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In this chapter three algorithms for producing and enumerating regular
vines are presented. The first one generates all possible vines on n
nodes and regular vines are found by inspection. The second one uses
the concept of line graphs to produce only regular vines. The third
algorithm produces regular vines by extending a regular vine on three
nodes to a regular vine on n nodes. The first and second algorithms
presented have been used for the construction of a catalogue of labeled
regular vines on at most 9 nodes and tree-equivalent regular vines on at
most 7. This catalogue is presented as an appendix to this chapter.

1.1. Introduction.

Regular vines have found application in probability theory and uncertainty
analysis. More recently they are becoming popular in statistical analysis
of data ( [1], [2], [3], [4], [5]). These last references are concerned with
choosing an optimal vine to represent multivariate data sets. Algorithms

for enumerating all possible n!
2 × 2

(n−2
2 )

( [6]) regular vines on n nodes will
be needed for this purpose.

The problem of counting graphs has been undertaken in the past [7].
Trees are the immediate ancestors of vines and were first successfully
counted by Cayley [8]. Trees were used in [9] and [10] as special cases
of graphical models, however undirected graphs with cycles were also used.
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Trees were also used in [11] to infer discrete distributionsa from data.
After introducing some definitions required in the rest of this chapter

(section 1.2), previous results about enumeration of trees will be discussed.
Algorithms for producing and enumerating regular vines are presented. The
first one produces all possible vines on n nodes and regular vines are found
by inspection (section 1.3). The second one uses the concept of line graphs
to generate only regular vines (section 1.4). The third algorithm generates
regular vines by growing a regular vine on three nodes up to a regular vine
on n nodes (section 1.5). The first and second algorithms presented have
been used for the construction of a catalogue of labeled regular vines on at
most 9 nodes and tree-equivalent regular vines on at most 7. This catalogue
is presented as an appendix to this chapter. Proofs for the results presented
in this chapter have been discussed previously ( [6]) and hence are omitted
here.

1.2. Basic Definitions.

A tree is an undirected acyclic graph. The graph isomorphism problem
consists on deciding whether there exists a mapping from the nodes of one
graph to the nodes of a second graph such that the edge adjacencies are
preserved.

Two labeled graphs Gi = (Ei, Ni) and Gj = (Ej , Nj) are isomorphic
if there is a bijection ϕ : Ni → Nj such that for all pairs (a, b) ∈ Ei ⇐⇒
(ϕ(a), ϕ(b)) ∈ Ej . If two graphs are isomorphic they are the same unlabeled
graph.

Graph isomorphism is important in selecting the regular vine that best
fits a given data set. For example, the algorithm proposed in [1, p.189]
suggests that operations to assign the ‘best’ vine to a data set should begin
by selecting the first tree and iteratively for selecting subsequent trees of
the regular vine. Once the first tree of a regular vine has been selected,
only a fixed number of regular vines may be tested in next steps. Knowing
exactly how many regular vines are still possible in next steps and how to
construct them might be of advantage for analysis.

The line graph LG(G) of a graph G has as its nodes the edges of G, with
two nodes being adjacent in LG if the corresponding edges are adjacent in
G.

A connected graph T = (N, E) is called a labeled tree with nodes N =
aActually the method presented in [11] characterized trees as directed graphs and keeps
a close relationship with BBNs (Chapter ??).
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{1, 2, ..., n} and edges E, where E is a subset of pairs of N with no cycle.
Every sequence of numbers R(T ) = (A1, A2, ..., An−2) where each Ai is an
integer not greater than n is a Prüfer Code for some labeled tree T on n

nodes.
A spanning graph SS of a graph G is a graph with the same set of nodes

as G. If SS is a tree, it is called a spanning tree of G.
Trees have been used to represent high dimensional probability distribu-

tions [12] and they are often called dependence or markov-dependence trees.
For an account of dependence trees see [13]. In dependence trees nodes are
associated with random variables with invertible distribution function and
arcs are associated with rank correlations realized by bivariate copulae.
Figures 1.1 and 1.2 show two different labeled trees with rank correlations
attached to their edges. By setting nodes 5 = 2, 2 = 3, 4 = 5 and 3 = 4 in
T2 it would be transformed into T1 and hence considered the same unlabeled
tree.

�������	1
r2,1 �������	2

r2,5

r2,4

�������	5
r3,5 �������	3

�������	4

Fig. 1.1. T1 a tree on 5 nodes with
R(T1) = (2, 5, 2).

�������	1
r5,1 �������	5

r4,5

r5,3

�������	4
r2,4 �������	2

�������	3

Fig. 1.2. T2 a tree on 5 nodes with
R(T2) = (5, 4, 5).

A vine [12] is a set of nested trees. Just as labeled trees, vines have been
used to represent high dimensional probability distributions [14] and [13]
with applications in uncertainty analysis. Vines use sequences of condi-
tional distributions to build a multivariate distribution where conditional
bivariate constraints are satisfied. The definitions of vine and regular vine
have been provided in chapter ?? and hence are not repeated here.

As in dependence trees, the nodes of T1 in a regular vine represent ran-
dom variables with invertible distribution function. Edges are associated
with rank and conditional rank correlations. Figure 1.3 presents the se-
quence of trees for a regular vine V1(5) on five nodes. The conditioned set
is separated from the conditioning set by a vertical line “|” in the condi-
tional rank correlations from figure 1.3.

Nodes reachable from a given edge in a regular vine are called the con-
straint set of that edge. When two edges are joined by an edge in tree Ti,
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the intersection of the respective constraint sets form the conditioning set.
The symmetric difference of the constraint sets is the conditioned set.

T1 = �������	1
r5,1 �������	5 r4,5

r5,3�������	4
r2,4 �������	2 �������	3

T2 = 
��
����1, 5
r1,4|5 
��
����5, 4

r3,4|5

r2,5|4
��
����5, 3 
��
����2, 4

T3 = ��������1, 4|5 r1,3|4,5 ��������3, 4|5 r2,3|4,5 ��������2, 5|4

T4 = ������ !1, 3|4, 5
r1,2|3,4,5 ������ !2, 3|4, 5

T5 = "#$%&'()1, 2|3, 4, 5

Fig. 1.3. V1(5) (Regular vine on 5 nodes).

If node e is an element of node f in a regular vine, we say that e is an
m-child of f ; similarly, if e is reachable from f via the membership relation:
e ∈ e1 ∈ ... ∈ f , we say that e is an m-descendent of f .

If a bijection may be found for each Ti ∈ Vk(n) and Ti ∈ Vj(n) then
we speak of the same tree-equivalent vine and accordingly the same tree-
equivalent regular vine when the proximity condition holds. For example
setting nodes 5 = 2, 2 = 3, 4 = 5 and 3 = 4 in T2 would generate different
labeled regular vines but the same tree-equivalent regular vine. Observe
that it is easy to find non-regular vines that are tree-equivalent with regular
vines.

If element a occurs with element b as conditioned variables in tree k,
then a and b are termed k-partners. Nodes A and B are siblings if they are
m-children of a common parent.

A natural order of the elements of a regular vine on n elements is a
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sequence of numbers NO (V (n)) = (An, An−1, ..., A1) where each Ai is
an integer not greater than n obtained as follows: Take one conditioned
element of the last tree of a regular vine (a tree with a single node and
no edges) and assign it position n; assign the other conditioned element
of the top node position (n − 1). Element An−1 occurs in one m-child of
the top node with an (n − 1)-partner in the conditioned set. Give this
(n − 1)-partner position (n − 2) and iterate this process until all elements
have been assigned a position.

Observe that there are two natural orders for every regular vine. With-
out loss of generality, we will always assign position n to the smallest el-
ement of the conditioned set of the last tree of a regular vine. Hence the
natural order of the regular vine in figure 1.3 is NO(V1(5)) = (1, 2, 3, 4, 5).

A regular vine array TA(V (n)) = {Ai,j} for i, j = 1, ..., n and j ≥ i

is a lower triangular matrix with elements in {1, ..., n} indexed in ‘reverse
order’ (see equation 1.1), where Aj,j equals the element in position j in
NO(V (n)) and Aj−1,j equals the element in position j − 1 in the same
natural order. The echelon of element Ai,j is i and element Ai,j codes the
node (Aj,j , Ai,j |Ai−1,j , ..., A1,j). The regular vine array TA(V1(5)) of the
regular vine in figure 1.3 is presented in equation 1.1.

TA(V1(5)) =

⎛
⎜⎜⎜⎜⎝

A5,5

A4,5 A4,4

A3,5 A3,4 A3,3

A2,5 A2,4 A2,3 A2,2

A1,5 A1,4 A1,3 A1,2 A1,1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
2 2
3 3 3
4 5 4 4
5 4 5 5 5

⎞
⎟⎟⎟⎟⎠ (1.1)

The reader may check for example that A2,4 = (5, 2|4) and A2,3 =
(4, 3|5) in 1.1 are children of A3,4 = (3, 2|5, 4). A3,4 = (3, 2|5, 4) and
A3,5 = (3, 1|4, 5) are siblings because they are children of the common
parent A4,5 = (2, 1|3, 4, 5). Similarly A2,3 = (4, 3|5) and A2,5 = (4, 1|5)
are children of A3,5 = (3, 1|4, 5) and hence siblings. Other elements may
be also checked by the reader. In [6] it is shown that regular vine arrays
represent regular vines. Next algorithms for producing vines and regular
vines are proposed.

1.3. Regular Vines and Prüfer Codes.

The first proof about the number of labeled trees on n nodes is due to
Cayley [8]. Since then several proofs have been presented [15].
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Theorem 1.1. The number of labeled trees on n nodes is nn−2.

One of various proofs due to [16] of this theorem provides a very useful
result for representing labeled trees. The argument is to notice that there is
a one to one correspondence between the set of trees with n labeled nodes
and the set of Prüfer codes.

In his paper Prüfer obtains the correspondence by the following proce-
dure: For a given tree, remove the endpointb with the smallest label (other
than the rootc) and let A1 be the label of the unique node which is adjacent
to it. Remove the endpoint and the edge adjacent to it and a tree on n− 1
nodes is obtained. Repeat the operation with the new tree on n−1 nodes to
obtain A2 and so on. The process is terminated when a tree on two nodes
has been found. The reader may check that the trees from figures 1.1 and
1.2 have Prüfer codes R(T1) = (2, 5, 2) and R(T2) = (5, 5, 2) respectively.
The procedure described above may be easily reversed, that is, suppose you
start with a sequence of (n − 2)-tuples R(Tk) = (A1, A2, ..., An−2) then to
obtain the only tree corresponding to the sequence one applies algorithm
1.1:

Algorithm 1.1. Decoding a Prüfer code.

(1) Take a sequence R(Tk) = (A1, A2, ..., An−2) for k = 1, 2, .., nn−2 where
each Ai, i = 1, 2, ..., n − 2 is an integer not greater than n.

(2) Write the root in the right most position of R(Tk). Notice that R(Tk)
has now length n − 1 which is |E|.

(3) Write another row of integers on the bottom of R(Tk) from left to right.
Each entry Bi in this new row is the smallest integer that has not been
already written in this new row (the row of B′

is) nor in the first row
(the row of A′

is) in the position exactly above it or every other position
to the right.

(4) The resulting code S(Tk) is the Extended Prüfer Code. Each column in
the extended Prüfer code represents an arc in the unique labeled tree
corresponding to it.

S(Tk) =
(

A1 A2 A3 ... n

B1 B2 B3 ... Bn−1

)

bThe endpoints are nodes with degree one in the tree, they are sometimes referred to as
leafs.
cWithout loss of generality we will choose node n as the root of all labeled trees on
n nodes. Choosing any other node as the root makes no difference except that the
algorithm and the procedure to find the Prüfer code for a given tree must be modified.



August 20, 2009 16:27 World Scientific Review Volume - 9in x 6in Counting˙Vines˙Morales˙Napoles˙07˙27˙2009

Counting Vines 7

Take the two Prüfer codes R(T1) = (2, 5, 2) and R(T2) = (5, 4, 5). Apply
algorithm 1.1 to decode each sequence into the extended Prüfer code. The
reader may check in equation 1.2 that S(T1) corresponds to figure 1.1 and
S(T2) to figure 1.2.

S(T1) =
(

2 5 2 5
1 3 4 2

)
, S(T2) =

(
5 4 5 5
1 2 3 2

)
(1.2)

Prüfer then gives an induction argument to show that for each (n− 2)-
tuple there is some tree which determines the given sequence by the above
procedure. From the code one can see that a node with degree m would
occur exactly m − 1 times in the code.

Since every labeled tree can be represented by a Prüfer code, then every
tree in a vine may also be represented by a Prüfer code and in this way
the vine may be generated. A way to write all possible vines on n nodes is
presented in algorithm 1.2.

Algorithm 1.2. Constructing all possible vines on n nodes.

(1) Set i = 1.
(2) Construct all Prüfer codes possible for Ti.
(3) The edges of each one of the nn−(i+1) trees in step 2 become nodes in

Ti+1. Hence, for each tree in step (2):

(a) Label the n − i edges of each tree giving the label 1 to the edge
appearing in the first column in its extended Prüfer code, 2 to the
edge in the second column and so on until all edges have been
labeled d.

(b) Construct all Prüfer codes possible for Ti+1 and connect the new
labeled edges (from Ti) as nodes according to these new Prüfer
codes.

(4) Set i := i + 1 and go to step (3) until two edges must be connected in
the last tree. At this point there is only one way to connect them and
no Prüfer code is required.

From algorithm 1.2 it may be observed that to write any vine on n nodes
all is required are n − 2 Prüfer codes. The first one of length n − 2, the
dThis labeling is not unique and any other labeling would work equally well as long as
all nn−2 trees are labeled in the same way.
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second one of length n − 3 and so on until the last one of length 1. A
vine on n nodes may be represented by an upper triangular array of size
(n − 2) × (n − 2) whose first row represents the Prüfer code of the first
tree in the vine, the second row the second tree of the vine and so on. For
example V1(5) represents the vine from figure 1.3:

V1(5) =

⎛
⎝5 4 5

4 4
3

⎞
⎠ (1.3)

Representing a vine with an upper triangular array of size (n − 2) ×
(n − 2) provides a convenient way of storing vines. The representation
from equation 1.3 provides some idea about the unlabeled tree used at each
level in the vine. For example in the first tree node 5 will have degree
3, in the second tree node 4 will also have degree 3 and in the last tree
there will be a single node with degree 2 (obviously) which is node 3. A
disadvantage is however that the array in equation 1.3 does not tell us
right away which node is node 4 in T2 that from figure 1.3 we may see it
is node (5,4). Similarly it is not immediately evident that node 3 in T3 of
equation 1.3 corresponds to (3, 4|5) in figure 1.3. Observe that despite a
regular vine array requires more space for storing, it is more clear regarding
the conditioned and conditioning variables used at each level in the vine.
Corollary 1.1 follows immediately from the definition of vine and theorem
1.3.

Corollary 1.1. The number of vines on n nodes is
n∏

i=1

ii−2.

Regular vines are most interesting in uncertainty analysis. Implement-
ing Algorithm 1.2 in a computer is very easy and it provides a simple way to
construct all possible regular vines on n nodes by simply discarding those
that are not regular. However, this method incurs an excessive burden of
searching all vines. According to corollary 1.1 the number of vines grows
extremely fast with n and it could be very restrictive in time to find all
regular vines with algorithm 1.2 even for a modest number of nodes (8 or
9). Another possibility to construct only regular vines will be discussed in
the next section.
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1.4. Regular Vines and Line Graphs.

The idea is to use the line graphe of each tree in the vine. Harary notes
in [18] that the concept of the line graph of a given graph is so natural that
is has been rediscovered independently by many authors.

If the edges of the first tree of figure 1.3 are labeled according to the
second step in algorithm 1.2 then the line graph of this tree can be found.
This line graph corresponds to figure 1.4. If in the same way we label the
edges of the second tree in the vine in figure 1.3 accordingly, then the line
graph in figure 1.5 may be obtained.

�������	1

��
��

��
��

�

��
��

��
��

�

�������	3 �������	4 �������	2

Fig. 1.4. Line Graph of the first tree
in figure 1.3

�������	1

��
��

��
��

�

��
��

��
��

�

�������	2 �������	3

Fig. 1.5. Line Graph of the second
tree of the vine from figure 1.3.

It is clear that in order to find all regular vines on n nodes, all the
spanning trees of the line graphs of all subtrees in the vine must be found.
This result is summarized in algorithm 1.3.

Algorithm 1.3. Constructing all possible regular vines on n nodes based
on line graphs.

(1) Set i = 1.
(2) Construct all Prüfer codes possible for Ti.
(3) The edges of each one of the nn−(i+1) trees in step (2) become nodes

in Ti+1. Hence, for each tree in step (2):

(a) Label the edges of each tree giving label 1 to the edge appearing in
the first column in its extended Prüfer code, 2 to the edge in the
second column and so on until all edges have been labeled f .

(4) Construct the line graph of each one of the trees from step 2.

eLine graphs are also known as derived graphs, interchange graphs, adjoint and edge to
vertex dual [17].
fAs before, this labeling is not unique and any other labeling would work equally well as
long as all nn−i+1 are uniquely labeled.
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(5) For each line graph from step 3 find all possible spanning trees. Connect
the edges of each tree in step 1 according to all spanning trees from its
line graph. This will give all possible Ti+1 for each Ti.

(6) Set i := i + 1 and go to step (2) until two edges must be connected in
the last tree. At this point there is only one way to connect them and
no Prüfer code is required.

Notice that the vines generated by this procedure may still be stored
in an (n − 2) × (n − 2) upper triangular array as in equations 1.3 once a
way of labeling the edges from each tree in the vine is specified. Algorithm
1.3 does not produce any irregular vine as opposed to algorithm 1.2. How-
ever it involves a greater programming effort and more operations as all
possible spanning trees of the line graphs in all trees in the vine must be
found. Several algorithms for finding all spanning trees of a given graph
have been proposed and examined [19], [20], [21], [22] and [23] . In general
finding all possible spanning trees of a given graph other than a complete
graphg is demanding in terms of time and space [22]. Another algorithm
for constructing regular vines without duplication will be presented in next
section.

1.5. Regular Vines and Regular Vine Arrays.

One disadvantage of using a triangular array such as the one used in section
1.1 is that the information regarding the label of variables in the first tree
of a regular vine is lost when assigning new labels to its edges when they
become nodes of the next tree. The same happens as more trees are added
to a regular vine. This means that conditioned and conditioning sets are
not immediately visible anymore. However a regular vine array preserves
the information concerning the labels of the first tree as lower trees in the
vine are added.

The regular vine array defined in section 1.2 was used in [6] to show that

the number of regular vines possible with n nodes is n!
2 × 2

(n−2
2 )

. Example
1.5.1 shows how to construct all possible regular vines on 5 nodes with the
natural order NO(V (5)) = (1, 2, 3, 4, 5). This example is useful in showing
how to arrive at a general result about the number of labeled regular vines
on n nodes.

Example 1.5.1. Constructing regular vines with natural order
gFor a complete graph all possible spanning trees are the nn−2 Prüfer codes
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NO(V (5)) = (1, 2, 3, 4, 5).
Observe that the diagonal and off diagonal elements of the regular vine

array are fixed from the natural order and the definition of regular vine
array. Element A1,3 will also always be fixed by the choices of A3,3 and
A2,3. This means that we start with a regular vine on three nodes. The
objective will be to extend this regular vine on three nodes to a regular vine
on 5 nodes in all possible ways that preserve regularity within our natural
order. Hence, the regular vine array with the natural order NO(V (5)) =
(1, 2, 3, 4, 5) will look as in equation 1.4 in the beginning.

TA(V (5)) =

⎛
⎜⎜⎜⎜⎝

A5,5

A4,5 A4,4

A3,5 A3,4 A3,3

A2,5 A2,4 A2,3 A2,2

A1,5 A1,4 A1,3 A1,2 A1,1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
2 2

A3,5 3 3
A2,5 A2,4 4 4
A1,5 A1,4 5 5 5

⎞
⎟⎟⎟⎟⎠ (1.4)

We will start filling in TA(V (5)) from top to bottom and from right to
left. Hence A2,4 will be the next element to be filled in TA(V (5)). Observe
that element A1,4 will be fixed by the choice of A2,4. Since we are filling
in column number 4 of TA(V (5)), from the definition of regular vine array
A2,4 ∈ {A3,3, A2,2, A1,1}. However, also from the definition of regular vine
array A3,3 = A3,4 and hence A2,4 ∈ {A3,3, A2,2, A1,1}\A3,3 = {A2,2, A1,1}.
In order to preserve regularity node A3,4 = (3, 2|4, 5) must have two children
in the lower tree of the vine. These siblings must also have a common child
in one tree lower in the vine. By the definition of regular vine array the
first child of node A3,4 = (3, 2|4, 5) must be node A2,4 and its sibling must
be in some column h < 4 and some row k ≤ 2, that is in the part of the
regular vine array that is known. In this case nodes A2,4 and A2,3 = (3, 4|5)
must be siblings and must have common child A1,2 = (5, 4). Observe that
if element A2,4 = 4 then nodes A2,4 = (4, 2|5) and A2,3 = (3, 4|5) will be
siblings and have common child A1,2 = (5, 4). If element A2,4 = 5 then
nodes A2,4 = (5, 2|4) and A2,3 = (3, 4|5) will be siblings and have common
child A1,2 = (5, 4). Hence either A2,4 = A2,2 or A2,4 = A1,1 preserves
regularity and fixes immediately element A1,4. Then both regular vine
arrays in equation 1.5 are possible.
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TAa(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2

A3,5 3 3
A2,5 5 4 4
A1,5 4 5 5 5

⎞
⎟⎟⎟⎟⎠TAb(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2

A3,5 3 3
A2,5 4 4 4
A1,5 5 5 5 5

⎞
⎟⎟⎟⎟⎠ (1.5)

Next element A3,5 must be found for both TAa(V (5)) and TAb(V (5)) in
equation 1.5. From a similar argument as before, A3,5 ∈ {A3,3, A2,2, A1,1}
for TAa(V (5)) and TAb(V (5)). Consider first TAa(V (5)). Node A3,5 and
A3,4 = (3, 2|4, 5) have common parent A2,5 = (2, 1|3, 4, 5) and hence are
siblings. Nodes A3,5 and A3,4 must have a common child in the lower tree
in order to keep regularity. Possible candidates are nodes A2,4 = (5, 2|4)
or A2,3 = (4, 3|5). However, element A4,4 is not an element of node A3,5

hence A2,3 = (4, 3|5) must be the sibling of node A2,5. And they must have
a common child in the lower tree. The tree possible choices for A3,5 are
listed next.

(1) A3,5 = A3,3 = 3, then either A2,5 = (1, 4|5) or A2,5 = (1, 5|4). A2,5 =
(4, 5|1) is not a valid choice because element A5,5 = 1 and it must be in
the conditioned set of every node in column 5. Nodes A2,3 = (4, 3|5) and
A2,5 must have a common child in the lower tree. This must be either
A1,3 = (5, 3) or A1,2 = (5, 4). Element A3,3 = 3 is not an element of
node A2,5 from the definition of regular vine array and the assumption
that A3,5 = A3,3 = 3. Hence node A1,2 = (5, 4) must be the common
child. If node A2,5 = (1, 4|5) then nodes A1,5 = (5, 1) and A1,2 = (5, 4)
are its children and regularity is preserved. On the other hand if node
A2,5 = (1, 5|4) then nodes A1,5 = (4, 1) and A1,2 = (5, 4) are its children
and regularity is again preserved. Hence element A3,3 = 3 is a valid
choice for A3,5 and both matrices in equation 1.6 are possible. Observe
also that given element A3,5 = 3 there are two possible choices for
element A2,5. That is either A2,5 = 4 or A2,5 = 5 and either choice
maintains regularity. A1,5 is fixed by our previous choices.

TA1(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2
3 3 3
4 5 4 4
5 4 5 5 5

⎞
⎟⎟⎟⎟⎠TA2(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2
3 3 3
5 5 4 4
4 4 5 5 5

⎞
⎟⎟⎟⎟⎠ (1.6)
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(2) A3,5 = A2,2 = 4, then either A2,5 = (1, 5|3) or A2,5 = (1, 3|5). A2,5 =
(3, 5|1) is not a valid choice because element A5,5 = 1 and it must be in
the conditioning set of every node in column 5. Nodes A2,3 = (4, 3|5)
and A2,5 must have a common child in the lower tree. This must be
either A1,3 = (5, 3) or A1,2 = (5, 4). Element A2,2 = 4 is not an
element of node A2,5 from the definition of regular vine array and the
assumption that A3,5 = A3,3 = 4. Hence node A1,3 = (5, 3) must be
the common child. If node A2,5 = (1, 5|3) then nodes A1,5 = (3, 1)
and A1,3 = (5, 3) are its children and regularity is preserved. On the
other hand if node A2,5 = (1, 3|5) then nodes A1,5 = (5, 1) and A1,3 =
(5, 3) are its children and regularity is again preserved. Hence element
A2,2 = 4 is a valid choice for A3,5 and both matrices in equation 1.7
are possible. Observe also that given element A3,5 = 4 there are two
possible choices for element A2,5. That is either A2,5 = 3 or A2,5 = 5
and either choice maintains regularity. A1,5 is fixed by our previous
choices.

TA3(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2
4 3 3
5 5 4 4
3 4 5 5 5

⎞
⎟⎟⎟⎟⎠TA4(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2
4 3 3
3 5 4 4
5 4 5 5 5

⎞
⎟⎟⎟⎟⎠ (1.7)

(3) A3,5 = A1,1 = 5, then there are two possibilities, either A2,5 = (3, 1|4)
or A2,5 = (4, 1|3). Nodes A2,3 = (4, 3|5) and A2,5 must have a common
child in the lower tree. This must be either A1,3 = (5, 3) or A1,2 = (5, 4)
however element A1,3 = A1,2 = 5 is not an element of node A2,5 from
the definition of regular vine array and the assumption that A3,5 =
A1,1 = 5. Hence element A1,1 = 5 is not a valid choice for A3,5.

By a similar procedure as described earlier the reader may check that
TAb(V (5)) in equation 1.5 may be extended to the four regular vines in
equations 1.8 and 1.9.

TA5(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2
3 3 3
4 4 4 4
5 5 5 5 5

⎞
⎟⎟⎟⎟⎠ TA6(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2
3 3 3
5 4 4 4
4 5 5 5 5

⎞
⎟⎟⎟⎟⎠ (1.8)
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TA7(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2
4 3 3
5 4 4 4
3 5 5 5 5

⎞
⎟⎟⎟⎟⎠ TA8(V (5)) =

⎛
⎜⎜⎜⎜⎝

1
2 2
4 3 3
3 4 4 4
5 5 5 5 5

⎞
⎟⎟⎟⎟⎠ (1.9)

Summarizing, we may see that for every one of the two choices for
A2,4 that keep regularity, there are two choices for A3,5 that will keep
regularity. Again, for each of the two choices of A3,5 there will also be two
possible choices for A2,5 that will keep regularity. In other words there are
2×2×2 = 23 = 8 regular vines possible with the natural order NO(V (5)) =
(1, 2, 3, 4, 5).�

In [6] an argument similar to the one presented in example 1.5.1 (using
induction on n) is used to show that the number of regular vines pos-
sible with a fixed natural order NO(V (n)) = An,n, An−1,n−1, ..., A1,1 is:
n−3∏
j=1

2j = 2
(n−2

2 )
. It is easy to see that there are

(
n
2

)
ways of choosing the

pair An,n, An−1,n−1 in a natural order and (n − 2)! ways of permuting ele-

ments An−2,n−2, .., A1,1. Hence there are n!
2 × 2

(n−2
2 )

labeled regular vines
on n nodes.

The procedure to find regular vines from regular vine arrays presented
in example 1.5.1 also provides another algorithm for constructing regular
vines without duplication. The algorithm is presented next. The basic idea
is first to construct all possible natural orders on n nodes and then use
them to build all regular vines arrays possible.

Algorithm 1.4. Constructing all possible regular vine arrays on n nodes.

(1) For n ≤ 3 constructing regular vines is trivial hence consider n ≥ 4.
(2) Create the

(
n
2

) × (n − 2)! = n!
2 natural orders possible on n nodes.

(3) For each of the natural orders in step (1):

(a) Generate the regular vine on three nodes that corresponds to the
natural order as in equation 1.1.

(b) Set c := 4 r := 2
(c) Find the 2 possibilities of selecting each one of Ac−2,r, ..., A2,c that

would preserve regularity given the previous choices. Each choice
should be in {Ac−2,c−2, ..., A1,1} in the natural order.

(d) If c = n stop else, set c := c + 1 and r := r + 1 go to (b)
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(e) The
n−3∏
j=1

2j = 2
(n−2

2 )
possibilities of building a regular vine array

given the natural order have been found.

Algorithm 1.4 does not require the additional operations that algo-
rithm 1.3 require for building line graphs and finding spanning trees for
each tree in each level of the regular vine. However it still requires a
search in Ac−2,c−2, ..., A1,1 in the natural order for selecting choices for
each Ac−2,c, ..., A2,c in the regular vine array. Additionally, the construc-
tion of the regular vine array provides a natural way of enumerating regular
vines. Next, the classification of regular vines is discussed.

1.6. Classifying Regular Vines.

Organizing regular vines in a systematic way may be of advantage. One
natural way to start classifying regular vines is according to their equiva-
lence class as shown in chapter ?? by Joe. Another natural way to classify
them is according to the unlabeled trees used in their construction. Ap-
pendix A is presented as a first step towards a better organization of regular
vines. This appendix presents a catalogue of labeled regular vines on at
most 9 nodes organized according to the unlabeled tree used in the first tree
of the regular vine. It also presents tree-equivalent regular vines on at most
7 nodes. In principle any on of the three algorithms for generating regular
vines presented in this chapter may be used to classify regular vines. Algo-
rithms 1.2 and 1.3 were used for the construction of the catalogue presented
here.

The names of trees from tables A.1 and A.2 used in each level of each
regular vine in tables A.8 to A.11 will be displayed in order after the +
sign. There is one tree-equivalent regular vine on 3 nodes: V3 = T3 + T2
+ T1. Every regular vine on n nodes for n > 3 must necessarily use V3
in its construction. For this reason T3 + T2 + T1 will be omitted when
indicating the sequence of trees used in the construction of different tree-
equivalent regular vines. For example the D-vine on 4 nodes will be V4 =
T4 + V3 = T4.

The 8 regular vines generated in example 1.5.1 may be classified ac-
cording to their equivalence and tree-equivalent classes. According to table
A.8 in appendix A there are 5 possible tree sequences for regular vines on
5 nodes. These 5 sequences are shown in the first column of table 1.1. The
second column apportions the regular vines from example 1.5.1 to these 5
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tree sequences. The names of trees from table A.1 used in each level of each
regular vine in example 1.5.1 are displayed as explained before.

Table 1.1. Apportioning regular vines from ex-
ample 1.5.1 to tree-equivalent classes.

Tree sequence
Vines from example 1.5.1
within given tree sequence

T6+T4 TA3

T7+T4 TA4, TA7

T7+T5 TA1, TA2, TA6

T8+T4 TA8

T8+T5 TA5

The reader may check that TA3 corresponds to a D-Vine and TA5 to
a C-Vine. TA8 has one node with maximal degree in its first tree and
a D-Vine on four nodes is attached to this first tree. It is evident that
these three vines besides corresponding to different tree-equivalent classes
correspond to different equivalent classes.

TA4 and TA7 besides being tree-equivalent they are in the same equiv-
alence class. The reader may check this by permuting nodes 4 � 3 and
2 � 1 in either TA4 or TA7 to obtain the same vine.

TA1, TA2 and TA6 are tree equivalent. By making node 2 = 1, 5 = 4,
3 = 2 and 1 = 3 in TA6 it becomes TA2 and hence these two are in the
same equivalence class. However, TA1 cannot be transformed into either
TA2 or TA6 by a permutation of nodes in the first tree. Hence, TA1 falls
in a different equivalence class than TA2 and TA6 despite the fact that the
three are tree-equivalent. Observe that the 6 equivalence classes for regular
vines on 5 nodes mentioned in chapter?? by Joe are represented in example
1.5.1.

According to results from previous section there are 5!
2 = 60 other possi-

ble natural orders than the one used in example 1.5.1. Hence there must be
60× 1 D-Vines and C-Vines. Also, 60× 2 regular vines in the class of TA4

and TA7 must be observed. Finally there must be 60×3 regular vines with
tree-sequence T7+T5. This result may also be observed in V6-V10 in table
A.8 in appendix A. Observe that after the classification of the regular vine
arrays from example 1.5.1, from the 180 regular vines with tree-sequence
T7+T5, 60 must be in the same equivalence class as TA1. Appendix A was
elaborated without the implementation of regular vine arrays. This verifies
that it is possible to arrive at the same conclusions with the three different
methods proposed in present chapter. Finally, observe that it is sufficient
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to investigate one natural order to classify regular vines within equivalence
and tree-equivalent classes.

1.7. Conclusions and Final Comments.

A way to efficiently code and store vines on n nodes based on the Prüfer
code is proposed. This consists of an upper triangular matrix of size (n −
2) × (n − 2). An algorithm for building vines and two others for building
regular vines on n nodes have been presented. Algorithm 1.2 is easy to
implement and efficient if regular vines on less than 6 nodes are required.
Algorithms 1.3 and 1.4 would produce only regular vines at the cost of
greater programming effort and a larger number of arithmetic operations.
Tables A.1 to A.7 present the number of labeled trees, regular vines per
labeled tree and tree-equivalent regular vines according to unlabeled trees
on at most 9 nodes. Tables A.1 and A.2 present the 25 trees on 7 nodes or
less. These trees will be used to present pictures of tree-equivalent regular
vines on at most 6 nodes in tables A.8 and A.9. Finally tables A.10 and
A.11 present tree-equivalent regular vines on 7 nodes.

We have made a first step towards organizing vines and regular vines
in a more systematic way. We believe that this task is necessary in order
to progress more rapidly the space of applications for vines and make them
more accessible for people interested in the subject. Hence our recommen-
dation is to enhance efforts for a more systematic organization of vines
including algorithms for generating and storing them.

References

[1] A. K., C. C., F. A., and B. H, Pair-copula constructions of multiple depen-
dence, To appear in Insurance: Mathematics and Economics. 44(1), (2007).

[2] A. K. and B. D., Models for construction of multivariate dependence, Ac-
cepted for publication in European Journal of Finance. (2009).

[3] A. Min and C. C., Bayesian inference for multivariate copulas using pair
copula constructions, Submitted for publication. (2008).

[4] K. O. and S. M. The d-vine creation of non-gaussian random fields. In
GEOSTATS, (2008).

[5] L. Chollete, A. Heinen, and A. Valdesogo. Modeling international finan-
cial returns with a multivariate regime switching copula. CORE Discus-
sion Papers 2008013, Universit catholique de Louvain, Center for Op-
erations Research and Econometrics (CORE) (Mar., 2008). URL http:

//ideas.repec.org/p/cor/louvco/2008013.html.
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[16] V. H. Prüfer, Neuer beweis eines satzes über permutationen, Arch. Math.
Phys. (27), 742–744, (1918).

[17] L. Beineke. Derived graphs with derived complements. In Recent Trends
in Graph Theory: Proceedings of the First New York City Graph Theory
Conference held on June 11, 12, and 13, 1970. Springer, (2006).

[18] F. Harary, Graph Theory. (Addison-Wesley, 1969).
[19] G.J.Minty, A simple algorithm for listing all the trees of a graph, IEEE

Transactions on Circuit Theory. 12, 120– 120, (1965).
[20] W. Mayeda and S. Seshu, Generation of trees without duplication, IEEE

Transactions on Circuit Theory. 12, 181–185, (1967).
[21] R. Read and R.E.Tarjan, Bounds on backtrack algorithms for listing cycles,

paths, and spanning trees, Networks. 5, 678–692, (1975).
[22] M. J. Smith. Generating spanning trees. Master’s thesis, University of Vic-

toria, (1997).
[23] A. T. A. Shioura and T. Uno, Bounds on backtrack algorithms for listing

cycles, paths, and spanning trees, Networks. 5, (1975).
[24] K. V.N. and E. V.A., Graph Theory for Programmers-Algorithms for Pro-

cessing Trees. (Kluwer Academic Publishers, 2000).



August 20, 2009 16:27 World Scientific Review Volume - 9in x 6in Counting˙Vines˙Morales˙Napoles˙07˙27˙2009

Counting Vines 19

Appendix A. A Catalogue of Labeled Regular Vines on at
most 9 nodes & Tree Equivalent Regular Vines on at most
7 nodes.

Lets go now from the zoo of reality to the zoo of
mythologies, the garden whose fauna is not of
lions but of sphinxes, griffins and centaurs. The
population of the second garden should exceed
that of the first; since a monster is no other
thing than a combination of elements of real
beings and the possibilities of the combinatorial
art border with the infinite.

Manual de zooloǵıa fantástica
J.L. Borges

The purpose of this catalogue is to classify regular vines according to
their graphical structure. We hope that this catalogue will help researchers
interested in regular vines with their investigations. Like the authors of
[?] this author has “tried that the data is free of errors, but accept[s] no
responsibility for any loss of time, money, patience or temper occurring as a
result of any mistakes that may have crept into the pages of this [catalogue].
Furthermore, [the author] wishes it to be understood that any mistakes are
entirely the fault of the other author.”

Tables A.1-A.7 present the 95 trees on 7 nodes or less. Catalogues of
trees on at most twelve nodes have been presented before. In [15] pictures
for trees with at most five nodes are presented. In [24] a catalogue of tress
with at most 8 nodes may be foundh. [18] presents trees on at most 10
nodesi. The 987 trees on at most 12 vertices (together with about 10,000
other graphs and many tables of interest for graph theorists) may be found
in [?]. None of the above catalogues presents results concerning vines.

Vines will be presented by pictures in next section and the names of
the trees from table A.1 and A.2 used in each level of each regular vine in
tables A.8 to A.11 will be displayed in order after the + sign. There is one
tree-equivalent regular vine on 3 nodes V3 = T3 + T2 + T1. Every regular
vine on n nodes for n > 3 must necessarily use V3 in its construction. For
this reason T3 + T2 + T1 will be omitted when indicating the sequence
hThis catalogue repeats a tree in eight nodes neglecting another one. In the same
reference tables with the number of non-isomorphic trees on less than 26 nodes may be
found.
iHarary refers to [?] for diagrams of trees with at most 12 nodes. However this reference
is not available to the author at the moment of the publication of this catalogue.
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of trees used in the construction of different tree-equivalent regular vines.
For example the D-vine on 4 nodes will be V4 = T4 + V3 = T4. Next the
catalogue is presented.
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Table A.1. Trees with at most 7 nodes.

Prüfer code
1 12 11 123

example

T1 T2 T3 T4 T5 T6

# Labeled Trees 1 1 3 12 4 60

# Regular Vines
1 1 1 1 3 1

per labeled tree

# Tree-Equivalent
1 1 1 1 1 1

Reg. Vines / tree
Prüfer code

112 111 1234 1123 1213 2244
example

T7 T8 T9 T10 T11 T12

# Labeled Trees 60 5 360 360 360 90

# Regular Vines
5 24 1 7 11 48

per labeled tree

# Tree-Equivalent
2 2 1 3 3 5

Reg. Vines / tree
Prüfer code

1112 1111 12345 12344 12234 12324
example

T13 T14 T15 T16 T17 T18

# Labeled Trees 120 6 2,520 2,520 5,040 840

# Regular Vines
75 480 1 9 19 33

per labeled tree

# Tree-Equivalent
5 5 1 4 7 3

Reg. Vines / tree
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Table A.2. Trees with at most 7 nodes (Continuation).

Prüfer code
11233 11223 11123 12223

example

T19 T20 T21 T22

# Labeled Trees 630 2,520 840 1,260

# Regular Vines
80 168 168 342

per labeled tree

# Tree-Equivalent
9 17 12 17

Reg. Vines / tree
Prüfer code

11122 11112 11111
example

T23 T24 T25

# Labeled Trees 420 210 7

# Regular Vines
1,452 2,928 23,040

per labeled tree

# Tree-Equivalent
22 22 22

Reg. Vines / tree
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Table A.3. Trees with at most 8 nodes.

Prüfer code
123456 123455 122345 123345 123435 112324

example

T26 T27 T28 T29 T30 T31

# Labeled Trees
20,160 20,160 40,320 20,160 20,160 10,080

# Regular Vines
1 11 29 39 71 820

per labeled tree

# Tree-Equivalent
1 5 12 8 10 44

Reg. Vines / tree
Prüfer code

112344 122344 122334 123344 112233 122324
example

T32 T33 T34 T35 T36 T37

# Labeled Trees 5,040 20,160 20,160 20,160 5,040 6,720

# Regular Vines
120 315 815 423 4,520 2,181

per labeled tree

# Tree-Equivalent
14 38 55 41 72 44

Reg. Vines / tree
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Table A.4. Trees with at most 8 nodes (Continuation).

Prüfer code
244466 123444 123334 112333 122333 111222

example

T38 T39 T40 T41 T42 T43

# Labeled Trees 10,080 6,720 20,160 3,360 6,720 560

# Regular Vines
11,246 315 1,046 3,384 8,667 89,712

per labeled tree

# Tree-Equivalent
114 24 61 72 111 133

Reg. Vines / tree
Prüfer code

122223 123333 112222 122222 222222
example

T44 T45 T46 T47 T48

# Labeled Trees 3,360 1,680 840 336 8

# Regular Vines
27,222 11,160 117,072 279,000 2,580,480

per labeled tree

# Tree-Equivalent
114 83 136 136 136

Reg. Vines / tree
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Table A.5. Trees with 9 nodes.

Prüfer code
2345678 2345578 2345668 2345677 2345658 2345478

example

T49 T50 T51 T52 T53 T54

# Labeled Trees 181,440 362,880 362,880 181,440 181,440 181,440

# Regular Vines
1 69 41 13 129 181

on each tree

# Tree-Equivalent
1 21 18 6 22 18

Reg. Vines / tree
Prüfer code

2345477 2335658 2343677 2335668 2344668 2245677
example

T55 T56 T57 T58 T59 T60

# Labeled Trees 181,440 181,440 90,720 181,440 362,880 45,360

# Regular Vines
2,651 5,390 1,708 1,646 2,708 168

on each tree

# Tree-Equivalent
164 203 104 125 221 20

Reg. Vines / tree
Prüfer code

2335677 2344677 2345577 2344478 2345558 2345666
example

T61 T62 T63 T64 T65 T66

# Labeled Trees 181,440 181,440 181,440 90,720 181,440 60,480

# Regular Vines
528 887 887 4,202 2,567 528

on each tree

# Tree-Equivalent
70 105 91 147 162 42

Reg. Vines / tree
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Table A.6. Trees with 9 nodes (Continuation).

Prüfer code
2345448 2343638 2245577 2335577 2245477 2344438

example

T67 T68 T69 T70 T71 T72

# Labeled Trees 181,440 15,120 90,720 181,440 45,360 30,240

# Regular Vines
8,738 18,504 11,296 34,417 36,892 72,546

on each tree

# Tree-Equivalent
275 99 287 628 350 428

Reg. Vines / tree
Prüfer code

2343377 2225668 2333668 2344666 2225677 2333677
example

T73 T74 T75 T76 T77 T78

# Labeled Trees 90,720 60,480 181,440 60,480 30,240 90,720

# Regular Vines
120,444 20,904 99,028 34,143 6,756 32,812

on each tree

# Tree-Equivalent
724 332 840 439 166 516

Reg. Vines / tree
Prüfer code

2344477 2345555 2344448 2333637 2244666 2244477
example

T79 T80 T81 T82 T83 T84

# Labeled Trees 90,720 15,120 60,480 30,240 30,240 22,680

# Regular Vines
54,004 32,688 149,901 360,084 428,388 680,576

on each tree

# Tree-Equivalent
607 245 765 724 980 1,034

Reg. Vines / tree
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Table A.7. Trees with 9 nodes (Continuation).

Prüfer code
2225666 2333666 2245555 2333377

example

T85 T86 T87 T88

# Labeled Trees 5,040 30,240 7,560 30,240

# Regular Vines
262,080 1,232,820 414,432 1,919,610

on each tree

# Tree-Equivalent
465 1,328 735 1,328

Reg. Vines / tree
Prüfer code

2335555 2344444 2333338 2225555
example

T89 T90 T91 T92

# Labeled Trees 15,120 3,024 7,560 2,520

# Regular Vines
1,232,340 1,869,120 5,255,904 14,889,744

on each tree

# Tree-Equivalent
1,195 901 1,328 1,464

Reg. Vines / tree
Prüfer code

2244444 2333333 1111111
example

T93 T94 T95

# Labeled Trees 1,512 504 9

# Regular Vines
23,334,480 62,523,360 660,602,880

on each tree
# Tree-Equivalent

1,464 1,464 1,464
Reg. Vines / tree
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Table A.8. Tree-equivalent regular vines with at most 6 nodes.

V1 = T1 V2 = T2 V3 = T3+T2+T1 V4 = T4 V5 = T5

1 1 3 12 12

V6 = T6+T4 V7 = T7+T4 V8 = T7+T5

60 120 180

V9 = T8+T4 V10 = T8+T5 V11 = T9+T6+T4

60 60 360

V12 = T10+T6+T4 V13 = T10+T7+T4 V14 = T10+T7+T5

720 720 1,080

V15 = T11+T6+T4 V16 = T11+T7+T4 V17 = T11+T7+T5

360 1,440 2,160
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Table A.9. Tree-equivalent regular vines with at most 6 nodes (Continuation).

V18 = T12+T6+T4 V19 = T12+T7+T4 V20 = T12+T7+T5

360 720 1,080

V21 = T12+T8+T4 V22 = T12+T8+T5 V23 = T13+T6+T4

1,080 1,080 720

V24 = T13+T7+T4 V25 = T13+T7+T5 V26 = T13+T8+T4

2,160 3,240 1,440

V27 = T13+T8+T5 V28 = T14+T6+T4 V29 = T14+T7+T4

1,440 360 720

V30 = T14+T7+T5 V31 = T14+T8+T4 V32 = T14+T8+T5

1,080 360 360
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Table A.10. Tree-equivalent regular vines with 7 nodes.

Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines
V33 = T15+T9+T6+T4 2,520 V68 = T20+T12+T8+T5 30,240
V34 = T16+T9+T6+T4 5,040 V69 = T20+T13+T6+T4 15,120
V35 = T16+T10+T6+T4 5,040 V70 = T20+T13+T7+T4 45,360
V36 = T16+T10+T7+T4 5,040 V71 = T20+T13+T7+T5 68,040
V37 = T16+T10+T7+T5 7,560 V72 = T20+T13+T8+T4 30,240
V38 = T17+T9+T6+T4 5,040 V73 = T20+T13+T8+T5 30,240
V39 = T17+T10+T6+T4 10,080 V74 = T21+T9+T6+T4 5,040
V40 = T17+T10+T7+T4 10,080 V75 = T21+T10+T6+T4 5,040
V41 = T17+T10+T7+T5 15,120 V76 = T21+T10+T7+T4 5,040
V42 = T17+T11+T6+T4 5,040 V77 = T21+T10+T7+T5 7,560
V43 = T17+T11+T7+T4 20,160 V78 = T21+T11+T6+T4 5,040
V44 = T17+T11+T7+T5 30,240 V79 = T21+T11+T7+T4 20,160
V45 = T18+T11+T6+T4 2,520 V80 = T21+T11+T7+T5 30,240
V46 = T18+T11+T7+T4 10,080 V81 = T21+T13+T6+T4 5,040
V47 = T18+T11+T7+T5 15,120 V82 = T21+T13+T7+T4 15,120
V48 = T19+T9+T6+T4 2,520 V83 = T21+T13+T7+T5 22,680
V49 = T19+T10+T6+T4 5,040 V84 = T21+T13+T8+T4 10,080
V50 = T19+T10+T7+T4 5,040 V85 = T21+T13+T8+T5 10,080
V51 = T19+T10+T7+T5 7,560 V86 = T22+T9+T6+T4 2,520
V52 = T19+T12+T6+T4 2,520 V87 = T22+T10+T6+T4 10,080
V53 = T19+T12+T7+T4 5,040 V88 = T22+T10+T7+T4 10,080
V54 = T19+T12+T7+T5 7,560 V89 = T22+T10+T7+T5 15,120
V55 = T19+T12+T8+T4 7,560 V90 = T22+T11+T6+T4 7,560
V56 = T19+T12+T8+T5 7,560 V91 = T22+T11+T7+T4 30,240
V57 = T20+T9+T6+T4 5,040 V92 = T22+T11+T7+T5 45,360
V58 = T20+T10+T6+T4 15,120 V93 = T22+T12+T6+T4 10,080
V59 = T20+T10+T7+T4 15,120 V94 = T22+T12+T7+T4 20,160
V60 = T20+T10+T7+T5 22,680 V95 = T22+T12+T7+T5 30,240
V61 = T20+T11+T6+T4 5,040 V96 = T22+T12+T8+T4 30,240
V62 = T20+T11+T7+T4 20,160 V97 = T22+T12+T8+T5 30,240
V63 = T20+T11+T7+T5 30,240 V98 = T22+T13+T6+T4 15,120
V64 = T20+T12+T6+T4 10,080 V99 = T22+T13+T7+T4 45,360
V65 = T20+T12+T7+T4 20,160 V100 = T22+T13+T7+T5 68,040
V66 = T20+T12+T7+T5 30,240 V101 = T22+T13+T8+T4 30,240
V67 = T20+T12+T8+T4 30,240 V102 = T22+T13+T8+T5 30,240
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Table A.11. Tree-equivalent regular vines with 7 nodes (Continuation).

Tree sequence & Tree sequence &
# Tree-equivalent Labeled Regular Vines # Tree-equivalent Labeled Regular Vines
V103 = T23+T9+T6+T4 5,040 V136 = T24+T12+T8+T5 30,240
V104 = T23+T10+T6+T4 10,080 V137 = T24+T13+T6+T4 20,160
V105 = T23+T10+T7+T4 10,080 V138 = T24+T13+T7+T4 60,480
V106 = T23+T10+T7+T5 15,120 V139 = T24+T13+T7+T5 90,720
V107 = T23+T11+T6+T4 5,040 V140 = T24+T13+T8+T4 40,320
V108 = T23+T11+T7+T4 20,160 V141 = T24+T13+T8+T5 40,320

V109 = T23+T11+T7+T5 30,240 V142 = T24+T14+T6+T4 12,600
V110 = T23+T12+T6+T4 5,040 V143 = T24+T14+T7+T4 25,200
V111 = T23+T12+T7+T4 10,080 V144 = T24+T14+T7+T5 37,800
V112 = T23+T12+T7+T5 15,120 V145 = T24+T14+T8+T4 12,600
V113 = T23+T12+T8+T4 15,120 V146 = T24+T14+T8+T5 12,600
V114 = T23+T12+T8+T5 15,120 V147 = T25+T9+T6+T4 2,520
V115 = T23+T13+T6+T4 20,160 V148 = T25+T10+T6+T4 5,040
V116 = T23+T13+T7+T4 60,480 V149 = T25+T10+T7+T4 5,040
V117 = T23+T13+T7+T5 90,720 V150 = T25+T10+T7+T5 7,560
V118 = T23+T13+T8+T4 40,320 V151 = T25+T11+T6+T4 2,520
V119 = T23+T13+T8+T5 40,320 V152 = T25+T11+T7+T4 10,080
V120 = T23+T14+T6+T4 25,200 V153 = T25+T11+T7+T5 15,120
V121 = T23+T14+T7+T4 50,400 V154 = T25+T12+T6+T4 2,520
V122 = T23+T14+T7+T5 75,600 V155 = T25+T12+T7+T4 5,040
V123 = T23+T14+T8+T4 25,200 V156 = T25+T12+T7+T5 7,560
V124 = T23+T14+T8+T5 25,200 V157 = T25+T12+T8+T4 7,560
V125 = T24+T9+T6+T4 5,040 V158 = T25+T12+T8+T5 7,560
V126 = T24+T10+T6+T4 15,120 V159 = T25+T13+T6+T4 5,040
V127 = T24+T10+T7+T4 15,120 V160 = T25+T13+T7+T4 15,120
V128 = T24+T10+T7+T5 22,680 V161 = T25+T13+T7+T5 22,680
V129 = T24+T11+T6+T4 7,560 V162 = T25+T13+T8+T4 10,080
V130 = T24+T11+T7+T4 30,240 V163 = T25+T13+T8+T5 10,080
V131 = T24+T11+T7+T5 45,360 V164 = T25+T14+T6+T4 2,520
V132 = T24+T12+T6+T4 10,080 V165 = T25+T14+T7+T4 5,040
V133 = T24+T12+T7+T4 20,160 V166 = T25+T14+T7+T5 7,560
V134 = T24+T12+T7+T5 30,240 V167 = T25+T14+T8+T4 2,520
V135 = T24+T12+T8+T4 30,240 V168 = T25+T14+T8+T5 2,520


