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Abstract

We propose a heuristic for evaluating model adequacy for the Cox proportional hazard model by9
comparing the population cumulative hazard with the baseline cumulative hazard. We illustrate how
recent results from the theory of competing risk can contribute to analysis of data with the Cox11
proportional hazard model. A classical theorem on independent competing risks allows us to assess
model adequacy under the hypothesis of random right censoring, and a recent result on mixtures of13
exponentials predicts the patterns of the conditional subsurvival functions of random right censored
data if the proportional hazard model holds.15
© 2005 Published by Elsevier B.V.
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1. Introduction

Recent results in the theory of competing risk involve establishing identifiability of the19
marginal or competing life variables under a variety of assumptions regarding the censoring
mechanism. Each mechanism is associated with a distinctive “footprint” in the subsurvival21
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functions, and these footprints in turn form the basis of statistical tests in testing model1
adequacy. To date, most applications have been in reliability (Cooke and Bedford, 2002)
and biostatistics (Aras and Deshpande, 1992). This article shows how these techniques can3
contribute to the field of proportional hazard modelling (Cox, 1972, for a recent overview
see Oakes, 2001). The exposition is largely informal. The Cox proportional hazard model5
is briefly reviewed, with attention to the issue of model adequacy. We propose a simple
overall test of adequacy that does not use partial likelihood. Recent results in the theory of7
dependent competing risk are reviewed in Section 4, and we show how these can supplement
the diagnostic tools in proportional hazard modelling. Section 5 illustrates these ideas on a9
lung cancer data set (Loprinzi et al., 1994). The final section draws conclusions.

2. Proportional hazard model11

To simplify the presentation, we consider the case of time-invariant covariates X, Y, Z

without censoring and without ties. We consider data to be generated by the following13
hazard rate:

h(X, Y, Z) = �0(t)e
XA+YB+ZC, (2.1)15

where �0 is the baseline hazard. The covariates (X, Y, Z) are considered as random vari-
ables. The coefficients (A, B, C) and the baseline hazard �0 will be estimated from life17
data. If this hazard rate holds, then for an individual with covariate values (x, y, z) the
survivor function is19

e−h(x,y,z). (2.2)

Suppose, we observe times of death t1, . . . , tn such that ti < tj for i < j . Let the covariates21
for the individual dying at time ti be denoted (xi, yi, zi). The coefficients A, B, C are
estimated by maximizing the partial likelihood23

N∏
i=1

exiA+yiB+ziC∑n
j � i exj A+yj B+zj C

. (2.3)

Note that the times of death ti do not appear in (2.3). The intuitive explanation is as25
follows. Given that the first death in the population occurs at time t1, the probability
that it happens to individual 1 is ex1A+y1B+z1C/

∑n
j �1 exj A+yj B+zj C . After individual 127

is removed from the population, the same reasoning applies to the surviving population;
given that the second time of death t2, the probability that it happens to individual 2 is29
ex2A+y2B+z2C/

∑n
j �2 exj A+yj B+zj C , and so on. Kalbfleisch and Prentice (2002) note that

for constant covariates, (2.3) is the likelihood for the ordering of times of death. The base-31
line hazard can be estimated from the data as described in Kalbfleisch and Prentice (2002,
p. 114).33
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3. Model adequacy1

Testing model adequacy for the Cox model is not straightforward.1 In many important
studies, model adequacy is not examined, and only individual coefficients for the covariate3
of interest are reported, with Wald confidence bounds (e.g. Dockery et al., 1993; Pope et al.,
1995). The coefficients are used to compute relative risk, and form the basis of (dis)utility5
calculations for different risk mitigation measures.

With (x, y, z) fixed and T random, and with constant baseline hazard scaled to one, the7
survivor function (2.2), considered as a function of the random variable T is uniformly
distributed on [0, 1], that is,9

T ∼ − ln(U)/h, (3.1)

where U is uniform on [0, 1].As this holds for each individual in the population i=1, . . . , N .11
If we order the values

e−tiexiA+yiB+ziC

, i = 1, . . . , N (3.2)13

and plot them against their number, the points should lie along the diagonal if the propor-
tional hazard model is true with coefficients A, B, C and constant baseline hazard.215

This would provide an easy heuristic check of model adequacy if the baseline hazard
were indeed known to be constant and scaled to one. However, if the baseline hazard is also17
estimated from the data, then this simple test does not apply. Thus, it may well arise that
data generated with a constant baseline hazard appears to acquire a time-dependent baseline19
hazard as a result of missing covariates. Letting �̂ denote values estimated from the data,
we may well find that the values21

e−�̂0(ti )exi Â+yi B̂+zi Ĉ

, i = 1, . . . , N (3.3)

plot as uniform, while the estimates do not equal the values which generated the data. In23
particular, this may arise in the case of missing covariates. We identify some covariates but
many others may not be represented in our model. For example, in considering the influence25
of airborne fine particulate matter on non-accidental mortality (Dockery et al., 1993; Pope

1 This is a sampling of statements found in the literature regarding model evaluation: “it is not apparent
what kinds of departures one would expect to see in the residuals if the model is incorrect, or even to what
extent agreement with the anticipated line should be expected” (Kalbfleisch and Prentice, 2002, p. 128). “For
most purposes, you can ignore the Cox–Snell and martingale residuals. While Cox–Snell residuals were useful
for assessing the fit of the parametric models in Chapter 4, they are not very informative for the Cox models
estimated by partial likelihood” (Allison, 2003, p. 173). “Unfortunately, this distribution theory [of the Cox–Snell
residuals as exponentially distributed] has not proven to be as useful for model evaluation as the theory derived
from the counting process approach”. (Hosmer and Lemeshow, 1999, p. 202), “there is not a single, simple, easy
to calculate, useful, easy to interpret measure [of model performance] for a proportional hazards model”. (Hosmer
and Lemeshow, 1999, p. 229). “the martingale residuals cannot play all the roles that linear model residuals do;
in particular the overall distribution of the residuals does not aid in the global assessment of fit”. (Therneau and
Grambsch, 2000, p. 81).

2 Eq. (3.2) are the exponentials of the Cox–Snell residuals; equal up to a constant to the Martingale residual,
used in the counting process approach. The Cox–Snell residuals are exponentially distributed if the model is
correct.
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Fig. 1. Hundred ordered estimates of A for hXYZ, hXY , hX , X, Y, Z ∼ U[−1, 1], (A, B, C) = (1, 1, 1); each
estimate based on 100 samples.

et al., 1995), covariates like smoking, sex, age, socio-economic status, air quality, and1
weather are studied. However, time to death is obviously influenced by myriad other factors
like occupation, genetic disposition, stress, disease prevalence, medical care, diet, alcohol3
consumption, home environment (e.g. radon), travel patterns, etc.

The following types of simple numerical experiment, which the reader may verify for5
him/herself will illustrate the problems with model adequacy.3

(1) Choose coefficients (A, B, C), choose a constant baseline hazard scaled to one, and7
choose a distribution for (X, Y, Z).

(2) Sample independently 100 values of (X, Y, Z) and 100 values from the uniform distri-9
bution on [0, 1]; compute failure times using (3.1).

(3) Estimate the coefficients by maximizing (2.3), and estimate the baseline hazard.11

This procedure does not require that the distributions of the covariates be centered at their
means; indeed, centering is not standard procedure in applications. However, the uniform13
distribution on [−1, 1] used here is centered.

Let model (2.1) be termed hXYZ . To study the effects of model incompleteness estimate15
the coefficient A with a model hXY using only covariates X andY, and with a model hX using
only covariate X. For each of the models hXYZ, hXY , and hX, we repeat the above proce-17
dure 100 times with the same values for (A, B, C), with (X, Y, Z) sampled independently
from the (centered) uniform distribution on [−1, 1]. Fig. 1 plots the ordered estimates of19
coefficient A.

Evidently, the models hXY and hX tend to underestimate the coefficient A. A theoretical21
explanation of this underestimation is given in Bretagnolle and Huber-Carol (1988) and

3 The following simulations were performed with EXCEL and checked with S+.
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Fig. 2. Hundred ordered estimates of A for hXYZ, hXY , hX , X, Y, Z ∼ U[−1, 1], (A, B, C) = (1, 1, 5) each
estimate based on 100 samples.

Fig. 3. Ordered values of (3.3) for hXYZ, hXY , hX , X, Y, Z ∼ U[−1, 1], (A, B, C) = (1, 1, 5).

Keiding et al. (1997). The tendency to underestimate becomes more pronounced in Fig. 2,1
where the missing covariate Z has coefficient C = 5. In spite of this, the ordered values of
(3.3) plot along the diagonal, as shown in Fig. 3. If we knew that the data was created with3
a �̂0(t) ≡ 1, then we may impose this constraint on the survivor functions. From Fig. 4
we see that uniformity is lost for models the incomplete models hyXY , hX; but not for the5
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Fig. 4. Ordered values of (3.3) for hXYZ, hXY , hX , X, Y, Z ∼ U[−1, 1], (A, B, C) = (1, 1, 5) with �̂0(t) ≡ 1.

Fig. 5. Wald 95% confidence bounds for A with model, hX of Fig. 2; each estimate based on 100 samples.

complete model hXYZ . This would provide an excellent diagnostic for completeness if we1
had a priori knowledge of the baseline hazard; unfortunately in practice we do not have this
knowledge. We can, however, find another diagnostic.3

Fig. 5 shows the Wald 95% confidence bounds for A in model hX, in each of the 100
repetitions of the experiment whose estimates are shown in Fig. 2. These bounds are derived5
assuming asymptotic normality of the Wald statistic

Â − A

�A

,7

where Â is the estimate of A and �A is derived from the observed information matrix. If
the likelihood function is correct, then the Wald statistic is asymptotically standard normal.9
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Fig. 6. Cumulative population and baseline hazard functions for hXYZ, hXY , hX, X, Y, Z ∼ U[−1, 1],
(A, B, C) = (1, 1, 1).

In as much as these 95% confidence bands contain the true value A = 1 in only 7% of1
the cases, the wisdom of stating such confidence bounds when model adequacy cannot be
demonstrated may be questioned.3

The models hXY and hX are clearly incorrect and misestimate the covariate A. Relative
risk coefficients based on these models would be biased. Without a priori knowledge of5
the baseline hazard function, their incorrectness cannot be diagnosed using Cox–Snell or
Martingale residuals, echoing the statements cited in the footnote at the beginning of this7
section. The problem is that the lack of fit caused by missing covariates is compensated in
the estimated baseline hazard function.9

This observation suggests that we might detect lack of fit in the covariates by comparing
the estimated baseline hazard function with the population cumulative hazard function.11
From (3.3) it is evident that adding a constant to any covariate is equivalent to multiplying
the baseline hazard by a constant. We therefore standardize the covariates by centering13
their distributions on the means (the distributions here already centered). Figs. 6, 7 show
these comparisons for the two cases from Figs. 1 to 2. Note the difference in survival times15
(horizontal axis); this is caused by the heavier loading of covariate Z in Fig. 7. The Nelson
Aalen estimator is used for the population cumulative hazard function.17

We see in Fig. 7 that the cumulative baseline hazard functions for hXY and hX have
moved closer to the population cumulative hazard, reflecting the heavier loading on the19
missing covariate Z.

If a Cox model had none of the actual covariates, this would be equivalent to having zero21
coefficients on all covariates; and in this case the baseline hazard would coincide with the
population cumulative hazard. A simple heuristic test of model adequacy would test the null23
hypothesis that the cumulative baseline hazard function is equal to the population cumulative
hazard function. If the null hypothesis cannot be rejected, then using the Cox model would25
not be indicated. In Figs. 8, 9 the asymptotic 2-sigma bands on the asymptotic variance of
the Nelsen Aalen estimator of the population cumulative hazard function (Kalbfleisch and27
Prentice, 2002, p. 25) have been added to Figs. 6, 7. We see that with this simple test we
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Fig. 7. Cumulative population and baseline hazard functions for hXYZ, hyXY , hX, X, Y, Z ∼ U[−1, 1],
(A, B, C) = (1, 1, 5).

Fig. 8. Cumulative population and baseline hazard functions for hXYZ, hyXY , hX, X, Y, Z ∼ U[−1, 1],
(A, B, C) = (1, 1, 5) with 2-sigma confidence bands (dashed lines).

would fail to reject the null hypothesis for model hX after 100 observations in both cases.1
The greater loading of missing covariate Z in Fig. 9 causes the model hXY to fail to reject
the null hypothesis as well.3

The more familiar partial likelihood ratio test calculates the test statistic G as twice the
difference between the log partial likelihood of the model containing the covariates and5
the log partial likelihood for the model not containing the covariates. G is asymptotically
chi-square distributed under the null hypothesis. The above test may have some advantage7
in that it does not appeal to partial likelihood. However, it is unable to detect the lack of fit
in the model hXY when C = 1.9
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Fig. 9. Cumulative population and baseline hazard functions for hXYZ, hyXY , hX, X, Y, Z ∼ U[−1, 1],
(A, B, C) = (1, 1, 1) with 2-sigma confidence bands (dashed lines).

Fig. 10. Hundred ordered estimates of A for hXYZ, hyXY , hX, X, Y, Z ∼ U[0, 1], (A, B, C) = (1, 1, 1) with
dependent covariates.

We note that for all the results mentioned above, the covariates are independent. In1
practice, independence is not usually checked, and not always plausible. Fig. 10, shows
100 estimates of the coefficient A for the models hXYZ, hyXY , hX where the covariates are3
uniformly distributed on [0, 1] with correlations �(X, Z) = 0.98, �(Y, Z) = 0.41 (the lack
of centering has no effect on the coefficient estimates). Whereas missing covariates produce5
under-estimation in the case of independence, we see that dependence in Fig. 10 produces
over-estimation. Note also that the spread of estimates for the complete model hXYZ is very7
wide.
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4. Censoring and competing risk1

The discussion of model adequacy with the proportional hazard model is sometimes
clouded by the role of censoring. The following statement is representative: “A perfectly3
adequate model may have what, at face value, seems like a terribly low R2 due to a high
percent of censored data” (Hosmer and Lemeshow, 1999, p. 229). The reference to R2 must5
be taken as metaphorical. The proportional hazard model proposes a linear regression of
the log hazard function. The hazard function is not observed, and hence a measure of the7
difference between observed and predicted values, like R2 is not meaningful. The point is
that the ability of a proportional hazard model to “explain the data” might be obscured by9
censoring.

Right censoring, of course, is a form of competing risk. In this section, we review some11
recent results from the theory of competing risk, and indicate how they may yield diagnostic
tools in proportional hazard modelling. In the competing risks approach, we model the data13
as a sequence of i.i.d. pairs (Ti, �i ), i = 1, 2, . . . . Each T is the minimum of two or more
variables, corresponding to the competing risks.We will assume that there are two competing15
risks, described by two random variables D and C such that T =min(D, C). D will be time of
death which is of primary interest, while C is a censoring time corresponding to termination17
of observation by other causes. In addition to the time T one observes the indicator variable
� = I (D < C) which describes the cause of the termination of observation. For simplicity19
we assume that P(D = C) = 0.

It is well known (Tsiatis, 1975) that from observation of (T , �) we can identify only the21
subsurvivor functions of D and C:

S∗
D(t) = P(D > t, D < C) = P(T > t, � = 1),23

S∗
C(t) = P(C > t, C < D) = P(T > t, � = 0),

but not, in general, the true survivor functions of D and C, SD(t) and SC(t). Note that25
S∗

D(t) depends on C, though this fact is suppressed in the notation. Note also that S∗
D(0) =

P(D < C) = P(� = 1) and S∗
C(0) = P(C < D) = P(� = 0), so that S∗

D(0) + S∗
C(0) = 1.27

The conditional subsurvivor functions are defined as the survivor functions conditioned
on the occurrence of the corresponding type of event. Assuming continuity of S∗

D(t) and29
S∗

C(t) at zero, these functions are given by

CS∗
D(t) = P(D > t |D < C) = P(T > t |� = 1) = S∗

D(t)/S∗
D(0),31

CS∗
C(t) = P(C > t |C < D) = P(T > t |� = 0) = S∗

C(t)/S∗
C(0).

Closely related to the notion of subsurvivor functions is the probability of censoring33
beyond time t,

�(t) = P(C < D|T > t) = P(� = 0|T > t) = S∗
C(t)

S∗
D(t) + S∗

C(t)
.

35

This function has some diagnostic value, aiding us to choose among competing risk models
to fit the data. Note that �(0) = P(� = 0) = S∗

C(0).37
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As mentioned above, without any additional assumptions on the joint distribution of1
D and C, it is impossible to identify the marginal survivor functions SD(t) and SC(t).
However, by making extra assumptions, one may restrict to a class of models in which3
the survivor functions are identifiable. A classical result on competing risks (Tsiatis, 1975;
van der Weide and Bedford, 1998) states that, assuming independence of D and C, we can5
determine uniquely the survivor functions of D and C from the joint distribution of (T , �),
where at most one of the survivor functions has an atom at infinity. In this case, the survivor7
functions of D and C are said to be identifiable from the censored data (T , �). Hence, an
independent model is always consistent with data.9

If the censoring is assumed to be independent then the survivor function for T, the mini-
mum of D and C, can be written as11

ST (t) = SD(t)SC(t). (4.1)

If we assume that D obeys a proportional hazard model, and that the censoring is indepen-13
dent, then we may estimate the coefficients by maximizing the partial likelihood function
adapted to account for censoring:15 ∏

i∈DN

exiA+yiB+ziC∑n
j � i exj A+yj B+zj C

, (4.2)

where DN is the subset of observed times t1, . . . , tN at which death is observed to occur,17
and j runs over all times corresponding to death or censoring.

If we now substitute the survivor function with estimated coefficients into (4.1), and use19
the familiar Kaplan Meier estimator for SC , then we may apply the ideas of the previous
section to assess model adequacy.21

4.1. Independent exponential competing risks

A model in which D and C are independent is always consistent with the data, but an23
independent exponential model is not in general consistent with the data. One can derive a
sharp criterion for independence and exponentiality in terms of the subsurvivor functions25
(Cooke, 1996):

Theorem 4.1. Let D and C be independent life variables. Then any two of the following27
conditions imply the others:

SD(t) = exp(−�t),29

SC(t) = exp(−�t),

S∗
D(t) = �

� + �
exp(−(� + �)t),31

S∗
C(t) = �

� + �
exp(−(� + �)t).

Thus, if D and C are independent exponential life variables with failure rates � and �, then33
the conditional subsurvivor functions of D and C are equal and correspond to exponential
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distributions with failure rate � + �. Moreover, the probability of censoring beyond time t1
is constant. Thus,

CS∗
D(t) = CS∗

C(t) = exp(−(� + �)t),3

�(t) = �
� + �

.

4.2. Random signs censoring5

Perhaps, the simplest dependent competing risk model which leads to an identifiable
marginal distribution of D is random signs censoring (Cooke, 1996). Suppose that the event7
that the time of death of a subject is censored is independent of the age D at which the
subject would die, but given that the subject’s time of death is censored, the time at which9
it is censored may depend on D.4 This situation is captured in the following definition:

Definition 4.2. Let D and C be life variables with C = D − W�, where 0 < W < D is a11
random variable and � is a random variable taking values {1, −1}, with D and � independent.
The variable T ≡ [min(D, C), I (D < C)] is called a random sign censoring of D by C.13

Note that in this case

S∗
D(t) = Pr{D > t, � = −1} = Pr{D > t} Pr{� = −1}

= SD(t) Pr{C > D} = SD(t)S∗
D(0).15

Hence, SD(t) = CS∗(t) and it follows that the distribution of D is identifiable under
random signs censoring.17

A joint distribution of (D, C) which satisfies the random signs requirement, exists if and
only if C∗

D(t) > C∗
C(t) for all t > 0 (Cooke, 1996). In this case, the probability of censoring19

beyond time t, �(t), is maximum at the origin.

4.3. Conditional independence model21

Another model from which we have identifiability of marginal distributions is the condi-
tional independence model introduced by Hokstad and Jensen (1998) and Dorrepaal et al.23
(1997). This model considers the competing risk variables D and C to be sharing a common
quantity, V, and to be independent given V. More precisely, the assumption is that25

D = V + W, C = V + U ,

where V, U, W are mutually independent. Hokstad and Jensen (1998) derived explicit ex-27
pressions for the case when V, U, W are exponentially distributed:

4 For applications of this model in reliability, see (Cooke and Bedford, 2002; Bunea et al., 2002b).
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Theorem 4.3. Let V, U, W be independent with SV (t) = e−�V t , SU(t) = e−�U t , SW(t) =1
e−�W t . Then

S∗
D(t) = �V �W e−(�U +�W )t

(�U + �W)(�V − �W − �U)
− �W e−�V t

�V − �W − �U

,3

S∗
C(t) = �V �U e−(�U +�W )t

(�U + �W)(�V − �W − �U)
− �U e−�V t

�V − �W − �U

,

CS∗
D(t) = CS∗

C(t) = S∗
D(t) + S∗

C(t),5

�(t) = �U

�U + �W

.

Moreover, if V has an arbitrary distribution such that P(V �0) = 1, and V is independent7
of U and W, then still we have

CS∗
D(t) = CS∗

C(t).9

Thus, as in the case of independent exponential competing risks we have equal conditional
subsurvivor functions, and the probability of censoring beyond time t, �(t), is constant.11
However, the conditional subsurvivor functions need not be exponential. Nothing is known
about their general form.13

4.4. Mixture of exponentials model

Suppose that SD(t) is a mixture of two exponential distributions with parameters �1, �215
and mixing coefficient p, and that the censoring survivor distribution SC(t) is exponential
with parameter �y :17

SD(t) = p exp{−�1t} + (1 − p) exp{−�2t},
SC(t) = exp{−�yt}.19

The properties of the corresponding competing risk model is given by Bunea et al. (2003).

Theorem 4.4. Let D and C be independent life variables with the above distributions. Then,21

S∗
D(t) = p

�1

�y + �1
exp{−(�y + �1)t} + (1 − p)

�2

�y + �2
exp{−(�y + �2)t},

S∗
C(t) = p

�y

�y + �1
exp{−(�y + �1)t} + (1 − p)

�y

�y + �2
exp{−(�y + �2)t},23

CS∗
D(t) =

(
exp{−(�y + �1)t} + 1 − p

p

�2

�1

�y + �1

�y + �2
exp{−(�y + �2)t}

)
(

1 + 1 − p

p

�2

�1

�y + �1

�y + �2

) ,
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CS∗
C(t) =

(
exp{−(�y + �1)t} + 1 − p

p

�y + �1

�y + �2
exp{−(�y + �2)t}

)
(

1 + 1 − p

p

�y + �1

�y + �2

) ,

1

CS∗
D(t)�CS∗

C(t).

Moreover, �(t) is minimal at the origin, and is strictly increasing when �1 �= �2.3

4.5. Heuristics for model selection

The probability �(t) of censoring after time t, yields a diagnostic for model selection,5
together with the conditional subsurvivor functions CS∗

D(t) and CS∗
C(t). Statistical tests are

developed in Bunea et al. (2002a). The following statements, which follow from the results7
of the previous subsections, may guide in model selection.

• If the risks are exponential and independent, then the conditional subsurvivor functions9
are equal and exponential. Moreover, �(t) is constant.

• Under random signs censoring, �(0) >�(t) and CS∗
D(t) > CS∗

C(t) for all t > 0.11
• If the conditional independence model holds with U, W exponential, then the conditional

subsurvivor functions are equal and �(t) is constant13
• If the mixture of exponentials model holds, then �(t) is strictly increasing and

CS∗
D(t)�CS∗

C(t) for all t > 0.15

5. Example

We illustrate the ideas with a data set on lung cancer patients from the Mayo clinic17
(Loprinzi et al., 1994). The data involve 165 observed times of death and 63 censoring
times, 228 times in total. The censoring is assumed to be independent. Eight covariates are19
used to construct a proportional hazard model.

We first obtain the coefficient values which maximize the partial likelihood (4.2). We then21
estimate the baseline hazard at each observed time of death, as described in Kalbfleisch and
Prentice (2002).5 We see that the cumulative baseline hazard is nearly linear up to 88323
days, indicating a nearly constant baseline hazard rate. The last observations are censors;
the fact that the baseline hazard rate is estimated only at times of death explains the flat25
shape after t = 883.

Fig. 11 shows the Cox cumulative baseline hazard function and the population cumulative27
hazard function. Fig. 12 adds the 2-sigma bounds from the asymptotic variance of the
Nelson Aalen estimate. The Cox baseline hazard function nearly coincides with the upper29
2-sigma curve. Fig. 13 shows the conditional subsurvivor functions for death and censoring,
and shows the function �(t). Note that the conditional subsurvival function for censoring31

5 There are a few ties in this data set which would significantly complicate the calculations of the baseline
hazard. We therefore broke the ties by adding small increments, verifying that this had negligible effect on the
results.
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Fig. 11. Cumulative baseline hazard and population cumulative hazard for Mayo clinic lung cancer data.

Fig. 12. Cumulative baseline hazard and population cumulative hazard for Mayo clinic lung cancer data with
2-sigma confidence bands.
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Fig. 13. Conditional subsurvivor functions, and �(t) for Mayo clinic lung cancer data.

dominates that for death, and the �(t) function is roughly increasing, up to the time of the1
last observed death (883), after which the conditional subsurvivor for death is constant and
�(t) therefore decreases. This is the pattern we should expect if a mixture of exponential3
life variables is censored independently by an exponential variable.

The picture which emerges is mixed. On the one hand, the Cox model with constant5
covariates is barely able to distinguish the cumulative baseline hazard and population cu-
mulative hazard functions. On the other hand, the conditional subsurvivor functions are7
consistent with independent censoring of a mixture of exponentials with an exponential
censoring variable. If this censoring mechanism were not true, then we should have to come9
up with another explanation for the distinctive pattern in Fig. 13. Taken together, these
considerations would motivate finding other covariates to add to the Cox model.11

6. Conclusion

Subsurvivor diagnostics can help us to recognize censoring patterns associated with13
certain types of dependent censoring and/or certain classes of life distributions. The Cox
proportional hazard with constant covariates entails a mixed exponential live distribution.15

7. Uncited references

Cooke et al. (1993); Dorrepaal (1996); Erlingsen (1989); Fleming and Harrington (1991);17
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