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1 Introduction and Summary

This study is concerned with Probabilistic Seismic Hazard Analysis for Swiss Nuclear Power Plant
Sites (PEGASOS Project), [4, Pegasos, 2004]. In this project experts’ opinions and equal weight
decision makers were used. The idea of the post hoc calibration is to make assessment on experts’
performance based on updated observations and, if possible, propose non-equal weight decision
maker.

Post-hoc calibration involves finding observations of quantities for which probabilistic predic-
tions exist. This can be done at different ‘aspiration levels’, depending on the type of calibration
variables which can be found:

1 Find observations of quantities predicted probabilistically by individual experts,

2 Find observations that can be predicted by panels, that is aggregations of experts in a given
area,

3 Find observations which are predicted probabilistically by the combination of several or all
expert panels.

4 Develop synthetic seed variables from plausible physical models.

The first possibility requires the most extensive set of calibration variables, and would allow
us to construct performance based combinations of the experts in each panel. The second pos-
sibility would not allow to re-combine the expert assessments, but would enable us to compare
the performance of different expert panels. The third possibility involves the least extensive set of
calibration variables, and enables us only to validate the performance of the PEGASOS decision
maker.

The following remarks relate to the feasibility of implementation of these aspiration levels

• The calibration variables may be either direct observations of variables for which proba-
bilistic predictions exist. Alternatively, they may also be observations of variables which
can be predicted, perhaps with the help of supplementary modelling assumptions, from the
PEGASOS model.

• Ideally the calibration variables are ‘deterministic’ in the sense that their values are known
with certainty. However, it is also possible to calibrate experts with ‘uncertain observa-
tions’ as long as the uncertainty in the observation is known, is independent of the ex-
perts’uncertainty and is small relative to the experts’ uncertainty. [5, bernds thesis].

• The probabilistic predictions may be either in the form of quantiles or discrete probabilities.
The scoring rules used in cases are conceptually identical but differ in implementation.

• At the fourth and lowest level of calibration we can generate plausible sets of seed variables
and use these to determine

i whether there are significant differences in the experts’ performance relative to these
values

ii whether the equal weight combination of experts yields reasonable and representative
performance

iii how many seed variables and/or how many experts are necessary to produce stable
results

1.1 Summary of Conclusions

The report assesses the feasibility of post-hoc calibration at each of the above three aspiration
levels. Real calibration variables could in principle be applied in seismic risk studies. For example,
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recent measurements in California could have been used in this context. However, without re-
interviewing the experts, we conclude that it is not possible to calibrate the PEGASOS experts
with actual measurements, noisy or otherwise.

Aspiration level [4] is feasible. The model of Groen [Groen, 2004] enables calibration of combi-
nations of experts with plausible synthetic data, and thus allows us to answer the three questions
1 ..3 above. More precisely, we have 4, 5, and 4 experts / expert panels in SP1, SP2, SP3. This
yields 80 different combinations, and variables predicted by each of these 80 combinations may
generated from Groen’s model and used as synthetic calibration data. Moreover, we can study
the effect of using a “typical” number of experts (5), verses using as much as 80 experts.

Groens model can be used either with or without dependencies in the input variables. The
dependence structure is elaborated in [Meng, 2005].

The main conclusions of this study are

1 There are very significant differences between the experts’ performance. The performance
based decision maker (DM) yields good performance.

2 The equal weight decision maker returns poorer performance both in calibration and infor-
mation, comparable with most expert judgement studies.

3 The decision maker stablizes with about 10 experts and 15 seed variables.

1.2 Recommendations

Based on the results with synthetic data, the following recommendations suggest themselves:

1 since (i) PEGESOS involves potentially 80 different expert combinations for computing
seismic hazard curves, since (ii) the performance of these combinations is quite different, and
since (iii) the equal weight combination yields inferior performance, it would be advantageous
to obtain real calibration variables.

2 Real calibration variables would require re-interviewing the experts.

1.3 Outilne of the Report

The features of PEGESOS and basic notions of structured expert judgment are presented in
sections 2 - 4. Sections 5, 6, 7 and 78 describe the data available for the post-hoc calibration
study. Section 9 examines the question of convergence. Section 10 gathers conclusions. Two
appendices provide additional figures and tables.

2 Classical Model

Here we review classical model, [1, Roger Cooke, 1991], as a non-equal weight combination of
experts’ opinions. The experts’ performance is determined by their calibration and informativeness
scores. The model treats experts’ assessments as statistical hypotheses and scores calibration as
the p-value at which we would reject these hypotheses, under the assumption that the calibration
variables are independent realizations of the experts’ distributions. The informativeness of the
experts are defined as the relative information of the experts’ distributions with respect to user
specified background measure. The theory of strictly proper scoring rules is used to combine
calibration and information scores, and thus to form the so-called performance based decision
maker. Some details of this model are provided in Section (4).

3 Experts’ distributions in PEGASOS

From now on we refer expert panels(teams) as experts. The experts’ elicitations were done ac-
cording to the level 4 study of Probabilistic Seismic Hazard Analysis (PSHA) recommended by
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Figure 1: n-level logic tree

Senior Seismic Hazard Analysis Committee (SSHAC), [6, R.J.Budnitz, 1997]. During the elicita-
tion experts sometimes gave their subjective (discrete or continuous) distribution over unknown
quantities. While in may cases the experts put their probabilities (sometimes conditional prob-
abilities or split fractions) over the branches of a logic tree structure. Suppose for example that
experts are asked to assess a unknown quantity X which is at the nth level of a logic tree. At the
ith level or node of the tree there are ki branches emerging from each i− 1 level branch. In Figure
(1) Si denotes the ith node of the tree. Si = j means that the j-th branch is chosen at the i-th
node. The expert’s mass function over the values of x is just the probability of the path leading
to x, where x takes values {1, 2, . . . ,

∏n
i=1 ki}:

P (X = 1) = P (S1 = 1)P (S2 = 1|S1 = 1)...

P (Sn = 1|S1 = 1, ...Sn−1 = 1)

....

P (X =
n∏

i=1

ki) = P (S1 = k1)P (S2 = k2|S1 = k1)...

P (Sn = kn|S1 = k1, ..Sk−1 = kn−1)

P (X = 1) = P1;
... = ...

P (X =
n∏

i=1

ki) = PN

A discrete distribution example of X is shown in Fig 2. The elicitation results from this
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Figure 2: A density example of X

logic tree can be seen as discrete distributions assessed by experts. From the density of X the
{qi}, i = 1, ...k, quantiles are calculated as:

Q(qi) = Xk|
k∑

j=1

Pj ≤ qi <

k+1∑

j=1

Pj ; (1)

If the elicitation results are continuous distribution of an unknown X, the corresponding quan-
tiles are:

Q(qi) = F−1
X (qi);

Where F−1
X (.) is the inverse cumulative distribution function of X.

In this project, the expert distributions are discrete. The weights assigned to the different
branches of the logic tree represent a discrete distribution which in some cases is understood as
an approximation of a continuous distribution

The quantile intervals [min{xi}, Q(q1)],..., [Q(qk),max{xi}] are used to calculate calibration
and information scores.

4 Scoring rules

4.1 Calibration (quantile tests)

Suppose there are N elicitation quantities which are observed post hoc with certainty. An expert
has given a distribution, continuous or discrete, for each of them. The calibration and information
scores are calculated as [1, Roger Cooke].

Recall the quantile intervals [min{xi}, Q(q1)],..., [Q(qk),max{xi}] in last section. Let the
number of observations which fell into the [0, q1] quantile interval be s1N , let the number of
observations which fell into (q1, q2] quantile interval be s2N , etc. The empirical mass function is s =
(s1, ..., sk +1), and the hypothetical mass function is p = (q1, q2−q1, ..., qk−qk−1, 1−qk). Relative
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information measures the ’degree of surprise’ we should have if we believed p and subsequently
learned s.

I(s; p) =
k+1∑
1

siln(
si

pi
) (2)

This value is nonnegative and takes minimum 0 if and only if s = p. If the hypothesis density
and the empirical density are close, the relative information should be close to 0 which means the
expert’s performance is good. For large N the distribution of 2N times of the relative information
is approximately χ2 distribution with k degrees of freedom, when q is generated by independently
sampling p.

P (2NI(s; p) ≤ x) ≈ χ2
k(x); (3)

where χ2
k is the distribution function of the χ2 variable with k degrees of freedom. The calibration

of expert e is defined as the probability of getting a relative information greater than or equal to
that actually obtained under the expert’s hypothesis that the true distribution is (p1, ..., pk+1). It
can be interpreted as the likelihood of the hypothesis:

C(e) = 1− χ2
k(2NI(s; p)) (4)

Obviously an empirical distribution s equal to the hypothetical distribution p gives the maximal
calibration 1.

In most of the cases, we choose q = (0.05, 0.5, 0.95) then p = (0.05, 0.45, 0.45, 0.05) and k = 3.
Note, however, than any other choice of q could also be used.

The experts might not have the same number of post hoc observations. Since in PEGASOS
they don’t have to assess the same things. The number of realizations determines the power of the
statistical test applied to the expert-hypotheses. If the number of realizations is very large, small
differences between the experts probabilities p and the sample distribution q will be detected as
statistically significant. If the number of realizations is small, then these small differences may not
be detected as statistically significant. In comparing experts who have assess different numbers
of calibration variables, we therefore scale the ”effective number” of calibration variables for each
expert to be equal to the smallest number of calibration variables assessed by some expert. This
is accomplished by adjusting the number N in equation (3). For comparisons across studies it is
common to use 10 effective calibration variables.

4.2 Calibration (Discrete test)

In the PEGASOS project some elicitation probabilities are over a small number of possible values,
say R. In such cases the experts do not assess quantiles of an uncertain quantity with a continuum
of possible values, rather they assess a probability vector p = (p1, . . . . pR) over the R possible
outcomes. If we have several realizations corresponding to the same assessment vector p, then we
can score these as before using the asymptotic χ2 distribution. However, we will not generally
have multiple realizations. In this case we can still apply the scoring rule theory, but we cannot
appeal to the asymptotic distribution. Instead, we must simulate the distribution of an appropriate
scoring variable. For details see [1, Cooke 91] Chapter 8, 10.

Quantile tests are preferred over discrete tests [1, Cooke, 1991] since the former require fewer
realizations. Moreover, the scaling required to equalize the effective number of calibration variables
is more difficult for discrete tests.

4.3 Global Calibration Score

For each expert (team) we have a χ2 variable 2N ′I(s, p) from the quantile test with 3 degrees of
freedom, recall 4.1. Suppose we have a χ2 scoring variable Rk from the discrete variables with k
degrees of freedom. Under the hypothesis that the experts give accurate probability assessments,
with independent realizations, we may treat these two χ2 scoring variables as independent. Hence
their sum will be again be χ2 with the degrees of freedom equaling the sum of the degrees of
freedom of the summands.
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4.4 Information

4.4.1 Information of Quantile Test

Another criterion to measure the quality of an expert opinion is informativeness. To measure it
a background measurement, usually uniform or log-uniform, is assigned to each observed variable
over an intrinsic range. The intrinsic range is determined by adding a k% margin to the smallest
interval containing all quantiles and observation, where k is selected with default value 10. After
choosing the intrinsic range for unknown X, we substitute the interval [min{xi},max{xi}] by
the intrinsic range, say [l, u], in definition of back ground measurement. When the back ground
measurement is uniform, the distributions within the quantile intervals are uniform.

Plot [min{xi}, Q(0.05), Q(0.5), Q(0.95),max{xi}] versus [0, 0, 05, 0.5, 0.09, 1]. The expert’s in-
terpolated cumulative distribution function and interpolated density functions of X is shown in
Fig (3) and Fig (4). This distribution is proven to be minimal information distribution w.r.t
uniform back ground measure shown as Fig (5), [5, Kranns].

Where ri, i = 1, ...4 are back ground measures of the corresponding intervals. The relative
information of expert e is given as [1, Cooke 1991]

I(e) =
4∑
1

piln(
pi

ri
), (5)

where p = (0.05, 0.45, 0.45, 0.05) is the expert’s probability. Overall informativeness for each expert
is the average of the information scores over all observed variables. This average is proportional to
the relative information in the expert’s joint distribution over all variables under the assumption
that the variables are independent. Information scores are always positive. When calibrations are
equal, experts with hight information scores are preferred.

4.4.2 Information of Discrete Test

Scoring informativeness for discrete tests is different than for quantile tests. We do not appeal
to an intrinsic range. Instead, for assessed mass function p = (p1, . . . pR) we use the relative
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information of p with respect to the uniform distribution u = ( 1
R , . . . , 1

R ).
For each calibration variable we have an information score. The global information score for

the expert e is defined as the average of the information scores over all variables :

Inf(e) =
∑

X IX(e)
#X

(6)

4.5 Performance weight decision maker

The performance weight of an expert is determined by combining the calibration and information
scores. We usually make weight of each expert proportional with the product of these two scores.
Usually, calibration is very sensitive over experts and information is a relatively slow function. The
product of these two scores is dominated by calibration. The information score is to differentiate
almost equally well calibrated experts.

To make the scoring rules weakly asymptotic proper, see [1, 9.4 Cooke], we set a cut-off level
α such that experts with calibrations lower then α are given 0 weights. Then the unnormalized
weight of the expert e is, recall GC(e) and Inf(e) in 4.3 and 4.4.2,

w(e) = GC(e)Inf(e)1{GC(e)≥α} (7)

After normalization we have a global weight for each expert

w̃(e) =
w(e)∑#expert

1 w(i)
. (8)

To determine the weights we have to choose the cut-off level α. The decision maker’s distribution
density is weighted sum over experts’ distribution density. The decision maker depends on the
cut-off level. The way to choose α is to treat the decision maker as another expert and calculate
its unnormalized weight. The optimal α is chosen to maximize the decision maker’s weight

α = argmaxα(w̃(DM)). (9)

4.6 Noisy calibration variables

In the foregoing, the observations were assumed to be certain. The method for dealing with
uncertain or noisy observations of calibration variables is described in [5, Kraan, 2002].

In some cases the repeatability of the observation results is not high. The variation of the
observations could be due to the noise of instruments.

4.6.1 Instrument Noise Example

Suppose we observe the position of a planet using a telescope.
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Due to instrument noise, we observe some scattered points on the screen. Denote the positions
of the points as a sample set Z∗ = {z∗i }, where i = 1 . . . n. Experts are asked to give their
uncertainty about the true position of the planet in term of quantile values without taking the
instrument noise into consideration. Denote the elicitation variable by Y .

Let’s change the elicitation subject. Suppose we do not ask the uncertainty of the planet posi-
tion directly. We ask what we would observe using this type of telescope. Denote this elicitation
variable by Z. Z can be modeled by:

Z = Y + ε; (10)

where the noise term ε is independent of Y . Usually ε is assumed to be normally distributed. The
relation between distribution densities fZ and fY is given by the a convolution equation:

fZ = fY ∗ fε. (11)

In [5, Kraan], two approaches are made to approximate fZ for given quantile elicitation of Y .

4.6.2 Kraan 1, [5, Kraan](3.6)

First approximate the minimal relative information density function. It is given by the solution
of a Convex Programming (CP) problem.

minfY

NY∑

l=1

fY (yl)ln
fY (yl)
fU (yl)

(12)

s.t. AfY = b (13)

Where

• matrix A ∈ R(K+1)×Ny .

• fU is background measure of Y .

• NY is the number of discretized points of Y ;

• The entry of A, as,t = 1Is(yt);

• K is the number of quantiles elicited from experts;

• Is is the s-th quantile interval of Y ;

• b is ranges of the quantile intervals, say [0.05, 0.45, 0.45, 0.05].
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Note. the constraint of this CP problem (15) is the discretized form of
∫ qt

qs

fY (y)dy = t− s. (14)

It is proven that if the background measure fU is uniform, the solution fY is piece wise uniform
over each quantile interval.

Convolute the density fy and given fε, then we have fZ .

4.6.3 Kraan 2 [5, Kraan](3.9)

We may approximate the minimal information distribution fZ w.r.t. the background measure. It
can be formulated by another CP problem

minfY

NY∑

l=1

fY (yl)ln
fY (yl)
fU (yl)

(15)

s.t. AfY = b (16)

s.t. fZ(zm) =
NY∑

l=1

fY (yl)fε(zm − yl)1Aε(zm − yl); (17)

where

• NZ is the number of discretized points of Z;

• Aε is the support range of ε.

The constraint of this CP problem is the discretized form of (11).

4.6.4 Another Approach by the Author

From fZ produced by Kraan, the quantile points of Z is calculated. We change the calibration
subject form Y to Z. The seed variables are from the noisy observation, recall the set Z∗. Let the
calibration of Z given Z∗ be Cal(Z|Z∗). The noise term ε is implicitly contained in Z.

In this study, we can try a different method. The aim is to keep Y unchanged and calibrate it
for given observation, denoted by Cal(Y |Z∗).

First interpolate sample distribution. For ordered given n observation samples Z∗ = (z∗1 , . . . , z∗n),
the quantiles can be calculated as

qk = Zi s.t. i/n ≤ k < (i + 1)/n.

The observation distribution density fZ∗ can be interpolated as piece wise uniform within each
qunatile interval, Ik = [qk, qk−1).

Comment: It looks like contradiction. If we knew the distribution of elicitation subjects in
first place what do we need experts for?

The fact is we may frequently observe events with high recurrence rates /year. They are mostly
earthquakes can hardly cause any damage. The purpose of using experts is to predict the damage
caused by large earthquakes. For such earthquakes the observations are very rare in Switzerland.

We do not need experts to predict anything with high recurrence. However, we do need
something observable to calibrate experts and weight them based on their performance. The seed
variables will probably come from some low magnitude events with high yearly recurrence rates.

In many cases there is only one observation point for each uncertain variable. The sample
distribution can hardly be approximated. In such cases, we can treat samples as deterministic. If
the noise of the those observations are assessed independently we may turn to Kraan 1 or 2. For
some cases we have a distribution rather than scattered points through an observation. The next
section is to handle such observations.
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Now, try to filter the noise out of the observations. Denoting the observation variable without
noise as Y ∗, the Equation (11) holds as:

Z∗ = fY ∗ ∗ fε

Approximating the distribution of Y ∗
j is another CP problem given by:

minf∗
Y

NY∑

l=1

fY ∗(yl)ln
fY ∗(yl)
fU (yl)

(18)

s.t. fZ∗(z∗m) =
NY∑

l=1

f∗Y (yl)fε(z∗m − yl)1Aε
(z∗m − yl); (19)

where

• NY is the number of discretized points of Y ∗;

• fU is the back ground measure of Y ∗;

• fε is the PDF of ε;

• m = 1, . . . , NZ , where NZ is the number of observed samples;

• Aε is the support range of ε.

The constraint of this CP problem can be formulated as:

AfY ∗ = b; (20)

where A ∈ RNz×Ny with (s, t) entry :

as,t = fε(z∗s − y∗t )1Aε(z
∗
s − y∗t ).

The s-th component vector b is
bs = fZ∗(z∗s ).

Choose Nz ≤ Ny such that the constraint will not be over-determined.
From fY ∗ and set Z∗, The CDF FY ∗ and FZ∗ are derived. The noise-free set Y ∗ = {y∗i } can

be derived as:
y∗i = F−1

Y ∗ (FZ∗(z∗i )) (21)

Note, if the noise is small, then FY ∗ and FZ∗ are almost identical thus y∗i ≈ z∗i . The set Y ∗ is
a function of Z∗, written as Y ∗(Z∗). Use them as the noise-free seed variables to calibrate the
elicitations of Y for given noisy observations Z∗.

Cal(Y |Z∗) = Cal(Y |Y ∗(Z∗)). (22)

4.6.5 Scoring with sample distributions

There are cases such that for each seed variable j we have n observed distribution FY ∗
j
. Let

yj(qj) = F−1
Y ∗

j
(qj), (23)

where q = {qj} ∼ U [0, 1]N are rank values of Y ∗
j ; N is the total number of uncertain seed variables

Let

sk(q) :=

∑
j 1Ij,k

(yj(qj))
N

;
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where Ij,k is the k-th quantile interval of the j-th elicitation. The relative information of the
observation w.r.t elicitation is a function of q:

RI(S(q), P ) =
K∑

i=1

si(q)ln(
si(q)
pi

); (24)

where K = 4 and {pi} = (0.05, 0.45, 0.45, 0.95).
The calibration score is

C(S(q), p) = 1− χ2
k(2NI(s(q); p)). (25)

The expectation of the calibration socre is

EC(S, p) :=
∫

q

C(S(q), p)dF (q); (26)

Where dF (q) = dq = dq1 . . . dqN . Sample q from a joint unform distribution U [0, 1]N . For each
sample q, (24) can be calculated. Substitute dq = 1/R, where R is the number of samples of q.
The (26) becomes average value over all the samples.

EC(S, p) =

∑
q C(S(q), p)

R
. (27)

5 Elicitations of Subproject 1

The Expert elicitions in PEGASOS happened during three PEGASOS subprojects, source char-
acteristic (SP1), ground motion characteristic (SP2) and site response (SP3). Experts worked
as teams (panels) to give their (conditional) probabilities over unknown quantities as shown in
Figure(1)

The SP1 Expert elicitions are documented as [4, PEGASOS final report volume 4]. There are
4 experts teams (panels) consisting of several experts, EG1a,EG1b, EG1c and EG1d. Each of the
teams carried out 4 tasks

• Seismtectonic Framework,

• Seismic Source Definition,

• Maximum Earthquake Magnitude,

• Earthquake Recurrence Parameters.

The seismotechtonic framework is to set up a common state of knowledge within each team. Based
on the the framework the teams carried out the next 3 tasks.

Among the next three tasks, Seismic Source Definition offers the best hope for calibration
variables. There are possibilities that those unknown quantities can be observed with good ac-
curacy. The latest effort made by Berkeley Seismological Laboratory (BSL) shows that right
after an earthquake happened, the source geometry can be determined very fast and precisely. A
standardized routine was described at http://seismo.berkeley.edu.

5.1 Seismic Source Definition

Many elicitations were done to give probabilities of unknown seismic source parameters. Here we
list some of those whose values may be observable post hoc.

For the 4 expert teams the potential calibration (seed) variables could be:

• Fault orientation [4, Final Report vol4]:

http://seismo.berkeley.edu�
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– Tab. 2: Style of Faulting and Rupture Orientation for EG1a Sources.

– Tab. A-1: Earthquake Rupture Parameters for EG1b.

– Tab. A1-2: Rupture orientation, style of faulting, and source boundary conditions for
EG1c.

– Tab. A-2: Styles of faulting for EG1d source. zones.

• Earthquake depth distribution for sources,[4, Final Report vol4]

– Fig 15 17 from EG1a;

– Fig 28, Fig 29 from EG1b

– Fig. A1-7,Tab. 6: Depth distributions used, by tectonic region from EG1c

– Tab. A-3: Focal depth distributions

Elicitation results are in a different format with different notation. Experts had consensus on
the existence of seismic sources/faults within each team while the inter-team differences were
significant.

The results from BSL cannot be used to calibrate experts in PEGASOS directly since the
events did not happen in Switzerland. If there is an event Switzerland, the event-fault geometry
can be determined precisely.

We could also perform bootstrap calibration if there are sources in regions similar to Switzer-
land:

1 First go through the elicitations and find some common sources shared by all teams.

2 Give each source deterministic parameters as our imaginary observations.

3 Using the scoring rules, compute the performance based decision maker.

4 Once real observations are available, we can use them instead of the imaginary observations.

The fact is that earthquakes do not happen often in Switzerland. If there is simply no event
observed, then hopefully the fault uncertainty can still be narrowed down as we keep collecting
data from field studies. As the source parameters become more and more certain, they can be used
as uncertain observations to calibrate the experts. The idea is to use any valuable information
about source geometry.

6 Experts’ Combinations and Calibration Subjects

6.1 Data Set Description

The experts’ data set represents the 80 single combinations (permutations) of expert opinions for
one plant, see Figure (6). The combinations were extracted from the combined logic tree model
for one of the sites. For each combination the PEGASOS hazard model (logic tree) can compute a
set of hazard curves for different spectral ordinates, freq(Hz) which can be represented as hazard
spectra (plot of spectral acceleration, versus frequency and probability of exceedance).

A single combination of expert opinion (from the 80) for a fixed probability of exceedance
(fixed values of magnitude and distance) can be approximated as a lognormal distribution. This
follows from the basic SSHAC seismic hazard model. Seismologists still discuss whether or on what
level this distribution shall be truncated. In the PEGASOS-project an upper limit truncation was
performed.

For each combination the PEGASOS algorithm (logic tree) can compute a set of hazard curves
for different seismic spectra, freq(HZ).

PAGASOS(80 experts|freq) ⇒ 80 hzard curves|freq; (28)
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Experts combination


A
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D


BO


BU


CO


SA


SC


SP1
 Expert
 SP2
 Expert


Bard


Faeh


Pecker


Stude


80 expert

combinations


SP3
 Expert


X
 X


Figure 6: 80 experts

where freq = [0.5, 1, 2, 4, . . .](HZ).
The curves are given by ASCII files. The file names are combinations of the expert’s names in

the three subprojects with some parameters, as: < Type > < SP1−Group > < site > h <
SP2 − Expert > < rec index > < SP3 − Expert > < Bodenbewegung > .asc, see [7][Soil
Hazard Resultate].

The x-coordinate of the curves is spectral acceleration. The y-coordinate is yearly exceedance
probability. Each data file contains five quantile curves.

The plots of some of those hazard curves are shown as Figure(7): Each of the hazard plots is
for one earthquake spectral ordinate, freq(HZ). There are in total 11 spectral ordinates. Plotting
the freq (HZ), acceleration (g) and exceedance probability (/year) together, we have the surface
plot shown as Figure(8). Note, only 0.05 and 0.95 quantile surfaces are plotted.

Suppose there is a plane vertical with z axis. It intersects with the 5 quantile surfaces. Since
z (exceedance probability) is strictly deceasing along the y (acceleration) axis, we have exactly 5
intersection curves. Project the curves into the plane of acceleration(g) v.s. freq(HZ) , then we
have quantile curves of hazard spectral plot shown as Figure(9).

The hazard spectral curves are for each exceedance probability. Each realization point in a
quantile interval of the surface plot will end up in the same quatnile interval of the hazard spectral
plot. Calibration of the hazard surfaces can be done by calibrating the hazard spectral curves.

In next sections we try to answer following questions

• Do experts’performances differ significantly?

• Does performance DM differ far from equal weight DM?

• Effect of the noise term.

• When does the performance DM converge as we add up the number of seed variables and
experts?

7 Aggregation Based on Synthetic Seed Variables

It is important to see how experts and DM perform based on different seed variables (realizations).
If we can build a simple model to simulate the seismic hazard, then we may sample synthetic seed
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Figure 9: hazard spectral curves of an expert

variables out of the the model. Using those variables, we can perform the scoring rules on the
experts. An interesting result could be that for each different seed variable set, the experts’
performances vary significantly. This means the performance based DM (per-DM) could be very
different with equal weight DM (ep-DM). If the per-DM has largely better performances than
eq-DM, then the effort to find (real) seed variables is worth to make.

7.1 Groen’s Model and Dependence Structure

A Monte Carlo procedure was built by Dr. Frank Groen, [2][Groen, 2004], to simulate the seis-
micity for each nuclear site in Switzerland. Each hazard curve is the result of a separate Monte
Carlo procedure. After many hazard curves are calculated, quantile curves are approximated from
the the curve set.

In his approach the model inputs are randomly sampled from given distributions. In my
previous study, [8][Meng 2005], I introduce a plausible dependence structure and showed its effects.

The task in that study included two parts:

• Build dependence structure between input variables.

• Use dependent sampling procedure to sample inputs.

After that, I use Groen’s statistic routine to estimate ground motion hazard curves.
The objective of that effort is to show how the hazard curves behave due to the dependence

between random inputs. There are two dependence structures used as analogs, vine and joint
normal. Ideally, under the same correlation assumptions, the choice of the dependence structure
does not make much of difference.

It shows that the dependence specification may have an impact on the hazard curves and it
can reduce the uncertainty bandwidth of the curves. Due to some optimistic assumptions made
by the author, the hazard curves are below the original Groen’s outcomes.
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Figure 10: hazard spectra without dependence

The results from the simulation (Groen with/without dependence) include quantile curves of
hazard spectral plots for different exceedance probabilities. Some of them are shown in Figure(10).
These plots can be seen as the counterpart of the PEGASOS results, Figure(10). From them we
can sample some synthetic seed variables.

7.2 Seed Variable Sampling

The sample procedure is described as:

• Choose an event recurrence rate rec(/year) and an observed spectral ordinate freq(HZ), the
choice see next section;

• In Groen’s hazard spectral plot of the chosen rec, draw a vertical line at the freq value
intersecting with the 5 quantile curves by 5 quantile points;

• Interpolate the distribution function as piece wise uniform within quantile intervals. This
distribution is proven to be the minimal informative distribution w.r.t. the uniform back-
ground measure.

• Sample random variable U from a uniform distribution over [0, 1].

• Through the inverse transform, X = F−1(U), find the synthetic seed variable.

Note, the sample distributions are interpolated in log-scale.

7.2.1 Choice of rec and freq Values

To make the synthetic seed variables realistic, the ideal choice of the rec value should be as big
as possible, say 10−1. Thus, for average 10 years we may have 1 local (in Switzerland) event. For
this event we may record earthquake time histories at different sites and develop an observation
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Figure 11: amplification factor (AF) from SP3 report

set of hazard spectra for different sites spectral acceleration versus frequency. These values are
realizations of the PEGASOS prediction. If we can identify 100 independent seismic observation
sites with the similar seismicity, we may have 10 global events each year. Unfortunately, the
current data from PEGASOS only includes magnitude values larger than 5.0. The rec ranges
assessed by different experts are different. If all the experts are to be calibrated, the biggest choice
of rec value is 10−4. For up to rec = 103/year, the extraction of data showed that some expert
combinations turned out to be 0.

Note, the hazard spectra are developed based on the solution of the vibration equation for a
single degree of freedom system with a specified damping (in our case 5%) with a natural frequency
corresponding to freq(HZ) in this study.

The choice of rec and freq values is also limited by something else. In Groen’s approach,
the site response (SP3) is not taken into consideration. This results a significant discrepancy
between Groen and PEGASOS. In SP3, experts gave assessments about the amplification effect
of ground motion from rock to soil. We found that for large ground motions at some freq(HZ)
values, Groen’s results and PEGASOS match quite well. This may suggest that the amplification
effect is not significant. The blue area in Figure (11) quoted from [4][PEGASOS vol.6] confirms
this suggestion. To avoid the amplification effect, we need to sample seed variables with large
ground motion. This means we can only choose low exceedance recurrence rate (rec/year). This
compromise could be avoided by encoding the site response into the simulation.

Now, the sample values from Groen (with or without dependence) can be used to calibrate
experts directly.

7.3 Performance Based Decision Maker

Based on the synthetic seed variables the calibration and information scoring rules are applied on
the experts’ curves. The performance weight of an expert is proportional to the product of his
calibration and information scores. The decision maker (DM) distribution is the weighted average
over the experts’ distributions. The DM quantiles are derived from its distribution. The scoring
rules are also applied on the DM’s distribution to calculate its unnormalized weight.
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SP 1
 SP 2
 SP 3

EX 1
 EG1a
 BO
 Bard

EX 2
 EG1b
 CO
 Faeh

EX 3
 EG1c
 SA
 Peck

EX 4
 EG1d
 BO
 Studer

EX 5
 EG1a
 CO
 Studer


Table 1: expert list

Set the optimal cutoff level α, see section 4.5, such that the DM’s unnormalized weight is
maximized.

8 Case Study

To demonstrate the decision making procedure, We arbitrarily choose 5 combinations out of 80 as
our experts, see Table (1).

A cluster of Matlab programs were written by the author to implement expert judgment on the
experts. The results were checked by a program called Excalibur, [9][Exalibur 2000], developed in
Delft University of Technology, see http://delta.am.ewi.tudelft.nl/risk/. The data flow is
shown in Figure (12).

8.1 Multiple Seismic Events

Suppose there are 3 events. All the events are with yearly exceedance probability rec = 10−6/year.
For each event we sample the seed variables at 5 different spectra (freq) values. Thus, there are
in total 15 synthetic seed variables. The sampling method for a given distribution, recall Section
(7.2), is to uniformly sample U ∼ U [0, 1] and do inverse transform as Figure (13). Through this
method, a set of seed variables are sampled as Figure (14). These seed variables are sampled
from Groen’s results without optimistic dependence assumptions. The corresponding seed list
and scoring results (including weights) are in Table (2). Where, DM 1 is the performance based
decision maker and eq DM is the equal weight decision maker. The Matlab code and Excalibur
produce the same DM and eq DM 2.

For each expert/DM there is a data-fit hazard spectra plot, see Figure (15). In the Figure (15),
at each seed variable draw a vertical line intersecting with the curves by 5 quantile points, see
Figure (16). The quantile curves are given by discrete points. Linear interpolations are made to
calculate the positions of the points in Figure (16). From the quantile points and seed variables,
the Matlab code generates Excalibur input files.

Note, in the Matlab code the aggregations are done at the discrete curve points. Thus, it can
produce quantile curves in the same format as the inputs. However in Excalibur, the aggregations
are done at the seed variable points. This explains the slight difference between the Matlab and
Excalibur results.

Through Excalibur, we can see the range graphs of the input/output data. Figure (26-31), see
Appendix, show the range graphs for the experts and DM. From those graphs, we see how PE-
GASOS and Groen’s results fit each other. Note, the intrinsic ranges of the graphs are calculated
as Section (4.4.1).

The seed variables are randomly sampled from the simulation results. For each sampling trial
we have a different seed variable set therefor we have a different score table and DM. Sample seed

1For sake of simplicity, we denote the performance based decision maker as DM through out this report
2Note, DM has better performance than eq DM in both calibration and information scores

http://delta.am.ewi.tudelft.nl/risk/�
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Figure 12: data flow of the Matlab code
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seed ID
 value
 full name

seed1
 0.73774
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed2
 1.3767
 acc(g)|rec=1E-006/year,freq=4HZ

seed3
 1.5227
 acc(g)|rec=1E-006/year,freq=5HZ

seed4
 1.5543
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed5
 1.1992
 acc(g)|rec=1E-006/year,freq=10HZ

seed6
 0.9372
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed7
 1.5739
 acc(g)|rec=1E-006/year,freq=4HZ

seed8
 1.7039
 acc(g)|rec=1E-006/year,freq=5HZ

seed9
 1.3634
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed10
 1.0366
 acc(g)|rec=1E-006/year,freq=10HZ

seed11
 1.1119
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed12
 1.98
 acc(g)|rec=1E-006/year,freq=4HZ

seed13
 1.9396
 acc(g)|rec=1E-006/year,freq=5HZ

seed14
 1.4981
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed15
 1.4464
 acc(g)|rec=1E-006/year,freq=10HZ


 Id     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w

expert
 Calibration
 Iformation
 weight
         
           
 information
 weight    
 without DM


1
 0.12111
 0.37253
 0.075177
 EX1     
 0.1211
 0.3725
 0.04512
 0.07516

Matlab
 2
 0.00020562
 0.10934
 0
 Excalibur
 EX2     
 0.000206
 0.1093
 0
 0


3
 0.24682
 1.3216
 0.54352
 EX3     
 0.2469
 1.322
 0.3263
 0.5436

4
 0.045117
 0.90371
 0.067939
 EX4     
 0.04509
 0.9037
 0.04075
 0.06788

5
 0.23533
 0.79915
 0.31336
 EX5     
 0.2354
 0.7991
 0.1881
 0.3134


DM
 0.5019
 0.74043
 NaN
 DM      
 0.5018
 0.7301
 0.3664
           

eq_DM
 0.18684
 0.37214
 NaN
 eq_DM   
 0.1868
 0.3659
 0.06835
           


Table 2: Seed set sampled from Groen without dependence; scores and weights of the experts and
DM/eq DM.
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Figure 16: seed and quantile points of Expert 5
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seed ID
 trial1
 trial2
 trial3
 trial4
 trial5
 trial6
 full name

seed1
 0.86417
 0.64512
 0.87714
 1.1578
 0.76286
 0.66225
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed2
 1.8738
 1.7831
 2.0504
 1.9699
 1.5551
 1.6134
 acc(g)|rec=1E-006/year,freq=4HZ

seed3
 1.7287
 1.3746
 1.3697
 1.583
 1.8474
 1.8003
 acc(g)|rec=1E-006/year,freq=5HZ

seed4
 1.9457
 1.5304
 1.5681
 1.1661
 1.6764
 1.4219
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed5
 1.1978
 1.0279
 1.378
 1.1218
 0.85131
 1.0095
 acc(g)|rec=1E-006/year,freq=10HZ

seed6
 0.17466
 0.19728
 0.17291
 0.1938
 0.21263
 0.16882
 acc(g)|rec=1E-007/year,freq=0.5HZ

seed7
 0.33317
 0.53837
 0.31751
 0.64675
 0.52061
 0.32899
 acc(g)|rec=1E-007/year,freq=1HZ

seed8
 1.1506
 1.7264
 1.7256
 1.2665
 1.6991
 1.3012
 acc(g)|rec=1E-007/year,freq=13.34HZ

seed9
 1.0672
 1.0914
 0.91245
 1.0933
 0.73896
 0.66815
 acc(g)|rec=1E-007/year,freq=35HZ


seed10
 0.59736
 0.80202
 0.88163
 0.65573
 1.0321
 0.6469
 acc(g)|rec=1E-007/year,freq=50HZ

seed11
 0.42304
 0.68773
 0.42144
 0.49598
 0.54319
 0.41951
 acc(g)|rec=1E-005/year,freq=2.5HZ

seed12
 1.4294
 0.91165
 1.1862
 1.4333
 1.2884
 1.2641
 acc(g)|rec=1E-005/year,freq=4HZ

seed13
 1.313
 1.1257
 0.93743
 0.88212
 0.83918
 0.95073
 acc(g)|rec=1E-005/year,freq=5HZ

seed14
 1.0498
 1.0324
 1.1472
 0.9565
 0.95833
 1.0919
 acc(g)|rec=1E-005/year,freq=6.6667HZ

seed15
 0.79849
 0.6794
 0.64583
 0.63048
 0.62598
 0.59611
 acc(g)|rec=1E-005/year,freq=10HZ


Table 3: synthetic seed samples
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Figure 17: weight plot for the 6 DMs

variables from different rec/year and freq(HZ) values, see table (3).
The corresponding weight plot of the 6 DMs is shown in Figure(17). From the figure, we can

see the differences between DMs.
The corresponding scores are shown in Table (4).
These trial results show

• For each expert, the information scores are almost identical across the trials.

• The calibration of an expert varies over the trials roughly with factor 4.

• Expert 5 has non-zero weight in all the trials. In half of the trials it has all the weight. This
suggests Expert 5 is the best performance expert.

• The DM is well calibrated and reasonably informative in most of the trials.

• In some trials, the eq DM is well calibrated, see trial 1 and 3. In other trials, it is badly
calibrated. Its information score is always below the DM.

Note, all the trials are checked by Excalibur, see Table (21) in Appendix.
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expert
 Calibration
 Iformation
 weight
 expert
 Calibration
 Iformation
 weight

1
 0.00043367
 0.42665
 0
 1
 0.0053765
 0.42665
 0


Matlab
 2
 0.0006228
 0.13197
 0
 Matlab
 2
 0.0001699
 0.13197
 0

trial1
 3
 0.0013324
 0.9831
 0
 trial2
 3
 5.2237e-005
 0.9831
 0


4
 0.099605
 0.77976
 0.3121
 4
 0.022632
 0.77976
 0

5
 0.25047
 0.68347
 0.6879
 5
 0.19709
 0.68347
 1


DM
 0.49196
 0.65817
 NaN
 DM
 0.19709
 0.68023
 NaN

eq_DM
 0.17562
 0.34564
 NaN
 eq_DM
 0.063968
 0.34564
 NaN


expert
 Calibration
 Iformation
 weight
 expert
 Calibration
 Iformation
 weight

1
 0.0022248
 0.42679
 0
 1
 0.0066959
 0.42665
 0


Matlab
 2
 0.00081815
 0.13209
 0
 Matlab
 2
 0.0039772
 0.13197
 0

trial3
 3
 0.002793
 0.98325
 0.22657
 trial4
 3
 8.5811e-005
 0.9831
 0


4
 0.0050285
 0.77992
 0.32357
 4
 0.034868
 0.77976
 0

5
 0.0079766
 0.68356
 0.44986
 5
 0.18684
 0.68347
 1


DM
 0.4777
 0.63095
 NaN
 DM
 0.18684
 0.68023
 NaN

eq_DM
 0.18494
 0.34577
 NaN
 eq_DM
 0.030461
 0.34564
 NaN


expert
 Calibration
 Iformation
 weight
 expert
 Calibration
 Iformation
 weight

1
 0.0037512
 0.42665
 0.090256
 1
 0.00084037
 0.42667
 0


Matlab
 2
 0.0015935
 0.13197
 0
 Matlab
 2
 0.00081815
 0.13198
 0

trial5
 3
 4.2446e-005
 0.9831
 0
 trial6
 3
 3.8919e-006
 0.98312
 0


4
 0.0031768
 0.77976
 0.1397
 4
 0.0019405
 0.77977
 0

5
 0.019979
 0.68347
 0.77005
 5
 0.36631
 0.68348
 1


DM
 0.049272
 0.56747
 NaN
 DM
 0.36631
 0.68023
 NaN

eq_DM
 0.020309
 0.34564
 NaN
 eq_DM
 0.028025
 0.34565
 NaN


Table 4: score table for the 6 trials

8.2 Dependence Assumption Effect

The seed variables above are sampled from the original [2][Groen] model. We may also sample
seed variable sets from Groen plus optimistic dependence (vine/joint normal) assumptions. Based
on the seed variables sampled from different sources, we compare the scores of the experts and
DM. The objective is to see the ultimate impact of the dependence assumptions on the DM.

8.2.1 Unify the Sampling Randomness

Let us recall the sampling procedure mentioned in Section (7.2) and the inverse uniform transform
in Figure (13).

Suppose there are 2 distributions, FY and FZ , as 2 sample sources. From them we sample seed
variables. The way to compare these sources is to use the same uniform set, U values in Figure
(13), to sample seed variable sets of Y and Z. Thus, we can compare these two sets and, based
on them, the performances of the experts and DMs.

Short hand notations:3

• Denote Groen without dependence assumption as (seed variable) Source 1:

• Groen with the joint normal dependence as Source 2;

• Groen with the vine dependence as Source 3.

Recall the data flow diagram, Figure (12). It includes two parallel procedures using Excalibur
and the Matlab code. These two procedures are functionally identical. An easy way to compare
the different sample sources is to redesign the data flow as Figure (18).

3Details of the dependence assumptions see report [8][Meng, 2005]. Different seed variable sources are compared
in terms of experts/DM’s calibration and information scores.
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Figure 18: sample source comparison
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seed ID
 Source 1
 Source 2
 full name

seed1
 0.982
 0.19497
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed2
 1.8031
 0.43157
 acc(g)|rec=1E-006/year,freq=4HZ

seed3
 1.4377
 0.32399
 acc(g)|rec=1E-006/year,freq=5HZ

seed4
 1.7441
 0.48517
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed5
 1.3836
 0.39345
 acc(g)|rec=1E-006/year,freq=10HZ

seed6
 0.14322
 0.01073
 acc(g)|rec=1E-007/year,freq=0.5HZ

seed7
 0.49503
 0.047621
 acc(g)|rec=1E-007/year,freq=1HZ

seed8
 1.3031
 0.19769
 acc(g)|rec=1E-007/year,freq=13.34HZ

seed9
 1.3082
 0.2319
 acc(g)|rec=1E-007/year,freq=25HZ

seed10
 0.64452
 0.077483
 acc(g)|rec=1E-007/year,freq=50HZ

seed11
 0.50394
 0.12275
 acc(g)|rec=1E-005/year,freq=2.5HZ

seed12
 1.1727
 0.44622
 acc(g)|rec=1E-005/year,freq=4HZ

seed13
 0.93724
 0.31217
 acc(g)|rec=1E-005/year,freq=5HZ

seed14
 1.2481
 0.60545
 acc(g)|rec=1E-005/year,freq=6.6667HZ

seed15
 0.71127
 0.25298
 acc(g)|rec=1E-005/year,freq=10HZ


Table 5: 2 seed sets sampled from Source 1, 2

 Id     
 Calibr.   
 Mean relative
 UnNormaliz
 Normaliz.w

expert
 Calibration
 Iformation
 weight
         
           
 information
 weight    
 without DM


1
 0.011022
 0.42742
 0
 EX1     
 7.16E-18
 0.4758
 0
 0

Matlab
 2
 0.00078483
 0.13114
 0
 Excalibur
 EX2     
 5.32E-16
 0.17
 9.042E-17
 0.1874


Source 1
 3
 0.034163
 1.0044
 0.76187
 Source 2
 EX3     
 7.16E-18
 1.055
 0
 0

4
 0.001136
 0.79302
 0
 EX4     
 7.16E-18
 0.8424
 0
 0

5
 0.015421
 0.69547
 0.23813
 EX5     
 5.32E-16
 0.7369
 3.921E-16
 0.8126


DM
 0.36631
 0.77115
 NaN
 DM      
 5.32E-16
 0.4981
 2.65E-16
           

eq_DM
 0.17562
 0.35012
 NaN
 eq_DM   
 5.32E-16
 0.3833
 2.039E-16
           


Table 6: trial results on Source 1, 2

8.2.2 Impact of the Joint Normal Dependence

Here we sample two sets of seed variables out of Source 1 and Source 2, see Table (5). From
the table, we see that samples form Source 2 are much lower then corresponding samples from
Source 1. This is because the optimistic dependence brings the hazard (acceleration) down. The
score/weight tables from the Matlab code and Excalibur are shown as Table (6). From the table,
the experts/DM are badly calibrated based on Source 2 seed variable set. For each expert the
calibrations differ by scale of 10−4 over the two trials.

8.2.3 Impact of the Vine Dependence

Sample seed variable sets from Source 1 and Source 3 and compare the results as above. The seed
sets and results are in Table (7) and Table (8). The results are similar with last section.

8.2.4 Comparison between Joint Normal and Vine

These two dependence structures share the same correlation matrix. Ideally, they have the same
impact on the experts’ performances and DM. Even though the experts/DM have bad perfor-
mances, we can still compare these two dependence structures. Give the seed sets sampled from
Source 2 and Source 3 to the Matlab code and Excalibur. The sample sets and the results are
in Table (9 ),(10). The two seed sets sampled from Source 2 and Source 3 are very close as
expected. The experts’ performances and DM are the same within the trials. This result confirms
the statement at beginning.
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seed ID
 Source 1
 Source 3
 full name

seed1
 0.86417
 0.13188
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed2
 1.8738
 0.41936
 acc(g)|rec=1E-006/year,freq=4HZ

seed3
 1.7287
 0.46897
 acc(g)|rec=1E-006/year,freq=5HZ

seed4
 1.9457
 0.58605
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed5
 1.1978
 0.30079
 acc(g)|rec=1E-006/year,freq=10HZ

seed6
 0.17466
 0.014209
 acc(g)|rec=1E-007/year,freq=0.5HZ

seed7
 0.33317
 0.031623
 acc(g)|rec=1E-007/year,freq=1HZ

seed8
 1.1506
 0.179
 acc(g)|rec=1E-007/year,freq=13.34HZ

seed9
 1.0945
 0.16544
 acc(g)|rec=1E-007/year,freq=25HZ


seed10
 0.59736
 0.08968
 acc(g)|rec=1E-007/year,freq=50HZ

seed11
 0.42304
 0.1
 acc(g)|rec=1E-005/year,freq=2.5HZ

seed12
 1.4294
 0.55301
 acc(g)|rec=1E-005/year,freq=4HZ

seed13
 1.313
 0.59089
 acc(g)|rec=1E-005/year,freq=5HZ

seed14
 1.0498
 0.41953
 acc(g)|rec=1E-005/year,freq=6.6667HZ

seed15
 0.79849
 0.32743
 acc(g)|rec=1E-005/year,freq=10HZ


Table 7: 2 seed sets sampled from Source 1, 3

 Id     
 Calibr.   
 Mean relative
 UnNormaliz
 Normaliz.w

expert
 Calibration
 Iformation
 weight
         
           
 information
 weight    
 wit hout DM


1
 0.00043367
 0.42742
 0
 EX1     
 7.16E-18
 0.4736
 0
 0

Matlab
 2
 0.0006228
 0.13114
 0
 Excalibur
 EX2     
 9.59E-15
 0.1687
 1.618E-15
 0.1865


Source 1
 3
 0.0013324
 1.0044
 0
 Source 3
 EX3     
 7.16E-18
 1.052
 0
 0

4
 0.099605
 0.79302
 0.31199
 EX4     
 7.16E-18
 0.8403
 0
 0

5
 0.25047
 0.69547
 0.68801
 EX5     
 9.59E-15
 0.7356
 7.054E-15
 0.8135


DM
 0.49196
 0.67061
 NaN
 DM      
 9.59E-15
 0.4974
 4.769E-15
           

eq_DM
 0.11275
 0.35012
 NaN
 eq_DM   
 5.32E-16
 0.382
 2.032E-16
           


Table 8: trial results on Source 1, 3

seed ID
 Source 2
 Source 3
 full name

seed1
 0.19497
 0.17837
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed2
 0.43157
 0.39648
 acc(g)|rec=1E-006/year,freq=4HZ

seed3
 0.32399
 0.34977
 acc(g)|rec=1E-006/year,freq=5HZ

seed4
 0.48517
 0.46217
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed5
 0.39345
 0.37981
 acc(g)|rec=1E-006/year,freq=10HZ

seed6
 0.01073
 0.01073
 acc(g)|rec=1E-007/year,freq=0.5HZ

seed7
 0.084684
 0.079837
 acc(g)|rec=1E-007/year,freq=1.34HZ

seed8
 0.19397
 0.21245
 acc(g)|rec=1E-007/year,freq=20HZ

seed9
 0.2319
 0.22997
 acc(g)|rec=1E-007/year,freq=35HZ

seed10
 0.077483
 0.10332
 acc(g)|rec=1E-007/year,freq=50HZ

seed11
 0.12275
 0.12275
 acc(g)|rec=1E-005/year,freq=2.5HZ

seed12
 0.44622
 0.40608
 acc(g)|rec=1E-005/year,freq=4HZ

seed13
 0.31217
 0.34229
 acc(g)|rec=1E-005/year,freq=5HZ

seed14
 0.60545
 0.55563
 acc(g)|rec=1E-005/year,freq=6.6667HZ

seed15
 0.25298
 0.26773
 acc(g)|rec=1E-005/year,freq=10HZ


Table 9: 2 seed sets sampled from Source 2, 3
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 Id     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w

expert
 Calibration
 Iformation
 weight
         
           
 information
 weight    
 without DM


1
 0
 0.4629
 0
 EX1     
 7.16E-18
 0.4626
 0
 0

Matlab
 2
 5.5511e-016
 0.16855
 0.19151
 Excalibur
 EX2     
 5.32E-16
 0.1681
 8.943E-17
 0.1912


Source 2
 3
 0
 1.0164
 0
 Source 3
 EX3     
 7.16E-18
 1.016
 0
 0

4
 0
 0.82064
 0
 EX4     
 7.16E-18
 0.8203
 0
 0

5
 5.5511e-016
 0.71158
 0.80849
 EX5     
 5.32E-16
 0.7111
 3.783E-16
 0.8088


DM
 5.5511e-016
 0.48513
 NaN
 DM      
 5.32E-16
 0.4792
 2.55E-16
           

eq_DM
 5.5511e-016
 0.38329
 NaN
 eq_DM   
 5.32E-16
 0.3723
 1.981E-16
           


Table 10: trial results on Source 2, 3
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Figure 19: noise effect on an expert distribution

8.3 Noise Effect

8.3.1 Kraan 1

In many cases the observations contain some uncertainties (noise) which experts are not supposed
to fold into their assessments. To investigate the noise effect, we have to know the noise term,
recall the ε in Section (4.6). We assume ε is normally distributed with 0 mean and standard
deviation δ.

With the noise term and experts’ quantiles, we can apply the convolution, Formula (11) in
Section (4.6.2), on the experts. Technically it folds the noise into the experts’ distributions,
Krann 1 [5][Kraan].

Let us first see how an expert distribution looks before and after convolution. We choose the
quanitles given by Expert 1 for the seed variable acc|rec = 1E − 005/year, spec = 1HZ. The
quantiles are Q.05 = 0.1546, Q.16 = 0.2068, Q.5 = 0.3311, Q.84 = 0.5527, Q.95 = 0.7808(g).
We interpolate the expert distribution as piece-wise uniform within the quantile intervals, ±10%
overshoot on both sides. Add one noise term a time with δ = [0.02, 0.04, 0.06](g). The results are
in Figure (19) An easy way to see the noise effect is again redesign the data flow diagram as Figure



8 CASE STUDY 32

seed ID
 value
 full name

seed1
 0.77236
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed2
 2.0852
 acc(g)|rec=1E-006/year,freq=4HZ

seed3
 1.6659
 acc(g)|rec=1E-006/year,freq=5HZ

seed4
 1.4669
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed5
 0.9073
 acc(g)|rec=1E-006/year,freq=10HZ

seed6
 0.23071
 acc(g)|rec=1E-007/year,freq=0.5HZ

seed7
 0.80996
 acc(g)|rec=1E-007/year,freq=1.34HZ

seed8
 0.99912
 acc(g)|rec=1E-007/year,freq=20HZ

seed9
 1.219
 acc(g)|rec=1E-007/year,freq=35HZ

seed10
 0.66888
 acc(g)|rec=1E-007/year,freq=50HZ

seed11
 0.56281
 acc(g)|rec=1E-005/year,freq=2.5HZ

seed12
 0.90828
 acc(g)|rec=1E-005/year,freq=4HZ

seed13
 0.82379
 acc(g)|rec=1E-005/year,freq=5HZ

seed14
 0.88561
 acc(g)|rec=1E-005/year,freq=6.6667HZ

seed15
 0.63141
 acc(g)|rec=1E-005/year,freq=10HZ


 Id     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w

expert
 Calibration
 Iformation
 weight
         
           
 information
 weight    
 wit hout DM


1
 0.00097647
 0.41477
 0
 EX1     
 0.000131
 0.4148
 0
 0

Matlab
 2
 0.0039772
 0.12996
 0
 Excalibur
 EX2     
 0.001593
 0.13
 0
 0

noisy
 3
 0.00024994
 0.96614
 0
 non-noisy
 EX3     
 0.000534
 0.9661
 0
 0


4
 0.0072291
 0.77158
 0
 EX4     
 0.007225
 0.7716
 0
 0

5
 0.40677
 0.67067
 1
 EX5     
 0.2976
 0.6707
 0.1996
 1


DM
 0.40677
 0.66738
 NaN
 DM      
 0.2976
 0.6707
 0.1996
           

eq_DM
 0.020309
 0.33975
 NaN
 eq_DM   
 0.001181
 0.3344
 0.000395
           


Table 11: noise effect, δ = 0.02(g)

(20). The sample source is chosen to be Groen without dependence. The seed set and scores are
in Table (11). From the results, Expert 1, 2 and 5 are better calibrated if we add the noise to
them before the calibration. The information scores are based on the noise-free experts, so they
are identical within the trials. The DM performance is better in the noisy trial.

Now, add up the noise s.t. δ = 0.06(g). Do the same trial as above. The result is in Table
(12). This time, Expert 1, 4 and 5 show some improvement at their calibrations in the noisy trial.
Again the DM has better performance in the noisy trial.

8.3.2 The Author’s Approach

Let us recall Section (4.6.4). This approach requires a noisy set for each seed variable to inter-
polate the sample distribution, recall fZ∗ . This requirement could make the approach difficult to
implement in many cases.

However in this study, the synthetic seed variables are actually sampled from given distributions
as seed sources, [2][Groen]. We can treat the source distribution as fZ∗ and implement the filter-
like algorithm, Formula (18). Using the outcome distribution fY ∗ as the noise-free source to
re-sample the seed variable, Formula (21).

Let us first compare the fZ∗ and fY ∗ . Choose fZ∗ from Groen at rec = 10−6 and freq =
10(HZ). Choose the noise term with δ = 0.02. The densities are in Figure (21). The numerical
optimization toolbox [10][Mosek] are used to implement Formula (18).

To compare the noise effect, we again redesign the data flow as Figure (22)
The noisy/noise-free seed sets and the corresponding scores are in Table (13). From the two

seed variable sets, Z∗ and Y ∗ are very close. Except Expert 3, the other experts/DM’s scores are
almost identical within the trials.

In the previous section, we tried some optimistic assumptions in Groen’s model. The ex-
perts/DM have bad performances under the assumptions. We could treat the optimism as bias
(noises with non-zero means), and implement the algorithms above. The performances could be
improved.
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Figure 20: noise effect identification, Kraan 1
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seed ID
 value
 full name

seed1
 0.85595
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed2
 2.1554
 acc(g)|rec=1E-006/year,freq=4HZ

seed3
 1.4837
 acc(g)|rec=1E-006/year,freq=5HZ

seed4
 1.6704
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed5
 0.83194
 acc(g)|rec=1E-006/year,freq=10HZ

seed6
 0.18842
 acc(g)|rec=1E-007/year,freq=0.5HZ

seed7
 0.35146
 acc(g)|rec=1E-007/year,freq=1HZ

seed8
 1.2689
 acc(g)|rec=1E-007/year,freq=13.34HZ

seed9
 1.2147
 acc(g)|rec=1E-007/year,freq=25HZ

seed10
 0.73446
 acc(g)|rec=1E-007/year,freq=50HZ

seed11
 0.61038
 acc(g)|rec=1E-005/year,freq=2.5HZ

seed12
 1.0421
 acc(g)|rec=1E-005/year,freq=4HZ

seed13
 1.0724
 acc(g)|rec=1E-005/year,freq=5HZ

seed14
 0.79066
 acc(g)|rec=1E-005/year,freq=6.6667HZ

seed15
 0.8033
 acc(g)|rec=1E-005/year,freq=10HZ


 Id     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w

expert
 Calibration
 Iformation
 weight
         
           
 information
 weight    
 without DM


1
 0.0022659
 0.42742
 0
 EX1     
 0.000577
 0.4274
 0
 0

Matlab
 2
 0.0007667
 0.13114
 0
 Excalibur
 EX2     
 0.000819
 0.1311
 0
 0

noisy
 3
 0.002793
 1.0044
 0
 non-noisy
 EX3     
 0.002793
 1.004
 0
 0


4
 0.018273
 0.79302
 0
 EX4     
 0.01127
 0.793
 0
 0

5
 0.33526
 0.69547
 1
 EX5     
 0.1319
 0.6955
 0.09175
 1


DM
 0.33526
 0.69232
 NaN
 DM      
 0.1319
 0.6955
 0.09175
           

eq_DM
 0.17562
 0.35012
 NaN
 eq_DM   
 0.02653
 0.3451
 0.009154
           


Table 12: noise effect, δ = 0.06(g)
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Figure 21: fZ∗ and fY ∗
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Figure 22: Noise effect identification, Meng
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seed ID
 Y*
 Z*
 full name

seed1
 0.95189
 0.95577
 acc(g)|rec=1E-006/year,freq=2.5HZ

seed2
 1.8308
 1.8421
 acc(g)|rec=1E-006/year,freq=4HZ

seed3
 1.5668
 1.5715
 acc(g)|rec=1E-006/year,freq=5HZ

seed4
 1.3164
 1.3197
 acc(g)|rec=1E-006/year,freq=6.6667HZ

seed5
 1.0762
 1.0778
 acc(g)|rec=1E-006/year,freq=10HZ

seed6
 0.24888
 0.24794
 acc(g)|rec=1E-007/year,freq=0.5HZ

seed7
 0.85169
 0.8579
 acc(g)|rec=1E-007/year,freq=1.34HZ

seed8
 1.3293
 1.3428
 acc(g)|rec=1E-007/year,freq=20HZ

seed9
 1.1397
 1.1379
 acc(g)|rec=1E-007/year,freq=35HZ


seed10
 1.0517
 1.0424
 acc(g)|rec=1E-007/year,freq=50HZ

seed11
 0.53262
 0.53381
 acc(g)|rec=1E-005/year,freq=2.5HZ

seed12
 1.072
 1.0685
 acc(g)|rec=1E-005/year,freq=4HZ

seed13
 1.126
 1.1211
 acc(g)|rec=1E-005/year,freq=5HZ

seed14
 1.027
 1.0301
 acc(g)|rec=1E-005/year,freq=6.6667HZ

seed15
 0.69704
 0.697
 acc(g)|rec=1E-005/year,freq=10HZ


 Id     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w

expert
 Calibration
 Iformation
 weight
         
           
 information
 weight    
 without DM


1
 0.066235
 0.41477
 0.26207
 EX1     
 0.06621
 0.4148
 0.02746
 0.262

Matlab
 2
 0.018634
 0.12996
 0
 Excalibur
 EX2     
 0.01864
 0.13
 0
 0


Y*
 3
 0.00014907
 0.96614
 0
 Z*
 EX3     
 0.000202
 0.9661
 0
 0

4
 0.034868
 0.77158
 0
 EX4     
 0.03487
 0.7716
 0
 0

5
 0.11534
 0.67067
 0.73793
 EX5     
 0.1153
 0.6707
 0.07734
 0.738


DM
 0.16631
 0.47086
 NaN
 DM      
 0.1664
 0.465
 0.07736
           

eq_DM
 0.049563
 0.33975
 NaN
 eq_DM   
 0.05784
 0.3344
 0.01934
           


Table 13: noise effect, δ = 0.02(g)

8.4 Summary of the Matlab Code Functions

As we can see, the Matlab code has several extensions over Excalibur:

• It can read quantile curves from the ASCII data files.

• It can apply scoring rules on qauntile curves for given seed variables.

• It can sample synthetic seed variables from given distributions, when realizations are not
available.

• It can produce DM quantile curves in the same format as the input experts’.

• It can handle noisy observations.

However, since it is written in Matlab, the speed is relatively slow.

9 DM Convergence

There is no theory tells how many seed variables/experts are needed in order to make the DM
converge. In this study, there are 80 real experts, and we can sample the synthetic seed variables
as many as we want. This fact provides us an opportunity to investigate the DM behavior w.r.t.
the numbers of seed variables and experts.

9.1 Measure of Convergence

The convergence of the a DM serial is measured by the relative information:

I(t|s) = Inf(DM(t)|DM(s)); (29)

where s, t|0 < s < t are the numbers of seed variables/experts. If I(t|s) is close to 0 for some value
s, then it suggests the DM converges after s seed variables/experts.
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Expert
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w

          
 information
 weight    
 without DM


'a_SC_Studer'
 0.2092
 0.9241
 0.1933
 0.2499

'b_CO_Studer'
 0.1961
 0.6508
 0.1276
 0.165

'b_BO_Faeh  '
 0.009596
 0.2088
 0
 0

'd_SC_Studer'
 0.3834
 0.8624
 0.3306
 0.4275

'd_CO_Pecker'
 0.00074
 0.8902
 0
 0

'a_BO_Bard  '
 0.007289
 0.4179
 0
 0

'd_SA_Faeh  '
 0.05036
 0.2623
 0
 0

'a_CO_Bard  '
 0.08828
 0.3411
 0
 0

'a_BU_Studer'
 0.004791
 1
 0
 0

'd_BU_Bard  '
 0.2075
 0.5872
 0.1218
 0.1575


DM(15)
 0.7296
 0.6342
 0.4627
           


seed ID
 value
 seed name

seed1
 0.645121
 acc(g)|rec=1E-006/year,spec=2.5HZ

seed2
 1.7831
 acc(g)|rec=1E-006/year,spec=4HZ

seed3
 1.3746
 acc(g)|rec=1E-006/year,spec=5HZ

seed4
 1.53036
 acc(g)|rec=1E-006/year,spec=6.6667HZ

seed5
 1.02794
 acc(g)|rec=1E-006/year,spec=10HZ

seed6
 0.197282
 acc(g)|rec=1E-007/year,spec=0.5HZ

seed7
 0.782908
 acc(g)|rec=1E-007/year,spec=1.34HZ

seed8
 1.60076
 acc(g)|rec=1E-007/year,spec=20HZ

seed9
 1.09137
 acc(g)|rec=1E-007/year,spec=35HZ

seed10
 0.802021
 acc(g)|rec=1E-007/year,spec=50HZ

seed11
 0.687735
 acc(g)|rec=1E-005/year,spec=2.5HZ

seed12
 0.911654
 acc(g)|rec=1E-005/year,spec=4HZ

seed13
 1.12569
 acc(g)|rec=1E-005/year,spec=5HZ

seed14
 1.03238
 acc(g)|rec=1E-005/year,spec=6.6667HZ

seed15
 0.679402
 acc(g)|rec=1E-005/year,spec=10HZ


Table 14: seed variables, s=15

9.2 DM w.r.t. Number of Seed Variables

Here we fix the effective number, the N value in Formula (4), of the seed variables to 15, while
the real number is adding up.

Default recommendation for the number of experts is 5 to 10, see [1][Cooke]. Here we randomly
choose 10 experts. The way to choose experts is

• Make an alphabetic list of the experts’ names.

• Randomly permute the list.

• Pick the first 10 as out experts.

First sample 15 seed variables. The result is in Table (14)
Add the number of seed variables by 5 a time up to 50. The added seeds and DM(50) is in

Table (15).
Calculate Inf(DM(15 + 5k)|DM(15 + 5i)); where k = 1, . . . , 7; i = 0, . . . , k − 1. The results

is in Table (16). After 15 or 20 seed variables, the DM is quite stable. In Figure (23), we can see
the convergence of the DM w.r.t. the number of seed variables.
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seed16
 0.877141
 acc(g)|rec=1E-006/year,spec=2.5HZ

seed17
 2.05037
 acc(g)|rec=1E-006/year,spec=4HZ

seed18
 1.36971
 acc(g)|rec=1E-006/year,spec=5HZ

seed19
 1.56811
 acc(g)|rec=1E-006/year,spec=6.6667HZ

seed20
 1.37798
 acc(g)|rec=1E-006/year,spec=10HZ

seed21
 0.172912
 acc(g)|rec=1E-007/year,spec=0.5HZ

seed22
 0.458616
 acc(g)|rec=1E-007/year,spec=1.34HZ

seed23
 1.60006
 acc(g)|rec=1E-007/year,spec=20HZ

seed24
 0.912446
 acc(g)|rec=1E-007/year,spec=35HZ

seed25
 0.881625
 acc(g)|rec=1E-007/year,spec=50HZ

seed26
 0.421442
 acc(g)|rec=1E-005/year,spec=2.5HZ

seed27
 1.18618
 acc(g)|rec=1E-005/year,spec=4HZ

seed28
 0.937433
 acc(g)|rec=1E-005/year,spec=5HZ

seed29
 1.14725
 acc(g)|rec=1E-005/year,spec=6.6667HZ

seed30
 0.645828
 acc(g)|rec=1E-005/year,spec=10HZ

seed31
 0.92682
 acc(g)|rec=1E-006/year,spec=2.5HZ

seed32
 1.75332
 acc(g)|rec=1E-006/year,spec=4HZ

seed33
 1.47735
 acc(g)|rec=1E-006/year,spec=5HZ

seed34
 1.4951
 acc(g)|rec=1E-006/year,spec=6.6667HZ

seed35
 1.02629
 acc(g)|rec=1E-006/year,spec=10HZ

seed36
 0.207072
 acc(g)|rec=1E-007/year,spec=0.5HZ

seed37
 0.803118
 acc(g)|rec=1E-007/year,spec=1.34HZ

seed38
 1.35579
 acc(g)|rec=1E-007/year,spec=20HZ

seed39
 1.26262
 acc(g)|rec=1E-007/year,spec=35HZ

seed40
 0.596422
 acc(g)|rec=1E-007/year,spec=50HZ

seed41
 0.536919
 acc(g)|rec=1E-005/year,spec=2.5HZ

seed42
 1.15679
 acc(g)|rec=1E-005/year,spec=4HZ

seed43
 0.916238
 acc(g)|rec=1E-005/year,spec=5HZ

seed44
 0.872655
 acc(g)|rec=1E-005/year,spec=6.6667HZ

seed45
 0.749826
 acc(g)|rec=1E-005/year,spec=10HZ

seed46
 0.859441
 acc(g)|rec=1E-006/year,spec=2.5HZ

seed47
 1.6384
 acc(g)|rec=1E-006/year,spec=4HZ

seed48
 1.38028
 acc(g)|rec=1E-006/year,spec=5HZ

seed49
 1.22838
 acc(g)|rec=1E-006/year,spec=6.6667HZ

seed50
 0.859277
 acc(g)|rec=1E-006/year,spec=10HZ


Expert
 Calibr.   
 Mean relative
 UnNormaliz
 Normaliz.w

          
 information
 weight    
 without DM


'a_SC_Studer'
 0.5975
 0.9255
 0.553
 1

'b_CO_Studer'
 0.2964
 0.6651
 0
 0

'b_BO_Faeh  '
 0.004447
 0.202
 0
 0

'd_SC_Studer'
 0.1376
 0.8646
 0
 0

'd_CO_Pecker'
 0.003152
 0.9221
 0
 0

'a_BO_Bard  '
 0.004939
 0.4116
 0
 0

'd_SA_Faeh  '
 0.07366
 0.253
 0
 0

'a_CO_Bard  '
 0.09501
 0.3419
 0
 0

'a_BU_Studer'
 0.1076
 1.002
 0
 0

'd_BU_Bard  '
 0.1876
 0.5825
 0
 0


DM(50)
 0.5975
 0.9255
 0.553
           


Table 15: Scores for 50 seed variables

Inf
 s=15
 s=20
 s=25
 s=30
 s=35
 s=40
 s=45

t=15
 0.05034

t=25
 0.1726
 0.1546

t=30
 0.06242
 0.06996
 0.1634

t=35
 0.1726
 0.1546
 0
 0.1221

t=40
 0.1726
 0.1546
 0
 0.1221
 0

t=45
 0.1726
 0.1546
 0
 0.1221
 0
 0

t=50
 0.1726
 0.1546
 0
 0.1221
 0
 0
 0


Table 16: Inf(DM(t)|DM(s)), where t = 15 + 5k and s = 15 + 5i are the numbers of seed
variables; k = 1, . . . , 7; i = 0, . . . , k − 1.
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Figure 23: relative information of DM(50) w.r.t. DM(s)

9.3 DM w.r.t. Number of Seed Experts

9.3.1 Fix the Intrinsic Range

The quantile elicitations from the experts are far different. Thus, add up the number of experts,
we also add up the intrinsic ranges mostly. The change of the intrinsic ranges may ultimately
affect the DM. To investigate the DM convergence we need first to fix the intrinsic ranges. The
method is to make up a badly calibrated expert, denoted as EX81, which has biggest quantile
range [Q0.05, Q0.95] for each seed variable. Make sure it has 0 weight. The only function of this
EX81 is to make the intrinsic ranges unchanged when we add/remove experts.

Set the initial number of the experts as 10 aside EX81. Add the number up to 80 by 10 a time.
Sample 35 seed variables. The scoring result see Table (17-19).

From Table(18,19), the information scores for the first 10 experts hold in both tables. This
suggests that the intrinsic ranges are fixed by EX81. The weight plot of the DM(80) corresponding
to Table (19) is shown in Figure(24).

Calculate Inf(DM(10+10k)|DM(10+10i)); where k = 1, . . . , 7; i = 0, . . . , k− 1. The results
are in Table (20). From the table, the Inf(DM(80)|DM(s)) is step wise decreasing as s → 80.
This shows the sign of convergence. Inf(DM(80)|DM(s)) < 0.007 for s ≥ 50, which suggests
that the DM(50) and DM(80) are very close. Note, the expert list is randomly permuted to avoid
the effect of the order. In general, after taking 10 experts, the DM is very stable. We can see the
convergence behavior of the DM in Figure (25)
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ID
 Value
 full name

seed1
 0.647387
 acc(g)|rec=1E-006/year,spec=2.5HZ

seed2
 1.63751
 acc(g)|rec=1E-006/year,spec=4HZ

seed3
 1.46133
 acc(g)|rec=1E-006/year,spec=5HZ

seed4
 1.29187
 acc(g)|rec=1E-006/year,spec=6.6667HZ

seed5
 0.893568
 acc(g)|rec=1E-006/year,spec=10HZ

seed6
 0.137586
 acc(g)|rec=1E-007/year,spec=0.5HZ

seed7
 0.565418
 acc(g)|rec=1E-007/year,spec=1.34HZ

seed8
 1.09186
 acc(g)|rec=1E-007/year,spec=20HZ

seed9
 0.755491
 acc(g)|rec=1E-007/year,spec=35HZ

seed10
 1.04162
 acc(g)|rec=1E-007/year,spec=50HZ

seed11
 0.505681
 acc(g)|rec=1E-005/year,spec=2.5HZ

seed12
 1.05407
 acc(g)|rec=1E-005/year,spec=4HZ

seed13
 1.09546
 acc(g)|rec=1E-005/year,spec=5HZ

seed14
 0.913722
 acc(g)|rec=1E-005/year,spec=6.6667HZ

seed15
 0.861769
 acc(g)|rec=1E-005/year,spec=10HZ

seed16
 0.628619
 acc(g)|rec=1E-006/year,spec=2.5HZ

seed17
 1.82053
 acc(g)|rec=1E-006/year,spec=4HZ

seed18
 1.53349
 acc(g)|rec=1E-006/year,spec=5HZ

seed19
 1.29987
 acc(g)|rec=1E-006/year,spec=6.6667HZ

seed20
 1.09381
 acc(g)|rec=1E-006/year,spec=10HZ

seed21
 0.128415
 acc(g)|rec=1E-007/year,spec=0.5HZ

seed22
 0.639504
 acc(g)|rec=1E-007/year,spec=1.34HZ

seed23
 1.31266
 acc(g)|rec=1E-007/year,spec=20HZ

seed24
 1.16032
 acc(g)|rec=1E-007/year,spec=35HZ

seed25
 0.932957
 acc(g)|rec=1E-007/year,spec=50HZ

seed26
 0.485637
 acc(g)|rec=1E-005/year,spec=2.5HZ

seed27
 0.871146
 acc(g)|rec=1E-005/year,spec=4HZ

seed28
 0.974502
 acc(g)|rec=1E-005/year,spec=5HZ

seed29
 0.870007
 acc(g)|rec=1E-005/year,spec=6.6667HZ

seed30
 0.797763
 acc(g)|rec=1E-005/year,spec=10HZ

seed31
 0.861888
 acc(g)|rec=1E-006/year,spec=2.5HZ

seed32
 2.06342
 acc(g)|rec=1E-006/year,spec=4HZ

seed33
 1.41704
 acc(g)|rec=1E-006/year,spec=5HZ

seed34
 1.73283
 acc(g)|rec=1E-006/year,spec=6.6667HZ

seed35
 1.32139
 acc(g)|rec=1E-006/year,spec=10HZ


Table 17: 35 seed variables

 Ex name   
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w

        
           
 information
 weight    
 without DM


'd_SC_Bard  '
 5.8E-10
 0.7833
 0
 0

'c_SA_Bard  '
 1.1E-05
 0.7561
 0
 0

'c_BO_Faeh  '
 4.8E-08
 0.5492
 0
 0

'a_CO_Pecker'
 8.7E-07
 1.268
 0
 0

'a_SA_Bard  '
 0.00044
 0.822
 0
 0

'c_BU_Studer'
 0.1698
 1.29
 0.219
 1

'c_BU_Bard  '
 9.2E-06
 0.9101
 0
 0

'a_BU_Studer'
 0.00052
 1.38
 0
 0

'c_BO_Studer'
 6.2E-05
 1.179
 0
 0

'c_BO_Bard  '
 4.1E-10
 0.7177
 0
 0


Ex81    
 2.3E-05
 0.6122
 0
 0

DM(10)  
 0.1698
 1.29
 0.219
           


eq_DM(10
 3.9E-05
 0.6222
 2.397E-05
           


Table 18: Scores and weights for the first 10 (plus 1) experts and DM
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Ex name     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w
 Ex name     
 Calibr.   
 Mean relative
UnNormaliz
Normaliz.w

        
           
 information
 weight    
 without DM
         
           
 information
 weight    
 without DM


'd_SC_Bard  '
 5.79E-10
 0.7834
 0
 0
 'a_BO_Faeh  '
 1.12E-08
 0.6139
 0
 0

'c_SA_Bard  '
 1.11E-05
 0.7562
 0
 0
 'd_SC_Pecker'
 9.22E-15
 1.557
 0
 0

'c_BO_Faeh  '
 4.78E-08
 0.5493
 0
 0
 'a_SA_Faeh  '
 0.000371
 0.6822
 0
 0

'a_CO_Pecker'
 8.73E-07
 1.269
 0
 0
 'a_SC_Studer'
 0.3097
 1.309
 0.4053
 0.4218

'a_SA_Bard  '
 0.000442
 0.8221
 0
 0
 'b_BU_Studer'
 0.06126
 1.306
 0
 0

'c_BU_Studer'
 0.1698
 1.29
 0.2191
 0.228
 'c_CO_Faeh  '
 9.33E-06
 0.4636
 0
 0

'c_BU_Bard  '
 9.21E-06
 0.9102
 0
 0
 'a_CO_Bard  '
 0.000103
 0.6879
 0
 0

'a_BU_Studer'
 0.000523
 1.38
 0
 0
 'd_BO_Pecker'
 1.14E-15
 1.566
 0
 0

'c_BO_Studer'
 6.23E-05
 1.18
 0
 0
 'c_SC_Bard  '
 5.53E-11
 0.754
 0
 0

'c_BO_Bard  '
 4.15E-10
 0.7178
 0
 0
 'c_SC_Pecker'
 3.46E-15
 1.596
 0
 0

'b_BU_Pecker'
 2.4E-06
 1.523
 0
 0
 'd_SA_Pecker'
 1.77E-07
 1.345
 0
 0

'a_SC_Pecker'
 0.000107
 1.522
 0
 0
 'b_SA_Faeh  '
 4.47E-05
 0.5769
 0
 0

'b_BU_Faeh  '
 8.66E-05
 0.7727
 0
 0
 'd_CO_Bard  '
 0.000117
 0.6528
 0
 0

'd_BU_Faeh  '
 0.001411
 0.7751
 0
 0
 'b_SC_Bard  '
 5.79E-10
 0.7854
 0
 0

'c_SC_Faeh  '
 1.35E-09
 0.599
 0
 0
 'd_BO_Bard  '
 3.7E-11
 0.7197
 0
 0

'd_SA_Studer'
 0.04566
 1.125
 0
 0
 'a_BO_Studer'
 0.000411
 1.207
 0
 0

'c_BU_Pecker'
 7.06E-10
 1.548
 0
 0
 'b_SC_Studer'
 0.000708
 1.247
 0
 0

'a_BO_Bard  '
 3.13E-09
 0.7699
 0
 0
 'd_CO_Faeh  '
 9.33E-06
 0.4628
 0
 0

'd_BU_Studer'
 0.1778
 1.29
 0.2294
 0.2388
 'a_BU_Bard  '
 0.009042
 1.092
 0
 0

'a_BU_Pecker'
 0.03771
 1.418
 0
 0
 'b_SC_Pecker'
 9.22E-15
 1.567
 0
 0

'a_SA_Pecker'
 1.59E-06
 1.31
 0
 0
 'a_SA_Studer'
 0.02481
 1.157
 0
 0

'd_SC_Studer'
 0.000424
 1.25
 0
 0
 'b_CO_Bard  '
 0.000117
 0.6409
 0
 0

'b_SC_Faeh  '
 1.14E-09
 0.6154
 0
 0
 'c_CO_Bard  '
 0.000277
 0.6517
 0
 0

'b_SA_Pecker'
 4.81E-08
 1.372
 0
 0
 'd_CO_Pecker'
 5.19E-09
 1.308
 0
 0

'a_SC_Bard  '
 0.000606
 0.9396
 0
 0
 'd_SC_Faeh  '
 1.4E-08
 0.6202
 0
 0

'c_SA_Studer'
 0.004997
 1.131
 0
 0
 'd_BU_Bard  '
 0.002821
 0.9553
 0
 0

'c_BO_Pecker'
 1.14E-15
 1.56
 0
 0
 'd_BU_Pecker'
 2.35E-05
 1.457
 0
 0

'c_CO_Pecker'
 1.05E-09
 1.324
 0
 0
 'c_BU_Faeh  '
 1.43E-05
 0.7254
 0
 0

'b_CO_Studer'
 0.05503
 1.044
 0
 0
 'd_BO_Faeh  '
 1.19E-07
 0.5586
 0
 0

'c_SC_Studer'
 9.6E-05
 1.261
 0
 0
 'c_SA_Pecker'
 1.37E-08
 1.406
 0
 0

'b_BO_Pecker'
 1.14E-15
 1.569
 0
 0
 'b_SA_Bard  '
 9.02E-05
 0.7646
 0
 0

'b_CO_Pecker'
 4.12E-09
 1.337
 0
 0
 'a_CO_Studer'
 0.07859
 1.059
 0
 0

'c_CO_Studer'
 0.043
 1.041
 0
 0
 'c_SA_Faeh  '
 2.2E-05
 0.5673
 0
 0

'd_CO_Studer'
 0.1035
 1.033
 0.107
 0.1114
 'b_BO_Bard  '
 3.7E-11
 0.7012
 0
 0

'b_CO_Faeh  '
 1.24E-06
 0.4531
 0
 0
 'a_SC_Faeh  '
 0.000175
 0.7834
 0
 0

'a_BO_Pecker'
 1.14E-15
 1.542
 0
 0
 'b_BO_Faeh  '
 1.67E-08
 0.5456
 0
 0

'b_BO_Studer'
 9.12E-06
 1.174
 0
 0
 'a_BU_Faeh  '
 3.03E-05
 0.9598
 0
 0

'd_SA_Bard  '
 0.00061
 0.7659
 0
 0
 'a_CO_Faeh  '
 2.43E-05
 0.5377
 0
 0

'b_BU_Bard  '
 0.000211
 0.9504
 0
 0
 'b_SA_Studer'
 0.01883
 1.135
 0
 0

'd_SA_Faeh  '
 6.04E-05
 0.5986
 0
 0
 'd_BO_Studer'
 9.12E-06
 1.176
 0
 0


EX 81
 2.35E-05
 0.6123
 0
 0

DM(80)
 0.3725
 1.165
 0.4341
           


eq_DM(80)
 2E-05
 0.6716
 1.341E-05
           


Table 19: Scores and weights for 80 (plus 1) experts and DM

Inf
 s=10
 s=20
 s=30
 s=40
 s=50
 s=60
 s=70

t=20
 0.127

t=30
 0.127
 4.99E-07

t=40
 0.127
 4.78E-07
 3.06E-07

t=50
 0.1855
 0.09457
 0.09457
 0.09457

t=60
 0.1855
 0.09457
 0.09457
 0.09457
 7.30E-07

t=70
 0.1855
 0.09457
 0.09457
 0.09457
 6.68E-07
 6.45E-07

t=80
 0.1872
 0.0985
 0.0985
 0.0985
 0.006287
 0.006287
 0.006287


Table 20: Inf(DM(t)|DM(s)); where t = 10 + 10k, s = 10 + 10i are the numbers of experts;
k = 1, . . . , 7; i = 0, . . . , k − 1.
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Figure 24: weight plot of DM(80)
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Figure 25: relative information of DM(80) w.r.t DM(s)
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10 Conclusion

10.1 80 Experts’ Performances

• From the trials, the performances of the 80 experts are significantly different, see Table (19).

• Experts’ calibrations scores are very sensitive to different set of (synthetic) seed variables.

• These facts suggest that the methods to aggregate experts are important to the DM perfor-
mance.

10.2 Different Decision Makers

• The performance DM and equal weight DM are compared. In many trials, they are signifi-
cantly different.

• In some trials, the equal weight DM is well calibrated while in other trials it is not.

• The performance DM has good performance in most of the trials.

• In all the trials, the performance DM is more informative then equal weight DM.

10.3 Impact of the Optimistic Dependence Assumptions and Noise term

• Synthetic seed variables sampled from Groen plus optimistic dependence are lower than
those sampled from original Groen.

• All the experts have bad performances based on the optimistic seed variables which means
they are not optimistic.

• The samples from the two dependence structures, Vine and Joint Normal, are close.

• Taking the noise term into consideration could have positive effect on the experts/DM per-
formances.

10.4 Performance DM Convergence

• Till now, there is no theory to prove the convergence of the DM.

• The trial results suggest that the DM is converging w.r.t. the growing numbers of seed
variables.

• Convergence behavior of the DM can be seen as we add the number of experts up to 80.

• After we have 15 seed variables and 10 experts, the performance DM is fairly stable.
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 Id     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w
  Id     
 Calibr.   
 Mean relative
UnNo rmaliz
 Normaliz.w

        
           
 information
 weight    
 without DM
         
           
 information
 weight    
 without DM


EX1     
 0.00043
 0.4267
 0
 0
 EX1     
 0.005374
 0.4267
 0
 0

Excalibur
 EX2     
 0.00062
 0.132
 0
 0
 Excalibur
 EX2     
 0.00017
 0.132
 0
 0


trial1
 EX3     
 0.00133
 0.9831
 0
 0
 trial2
 EX3     
 5.23E-05
 0.9831
 0
 0

EX4     
 0.09965
 0.7798
 0.0777
 0.3123
 EX4     
 0.02264
 0.7798
 0
 0

EX5     
 0.2504
 0.6835
 0.1711
 0.6877
 EX5     
 0.1971
 0.6835
 0.1347
 1

DM      
 0.492
 0.6451
 0.3174
           
 DM      
 0.1971
 0.6835
 0.1347
           


eq_DM   
 0.1757
 0.3396
 0.05967
           
 eq_DM   
 0.06398
 0.3396
 0.02173
           


 Id     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w
  Id     
 Calibr.   
 Mean relative
UnNo rmaliz
 Normaliz.w

        
           
 information
 weight    
 without DM
         
           
 information
 weight    
 without DM


EX1     
 0.00222
 0.4268
 0
 0
 EX1     
 0.006694
 0.4267
 0
 0

Excalibur
 EX2     
 0.00082
 0.1321
 0
 0
 Excalibur
 EX2     
 0.003978
 0.132
 0
 0 


trial3
 EX3     
 0.00279
 0.9832
 0.002746
 0.2266
 trial4
 EX3     
 8.58E-05
 0.9831 
 0
 0

EX4     
 0.00503
 0.7799
 0.00392
 0.3235
 EX4     
 0.03487
 0.7798
 0
 0

EX5     
 0.00797
 0.6836
 0.005451
 0.4498
 EX5     
 0.1868
 0.6835
 0.1277
 1

DM      
 0.4779
 0.6107
 0.2918
           
 DM      
 0.1868
 0.6835
 0.1277
           


eq_DM   
 0.1757
 0.3397
 0.05969
           
 eq_DM   
 0.03046
 0.3396
 0.01035
           


 Id     
 Calibr.   
 Mean relative
UnNormaliz
 Normaliz.w
  Id     
 Calibr.   
 Mean relative
UnNo rmaliz
 Normaliz.w

        
           
 information
 weight    
 without DM
         
           
 information
 weight    
 without DM


EX1     
 0.00375
 0.4267
 0.001601
 0.09032
 EX1     
 0.00084
 0.4267
 0
 0

Excalibur
 EX2     
 0.00159
 0.132
 0
 0
 Excalibur
 EX2     
 0.000819
 0.132
 0
 0


trial5
 EX3     
 4.2E-05
 0.9831
 0
 0
 trial6
 EX3     
 3.89E-06
 0.9831
 0
 0

EX4     
 0.00318
 0.7798
 0.002477
 0.1397
 EX4     
 0.00194
 0.7798
 0
 0

EX5     
 0.01997
 0.6835
 0.01365
 0.7699
 EX5     
 0.3664
 0.6835
 0.2504
 1

DM      
 0.04926
 0.5613
 0.02765
           
 DM      
 0.3664
 0.6835
 0.2504
           


eq_DM   
 0.02031
 0.3396
 0.006898
           
 eq_DM   
 0.04909
 0.3397
 0.01667 
           


Table 21: score table for the 6 trials from Excalibur

11 Appendix A

11.1 Figure (26 to 31) are rang graphs corresponding to Figure (15)

11.2 Table (21) is the Excalibur counterpart of Table (4) from Excalibur
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                          Range graph of input data
  

Expert no. :    1     Expert name:  EX1        
 

Items
 

  1(U)           [
-
<
---------
*
-----------------
>
----------------
]              
 

Real   :::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 :::::::::
 

 

  2(U)        [
--
<
----------
*
--------------------------
>
----------------------
]
 

Real   ::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  3(U)      [
--
<
--------
*
---------------------------
>
----------------------
]   
 

Real
   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  4(U)       [
-
<
---------
*
--------------------------
>
---------------------
]    
 

Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  5(U)        [<
--
---------
*
------------------------
>
------------------
]       
 

Real   :::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  6(U)           [
-
<
---------
*
-----------------
>
----------------
]              
 

Real   :::::::::#::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::
 

 

  7(U)        [
--
<
----------
*
--------------------------
>
----------------------
]
 

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  8(U)      [
--
<
--------
*
----------------------
-----
>
----------------------
]   
 

Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  9(U)       [
-
<
---------
*
--------------------------
>
---------------------
]    
 

Real   :::::::::::::#:::::::::::::::::::::::::::::::::::::::::
 :::::::::::::::::
 

 

 10(U)        [<
-----------
*
------------------------
>
------------------
]       
 

Real   ::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 11(U)           [
-
<
---------
*
-----------------
>
----------------
]           
   
 

Real   ::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 12(U)        [
--
<
----------
*
--------------------------
>
----------------------
]
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 13(U)    
  [
--
<
--------
*
---------------------------
>
----------------------
]   
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 14(U)       [
-
<
---------
*
--------------------------
>
---------------------
]    
 

Real   :::::::::::::::#::
::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 15(U)        [<
-----------
*
------------------------
>
------------------
]       
 

Real   :::::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
  


 


Figure 26: uniform background range graph for EX1
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Expert no. :    2     Expert name:  EX2        
 

Items
 

  1(U)   [
---------
<
------------
*
-----------------------
>
---------------------
]
 

Real   :::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  2(U) [
-----
<
--------------------
*
------
--------------------
>
----------------
]
 

Real   ::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  3(U) [
----
<
------------------
*
------------------------
>
---------------------
]
 

Real   :::::::::::::::#:::::::::::::::::::::::::::::::::
 :::::::::::::::::::::::
 

 

  4(U) [
----
<
------------------
*
-------------------------
>
--------------------
]
 

Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  5(U) [
-----
<
--------------------
*
------------------------
>
----------
--------
]
 

Real   :::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  6(U)   [
---------
<
------------
*
-----------------------
>
---------------------
]
 

Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  7(
U) [
-----
<
--------------------
*
--------------------------
>
----------------
]
 

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  8(U) [
----
<
------------------
*
------------------------
>
---------------------
]
 

Real   ::::::::::::
::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  9(U) [
----
<
------------------
*
-------------------------
>
--------------------
]
 

Real   :::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 10(U) [
-----
<
-------------------
-
*
------------------------
>
------------------
]
 

Real   ::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 11(U)   [
---------
<
------------
*
-----------------------
>
---------------------
]
 

Real   ::::::::::::#::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::
 

 

 12(U) [
-----
<
--------------------
*
--------------------------
>
----------------
]
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 13(U) [
----
<
------------------
*
------------------------
>
-----
----------------
]
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 14(U) [
----
<
------------------
*
-------------------------
>
--------------------
]
 

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
 ::
 

 

 15(U) [
-----
<
--------------------
*
------------------------
>
------------------
]
 

Real   :::::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
  


 


Figure 27: uniform background range graph for EX2
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Expert no. :    3     Expert name:  EX3        
 

Items
 

  1(U)         [
----------
<
----------------
*
----------
>
--------
]               
 

Real   :::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  2(U)                [
---
<
----
*
-----
>
---
-
]                                    
 

Real   ::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  3(U)           [
--
<
--
*
-
>
---
]                                                 
  

Real   :::::::::::::::#:::::::::::::::::::::::::::::::::
 :::::::::::::::::::::::
 

 

  4(U)          [
--
<
--
*
-
>
---
]                                                  
  

Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  5(U)         [
-
<
--
*
--
>
-
]                                            
         
 

Real   :::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  6(U)         [
----------
<
----------------
*
----------
>
--------
]               
 

Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  7(
U)                [
---
<
----
*
-----
>
----
]                                    
 

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  8(U)           [
--
<
--
*
-
>
---
]                                                 
  

Real   ::::::::::::
::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  9(U)          [
--
<
--
*
-
>
---
]                                                  
  

Real   :::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 10(U)         [
-
<
--
*
--
>
-
]       
                                              
 

Real   ::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 11(U)         [
----------
<
----------------
*
----------
>
--------
]               
 

Real   ::::::::::::#::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::
 

 

 12(U)                [
---
<
----
*
-----
>
----
]                                    
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 13(U)           [
--
<
--
*
-
>
---
]                                
                 
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 14(U)          [
--
<
--
*
-
>
---
]                                                  
  

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
 ::
 

 

 15(U)         [
-
<
--
*
--
>
-
]                                                     
  

Real   :::::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
  


 


Figure 28: uniform background range graph for EX3



11 APPENDIX A 48

Expert no. :    4     Expert name:  EX4        
 

Items
 

  1(U)             [
--
<
----
*
------------------
>
------------
]                   
 

Real   :::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  2(U)       [
-
<
-----
*
---------
>
--------
]
                                      
 

Real   ::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  3(U)     [<
------
*
--------
>
---------
]                                        
 

Real   :::::::::::::::#:::::::::::::::::::::::::::::::::
 :::::::::::::::::::::::
 

 

  4(U)     [<
------
*
-------
>
----------
]                                        
 

Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  5(U)      [<
-----
*
-------
>
--------
]                                 
         
 

Real   :::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  6(U)             [
--
<
----
*
------------------
>
------------
]                   
 

Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  7(
U)       [
-
<
-----
*
---------
>
--------
]                                      
 

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  8(U)     [<
------
*
--------
>
---------
]                                        
 

Real   ::::::::::::
::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  9(U)     [<
------
*
-------
>
----------
]                                        
 

Real   :::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 10(U)      [<
-----
*
-------
>
-----
---
]                                          
 

Real   ::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 11(U)             [
--
<
----
*
------------------
>
------------
]                   
 

Real   ::::::::::::#::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::
 

 

 12(U)       [
-
<
-----
*
---------
>
--------
]                                      
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 13(U)     [<
------
*
--------
>
---------
]                       
                 
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 14(U)     [<
------
*
-------
>
----------
]                                        
 

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
 ::
 

 

 15(U)      [<
-----
*
-------
>
--------
]                                          
 

Real   :::::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
  


 


Figure 29: uniform background range graph for EX4
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Expert no. :    5     Expert name:  EX5        
 

Items
 

  1(U) [
---------
<
------
*
--------------
>
----------------
]                      
 

Real   :::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  2(U) [
---
<
-------
*
----------
>
-------
]  
                                      
 

Real   ::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  3(U) [
--
<
-----
*
--------
>
--------
]                                            
 

Real   :::::::::::::::#:::::::::::::::::::::::::::::::::
 :::::::::::::::::::::::
 

 

  4(U) [
--
<
-----
*
---------
>
-------
]                                            
 

Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  5(U)  [
--
<
-----
*
---------
>
------
]                                   
         
 

Real   :::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  6(U) [
---------
<
------
*
--------------
>
----------------
]                      
 

Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  7(
U) [
---
<
-------
*
----------
>
-------
]                                        
 

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  8(U) [
--
<
-----
*
--------
>
--------
]                                            
 

Real   ::::::::::::
::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

  9(U) [
--
<
-----
*
---------
>
-------
]                                            
 

Real   :::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 10(U)  [
--
<
-----
*
---------
>
-----
-
]                                            
 

Real   ::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 11(U) [
---------
<
------
*
--------------
>
----------------
]                      
 

Real   ::::::::::::#::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::
 

 

 12(U) [
---
<
-------
*
----------
>
-------
]                                        
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 13(U) [
--
<
-----
*
--------
>
--------
]                           
                 
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::
  

 

 14(U) [
--
<
-----
*
---------
>
-------
]                                            
 

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
 ::
 

 

 15(U)  [
--
<
-----
*
---------
>
------
]                                            
 

Real   :::::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::
  


 


Figure 30: uniform background range graph for EX5
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Expert no. :  DM      Expert name:  DM        
 

Items
 

  1(U)    [=========<==============*================>==========]               
  

Real   :::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

  2(U)   [======<===========*========>====
==========]                          
 

Real   ::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

  3(U)  [=====<=======*===>====================]                               
  

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::
 ::::::::::::::

::::::::
 

 

  4(U)  [=====<======*====>====================]                               
  

Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

  5(U)   [=====<====*====>====================]                        
         
 

Real   :::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

  6(U)    [=========<==============*================>==========]               
  

Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

  7(U
)   [======<===========*========>==============]                          
  

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

  8(U)  [=====<=======*===>====================]                               
  

Real   :::::::::::::
:::::#:::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

  9(U)  [=====<======*====>====================]                               
  

Real   :::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

 10(U)   [=====<====*====>========
============]                                
 

Real   ::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

 11(U)    [=========<==============*================>==========]               
  

Real   ::::::::::::#:::::::::::::::::::::::::::::
::::::::::::::::::::::

::::::::
 

 

 12(U)   [======<===========*========>==============]                          
  

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

 13(U)  [=====<=======*===>====================]               
                 
 

Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::

::::::::
 

 

 14(U)  [=====<======*====>====================]                               
  

Real   :::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::

:::::::
:
 


Figure 31: uniform background range graph for DM
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12 Appendix B

Matlab Code and Description

seismic case :
Chooses rec and freq values

seismic data load.m :
Loads data from ASCII files.

C sore.m :
Returns the calibration scores of experts.

I score.m :
Returns the information scores of experts.

no eq DM.m :
Multiple events decision making.

kraan1.m :
Implements Kraan 1 on experts’ elicitations.

seed filter :
Filters the noise out of the seed variable set.

Other Matlab files to implement Groen with/without the dependence structures.
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