are given in Chapter 7, after the decision problem
has been defined.
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Chapter 3

The Bayesian Method

In this chapter the Bayesian method is formulated and will be illustrated in a simple example by
application to the simplified timber case (see Chapter 2).

3.1 Definition of the Method

In its most general form the Bayesian method is formulated as follows, also see [4].

Definition 3.1.1 (The Bayesian Method). The Bayesian method (for inference) consists of four

steps, namely

1. Define the Prior information,

2. Derive the Likelihood,

3. Update, compute Posterior,

4. Infer via posterior .

This procedure is graphically represented in Figure 3.1. In this figure all steps are denoted by
blue numbers. Let us start to apply the Bayesian method to the simplified timber case to clarify all
the steps. While doing so we propose to use the graphical representation of the method depicted in
Figure 3.1, as it will help to structure the application.

3.2 Application of the Method to an Example

The Bayesian method was formulated for inference on the parameter Θ, in the simplified timber
case this is the mean, M . Therefore in Figure 3.1 read M instead of Θ and as destructive data(D)
is going to be used read D instead of X.

9
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Figure 3.1: A graphical representation of the Bayesian method

The first step in the Bayesian method is defining the prior information. In the simplified tim-
ber case a-priori M is assumed to follow a normal distribution with known parameters. This is
mathematically formulated as

Mprior ∼ N (µM , σM ). (3.2.1)

In Figure 3.2 this prior density is visualized. Notice that in this case a clear interpretation can be
given to the prior information. The mean of the prior distribution (µM ) can be thought of as the best
estimate of the mean strength of all the beams. The variance of the prior distribution (σ2

M ) can be
thought as a measure of how (un-)certain this value is. Often in applications the prior information
is vague or not available. At the end of this chapter a subsection is devoted to the use of certain
(improper) priors to model these situations.

The second step in the Bayesian method is to derive the likelihood . To derive the likelihood
a model has to be available for the data, this as the likelihood represents the plausibility of the
hypotheses (the parameter M) represented in the data. In this setting the data is obtained as a
sample from R. Therefore the likelihood can easily be derived as

L(M) = fD|M (d;µ) =
1
σ
ϕ

(
d− µ

σ

)
. (3.2.2)

Although the likelihood function is a conditional probability density function of the data given the
hypothesis (parameter M), it has, in Bayes rule, to be handled as a function of µ.

Step three in the Bayesian method computing the posterior density function of M is also called
performing the update. By definition, Bayes Rule for density functions (Theorem (1.2.2)) states

fM |D(µ; d) =
fD|M (d;µ)fM (µ)

fD(d)
, (3.2.3)

which by substitution of the functions derived in the previous steps gives the following posterior
density, i.e.,
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fpost
M (µ) = fM |D(µ; d) = C1fD|M (d;µ)fM (µ)

= C1e
− 1

2σ2 (d−µ)2e
− 1

2σ2
µ

(µ−µµ)2

= C2e
−

σ2
µ+σ2

2σ2σ2
µ

(
µ−

σ2
µd+σ2µµ

σ2
µ+σ2

)2

, (3.2.4)

where C1, C2 are appropriate constants such that the density function is normalized, e.g. integrates
out to one. The following result is obtained from the calculation given above in Equation (3.2.4),

Mpost ∼ N

(
σ2

µd+ σ2µµ

σ2
µ + σ2

,

√
σ2σ2

µ

σ2
µ + σ2

)
. (3.2.5)

As the posterior for M is derived, that is to say the updating is complete, inference can be made,
step 4 of the method. All the available information of the data, D, on the mean, M , is reflected in
the posterior distribution over M , and inference can be made by comparing the posterior with the
prior. Figure 3.2 shows graphically the update using actual values. The data that was used for the
update coincided with the mean of the prior distribution, as a result the posterior distribution has
the same mean and a smaller variance. This can be interpreted as the reduction of the uncertainty
over M caused by the use of the data(measurement).

Figure 3.2: A plot of the Bayesian update

In the simplified timber case the primary goal is not to make inference on (the distribution of)
the mean(M), it is to make inference on the strength of the timber(R). This is then done via an
extra stage in the inference called the predictive model. The predictive model in this case consists
of an application of LTP. Recall that the following model for R was assumed.

R|M = N (M,σ). (3.2.6)
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Then, the prior (predictive) distribution for R is given via LTP as

fR(r) =
∫
fR|M (r;µ)fprior

M (µ)dµ, (3.2.7)

which implies a prior distribution for R as N
(
µµ,
√
σ2

µ + σ2
)
. Using this result the posterior

distribution for R (often called the predictive distribution) is found by applying the update to M
and then again applying LTP, thus

fR|D(r; d) =
∫
fR|M (r;µ)fM |D(µ; d)dµ. (3.2.8)

Resulting in a posterior distribution for R as N
(

σ2
µd+σ2µµ

σ2
µ+σ2 ,

√
( σ2σ2

µ

σ2
µ+σ2 )2 + σ2

)
. Now inference can be

made on the variable R, for visualization purposes a plot is given displaying the prior and predictive
distribution of R in Figure 3.3. Note that the uncertainty is reduced (as can be seen by the smaller

Figure 3.3: A plot of the prior and predictive density for R

variance). Also note that in order to make this inference LTP needed to be applied, applying LTP
implies performing an (extra) integration. This can induce a large computational complexity.

This completes the application of the Bayesian method to the simplified timber case. It was
advocated to use Figure 3.1 to structure the method. When entering all steps in this figure it should
look like Figure 3.4, showing the outline of the applied Bayesian method.

3.3 Improper Priors

This final section of this chapter gives some additional information on a special case of implementing
the first step of the Bayesian method, ‘defining the prior’ called using improper priors. Improper
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Figure 3.4: A visualization of the applied Bayesian method

priors are discussed now, as throughout the remainder of the thesis occasionally improper priors will
be applied.

In a lot of practical situations no specific prior information is at hand, which is then often
expressed in ‘wide’ distributions for the prior information. With ‘wide’ distributions is meant distri-
butions with a large variance. As these priors do not hold much information, they are called vague
or non-informative priors.

Another approach to model prior information or the lack of, is the use of improper priors. These
improper priors are called improper as they do not represent a density function, i.e. the integral
over the entire support is not equal to one. An important condition in the use of improper priors
is that the posterior must become proper! Often improper priors are used to model limiting cases
of proper priors with vague prior information. In Chapter 5 improper priors will be used to model
vague prior information. The effect of doing so will also be discussed. A warning must be made
on the use of improper priors, the user has to verify that the assumptions on using them can be
justified and the results available from the use of them must always be carefully checked.
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Chapter 4

Different Approaches of the
Bayesian method

The previous chapter defined the Bayesian method and explained it by applying it to an example. In
fact a specific approach to apply the Bayesian method, called conjugate analysis, was used. In this
section four different approaches to implement and perform the Bayesian method will be discussed.
These different approaches can vary in modelling aspect or in the computational methods and/or
software that are used. These four specific approaches discussed do by no means form an exhaustive
list of all possible approaches. Other approaches are discussed in [4], [21].

The approach best suited to perform the Bayesian method is mostly determined by the problem
itself and how it is modelled as this determines the likelihood and the prior distributions. The major
factor determining which approach is best used, is the consideration how many times LTP needs to
be applied. As in each application of the LTP an integration needs to be performed. This integration
influences the ability to perform the approach analytically, or if done numerically, the computation
time. This will become apparent when discussing the different approaches.

4.1 Analytical Approach

Performing the multiplications and integrations obtained/needed in the Bayesian method analyti-
cally is the foundation for the approach discussed in this section. The integrations can be needed
in order to determine the constant in Bayes Rule or for application of the LTP. In some cases the
integral can be calculated formally and an analytical solution is found. In that case the update
is known exactly and the approach used to perform the update is called analytical. Already an
example of this was given in the previous chapter.

Conjugate Approach

A special case of the analytical approach is the conjugate approach . In this approach a conjugate
analysis is performed, this means that the family of distribution to which the posterior belongs is
the same as the prior. When applying a conjugate analysis the update procedure becomes easier
and computational less complex, as updating the distribution changes to updating the parameters.

15
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Note that the possibility of performing a conjugate analysis is determined by the likelihood and the
prior. In many cases the prior can be chosen but the likelihood can not.

Some families of distributions that have conjugate properties are the exponential, normal, normal-
inverted-gamma and the inverse-Wishart distributions. The middle two will be applied throughout
this thesis. This subsection will define these two models and display their general use, also some
advantages of using these models are discussed. The conjugate properties of the normal distributions
(N -model) were displayed by Equation (3.2.5). Another conjugate model that can be used is the
normal-inverted-gamma model (NIG). This model will now be defined/derived in this section, and
the conjugate properties will be shown. It will be applied to the timber case in the next chapter.
The following definitions are stated here in order to define the model.

Definition 4.1.1 (The Gamma Distribution). Let X be a gamma distributed random variable

with shape parameter α and scale parameter β (X ∼ G(α, β)). The density function of X is given

by

fX(x) =
1

Γ(α)
xα−1β−αe−

x
β . (4.1.1)

The first two moments are E(X) = αβ, Var(X) = αβ2.

Definition 4.1.2 (The Inverse-Gamma Distribution). Let Y be an inverse gamma distributed

random variable with parameters α and β1(Y ∼ IG(α, β)). The density function for Y is given by

fY (y) =
1

Γ(α)
y−α−1β−αe−

1
yβ . (4.1.2)

The first two moments are E(Y ) = 1
(α−1)β , Var(Y ) = 1

(α−1)2(α−2)β2 .

Definition 4.1.3 (The Normal Inverted Gamma Model). Let H ∼ IG(α, β) and [M |H] ∼

N (m,
√
ηΛ) then [M,H] follows a normal inverted gamma distribution (NIG(α, β,m,Λ)) which has

the following density function

fM,H(µ, η) =
η−α− 3

2 β−α

√
2πΓ(α)Λ

1
2
e−

1
2

(µ−m)2

ηΛ − 1
ηβ . (4.1.3)

The definition clearly shows where the name of the model comes from, its density is a product
of a normal and an inverted gamma density. The conjugate properties of this model are displayed
by the following proposition.

Proposition 4.1.1 (Conjugate Analysis). Let the prior information over µ, η be modelled with a

Normal Inverted Gamma Model ([M,H] ∼ NIG(α, β,m,Λ)) and let the likelihood follow a normal

1Note that some authors use 1
β

as the second parameter for the inverse gamma distribution [4].
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distribution (D ∼ N (µ,
√
η)). Then the posterior distribution is again Normal Inverted Gamma dis-

tributed, and moreover, the parameters of the posterior distribution are explicitly given as ([M,H]|[D] ∼

NIG(α∗, β∗,m∗,Λ∗)). These parameter can be expressed in terms of the parameters of the prior in-

formation as follows:

Λ∗ =
Λ

1 + Λ
, m∗ =

m+ δΛ
1 + Λ

, α∗ = α+
1
2
, β∗ =

2β(1 + Λ)
β(m− δ)2 + 2(1 + Λ)

. (4.1.4)

Proof. 2 Bayes theorem states the following property for the posterior density

fM,H|D(µ, η; δ) = C1L(δ;µ, η)fM,H(µ, η), (4.1.5)

where C1 is a normalizing constant such that the posterior distribution is proper, and L is the

likelihood of the data. Substituting the distribution functions in (4.1.5) results in

fM,H|D(µ, η; δ) = C1
1√
2πη

e−
1
2η (δ−µ)2 η

−α− 3
2β−α

√
2πΓ(α)Λ

1
2
e[−

1
2ηΛ (µ−m)2− 1

ηβ ]. (4.1.6)

This equation can be further reduced as

fM,H|D(µ, η; δ) = C1
η−α−2β−α

2πΓ(α)Λ
1
2
e[−

1
2ηΛ (Λ(δ−µ)2+(µ−m)2)− 1

ηβ ]

= C1
η−α−2β−α

2πΓ(α)Λ
1
2
e[−

1
2ηΛ (µ2[1+Λ]−2µ[δΛ+m]+m2+Λδ2)− 1

ηβ ]

= C1
η−α−2β−α

2πΓ(α)Λ
1
2
e
[− 1+Λ

2ηΛ (µ− δΛ+m
1+Λ )2+

(1+Λ)(δΛ+m)2

2ηΛ(1+Λ)2
− 1

2ηΛ (m2+Λδ2)− 1
ηβ ]
. (4.1.7)

Re-parametrization with m∗ = δΛ+m
1+Λ and Λ∗ = Λ

1+Λ results in

fM,H|D(µ, η; δ) = C1
η−α−2β−α

2πΓ(α)Λ
1
2
e[−

1
2ηΛ∗ (µ−m∗)2+ m∗2

2ηΛ∗−
m2+Λδ2

2ηΛ − 1
ηβ ]. (4.1.8)

By defining 1
β∗ = 1

β + (m−δ)2

2(1+Λ) and substituting this in (4.1.8) leads to

fM,H|D(µ, η; δ) = C1
η−α−2β−α

2πΓ(α)Λ
1
2
e[−

1
2ηΛ∗ (µ−m∗)2− 1

ηβ∗ ]. (4.1.9)

Also define α∗ = α + 1
2 . Recall that this is a density function defining the last constant C1.

Concluding, the following posterior density function is found

fM,H|D(µ, η; δ) =
η−α∗− 3

2 β∗−α∗

√
2πΓ(α∗)Λ∗

1
2
e−

1
2

(µ−m∗)2

ηΛ∗ − 1
ηβ∗ , (4.1.10)

which is clearly that of NIG(α∗, β∗,m∗,Λ∗). Notice that the dependence of the posterior on the

data is fully expressed through the parameters ( m∗, β∗) of the posterior distribution.
2For another version of the proof see [4].
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The previous stated proposition showed and proved the conjugate properties when using the
NIG-model. Note that this was only for the update step (inversion) and not (yet) for the predictive
(forward) step which is discussed in Section 5.1.

4.2 Direct Numerical Integration Approach

A different approach that can be taken to perform the updating procedure (step three in the Bayesian
method) is direct numerical integration. The name refers to the procedure used to tackle the integra-
tion derived when performing the update. This can involve calculating the normalizing constant (see
Equation (1.2.4)) or performing the integration needed in applying LTP. The most commonly used
integration method is direct numerical integration. This means that the integration is performed
by calculating the upper (Riemann) sum of the integral. Let xi, i = 0 . . . n form a partition of the
region [a, b]. Then the following approximation holds for n sufficiently large (or ∆xi = xi − xi−1

sufficient small) ∫ b

a

f(x)dx =
n∑

i=1

f(xi)∆xi. (4.2.1)

An example of this approach can be found in the Appendix C as numbTimbN.m. Direct numerical
integration is a powerful tool as it is very robust to the models used in modelling the data and prior
information, e.g., no major restrictions on the family of the distributions. This as the distribution
functions are only used as functional relations. The only problem with this method is that it uses
a lot of computation as a discretisation needs to be defined over all variables which are used in the
computation. This makes this approach hard to perform when many variables are needed to perform
the Bayesian method, which will be displayed in Section 5.2.

4.3 BBN Approach

The main theory underlying this approach is that of (discrete) (Bayesian) belief nets(BBNs)3. In
this subsection they are discussed in the framework of a software package that can handle BBNs,
called HUGIN. Using this package is not necessary for this approach, for more information on
HUGIN see their internet site at http://www.hugin.com/. The belief net consists of two parts,
namely a graphical and quantitative part. First the graphical part is discussed. This is a graphical
representation of the underlying relations. The underlying principles of constructing a belief net will
be shortly discussed here, for a full discussion of the topic see [12]. In the graphical representation
of the belief net, the random variables are displayed with nodes. The relation between nodes is
modelled by a directed arc. No cycles are allowed in the graphical model4. The following figure
shows the graphical part of the belief net for the simplified timber case.

Notice that the R is influenced by MU. Therefore the arc is directed from MU towards R. Similarly
the arc is drawn from MU to D(the destructive measurement). Note that this also shows that D and
R are conditionally independent given MU. Now that the relations between nodes are modelled the
second part of the belief net referred to as the quantitative modelling part needs to be defined. This
part consist of conditional probability tables for all the nodes conditional on their parent nodes. The

3In this thesis only the use of discrete BBNs is discussed.
4Using causal relations between the variables to define the links between the nodes, will diminish the chance of

creating cycles.
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Figure 4.1: General belief net representation for the timber case

parent nodes are defined as the nodes connected via incoming arcs. For example MU is called the
parent node of R5, this as there exists an incoming arc at R from MU. These conditional probability
tables (CPTs) are (in case of a discrete BBN) discrete version of the conditional distribution function
conditional on the parent nodes. For a prime node6 this CPT shows the prior distribution over this
parameter.

In HUGIN all these probabilities in the CPT need to by default be entered by hand. With a
large number of nodes or large discretisation this can become a cumbersome job. Therefore HUGIN
also lets you define it with a functional relation(model) which can only depend on parent nodes and
constants. There are some restrictions to the use of these models. HUGIN only supports a limited
number of distributions and only certain operators are allowed7. Luckily HUGIN can handle the
normal distribution thus the CPTs needed when using the N -model can be generated with the help
of these models.

Note that the graphical HUGIN model is almost the same graphical representation given in
Figure 3.4, the main difference is that in HUGIN variables are only shown in the graphical model
and the models are used to define the qualitative part of the network.

After the model is defined it can be used to compute the posterior (step three in the Bayesian
method) and make inferences (Step four). Note that defining the entire model is in fact implementing
all the ingredients needed for Bayes rule, i.e. the first two steps of the Bayesian method. HUGIN
can now compile the model, which means performing the update. After compilation of the BBN the
evidence (measurements) can be entered by selecting a state of a node. HUGIN will propagate this
evidence through the network and all distributions are updated. This is essentially applying Bayes
Rule. In Figure 4.2 the compiled network for the simplified timber case is displayed. On the left
in this figure the prior distribution are shown. On the right the evidence is entered by selecting a
state, indicated by the red highlighting. When comparing the two distributions for MU (prior and
posterior) in Figure 4.2 it is clearly seen that the distribution of MU really shifts when entering the
evidence in the network.

Notice that HUGIN can only give marginal posteriors. As can also be seen from this small
example, HUGIN is an easy to use tool when performing Bayesian updates. The graphical model
clearly displays the relations between the variables, and the update can be performed for different
data reasonably fast. There are some small disadvantages when using HUGIN and (discrete) BBN
in general. The main problem using a discrete BBN is defining the needed discretisation. This can
sometimes be a difficult task. Also the results from HUGIN are not very easily post-processed.

5R is called the child node of MU.
6A prime node is a node with no parents.
7The HUGIN Manual [11] constitutes a complete list of all the distributions and operators available.
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Figure 4.2: Prior and posterior distribution in HUGIN

A lot of problems encountered using HUGIN can be overcome when using the HUGIN API. For
instance it allows control over HUGIN via MATLAB. This makes it possible to implement functions
to define the discretisations or probabilities and it also makes post-processing of the results easier.
In Appendix B a report can be found that explains how to control HUGIN via this API. This
report contains some examples in using the API and explains the syntaxis needed to use the API in
MATLAB.

4.4 Bayes Linear Approach

Bayes linear is another method that was proposed to tackle updating. This approach was investi-
gated as it posed to be very fast in terms of computation-time. The drawback was that only the
updated first two moments would be computed and not the entire distribution. Under the assump-
tion that the posterior distribution would still follow a normal distribution this is no drawback at
all. The methodology of Bayes linear has been developed by GoldStein see [7], [15], and [16].

When using Bayes linear the steps of the Bayesian method (Definition (3.1.1)) are as follows.
In step one the prior information needs to be defined by stating the first two moments of the prior
distribution, E(Θ),Var(Θ). In step two the likelihood needs to be defined, this is done by stating
the first two moments of the data(X) and the covariance of the data and the quantity inference
needs to made upon, E(X),Var(X),Cov(X,Θ). The updating8 defined as step three is given by the
following two equations. They give the adjusted first two moments by Bayes linear:

EX(Θ) = E(Θ) + Cov(Θ, X) (Var(X))−1 [X − E(X)] (4.4.1)

VarX(Θ) = Var(Θ)− Cov(Θ, X) (Var(X))−1 Cov(X,Θ). (4.4.2)

The first equation can be derived by minimizing the following expression (quadratic loss)

E (Θ− EX(Θ))2 . (4.4.3)
8The term adjusted is used in Bayes linear and represents the same as updated.
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The second can be found by setting the quadratic loss, Equation (4.4.3) with the adjusted expecta-
tion, Equation (4.4.1) substituted into it to the adjusted variance. Now step four can be performed,
making inference by comparing the adjusted quantities with the prior first two moments. This will
be demonstrated by applying it to the simplified timber case.

In the simplified timber case the strength of the timber is modelled as being normally distributed
with the following parameters, unknown M and fixed σ, thus

R|(M,σ) ∼ N (M,σ). (4.4.4)

The prior distribution over M is assumed to be normal with parameters µM , σM . This means in the
Bayes linear approach that the prior is given as

E(M) = µM ,Var(M) = σ2
M . (4.4.5)

The second step defining the likelihood is first performed for a single observation. For a single
destructive observation (D) the likelihood in terms of Bayes linear is stated by E(D), Var(D),
Cov(M,D). These properties can be calculated by using the definition which implies evaluating an
integral (at most two-dimensional). This is shown for Cov(M,D). By definition the covariance can
be calculated with the following formula

Cov(M,D) = E(MD)− E(M)E(D). (4.4.6)

The first term on the rhs. of Equation (4.4.6) is calculated as follows.

E(MD) =
∫∫

µδfM,D(µ, δ)d(δ, µ)

=
∫∫

µδfD|M (δ;µ)fM (µ)d(δ, µ)

=
∫
µfM (µ)

∫
δfD|M (δ;µ)dδdµ

=
∫
µfM (µ)µdµ

= σ2
M + µ2

M (4.4.7)

From these calculations it follows that

Cov(M,D) = σ2
M ,E(D) = µM ,Var(D) = σ2 + σ2

M . (4.4.8)

Substituting Equation (4.4.8) into the general expressions for the adjusted quantities, Equations
(4.4.1), (4.4.2) concludes step three of the Bayesian method, which results in

ED(M) = µM + σ2
M

(
σ2 + σ2

M

)−1
[δ − µM ] (4.4.9)

=
σ2

Mδ + σ2µM

σ2
M + σ2

, (4.4.10)

VarD(M) = σ2
M − σ2

M

(
σ2 + σ2

M

)−1
σ2

M (4.4.11)

=
σ2σ2

M

σ2
M + σ2

. (4.4.12)
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Remark 4.4.1. The adjusted first two moments given by Bayes linear are exactly the same in the

simplified timber using destructive data as when applying the N -model and the analytical or direct

numerical integration approach. See for instance Equation (3.2.5).

Inference can be made on the variable M(µ) by comparing the prior and adjusted first two
moments. Also a predictive distribution can be calculated if a posterior normal distribution shape
is assumed for the parameter M(µ). This is done via applying LTP which can be done using an
analytical solution or direct numerical integration.

If more destructive observations are used in the Bayes linear approach the quantities in Equations
(4.4.1), (4.4.2) need to be interpreted as vectors and matrices. This implies that in step two of the
Bayesian method, which is define the likelihood the Bayes linear equivalent requires to also calculate
Cov(Di, Dj), for i 6= j, which is the covariance between different destructive observations. As the
reader can easily verify, the adjusted first two moments using n destructive observations are equal
to

ED(M) = µM + σ2
M11,n

[
Diagn(σ2) + σ2

M1n,n

]−1
[δ − µM1n,1] , (4.4.13)

VarD(M) = σ2
M − σ2

M11,n

[
Diagn(σ2) + σ2

M1n,n

]−1
σ2

M1n,1. (4.4.14)

Where 1n,m,Diagn(k) denotes respectively a matrix of size (n,m) with all ones as entries and the
diagonal matrix of size (n, n) with a vector of k’s on the main diagonal.

If non-destructive observations, Υ(υ) are used the likelihood changes. In case of using an additive
error model to model the measurement error the changes are relatively easy to calculate. This is
due to the linearity of the covariance, variance and expectation. The likelihood step in Bayes linear
then becomes

Cov(M,Υ) = Cov(M,R+ ε) = Cov(M,R) + Cov(M, ε) = Cov(M,R) = σ2
M , (4.4.15)

Var(Υ) = Var(R+ ε) = Var(R) + Var(ε) = σ2 + σ2
M + σ2

ε . (4.4.16)

The adjusted first two moments when using p non-destructive observations with an additive error-
model equal:

EΥ(M) = µM + σ2
M11,p

[
Diagp(σ

2 + σ2
ε) + σ2

M1p,p

]−1
[υ − µM1p,1] , (4.4.17)

VarΥ(M) = σ2
M − σ2

M11,p

[
Diagp(σ

2 + σ2
ε) + σ2

M1p,p

]−1
σ2

M1p,1. (4.4.18)

Using the multiplicative model to model the measurement error is also possible when using the Bayes
linear approach. However when doing so the calculations become a bit more comprehensive, that is
why it is not displayed here.

The use of both destructive and non-destructive data have been discussed, and the Bayes linear
approach applied to the simplified timber case can be defined. First define the following matrices.

Data =
[
D Υ

]T
(4.4.19)

Cov(M,Data) =
[
Cov(M,D) Cov(M,Υ)

]
(4.4.20)

Var(Data) =

[
Var(D) Cov(Υ, D)

Cov(D),Υ Var(Υ)

]
(4.4.21)
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The adjusted first two moments are given by substituting the above matrices in Equations (4.4.1),
(4.4.2), this has been implemented in MATLAB (see Appendix C). In Figure 4.3 we see a plot of
the prior and the posterior produced by these m-files. In order to compare the calculated posterior
of Bayes linear to the posterior calculated by direct numerical integration (with the N -model) have
both have been plotted.

Figure 4.3: A plot of the posterior distribution ofM via Bayes linear and direct numerical integration
in the simplified timber case

As can be seen in Figure 4.3 both the approaches lead to the same posterior distribution of M(µ),
which was also shown by the previous calculations. The computation time when using Bayes linear
approach is smaller then when using direct numerical integration approach. In situation investigated
in this thesis research on average a difference of 25 percent were observed.

This concludes the discussion of Bayes linear applied to the simplified timber case. In Appendix
A.2, Bayes linear is applied to the general timber case and compared to the other approaches. From
which it is concluded that the second moment is not correct in general when using Bayes linear.
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Chapter 5

Application of the Different
Approaches to the Timber Case

This chapter describes some advanced applications of the Bayesian method. These applications
were all encountered whilst working on the timber case. If no data-set is mentioned the data-set
‘Camaru’ is used. This data-set contains five destructive and five non-destructive test results on the
timber called camaru. The following tables display the used data-set and the parameters for the
prior information, respectively.

Table 5.1: Test results for Camaru timber ([N/mm2])
Destructive Tests Non-Destructive Tests

121.3144687 105.0329832
112.5568927 102.8546259
111.8634926 103.9495366
98.78462057 94.07234876
158.2366957 104.8491008

Table 5.2: Parameters prior distributions
Mean Std. Dev.

M 75.29 23.32
Σ 16.2 4.36
ε 1 0.22

5.1 Application of the Analytical Approach

The NIG-model has been derived in Section 4.1. In this section it will be applied to the timber case.
The NIG-model is used to model the priors on M(µ) and H(η). Notice that this last statement is
equivalent to setting a prior on σ, because σ2 = η, which was done in the previous chapters.
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This section shows the advantages of using a conjugate analysis. The down side of using a
conjugate model is the restriction that is put on the distributions that can be used. These restrictions
do not always make the model applicable in certain cases as validation with the real process it tries
to model fails. For instance when using the normal model. The normal model is used very often as
it is well known and thus often a natural choice. A drawback of using the normal model is that it is
a symmetric distribution and the process it tries to model is not. The following example also shows
problems encountered during the research of this thesis. When using the normal model to model the
distribution of a standard deviation (as a random variable itself) there was density mass placed at
negative values. By definition the standard deviation cannot be negative but applying the normal
model with a small mean and large variance as a prior for the standard deviation does implicate
this. Which makes applying the N -model in this case not correct.

The remainder of this subsection describes the calculations needed when using the NIG-model
to perform a conjugate analysis in the timber case.

One destructive observation

In this setting only the outcome of one destructive test will be used to update the parameters of
the distribution of R. Thus the parameters for the predictive distribution imposed by the use of
the NIG-model depend only on one data measurement and the prior information. The result of
applying the NIG-model is stated in the following proposition.

Proposition 5.1.1. Let R ∼ N (µ,
√
η), and let the prior distributions for M,H(µ, η) be defined as

[M,H] ∼ NIG(α, β,m,Λ), and D ∼ N (µ,
√
η). Then the predictive distribution for R is (general-

ized) student’s t-distributed with density function

fR|D(r; δ∗) =
β∗−α∗Γ(α∗ + 1

2 )√
2π(1 + Λ∗)Γ(α∗)

(−C2)−α∗− 1
2 , (5.1.1)

with

C2 = − 1
β∗

− (r −m∗)2

2(1 + Λ∗)
, (5.1.2)

and

Λ∗ =
Λ

1 + Λ
, m∗ =

m+ δΛ
1 + Λ

, α∗ = α+
1
2
, β∗ =

2β(1 + Λ)
β(m− δ)2 + 2(1 + Λ)

. (5.1.3)
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Proof. By Proposition 4.1.1 the posterior distribution of M,Σ is again NIG-distributed with pa-

rameters α∗, β∗,m∗,Λ∗. Applying LTP results in

fR|D(r; δ) =
∫∫

1√
2πη

e[−
1
2η (r−µ)2] η

−α∗− 3
2 β∗−α∗

√
2πΓ(α∗)Λ∗

1
2
e

[
− 1

2
(µ−m∗)2

ηΛ∗ − 1
ηβ∗

]
d(µ, η)

=
∫∫

η−α∗−2β∗−α∗

2πΓ(α∗)Λ∗
1
2
e−[ 1

ηβ∗ ]e−
1

2ηΛ∗ [Λ∗(r−µ)2+(µ−m∗)2]d(µ, η)

=
∫
η−α∗−2β∗−α∗

2πΓ(α∗)Λ∗
1
2
e−[ 1

ηβ∗ ]e−
(r−m∗)2

2η(Λ∗+1) dη

√
2πηΛ∗

1 + Λ∗

=
β∗−α∗√

2π(1 + Λ∗)Γ(α∗)

∫
η−α∗− 3

2 e
C2
η dη,

where

C2 = − 1
β∗

− (r −m∗)2

2(1 + Λ∗)
. (5.1.4)

When changing the integration variables from η to ξ = −C2
η transforms the integral to a gamma

function,

fR|D(r; δ) =
β∗−α∗√

2π(1 + Λ∗)Γ(α∗)

∫
(−C2

ξ
)
−α∗− 3

2

e−ξ

(
−C2

ξ2

)
dξ

=
β∗−α∗(−C2)−α∗− 1

2√
2π(1 + Λ∗)Γ(α∗)

∫
ξα∗− 1

2 e−ξdξ

=
β∗−α∗(−C2)−α∗− 1

2√
2π(1 + Λ∗)Γ(α∗)

Γ(α∗ +
1
2
). (5.1.5)

The predictive distribution of R has the following density function

fR|D(r; δ) =
β∗−α∗Γ(α∗ + 1

2 )√
2π(1 + Λ∗)Γ(α∗)

(−C2)−α∗− 1
2 . (5.1.6)

Noting that this is recognized as a (generalized) student’s t-distribution, concludes the proof. Also

note that the dependence of the data, D(δ) is completely fixed in the parameters of the posterior

distribution of M,Σ, i.e. , in β∗,m∗.

Multiple destructive observations

This subsection will tackle the timber case when more than one destructive test measurement is
used in the updating procedure. This case can be dealt with briefly, because it leads to the same
procedure as the one-dimensional case presented in the previous subsection. Due to the conditional
independence given (M,H) of the destructive measurements in the timber case, the likelihood is a
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product of the normal density functions which implies that the likelihood itself is again normally
distributed. Thus Proposition 5.1.1 can be used. Notice that only the value of the parameters in
the distribution are different, they are dependent on more measurements.

Proposition 5.1.2. The predictive distribution for R determined with n destructive measurements

using NIG-model is (generalized) student’s t-distributed where the density function is given by Equa-

tion (5.1.1) and (5.1.2) with parameters:

Λ∗ =
Λ

1 + nΛ
,m∗ =

m+ Λ
∑
δi

1 + nΛ
, α∗ = α+

n

2
, (5.1.7)

β∗ =
2β(1 + nΛ)

−β(Λ(
∑
δi)2 + 2

∑
δim− nm2 − (1 + Λn)

∑
δ2i ) + 2(1 + nΛ)

.

Proof. The proof of this proposition is added in the Appendix A.1. It follows the lines of the proofs

of propositions 5.1.1 and 4.1.1.

Non-destructive observations

The NIG-model will be applied to the non-destructive data to derive the predictive distribution.
Again first one measurement from a non-destructive test is used. The error is assumed to be additive,
see Equation (2.0.7). The main difference in using non-destructive data instead of destructive data
is with the likelihood, L(υ;µ, η). In order to determine the likelihood function the LTP is used in
the following way.

L(υ;µ, η) =
∫
fΥ|M,H,ε(υ;µ, η, a)fε(a)da

=
∫
fR|M,H(υ − a;µ, η)fε(a)da

=
∫

1√
2πη

e−
1
2η (υ−a−µ)2 1√

2πσε

e
− 1

2σ2
ε
(a−µa)2

da

This integral can be computed via ‘completing the square’. This results in the following likelihood
function

L(υ;µ, η) =
1√

2π (σ2
ε + η)

e
− (υ−µ−µa)2

σ2
ε+η . (5.1.8)

Notice that this equation represents a normal distribution, N (µ + µa,
√
σ2

ε + η). This makes the
NIG-model not directly applicable as now the conjugate properties are not present. Therefore the
following transformation is used

η̃ = η + σ2
ε . (5.1.9)
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Notice that the likelihood of the data then becomes a normal distribution with variance H̃. The
prior for M, H̃ equals

fM,H̃(µ, η̃) = fM,H(µ, η + σ2
ε)

=

(
η + σ2

ε

)−α− 3
2 β−α

√
2πΓ(α)Λ

1
2

e
− 1

2
(µ−m)2

(η+σ2
ε)Λ

− 1
(η+σ2

ε)β , (5.1.10)

which is recognized as a NIG(α, β,m,Λ)-distribution in terms of (M, H̃). This means that a conju-
gate analysis is possible on the random variables (M, H̃). This implies that the posterior distribution
of (M, H̃) is again NIG-distributed with the following parameters (α∗, β∗,m∗,Λ∗)

α∗ = α+
1
2
, (5.1.11)

β∗ =
2β(1 + Λ)

β (υ − µε −m)2 + 2(1 + Λ)
, (5.1.12)

m∗ =
Λ(υ − µε) +m

1 + Λ
, (5.1.13)

Λ∗ =
Λ

1 + Λ
. (5.1.14)

This implies that the posterior distribution for (M,H) is given by this NIG-distribution transformed
by the transformation given as Equation (5.1.9). In order to calculate the predictive distribution of
R also the posterior distribution of (M, H̃) is used, this cannot be done analytically.

fR|Υ(r; υ) =
∫∫

fR|M,H̃(r, µ, η̃)fM,H̃|Υ(µ, η̃; υ)d(µ, η̃) (5.1.15)

The predictive distribution of R conditional on (M,H) is normal with parameters (M,H). Therefore
by relation (5.1.9), the distribution of R conditional on (M, H̃) is also normal with parameters
(M, H̃ − σ2

ε).

Examples NIG-model

In the previous subsection the application of the NIG-model to the timber case was discussed in a
general setting with explicit prior information. This subsection will discuss the use of vague prior
information and will give an example using an actual data-set. In order to use the NIG-model to
model the two-dimensional prior over µ and η = σ2 four parameters need to be defined, α, β, m
and Λ respectively the scale and shape parameters of the inverse gamma distribution over η, and
parameters of the normal distribution over µ.

As mentioned earlier in this thesis in many cases prior information is not known. In such cases a
vague/non informative prior is often used. In the normal case it can be shown that an appropriate
choice is to use σ−1 for Σ. This non informative prior can also be used in the NIG-model. It can
be derived as a limiting case of the NIG-model, set the parameter Λ = ∞. Then

fM,H(µ, η) ∝ η−α− 3
2 e

1
ηβ . (5.1.16)

By setting the values α = −1 and β = ∞ the following prior is found

fM,H(µ, η) ∝ η−
1
2 . (5.1.17)
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Notice that this is an improper prior, therefore the ∝-sign was used. This concludes the discussion
on the case of vague prior information in the NIG-model.

If prior information is available it can be included in the NIG-model. This needs to be done by
fitting the four parameters of the model. This is usually done by fitting the marginal distributions
of the model. The parameters (α, β) should be chosen such that the prior marginal distribution of
η reflects the prior information in η. The parameters m,Λ have to be selected m,Λ such that the
marginal distribution of µ reflects the prior information on µ. These marginal distributions can be
found by integrating out one variable in de joint prior density function. Note that by using the
NIG-model a fixed dependence is assumed on M,H.

When the prior information is only defined by its first two moments(Bayes linear) the following
set of equations can be derived. They define the parameters in terms of the first two moments.

E(µ) = m, (5.1.18)

E(η) =
1

(α− 1)β
, (5.1.19)

Var(µ) =
1

(α− 1)β
Λ, (5.1.20)

Var(η) =
1

(α− 1)2(α− 2)β2
. (5.1.21)

Example 5.1.1. The following special setting in the timber case is examined. Let the prior infor-
mation over the strength of this timber be modelled with the following parameters in the NIG-model

α = 9, β =
1

100
, m = 100, Λ = 8. (5.1.22)

Which means by Equations (5.1.19),(5.1.20), (5.1.21), and (5.1.21) that the prior information can
be summarized as

E(µ) = 100, Var(µ) = 100, E(η) =
100
8

, and Var(η) = 22.3. (5.1.23)

Thus the strength of a beam is a-priori expected to be a hundred [N/mm2]. Figure 5.1 displays this
prior information.

Now two random selected beams from this population of timber are each destructively tested.
These tests provide in total two individual measurements of the strength of those two specific beams.

Table 5.3: Observed destructive strengths
Test Nr. Strength [N/mm2]

1 120
2 110

This data and the prior information are used in Equation (5.1.1) to perform the updating. The
calculations needed to perform the conjugate analysis were implemented in MATLAB1 and the results
are plotted in Figure 5.2. Notice that a student’s t-type posterior is displayed in this figure. Which
was proven and defined by Theorem 5.1.1. From this figure it can also be concluded that the used
observations yield a higher value for the mean strength of the timber. Another result of using the
observations is that the variance of the strength of the timber has been reduced. This can be interpreted
as diminishing the uncertainty.

1The m-files that were used can be found in Appendix C. Also some additional files for handling the NIG-model
in MATLAB are listed.
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Figure 5.1: A plot of the prior information modelled by a normal inverted gamma density

5.2 Application of the Direct Numerical Integration Approach

Direct numerical integration is going to be used with the N -model and an improper prior. This
means that first a normal distribution is set as a prior distribution on M(µ) and Σ(σ)2.

fM,Σ(µ, σ) = fM (µ)fΣ(σ)

=
1
σµ
ϕ

(
µ− µµ

σµ

)
1
σσ
ϕ

(
σ − µσ

σσ

)
. (5.2.1)

Note that when using this prior, a-priori M and Σ are modelled as independent, and that a conjugate
analysis is no longer possible3.

Using this approach in the timber case three kinds4 of data from the timber case can be handled,
as mentioned in Chapter 2 only two will be dealt with, namely destructive (D) and non-destructive
(Υ) data. In case of destructive data the likelihood (which is determines the data) is given as a nor-
mal distribution with parameters (the unknown) M,Σ. In case of multiple destructive measurements
the likelihood is the product of the individual likelihoods, as all measurements are conditional inde-
pendent given the parameters of the distribution. The likelihood (for n destructive measurements)
equals

LD(d) = fD|M,Σ(δ;µ, σ) =
n∏

i=1

1
σ
ϕ(δi − µ). (5.2.2)

The likelihood for n non-destructive measurement is a bit harder to derive. As also mentioned in
Chapter 2 there are two models that can be applied to describe the measured non-destructive data.

2Note that in the previous subsection the random variable H = Σ2 was used, using that model is the same up to
the transformation, thus the same predictive distribution is found for R.

3Actually it is due to setting the normal model on the parameter Σ(σ), the variance of the strength of the timber
which makes it into a non-conjugate model.

4These three kinds are destructive data, censored destructive data, and non-destructive data.
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Figure 5.2: A plot of the prior and predictive distribution

In case of an additive error model (Equation 2.0.7) the likelihood is found by using the LTP in the
following way,

LΥ(υ) = fΥ|M,Σ(υ;µ, σ)

=
∫
fΥ|M,Σ,ε(υ;µ, σ, a)fε(a)da

=
∫ [ n∏

i=1

fΥ|M,Σ,ε(υi;µ, σ, a)

]
fε(a)da

=
∫ [ n∏

i=1

fR|M,Σ(υi − a;µ, σ)

]
fε(a)da. (5.2.3)

LTP works in this case as the measurements are again conditional independent given the error-
term (ε). Note that the Jacobian from the transformation from Υ to R equals 1,

J = |∂R
∂Υ

| = 1 (5.2.4)

In the direct numerical integration approach we first define the discretisation of the ε-domain as
〈aj〉pa

j=1 and then the integral in Equation (5.2.3) is transformed to the following summation.

LΥ(υ) =
pa∑

j=1

[
n∏

i=1

fR|M,Σ(υi − aj ;µ, σ)

]
fε(aj)4pa

j (5.2.5)

The following variables were introduced; pa,4pa

j , the number of points used in the discretisation and
the distance between discretisation-points, respectively. As all distributions in Equation (5.2.5) are
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known5, this defines the likelihood in the direct numerical integration approach using the additive
model.

Using the multiplicative model (Equation 2.0.8) to describe the non-destructive data results in
a different likelihood,

LΥ(υ) =
∫ [ n∏

i=1

fΥ|M,Σ,ε(υi;µ, σ, a)

]
fε(a)da

=
∫ [ n∏

i=1

fR|M,Σ(
υi

a
;µ, σ)

1
a

]
fε(a)da. (5.2.6)

The Jacobian of the transformation from Υ to R equals

J = |∂R
∂Υ

| = 1
ε
. (5.2.7)

Applying the direct numerical integration approach to Equation 5.2.6 results in

LΥ(υ) =
pa∑

j=1

[
n∏

i=1

fR|M,Σ(
υi

a
;µ, σ)

1
aj

]
fε(aj)4pa

j . (5.2.8)

This concludes the discussion on the likelihood function.

(a) An informative prior on M, Σ is used. (b) A vague prior on M, Σ is used.

Figure 5.3: Posterior distributions for M,Σ using an informative and vague prior with the Camaru
data-set

The update can now be defined by substituting the likelihood and the prior in Bayes Rule. This
then gives the posterior distribution over (M,Σ). Applying LTP results in the predictive distribution
for R. A MATLAB script is added in the Appendix which is implemented using this approach, see
Appendix C, and [10]. Figure 5.3(a) shows the result of using this m-file. Plot a in this figure has
been created using an informative prior, and plot b using the vague prior. Notice that the posterior

5(R|M, Σ) ∼ N (M, Σ) and ε ∼ N (0, σε).
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(unresolved) uncertainty (reflected by Σ) is greater when using the vague prior then when using
the informative prior. This is even better displayed when evaluating6 the plot with both calculated
predictive distribution of R, see Figure 5.4.

Figure 5.4: The predictive distribution of R using vague and an informative prior with the Camaru
data-set

As was shown, the procedure for calculating the posterior distribution over M(µ) and Σ(σ) is
straight forward using the definition of Bayes’ rule. When using non-destructive data the likelihood
function becomes a bit more complicated because LTP had to be used. By applying LTP an extra
dimension is added to the calculation. If LTP has to be performed many times multi-dimensional
objects need to be handled in the direct numerical integration approach. This will increase the
computational complexity, and thus will influence the computation time. Therefore this approach
is very robust and in principle will generate an answer. However in practice application the com-
putation time and memory needed to perform the calculation can become very large. This is the
main drawback of using direct numerical integration, the discretisation that it uses can make the
computation very large.

5.3 Application of the BBN Approach

The following model is created in HUGIN representing the timber case, see Figure 5.5. This HUGIN-
model was created using the HUGIN API and the m-file that was used can be found in Appendix
C. The graphical model used in HUGIN needs the following explanation. In Figure 5.5 three
colored boxes have been drawn indicating: the forward model, destructive measurements, and non-
destructive measurements. The forward model and destructive measurements are straight forward
as they indicate a dependency on Mu and Sigma. The non-destructive measurements are a bit more
complicated, thus let us discuss one non-destructive measurement. The node ND1 represents the
strength of the (non-destructive) tested beam. This is not the strength that is measured, denoted by
node ND M 1, as this is also influenced by the measurement error, node A. The nodes MuA and

6his effect is even more apparent when using lesser data to perform the update.
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V arianceA denote the fixed parameters of the normal distributed prior of node A. Measurements
i (evidence) on a random selected beam are thus entered in the nodes ND M i. The quantitative
model that was used in this BBN is straight forward entering the models discussed in Chapter 2. As
discrete chance nodes are used a discretisation needs to be defined for these nodes. In this BBN the
discretisation was found by trail and error, meaning that for different discretisations the network
was ran and the results inspected until the results were proper and the detail was fine enough. The
result can be seen in de m-file used to create this BBN.

The posterior distribution for R created in HUGIN is exported to MATLAB, and a plot is made
of it together with the posterior derived by direct numerical integration. From this plot, Figure 5.6,
it is clear that HUGIN gives the same result7.

Figure 5.5: The graphical model from HUGIN used in the timber case

When comparing the computation time of both approaches it was seen that HUGIN is on average
slower, depending mostly on the size of the discretisation. Do note that in HUGIN computing the
posterior for different data using the same model is very fast. This is because HUGIN first compiles
the model which takes the longest, and then propagates the evidence. Thus if new evidence (data)
needs to be entered, the model no longer needs to be compiled. In direct numerical integration the
entire model needs to be computed all over. Another benefit that using the BBN approach is it
easier explains the used models this as it holds a visualization of the models.

7The small discrepancy there is, is due to discretisation used in HUGIN. This was checked by running a smaller
network with a denser discretisation and then the two methods gave the same results.
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Figure 5.6: A plot of the posterior distribution derived by direct numerical integration and HUGIN

5.4 Application of the Bayes Linear Approach

After some application of the Bayes linear approach to various settings in the timber case, this
approach only seemed applicable in certain specific settings. For example it performs well in the
simplified timber case. Why this approach does not seem to work proper in other cases was in-
vestigated by making comparisons between Bayes linear and direct numerical integration and the
analytical approach. This will show that Bayes linear is not applicable in these general settings as
it only captures the first moment and fairly underestimates the second moment.

First a comparison is made between Bayes linear and direct numerical integration. All the
calculations needed for Bayes linear using the N -model in the timber case are added as proofs in
the Appendix A.2. The following table, Table 5.4, shows the first two moments of R determined by
Bayes linear and direct numerical integration using the N -model on the basis of destructive data of
Camaru data-set.

Table 5.4: First two moments of R determined with Bayes linear and direct numerical integration
Used Approach Mean Variance
Bayes linear 116.3058 332.4596
Direct numerical integration 115.1472 439.6726
Difference 1.1586 -107.2130

From Table 5.4 it is concluded that Bayes linear and direct numerical integration using the N -
model do not give the same results. It is seen that Bayes linear fairly underestimates the posterior
variance. To investigate this even further the following comparison is made between Bayes linear
and the analytical approach in the form of a conjugate analysis using the NIG-model.

Bayes linear when using the NIG-model is compared to the analytical approach. To perform
Linear Bayes the following properties are needed; E(R), E(D), Var(R), Var(D), and Cov(R,D).
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These are all stated by the following five propositions, the calculations are posted as proofs in the
Appendix A.2.

Proposition 5.4.1. The expectation of the strength of the timber(R) equals m; i.e.

E(R) = m (5.4.1)

Proposition 5.4.2. The expectation of a destructive test equals that of the strength of the timber,

i.e.

E(D) = E(R) (5.4.2)

Proposition 5.4.3. The Variance of the strength of the timber is given by

Var(R) =
1 + Λ

β(α− 1)
(5.4.3)

Proposition 5.4.4. The variance of a destructive test result is the same as that of the strength of

timber.

Var(D) = Var(R) (5.4.4)

Proposition 5.4.5. The Covariance between the strength of the timber and a results of a destructive

test is

Cov(R,D) =
Λ

β(α− 1)
. (5.4.5)

According to analytical calculations using the NIG-model the expectation of the predictive
distribution of R equals;

ED =
m+ Λ

∑
Di

1 + nΛ
, (5.4.6)

which can also be written as

ED = m+
Λ
∑
Di −mnΛ
1 + nΛ

= m+
Λ
∑

(Di −m)
1 + nΛ

= m+
Λ

1 + nΛ
1n,n [D −m] .

In one dimension this equation reads

ED = m+
Λ

1 + Λ
(D −m). (5.4.7)
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In this form a clear comparison between Bayes linear and the analytical solution can be made. The
first moment is exactly the same for both methods. Therefore in the one dimensional case Bayes
linear approach is exactly the same as the analytical approach.

The variance of the posterior distribution of R determined by the analytical approach is given as

VarD(R) =
1 + Λ

β(α− 1)
. (5.4.8)

In one dimension the second moment of R is described by Bayes linear as

VarD(R) = Var(R)− Cov(R,D)2

Var(D)

=
1 + Λ

β(α− 1)
− Λ2

β2(α− 1)2
β(α− 1)

1 + Λ

=
1 + Λ

β(α− 1)
− Λ2

β(α− 1)
1

1 + Λ

=
1 + 2Λ
β(α− 1)

1
1 + Λ

. (5.4.9)

Equations (5.4.9) and 5.4.8 are not equal, this shows that the second moment of Bayes linear is
not the same as the one derived by an analytical approach. Therefore using the second moment of
Bayes linear seems not useable. Notice that the difference between Equation (5.4.8) and (5.4.9) is
that the parameters α and β are not adjusted, which means no update of H(η) is performed using
Bayes linear.

This section has shown that in general Bayes linear approach does not give equal results as the
direct numerical and analytical approach. Therefore Bayes linear will not be further discussed in
this thesis as more research is needed to explain the differences in results. Still it is noted that the
assumptions(prior information specification) needed to perform the Bayes linear approach are less
strict then defining a full prior distribution needed in the other approaches. In cases where this
might not be possible Bayes linear can possibly be used.



Chapter 6

Decision Problem

6.1 Introduction to the Decision Problem

In the previous chapter the interpretation of observations was discussed. It gave four different
approaches to apply the Bayesian method. It also showed the effect of using an observation. From
this it was noted that the effect of one observation can be very different from a second or another
observation. In a reaction to this varying result of using observations the following questions are
raised. How should observations be performed, or even should an observation be performed at all,
and if so when or how many need there be performed. This chapter will try to answer some of these
questions. The main focus here is on the number of tests that need to be performed.

In order to compare different strategies for observations, their consequences, and the decisions of
performing such a strategy a measure needs to be defined. For this the utility defined by Savage [14]
is used. The complete theory used here for the decision making is called Savages decision theory.
A concise introduction of it is given in the following section. The following sections will give the
consideration defining as well as the approaches defined to solve the decision problem. Also a section
is devoted to the application of this theory in the timber case.

6.2 Savage’s Decision Theory

In order to discuss what is called Savages decision theory (SDT)[14] first Savages utility theory
needs to be discussed, which is the main component of SDT. This section contains only necessary
mathematical proofs and details, that are needed to formally discuss this theory. Only the main
ingredients and the use of the theory will be shown here. For more details see [14], [20], and [17].

Savage’s approach to utility is based on preference relations over acts. This seemingly easy
concept forms the basis of his entire theory. Savage introduced the concept that preference (of
a single rational decision maker) among different acts is made on the basis of expected utility.
This was done by distinguishing two components defining a preference relation over acts, namely
a (quantitative) probability and a measure of the acts/consequences called utility. This unique
probability represents the uncertainty in a possible outcome of an act. The utility function rates
the outcomes, such that the expected utility reflects the preference relation. This can be expressed
mathematically with a theorem, therefore first define the following.

39
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The non-empty set S is the set of all states of the world. C is the finite1 set containing all
consequences which are the possible states of the acting subject, i.e. outcomes of the act. F is the
set of all acts i.e.F = {f |f : S → C}. Then also define a utility function as U : C → R.

Theorem 6.2.1 (Preference and Utility). Let f and g be two acts, act f is preferred to act g if

and only if v(f) ≥ v(g). Where v(f) denotes the expected utility,

v(f) =
∑
c∈C

p(f−1(c))U(c) (6.2.1)

Proof. A very nice proof of this theorem is given in [20]. (It is not given here as it needs much more

mathematical detail and rigor in the definitions.)

Remark 6.2.1. Note that the expected utility of an act can also be defined as

v(f) =
∑
s∈S

U(f(s))p(s). (6.2.2)

As the theorem and definitions given above are very formal, an interpretation is given by stating
an example after the concept of a decision tree is given.

An decision tree is an event tree which graphically represent the decision process (see the example
below for an example of a decision tree in Figure 6.2). The notation that is used in this report
is generally adopted from the notation used by Ada Decision Systems, see [6]. In the notation
square nodes represent the decisions and circular nodes uncertain variables/ events. The expected
utility and maximal (expected) utility is displayed between squared bracket above each chance and
decision node respectively. Above the end nodes the utility for that state2 is displayed. The rules
for evaluating a decision tree are fairly simple as for each end node the utility is calculated and then
the tree is ’rolled-back’ by taking the expectation over all states for chance nodes and maximizing
the expected utility for each decision node.

Example 6.2.1. A concert promotor wants to hold a jazz concert in Zoetermeer. This promotor has

to make a decision which location he will use for this concert. After some research the promotor found

two locations fit for his concert. These two possible locations are indicated as {Indoor,Outdoor},

as this characterizes these locations. From previous concerts the promotor knows that the weather

influences ticket sales. Table 6.1 shows this influence on the expected profit of the jazz concert.

Table 6.1: Expected profit of the jazz concert
Weather / Location Outdoor Indoor Probability

Sunshine 100 50 0.33
Cloudy 20 60 0.67

1This is a technical requirement to ensure that a decision problem is well defined.
2Each end node represents a state of the world which can be evaluated by the utility function.
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Note that this table shows that if the promotor is certain over the weather he will hold the concert

indoor if it is cloudy and outdoor if it is sunny. As the weather is uncertain probabilities are assigned,

displaying that it is cloudy more often then the sun shines. If the promotor should decide on this

information he act to hold the concert indoor as is displayed by the decision tree in Figure 6.1.

Figure 6.1: The optimal decision for the location of the concert displayed in a decision tree, where
the (maximal)expected profit is displayed in the squared brackets

The promotor now has the possibility to buy information from a weather bureau who will perform

a test which will indicates the weather. The promoter now asks himself is this information worth its

price, or should he not buy this information. The following information is available on this test. The

test has such an accuracy that it gives an accurate prediction in 9 out of 10 cases3. Combining this

with the promoters own information means that the following probabilities can be calculated. Note

that the first entry in Table 6.2, ‘0.82’ denotes P (Weather = Sunshine|TestResult = Good).

Table 6.2: Information on the weather-test
Probability of — Test Result Good Bad

Sunshine 0.82 0.05
Cloudy 0.18 0.95

Probability 0.37 0.63

The decision tree in Figure 6.2 shows the optimal decision(s) for the promotor. Note that the

when a test is not performed no information is gained from it, thus the lower half of the decision

tree is symmetrical as is shows the decision tree from Figure 6.1. Also note that the optimal decision

for the location of the concert changes under the influence of the test. The optimal decision for

the location is if no test is performed or the test result is ‘Bad’ to decide for the location to be

‘Indoor’, and if the test result is ‘Good’ to be ‘Outdoor’. In the decision tree displayed by Figure
3This means P (Good|Sunshine) = P (Bad|Cloudy) = 0.9
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Figure 6.2: The decision problem to perform a test to decide the location of the concert displayed in
a decision tree

6.2 no cost of the test were taken into account. Still it can be seen that if the cost of testing is

below 12.333(= 69 − 56.667) it should be performed. This number (12.333) is called the value of

information of the Test4.

In the previous example SDT was applied. Notice it uses the reverse reasoning from the utility
theory. Where as the utility theory starts from reasoning from preference relations to define utility,
and decision theory starts by calculating the utilities and then infers the decision that needs to be
made, thus displaying the preference relation.

The following remark needs to be made when using SDT.

Remark 6.2.2. The optimal decision need not be unique.

Note that optimal means the decision with the highest expected utility. It is possible that some
decision have the same expected utility, therefore making the decision maker to be indifferent over
the two alternatives. When dealing with the decision problem concerning testing and there exist
two strategies that lead to the optimal decision, then the arbitrary choice is made to define that
strategy using the lowest number of tests as the (unique) optimal. This as it uses less capacity for
testing.

4Value of information is formally discussed in the next chapter.



Chapter 7

Approaches to the Decision

Problem

7.1 Considerations Decision Problem

The questions that define the decision problem concerning observations can be categorized into three
groups. The questions in each category all focus on a different issue of the decisions problem. These
three categories are

• Observation types,

• Number of observations,

• Time of observation.

The first category concentrates on different types of observations, because different type of sensors
can be used to perform the observations, for instance destructive and non-destructive tests. The
second category concentrates on the number of observations that are performed using one type of
test. The third category concentrates on when to observe. In general observations are done when
the reliability drops below the pre-defined requirement or a fixed inspection interval1 is used.

As mentioned in the previous chapter, the approaches defined in this chapter concentrate on
finding the optimal number of observations that need to be performed, the second category in
the above list. As decisions need to be made on the basis of observations and the thereby implied
(predictive) posterior before they are known, this problem can be classified as a pre-posterior analysis.

In order to find the optimal number of tests, solving the decision problem, an utility function
needs to be defined. This utility function will measure the effects of a decision. This utility function
is assumed to be additive, such that it is separable into two parts. The first part being dependent on

1A fixed inspection interval can be to inspect every 10 years.

43



44

the test outcome (the result of the decision) called the gain. The second part not being dependent
on the decision result, i.e., the cost of testing2.

A typical behavior of the expected utility compared to the number of performed test is that
displayed by curve three in Figure 7.1. This typical behavior can be explained by individually
examining the behavior of the two parts of the utility function. The expected gain (first part of
the utility function), displayed as curve one in Figure 7.1. The expected gain clearly shows three
stages of behavior, these can be explained by the effect of a test on the posterior distribution. The
first stage shows a more or less constant behavior. The first tests usually will not have that much
effect on the posterior distribution as the prior information will dominate the posterior distribution.
Therefore the expected gain will not change much under the influence of more tests. The second
stage in the behavior of the expected gain which is increasing can be explained by the following. As
more tests are performed the prior information no longer dominates the posterior and the effect of
performing a test increase which explains the (local) increasing behavior of the expected gain. The
third stage shows that for a sufficient large number of tests the expected gain approaches a limiting
value. When enough data is used the posterior will converge to the sampling distribution of the
data, thus the posterior will not change much under more tests, explaining the constant behavior.

The behavior of the second part of the expected utility (cost of testing) is shown by curve two
in Figure 7.1. This behavior is the result of the (in this case) assumption of proportional character
of costs of testing in terms of to the number of performed tests.

Concluding the typical behavior of expected utility, which equals expected gain minus the costs
of testing, is displayed by curve three. This curve clearly shows an optimal number of tests at ñ.
The number of test that can be performed is an integer number, thus the optimal number of tests
is defined as the integer closest integer to ñ.

Figure 7.1: A plot of the expected utility and costs against the number of performed tests

2The cost of performing a test are only dependent on the decision as follows; they exist when the test is performed
and are zero if the test is not performed. This in contrary to the gain, the gain can be positive if the test result is
favorable and negative if the test result is bad.
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The general method for solving these decisions problems is two folded, first the decision prob-
lem(utility function) needs to be defined, which involves defining a measure for the gain and cost
of testing. Second on the basis of this utility function infer the optimal decision, thus the calcu-
lations need to be performed. From a theoretical point of view this is very clear and sound. The
only restriction is that the space of consequences (test results) must be finite, which is not the case
theoretically as the distribution over the observation is continuous. In practise this method can be
hard to follow, this as the computational complexity can become very large. The approaches for
implementing each of two steps in this method are discussed separate in the following two sections,
after which they are applied to the timber case.

7.2 Defining the Decision Problem

In order to measure the effects of performing an observation an utility function needs to be defined,
the following two different approaches are defined to perform this task,

• Design approach,

• Producers approach.

These two approaches differ in their interpretation that they use to define the utility function. The
design approach defines them from a user perspective with cost of failure, maintenance and building
costs under consideration. Opposed to the approach from a producer perspective which uses sales
revenues as main considerations. This aspect of the decision problem is hard to formulate for a
general setting other then given above. In Section 7.4 which discusses an application of the decision
problem both approaches are discussed.

7.3 Approaches Solving Decision Problem

Given that the utility function is defined the decision problem is formulated and it needs to be
solved. Three different approaches to solve the decision problem have been considered during the
research of this thesis. They are formally stated here and will be applied to the timber case in the
next section.

• Decision Tree

• Fixed Size Test Plan

• Value of Information

The first approach is computing/calculating the decision tree, this was demonstrated in Example
6.2.1. Calculating a decision tree can sometimes become impossible as the computational complexity
becomes too large. The computational complexity of the decision tree is determined by two factors
the number of tests that are considered and the discretisation of the chance nodes (test results) in
the decision tree. The computational complexity of a decision tree for a typical testing situation is
given by the following theorem.
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Theorem 7.3.1. The computational complexity of a decision tree deciding on whether to perform

at most n ≥ 0 tests and using a discretisation of m possible test outcomes is defined as:

Complexity = O
(
mn−1

)
. (7.3.1)

Proof. The number of states that need to be evaluated equals

n∑
i=0

(m)i+1 =
n−1∑
i=−1

(m)i

=
(m)n−1+1 − (m)−1

m− 1

=
mn+1 − 1
m(m− 1)

. (7.3.2)

This as when no test are performed only m states of the predictive distribution need to be evalu-

ated,e.g. , evaluating the prior information. If at most 1 test is evaluated all tests of performing at

most none tests need to be evaluated as for each tests outcome(m) the predictive distribution needs

to be evaluated in m states which means m + m2 evaluations. Thus for at most n test Equation

(7.3.2) is found.

This means that when n = 11 tests are considered and a discretisation of m = 8 points is used
the complexity is 8.6 · 108 paths need to be evaluated. This makes this method only applicable for
small number of tests with small discretisations. As the decision tree is a great visualization of the
decision process it can be used for visualization with minor alterations. This is shown in subsection
7.4.2.

The second approach is defined as the fixed size test plan. This approach can also use a loss
function, which is (often) the negative of the utility function (including the costs of performing a
test). With the help of a loss function the expected loss is calculated for each number of tests also
called the Bayes Risk. Then the minimum of this loss function is determined with respect to the
number of tests. By definition this minimum is the optimal number of tests. This fixed size test
plan has also been discussed3 in [13] and [4]. This approach is formally represented by the following
definitions and theorem4.

Definition 7.3.1 (Bayes decision rule). A Bayes decision rule (r̃) is a decision (and act) which

minimizes the posterior expected risk.

Definition 7.3.2 (Bayes risk). Assume that LF (r, d, n) is the loss in observing Dn and taking

decision d. Subsequently assume that R has the prior (predictive) density fR(r). Let r̃n denote the

3The fixed test plan is discussed in these books as determining of sample size.
4These definitions and theorem are rephrased version of the ones given in [13].



47

Bayes decision rule for this problem (if one exists),then

BR(n) = EREDn|R[LF (r, r̃n, n)] (7.3.3)

denotes the Bayes risk. And let r̃0 and BR(0) are the corresponding quantities for the no-observation

problem.)

Theorem 7.3.2 (The optimal fixed size test plan). The optimal fixed size test plan is clearly

that n (with n ≥ 0 and integer) which minimizes BR(n).

The third approach is the value of information (VOI) discussed in [17]. This approach can be
viewed as a formalization of the approach defined by the decision tree, see Example 6.2.1. This
approach calculates the VOI of a test and from it derives the optimal decision. This approach can
be viewed as determining the derivative of the curve created in the fixed size test plan approach.
The VOI of a test equals the (maximal) information (in terms of utility) that a test is expected to
give. Thus by determining for each test when this becomes negative defines the optimal test size.
The following definitions are given to define the VOI and the next remark explains when to observe.

Definition 7.3.3 (Expected value of a a set of acts). The expected value5 of a set of acts is

defined as

∀f ∈ F the value of F is v(F ) = max
f∈F

v(f) (7.3.4)

Definition 7.3.4 (Conditional expected value of a set of acts). The conditional expected

value of a set of acts is therefore defined as;

Given a test(T ) with possible values t ∈ τ , and ∀f ∈ F the expected value of F with respect to

p(•|T = t) is

v(F |T = t) = max
f∈F

v(f |T = t) (7.3.5)

Definition 7.3.5. The value of information (VOI) of a test(T) is defined as follows

v(T ) = v(F |T )− v(F ). (7.3.6)

Remark 7.3.1. It is only beneficial to observe (perform a test) if the value of information of a test

is greater than the costs of observation.
The following theorem also taken from [17] shows that if tests are free as much as possible test

should be done.

Theorem 7.3.3 (Increasing value of information). For any random variable T and any f ∈

F, v(F |T ) ≥ v(F ).
5The expected utility for a single act, v(f) is defined in Theorem 6.2.1.
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Proof.

v(F |T ) =
∑
t∈τ

max
f∈F

v(f |t)p(t)

≥
∑
t∈τ

v(f |t)p(t)

= v(f)

The approach followed when using VOI is calculating the VOI of performing n tests for different
n and then determining when it becomes constant. This approach will be shown in the next section.

The above given three approaches do not differ that much from each other. The decision tree can
be used to visualize the two other approaches as both can be derived from the decision tree. The
decision tree can also be used to solve more complex decision problems as the sequential decision
problem. This can also be done with the VOI-approach.

7.4 Application to Timber Case

7.4.1 Considerations Timber Case

The timber case is going to be used to demonstrate how to solve the decision problem concerning
observations. Destructive testing has been chosen as the test type under consideration. This choice
has been made as the interpreting6 of the observations using destructive measurements in the timber
case can be done analytically (conjugate analysis).

The ultimate goal is of course determining the strength of the population of beams under inves-
tigation (batch). The decision problem defined in the timber case is how many tests should be done
to determine this population strength(characteristic strength). The primary variable in the timber
case is R, all decision will be related to the (predictive) distribution of R. If testing was free as
many tests as possible would be done, this is not the case. The effect of a test needs to be compared
to the cost of performing a test. As the effect of an test is uncertain the expected effect is used. An
utility function needs to be defined to measure the effect when having a test result. The following
interpretations of the utility function were considered in the timber case.

As a first attempt this utility function was defined as

U(δ1, . . . , δk) = C1E(R|δ1, . . . , δk)− C2

√
Var(R|δ1, . . . , δk) + C3 − kCT , (7.4.1)

where the constants C1, C2, and C3 are chosen appropriate such that the utility function reflects
the preference of the decision maker (and the dimensions are correct). The cost of testing CT are
assumed to be proportional to the number of tests. This utility seemed very natural as maximizing it
implies increasing the mean and lowering the variance. This utility function was used to explore the
possibilities of the decision tree. The natural choice of C1 = 1, C2 = 1.6449, C3 = −E(R) + Var(R)
was taken such that the utility reflected the characteristic value of the timber. This inferred the
difficultly of defining CT appropriate, in the following examples it was taken as 3.

6See Chapter 3, the Bayesian method, on page 9.



49

The use of this utility function was abandoned and the problem was approached as a parameter
estimation problem7. This meant that a loss function was defined which can be seen as the negative
of the utility function. This as maximizing expected utility equals minimizing the expected loss.
Still an optimal number of test is to be found by balancing the decision loss and the cost of testing.
The following two loss functions were used.

L(r̃, r) = K(r̃ − r)2 + C(n) (7.4.2)

L(r̃, r) =

{
c1(r − r̃) + C(n) r ≥ r̃

c2(r̃ − r) + C(n) r ≤ r̃
(7.4.3)

The following considerations were used in the timber case to define the constants needed in these
loss functions.

Design approach

The design approach uses the perspective from a design point of view to define the loss or utility
function. This means that the following considerations are used. When achieving a higher(lower)
characteristic value for the tested material implies a reduction (addition) in materials needed to
be used in a construction (while retaining reliability). Or when testing is done on existing ma-
terials a better(worse) situation is found an increased (decreased) reliability occurs which means
longer(shorter) life time or less(more) repairs. Calculating these effect for a standard situation can
define the constants by taking for instance average achieved savings and average expected costs of
failure.

Producers approach

From a producers perspective an entirely different interpretation can be given to the decision process.
The producer wants to sell the tested batch of materials, they are a-priori graded by the characteristic
strength in a strength class. As the tests can indicate that the material he wants to sell is stronger
or weaker a clear indication to the loss/utility function can be given. A small deviation in the prior
graded strength compared to the posterior is of no interest to the producer unless this means that
the material needs to be graded in a different characteristic strength class. In that case the material
can be sold for a higher or lower price which will increase or decrease the revenue of the batch of
material or even make it unsalable.

7.4.2 Application Decision Tree

This subsection will show the application of the decision tree in the simplified timber case8 . It was
already noted that this approach is only suited for small decision problems. The utility function
given by Equation (7.4.1) is used. The decision tree in Figure 7.2 is created by DPL in case of at
most two tests can be performed and a discretisation of three intervals is used. The probabilities
shown in this decision tree are calculated using Table 7.1. This table shows the parameters used in
the normal distribution that the define the test results in the simplified timber case. Note that the
test result of the first test is entered in the parameter of the probability of the second test result.

7Note that this approach sees R as the parameter, although the update is done by updating the parameters M, Σ.
8The simplified timber case is used for its analytical expression for the predictive distribution of R.
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The parameters in this table have been calculated using a conjugate analysis as was displayed in
Section 3. The calculations performed by DPL to create this decision tree are applying Theorem
6.2.1. The decision tree shows that the optimal number of test in this case is to perform one test.

Figure 7.2: The decision tree in the timber case for at most two test and a discretisation of three
intervals

The main reason for displaying this decision tree is not to show the calculations performed but to
show the problems that arise when using a decision tree. As can be seen this tree becomes intractable
for large number of tests and discretisations, therefore the following notation is introduced. A
continuous chance node is a circle node with an circular arc on the outgoing arc. This outgoing arc
represent all possible outcomes and the expected utility is presented above the node. The decision
tree given in Figure 7.2 now becomes the one displayed in Figure 7.3(a).

Table 7.1: Parameters for the normal distributions used for all nodes in the decision tree

Node Mean Std. Deviation
Test1 100

√
200

Test2 100T1+10000
200

√
50 + 100

The decision tree displayed in Figure 7.3(b) does not show all the information that the decision
tree in Figure 7.2 did. It does however show the optimal decision, in this case performing one test,
and the decision alternatives considered. Note that the continuous decision tree is compacter, and
thus still useable as a visualization tool of the decision problem and performed calculations. In order
to perform the calculations in the continuous version of the decision tree sampling is used by DPL.
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(a) Input continuous decision tree for the simplified timber
case

(b) Optimal decision in continuous decision tree

Figure 7.3: A continuous version of the decision tree in the simplified timber case evaluating at most
two tests

In the next subsection an approach is shown how these calculations can be done by the ‘Fixed Size
Test Plan’ approach.

7.4.3 Application Fixed Size Test Plan

This subsection will discuss how the optimal fixed size test plan can be determined for destructive
testing in the (simplified) timber case. The optimal number of tests that is calculated is optimal
with respect to the prior information. Therefore it is called ‘fixed size’ as it does not take into
account the information gained from a test result other then was expected with respect to the prior
information.

As first a quadratic loss function will be used, which will lead to an analytical expression for the
curve displaying expected loss as a function of n. As second a bi-linear loss function is used. As
third an in practice useable application is given.

Quadratic loss

The following loss function is used9

LF (r, d(n), n) = L(r, d(n)) + C(n), (7.4.4)

where the decision loss function is taken as L(r, d(n)) = K(d(n) − r)2. Note that this (quadratic)
decision loss function displays the loss in taking the decision to estimate R by d(n). Note that in
the timber case not the inference problem needs to be solved, the optimal number of tests needs to
be solved. Thus the decision is made on n which implies a value for d. The quadratic loss function
will be used to calculate the minimal posterior expected loss for a fixed number of tests (n), thus
the decision is made to perform n tests. This is by definition the Bayes Risk. This risk (expected
loss) is minimized over all n and the optimal fixed size test plan is found. Formally this approach

9Note that the super index indicates that it is the total loss for the fixed size test plan, thus including test costs.
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is defined by Theorem 7.3.2. Applying this theorem in the simplified timber case (see Chapter 2)
gives the following.

As quadratic loss is used the Bayes decision rule equals the posterior expectation10. This means
that the Bayes risk in this case equals

BR(n) = EREDn|R[LF (r,E(R|Dn), n)]
= EDnVar(R|Dn) + C(n)

= K
σ2σ2

µ

σ2 + nσ2
µ

+ C(n). (7.4.5)

Figure 7.4: The decision loss against the number of test in the timber case

Again the cost of testing are taken proportional to the number of performed tests, i.e., C(n) =
nCT . A plot of the curve defined by Equation (7.4.5) is displayed in Figure 7.4. From this figure
a clear minimum can be derived. This can also be done exact by taking n to be continuous and
setting the derivative of BR(n) to 0 (∂BR(n)

∂n = 0), which gives

ñ =
σ
√
K√
CT

− σ2

σ2
µ

. (7.4.6)

Now the optimal fixed size test plan is that non-negative integer n closest to ñ.
The followed approach gave the optimal fixed size test plan in the simplified timber case due to

the following three reasons. As first, due to the use of a quadratic loss function a Bayes decision
rule is easy found as the posterior expectation. Therefore the Bayes Risk is defined as the posterior
variance. The second reason is the existence of an analytical predictive distribution. This implies
that an analytical expression can be found for the posterior distribution. Together with the first
reason gives an analytical expression for the expected loss, in this case the variance of the posterior
distribution. The third reason is that the posterior loss is independent of the test results, only the
number of tests performed. This implies that the posterior expected loss is still equal to the posterior
variance. All of these reasons together give that an analytical expression is found for the optimal
fixed test size.

It is very nice that an analytical expression is found for the fixed size test plan in the simplified
timber case, still this does not represent a very realistic situation for two reasons. First the quadratic

10The proof of this is given in Appendix A.4.



53

loss function is symmetrical, which implies that overestimating the strength of the timber is equally
penalized as underestimating the strength. As can be imagined this is not very realistic from the
design and producers perspective. For instance from a design perspective clearly overestimating will
lead to more (possible) failures and repair costs, which compared to the costs of underestimation will
be greater and thus not symmetrical. Second the simplified timber case is not very realistic, and was
only used for its analytical predictive distribution. Therefore another loss function is investigated.

Bi-linear loss function

A partial linear (non-symmetric) loss function will be investigated. The bi-linear loss function is
defined below for inferring d(n) by deciding to perform n tests and the true strength(R) equals r.

Definition 7.4.1. The bi-linear loss function is defined as follows

L(d(n), r) =

c1(r − d(n)) r ≥ d

c2(d(n)− r) r ≤ d
(7.4.7)

where c1, c2 ≥ 0.

Typically in determination of the strength of a material in the context of reliability c2 > c1. This
was already mentioned from a designers perspective as overestimation is heavier penalized than
underestimating. When using the bi-linear loss function the Bayes decision rule becomes 100 c1

c1+c2
-

percentile estimate of the predictive distribution of R, which is proven in Appendix A.4. As the
Bayes decision rule is the 100 c1

c1+c2
-percentile estimate of R an interesting interpretation to c1 and c2

can be given. The reasoning is as follows, as it is common to take the 5-percentile of the predictive
distribution of R as the characteristic strength a condition on the ratio of c1/c2 is put as 1/19. This
ratio is very helpful when defining the decision problem. Defining the cost of overestimating can
often be done, but defining the cost of underestimation are much harder. By the defined ratio only
one has to be determined and the other is automatically given by the ratio.

Using the bi-linear loss function and the decision rule does not lead to an analytical expression for
the posterior expected loss as a function of the number of performed tests. This can be contributed
to the fact that the expectation that need to be calculated cannot be performed analytically. Using
a sampling techniques to calculate this expectation is implemented in a procedure in the next
paragraph. As a new procedure needs to be written for this, it is not applied to the simplified
timber case but straight to the (general) timber case.

Numerical solution

This paragraph will show how the ‘fixed size test plan’ can be determined in the timber case using
sampling techniques and the analytical approach or the BBN approach. In order to perform the
update analytically the NIG-model is used. Also a new loss function is used which has an actual
interpretation.

The following input has been received from the timber producer to define the decision problem.
Table 7.2 gives the information needed to define the utility function. It is also given that the price
difference between timber from two adjoining strength classes is 10 percent. The classification for
the timber under investigation is given in Table 7.3. The prior information for this kind of timber
is given as m = 80,Λ = 8, α = 8, β = 0.0005.
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Table 7.2: Input for decision problem

Desciption Value
Batch size 100m3

Beam size 0.1m× 0.2m× 4m
Prior price 500EUR

m3

Cost of manhours 85EUR
Test time 1 hour

Table 7.3: Classification of characteristic strength (NEN6760)

Class I II III IV V VI VII
Strength 0-30 30-35 35-40 40-50 50-60 60-70 70-200

Using the give information makes it possible to define the decision problem in format that it
can be solved by the fixed size test plan approach. Using the producers approach to formulate the
decision problem leads to the following considerations. The batch of timber(100m3) is graded and
then tests can be used to improve the grading. The timber is graded by calculating the characteristic
strength RChar from the (predictive) distribution as the 5-percentile point. This point is then graded
into a strength class with Table 7.3. The graded characteristic strength of the batch (RG) is given
as the left bound of the class. Notice that when the actual characteristic strength (RChar) is below
30 it is graded as strength class I. Timber in strength class I has a graded characteristic strength of
RG = 0 and is thus useless.

From a producers point of view a clear interpretation can be given to the loss function and the
testing costs. The costs of destructively testing a beam from the batch is given as the price of the
beam and the cost of the man-hours needed to perform the test. This implies the cost for this kind
of test given as

C(n) = 125n. (7.4.8)

The decision loss can be given as a function of the determined strength class of the batch. If the
strength class is not changed after testing the loss equals 0. If the expected strength class after
testing is one class lower the loss is given as the batch size times the difference in sale price of the
timber in the different strength classes. The same holds for the expected gain when the expected
strength class is one larger the loss is given as the batch size times the difference in sale prices11.
Note that the maximal loss is given to when the strength class becomes I, then it equals the batch
size times the price of the prior strength class, this as the batch cannot be sold. Now the decision
loss and the cost of testing have been determined the loss function has been determined which means
that the expected loss for the fixed size test plan can be determined. This is done using the pseudo
code given below. The result will be a plot of the expected loss against the number of performed
test, from which the optimal test size can be determined.

Pseudo Code ‘Fixed Size Test Plan’ Using Sampling

Initialization

• Define constants,
11Notice that this difference is now negative thus there is no loss, gain.
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• Define prior information,

• Define strength classes,

• Define utility function,

• Process prior information,

Computation (loop over number of runs(i))

• Loop over number of samples(j)

– Sample ηi,j , µi,j ,
– Loop over number of tests(k)

∗ Sample destructive data, di,j,k

∗ Calculate sampled characteristic strength(perform update) rChar
i,j,k ,

∗ Classify sampled characteristic strength rG
i,j,k,

• Calculate expected loss,

Post processing

• Plot expected loss against number of test for each run.

This pseudo code is implemented in MATLAB as,‘SampleME8.m’(see Appendix C). The results
of this m-file are displayed in Figure 7.5. From this figure it is determined that four tests should
be performed. Multiple curves have been plotted in this figure to display the convergence of the
sampling used to determine the expected loss.

The m-file that produced Figure 7.5 uses a special approach to sample destructive tests. The
pseudo code also showed this, the parameters M,H are sampled and then used to generate samples
for the destructive test results. It is important that it is done in this order as given these sampled
parameters M,H the test results are independent. Then on the basis of these sampled test result
and the prior information a sampled characteristic strength is determined. In ‘SampleME8.m’ an
analytical approach is used for this, by application of the NIG-model12. By use of this model the
characteristic strength can be given in terms of the parameters of the prior distribution and the
sampled test result, this is formulated in the following proposition.

Proposition 7.4.1. The characteristic strength of the timber (0.05 percentile point) when using the

NIG-model is given in the parameters of the NIG-model, see Equation13 (5.1.7), as

RChar = m∗ +

√
1 + Λ∗

β∗α∗
Ψ−1

T (0.05, 2α∗), (7.4.9)

in which Ψ−1
T (0.05, 2α), denotes the inverse cumulative distribution function of a standard student’s

t-distributed variable.

Proof. The proof of this proposition is listed in the Appendix A.3, which constitutes of rephrasing

Equation (5.1.1).
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Figure 7.5: A plot of the expected loss against the number of tests

The use of an analytical approach to perform the update and thus determine the sampled char-
acteristic value is not necessary. The updating can also be done otherwise, numerically or by a
BBN. For the timber case using the NIG-model also a MATLAB program was created that uses a
BBN approach (HUGIN) to perform the update. This programm is added in the Appendix C, as
‘SampleMEHugin4.m’. Note that this m-file is implemented using the same pseudo code only the
step calculate sample characteristic strength is done by HUGIN. By comparisons of the results of
both the codes using HUGIN and the analytical approach it is concluded that they give the same
results. The main reason for adding this code to the appendix is that it can easily be applied in
other situations and other decision problems. Using the BBN approach for the updating also has
another advantage. The graphical model defined in the BBN approach essentially gives the sampling
order, as only prime nodes are sampled. This is discussed in Chapter 8.

7.4.4 Application VOI

Using the value of information to create an optimal test plan needs a more mathematical formulation
of the decision problem. The decision problem to determine the optimal fixed size test plan can thus
formulated as

S, the states of the world si denotes the state of the world, e.g. the prior characteristic strength;

F , the set of acts fn perform the n proposed tests;
12This model is defined in Chapter 4 and applied in Chapter 5.
13To determine the characteristic strength (RChar) prior to testing use the parameters of the prior information.
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f0 do not perform the proposed test.

C the set of consequences Let the consequences be define over the set of F × S, resulting in:

cn,m the decision has been made to perform n tests and the Bayesian update has been per-
formed and using the test results leading to cn,m, e.g. the (updated) predictive characteristic
strength; c0 the decision has been made not to perform the test.

The Utility-function has typically the following form:

U1,...k(c) = U(s, f)−
k∑

i=1

κi (7.4.10)

where s is k-dimensional and κi denotes the costs of performing test i.
The following considerations derive the optimal test plan. A test is added to the test plan, i.e.

is performed when
ν(F |Tp → Tp ∪ T ) 6= ν(F |Tp) (7.4.11)

Where Tp denotes the test plan. Which is equivalent to stating

ν(F |Tp ∪ T ) > ν(F |Tp) (7.4.12)

This gives the following criteria for constructing a test plan:

Test 1 The first test is performed when

ν(F |T1) > ν(F |∅) = ν(F ) (7.4.13)

Using the definition for the value of information in Equation (7.4.13) defines the following
restriction on the cost of the first test.∑

d1∈D1

p(d1)max
f∈F

∑
c∈C

p(f−1(c)|d1)U1(c) > max
f∈F

∑
c∈C

p(f−1(c))U(c) (7.4.14)

All the probabilities in Equation (7.4.14) are known/ given by the priors or and iff the test
outcome is known. Thus by solving this equation for the cost of a test gives a condition on
the costs of a test.

Test 2 The second test is performed when

ν(F |T1 = t1, T2) > ν(F |T1 = t1) (7.4.15)

By definition this means∑
d2∈D2

p(d2|D1 = d1)max
f∈F

∑
c∈C

p(f−1(c)|D1 = d1, D2 = d2)U1,2(c) >

max
f∈F

∑
c∈C

p(f−1(c)|D1 = d1)U1(c)

This equation needs to be solved for the outcome of test one giving a condition on the outcome
of test one to either perform the second test or not.

This approach does not seem to give an feasible approach as for each utility and probability a pre-
dictive distribution needs to be calculated. This gives to much computations. Also the formulation
of the decision problem in this setting does feel a bit unnatural. Possibly it can be formulated as
accepting the sample or rejecting the sample as possible acts. This is then added as future research.
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Chapter 8

General Method for Testing

8.1 The General Method

This chapter demonstrates the use of the theory derived in the previous chapters. It can be seen as
an attempt to create a complete methodology which stipulates the use of testing/observations. The
following general method is proposed

General Method for Testing

Problem definition

1. Define testing objectives and decision problem,

2. Create models,

3. Define primary variables,

Interpretation of test results

4. Apply Bayesian method,

5. Validation of Bayesian method and models,

Test plan

6. Define optimal test plan,

Evaluation

7. Interpret results.

There are two main steps in this method, respectively the fourth and sixth step. All other steps
are preparations for these main steps or checks of these two main steps. The time when the first
six steps are performed is different from the last step. The first six steps are performed before the
tests are performed and in step seven the test results are available and are investigated. This is an
essential difference. Note that for performing the seventh step the method defined in step four can
be used. Also note that often this method will be performed in a loop. After the seventh step often
a new decision problem is formed to determine if it is useful to perform additional test given the new
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information gained from the tests. The result can be to perform even more tests, which does not
imply that the first application of the method has failed. It only means that the information gained
from the tests is more or at least different then was expected. The following section will show an
application of the method.

8.2 Humidity Case

The case that will be used to demonstrate the proposed method for testing is referred to as the
humidity case. It addresses the issue of determining the time when the humidity on the outside of a
concrete wall is lower then a predefined level. This case has been derived from the following actual
situation, a contractor wants to apply stucco to a wall. In order for the stucco to stay fixed to the
concrete wall, the wall needs to be dry. Often after some time humidity from within the wall reaches
the outside of the wall and effects the stucco. To avoid this stucco is applied after a pre-defined
number of days. This in order to let the humidity from within the wall to dissipate. This sometimes
creates unnecessary delay in the construction as the waiting period is far to long. Now testing is
proposed to be used to determine when the wall is dry enough, and not use the pre-defined number
of days. This in order to decrease the time that needs to be waited till the stucco can be applied.

In order to model the movement of the humidity a small simplification in the modelling of the
humidity movement within the wall is used as it is modelled as one-dimensional. In Figure 8.1 a
wall under investigation is displayed schematized displaying the mentioned simplification.

Figure 8.1: Schematized view of a wall under investigation

In this figure a distance (dWall) is displayed, this is the average distance the humidity needs to
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Table 8.1: Input for decision problem

Desciption Value
Wall thickness 35mm
Fixed cost of performing tests 100EUR
Cost of performing a single measurement 15EUR
Sensor size 3 measurement points
Savings 500EUR/week

travel to reach the stucco1. Also a sensor is displayed in Figure 8.1. This special sensor measures
the humidity at different depths, referred to as measurement points (a(n) (observation) model for
this sensor will be defined later). The use of this sensor defines the decision problem, which can
be phrased as, how many measurements with this kind of sensors should be performed to optimal
determine the time till the stucco can be applied. Now that the case is briefly introduced the general
method for testing can be applied.

Define testing objectives and decision problem

In this case the objective is to investigate if it is possible to determine, with testing, the time when
the humidity in the wall has dropped to an acceptable level. This analysis will take into account
the expected benefits and costs of testing. The decision problem can be defined as: how many tests
are ’ideally’ needed to determine the time when stucco can be applied. Notice that the time when
a test is performed is taken as fixed. Table 8.1 gives the parameters that specify the construction
under investigation and the decision problem.

Create models

To model the movement of the humidity in the concrete wall the following relation is used to describe
the distance the humidity travels in time.

D(t) = Rv

√
t. (8.2.1)

In which time is denoted as t in [days] and the humidity intrusion rate as Rv in [mm/days
1
2 ]. Note

that Rv is assumed to be time independent. From experience gained from previous experiments
Rv is assumed a-priori to follow a log-normal distribution2 with mean 2[mm/day

1
2 ] and a standard

deviation of 1[mm/day
1
2 ]. This relation is used to describe the distribution over the time needed

for the wall to be dry at the outside of the wall. The humidity that is present in the concrete wall
is modelled to travel (on average) a distance dWall. Together with Equation (8.2.1) this gives the
following model for time needed by the wall to be dry on the outside of the wall,

TDry =
(
dWall

Rv

)2

. (8.2.2)

This in terms of the Bayesian method is the ‘forward model’, see Chapter 3.
1In case of of solid concrete wall this distance can be thought of as half the wall thickness.
2The parameters of this distribution are M = 0.5816 and V = 0.4724.
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As mentioned earlier the observations/measurements are done with a sensor, this sensor measures
the specific resistance in the concrete at three different depths (positions) in the wall. The depths
where the measurements are taken are placed at a fixed distance from each other. Thus a single
observation is represented as a vector containing specific resistance measured at each depth. If this
sensor has q measurement points this is denoted as

Ωm =
[
Ω1

mΩ2
m · · · Ωq

m

]′
. (8.2.3)

The following three (observation) models describe the relation3 between the measurements and
the humidity intrusion rate (Rv).

Measurement accuracy
Ωi

m = Ωi
rεi. (8.2.4)

Conversion error

Ωi
r =

1
B

log
(
V i

A

)
. (8.2.5)

Humidity relation

V i = v0 −
(v0 − vc)
Rv

√
(t̃)

xi. (8.2.6)

The first two models describe the error in the measurements, the last the relation between humidity
at a location(x) and Rv. The measurement accuracy describes the relation from the measured specific
resistance to the actual specific resistance at that depth in the construction, i.e., the imperfection in
the measurement. Where respectively εi ∼ N (1, 0.05) denotes the (multiplicative) error, Ωi

r the real
specific resistance [Ωm] at depth i, and Ωi

m the measured specific resistances [Ωm] at depth i. The
conversion error models the error induced by the (empirical) relation between specific resistance and
humidity. As a result this error is the same for all measurement points. A and B both have a-priori
normal distributions4 with respectively mean 150.18[kg/m3], 1.21∗10−5[Ω−1m−1] and variance 0.05
and 0.1. Respectively the humidity relation described by Equation (8.2.6). This equation describes
the relation5 between the humidity(V ) present in the wall and the humidity intrusion rate (Rv).

When multiple measurements are performed they are thus performed in ensembles of three mea-
surements. The models given above do not (yet) take into account (spacial) correlation. Therefore
multiple measurement can only be used to learn about the conversion error and thus better deter-
mine the humidity intrusion rate (Rv). This can be defended by assuming homogenous humidity
over the surface of the wall. Also a model for the cost of testing is needed to solve the decision
problem, which in this case is a linear cost function,

C(n) = CS + nCT . (8.2.7)

In which CS denotes the (fixed) setup cost for testing describing the costs made to develop or buy
the sensor, CT the cost of performing a test and analyzing the data received from a sensor. The
decision that needs to be made is to define a number of tests to perform at a specific point of time.

3Note that this defines the likelihood function.
4As a first approximation the errors are modelled as independent.
5Using this relation to describe the relation between the humidity present in the wall and the rate of intrusion

is not completely correct for a wall under inspection. This model was derived and implemented in this case during
the process of defining the Bayesian method and was then fully applicable. However the case specifics changed when
define the decision problem and this model was still used as no time was left to create another more appropriate
model. This does not have important consequences for the demonstration of the method. Only the results of the case
are not completely true as the update is not done correct.
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Table 8.2: Conditional probability table of node error1 in HUGIN
Expression Normal(1,0.05^ 2)
-inf - 0.95 0.158655
0.95 - 1 0.341345
1 - 1.05 0.341345

1.05 - 1.1 0.135905
1.1 - inf 0.02275

Define Primary Variables

Now all models have been defined, the stochastic variable to which the Bayesian method will be
applied needs to be defined. From all the models, Rv is identified as the random variable to which
the Bayesian method will be applied. Still the random variable of interest is TDry. Actually during
the derivation of the models these variables were already identified as the primary variables. How
else would all the models be created? This step is placed in the method to emphasize that this need
be done. In practice this step is integrated into the previous step.

Apply Bayesian Method

We will start the Bayesian Method by using the graphical representation of the method and substi-
tuting into it the actual models and stochasts. This will structure the process. As first the relations
between the stochastic variables are defined. We start of with the general graphical formulation
given in Figure 3.1, now we define the proper stochastic variables which results in Figure 8.2(a)
(displayed on page 66). Then we define the predictive model in the graphical representation. The
models that are inserted are shown in blue boxes. Next the observation models are inserted for one
measurement point, again blue boxes are used. Finally an entire sensor is modelled in Figure 8.2(d).

This graphical representation is used to model the Bayesian method with a BBN. This is of coarse
not a coincidence, the BBN-approach is chosen as it can easily be constructed from this graphical
model. The graphical part of the BBN is almost the same as the graphical model displayed by
Figure 8.2(d). The main difference is that names of the nodes are displayed and not the complete
models. These models are used in the quantitative part of the BBN, defining the arcs in the BBN.
The result of this graphical part of the BBN in HUGIN is displayed in Figure 8.3 (on page 67).

Defining the graphical part of this BBN is only the start of the modelling using a BBN, now
the quantitative modelling needs to take place. As set out by the Bayesian method first the prior
information needs to be entered. This means that the prior distribution for all primary nodes,
i.e. Rv, A, B, Error1, Error2, Error3 needs to be defined. Notice that this is actually imple-
menting the information given in step one of the method. For example it was formulated that
the measurement accuracy can be described with Equation (8.2.4) in which the error-term nodes
(Error1, Error2, Error3) follow a normal prior distribution. This is then implemented in the quan-
titative modelling part of the BBN. As HUGIN performs discrete calculation a discretisation needs
to be defined for this node (and for all other nodes in the BBN). As the prior distribution has mean
1 and std.dev. 0.05 the discretisation displayed in Table 8.2 is used. Now the prior distribution can
be entered6, in this case a model is used7 in HUGIN, resulting in the following CPT, see Table 8.2.

As can be seen in Table 8.2 two states have been added to create a full support for the distribution
of the error-term. This is only to ensure a correct definition of the problem in HUGIN.

6This is also done with MATLAB see the Appendix C all m-files containing Hum.
7This is not necessary, tables can also be filled manually.
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The second step in the Bayesian method is to define the likelihood. This is done in HUGIN
by defining models for the CPT of the nodes that appear in the observation models. When this is
done the entire BBN is defined and can be used to perform the update and perform inference, which
concludes the Bayesian method. The entire network was created in MATLAB and the code can be
found in the Appendix C as ‘HumCreateNW.m’.

Validation of Bayesian Method and Models

This next step in the method is to ensure that the previous steps have been performed correctly. By
entering possible observations and subsequently performing the update the output of the Bayesian
method is checked for errors. Often small adjustments in previous steps in the method need be made,
e.g. discretisations need to be adjusted. Also it serves as a check to see whether the important factors
have been identified and it shows what kind of testing should be done.

In this application of the general method we have proposed to use HUGIN (and MATLAB) to
perform the Bayesian method, as this is a robust approach and easy to implement as it is constructed
in a very natural way. It can sometimes be more efficient to use other methods discussed in chapter
4. In the humidity case also the direct numerical integration approach has been used. This to check
whether HUGIN was used correctly to perform the update and to see the difference between the two
applications. This is omitted in the appendix in subsection A.5.

Define Optimal Test Plan

In this step of the method the test plan has to be derived. This means solving the decision problem
defined in the first step. In order to do this three possible approaches were given in Chapter 7.
During the thesis research a combination of the ‘Decision tree’ for visualization purposes and ‘Fixed
size test plan’ approach for calculations was found to be very useful, the latter of these is thus used.
The following parameters were gathered for the decision problem in the first step. These parameters
are used to define the utility(loss) function. This function will be used to measure the effects(gain)
of performing tests and the costs. The costs are modelled as being independent of the test result
and only dependent on the number of performed tests. The fixed cost of performing test are given
as 100EUR. The (variable) cost of performing a single test are given as 3 ∗ 15EUR = 45EUR a
test. These variable costs are the cost of performing a measurement, e.g. cost of transmitting test
results from sensor to computer or power needed to use the sensor, and costs for interpreting the
test results. These numbers can be substituted into Equation (8.2.7) leading to the cost function.

In order to measure the effect(gain) of performing a test the following considerations are used.
Note that the following reasoning can be seen as using the ‘producers approach’, see sub-sections 7.2
and 7.4. The forward model is used to determine the time till the wall is dry, see Equation (8.2.2).
Using this model gives a distribution over the time till the wall is dry. The regulations do not give
a distribution over the time till the wall is dry but give a number of days to wait till the wall is
dry(T rule

Dry ). Using this pre-defined number of days that are needed to wait, which in this case is 90
days after construction of the wall is complete, gives a bounded region for TDry. The contractor
that needs to apply the stucco does his scheduling of his work at the beginning of the week. This
implies that he is indifferent if TDry changes within the range of a week as he cannot change his
schedule to act upon this information. This then defines the discretisation for the domain of TDry

as 0 to 84 with steps of 7 days. Which means in HUGIN the following discretisation given in Table
8.3. If the time the contractor has to wait shortens with a week he makes 500EUR.

As mentioned, the result of using a test is reflected in the distribution of TDry via the predictive
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Table 8.3: Discretisation for TDry in HUGIN
-inf-0 0-7 . . . 77-84 84-inf

(forward) model. The regulations do not specify a distribution but give a fixed number, T rule
Dry . In

order to compare the effects of the test result the predictive distribution over TDry is used to give a
new point estimate of the time till the wall is dry. This is referred to as using a decision rule. This
decision rule is thus needed to measure the effects of testing, i.e. to formulate a loss function. In
this case the 80-percentile point8 of the predictive distribution for TDry is used as T pred

Dry (n). This
estimate gives the days one has to wait before applying the stucco according to the prior information
and the n test results. Using this information gives the following loss(utility) function.

L(n) = 100 + n35− 500
(
T rule

Dry − T pred
Dry (n)

)
1T pred

Dry (n)<T rule
Dry

(8.2.8)

In which 1A<B is the indicator function which means that it is 1 if A < B and 0 if A > B. Equation
(8.2.8) clearly shows that reducing the waiting time with a week results in 500EUR at the cost of
performing the needed tests, and also that if the tests lead to an estimate that is equal or larger then
what the regulations prescribe no gain or loss is achieved as the contractor will use the pre-described9

T rule
Dry .

Figure 8.4 has been created using the program ‘HumFinal.m’ which is added in the appendix.
This figure is used to determine the optimal number of tests. Figure 8.4 clearly shows a minimum
when performing nine tests. Again multiple curves have been plotted to show that the sample size
used is sufficient large.

Interpret Results

As the test plan has now been derived the tests can be performed. For interpreting the test results
(observations) the Bayesian method can be re-used, which was already implemented prior to testing
thus the procedures defined then can be re-used for this. Depending on the results the method is
finished or initiated again taking into account the information gained from the testing.

If an adaptive test plan has been created there will be a loop from this step to previous steps
until the testing is completely done as defined by the adaptive test plan (stopping criteria reached).
Thus completing the method.

8In this case the 80-percentile point was chosen to create a decision rule. Another approach can be to use the prior
information on Rv and calculate the prior predictive (cumulative) distribution function of TDry . Then check which
point corresponds with the one given by the regulations and use that as the decision rule. This is however subject
to the prior information used. In cases in which no clear decision rule can be found and strong prior information is
available it can give a solution.

9Which makes him non liable if the stucco fails as he has used the rules, thus no extra loss. Although the contractor
did know that the stucco would probably be effected by the humidity indicated by the (ignored) test results.
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(a) Stochasts defined (b) Forward/predictive model defined

(c) Observation model defined (d) Multiple Measurements

Figure 8.2: Building the graphical representation of the Bayesian method



67

Figure 8.3: The graphical model for the humidity case
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Figure 8.4: Results of the fixed size test plan approach in the humidity case



Chapter 9

Conclusions, Recommendations
and Further Research

9.1 Conclusions

In this thesis a general method was defined that tells how to test. The method was shown to solve
the problem of defining the number of tests that need to be performed. This was done by taking
into account the expected information received from a test result and the cost of performing a test.

The general method for testing consists of two main elements namely the interpretation of test
results and the decision what test results to obtain. The Bayesian method was applied for the
interpretation of the test results and Savage’s decision Theory was used for the decision part. Four
different approaches to apply the Bayesian method were discussed in this thesis. It can be concluded
that the Bayesian belief network (BBN) approach is the best approach to use in a general setting.
This as the BBN approach contains a graphical model which simplifies communication of the used
models. Another advantage of using the BBN approach is that it requires minimal mathematical
knowledge of the user, multiple software packages( i.e. HUGIN) can be used for that. These software
packages can also be helpful developing a numerical tool for the general method as they can be used.
Also in the BBN-approach after the problem is defined it can easy and fast process different (new)
data within the model.

The decision part in the general method consists of two aspects, namely definition and calculation.
For the calculation of the solution to the decision problem, which means deriving an optimal number
of tests to perform, three approaches have been proposed, namely the decision tree, fixed size test
plan and value of information approach. It can be concluded that the fixed size test plan easily
calculates the solution and that the decision tree can best be used for visualizing the performed
calculations.

Two cases, the timber and the humidity case have been discussed and solved with this general
method. The result of this is a series of m-files that implement the method. These m-files were set
up in a general formulation that they can easily be reused or adapted to other cases. Making the
combination of all these m-files a blue print for a (numerical) tool to solve these decision problems.
These m-files running in MATLAB also use the HUGIN-engine to perform the calculations. This
was done by controlling HUGIN via MATLAB trough the HUGIN API, a report was added to the
appendix explaining how this is done.
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9.2 Recommendations

The following recommendations are made on the use of the Bayesian method. It was concluded that
the best approach to perform the Bayesian method was the BBN approach. This is only true as it
is easy understood and very robust. In some cases using one of the other four given approaches (see
Chapter 4) can very well lead to faster and more detailed results.

Another recommendation is that when defining models also bear in mind that the IG-model
can be used and not only the N -model. As was shown when discussing the analytical approach a
(computational fast) conjugate analysis is sometimes possible when using the NIG-model where it
was not possible with the N -model.

9.3 Further Research

This section sets forth the research that should be done to improve or further develop the general
method of testing. The following research topics are given for the general method. The method
should be applied to more cases to see whether more steps need to be added to the method. The
method can also be expanded to handle multiple decision objectives. In this thesis only the number
of tests were investigated as a decision objective but other objectives might be included in the
method, like what location should be used for testing. This will need further refinement of the
models as spatial correlation between test etc. Also further work can be done to create a numerical
tool implementing the general method. This can be done by further developing the m-files that have
been added to this report into a full numerical tool.

Also some further research can be done on the the Bayesian method. The BBN approach can
be further refined in many ways. For instance the BBN approach can be refined to also include
continuous BBN’s. This will in some cases make the modelling much more natural. Also the
BBN approach as discussed (using discrete BBNs) can be further automated, by automating the
discretisation definition. In this thesis all nodes have been discretised by visual inspection of the
results over the discretisation, ideally this will be done by a program and the user need not to worry
about this.

The Bayes linear approach, that did not seem to work in a general setting, should be further
investigated. This in order to fully understand the reasons it did not perform well in a general setting.
If this can be found the approach can be improved to make it suitable for a general application or
by given bounds on the estimates it gives.

Further research needs to be done on defining the decision problem in a general case. This as
finding a utility function in case of a real problem has shown to be very difficult, even though two
approaches for this have been given, respectively designers and producers approach. As well defining
the decision problem as a sequential decision problem needs to be investigated. This can possibly
give a more accurate solution to the decision problem posed or speed up calculations.

The approaches that were used to calculate the solution to the decision problems can also be
refined and evolved. In thesis only one-dimensional decision problems were solved, like how many
test should be performed. The given approaches can easily be used in higher dimensional decision
problems, like which combination of test type A en B should be used. In order to do this the models
should be upgraded to handle the dependency between different test types and the now visually
choosing the optimum needs to be replace by calculations1.

The value of information approach needs to be further researched. During the thesis research
this approach did not seem to work and in the authors opinion it was due to the problem definition.

1Visually determining the optimum is not possible for decision problems involving higher dimensions then two.



Appendix A

Appendices to the Text

A.1 Proof Multiple Destructive Observations

Proof Proposition 5.1.2. In order to prove that the predictive distribution of R is student-t dis-
tributed, when n destructive measurements are used, proposition 5.1.1 is used. Therefore it is
sufficient to proof that the posterior distribution over M,H is NIG(α∗, β∗,m,Λ) when using n de-
structive measurements. This proof goes along the lines of proof 4.1.1 on page 16. The likelihood
function of n-destructive measurements in the timber case is give as

L(δ) = fD|M,H(δ1 . . . δn;µ, η)

=
n∏

i=1

fDi|M,H(δi, µ, η)

= (2πη)−
n
2 e

− 1
2η

n∑
i=1

(δi−µ)2

. (A.1.1)

Substituting Equation (A.1.1) and the joint-distribution function in Bayes Rule (1.2.2) leads to.

fM,H|D(µ, η; δ) = Cn(2πη)−
n
2 e

− 1
2η

n∑
i=1

(δi−µ)2 η−α∗− 3
2 β∗−α∗

√
2πΓ(α∗)Λ∗

1
2
e

[
− 1

2
(µ−m∗)2

ηΛ∗ − 1
ηβ∗

]

= C̃nη
−α− 3

2−
n
2 e

− 1
2ηΛ

[
(µ−m)2+Λ

n∑
i=1

(δi−µ)2
]
− 1

ηβ

where Cn, C̃n are appropriate normalizing constants. Define α∗ = α + n
2 , substitution of α∗ and

re-arranging terms results in1

fM,H|D(µ, η; δ) = C̃nη
−α∗− 3

2 e
− 1+nΛ

2ηΛ

[(
µ−m+Λ

∑
δi

1+nΛ

)2
− (m+Λ

∑
δi)

2

(1+nΛ)2
+

m2+Λ
∑

δ2
i

1+nΛ

]
− 1

ηβ
. (A.1.2)

1Notice that the index of the summations have been dropped. This has been done for typographical reasons it
should show i = 1 up to n.
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Also define the following variables Λ∗ = Λ
1+nΛ , m∗ = m+Λ

∑
δi

1+nΛ , and

β∗ =
2β(1 + nΛ)

−β(Λ(
∑
δi)2 + 2

∑
δim− nm2 − (1 + Λn)

∑
δ2i ) + 2(1 + nΛ)

.

which results in

fM,H|D(µ, η; δ) =
η−α∗− 3

2 β∗−α∗

√
2πΓ(α∗)Λ∗

1
2
e−

1
2

(µ−m∗)2

ηΛ∗ − 1
ηβ∗ . (A.1.3)

Equation (A.1.3) clearly shows that the posterior distribution forM,H isNIG(α∗, β∗,m∗,Λ∗) which
concludes the proof.

A.2 Calculations and Proofs to Propositions Concerning Com-

parison Bayes Linear

Proof Proposition 5.4.1. The definition of the expectation gives us the following integral.

E(R) =
∫
rfR(r)dr (A.2.1)

Application of LTP results in.

=
∫∫∫

rfR|M,H(r;µ, η)fM,H(µ, η)d(r, µ, η)

=
∫∫∫

r
1√
2πη

e−
1
2η (r−µ)2 η

−α− 3
2 β−α

√
2πΓ(α)Λ

1
2
e−

1
2

(µ−m)2

ηΛ − 1
ηβ d(r, µ, η)

=
∫∫

µ
η−α− 3

2 β−α

√
2πΓ(α)Λ

1
2
e−

1
2

(µ−m)2

ηΛ − 1
ηβ d(µ, η)

=
∫
m
η−α−1β−α

Γ(α)
e−

1
ηβ dη
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Now the following change of variables is performed to transform this integral to a gamma function;
1

ηβ = ξ.

E(R) =
m

Γ(α)

∫
ξα−1e−

1
ξ dξ = m (A.2.2)

Proof Proposition 5.4.2. Substitute D, δ for R,r respectively in the proof of proposition (5.4.1).

Proof Proposition 5.4.3. By definition the following expression is available for the variance: Var(R) =
E(R2)− (E(R))2. The right hand side of this expression has two parts which will be calculated se-
quentially below.

E(R2) =
∫
r2fR(r)dr

=
∫∫∫

r2fR|M,H(r;µ, η)fM,H(µ, η)d(µ, η, r)

=
∫∫∫

r2
1√
2πη

e−
1
2η (r−µ)2dr

η−α− 3
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2
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1
2
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ηβ d(µ, η)
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η−α− 3
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2
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ηβ d(µ, η)

=
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2 β−α

√
2πΓ(α)Λ

1
2
e−
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ηβ d(µ, η) +
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µ2 η
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2 β−α

√
2πΓ(α)Λ

1
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e−

1
2
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ηβ d(µ, η)

=
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η−αβ−α

Γ(α)
e−

1
ηβ dη +
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(ηΛ +m2)

η−α−1β−α

Γ(α)
e−

1
ηβ dη

= (1 + Λ)
β−α

Γ(α)

∫
η−αe−

1
ηβ dη +

m2β−α

Γ(α)

∫
η−α−1e−

1
ηβ dη

Again the following transformation is used 1
ηβ = ξ.

E(R2) =
1 + Λ
βΓ(α)

∫
ξα−2e−ξdξ +

m2

Γ(α)

∫
ξα−1e−ξdξ

=
1 + Λ

β(α− 1)
+m2 (A.2.3)

The second term on the right hand side is given by proposition (5.4.1). Substituting these two results
concludes the proof.

Proof Proposition 5.4.4. Substitute D, δ for R,r respectively in the proof of proposition (5.4.3).

Proof Proposition 5.4.5. In order to derive Cov(R,D) the following integral needs to be calculated.

E(RD) =
∫∫

rδfR,D(r, δ)d(r, δ) (A.2.4)

This can be done via application op LTP and using the priors, e.g.
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E(RD) =
∫∫

rδ

∫∫
fR,D|M,H(r, δ;µ, η)fM,H(µ, η)d(µ, η)d(r, δ)

=
∫∫

rδ

∫∫
fR|M,H(r;µ, η)fD|M,H(δ;µ, η)fM,H(µ, η)d(µ, η)d(r, δ)

=
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rδ
1

2πη
e−

1
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√
2πΓ(α)Λ

1
2
e−

1
2

(µ−m)2

ηΛ − 1
ηβ d(µ, η, r, δ)

The order of integration will now be changed. First integration over r than over δ will be performed.

E(RD) =
∫∫∫

δ
η−α− 5

2 β−α

(2π)
3
2 Γ(α)Λ

1
2

e−
1
2η (δ−µ)2e−

1
2

(µ−m)2

ηΛ − 1
ηβ

∫
re−

1
2η (r−µ)2drd(µ, η, δ)

=
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1
2η (δ−µ)2e−

1
2

(µ−m)2

ηΛ − 1
ηβ d(µ, η, δ)

=
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µ
η−α−2β−α

2πΓ(α)Λ
1
2
e−

1
2

(µ−m)2

ηΛ − 1
ηβ

∫
δe−

1
2η (δ−µ)2dδd(µ, η)

=
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µ2 η
−α− 3

2β−α

√
2πΓ(α)Λ

1
2
e−

1
2

(µ−m)2

ηΛ − 1
ηβ d(µ, η)

Now first perform the integration over µ.

E(RD) =
∫

η−α− 3
2 β−α

√
2πΓ(α)Λ

1
2
e−

1
ηβ

∫
µ2e−

1
2ηΛ (µ−m)2dµdη

=
∫
η−α−1β−α

Γ(α)
e−

1
ηβ (m2 + ηΛ)dη

Here a gamma-function can be recognized. Define ξ = 1
ηβ , this results in

E(RD) =
m2

Γ(α)

∫
ξα−1e−ξdξ +

Λ
βΓ(α)

∫
ξα−2e−ξ

= m2 +
Λ

β(α− 1)

Together with proposition (5.4.1),(5.4.2) this results in Cov(R,D) = Λ
β(α−1) .

A.3 Proof Characteristic Value of the Timber

Proof Proposition 7.4.1. From Proposition 5.1.2 it follows that the predictive distribution of R is
(generalized) student-t distributed. The (inverse) cumulative distribution function of is found by
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transforming the probability density function into the standard form. Equation (5.1.1) shows the
following pdf.

fR|D(r; δ) =
β∗−α∗Γ(α∗ + 1

2 )√
2π(1 + Λ∗)Γ(α∗)

(−C2)−α∗− 1
2 , (A.3.1)

with

C2 = − 1
β∗

− (r −m∗)2

2(1 + Λ∗)
, (A.3.2)

in which the parameters α∗, β∗,m∗,Λ∗ are that of the posterior distribution over2 M,H(µ, η). Notice
that C2 can be restated as

C2 = − 1
β∗

(
1 +

β∗ (r −m∗)2

2(1 + Λ∗)

)

= − 1
β∗

(
1 +

α∗β∗

(1 + Λ∗)
(r −m∗)2

2α

)

= − 1
β∗
C3. (A.3.3)

Define C4 = α∗β∗

(1+Λ∗) , substitution of C3 and C4 in Equation (A.3.1) results in

fR|D(r; δ) =
β∗−α∗β∗α∗+ 1

2 Γ(α∗ + 1
2 )√

2π(1 + Λ∗)Γ(α∗)
(C3)−α∗− 1

2

=
√
C4Γ(α∗ + 1

2 )
√

2α∗πΓ(α∗)

(
1 + C4

(r −m∗)2

2α∗

)−α∗− 1
2

(A.3.4)

From which a standard student-t distribution can be recognized, with ν = 2α∗ degrees of freedom,
adjusted by C4 and shifted over m∗,i.e.,

fR|D(r; δ) =
√
C4ψT (C4 (r −m∗) , 2α∗) , (A.3.5)

where ψT is the pdf. of a standard student-t distributed variable.

A.4 Proofs Bayes Decision Rules

Theorem A.4.1 (Bayes Decision Rule under Quadratic Loss). Let L(r, d) = K (d− r)2 be
the (quadratic) loss function. Then E(R|X) minimizes the posterior expected loss, eg.

arg min
d

∫
r

K (d− r)2 fR|X(r;x)dr = E(R|X). (A.4.1)

By definition this implies that the Bayes Decision Rule under quadratic loss is E(R|X) = r̃.

2These parameters can be expressed in the parameters of the prior information and the test results by Equation
(5.1.7).
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Proof. To find the minima mentioned in Equation (A.4.1) the posterior expected loss is differentiated
with respect to d and then set equal to 0. The posterior expected loss can be expressed as∫

r

K (d− r)2 fR|X(r;x)dr =
∫

r

K
(
d2 − 2dr + r2

)
fR|X(r;x)dr. (A.4.2)

Differentiating and setting equal to zero results in

∂

∂d

∫
r

K
(
d2 − 2dr + r2

)
fR|X(r;x)dr =

∫
r

K (2d− 2r) fR|X(r, x)dr

= 2dK
∫

r

fR|X(r;x)dr − 2K
∫

r

rfR|X(r;x)dr

= 2K(d− E(R|X)) = 0 (A.4.3)

Which gives r̃ = E(R|X).

Theorem A.4.2 (Bayes Decision Rule under Bi-Linear Loss). Let L(r, d) be the bi-linear
loss function. The Bayes Decision Rule is then the 100 c1

c1+c2
-percentile estimate of the posterior

distribution of R.

Proof. To prove the theorem given above the posterior expected loss is calculated and then the
minimum is found by setting the derivative of this expression to 0.

ER|X(L(d, r)) =
∫ ∞

−∞
L(d, r)fR|X(r;x)dr

=
∫ d

−∞
c2(d− r)fR|X(r;x)dr +

∫ ∞

d

c1(r − d)fR|X(r;x)dr

= c2dF (r)− c2

∫ d

−∞
rfR|X(r;x)dr + c1

∫ ∞

d

rfR|X(r;x)dr − c1d
[
1− FR|X(r, x)

]
(A.4.4)

The derivative of this expression to d is equal to

∂

∂d
ER|X(L(d, r)) = (c1 + c2)FR|X(r;x)− c1 (A.4.5)

Notice lim
d→∞

∂
∂dER|X(L(d, r)) = c2 ≥ 0. Thus this expectation is minimized if

FR|X(d) =
c1

c1 + c2
. (A.4.6)

Therefore the Bayes decision rule for bi-linear loss is given as

r̃ = F−1
R|X(

c1
c1 + c2

) , r c1
c1+c2

(A.4.7)
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A.5 Direct Numerical Integration in Humidity Case

In this section a derivation of the direct numerical integration approach of the Bayesian method
applied to the humidity case is given. The first step defining the prior information is exactly the
same as given in subsection 8.2. The next step defining the likelihood is different then was done
in section 8.2, as there the HUGIN-approach was used. Here a more mathematical procedure is
followed. Still the graphical model that was used can be helpful in the derivation as it shows which
transformations will be performed deriving the likelihood.

The likelihood function is deducted from the observation models given as Equations (8.2.4),
(8.2.5), and (8.2.6). By definition the likelihood function is given by the following probability
density function

fΩM |Rv
(ωm; r) (A.5.1)

As given by observation model 8.2.5 all measurements at one specific time are dependent on the
conversion error. Applying the LTP by conditioning on the error of conversions leads to

fΩM |Rv
(ωm; r) =

∫∫
fΩM |Rv,A,B(ωm; r, a, b)fA,B(a, b)d(a, b). (A.5.2)

The joint density function is given by the prior information thus concentrate on fΩM |Rv,A,B(ωm; r, a, b).
Using the humidity relation ,Equation (8.2.6), on the conditioned variables in this function results
in

fΩM |Rv,A,B(ωm; r, a, b) = fΩM |ΩR
(ωm;−1

b
log
(
v0
a
− v0 − vc

ar
√
tinspv0

x

)
). (A.5.3)

Now a transformation from Ωm to ε is performed to determine the probability density function.
This means using observation model, Equation (8.2.4). The Jacobian for this transformation equals

J = | ∂ε
∂ΩM

| = | 1
ΩR

|. (A.5.4)

Taking all errors being independent of each other, the transformation results in the following ex-
pression.

fΩM |Rv,A,B(ωm|r, a, b) =
n∏

i=1

[
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(
ω

(i)
m

ω
(i)
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)
1

ω
(i)
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]

=
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i=1

fε

− ω
(i)
m b

log
(
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ar
√

tinspv0
x(i)

)
− b

log
(

v0
a − v0−vc

ar
√

tinspv0
x(i)

)
 (A.5.5)

Where index (i) indicates at which measurement-position (depth) the measurement is taken.
Notice that ε ∼ N (1, 0.05) which implies that in principle a known expression is found for the
likelihood. In principal because the integration over a,b still needs to be performed. This is thus
done by direct numerical integration, which is implemented in MATLAB. The program is added in
Appendix C. The next step in the Bayesian method is to calculate the posterior distribution. This
is done by using Bayes’formula, e.g.

fRv|ΩM
(r;ωm) ∝ fΩM |Rv

fRv
(r) (A.5.6)

This was also done numerically in MATLAB. The resulting m-code can be used to perform the
Bayesian method, to perform the update of the stochast Rv, and check if HUGIN did perform the
update correct (which it did!). This was done by comparing the predictive distribution from HUGIN
with the one from direct numerical integration approach.
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Appendix B

Controlling HUGIN

This section contains a small report describing the use of the HUGIN API’s in MATLAB.

B.1 Introduction

This report explains how HUGIN can be addressed by MATLAB and Visual Basic (for Excel) by
using the HUGIN Application Programming Interface (API). HUGIN has now developed a Visual
Basic ActiveX server which makes it possible to access the HUGIN API’s from many different
applications. Which was previously only supported from C-libraries.

The emphasis in this report is mainly on use of the API with MATLAB. Briefly usage from
Visual Basic is discussed, this because the available help file on the ActiveX Server is based on Visual
Basic. This help file1 can be found in the HUGIN installation directory as The HUGIN API ActiveX
Server 6.3 Help. This help file also contains some elementary examples and the API reference
manual. This reference manual is needed for reference to available object properties and for reference
to all possible functions.

This report can be read without any pre-knowledge of the HUGIN ActiveX server, still basic
knowledge on belief nets is needed. To understand this report elementary knowledge of the Visual
Basic programming language is needed (only for chapter 2) and knowledge on the use of MATLAB
is needed. This report was based on usage with MATLAB 7 Release 14. If one uses another version
some commands might not be executed. This is due to changes in different version of MATLAB in
the function ’invoke’.

1When in this report one is referred to ’the help file’, without any reference to a specific help file this help file is
intended.
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B.2 Installation

Installation in Windows

During the installation of HUGIN Researcher, the HUGIN API’s are placed in their own subfolder
in the main installation folder. Another file is placed in the windows system32 folder, namely
nphapi63.dll 2. Before this file can be used by Windows it needs to be registered with Windows.
This should be done automatic during the installation but often this does not happen and therefore
perform the following steps to do this manually. Open a dos-box in windows. And execute the
following command regsvr32 hapi63.dll from \HDE6.3X\lib-directory which is a subdirectory of
the HUGIN installation-directory. Now the server can be used in general applications, e.g. MAT-
LAB. How this is done will be explained in chapter B.4. The next subsection will explain what to
do in order to use the HUGIN API’s in Visual Basic for Excel (VB).

If problems occur trying to access the HUGIN API’s one should look in the HUGIN release notes
to solve the problem or e-mail HUGIN at activex@hugin.com.

Library in Visual Basic

In order to use the HUGIN API’s in VB the HUGIN ActiveX library needs to be added to the
references of VB. This is done by selecting from the ’tools’-tab ’References’. Now a window
is displayed with all the references that VB currently uses. Now tag the box with HUGIN API
ActiveX Server 6.3. If this library is not in the list, select it via ’Browse...’ from the API instal-
lation directory by selecting hapi63.dll. Now one can use the API’s in VB, how this is done will
be explained in chapter B.3.

B.3 Visual Basic for Excel

This chapter describes how to use some functions from the HUGIN API and how to change properties
with the HUGIN API. Only the most basic functions are treated here by giving examples. It is meant
to illustrate the syntaxis for using the API in VB. This section can be seen as an addition to the
examples in the help file.

Small Example 1

As first the small network displayed by figure B.1 will be created with the help of VB.

Figure B.1: The Example network in HUGIN created via VB

2For some reason this is not always the case thus if this file is not found there after installing HUGIN; place this
file manually there. This can be done by copying the file from the HUGIN directory
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The code needed to create this network is displayed below. In the next subsections each of the
commands issued will be explained.

Public Sub Example()
’ Load the ActiveX Object
Set glob = CreateObject("HAPI.Globals")
’Create a BBN
Set Domain = glob.GetNewDomain()
’Create Nodes
Set ndA = Domain.GetNewNode(hCategoryChance, hKindDiscrete)
ndA.Label = "A"
ndA.Name = "A"
Set ndB = Domain.GetNewNode(hCategoryChance, hKindDiscrete)
ndB.Label = "B"
ndB.Name = "B"
’ Add Structure
Call ndA.AddParent(ndB)
’ Save Network
Call Domain.SaveAsNet("C:\ExampleE.net")

End Sub

General Commands

In order to do any work with HUGIN in VB one needs to create an object in VB to handle all
operations called or performed from the API. This is done with the following command.

Set glob = CreateObject("HAPI.Globals")

Handling a Network

The following code loads a network from a HUGIN file into the ActiveX object which was created
in VB by the previous code. Then this code saves the network into another HUGIN net-file.

Set domain=glob.LoadDomainFromNet("C:\BBN1.net", Nothing, 0)
Call domain.SaveAsNet("C:\BBN2.net")

The arguments ’Nothing’ and ’0’ are additional arguments which are set to these values because
they are not used here. The possibilities for using these additional arguments are explained in the
API reference manual contained in the help-file.

Creating Nodes

The following code will create a node and define its type, name, and label. It is important to notice
that name and label are different properties of the node. The name of a node is how HUGIN refers
to the node. This implies that it must be unique for each node. According to the API tutorial the
name needs to be specified in a format similar to C-identifiers. This means ’loosely’ that no spaces
and funny characters may be used in names. The label of a node is the name that is displayed in a
node in the graphical interface.
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Set ndA = Domain.GetNewNode(hCategoryChance, hKindDiscrete)
ndA.Label = "A"
ndA.Name = "A"

Other properties of a Node can be defined/altered using set in the same way as with label and name
was done. All properties available for a node can be found in the API reference manual.

Adding Structure

Once the nodes are created in the network the structure can be added. Structure is added in the
visual Interface of HUGIN by drawing arcs from one node to the other. This is done from the
HUGIN API with the function ’AddParent’.

Call ndA.AddParent(ndB)

Notice that the function ’AddParent’ is called from the child node.

Editing States

When a discrete node is created in the network one still needs to define the discretisation. This
section shows how to define/change the number of states and how to change the State Values.

ndA.NumberOfStates = 2
ndA.StateLabel(0) = "On"
ndA.StateLabel(1) = "Off"

The code displayed above changes node A to have two states; ’On’, and ’Off’. The index used in
the property ’StateLabel’ starts at 0. Therefore the state ’On’ was set with index 0. HUGIN starts
every index with a 0. Notice when setting the boundaries of a node of type ’Interval’ the index to
define the values of the boundaries of the intervals start also at 0. The following figure shows three
intervals [7, 10], [10, 13], [13, 16] at each boundary the value of the index needed in HUGIN to access
this boundary is displayed above it.

Figure B.2: A plot of an interval with the index used in HUGIN

Filling Tables

The next code will display how to manually fill a (conditional) probability Table of a node.

ndA.Table.Data(0) = 666



83

Notice that the property ’Data’ has an index attached to it. This index displays the entry in the
table. The following definition gives the value of this index for each table entry.

Definition B.3.1. Let TA be the table of node A which has m columns and n rows (TA is the
(conditional) probability table of node A). The index needed in the property data for element TA(i,j)
is defined as

Index(i, j) = i− 1 + (j − 1) ∗ (n− 1), 1 ≤ i ≤ n, 1 ≤ j ≤ m. (B.3.1)

Bear in mind that HUGIN normalizes all the entries in the table such that the sum of each
column equals 1, when it uses them for computation.

B.4 MATLAB

General Commands

To control HUGIN from MATLAB one has to instantiate the ActiveX server and then use the
available functions in this library to alter objects created from this library. One can instantiate the
HUGIN ActiveX Server into an object in MATLAB with the following command:

glob=actxserver(’HAPI.Globals’);

This command creates a HUGIN API object named glob, which now can be used to address functions
and properties defined in the API. To see what functions are available for this object issue the
command methodsview or methods, or see the reference manual. Notice that MATLAB makes a
distinction between properties of an object and functions defined in the API. This distinction is
apparent in the way both are called/issued.

To issue a function (or sub procedure) from the API the command invoke needs to be used. This
command tells MATLAB which object contains the function and which function it needs to issue and
with what arguments. For example if a network stored in a net-file (previously created in HUGIN
e.g. C:\ExampleE.net) needs to be loaded into an object in MATLAB. In the reference manual
the function ’LoadDomainFromNet’is found which can handle the task. The following function
description comes from the reference manual.

Syntax Function

LoadDomainFromNet(strFileName As String, colParseMessages As
Collection, iMaxMessages As Integer) As Domain

This function can be issued with the next to statement.

domain=invoke(glob,’LoadDomainFromNet’,’C:\ExampleE.net’,0,0);

The result of this statement is that the command invoke now tells MATLAB to issue the function
LoadDomainFromNet defined in the object glob. And use as arguments for this function the filename
and the default values for the last two (optional) arguments 3. As a result an object is created from
the API which refers to the network.

3Using the default values 0,0 means that these arguments are not used. See the reference manual for the possibilities
of using these optional arguments
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To edit/display a property of an object without using an API function one has to use set/get.
The following command illustrates how one can edit the number of states of node A and also display
it.

set(nodeA,’NumberOfStates’,3);
a=get(nodeA,’NumberOfStates’);

The properties of a node 4 e.g. number of states, children, etc. can be altered with the ’set’-command
and can be retrieved from the node (object) with the ’get’-command.

Small Example2

The network displayed in figure B.1 can be created in MATLAB with the following code.

% Load the ActiveX Object
glob = actxserver(’HAPI.Globals’);
%Create the BBN
domain = invoke(glob,’GetNewDomain’);
%Create Nodes
nodeA
=invoke(domain,’GetNewNode’,’hCategoryChance’,’hKindDiscrete’)
set(nodeA,’Label’,’A’);
set(nodeA,’Name’,’A’);
nodeB
=invoke(domain,’GetNewNode’,’hCategoryChance’,’hKindDiscrete’);
set(nodeB,’Label’,’B’);
set(nodeB,’Name’,’B’);
%Add Structure
invoke(nodeA,’AddParent’,nodeB);
%Save Network
invoke(domain,’SaveAsNet’,’C:\ExampleM.net’);

The following sections explains the commands issued in the code above and shows some frequently
used commands. They are displayed to illustrate the syntax used in MATLAB to control HUGIN.
It is again by no means meant as a complete list of all operations possible with the HUGIN API.
For this see the reference manual.

Handling a Network

Creating, loading, and saving a domain is done via the following commands.

domain=invoke(glob,’GetNewDomain’);
domain=invoke(glob,’LoadDomainFromNet’,C:\ExampleM,0,0);
invoke(domain,’SaveAsNet’,’C:\ExampleM.net’);

Note that when a network is created or loaded it is assigned to an object in MATLAB.
4In order to use these statements a variable nodeA needs to be defined in MATLAB. This variable nodeA should

contain an object created from the HUGIN API referring to a node. This object needs to be created with invoke as
will be shown in the next example
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Table B.1: Possible types of nodes
Name Value Description
hCategoryChance 7 Specifies a chance node
hCategoryDecision 8 Specifies a decision node
hCategoryUtility 9 Specifies a utility node
hCategoryInstance 6 Specifies an instance node

Creating Nodes

A node is created via the following code.

nodeA=invoke(domain,’GetNewNode’,’hCategoryChance’,’hKindDiscrete’);
set(nodeA,’Name’,’A’);
set(nodeA,’Label’,’A’);

In order to create different kinds of nodes other arguments in this function need to be used. In the
refernce manual differnet tables can be found that show the possible arguments that canb be used
to create different kind of nodes. For example the following table is taken from the reference manual
form the section hCategories, it displays the possible types of nodes that can be created.

There is also an table for the different subtypes in the reference manual. This defines how the
states of a discrete node are defined ,e.g. labelled, boolean, numbered, or as intervals.

Adding Structure

Structure is added via the following command.

invoke(nodeA,’AddParent’,nodeB);

The function ’AddParent’ is called from node A with input argument node B, therefore this order
in the function ’invoke’ is needed. As this means that an arc is drawn from node B to node A. If
the order of the nodes is changed the arc will be drawn reverse.

Editing States

The number of states and the states themselves are changed with the following code.

set(ndA,’NumberOfStates’,2)
set(ndA,’StateLabel’,0,’On’)
set(ndA,’StateLabel’,1,’Off’)

Note that the index of ’StateLabel’ starts at 0. HUGIN always starts indexes at 0 opposed to
MATLAB which start at 1. Thus the index of state i equals i-1. See figure B.2 for the indexes used
when a interval needs to be defined.
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Filling Tables

To edit a table of a node manually one can use the following statement.

set(nodeA.Table,’Data’, 0, 0.1);

Where the last two arguments are the ‘Data’ -index (see B.3.1) and the value that is entered in the
table (in this case 0.1). To clarify this statement even more, for example. the matrix CPTA defined
in MATLAB as

CPTA =

 0.8 0.1

0.2 0.9


can be copied as the table of node A with the following code in MATLAB.

for i=1:size(CPTA,1)
for j=1:size(CPTA,2)

set(nodeA.Table,’Data’,i-1+(j-1)*(size(CPTA,2)-1),CPTA(i,j));
end

end

As the experienced HUGIN user knows, a table of a node can also be defined by an expression
or model. This is discussed in the next subsection.

Creating a Model/Expression

In HUGIN a table can be created/generated by an model/expression. While trying to create a table
by a model/expression a small problem was uncovered with the API. That is there is no function
available to MATLAB to create certain new objects defined by or in the API, eg. of the type HUGIN
collection. 5 This problem has been reported to HUGIN and they are working on a solution. A
(temporary) solution has been found to work around this problem. This solution will be given here
and the problem will be clarified by giving the example how the problem was encountered.

In order to define the table of a node by assigning an expression ie. by a formula, a model needs
to be created for that node. And then insert the proper expression in this model, which of course first
will have to be created. Defining a model for a node is done with the function ’NewModel’ which is
called from a node. This function needs as input an empty collection. This empty collection cannot
be created from the API, thus a temporary dummy node (ndtemp) is created. From this ndtemp
the expression for his parents (ndtemp.parents), which is empty is used to insert as an argument in
the function ’NewModel’.

ndtemp=invoke(domain,’GetNewNode’,’hCategoryChance’,
’hKindDiscrete’);
m = invoke(nodeA,’NewModel’,ndtemp.parents);

The commands given above does the same as when selecting in HUGIN from the table menu
’Switch to Expression’. Now that the node A is capable of holding a model, the expression is set.
For instance the expression is set such that the node has the same table (distribution) as node B.

%Create expression for node B
expr1 = invoke(glob,’GetNewNodeExpression’,nodeB);
%Set expression in model
set(m,’Expression’,0,expr1);

5This problem does not occur in VB because this language can create new objects with the command ’NEW’.
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Note that it is only possible to set an expression as a model. Thus the statement set(m,’Expression’,0,nodeB);
will return an error, as node B is of node-type and not an expression.

The following code shows how to put a string as an expression. This is done with the help of the
function ’GetNewExpressionFromString’.

%Create dummy node to create empty expression
m = invoke(nodeA,’NewModel’,ndtemp.parents);
%Create expression from string
expr=invoke(domain,’GetNewExpressionFromString’, ’Normal(5,4)’, 0,
0);
%Set expression as model for node A
set(m,’Expression’,0,expr);

Now node A has a normal distribution with parameters (5,4). Notice that HUGIN recognizes the
operator ’Normal’. A full list of all the operators available can be found in the reference manual
under Types subsection hoperators.

The next code shows how to create an expression using multiple operators. This is done by
creating a combined expression to put in as the model from other expressions. For example the
expression for node A will be defined as the product of two (parent) nodes (nodeB,nodeC).

%Create empty expression from dummy node
exprs = ndtemp.parents;
%Create expressions from nodes
exprB=invoke(glob,’GetNewNodeExpression’,nodeB);
exprC=invoke(glob,’GetNewNodeExpression’,nodeC);
%Combine node expression in one expression
invoke(exprs,’Add’,exprB);
invoke(exprs,’Add’,exprC);
%Create product expression
expr1=invoke(glob,’GetNewCompositeExpression’,’hOperatorMultiply’,exprs);
%Create model for node A and set the proper expression
m =invoke(nodeA,’NewModel’,ndtemp.parents);
set(m,’Expression’,0,expr1);

Note that a dummy node ndtemp was used, which still needs to be deleted.

Compiling

When a network is built and the interface is created in MATLAB it can be compiled. This is
the same action as pressing the ’lightning’-button in HUGIN. Notice that the network needs to be
formulated correctly otherwise compiling errors occur. These will be returned to MATLAB which
can be used to backtrack the problem. Compiling can be done with the following statement.

invoke(domain,’Compile’);

Executing this statement can take some time.
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Get Marginal Distribution

When a network is compiled one can access the marginal distributions of the nodes. In order to do
so an expression of the node is needed. For example when there is an unique parent node , (node B)
for node A, it can be used to get the expression (eg. use ndB.children). Thus getting the marginal
of node A is done via the statement.

tableM=invoke(domain,’GetMarginal’,ndB.children);

Notice that this command can only be issued in a compiled domain. And the returned object, here
stored in variable tableM needs to be handled as all tables are handled in the HUGIN API (See
section B.4) Note that an expressions for a node cannot be created directly in MATLAB see B.4.
Therefore if there is no expression available for the node from which the marginal distribution is
needed again a work around is needed. I have used the following work around. Create (before
compiling the network) a child node for the node which the marginal distribution is needed. Use
the expression for the parents of that node as the expression for the node to get the marginal from.
Before saving the network don’t forget to delete this node.

Set Evidence

Selecting evidence can only be done if the domain is compiled. When doing this from the API
one has to select the state one wants to set the evidence and then propagate the findings. This is
different from the graphical interface. There propagating is done automatically, in the API this is
not the case. The following code shows how the second state is selected for node A. And all findings
are propagated in the default way (hence the arguments ’hEquilibriumSum’,’hModeNormal’).

invoke(ndA,’SelectState’,2);
invoke(domain,’Propagate’,’hEquilibriumSum’,’hModeNormal’);

B.5 Complete Examples MATLAB

This chapter contains four m-files, which can be copied and run in MATLAB. The first two are
meant to illustrate the use of all statements discussed in the previous chapter. Notice that they
create files in the root (C:\). The following network should appear. The last two can be used to
create a high level toolbox in MATLAB.

Figure B.3: The example network in HUGIN
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Complete Example 1

%HuginExample.m

%C.J.L.Rothkrantz 2005

%Load Hugin Server

glob=actxserver(’HAPI.Globals’);

%Create Network

domain=invoke(glob,’GetNewDomain’);

%Create Nodes mu,variance,N

ndMu=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndMu,’Name’,’mu’); set(ndMu,’Label’,’mu’);

set(ndMu,’SubType’,’hSubtypeNumber’); set(ndMu,’StateValue’,0,0);

ndVariance=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndVariance,’Name’,’variance’);

set(ndVariance,’Label’,’variance’);

set(ndVariance,’SubType’,’hSubtypeNumber’);

set(ndVariance,’StateValue’,0,1);

ndN=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndN,’Name’,’N’); set(ndN,’Label’,’N’);

set(ndN,’SubType’,’hSubtypeInterval’);

%creating discretisation for N

set(ndN,’NumberOfStates’,5); A=linspace(-5,5,4); for i=1:4

set(ndN,’StateValue’,i,A(i));

end

%Add StructureCreate arcs

invoke(ndN,’AddParent’,ndVariance); invoke(ndN,’AddParent’,ndMu);

%Setting N normal distributed

exprMu=invoke(glob,’GetNewNodeExpression’,ndMu);

exprVariance=invoke(glob,’GetNewNodeExpression’,ndVariance);

ndtemp=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); exprs=ndtemp.parents;

invoke(exprs,’Add’,exprMu); invoke(exprs,’Add’,exprVariance); m =

invoke(ndN,’NewModel’,ndtemp.parents);

newexp=invoke(glob,’GetNewCompositeExpression’,’hOperatorNormal’,

exprs); set(m,’Expression’,0,newexp); invoke(ndtemp,’Delete’);

%Save network

invoke(domain,’SaveAsNet’,’C:\HuginExample.net’);

Complete Example 2

%Load Hugin Server

glob=actxserver(’HAPI.Globals’);

%Load Network

domain=invoke(glob,’LoadDomainFromNet’,’C:\HuginExample.net’,0,0);

%Create variables for Nodes mu,variance,N
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ndMu=invoke(domain,’GetNodeByName’,’mu’);

ndVariance=invoke(domain,’GetNodeByName’,’variance’);

ndN=invoke(domain,’GetNodeByName’,’N’);

%Create a second value for variance

set(ndVariance,’NumberOfStates’,2)

set(ndVariance,’StateValue’,1,2);

%Save network

invoke(domain,’SaveAsNet’,’C:\HuginExample2.net’);

%Compile Network

invoke(domain,’Compile’);

%Save Compiled network

invoke(domain,’SaveAsHKB’,’C:\HuginExample2_comp.hkb’,0);

%Set evidence on variance

invoke(ndVariance,’SelectState’,1);

invoke(domain,’Propagate’,’hEquilibriumSum’,’hModeNormal’);

%save Case

invoke(domain,’SaveCase’,’C:\HuginExample2_case.hcs’);

function res=NewCNode(dom,name)

%function res=NeCNode(dom,name)

%Create Chance Node with intervals

ndNew=invoke(dom,’GetNewNode’,’hCategoryChance’, ’hKindDiscrete’);

ndNew.Name = name; ndNew.Label=name; ndNew.SubType

=’hSubtypeInterval’; res=ndNew;

function SetExpression2(glob,dom,hOperator2,node,nd1,nd2)

%function SetExpression2(glob,dom,hOperator2,node,nd1,nd2)

expr1=invoke(glob,’GetNewNodeExpression’,nd1);

expr2=invoke(glob,’GetNewNodeExpression’,nd2);

%Create dummy nodes

ndtemp1=invoke(dom,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’);

ndtemp2=invoke(dom,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’);

%Create temp expressions

exprs=ndtemp1.parents; invoke(exprs,’Add’,expr1);

invoke(exprs,’Add’,expr2); m =

invoke(node,’NewModel’,ndtemp2.parents);

%Create combined expression

newexp=invoke(glob,’GetNewCompositeExpression’,hOperator2, exprs);

%Set expression

set(m,’Expression’,0,newexp);

%remove dummy nodes

invoke(ndtemp1,’Delete’); invoke(ndtemp2,’Delete’);



Appendix C

Codes

This chapter contains all m-files, MATLAB codes referred to in this thesis. These m-files were
written in MATLAB 7.0 release 14. Also a DPL-code is added. This code was written in the trail
version of DPL 6.0.

BUAN.m

%% Procedure BUAN(alpha_p,beta_p,m_p,lambda_p,data_D)

%Determines the predictive distribution of R in the Timber Case.

%Applying the NIG-model. It produces a plot of the predictive

%distribution with n2 points. And a plot of the prior information with

%n3 points

%% Define Constants

%Number of points used for the plots

n2=300; n3=50;

%Prior Information

alpha_p=9; beta_p=0.01; m_p=100; lambda_p=8;

%Data

data_D=[120,110];

%% Initialization

r=linspace(50,150,n2); fr_pred=[];

%% Updating

for i=1:length(data_D)

[alpha,beta,m,lambda]=Uppar(alpha_p,beta_p,m_p,lambda_p,data_D(1:i));

%Predictive distribution

91
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C1=(beta^(-alpha)*GAMMA(alpha+1/2))/(sqrt(2*pi*(1+lambda))*GAMMA(alpha));

fr_pred=cat(1,fr_pred,C1*(1/beta+((r-m).^2)/(2*(1+lambda))).^(-alpha-1/2));

end

%% Post processing

%Plot Results

figure;

plot(r,normpdf(r,m_p,1/((alpha_p-1)*beta_p)),’r’);

hold;

title(’Prior and Predictive distribution of R - Using the NIG-model’);

plot(repmat(r,size(data_D’))’,fr_pred’);

legend(’prior’,’predictive with 1 datapoint’,’predictive with 2 datapoints’)

hold off;

% Plot prior info

figure; NIGPlot(alpha_p,beta_p,m_p,lambda_p,50,150,1,30,n3);

BUDMuAll.m

%% Procedure BUDMuAll

%Computes Bayes Update for Camaru by DNI and BL

data_d=[121.3144687,112.55689275,111.8634926];

data_nd=[105.0329832,102.8546259,103.9495366]; mu_m=75.29;

sigma_m=16.2; sigma=19.69088717; sigma_a=10;

%Size Data

n_d = length(data_d); n_nd = length(data_nd);

%Integration bounds

k = 4; mu_onder=mu_m-k.*sigma_m; mu_boven=mu_m+k.*sigma_m;

nmu=500; MU=linspace(mu_onder, mu_boven, nmu); dmu=MU(2)-MU(1);

nd=100; D=linspace(mu_m-4*sigma,mu_m+4*sigma_m,nd); dd=D(2)-D(1);

l = 4; a_onder=-l.*sigma_a; a_boven=l.*sigma_a; na=100;

A=linspace(a_onder, a_boven, na); da=A(2)-A(1);

%Prior for mu

prior_m = normpdf(MU,mu_m,sigma_m); tic;

%Destructieve Data

if n_d>0

flik = ones(length(MU),1);

for i=1:n_d

lik = (normpdf(data_d(i),MU,sigma));
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flik = lik’ .* flik;

end

fpost=flik’.*prior_m;

C=sum(fpost)*dmu;

fpostd=1/C*fpost;

else

fpostd=prior_m

end

%Non-Destyructive Data

if n_nd>0

som=zeros(length(MU),1);

for j=1:length(A)

flik = ones(length(MU),1);

for i=1:length(data_nd)

lik = (normpdf(data_nd(i)-A(j),MU,sigma)*normpdf(A(j),0,sigma_a));

flik = lik’ .* flik;

end

som = som+flik;

end

fpost=som’.*fpostd;

C=sum(fpost)*dmu;

fpost=1/C*fpost;

else

fpost=fpostd;

end; toc;

%post processing

clf; plot(MU,fpost,’b’); hold;

plot(MU,normpdf(MU,mu_m,sigma_m),’g’);

%Calc posterior MU Bayes Linear

%Destructive Data

tic; CovMDi=sigma_m^2; CovMD=CovMDi*ones(1,n_d);

VarD=diag(ones(1,n_d)*sigma^2)+sigma_m^2*ones(n_d,n_d);

%Non Destructive Data

CovMNDi=sigma_m^2; CovMND=CovMNDi*ones(1,n_nd);

VarND=diag(ones(1,n_nd)*(sigma_a^2+sigma^2))+sigma_m^2*ones(n_nd,n_nd);

%Join Data

CovMAD=cat(2,CovMD,CovMND);

VarD=cat(1,VarD,sigma_m^2*ones(n_nd,n_d));

VarND=cat(1,sigma_m^2*ones(n_d,n_nd),VarND);

VarAD=cat(2,VarD,VarND); data_ad=cat(2,data_d,data_nd);
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%Adjust Bayes Linear

EadM=mu_m+CovMAD/VarAD*(data_ad-mu_m)’;

VadM=(sigma_m^2)-CovMAD/VarAD*CovMAD’; toc;

%post Processing

plot(MU,normpdf(MU,EadM,sqrt(VadM)),’:m’); legend(’posterior via

DNI’,’prior MU’,’posterior via BL’);

HUMCreateNW.m

tic; domain=invoke(glob,’GetNewDomain’);

%Node Rv, LogRv

ndRv=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndRv,’Name’,’Rv’); set(ndRv,’Label’,’Rv’);

set(ndRv,’SubType’,’hSubtypeInterval’);

set(ndRv,’NumberOfStates’,n_disc); Rv=linspace(0,8,n_disc); for

i=1:n_disc

set(ndRv,’StateValue’,i-1,Rv(i));

end ndlogRv=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndlogRv,’Name’,’logRv’);

set(ndlogRv,’Label’,’logRv’);

set(ndlogRv,’SubType’,’hSubtypeInterval’);

set(ndlogRv,’NumberOfStates’,n_disc); for i=2:n_disc

set(ndlogRv,’StateValue’,i-1,log(Rv(i)));

end invoke(ndRv,’AddParent’,ndlogRv);

ndtemp=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’);

expr1=invoke(glob,’GetNewNodeExpression’,ndlogRv);

exprs=ndtemp.parents;

invoke(exprs,’Add’,expr1);expr2=invoke(glob,’GetNewCompositeExpression’,’hOperatorExp’,exprs

); m= invoke(ndRv,’NewModel’,ndtemp.parents);

set(m,’Expression’,0,expr2); m2=

invoke(ndlogRv,’NewModel’,ndtemp.parents); expr3=

invoke(domain,’GetNewExpressionFromString’,priorfunction,0, 0);

set(m2,’Expression’,0,expr3);

%Create Constantes

ndV0=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndV0,’Name’,’V0’); set(ndV0,’Label’,’V0’);

set(ndV0,’SubType’,’hSubtypeNumber’);

set(ndV0,’NumberOfStates’,1); set(ndV0,’StateValue’,0,V0);
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ndtinsp=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndtinsp,’Name’,’tinsp’);

set(ndtinsp,’Label’,’tinsp’);

set(ndtinsp,’SubType’,’hSubtypeNumber’);

set(ndtinsp,’NumberOfStates’,1);

set(ndtinsp,’StateValue’,0,tinsp);

%Create Constants

ndVc=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndVc,’Name’,’Vc’); set(ndVc,’Label’,’Vc’);

set(ndVc,’SubType’,’hSubtypeNumber’);

set(ndVc,’NumberOfStates’,1); set(ndVc,’StateValue’,0,Vc);

%Create Node A,B

ndA=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndA,’Name’,’A’); set(ndA,’Label’,’A’);

set(ndA,’SubType’,’hSubtypeInterval’);

set(ndA,’NumberOfStates’,n_disc);

A=linspace(150.18*0.8,150.18*1.2,n_disc); for i=2:n_disc

set(ndA,’StateValue’,i-1,A(i));

end

ndB=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndB,’Name’,’B’); set(ndB,’Label’,’B’);

set(ndB,’SubType’,’hSubtypeInterval’);

set(ndB,’NumberOfStates’,n_disc);

B=linspace(1.21*10^(-5)*0.8,1.21*10^(-5)*1.2,n_disc); for

i=2:n_disc

set(ndB,’StateValue’,i-1,B(i));

end m= invoke(ndA,’NewModel’,ndtemp.parents); expr1=

invoke(domain,’GetNewExpressionFromString’,Afunction,0, 0);

set(m,’Expression’,0,expr1); m2=

invoke(ndB,’NewModel’,ndtemp.parents); expr2=

invoke(domain,’GetNewExpressionFromString’,Bfunction,0, 0);

set(m2,’Expression’,0,expr2);

%Create Temp nodes for A,B

ndAtemp=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndAtemp,’Name’,’Atemp’);

set(ndAtemp,’Label’,’Atemp’); invoke(ndAtemp,’AddParent’,ndA);

ndBtemp=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndBtemp,’Name’,’Btemp’);

set(ndBtemp,’Label’,’Btemp’); invoke(ndBtemp,’AddParent’,ndB);
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OmegaR=linspace(-25000,25000,n_disc);%Omega_R

%aanpassen per meting!!!

%aanpassen per meting!!!

%aanpassen per meting!!!

%aanpassen per meting!!!

OmegaM=linspace(-25000,25000,n_disc);%Omega_M

E=linspace(0.8,1.2,n_disc);%Error

%loop over observations

V=linspace(130,V0,n_disc); for j=1:n_obs

for i=1:n

ndVinsp=invoke(domain,’GetNewNode’,’hCategoryChance’, ’hKindDiscrete’);

name=strcat(strcat(strcat(’V_insp_’,num2str(j)),’_’),num2str(i));

set(ndVinsp,’Name’,name);

set(ndVinsp,’Label’,name);

set(ndVinsp,’SubType’,’hSubtypeInterval’);

set(ndVinsp,’NumberOfStates’,n_disc-1);

%discretiseer Vinsp

for p=2:n_disc

set(ndVinsp,’StateValue’,p-1,V(p));

end

invoke(ndVinsp,’AddParent’,ndVc);

invoke(ndVinsp,’AddParent’,ndRv);

invoke(ndVinsp,’AddParent’,ndtinsp);

invoke(ndVinsp,’AddParent’,ndV0);

%Model ndVinsp

exprs=ndtemp.parents;

expr1=invoke(glob,’GetNewNodeExpression’,ndVc);

invoke(exprs,’Add’,expr1);

expr2=invoke(glob,’GetNewCompositeExpression’,’hOperatorNegate’,exprs);

expr3=invoke(glob,’GetNewNodeExpression’,ndV0);

exprs2=ndtemp.parents;

invoke(exprs2,’Add’,expr3);

invoke(exprs2,’Add’,expr2);

expr4=invoke(glob,’GetNewCompositeExpression’,’hOperatorAdd’,exprs2);

expr5=invoke(glob,’GetNewNumberExpression’,-sensor(1,j)); %afstand sensor!!!

exprs3=ndtemp.parents;

invoke(exprs3,’Add’,expr4);

invoke(exprs3,’Add’,expr5);

expr6=invoke(glob,’GetNewCompositeExpression’,’hOperatorMultiply’,exprs3);

expr7=invoke(glob,’GetNewNodeExpression’,ndtinsp);

exprs4=ndtemp.parents;

invoke(exprs4,’Add’,expr7);

expr8=invoke(glob,’GetNewCompositeExpression’,’hOperatorSqrt’,exprs4 );
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exprs5=ndtemp.parents;

expr9=invoke(glob,’GetNewNodeExpression’,ndRv);

invoke(exprs5,’Add’,expr9);

invoke(exprs5,’Add’,expr8);

expr10=invoke(glob,’GetNewCompositeExpression’,’hOperatorMultiply’,exprs5);

exprs6=ndtemp.parents;

invoke(exprs6,’Add’,expr6);

invoke(exprs6,’Add’,expr10);

expr11=invoke(glob,’GetNewCompositeExpression’,’hOperatorDivide’,exprs6);

expr12=invoke(glob,’GetNewNodeExpression’,ndV0);

exprs6=ndtemp.parents;

invoke(exprs6,’Add’,expr12);

invoke(exprs6,’Add’,expr11);

expr10=invoke(glob,’GetNewCompositeExpression’,’hOperatorAdd’,exprs6);

m=invoke(ndVinsp,’NewModel’,ndtemp.parents);

set(m,’Expression’,0,expr10);

%end model

ndOmegaR=invoke(domain,’GetNewNode’,’hCategoryChance’, ’hKindDiscrete’);

name=strcat(strcat(’Omega_r_’,num2str(j)),strcat(’_’,num2str(i)));

set(ndOmegaR,’Name’,name);

set(ndOmegaR,’Label’,name);

set(ndOmegaR,’SubType’,’hSubtypeInterval’);

set(ndOmegaR,’NumberOfStates’,n_disc);

%discretiseer OmegaR

for p=2:n_disc

set(ndOmegaR,’StateValue’,p-1,OmegaR(p));

end

invoke(ndOmegaR,’AddParent’,ndVinsp);

invoke(ndOmegaR,’AddParent’,ndA);

invoke(ndOmegaR,’AddParent’,ndB);

%fix model

exprs=ndtemp.parents;

expr1=invoke(glob,’GetNewNodeExpression’,ndVinsp);

expr2=invoke(glob,’GetNewNodeExpression’,ndA);

invoke(exprs,’Add’,expr1);

invoke(exprs,’Add’,expr2);

expr3=invoke(glob,’GetNewCompositeExpression’,’hOperatorDivide’,exprs);

exprs2=ndtemp.parents;

invoke(exprs2,’Add’,expr3);

expr4=invoke(glob,’GetNewCompositeExpression’,’hOperatorLog’,exprs2);

exprs3=ndtemp.parents;

expr5=invoke(glob,’GetNewNodeExpression’,ndB);

invoke(exprs3,’Add’,expr5);
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expr6=invoke(glob,’GetNewCompositeExpression’,’hOperatorNegate’,exprs3);

exprs4=ndtemp.parents;

invoke(exprs4,’Add’,expr4);

invoke(exprs4,’Add’,expr6);

expr7=invoke(glob,’GetNewCompositeExpression’,’hOperatorDivide’,exprs4);

m=invoke(ndOmegaR,’NewModel’,ndtemp.parents);

set(m,’Expression’,0,expr7);

%end model

ndErr=invoke(domain,’GetNewNode’,’hCategoryChance’, ’hKindDiscrete’);

name=strcat(strcat(’Error_’,num2str(j)),strcat(’_’,num2str(i)));

set(ndErr,’Name’,name);

set(ndErr,’Label’,name);

set(ndErr,’SubType’,’hSubtypeInterval’);

set(ndErr,’NumberOfStates’,n_disc);

%discretise Error

for p=2:n_disc

set(ndErr,’StateValue’,p-1,E(p));

end

m= invoke(ndErr,’NewModel’,ndtemp.parents);

expr= invoke(domain,’GetNewExpressionFromString’,Efunction,0, 0);

set(m,’Expression’,0,expr);

%Create Temp nodes Err_j

ndErrtemp=invoke(domain,’GetNewNode’,’hCategoryChance’, ’hKindDiscrete’);

name=strcat(strcat(’ErrTemp_’,num2str(j)),strcat(’_’,num2str(i)));

set(ndErrtemp,’Name’,name);

set(ndErrtemp,’Label’,name);

invoke(ndErrtemp,’AddParent’,ndErr);

%END tempNode

ndOmegaM=invoke(domain,’GetNewNode’,’hCategoryChance’, ’hKindDiscrete’);

name=strcat(strcat(’Omega_m_’,num2str(j)),strcat(’_’,num2str(i)));

set(ndOmegaM,’Name’,name);

set(ndOmegaM,’Label’,name);

set(ndOmegaM,’SubType’,’hSubtypeInterval’);

set(ndOmegaM,’NumberOfStates’,n_disc);

%discretiseer OmegaM

for p=2:n_disc

set(ndOmegaM,’StateValue’,p-1,OmegaM(p));

end

invoke(ndOmegaM,’AddParent’,ndOmegaR);

invoke(ndOmegaM,’AddParent’,ndErr);

%model voor OmegaM

exprs=ndtemp.parents;
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expr1=invoke(glob,’GetNewNodeExpression’,ndOmegaR);

expr2=invoke(glob,’GetNewNodeExpression’,ndErr);

invoke(exprs,’Add’,expr1);

invoke(exprs,’Add’,expr2);

expr3=invoke(glob,’GetNewCompositeExpression’,’hOperatorMultiply’,exprs);

m=invoke(ndOmegaM,’NewModel’,ndtemp.parents);

set(m,’Expression’,0,expr3);

%end model

end

end

%insert Time still dryness

nt=13; T=linspace(0,84,nt); dT=T(3)-T(2);

ndTDry=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); name=’TDry’; set(ndTDry,’Name’,name);

set(ndTDry,’Label’,name);

set(ndTDry,’SubType’,’hSubtypeInterval’);

set(ndTDry,’NumberOfStates’,nt+1);

%discretiseer TDry

for i=2:nt+1

set(ndTDry,’StateValue’,i-1,T(i-1));

end invoke(ndTDry,’AddParent’,ndRv);

%Model TDry

exprs=ndtemp.parents;

expr1=invoke(glob,’GetNewNumberExpression’,20);

expr2=invoke(glob,’GetNewNodeExpression’,ndRv);

invoke(exprs,’Add’,expr1); invoke(exprs,’Add’,expr2);

expr3=invoke(glob,’GetNewCompositeExpression’,’hOperatorDivide’,exprs);

exprs2=ndtemp.parents; invoke(exprs2,’Add’,expr3);

invoke(exprs2,’Add’,expr3);

expr4=invoke(glob,’GetNewCompositeExpression’,’hOperatorMultiply’,exprs2);

m=invoke(ndTDry,’NewModel’,ndtemp.parents);

set(m,’Expression’,0,expr4);

%end model

ndTDryTemp=invoke(domain,’GetNewNode’,’hCategoryChance’,

’hKindDiscrete’); set(ndTDryTemp,’Name’,’TDryTemp’);

set(ndTDryTemp,’Label’,’TDryTemp’);

invoke(ndTDryTemp,’AddParent’,ndTDry);

%remove temp node for creating new collections/expressions

invoke(ndtemp,’Delete’); clear ndtemp;

%save Network

invoke(domain,’SaveAsNet’,’D:\HuginData\HumT.net’);

%winopen D:\HuginData\HumT.net
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’Network Created’ toc tic;

%% Compile

tic; invoke(domain,’Compile’); ’Compiled Network’ toc

invoke(domain,’SaveAsHKB’,’D:\HuginData\HumT.hkb’,0);

HumFinal.m

%% Procedure Humidty Case

clear; DisCR=0; clock tic;

%% Create HUGIN network

priorfunction=’Normal(0.5816, 0.4724 ^ 2)’;

Afunction=’Normal(150.18, (0.05*150.18) ^ 2)’;

Bfunction=’Normal(1.21*10^(-5), (0.1*1.21*10^(-5)) ^ 2)’;

Efunction=’Normal(1, 0.05 ^ 2)’; Vc=152; V0=155; Dc=30;

n_disc=10; %number of discretisation intervals per node

n_samp=1000; %number of samples used

sensor=linspace(3,10,3); %sensor dimensions

n=15; %number of tests proposed tests

tinsp=10; %time of inspection

n_obs=size(sensor,2); nvec=1:n; C_T=45; C_S=100;

%% Load Hugin Server

glob=actxserver(’HAPI.Globals’);

%CreateCompNW

domain=invoke(glob,’LoadDomainFromHKB’,’D:\HuginData\HumT.hkb’);

’Network Loaded’

%% Create samples for measurements

%Sample Test Results

logRvS=normrnd(0.5816, 0.4724,1,n_samp); RvS=exp(logRvS);

AS=repmat(normrnd(150.18,

(0.05*150.18),1,n_samp),[length(sensor),1,n]);

BS=repmat(normrnd(1.21*10^(-5),

(0.1*1.21*10^(-5)),1,n_samp),[length(sensor),1,n]);

VS=V0-(repmat(((V0-Vc)/sqrt(tinsp)./RvS),[length(sensor),1,n])).*repmat(sensor’,[1,n_samp,n]);

ErrorS=normrnd(1, 0.05,length(sensor),n_samp,n);

OmegaRS=log(VS./AS)./BS; OmegaMS=OmegaRS.*ErrorS; ’Samples

Created’ nt=13;

%Define Loss function

T=linspace(0,84,nt); dT=T(3)-T(2);

OmegaM=linspace(-25000,25000,n_disc);

ndTDryTemp=invoke(domain,’GetNodeByName’,’TDryTemp’);

tableT=invoke(domain,’GetMarginal’,ndTDryTemp.parents); for
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p=1:nt+1

TDry(1,p)=get(tableT,’Data’,p-1);

end TDry=cumsum(TDry);

TDryPrior=interp1(TDry,0:(size(TDry,2)-1),0.8,’nearest’);

Loss=zeros(1,size(T,2)); for p=1:(TDryPrior-1)

Loss(1,TDryPrior-p)=-p*500;

end

%Perform update!

TDryS=[];

%set evidence loop over samples, loop over testnr loop over sensor

tic; for k=1:10 for j=1:n

for i=1:n_obs

name=strcat(strcat(strcat(’Omega_m_’,num2str(i)),’_’),num2str(j));

ndMeting=invoke(domain,’GetNodeByName’,name);

%Selecte state sensor

state=interp1([-inf,OmegaM,inf],0:(size(OmegaM,2)+1),OmegaMS(i,k,j),’nearest’);

invoke(ndMeting,’SelectState’,state-1);

end %loop over sensor

invoke(domain,’Propagate’,’hEquilibriumSum’,’hModeNormal’);

%get marginal for TDry

tableT=invoke(domain,’GetMarginal’,ndTDryTemp.parents);

TDry=[];

for p=1:nt+1

TDry(1,p)=get(tableT,’Data’,p-1);

end

%save TDRY 80

TDry=cumsum(TDry);

%Create distinct version of TDry

if (TDry(2)-TDry(1)<0.0001)

TDryS(j,k)=TDryPrior;

DisCR=DisCR+1;

end

if (TDry(end)-TDry(end-1)<0.0001)

TDryS(j,k)=TDryPrior;

DisCR=DisCR+1;

else

TDryS(j,k)=interp1(TDry,0:(size(TDry,2)-1),0.8,’nearest’);

end

end %loop over tests

invoke(domain,’RetractFindings’) end ’Time for 10 runs’ toc tic;

for k=11:n_samp for j=1:n

for i=1:n_obs
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name=strcat(strcat(strcat(’Omega_m_’,num2str(i)),’_’),num2str(j));

ndMeting=invoke(domain,’GetNodeByName’,name);

%Selecte state sensor

state=interp1([-inf,OmegaM,inf],0:(size(OmegaM,2)+1),OmegaMS(i,k,j),’nearest’);

invoke(ndMeting,’SelectState’,state-1);

end %loop over sensor

invoke(domain,’Propagate’,’hEquilibriumSum’,’hModeNormal’);

%get marginal for TDry

tableT=invoke(domain,’GetMarginal’,ndTDryTemp.parents);

TDry=[];

for p=1:nt+1

TDry(1,p)=get(tableT,’Data’,p-1);

end

%save TDRY 80

TDry=cumsum(TDry);

%distinct maken

q=0;

TDrydiff=diff(TDry);

if size(TDrydiff,2)>0

TDry=[TDry(TDrydiff>0.001),1];

DisCR=DisCR+1;

while TDrydiff(q+1)<0.001

q=q+1;

end

end

TDryS(j,k)=interp1(TDry,q:q+(size(TDry,2)-1),0.8,’nearest’);

end %loop over tests

invoke(domain,’RetractFindings’)

end %loop over samples

toc;

%Calculate Expected Loss

TCount=histc(TDryS’,0:(size(T,2)-1));

ProbT=(TCount(1:end,:)/n_samp); %row indicatestes testnumber, column days

ELOSST=ProbT’*Loss’+C_T*nvec’+C_S; ELOSST=[0;ELOSST];

nvec=[0,nvec]; plot(nvec,ELOSST,’-*’)

%PLAY SOUND FROM PC SPEAKER TO INDICATE END

load handel sound(y,Fs)

NewCNode.m

function res=NewCNode(dom,name)

%function res=NeCNode(dom,name)
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ndNew=invoke(dom,’GetNewNode’,’hCategoryChance’, ’hKindDiscrete’);

ndNew.Name = name;

ndNew.Label=name;

ndNew.SubType=’hSubtypeInterval’;

res=ndNew;

NewNumNode.m

function res=NewNumNode(dom,name)

%function res=NewNumNode(dom,name)

ndNew=invoke(dom,’GetNewNode’,’hCategoryChance’, ’hKindDiscrete’);

ndNew.Name = name;

ndNew.Label=name;

ndNew.SubType

=’hSubtypeNumber’;

res=ndNew;

Nigpdf.m

function res=nigpdf(x,y,alpha,beta,m,lambda)

%function res=nigpdf(x,y,alpha,beta,m,lambda)

%2D-probability density function for the Normal Inverted Gamma Distribution

%x,y are varibles vectors

%alpha is shape parameter beta is scale parameter for

%

%C.J.L.Rothkrantz jan 2005

[X,Y]=meshgrid(x,y); res=1./(sqrt(2*pi*lambda).*GAMMA(alpha))*Y

.^(-alpha-3/2).*beta.^(-alpha).*exp(-1/2.*((X-m).^2./(Y.*lambda))-1./(Y.*beta));

NIGPlot.m

function NIGPlot(alpha,beta,m,lambda,x_o,x_b,y_o,y_b,n)

%function NIGPlot(alpha,beta,m,lambda,x_o,x_b,y_o,y_b,n)

%

%C.J.L.Rothkrantz jan 2005

%

%Depencies: NIGPDF.m

x=linspace(x_o,x_b,n); y=linspace(y_o,y_b,n);

mesh(x,y,NIGPDF(x,y,alpha,beta,m,lambda));
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Numnorm.m

ENTER CODE

NumbTimbN.m

%% Procedure Direct Numerical Intergration applied to normal model

%Define constants

n=100; %number of points used in discretisation

%Prior information

mu_m=75.29; sigma_m=23.32;

mu_s=16.2; sigma_s=4.36;

mu_a=1; sigma_a=0.22;

%Data

data_D=[ 121.3145 112.5569 111.8635 98.7846 158.2367];

data_U=[105.0330 102.8546 103.9495 94.0723 104.8491];

%Define discretisation

mu=linspace(0,200,n); dmu=mu(2)-mu(1); r=mu; dr=dmu;

sigma=linspace(0.001,40,n); dsigma=sigma(2)-sigma(1);

[MU,SIGMA]=meshgrid(mu,sigma); a=linspace(0.01,2,40);

da=a(2)-a(1);

%Process Prior information

prior1=normpdf(MU,mu_m,sigma_m).*normpdf(SIGMA,mu_s,sigma_s);

prior2=1./SIGMA; prior=prior2;

%% Computation

%Destructive data

fpost_D=prior; if size(data_D,2)>0

L_D=1;

for i=1:size(data_D,2)

L_D=L_D.*normpdf(data_D(i),MU,SIGMA);

end

fpost_D=L_D.*fpost_D;

%Determine posterior destructive data

C1=sum(sum(fpost_D).*dmu).*dsigma;

fpost_D=1/C1*fpost_D;

end

%Non-destructive data

if size(data_U,2)>0

[MU2, SIGMA2, A] = meshgrid(mu, sigma, a);

L_U=normpdf(A, mu_a, sigma_a);

for i=1:size(data_U,2)

L_U = L_U.*normpdf(data_U(i)./A, MU2, SIGMA2)./A; %Notice L_U 3D matrix

end
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L_U=sum(L_U,3).*da;

fpost=L_U.*fpost_D;

C2=sum(sum(fpost).*dmu).*dsigma;

fpost=1/C2*fpost;

else

fpost=fpost_D;

end

%Determine predictive distribution

fpred = []; for i=1:size(r,2)

tempr= normpdf(r(i),MU,SIGMA);

predrt = tempr .* fpost;

C3= sum(sum(predrt).*dmu).*dsigma;

fpred=cat(2,fpred,C3);

end C4=sum(fpred).*dr; fpred=1/C4*fpred; plot(r,fpred,’r’)

PlotHumPrior.m

function [f1,f2]=PlotHumPrior(tinsp,Dc)

%% Sample Size:

nmax=1000000; %number of samples at each time step

nstap=50; %number of time steps

%% Time scale

teind=30; start=teind/nstap;

t=linspace(start,teind,nstap); %time

%% Parameters distribution

[A,B]=lognpar(2,1);

%% Initialise

Y=[]; h=waitbar(0,’Calculations for Plotting Reliability with

Prior Information. Please wait...’);

X=normrnd(A,B,nmax,1); for

i=1:nstap

D=exp(X)*sqrt(t(1,i)); %sample D(t(1,i))

Y=cat(1,Y,size(nonzeros(D>Dc),1)/nmax);

waitbar(i/nstap,h)

end close(h)

%% Plot results

C=norminv(1-Y); %reliabilty index

f1=figure; hold on;

ninsp=floor(((tinsp)/teind)*nstap);

t1=t(1:ninsp);

t2=t(ninsp:size(t,2));

C1=C(1:ninsp);



106

C2=C(ninsp:size(t,2));

plot(t1,C1,’-r’)

plot(t2,C2,’:r’)

xlabel(’Time [days]’);

ylabel(’Beta [-]’);

f2=figure;

hold on;

C3=linspace(0,8,100);

plot(C3,logncdf(C3,A,B),’r’)

PlotHumXY.m

function [f1,f2] = PlotHumXY(f1,f2,Dc,X,FX,YRv,tinsp,tninsp,color)

%Case Hum Sample Rv

%input X,FX, give distribution for Rv updated at tinsp

%color contains color of plot this must be a string!

%X domain, FX cdf, YRv pdf

%input X,FX, give distribution for Rv updated at tinsp

%color contains color of plot this must be a string!

%Create distinct versions of X,FX

X_2=[]; FX_2=[]; j=1; for i=1:size(FX,2)-1

if FX(1,i)~=FX(1,i+1)

X_2(1,j)=X(1,i);

FX_2(1,j)=FX(1,i);

j=j+1;

end

end X_2(1,j)=X(1,size(FX,2)); FX_2(1,j)=FX(1,size(FX,2));

if (X_2(1)~=0) & (FX_2~=0)

X_2=[0,X_2];

FX_2=[0,FX_2];

end

%Sample Size:

nmax=1000000; %number of samples at each time step

nstap=20; %number of time steps

%Time scale

teind=30;

if tninsp==666

tninsp=teind;

end

t=linspace(tinsp,teind,nstap);%time
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%initialise

h=waitbar(0,strcat(strcat(’Computation for Plotting Reliability

after update at t= ’,num2str(tinsp)), ’ in Progress. Please

wait...’));

Y=[];

U=rand(nmax,1);

R=interp1(FX_2,X_2,U);%random samples from distribution FX

for i=1:nstap

D=R*sqrt(t(1,i)); %sample D(t(1,i))

Y=cat(1,Y,size(nonzeros(D>Dc),1)/nmax);

waitbar(i/(nstap),h)

end close(h)

%Plot results

figure(f1);

C=norminv(1-Y);%reliabilty index

ntninsp=ceil((tninsp-tinsp)/(teind-tinsp)*nstap); t1=t(1:ntninsp);

C1=C(1:ntninsp); plot(t1,C1,strcat(’-’,color)); if ntninsp~=nstap

t2=t(ntninsp:size(t,2));

C2=C(ntninsp:size(C,1));

plot(t2,C2,strcat(’:’,color));

end figure(f2); plot(X_2,FX_2,strcat(’-’,color));

IGPdf.m

function res =igpdf(y,alpha,beta)

%function res =igpdf(y,alpha,beta)

%probability density function for the Inverted Gamma Distribution

%alpha: shape parameter beta: scale parameter

%

%C.J.L.Rothkrantz jan 2005

%

res=1/GAMMA(alpha)*y.^(-alpha-1)*beta^(-alpha).*exp(-1./(y*beta));

IGPlot.m

function IGPlot(alpha,beta,n,y_o,y_b)

%function IGPlot(alpha,beta,n,y_o,y_b)

%alpha:scale beta: shape n: number of points

%y_o is lowerbound for plot

%y_b is upperbound for plot

%

%C.J.L.Rothkrantz jan 2005

%
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%Dependencies IGPDF.m

%

y=linspace(y_o,y_b,n);

plot(y,IGPDF(y,alpha,beta));

SampleME8.m

%%function sampling mu,eta calculatin expected loss

%% Initialisation

%clc;

%clf;

hold on; h=waitbar(0,’Calculations in Progress. Please wait...’);

%Define constants

n_samp=50000; %number of samples

n=20;%number of tests maxed by batchsize

ni=10;%numer of runs

%Prior information

m=80; lambda=8; alpha=8; beta=0.0005;

KARRV=[0,30,35,40,50,60,70];%Classification Characteristic Values

price_p=500; batch_size=100;

%Processing Prior Information

nvec=(1:1:n);

KARRprior=m+sqrt((1+lambda)/(beta*alpha))*tinv(0.05,2*alpha);

%Charcteristic Value Prior

nKVprior=max(histc(KARRprior,[KARRV,inf])*(1:length(KARRV)+1)’,1);

%Determining Loss function

Loss=[1]; if nKVprior==1

Loss=[0];

end for i=2:size(KARRV,2)

Loss=cat(2,Loss,-1+1.1^(nKVprior-i));

end Loss=Loss*price_p*batch_size;

C_T=125;%costs of performing tests

ELOSS=[];

%% Computation

lambdaS=lambda./repmat((ones(1,size(nvec,2))+nvec*lambda)’,1,n_samp);

alphaV=alpha+1/2*nvec’; alphaS=repmat(alphaV,1,n_samp);

vectinv=tinv(0.05,2*alphaV); mattinv=repmat(vectinv,1,n_samp); for

i=1:ni

waitbar(i/(ni+1),h,ni-i+1)

%create samples for eta (=sigma^2) from IG-distribution (alpha, beta)
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ETAS=1./gamrnd(alpha,beta,n_samp,1);

%create samples for mu from normal distribution(m,lambda eta) given

%eta!

MUS=m+sqrt(lambda.*ETAS).*randn(n_samp,1);

%Create Destructive Sample Matrix fixed mu, sigma in each colum, row

%represents number of test

DS=repmat(MUS’,n,1)+repmat(sqrt(ETAS’),n,1).*randn(n,n_samp);

clear ETAS MUS

sumDS=cumsum(DS,1);

sumSDS=cumsum(DS.^2,1);

%Calculate updated parameters with Destructive tests using NIG-model

mS=(m+lambda.*sumDS)./repmat((ones(1,size(nvec,2))+nvec*lambda)’,1,n_samp);

betaS=repmat(2*beta*(1+lambda*nvec’),1,n_samp)./(-beta*(lambda*sumDS.^2+2*m*sumDS-m^2

*repmat(nvec’,1,n_samp)-(1+lambda*repmat(nvec’,1,n_samp)).*sumSDS)

+repmat(2*(ones(1,size(nvec,2))+nvec*lambda)’,1,n_samp));

clear DS sumDs sumSDS

%Sample Characteristic Value

KARRS=mS+sqrt((1+lambdaS)./(betaS.*alphaS)).*mattinv;

%clear mS betaS

CountT=histc(KARRS’,[-inf,KARRV(2:end),inf]);

CountT=CountT(1:end-1,:);

ProbC=(CountT/n_samp)’;

ELOSST=ProbC*Loss’+C_T*nvec’;

ELOSST=[0;ELOSST];

ELOSS=cat(2,ELOSST,ELOSS);

clear ProbC ELOSST

end

%% Postprocessing

waitbar((ni+1)/(ni+1),h,’Plotting’) plot([0,nvec]’,ELOSS) close(h)

SampleMEHugin4.m

%% Procedure sampling mu,eta calculating expected loss Using HUGIN for predictive distribution

%% Initialisation

clc; clock

%h=waitbar(0,’Calculations in Progress. Please wait...’);

%Define constants

n_samp=10000; %number of samples

n=20;%number of tests

ni=5;%number of runs
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m=80; lambda=8; alpha=8; beta=0.0005;

KARRV=[0,30,35,40,50,60,70];%Classification Characteristic Values

price_p=500; batch_size=100;

%% Processing Prior Information

nvec=(1:1:n);

KARRprior=m+sqrt((1+lambda)/(beta*alpha))*tinv(0.05,2*alpha);%Charcteristic Value Prior

nKVprior=max(histc(KARRprior,[KARRV,inf])*(1:length(KARRV)+1)’,1);

%Determining Loss function

Loss=[1]; if nKVprior==1

Loss=[0];

end for i=2:size(KARRV,2)

Loss=cat(2,Loss,-1+1.1^(nKVprior-i));

end Loss=Loss*price_p*batch_size;

C_T=125;%costs of performing tests

ELOSS=[];

%load Hugin Server

glob=actxserver(’HAPI.Globals’);

%% Create Network

domain=invoke(glob,’GetNewDomain’); ndM=NewNumNode(domain,’M’);

ndLambda=NewNumNode(domain,’Lambda’);

ndAlpha=NewNumNode(domain,’Alpha’);

ndBeta=NewNumNode(domain,’Beta’); ndMu=NewCNode(domain,’Mu’);

ndInvH=NewCNode(domain,’InvH’); ndH=NewCNode(domain,’H’);

ndR=NewCNode(domain,’R’); ndTemp=NewCNode(domain,’Temp’);

ndRTemp=NewNumNode(domain,’RTemp’);

invoke(ndRTemp,’AddPArent’,ndR); invoke(ndMu,’AddParent’,ndM);

invoke(ndMu,’AddParent’,ndLambda); invoke(ndMu,’AddParent’,ndH);

invoke(ndInvH,’AddParent’,ndAlpha);

invoke(ndInvH,’AddParent’,ndBeta); invoke(ndH,’AddParent’,ndInvH);

invoke(ndR,’AddParent’,ndH); invoke(ndR,’AddParent’,ndMu);

%define parameters

set(ndM,’StateValue’,0,m); set(ndLambda,’StateValue’,0,lambda);

set(ndAlpha,’StateValue’,0,alpha);

set(ndBeta,’StateValue’,0,beta);

%define discretisations

%node H en InvH

n_hug=10;%number of states

HVec=linspace(0.001,400,n_hug); MuVec=linspace(0,200,n_hug);

set(ndH,’NumberOfStates’,n_hug);

set(ndInvH,’NumberOfStates’,n_hug);

set(ndMu,’NumberOfStates’,n_hug); for i=1:n_hug-1
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set(ndH,’StateValue’,i,HVec(i));

set(ndInvH,’StateValue’,n_hug-i,1/HVec(i));

set(ndMu,’StateValue’,i,MuVec(i));

end

%node R

set(ndR,’NumberOfStates’,size(KARRV,2)+1); for i=1:size(KARRV,2)

set(ndR,’StateValue’,i,KARRV(i));

end

%destructive Nodes

DVec=linspace(60,140,n_hug); %equidistant discretisation

dDVec=DVec(2)-DVec(1); for j=1:n

name=strcat(’D’,num2str(j));

nodeD=NewCNode(domain, name);

invoke(nodeD,’AddParent’,ndMu);

invoke(nodeD,’AddParent’,ndH);

set(nodeD,’NumberOfStates’,n_hug);

for i=1:n_hug-1

set(nodeD,’StateValue’,i,DVec(i));

end

end

%define models

%Node InvH

exprs=ndTemp.parents;

exprAlpha=invoke(glob,’GetNewNodeExpression’,ndAlpha);

exprBeta=invoke(glob,’GetNewNodeExpression’,ndBeta);

invoke(exprs,’Add’,exprAlpha); invoke(exprs,’Add’,exprBeta);

expr3=invoke(glob,’GetNewCompositeExpression’,’hOperatorGamma’,exprs);

model=invoke(ndInvH,’NewModel’,ndTemp.parents);

set(model,’Expression’,0,expr3);

%node H

exprs=ndTemp.parents;

exprInvH=invoke(glob,’GetNewNodeExpression’,ndInvH);

expr1=invoke(glob,’GetNewNumberExpression’,1);

invoke(exprs,’Add’,expr1); invoke(exprs,’Add’,exprInvH);

expr3=invoke(glob,’GetNewCompositeExpression’,’hOperatorDivide’,exprs);

model=invoke(ndH,’NewModel’,ndTemp.parents);

set(model,’Expression’,0,expr3);

%node Mu

exprs=ndTemp.parents; exprs2=ndTemp.parents;

exprM=invoke(glob,’GetNewNodeExpression’,ndM);

exprLambda=invoke(glob,’GetNewNodeExpression’,ndLambda);

exprH=invoke(glob,’GetNewNodeExpression’,ndH);

invoke(exprs,’Add’,exprH); invoke(exprs,’Add’,exprLambda);

expr2=invoke(glob,’GetNewCompositeExpression’,’hOperatorMultiply’,exprs);
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invoke(exprs2,’Add’,exprM); invoke(exprs2,’Add’,expr2);

expr3=invoke(glob,’GetNewCompositeExpression’,’hOperatorNormal’,exprs2);

model=invoke(ndMu,’NewModel’,ndTemp.parents);

set(model,’Expression’,0,expr3);

%nodeR

exprs=ndTemp.parents;

exprMu=invoke(glob,’GetNewNodeExpression’,ndMu);

invoke(exprs,’Add’,exprMu); invoke(exprs,’Add’,exprH);

expr3=invoke(glob,’GetNewCompositeExpression’,’hOperatorNormal’,exprs);

model=invoke(ndR,’NewModel’,ndTemp.parents);

set(model,’Expression’,0,expr3);

%nodeD Multiple!!!

for j=1:n

name=strcat(’D’,num2str(j));

nodeD=invoke(domain,’GetNodeByName’,name);

model=invoke(nodeD,’NewModel’,ndTemp.parents);

set(model,’Expression’,0,expr3);

end

%save Network

invoke(domain,’SaveAsNet’,’C:\SampleTimb3.net’);

%% Computation

%compile

invoke(domain,’Compile’); for i=1:ni

tic;

%waitbar(i/(ni+1),h,ni-i+1)

%create samples for eta (=sigma^2) from IG-distribution (alpha, beta)

ETAS=1./gamrnd(alpha,beta,n_samp,1);

%create samples for mu from normal distribution(m,lambda eta) given

%eta!

MUS=m+sqrt(lambda.*ETAS).*randn(n_samp,1);

%Create Destructive Sample Matrix fixed mu, sigma in each colum, row

%represents number of test

DS=repmat(MUS’,n,1)+repmat(sqrt(ETAS’),n,1).*randn(n,n_samp);

clear ETAS MUS

nDS=ceil((DS-DVec(1))/dDVec);

nDS=min(max(0,nDS),n_hug-1);

%Each Column of nDS loop!

KARRS=[];

for j=1:n_samp

for i=1:n

name=strcat(’D’,num2str(i));

nodeD=invoke(domain,’GetNodeByName’,name);

invoke(nodeD,’SelectState’,nDS(i,j));
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invoke(domain,’Propagate’,’hEquilibriumSum’,’hModeNormal’);

%Get KARRS

GO=1;

k=0;

som=0;

tabel=invoke(domain,’GetMarginal’,ndRTemp.parents);

while ((k<size(KARRV,2))& GO)

k=k+1;

tempsom=get(tabel,’Data’,k);

som=som+tempsom;

if som >=0.05

GO=0;

KARRS(i,j)=k;

end

end

end

invoke(domain,’RetractFindings’)

end

TCount=histc(KARRS’,[-inf,(2:1:size(KARRV,2)+1)]);

ProbC=(TCount(1:end-1,:)/n_samp)’; %row indicatestes testnumber, column strength-clas

ELOSST=ProbC*Loss’+C_T*nvec’;

ELOSST=[0;ELOSST];

ELOSS=cat(2,ELOSST,ELOSS);

toc;

end

%% Postprocessing

%waitbar((ni+1)/(ni+1),h,’Plotting’)

plot([0,nvec]’,ELOSS)

%close(h)

Uppar.m

function

[Nalpha,Nbeta,Nm,Nlambda]=Uppar(alpha,beta,m,lambda,data_D)

%function [Nalpha,Nbeta,Nm,Nlambda]=Uppar(alpha,beta,m,lambda,d)

%updates the parameters of the NIG-model using destructive data

n=length(data_D); Nlambda=lambda/(1+n*lambda);

Nm=(m+lambda*sum(data_D))/(1+n*lambda); Nalpha=alpha+n/2;

Nbeta=(2*beta*(1+n*lambda))/(-beta*(lambda*(sum(data_D))^2+

2*m*sum(data_D)-n*m^2-(1+n*lambda)*(sum(data_D.*data_D)))+2*(1+n*lambda));



114

DPL-code

This section shows a code used in DPL to program a decision problem in the simplified timber case. It is only shown here to

demonstrate how to programm code used in DPL.

const cost = 3;

#options -e decision

Aantal_testen.{No_tests,One_tests,Two_tests,Three_tests,Four_tests}=

0, // Aantal_testen.No_tests

-cost, // Aantal_testen.One_tests

-cost*2, // Aantal_testen.Two_tests

-cost*3, // Aantal_testen.Three_tests

-cost*4, // Aantal_testen.Four_tests

chance Test1.{1}=; value Test1=DPLMC.normal(100,sqrt(200));

chance Test2.{1}=; value

Test2=DPLMC.normal((10^2*Test1+1000)/(200),sqrt(50+100));

chance Test3.{1}=; value

Test3=DPLMC.normal((20^2*(Test1+Test2)+1000)/(300),sqrt((100/3)+100));

chance Test4.{1}=; value

Test4=DPLMC.normal((30^2*(Test1+Test2+Test3)+1000)/(400),sqrt(100/4+100));

chance Test5.{1}=; value

Test5=DPLMC.normal((40^2*(Test1+Test2+Test3+Test4)+1000)/(500),sqrt(100/5+100));

chance Posterior_Distribution.{1}=; value

Posterior_Distribution|Aantal_testen=

DPLMC.normal(100,sqrt(200)), // Aantal_testen.No_tests

DPLMC.normal((10^2*Test1+10000)/(200),sqrt(50+100)), // Aantal_testen.One_tests

DPLMC.normal((100*(Test1+Test2)+10000)/(300),sqrt(100/3+100)), // Aantal_testen.Two_tests

DPLMC.normal((200*(Test1+Test2+Test3)+10000)/(400),sqrt(100/4+100)), // Aantal_testen.Three_tests

DPLMC.normal((300*(Test1+Test2+Test3+Test4)+10000)/(500),sqrt(100/5+100)), // Aantal_testen.Four_tests

value Expected_Gain|Aantal_testen=

-((Posterior_Distribution-100)^2)+Aantal_testen, // Aantal_testen.No_tests

-((Posterior_Distribution-(10^2*Test1+10000)/(200))^2)+Aantal_testen, // Aantal_testen.One_tests

-((Posterior_Distribution-(100*(Test1+Test2)+10000)/(300))^2)+Aantal_testen, // Aantal_testen.Two_tests

-((Posterior_Distribution-(200*(Test1+Test2+Test3)+10000)/(400))^2)+Aantal_testen, // Aantal_testen.Three_tests

-((Posterior_Distribution-(300*(Test1+Test2+Test3+Test4)+10000)/(500))^2)+Aantal_testen, // Aantal_testen.Four_tests

sequence:

decide

to Aantal_testen.No_tests then

gamble on Posterior_Distribution and get Expected_Gain

to Aantal_testen.One_tests then
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gamble on Test1 then

gamble on Posterior_Distribution and get Expected_Gain

to Aantal_testen.Two_tests then

gamble on Test1 then

gamble on Test2 then

gamble on Posterior_Distribution and get Expected_Gain

to Aantal_testen.Three_tests then

gamble on Test1 then

gamble on Test2 then

gamble on Test3 then

gamble on Posterior_Distribution and get Expected_Gain

to Aantal_testen.Four_tests then

gamble on Test1 then

gamble on Test2 then

gamble on Test3 then

gamble on Test4 then

gamble on Posterior_Distribution and get Expected_Gain
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Appendix D

Notation

The notation used through out this thesis has been kept as close as possible to the notational con-

ventions commonly used in mathematics. This means that upper case letters are used for stochastic

variables, and lower case letters for variables, and samples. Vectors are denoted with an underline

and matrices are also denoted with uppercase letters. Elements or multiples are denoted with a in-

dex. The following list gives a glossary of the mathematical operators, the probabilistic and decision

theoretic notation, and the variables used throughout this thesis. This list is only meant as fast

reference, all variables are explained when they are first introduced in the text.

Mathematical Operators

1A>B the indicator function, i.e. equals 1 if A > B and 0 if A < B .

Cov(X,Y ) the covariance (matrix) of X and Y .

E(X) expectation of X, given by E(X) =
∫∞
∞ xfX(x)dx =

∞∑
i=1

xifX(xi)

ER(ΘR) expectation with respect to the distribution of R indicated by the sub-index R.

J the Jacobian determinant, |∂(y1,...,ym)
∂(x1,...,xn) |.

Var(X) variance (matrix) of X, given by Var(X) = E
(
(X − µ)2

)
, where µ = E(X).
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Probabilistic Notation

∼ distributed as, e.g. X ∼ N (µ, σ) means X has a normal distribution

with parameters µ, and σ.

| conditional symbol, e.g. X|Y means X given (conditional on) Y .

ϕ the probability density function of the standard

normal distribution (µ = 0, σ = 1).

Φ cummulative distribution function of the standard

normal distribution (µ = 0, σ = 1).

fX(x) the probability density function of X,
∫
fX(x)dx = FX(x).

FX(x) the cumulative distribution function of X, also called the probability

distribution function of X, FX(x) = P (X ≤ x).

G(α, β) gamma distribution with shape parameters α and scale parameter β.

L(X) the likelihood (function) of X, L(X) = fD|X(δ;x).

N (µ, σ) normal distribution with parameters µ, and σ.

NIG(α, β,m,Λ) normal inverted gamma distribution , this is a joint distribution,

e.g. [M,H] ∼ NIG(α, β,m,Λ) then H ∼ IG(α, β)

and [M |H] ∼ N (m,
√

Λη).

IG(α, β) inverted gamma distribution with shape parameter α, and scale

parameter 1
β .
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Notation Decision Theory

C the set of all consequences.

CT cost of performing a single test.

CS (fixed) set up cost for testing.

f an act.

F the set of all acts, i.e., F = {f |f : S → C}.

L(d, r) the decision loss function describing the loss in deciding to use parameter d

when the true parameter is r.

LF (d, r, n) the loss function including the cost of performing n tests.

ñ the number of tests minimizing the posterior expected risk (need not

be integer!).

r̃n the Bayes decision rule for R for fixed n.

S the set of all states of the world.

U(c) utility function,i.e., U : C → R.

v(f) expected utility of performing act f .
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Glossary of Variables

A(a), B(b) conversion errors.

β reliability index defined as, β = Φ−1(1− Pf ).

ε(a) error-term in the measurement.

Ωi
m(ωi

m) measured specific resistance at depth i.

Ωi
r(ω

i
r) actual (real) specific resistance at depth i.

Σ(σ) the standard deviation of the timber.

Υ(υ) results of a non-destructive strength test.

D(δ) results of a destructive strength test.

dWall the average distance the humidity from within the wall needs

to travel to reach the stucco.

D(t) the distance in the structure where the humidity is at the critical level.

M(µ) the mean strength of the timber R.

Pf probability of failure.

RChar the actual characteristic strength.

RG the graded characteristic strength.

R(r) the strength of the timber.

Rv the humidity intrusion rate.

TDry the time that is needed to let the humidity from within the wall

to dissipate, i.e. the time when the wall is dry to apply the stucco.

T rule
Dry the time that is needed to let the wall dry according to the regulations.

T pred
Dry (n) the time that is needed to let the wall dry according

to the predictive model using n tests.

v0 boundary condition for the humidity.

vc the critical humidity level.

V the humidity.

xi location of the measurement sensor.

Z(t) the limit state function as a function of time.
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