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Chapter 1

Introduction

North Sea

The North Sea is one of the busiest seas on the planet. Around 420, 000 vessels

pass this area each year, not including fishing vessels. Many of these vessels carry

products that pose a threat to the environment. In particular, oil and chemicals can

cause serious pollution if spilled at sea. On the NCP (Netherlands Continental Plat,

Dutch part of the Continental Shelf) an average of 24 incidents occur annually. These

incidents involve collisions between ships, oil platforms, ship grounding, fires and lost

cargo. Moreover, many pollutants are accidentally or deliberately spilled from ships

during ’normal’ operation. These spills, although small, account for the majority of

the total pollution.

The Ministry of Transport, Public Works and Water Management (Verkeer en

Waterstraat) is the most important department responsible for oil pollution response

within the Netherlands. The North Sea is covered by Rijkwaterstraat (RWS), directie

Noordzee (DNZ), which is responsible for the cleanup operations of oil, chemicals and

lost cargo on the NCP.

In this study, response at sea is based on mathematical recovery. Chemical dis-

persants are often used as well, however they are prohibited in Dutch waters. Also,

the usage of mechanical dispersion (by propellers) is not often used in Netherlands.
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RWS operate a number of oil combating craft and have further crafts on contract

for immediate adaptation to oil recovery vessels in the event of an emergency. This

includes 5 commercial sand dredgers. A number of other vessels are also available

to support recovery operation and vessels boom. The target recovery capacity of

these combined units is 30, 000m3 of oil in three days. These vessels have their basis

primarily at Scheveningen and also at Zeeland and at Rotterdam.

Outlines of the thesis

This thesis is part of Rataplan project (Responsive action to tanker vessel incidents

planning), whose aim is to optimize the responsive resources (vessels, planes and

special equipment) against spill of the oil or chemicals. An optimal planning meets

the demand both in terms of response time and capacity.

The goal of the thesis is to find a model for the optimization of capacity and

positioning of the available cleaning vessels along the Dutch coast. The model should

at least take into account the characteristics of the vessels (speed, cleaning capacity,

preparation time), pollution contingency maps, ecological and economical damage,

which increase in time if the oil spill is not removed and is directly related to the size

of the oil spill.

Firstly, Chapter 1 presents some of the international conventions and agreements

regarding the fight against pollution in North Sea. The possible methods that can be

used to clean the sea in case of pollution are briefly presented. Chapter 2 contains

the description of data about the vessels, harbors and incidents. The model that we

developed to reach the goals of the research is presented in Chapter 3. In this chapter,

after preliminary discussions about the way in which the vessels would undertake

action in an emergency situation, mathematical formulas for the damage produced by

an oil spill are derived. The last part of the chapter pays attention to the complexity

of the optimization problem and to the difficulty of solving it with classical methods.

In Chapter 4, the main tool to solve the optimization problem formulated in the

previous chapter is presented,namely the genetic algorithm. Basic notions from the
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domain of genetic algorithm are given. In the last part of the chapter, a very simple

example is given, to show how the genetic algorithm works. Chapter 5 presents the

solutions of the optimization problem obtained using genetic algorithms, remarks

regarding these solutions and comparison of the results with the existent position of

vessels along the Dutch coast. The conclusions of the analysis and recommendations

for future research are presented in Chapter 6. Appendix A contains the MatLab

codes used to obtain the results from Chapter 5.





Chapter 2

Regulations and methods for the

recovery of the floating oil

The North Sea ecosystem suffers from various forms of contamination and pressure

resulting from human activities. Protecting and constantly improving the quality of

the ecosystem is important and a number of cooperation and consultation mechanisms

are applied in this area.

In this chapter, the main international regulations and conventions regarding the

pollution in the North Sea are enumerated. The usual methods and equipments used

in the recovery of the floating oil are briefly presented in the last section of the chapter.

2.1 Conventions and regulations

When you look at the sea chart, you realize that nothing can be done without real

international cooperation.

One first agreement regarding the pollution in the North Sea was signed at Bonn,

in June 1969, by Belgium, Denmark, France, Germany, Netherlands, Norway, Sweden,

UK and Northern Ireland. The objective of this agreement was to ensure cooperation

between the coastal States in providing manpower, supplies, equipment and scientific

advice at short notice to deal with discharges of oil or other noxious or hazardous
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substances in the North Sea. The convention also divided the area of the North Sea

into national zones; for Netherlands, the zone was limited by lines joining the follow-

ing points: (51◦32′N, 3◦18′E), (51◦32′N, 2◦6′E), (52◦30′N, 3◦10′E), (54◦N, 2◦40′E),

(54◦N, 5◦30′E), (53◦34′N, 6◦38′E).

Figure 2.1: North Sea map

The agreement was replaced by the Agreement for Cooperation in Dealing with the

Pollution on the North Sea by Oil and Other Harmful Substances (Bonn, 13 September

1983), which entered into force on 1 September 1989. This new agreement has mainly

the same contents as the previous one, but a few more articles regarding the financial

aspects of an international cleanup operation in the North Sea are added.
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Another international instrument that stabilizes the norms and presents the re-

search progress in the area of protection against pollution is the system of Inter-

national Conferences on the Protection of the North Sea (Bremen, 1984; London,

1987; The Hague, 1990; Esbjerg, 1995; Norway, 2002), which constitute political

forum which adopt far-reaching politically-based commitments. They provide a po-

litical framework for a broad and comprehensive assessment of the measures needed

to protect the North Sea. Apart from the agreements on action to protect the North

Sea, the North Sea Conferences have also played an important role in influencing

environmental management decisions in a much wider context.

2.2 Guidelines and recommendations

There is a variety of available resources to fight against pollution at sea. In this

paragraph, part of them (as floating booms, skimmers) are briefly described. The

resources are adapted to recover oil on the open sea, in coastal waters and from

water’s edge.

In the event of oil pollution, the use of dispersing chemicals may also be considered.

This can be done if it provides that the chemical treatment brings about an extra

overall reduction in the adverse effects of the pollution on the marine environment,

in comparison with the natural dispersion process and other methods of fighting

pollution. The institution that is dealing with the pollution and the response at sea

has to authorize the use and spreading of chemicals in the marine environment to

combat pollution. This authorization depends on the area where the pollutant is

located, on the type of oil and also on the period of year. In the Netherlands, the use

of the dispersing chemicals is not yet allowed.

The oil boom is a floating barrier which is used in cleaning up oil on the surface of

the water. The booms can be used: to contain oil (containment booming); to collect

oil; as a barricade to exclude oil (exclusion booming) from a certain area; to absorb

oil; and to deflect oil (diversion booming).
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Containment booming is the process of preventing the spread of oil spill by con-

fining the oil to the area in which it has been discharged.

Booms can also be used to divert pollutant to areas where cleanup operation can

be conducted and to protect specific areas such as entrance to harbors and rivers or

environmentally or economically sensitive areas.

The use of booms to concentrate the floating oil prior to its recovery by specialized

skimmers is often seen as the first stage of an effective response to an oil spill.

The most important characteristic of a boom is its behavior in relation with water

movement. It should be flexible conform to water motion, but in the same time,

sufficiently rigid to retain as much oil as possible. It should tolerate inexpert handling,

since trained personnel are not always available. Towing booms at sea, for example

in U or J configurations, is a difficult task requiring specialized vessels.

Unfortunately, this approach presents a number of disadvantages. Even if the

booms are operational within few hours, in rough seas and low viscosity oil case, the

spill can be scattered over many square kilometers. And it will not be feasible for

booms to encounter more than a fraction of a widely spread slick. This is the reason

why the limitations that poor weather and rough seas impose on operations at sea

are seldom fully appreciated.

Because of the difficulties of operation multi-ship towed boom systems, special-

ized ships have been build which incorporate sweeping arms, skimming devices and

on board oil storage. In addition a pump or vacuum device is necessary to transfer

recovered oil and water to store. A skimmer is a mechanical recovery device designed

to remove the oil from the water’s surface without causing major alterations in the

physical or chemical properties. Because skimmers float on the water surface, they

experience many of the operational difficulties which apply to booms, particularly

those posed by wind, waves and currents. Even moderate wave motion greatly re-

duces the effectiveness of most skimmer designs. In calm waters more satisfactory

performance can be achieved.
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Figure 2.2: Boom

It is important to have adequate temporary oil storage facilities available, other-

wise this becomes a bottleneck to successful oil recovery. Temporary storage needs

to be easy to handle and easy to empty so that it can be used repeatedly. Suitable

units include barges and portable tanks which can be set up on available vessels.

Many factors should be considered when selecting skimmers. The intended use

and expected operational conditions should first be identified before criteria such as

size, robustness and case of operation, handling and maintenance can be weighted up.

The most important factors to consider are the viscosity and adhesive properties over

time. Only sometimes the properties of the oil are known; that is why it is preferable

to select units which can deal with a range of oils. It is also important to recognize

the difficulties posed by floating debris, both natural (sea weeds, sea grasses, trees

and branches) and man made (plastic, glass, timber).

Because of the various constraints imposed on skimmers in the field, their design
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capacities are rarely realized. Experience from numerous spills has consistently shown

that recovery rates reported under test conditions cannot be sustained during a spill

and so it is important not to have unrealistic expectations about what can be achieved.



Chapter 3

Description of data

The analysis in this thesis is based on the data provided by RWS-DNZ. The

information is about the incident probabilities and the size of the oil spill, about the

harbors and the available cleaning vessels. The data is briefly presented in the next

sections.

3.1 Incident data

The Dutch part of the Continental Shelf is covered by a grid with cells that have

the size approximatively 8 × 8 km. Each cell is characterized by its geographical

coordinates (latitude and longitude).

The Samson program was used to compute the probabilities of incidents with ves-

sels and the outflow of oil based on incident statistics from Lloyd’s, a large commercial

insurance company, which has also insurances against oil pollution from ships. Sam-

son is a Safety Assessment Model for Shipping and Offshore North Sea, which has

three models: shipping model (where and how many accidents take place, how much

spill is there and which factors are influencing this); offshore mining model (calamities

on drilling of oil); and oil spreading effect model (describes the transport of oil as a

consequence of a calamity spill on the North Sea).

The data that we use in this thesis comes from the shipping model. This model
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computes the probability of pollution in a cell starting from the traffic intensity for

that cell, taking account of the probability of collision, the probability that the tanker

hull is damaged given a collision, the density function for the volume of oil in a tanker.

The oil spills are divided in eight categories and for each category, separately,

the probability to have a pollution per year with a volume of oil from that category

is given. The categories and the mean volume oil in each of them are presented in

table (3.1). The data shows that the probability of large spills is small. Very small

spills (the first two categories) are also less frequent because only serious accidents are

considered in the calculations. The most frequently spills are those from categories

four and five, so with the volume of oil between 750 and 10000 m3.

Category Frequency (per year) Mean spill size (m3)
1 0.01 < V < 20 0.001653 12.3
2 20 < V < 150 0.003442 76.2
3 150 < V < 750 0.015155 424.1
4 750 < V < 3000 0.024028 1736.3
5 3000 < V < 10000 0.024399 5917.5
6 10000 < V < 30000 0.016209 16962.5
7 30000 < V < 100000 0.011702 57920.7
8 100000 < V < 999999 0.006835 186605.0

Table 3.1: Spill categories

3.2 Harbors

There are six harbors along the Dutch Coast where the cleaning vessels may be

located. For these ports, the geographical coordinates are known (see table (3.2)).

Figure (3.1) shows how these harbors are scattered along the Dutch Coast. Each

harbor can lodge any of the available vessels. Also, there is no limit on the number
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Name Longitude (N) Latitude (E)
Scheveningen (1) 52◦6′7′′ 4◦15′58′′

Terschelling (2) 53◦21′50′′ 5◦13′18′′

Rotterdam (3) 51◦53′41′′ 4◦5′54′′

IJmuiden (4) 52◦27′41′′ 4◦35′27′′

Terneuzen (5) 51◦20′11′′ 3◦48′58′′

Den Helder (6) 52◦57′39′′ 4◦46′53′′

Table 3.2: Port coordinates

of vessels that can be located in one port.

3.3 Vessels

There are 14 vessels that can participate in an emergency situation at the North

Sea. Four of them (Arca, Terschelling, Rijndelta and Hein) are owned by RWS or

under contract. In an emergency situation, RWS can count on them any time. There

are six more vessels (Cornelia, Gateway, Gepotes, HAM 316, Lesse, Waker) that are

not under contract, but can be asked to help in case of an incident. The last four

vessels (Albatros, Adelaar, Zandexpress 3, Zanderexpress 4) have an unclear status;

in a future research it would be interesting to introduce them into analysis.

Each vessel is characterized by speed, cleaning capacity (km2/hr), response time

(during the weekend or during the rest of the week). Another important characteristic

of vessels is the location of sweeping arms. If the arms are on board, then the ship

can start sailing to the polluted area right away. If the arms are in other harbor, the

ship needs to sail to this harbor, to instal the arms and then to go to the polluted

area. For these vessels, the sailing time between their harbor and the harbor where

the arms are located has to be taken into consideration.
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Figure 3.1: Harbors

All these data are presented in Table (3.3).

The present location of vessels can be used to compare the result of the study

with the actual situation.
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Ship
Actual
location

Speed
(kn/hour)

Clean. cap.
(km2/hour)

Mob. time
(hours)

Arms
location

Arca 1 14 0.12 1 on board
Terschelling 2 12 0.06 1 2
Rijndelta 3 14 0.12 1 on board

Hein 3 13 0.12 4 3
Cornelia 4 14 0.12 12 3
Gateway 4 14 0.12 12 3
Geopotes 3 14 0.12 10 3
HAM 316 3 14 0.12 10 3

Lesse 5 12 0.06 8 5
Waker 6 13 0.06 1 on board

Table 3.3: Vessel characteristics

All the data that we have described will be used in this study. It will be proved

that the data serve well the goals of the project. An analysis of each of the eight

categories of oil spills will be done, taking into consideration either the first group of

vessels (those vessels that are owned by RWS and can work independently), or the

first two groups of vessels (adding the vessels that are not under contract, but can

help in case of emergency).

The results of this analysis will be presented in chapter 5, after a model for our

problem and a method to solve it has been established.





Chapter 4

Model for the optimization

problem

To quantify the effect produced by an oil spills is a very important issue that has

to be clarified in order to optimize the location of the cleaning vessels. It is known

that there are two types of damages: ecological damage and economical damage.

Perhaps the most dramatic symbol of the consequences of an oil spill is an oiled

seabird. Diving birds are especially vulnerable. Some marine mammals may also be

affected. The impact of spilled oil on the nearshore marine waters and shallow fishing

banks is obvious and often severe.

In addition to ecological concerns, coastal regions can suffer economically from

damage done by oil spill to recreation areas, harbors and vessels, commercial shellfish

grounds. During the summer months, beaches along the coasts of most maritime

countries are crowded with people on weekend outings and vacations. Thus, there is

a big interest in protecting beaches from spill or to clean them up quickly.

It is very difficult to put together the ecosystem loss and the economical loss.

Economical effects can be transformed more or less in money, but for the bird and

animal lives it is a very hard work to do this. If one is interested only in the economical

damage, the amount of money lost from the closure of the beaches or harbors and

the money used to clean an oil spill are a good measure for the damage.

25
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But, if the interest is to combine both types of damage as in the most of the cases,

it is very difficult to consider money as a unit for the damage and other measures

have to be found.

We have to take into account that the wildlife oiled and killed are function of area

swept by surface oil and vulnerability. Mortality of fish, shellfish and their eggs and

larvae are function of concentration and time exposure. Moreover, the economical

damage is also a function of time and volume of oil.

All these reasons and the lack of more detailed information regarding the ecosys-

tem and the costs of the economical negative effects of a pollution lead to a definition

directed related to the time of exposure and the surface of the oil spill.

In this thesis, we define the damage caused by an oil spill as the total surface

that is covered with oil, integrated over time. With this definition of the damage, the

effectiveness of the cleanup operation is optimum when the oil is cleaned in as short

time as possible.

Using this definition, in the next sections of the chapter, a mathematical formula

will be derived for the damage.

First, some preliminary remarks are presented. The first paragraph contains all

the questions that arise in the the beginning phase of the work. The assumptions

that we make are also included in this paragraph. The next section establishes the

notations and gives the general description of the model. In section three, mathemat-

ical formulas for damage are derived. The last paragraph summarizes the problem

that we are dealing with and gives an idea about the methods that can be used to

solve it.

4.1 Preliminary remarks and assumptions

This work is directed to minimize the damage produced by oil pollution in the

Dutch part of the North Sea and to find the optimum location of the available cleaning

vessels. The damage was chosen as the measure of the effectiveness of the cleaning
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operation. There are other possibilities, as maximize the volume of the oil that

is cleaned in an operation or minimize the cost. For both these possibilities there

are other aspects that have to be included in the model (type of oil, the cost of the

ecological damage and of the economical damage) and more detailed data are needed.

The first question that arises is, given a certain position of vessels, which vessel(s)

should be used to clean up a certain polluted area? One idea is to send that vessel for

which, at the end of cleaning operation, the damage would be minimum. Therefore,

to compute the damage in a cell, one has to consider each vessel and to see what

would be the damage if that vessel is used; then the value of the damage in that

certain cell is equal to the minimum value that has been found.

It is easy to see that if more vessels are used, the cleaning operation time is less,

so the damage caused by the pollutant is less. This is the case in almost all pollution

accidents. So, an intervention with more vessels in an emergency case is more realistic.

In this case, one more question arises: how many vessels must be used and which

of them? It seems that the minimum time for a cleaning operation (so, probably, the

minimum damage) is obtained if all vessels are used. This implies on one hand a large

cleaning cost and on the other hand, no available vessel for other possible oil spills

close in time to the previous one. But in the case of very serious accidents (large

quantity of oil in a vulnerable area), the cleaning costs are not important if there is

a considerable reduction in the damage, or, if, for example, the cleaning operation is

finished in an acceptable interval of time.

Hence, several cases may be taken into consideration:

• an intervention with only one vessel (that one which gives minimum damage at

the end of cleaning operation);

• an intervention with all vessels;

• an intervention with a combination of vessels (that combination that gives min-

imum damage at the end of cleaning operation).

The last case will be considered in the rest of the study as the basic case.
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It has to be mentioned that in the case with more vessels, the total capacity of the

system is the sum of cleaning capacities of the involved vessels. No other additional

tools, sych as booms between two vessels, are used to increase the cleaning capacity.

There is one more aspect that has to be clarified. If there are more vessels involved

in a cleaning operation, how they should undertake action? Should they wait for each

other, or as soon as one arrives at the polluted area, it starts the cleaning? From

the calculation point of view, the first situation is more convenient (as we will see in

the next sections), but from the realistic point of view, the second situation should

be considered. For our study, we will assume that the vessels have to wait for the

slowest one and to start the cleanup operation in the same time.

There are few more assumptions that we have to mention. For this study it is

assumed that there is no weather influence; the wind, the waves and the currents

don’t influence the movement of the oil spill. Also, bad weather conditions do not

delay the moment when the cleaning up operation starts.

4.2 Notations and definitions.

General presentation of the model

Before starting to build the model, some notations have to be considered:

• n - the number of vessels;

• m - the number of harbors (ports);

• N - the number of cells;

• v ∈ {1, 2, . . . ,m}n - the position vector, where v(j) is the port in which the

vessel j is located;

• pc - the probability to have pollution in cell c.
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Using these notations and the previous assumptions, the goal is to find that (or

those) location vector(s) that minimizes the expected damage, or, mathematically, to

find:

argminv

N∑
c=1

pcD(c, v) (4.2.1)

where D(c, v) is the damage in cell c if the vector location is v (which will be explained

in more details in the next section).

Hence, first of all, a way to compute the damage D(c, v) as a function of the

cell c and the position vector v has to be found. As it was said before, all possible

combinations of vessels will be considered and the damage will be calculated for each

of these combinations (one way to do this will be presented in the next sections).

Then, the damage D(c, v) will be equal to the minimum value which has been found.

For example, if the total number of vessels is three, the decision has to be taken

between any of the three vessels, any of the combinations of two vessels (three more

cases) and the case in which all vessels are used; so, in total, there are seven cases.

It has to be noted that for a system with n vessels, given a location vector, the

number of cases that have to be analyzed for each cell is:

(
n

1

)
+

(
n

2

)
+ . . . +

(
n

n

)
= 2n − 1

In the next section, a formula for damage function D(c, v) is derived.

4.3 Damage

At the first side, the damage seems to depend on time and volume of pollutant.

The longer a quantity of oil exists in the water, the larger the damage; moreover,

larger a quantity of oil, larger the loss. The way in which the damage is related to

the time and volume of pollutant is via the area of the oil spill. A larger area of oil

spill produces more bird deaths, for example.
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The formula which relates the damage and the area of the oil spill that we have

chosen is:

D(t) =

∫ t

0

A(s)ds (4.3.1)

where D(t) is the damage up to time t and A(s) is the area of the oil spill at moment

s.

We have to remark that in case that no cleanup action is undertaken (so the area

of the oil spill will never decrease), when t goes to infinity, the damage will grow to

infinity, which is an unrealistic case. Hence, this formula is not true for a very long

time t.

Hence, the first step is to consider a model for the area of the oil spill of a certain

fixed volume V . A popular model for this is Mackay’s model (Canadian Journal of

Chemical Engineering, Vol. 51, p.434, 1980).

dA

dt
= K1 · V 4/3 · 1

A
(4.3.2)

where:

• A - area ( m2 );

• V - volume ( m3 );

• K1 - constant = 150 (sec−1) = 5.4 · 105 (hour−1).

Since at moment t = 0 it is supposed that there is no oil spill, the first idea is

to consider the initial condition A(0) = 0. But, if we look at the equation (4.3.2), it

doesn’t allow the area of the oil spill to be equal to zero. This inconvenience can be

eliminated by assuming that the area of the oil spill approach zero when t goes to

zero, or:

lim
t−→0

A(t) = 0

With this condition, the solution of the differential equation (4.3.2) is:
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A(t) =
√

2K1 · V 2/3
√

t , t ≥ 0 (4.3.3)

We have to remark that the volume of oil V is considered constant. Of course that

a more realistic approach would be to consider that the release is not instantaneous, so

the volume is not constant, but it increases with a certain rate (for example V (t) = r·t,
where t is the time and r is the rate at which the oil comes into the water). Hence,

this approach has to take account of the source of pollution and this needs more data.

Moreover, it is very difficult to find the rate r, for example, in a pollution produced

by the collision of two vessels, or by the grounding of a vessel.

We have to remark that this formula holds when no cleaning up operation is

involved. After a cleaning vessel reaches the polluted area, the cleaning capacity

q(km2/hour) of that vessel has to be taken into consideration. There are two ways

to do this.

First, we can include the cleaning capacity into the differential equation, as follows:

dA

dt
= K1 · V 4/3 · 1

A
− q , for t ≥ Tar (4.3.4)

where Tar is the arrival time of the cleaning vessel. Solving this equation with the

initial condition A(Tar) = A0 known (A0 =
√

2K1 · V 2/3
√

Tar), we obtain:

A(Tar)− A(t)− K1V
4/3

q
ln

∣∣∣∣ qA(t)−K1V
4/3

qA(Tar)−K1V 4/3

∣∣∣∣ = q(t− Tar) (4.3.5)

A new remark has to be made. In this case, the formula for the area A(t) holds

the same condition A(t) 6= 0. More then this, if we look at the graph of the curve A(t)

for a very large interval (even unrealistic) of time: [0 , 800] hours, we can see that

the function A(t) doesn’t approach the value zero. This fact has a big disadvantage

because it seams to be no end for the cleaning operation, so a stopping time, Tstop,

usually derived from the condition A(Tstop) = 0, cannot be computed. Even if we

assume that the cleaning action stops when the area of the oil spill is below a certain

level, let’s say ε, with ε > 0, the stopping time cannot be computed. As we can see
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in figure (4.3,a), this ε should be quite large, which doesn’t seem to be a realistic

assumption.

Another way is to assume that the area of the oil spill increases until the vessel

arrives, stops growing and starts to decrease due to the intervention of the cleaning

vessels. This is a realistic approach since the dispersion of the oil spill stops after a

certain time. Hence, in this case the equation for the area of the oil spill would be:

A(t) =
√

2K1 · V 2/3
√

Tar − q(t− Tar) , for t ≥ Tar (4.3.6)

It is clear that in the second case, for t ≥ Tar, the area is linear decreasing in time.

Moreover, the stopping time Tstop can be computed from the condition A(Tstop) = 0

and the time t has to be less then the stopping time Tstop for the area A(t) having

positive values.

If the condition A(Tstop) = 0 for the end of the cleaning operation seems to be too

drastic, we can replace it by A(Tstop) = ε, with ε > 0 small enough.

(a) (b)

Figure 4.1: Area of the oil spill ( with formula (4.3.5) (a), with formula (4.3.6) (b))

Even both equations (4.3.5) and (4.3.6) are valid, the way in which the plots of the

two curves A(t) look (see figure (4.3)) and the condition for the end of the cleaning
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operation are very good reasons to take the decision to use equation (4.3.6) for the

rest of this study. Moreover, in this equation it is assumed that the area of the oil

spill increases only until the arrival moment of the cleaning vessel. This is close to the

reality since it is known that a spill of oil has a finite spreading time (very probably

not exactly the arrival time of the vessel, but for sure not until the “end” of the

cleaning operation).

Thus, for the rest of the analysis, the area of the oil spill is considered to be

modelled by:

A(t) =

{ √
2K1V

2/3
√

t for 0 ≤ t ≤ Tar
√

2K1V
2/3
√

Tar − q(t− Tar) for Tar ≤ t ≤ Tstop

(4.3.7)

with:

A(Tstop) = 0⇔ Tstop = Tar +
1

q

√
2K1 · V 2/3

√
Tar (4.3.8)

Going back to the formula of the damage, we are interested in the damage at the

end of the cleaning operation, so at moment Tstop; hence, we have to compute:

D(Tstop) =

∫ Tstop

0

A(s)ds =

=

∫ Tar

0

A(s)ds +

∫ Tstop

Tar

A(s)ds =

(4.3.9)

which gives the result:

D(Tstop) =
√

2K1 ·V 2/3Tstop

√
Tar−

1

3

√
2K1 ·V 2/3Tar

√
Tar−

1

2
q(Tstop−Tar)

2 (4.3.10)

If we use the formula (4.3.8) for the stopping time Tstop, the result would be:

D(Tstop) =
2

3

√
2K1 · Tar

√
Tar +

1

q
K1V

4/3Tar (4.3.11)



34

It is important to remark that the computation of damage D(Tstop) has to be done

for each cell c, and even the cell c doesn’t appear directly in the formula for damage,

it influences the result through the arrival time Tar, which is equal to the ratio of the

distance between the cell c and the location of the vessel and the speed of the vessel.

One more remark is that, for the calculation of damage, we have assumed that

only one vessel is used in the cleaning operation. Indeed, these relations are true if

only one vessel is used. For a case with more vessels, if we assume that they wait

for the slowest vessel to start the cleaning, the formulas are valid as well. Now Tar

(the arrival time) is the time when the last vessel arrives at the polluted area and the

cleaning capacity q is the sum of all cleaning capacities of vessels involved in cleanup

operation. In the more realistic case, in which each vessel starts to clean just after it

arrives at the oil spill location, the formula will change.

To give an idea how the formula would change, let us consider first the following

example:

Let us suppose that we want to compute the damage in cell c if two vessels are

used, namely vessel i and j, which are located in ports v(i) and v(j). For this simple

example, let us assume that the vessels are characterized only by speed and cleaning

capacity (so, we don’t take into consideration mobilization time and the sailing time

to the arms’ location). If we denote by vess the matrix of vessel characteristics, then

vess will be a matrix with n lines (one for each vessel) and two columns (one for each

characteristic: speed and cleaning capacity) and:

• vess(i, 1) is the speed of vessel i;

• vess(i, 2) is the cleaning capacity of vessel i.

Also, we denote by dist the matrix of distances between cells and ports; so dist

is a matrix with N lines and m columns and dist(c, k) = the distance between cell c

and port k.

Coming back to our simple example, we have to check which vessel arrives first

and when; for this, we have to calculate the arrival times:
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ti =
dist(c, v(i))

vess(i, 1)

and

tj =
dist(c, v(j))

vess(j, 1)

and let assume that ti ≤ tj (vessel i arrives first). Then:

A(t) =


√

2K1 · V 2/3
√

t for 0 ≤ t < ti
√

2K1 · V 2/3
√

ti − qi(t− ti) for ti ≤ t < tj
√

2K1 · V 2/3
√

ti − qi(t− ti)− qj(t− tj) for tj ≤ t ≤ Tstop

(4.3.12)

where:
qi = vess(i, 2) is the cleaning capacity of vessel i;

qj = vess(j, 2) is the cleaning capacity of vessel j.

and the stopping time is obtained from the condition:

A(Tstop) = 0

⇔
√

2K1 · V 2/3
√

ti − qi(Tstop − ti)− qj(Tstop − tj) = 0

⇔ Tstop =
1

qi + qj

(√
2K1 · V 2/3

√
ti + qiti + qjtj

)
(4.3.13)

It can be seen that in equation (4.3.12), we keep the assumption that the oil

spreading stops at the moment when the first vessel arrives at the polluted area.

Now, the damage at the end of cleaning operation is:

D(Tstop) =

∫ Tstop

0

A(s)ds =

=

∫ ti

0

A(s)ds +

∫ tj

ti

A(s)ds +

∫ Tstop

tj

A(s)ds =

=
√

2K1 · V 2/3Tstop

√
ti −

1

3

√
2K1 · V 2/3ti

√
ti −

1

2
qi(Tstop − ti)

2 − 1

2
qj(Tstop − tj)

2
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It is easy to see that the formula (4.3.10) is a particular case of this formula, for

qi = q, ti = Tar, qj = 0 and tj = 0.

If we want to compute the damage at the end of the cleaning operation if all

vessels are used, we obtain:

D(Tstop) =
√

2K1 · V 2/3Tstop

√
tmin −

1

3

√
2K1 · V 2/3tmin

√
tmin −

1

2

n∑
i=1

qi(Tstop − ti)
2

(4.3.14)

where:
tmin = the minimum arrival time (the time when the first vessel arrives)

and Tstop = 1∑n
i=1 qi

(√
2K1 · V 2/3

√
tmin +

∑n
i=1 qiti

)

4.4 Solving the optimization problem

We have to remind that our problem is to find the optimum location vector v which

makes the expected damage to be a minimum. In the previous section we found a way

to compute the damage produced by an oil spill in a certain cell c, given a location

vector v. We saw that this value of the damage is also a minimum value, namely

the minimum of all possible values of the damage, depending what combinations of

vessels is used.

Since we are dealing with an optimization problem, the first step is to make a

review of the methods that can be used to solve this problem.

One classical way to solve an optimization problem is to use the gradient method.

There are two reasons to exclude this method: first, the set of the feasible solutions

is a discrete one and secondly, the objective function does not have the property to

be differentiable.

Another way to solve an optimization problem, which can be applied even for

discrete set of feasible solutions, is to use the linear programming. This method has

also to be excluded, since the objective function is not linear. Moreover, it is like a
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‘black box’, i.e. there is an input, there are some operations and processes (minimum

of all combinations of vessels that can be used) and there is an output.

The very large size mn of the set of the feasible solutions of this problem makes

the enumeration of all values of the objective function impossible.

These are the reasons that lead to a search method which permits the exploration

of a large part of the set of the feasible solutions. In the next chapter, a heuristic

method, called genetic algorithms, will be described and then applied for our problem.





Chapter 5

Genetic Algorithms

5.1 Introduction

Genetic algorithms (GAs) are search techniques based on the mechanism of natural

selection and natural genetics. Differing from the conventional search techniques,

GA’s start with an initial set of random solutions, called population. Each individual

in the population is called a chromosome, representing a possible solution to the

problem. A chromosome is a string of symbols, usually, but not necessarily, a binary

string. The chromosomes evolve through successive iterations, called generations.

During each generation, the chromosomes are evaluated using a measure of fitness.

To create the next generation, new chromosomes, called offspring, are formed by

either merging two chromosomes from current generation, using crossover operator,

or modifying a chromosome using mutation operator. A new generation is found

by selecting, according to the fitness values, some of the parents and offspring and

rejecting other so as to keep the population size constant. Fitter chromosomes have

higher probabilities of being selected.

After several generations, the algorithm converges to the best chromosome, which

hopefully represents the optimum or suboptimum solution to the problem.

The most common method to provide an initial population is to randomly generate

solutions. However, since the genetic algorithms can iteratively improve existing

39
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solutions (i.e. solutions from other heuristic methods), the beginning population can

be seeded with potentially good solutions, with the remainder of the population being

randomly generated solutions.

The genetic algorithms moves from generation to generation selecting and repro-

ducing parents until a termination criterion is met. The most frequently used stopping

criterion is a specified maximum number of generations. Another termination strat-

egy involves population convergence criteria. In general, the genetic algorithms will

force much of the entire population to converge to a single solution. When the sum

of the deviations among individuals becomes smaller than some specified level, the

algorithm can be terminated. The algorithms can be also terminated due to a lack

of improvement in the best solution over a specified number of generations.

Evaluation functions of many forms can be used in a genetic algorithm, subject to

the minimal requirement that the function can map the population into a partially

ordered set; the evaluation function (or fitness function) is independent of the genetic

algorithm. In general, for an unconstrained optimization problem, the fitness function

is the same as the objective function (maybe with some restrictions). If there are

constraints, these can be included in the fitness function as well.

Let P (t) and C(t) be parents and offspring in the current generation, respectively;

the general structure of the genetic algorithm is described as follows:

t← 0

initialize P (t)

evaluate P (t)

while (not termination condition) do

recombine P (t) to yield C(t)

evaluate C(t)

select P (t + 1) from P (t) and C(t)

t← t + 1

end
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Recombination typically involves crossover and mutation to yield offspring. In

fact, there are only two kinds of operations in genetic algorithms:

1. Genetic operations: crossover and mutation.

2. Evaluation operation: selection.

Crossover is the main genetic operator. It operates on two chromosomes at a time

and generates offspring by combining both chromosome features. A simple way to

achieve crossover would be to choose a random cut-point and generate the offspring

by combining the segment of one parent to the left of the cut-point with the segment

of the other parent to the right of the cut-point. This methods works well with the

binary string representation. The performance of genetic algorithms depends, to a

great extend , on the choice of the crossover operator used.

The crossover rate (denoted probXover) is defined as the ratio of the number

of offspring produced in each generation to the population size (usually denoted

pop size). This ratio controls the expected number probXover× pop size of chromo-

somes to undergo the crossover operation. A higher crossover rate allows exploration

of more of the solution space and reduces the chance of setting to a local optimum;

but if this rate is too high, it results in a waste of a lot of computation time in

exploring unpromising regions of the solution space.

Mutation is a background operator which produces spontaneous random changes

in various chromosomes. A simple way to achieve mutation would be to alter one

or more genes. In genetic algorithms, mutation serves the crucial role of either (a)

replacing the genes lost from the population during the selection process so that they

can be tried in a new context or (b) providing the genes that were not present in the

initial population.

The mutation rate (denoted probMutate) is defined as the percentage of the total

number of genes in the population that are changed. The mutation rate controls the

rate at which new genes are introduced into the population for trial. If it is too low,

many genes that would have been useful are never tried out; but if it is too high, there
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will be much random perturbation, the offspring will start losing their resemblance

to the parents, and the algorithm will lose the ability to learn from the history of the

search.

For both crossover rate and mutation rate, as well as for other parameters that

are used in genetic algorithms and that will be introduced later there is no optimum

value, depending on the problem for which the algorithms are applied. Several choices

have to be tested and based on the behavior of the genetic algorithms (especially their

convergence), the best combination of values for all parameters has to be chosen.

Genetic algorithms differ from conventional optimization and search procedures

(for example, the gradient method) in several fundamental ways:

1. GAs work with a (binary) coding of the solution set, not the solutions them-

selves.

2. GAs search from a population of solutions, not a single solution.

3. GAs use payoff information (fitness function), not derivatives or other auxiliary

knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

Generally, the algorithm for solving optimization problems is a sequence of com-

putational steps which asymptotically converge to an optimal solution. Most classical

optimization methods generate a deterministic sequence of computation based on the

gradient or higher-order derivatives of the objective function. The methods are ap-

plied to a single point in the search space. The point is then improved along the

deepest descending/ascending direction gradually through iterations. This point-to-

point approach has the danger of falling in a local optimum. Genetic algorithms

perform a multiple directional search by maintaining a population of potential solu-

tions. The population-to-population approach attempts to make the search escape

from local optimum. The population undergoes a simulated evolution. At each gener-

ation the relatively good solutions are reproduced, while the relatively bad solutions
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die out. Genetic algorithms use probabilistic transition rules to select individuals to

be reproduced and individuals to die so as to guide their search towards regions of

search space with likely improvement.

Genetic algorithms have received considerable attention regarding their potential

as a novel optimization technique. There are three major advantages when applying

genetic algorithms to optimization problems:

1. GAs do not have much restrictions about the optimization problems. Due to

their evolutionary nature, GAs will search for solutions without taking into

account how the objective function works precisely inside. GAs can handle any

kind of objective function (even those that work as a ”black box”) and any kind

of constraints (i.e. linear or nonlinear) defined on discrete, continuous or mixed

search spaces.

2. The ergodicity of evolution operators makes genetic algorithms very effective at

performing a global search. The traditional approaches perform a local search

using a convergent step wise procedure, in which the values of nearby points are

compared and moves are undertaken towards better optimal points. Global op-

tima are guaranteed to be found only if the problem possesses certain convexity

properties that essentially guarantee that a local optimum is a global optimum.

How to encode a solution of the problem into a chromosome is a key issue for the

genetic algorithms. In Holland’s work, encoding is carried out using binary strings.

For many GA applications, especially for the problems from industrial engineering, the

simple GA was difficult to apply directly because the binary string is not a natural

coding. Various non string encoding techniques have been created for particular

problems - for example, real number coding for constrained optimization problems

and integer coding for combinatorial optimization problems. Choosing an appropriate

representation of candidate solutions to the problem at hand is the foundation for

applying genetic algorithms to solve real world problems. For each application case,
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it is necessary to perform analysis carefully to ensure an appropriate representation

of solutions together with meaningful and problem-specific genetic operators.

The selection of individuals to produce successive generations plays an extremely

important role in a genetic algorithm. A probabilistic selection is performed based

upon the individual’s fitness such that the better individuals have an increased chance

of being selected. An individual in the population can be selected more than once

with all individuals in the population having a chance of being selected to reproduce

into the next generation. There are several schemes for the selection process: roulette

wheel selection and its extensions, scaling techniques, tournament elitist models and

ranking methods.

A common selection approach assigns a probability of selection, pj, to each in-

dividual j, based upon its fitness value. A series of random numbers is generated

and compared against the cumulative probability, Cj =
∑j

i=1 pi, of the popula-

tion. The appropriate individual, j, is selected and copied into the new population if

Cj−i < U(0, 1) ≤ Cj, where U(0, 1) is a random variable uniformly distributed on the

interval (0, 1). Various methods exist to assign probabilities to individuals: roulette

wheel, linear ranking and geometric ranking.

Roulette wheel, developed by Holland, was the first selection model. The proba-

bility pj for each individual is defined by:

pj = P [individual j is chosen] =
fj∑pop size

i=1 fi

(5.1.1)

where fi equals the fitness of individual i. It is easy to see that the individuals with

larger fitness values have a larger probability of selection. Hence, the use of roulette

wheel selection limits the genetic algorithm to maximization since the evaluation

function must map the solution to a fully ordered set of values on R+. Extensions,

such as windowing and scaling, have been proposed to allow for minimization and

negativity.

Ranking methods only require the evaluation function to map the solutions to a

partially ordered set, thus allowing for minimization and negativity. Ranking methods



45

assign pj based on the rank of solution j when all solutions are sorted, where rank = 1

means the best individual and rank = pop size the worst.

There are many methods to assign a number of offspring based on ranking. One

possibility is to take a user defined parameter q and define a linear function, e.g.,

prob(rank) = q − (rank − 1)r (5.1.2)

where the parameter r can be obtain from the condition
∑pop size

i=1 prob(i) = 1, or a

nonlinear function, e.g.,

prob(rank) = q(1− q)rank−1 (5.1.3)

Both functions return the probability of an individual ranked in position rank to

be selected in a single selection.

Both schemes allow the user to influence the selective pressure of the algorithm.

In the case of the linear function, the requirement:

pop size∑
i=1

prob(i) = 1 (5.1.4)

implies that:

q =
r(pop size− 1)

2
+

1

pop size
(5.1.5)

or, equivalently:

r =
2(q · pop size− 1)

pop size(pop size− 1)
(5.1.6)

If r = 0 (and consequently q = 1/pop size) there is no pressure at all: all individu-

als have the same probability of selection. On the other hand, if q−(pop size−1)r = 0,

then:

r =
2

pop size(pop size− 1)
, and q =

2

pop size
(5.1.7)



46

provides the maximum selective pressure. In other words, if a linear function is se-

lected to provide the ranked individuals, a single parameter q, which varies between

1/pop size and 2/pop size can control the selective pressure of the algorithm. For

example, if pop size = 100 and q = 0.015, then r = q/(pop size−1) = 0.00015151515

and prob(1) = 0.015, prob(2) = 0.0148484848, . . ., prob(100) = 0.00000000000000000051.

For the nonlinear function, the parameter q ∈ (0, 1) does not depend on the

population size; larger values of q imply stronger selective pressure of the algorithm.

For example, if q = 0.1 and pop size = 100, then prob(1) = 0.1, prob(2) = 0.09,

prob(3) = 0.081, . . ., prob(100) = 0.000003. Note that:

pop size∑
i=1

prob(i) =

pop size∑
i=1

q(1− q)i−1 = 1− (1− q)pop size (5.1.8)

To obtain the equality with one, it is sufficient to define:

prob(rank) = q′q(1− q)rank−1 (5.1.9)

where:

q′ =
1

1− (1− q)pop size
(5.1.10)

The parameter q is one of the parameter of the genetic algorithms for which there

is no optimum known value. The choice for the value of q depends on the problem.

In chapter 6 we will present few experiments made for different values of q, in order

to find the best value for our problem. This type of experiments will be made for the

other parameters of the genetic algorithms as well.

Tournament selection, like ranking methods, only requires the evaluation function

to map solutions to a partially ordered set, however, it does not assign probabilities.

Tournament selection works by selecting j individuals randomly with replacement,

form the population, and inserts the best of the j into the new population. This

procedure is repeated until the population size is reached.
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5.2 How genetic algorithms work; example

Let us apply the whole process of genetic algorithms and to sea how they work

for the problem which we are dealing with. The implementation of these algorithms

is made in Matlab and the codes are in Appendix.

From the beginning we have to specify that the example is for a set of input data

created by ourself.

As we said before, the way in which a feasible solution is encoded is very important.

Usually, a solution is represented by a binary string. This is the most used way to

encode a solution. For this application, we tried first to use binary string. This had

the disadvantage of increasing running time. Moreover, one property that we would

like our algorithms to have is to be applicable for any other input data (as for any

number of vessels, any number of ports, any number of cells). The binary approach

met some difficulties when we wanted to modify the number of harbors.

The integer encoding used here does not have this problem. Moreover, the time

used to transform the binary string into the integer solution and vice versa was

decreased as well, and taking account that this problem is very time consuming, any

reduction can be seen as a success.

Thus, let us denote by v ∈ {1, 2, . . . ,m}n the position vector, where v(i) = the

port in which vessel i is located. So, each solution is represented by a string of integer

numbers from the set {1, 2, . . . m}. The length of a chromosome is n genes, where

each bit corresponds to the position of a vessel; we will denote the objective (the

expected damage) by f , where f has the formula:

f(v) =
N∑

c=1

pcD(c, v)

as in (4.2.1).

This seems to be a reasonable way to represent the solution of the optimization

problem. More than this, it is easy to work with this representation.

Let us take the case of the spill with volume V between 10000 and 30000 m3 (so

the sixth category), with a mean spill size V = 16962.5. The probability to have one
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spill from this category in cell c, with c ∈ {1, 2, . . . , 1097} is denoted by p(c).

For this example, the choice of the parameters (pop size, max gen, probXover,

probMutate, q) is not based on a careful analysis; more values of these parameters

and a try to find the optimum will be presented in the next chapter.

We consider also the case with 10 vessels, which are characterized by the data given

in Table (2.3). So, n = 10 vessels, m = 6 harbors. To optimize the function f (4.2.1)

using genetic algorithms, we use a population with pop size = 20 chromosomes. All n

genes in each chromosome are generated randomly. For each gene, a random integer

number from the set {1, 2, . . . ,m} has to be generated.

Assume that after the initialization procedure, we get the following population:

v1 = (6 5 5 3 1 1 1 5 6 1)

v2 = (6 4 6 5 1 2 2 2 3 5)

v3 = (5 2 1 1 5 3 2 2 1 6)

v4 = (3 1 1 6 1 1 6 2 5 5)

v5 = (5 4 1 2 6 2 1 5 4 6)

v6 = (4 6 1 5 3 6 1 6 2 4)

v7 = (2 5 6 4 5 3 3 4 5 5)

v8 = (6 6 1 1 6 4 5 4 1 3)

v9 = (1 2 4 1 1 1 6 6 6 6)

v10 = (2 2 2 2 1 1 4 5 2 3)

v11 = (1 4 2 6 2 1 1 5 1 1)

v12 = (3 1 5 6 1 6 2 5 4 5)

v13 = (2 2 4 2 3 6 2 5 1 6)

v14 = (6 2 6 6 1 2 1 6 3 1)

v15 = (6 4 2 5 5 6 3 3 2 3)

v16 = (2 1 5 1 6 5 4 5 1 1)

v17 = (1 2 6 4 1 6 1 4 1 3)

v18 = (1 5 4 3 4 3 5 2 3 6)
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v19 = (4 2 6 2 1 3 6 4 5 3)

v20 = (5 2 5 2 2 2 5 3 6 2)

In the evaluation phase, we calculate the fitness function value f . We get:

f(v1) = 0.3041 f(v2) = 0.2798

f(v3) = 0.3175 f(v4) = 0.2125

f(v5) = 0.2897 f(v6) = 0.2879

f(v7) = 0.3220 f(v8) = 0.2970

f(v9) = 0.3036 f(v10) = 0.3076

f(v11) = 0.2106 f(v12) = 0.2125

f(v13) = 0.3847 f(v14) = 0.3218

f(v15) = 0.2725 f(v16) = 0.2764

f(v17) = 0.2018 f(v18) = 0.2730

f(v19) = 0.2760 f(v20) = 0.3933

It is clear that chromosome v11 is the strongest one and the chromosome v20 is

one of the weakest chromosomes.

Now, we are ready to apply the recombination operator crossover to the individuals

in the new population. As mentioned earlier, one of the parameters of the genetic

system is probability of crossover probXover. This probability gives us the expected

number probXover ·pop size of chromosomes which undergo the crossover operation.

We proceed in the following way:

• for each pair of chromosomes, we generate a random number r from the range

range [0, 1];

• if r < probXover, select given pair of chromosomes for crossover.

Now we mate selected chromosomes randomly: for each pair of coupled chromo-

somes, we generate a random integer number pos from range [1, n]. The number pos

indicates the position of the crossing point. Two chromosomes:
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(b1 b2 . . . bpos bpos+1 . . . bn)

(c1 c2 . . . cpos cpos+1 . . . cn)

are replaced by a pair of their offspring:

(b1 b2 . . . bpos cpos+1 . . . cn)

(c1 c2 . . . cpos bpos+1 . . . bn)

For our example, let the probability of crossover be probXover = 0.75, so we

expect that (on average) 75% of chromosomes (i.e., 15 out of 20) undergo crossover.

We proceed in the following way: for pair of chromosomes in the population, we

generate a random number r from the range [0, 1]; if r < 0.75 = probXover, we select

the given chromosome for crossover.

Let us assume that sequence of random number is:

0.6521 0.3241 0.8011 0.5356 0.5570

0.7412 0.9436 0.2105 0.7029 0.2636

This means that the chromosomes v1, v2, v3, v4, v7, v8, v9, v10, v11, v12, v15, v16,

v17, v18, v19, v20 were selected for crossover.

Now,we mate selected chromosomes randomly: for each of these pairs, we generate

a random integer number pos form the range [0, 9]; the number pos indicates the

position of the crossing point. The first pair of chromosomes is:

v1 = (6 5 5 3 1 1 1 5 6 1)

v2 = (6 4 6 5 1 2 2 2 3 5)

and the random number is pos = 7. These chromosomes are cut after the 7 bit and

replaced by a pair of their offspring:

v′1 = (6 5 5 3 1 1 1 2 3 5)

v′2 = (6 4 6 5 1 2 2 5 6 1)

The second pair of chromosomes is:
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v3 = (5 2 1 1 5 3 2 2 1 6)

v4 = (3 1 1 6 1 1 6 2 5 5)

and the random number is pos = 9. The chromosomes are replaced by a pair of their

offspring:

v′3 = (5 2 1 1 5 3 2 2 1 5)

v′4 = (3 1 1 6 1 1 6 2 5 6)

The same procedure is applied for all pairs of chromosomes. The respective cut

points are: pos = 7, pos = 9, pos = 6, pos = 5, pos = 8, pos = 8, pos = 1, pos = 5.

The current version of the population is:

v′1 = (6 5 5 3 1 1 1 2 3 5)

v′2 = (6 4 6 5 1 2 2 5 6 1)

v′3 = (5 2 1 1 5 3 2 2 1 5)

v′4 = (3 1 1 6 1 1 6 2 5 6)

v′5 = (5 4 1 2 6 2 1 5 4 6)

v′6 = (4 6 1 5 3 6 1 6 2 4)

v′7 = (2 5 6 4 5 3 5 4 1 3)

v′8 = (6 6 1 1 6 4 3 4 5 5)

v′9 = (1 2 4 1 1 1 4 5 2 3)

v′10 = (2 2 2 2 1 1 6 6 6 6)

v′11 = (1 4 2 6 2 1 1 5 4 5)

v′12 = (3 1 5 6 1 6 2 5 1 1)

v′13 = (2 2 4 2 3 6 2 5 1 6)

v′14 = (6 2 6 6 1 2 1 6 3 1)

v′15 = (6 4 2 5 5 6 3 3 1 1)

v′16 = (2 1 5 1 6 5 4 5 2 3)

v′17 = (1 5 4 3 4 3 5 2 3 6)

v′18 = (1 2 6 4 1 6 1 4 1 3)
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v′19 = (4 2 6 2 1 2 5 3 6 2)

v′20 = (5 2 5 2 2 3 6 4 5 3)

The next operator, mutation, is performed on a bit-by-bit basis. Another param-

eter of the genetic system, probability of mutation probMutate, gives us the expected

number of mutated bits, probMutate · n · pop size. Every bit (in all chromosomes in

the whole population) has an equal chance to undergo mutation, i.e., to change from

one value to one of the other m− 1 values. So, we proceed in the following way:

• Generate a random number r from the range [0, 1].

• If r < probMutate, mutate the bit, i.e. generate an integer random number rr

from the range [1, n] which indicates the new value of that bit.

Let consider the probability of mutation be probMutate = 0.1, so we expect that

(on average) 10% of bits would undergo mutation. There are n · pop size = 10 · 20 =

200 bits in the whole population; we expect (on average) 20 mutations per generation.

Every bit has an equal chance to be mutated, so, for every bit in the population, we

generate a random number r from the range [0, 1]; if r < 0.05, we mutate the bit.

This means that we have to generate 200 random numbers. In a sample run, 23 of

these numbers were smaller than 0.1. The following table lists the random numbers

and translates the bit position into chromosome number and the bit number within

the chromosome:
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Random number Bit position
Chromosome

number

Bit number within

chromosome

0.0383 1 1 1

0.0653 19 2 9

0.0309 43 5 3

0.0874 46 5 6

0.0492 49 5 9

0.0958 51 6 1

0.0663 53 6 3

0.0959 62 7 2

0.0646 66 7 6

0.0680 70 7 10

0.0482 76 8 6

0.0385 88 9 8

0.0903 105 11 5

0.0047 106 11 6

0.0430 122 13 2

0.0431 147 15 7

0.0939 148 15 8

0.0664 152 16 2

0.0967 157 16 7

0.0076 175 18 5

0.0031 179 18 9

0.0582 185 19 5

0.0639 188 19 8

This means that 23 chromosomes are affected by the mutation operator. For each

of these bits we have to generate a random number rr, to find the new value of the

bit. The random numbers are: 2, 3, 4, 6, 4, 4, 3, 4, 4, 5, 3, 4, 5, 4, 3, 3, 4, 3, 1, 4,
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5, 4 and, respectively, 1. The final population is listed below; the mutation bits are

typed in boldface.

v′′1 = (2 5 5 3 1 1 1 2 3 5)

v′′2 = (6 4 6 5 1 2 2 5 3 1)

v′′3 = (5 2 1 1 5 3 2 2 1 5) = v′3

v′′4 = (3 1 1 6 1 1 6 2 5 6) = v′4

v′′5 = (5 4 4 2 6 6 1 5 4 6)

v′′6 = (4 6 3 5 3 6 1 6 2 4)

v′′7 = (2 4 6 4 5 4 5 4 1 5)

v′′8 = (6 6 1 1 6 3 3 4 5 5)

v′′9 = (1 2 4 1 1 1 4 4 2 3)

v′′10 = (2 2 2 2 1 1 6 6 6 6) = v′10

v′′11 = (1 4 2 6 5 4 1 5 4 5)

v′′12 = (3 1 5 6 1 6 2 5 1 1) = v′12

v′′13 = (2 3 4 2 3 6 2 5 1 6)

v′′14 = (6 2 6 6 1 2 1 6 3 1) = v′14

v′′15 = (6 4 2 5 5 6 3 4 1 1)

v′′16 = (2 3 5 1 6 5 1 5 2 3)

v′′17 = (1 5 4 3 4 3 5 2 3 6) = v′17

v′′18 = (1 2 6 4 4 6 1 4 5 3)

v′′19 = (4 2 6 2 4 2 5 1 6 2)

v′′20 = (5 2 5 2 2 3 6 4 5 3) = v′20

Now, we have to select from this population, a new population, using the method

of ranking. In this example, we use the normalized geometric ranking method (5.1.9).

We construct the selection procedure as follows:

• construct a matrix with two columns, in which the first column contains in-

dices of the chromosomes and the second column contains the rank of each

chromosome (where 1 is the best one);
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• using formula (5.1.9), calculate the probability to select the individual in posi-

tion rank:

prank = prob(rank) = q′q(1− q)rank−1

• calculate the cumulative probability qi for each chromosome vi, i = 1, 2, . . . pop size:

Qi =
i∑

j=1

pj

The selection process consists in repeating pop size times the following steps; each

time we select a single chromosome for the new population:

• generate a random number r from the rank [0, 1];

• if r < Q1, then select the first chromosome (v1); otherwise, select the ith chro-

mosome vi, (2 ≤ i ≤ pop size), such that Qi−1 < r ≤ Qi.

Applying these rules in our example, the probabilities of selection pi for each

chromosome vi are:

p1 = 0.01912 p2 = 0.03623

p3 = 0.04678 p4 = 0.08865

p5 = 0.03188 p6 = 02806

p7 = 0.01481 p8 = 0.02469

p9 = 0.10074 p10 = 0.01303

p11 = 0.07801 p12 = 0.13009

p13 = 0.02173 p14 = 0.01683

p15 = 0.05316 p16 = 0.06865

p17 = 0.06041 p18 = 0.11448

p19 = 0.01147 p20 = 0.04117
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The cumulative probabilities qi for each chromosome vi are:

Q1 = 0.01912 Q2 = 0.05535

Q3 = 0.10213 Q4 = 0.19079

Q5 = 0.22267 Q6 = 0.25073

Q7 = 0.26553 Q8 = 0.29022

Q9 = 0.39097 Q10 = 0.40399

Q11 = 0.48201 Q12 = 0.61210

Q13 = 0.63383 Q14 = 0.65065

Q15 = 0.70382 Q16 = 0.77247

Q17 = 0.83288 Q18 = 0.94736

Q19 = 0.95883 Q20 = 1.0000

Now, we are ready to generate a sequence of 20 random numbers; each time we

select a single chromosome for a new population. Let us assume that a (random)

sequence of 20 numbers from the range [0, 1] is:

0.23995 0.24172 0.30540 0.33229 0.41099

0.42479 0.46376 0.46877 0.47675 0.64722

0.66016 0.69859 0.70593 0.71720 0.82933

0.86520 0.88142 0.92279 0.95429 0.97060

The first number is r = 0.23995 is greater than Q5 = 0.10506 and smaller than

Q6 = 0.20580, meaning that the chromosome v6 is selected for the new population;

the second number r = 0.24172 is also greater than Q5 = 0.28382 and smaller than

Q6 = 0.39830, meaning the chromosome v6 is selected again for the new population.

Finally, the new population consists of the following chromosomes:

v1 = (4 6 3 5 3 6 1 6 2 4)

v2 = (4 6 3 5 3 6 1 6 2 4)

v3 = (1 2 4 1 1 1 4 4 2 3)

v4 = (1 2 4 1 1 1 4 4 2 3)
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v5 = (1 4 2 6 5 4 1 5 4 5)

v6 = (1 4 2 6 5 4 1 5 4 5)

v7 = (1 4 2 6 5 4 1 5 4 5)

v8 = (1 4 2 6 5 4 1 5 4 5)

v9 = (1 4 2 6 5 4 1 5 4 5)

v10 = (6 2 6 6 1 2 1 6 3 1)

v11 = (6 4 2 5 5 6 3 4 1 1)

v12 = (6 4 2 5 5 6 3 4 1 1)

v13 = (2 3 5 1 6 5 1 5 2 3)

v14 = (2 3 5 1 6 5 1 5 2 3)

v15 = (1 5 4 3 4 3 5 2 3 6)

v16 = (1 2 6 4 4 6 1 4 5 3)

v17 = (1 2 6 4 4 6 1 4 5 3)

v18 = (1 2 6 4 4 6 1 4 5 3)

v19 = (4 2 6 2 4 2 5 1 6 2)

v20 = (5 2 5 2 2 3 6 4 5 3)

We have just completed one iteration (i.e., one generation) of the while loop in the

genetic procedure. It is interesting to examine the results of the evaluation process

of the new population. During the evaluation phase, we calculate the fitness function

(expected damage) for each chromosome. We get:

f(v1) = 0.2879 f(v2) = 0.2879

f(v3) = 0.2061 f(v4) = 0.2061

f(v5) = 0.2528 f(v6) = 0.2528

f(v7) = 0.2528 f(v8) = 0.2528

f(v9) = 0.2528 f(v10) = 0.3218

f(v11) = 0.2748 f(v12) = 0.2748

f(v13) = 0.2633 f(v14) = 0.2633

f(v15) = 0.2730 f(v16) = 0.2018
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f(v17) = 0.2018 f(v18) = 0.2018

f(v19) = 0.3693 f(v20) = 0.2834

Note that the average fitness of the population is 0.2591 , which is lower than the

average fitness of the previous population, 0.2867.

Now we are ready to apply the genetic operators,to evaluate the next resulting

population and to run the selection process again, etc. After 15 generations, the

population is:

v1 = (3 3 2 2 5 1 6 4 4 3)

v2 = (3 3 2 2 5 1 6 4 4 3)

v3 = (3 3 2 2 5 1 6 4 4 3)

v4 = (3 3 2 2 5 1 6 4 4 3)

v5 = (3 3 2 2 5 1 6 4 4 3)

v6 = (3 5 2 2 5 1 6 4 4 3)

v7 = (3 5 2 2 5 1 6 4 4 3)

v8 = (3 3 2 2 1 1 6 4 5 3)

v9 = (3 3 2 2 1 1 6 4 5 3)

v10 = (3 3 2 2 1 1 6 4 5 3)

v11 = (3 3 2 2 1 1 6 4 5 3)

v12 = (3 3 2 2 1 1 6 4 5 3)

v13 = (3 3 2 2 1 1 6 4 5 3)

v14 = (3 3 2 2 1 1 6 4 5 3)

v15 = (3 3 2 2 5 1 6 4 5 3)

v16 = (3 3 2 2 5 1 6 4 4 3)

v17 = (3 3 2 2 5 1 1 2 5 3)

v18 = (3 3 2 5 5 3 6 4 4 3)

v19 = (3 3 2 2 2 3 6 2 5 3)

v20 = (3 3 2 6 5 6 6 3 2 3)

and the fitness values are all equal to 0.1993 for v6 and v7 and 0.1862 for the rest of

chromosomes.
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It may happen in a more complex problem, that in earlier generations the fitness

values of some chromosomes are better than the value of the best chromosome in the

last generation. This is due to the stochastic nature of sampling.

It is relatively easy to keep track of the best individual in the evolution process. It

is customary (in genetic algorithm implementation) to store “the best ever” individual

at a separate location; in that way, the algorithm would report the best value found

during the whole process (as opposed to the best value in the final population).

The optimum location vectors (all give the same value for the objective function)

are:

(3 3 2 6 5 6 5 6 5 3)

(3 3 2 6 1 6 2 4 6 3)

(3 2 2 2 5 1 6 4 4 3)

Figures 5.2 shows the evolution of the genetic algorithms for this simple example.

Figure 5.1: Simple example

As it can be seen, it is possible to obtain more optimum solutions. For this

practical problem, all the optimum solutions have to be presented. The final choice
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for one of them depends on the specialists, the people that will transform in practice

the results of this study; it is probable that other criteria need to be used as well.

Moreover, most of the time, the optimum solutions have many similarities; thus, some

of the cleaning vessels have to be located in certain harbors and for the rest of the

vessels, any of the possibilities gives the same result.

As an example, for the optimum solutions obtained before, it can be seen that the

fixed vessels are 1, 2, 3, 4, 7, 8 and 10, that have to be located in harbors 5, 5, 2, 6,

3, 3 and respectively 5. Vessels 5 can be located either in port 1 or 2; vessel 6 can be

located in port 4, 5 or 6 and vessel 9 can be located in harbor 2 or 5.

Situations like this will be found as well in the next section; possible suggestions

to deal with such cases are given as well.



Chapter 6

Results and discussions

In this chapter, the optimum solutions of the optimization problem are presented.

In the first section, we analyze how the parameters of the genetic algorithms influence

the results. The computations are made for the first category of oil spills and for

the four vessels owned by RWS. The results for the all eight spill categories are

presented in the second chapter, together with interpretations of these results. For

the computations from this section, it has been assumed that if more vessels are used

in a cleanup operation, they have to wait for the slowest one and to start to clean the

water in the same time.

6.1 Sensitivity analysis of the genetic algorithm

parameters

There are many parameters used in genetic algorithms that have values given

by user: mutation rate (probMutate), crossover rate (probXover), population size

(pop size), maximum number of generations (max gen), probability of selection for

the best individual in a population (q). There is no known optimum value for any of

these parameters. They can be chosen only after a few experiments, for each problem

separately.

61
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In this section we will analyze each of these parameters. The computations were

made for the first category of oil spills and only for four vessels. This choice was

made because the spills from this category have a smaller frequency and for only four

vessels the running time is much less.

Mutation rate (probMutate)

As we said in Chapter 5, the mutation rate is defined as the percentage of the

total number of genes in the population that are changed by the mutation operator.

It influences the expected number of new genes that are introduced into the popula-

tion. If it is too low, many genes that would be useful are never tried out and the

algorithm doesn’t explore too much from the search space; if it is too high, there will

be much random perturbations, the offsprings will start loosing their resemblance to

parents and the algorithm will lose the ability to learn from the history of the search.

Moreover, for our particular problem, the running time will increase considerably and

this is a very important aspect that we have to take into consideration.

In general, if n is the number of cleaning vessels that have to be located (so an

individual has n genes), the expected number of genes that undergo the mutation

is: probMutate × n × pop size. If we would like on average to change one gene in

each individual from a population, we need that the expected number of mutations

to be equal to the population size; hence, for the probability of mutation we obtain:

probMutate = 1/n.

Thus, in order to have on average one mutation per each individual from a popula-

tion, we should choose probMutate = 0.25 in case that only four vessels are introduced

in the study and probMutate = 0.1 for ten vessels.

Here we present the optimum values and the running time for more values of the

probability of mutation, varying between 0.025 and 0.9. We gave to the rest of the

parameters the following values: probXover = 0.75, pop size = 20, max gen = 15,

q = 0.1.

It can be seen in figure (6.1) that for values of the probability of mutation larger
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(a) (b)

Figure 6.1: Sensitivity in probability of mutation

then 0.2, all computations give the same optimum value. The running time is linear

increasing as function of probability of mutation.

Figure (6.2) shows how the genetic algorithms work for two different values of

the probability of mutation. For a smaller value (a), the genetic algorithms don’t

vary too much, but for a higher value of the probability of mutation, there are big

perturbations.

For the rest of the study we will use for the probability of mutation the value

0.2 if the analysis is made only for four vessels and the value 0.1 is ten vessels are

considered. Hence, for these experiments we have probMutate = 0.2.

Crossover rate (probXover)

The crossover rate (denoted by probXover) represents the percentage of pairs that

undergo the crossover operator. A higher probability of crossover allows exploration

of more of the feasible solution set and reduces the chance of setting to local optimum;

if the rate is too high, it results in a large computation time.
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(a) probMutate = 0.05 (b) probMutate = 0.7

Figure 6.2: Examples for two values of the probability of mutation

Figure 6.3: Sensitivity in probability of crossover
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(a) probXover = 0.2 (b) probXover = 0.7

Figure 6.4: Examples for two values of the probability of crossover

In order to analyze how the crossover rate influences the results of the genetic

algorithms and the running time, we made computations for the values of the prob-

ability of crossover in the interval [0.1; 0.9]. For the rest of the genetic algorithm

parameters, we took the values: probMutate = 0.2, pop size = 20, max gen = 15

and q = 0.1. For the optimum value there is no variation; all the time there is the

same value, namely 2.2905 ∗ 10−5. The running time is not increasing, in contrast

with what we have expected.

We have to say that after the selection operation, if one chromosomes is chosen

more times, its copies are introduced in the new population each after other. Taking

into account that the crossover operator is applied to two consecutive chromosomes,

many of the pairs, even if they undergo the crossover operator, do not bring new

chromosomes, so the expected damage (the fitness function) doesn’t have to be com-

puted again. This explain why the crossover probability doesn’t influence too much

the running time. Anyway, to increase the chance to introduce new chromosomes, we

should give a large value to the crossover rate.

The figure (6.3) shows how the running time varies as a function of the crossover
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probability. The next figure presents how the genetic algorithms work for two different

values of the crossover probability.

For the rest of the study we chose probXover = 0.75, based on the previous

explanations.

Probability of selection of the best individual

in a population (q)

In the selection phase of a genetic algorithm, a very important role is played by

the probability of selection of the best individual in a population, which is controlled

by the parameter q. Large values of q imply stronger pressure of the algorithm, so

more copies of the best individual from a population will by selected for the next

generation. A smaller value provides a larger variety of chromosomes in a population.

(a) (b)

Figure 6.5: Sensitivity in probability of selection of the best individual

A few experiments are made for values of q in the interval [0.05 0.9]. From figure

(6.5) it can be seen that the value of q doesn’t influence the optimum solution found

by the genetic algorithm; the variation in the optimum value that is found by the
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genetic algorithms appears due to their stochastic character. For the running time,

larger values of q allow the appearance of more copies of the most fitted chromosomes,

and during the crossover operator there are not too many new chromosomes (so there

is no need to compute the expected damage, i.e. the fitness function for too many

new individuals). This explain the fact that the running time seams to be decreasing

as function of q.

Taking account that the crossover operator is applied to two consecutive chro-

mosomes, we should avoid to have too many copies of the same individual in one

population, such that we can search more from the set of feasible solutions. There-

fore, we chose for the rest of the study the value 0.1. Hence, the probability of

selection of individuals in a population will be: prob(1) = 0.1138, prob(2) = 0.1025,

prob(3) = 0.0922, . . . , prob(20) = 0.0154.

Population size (pop size) and maximum number

of generations (max gen)

It is very difficult to say what is the best number of chromosomes that a population

needs to have. Of course, a larger population permits a larger exploration of the search

space. But if the genetic algorithms are very time consuming, this doesn’t allow us

to work with a large population. Figure (6.6) shows how the optimum value and the

running time vary with the population size.

After experiments made for the ten vessels as well, we choose the population size

to be equal to 20 for our further studies.
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(a) (b)

Figure 6.6: Sensitivity in population size

(a) (b)

Figure 6.7: Sensitivity in maximum number of generations
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Maximum number of generations is again a difficult choice and the running time

is the criterium used to set the value for the parameter max gen.

We have to remark that the running time doesn’t look to be too large (at most

one hour), because these computations are made only for the first group of vessels, so

only for four cleaning vessels. Thus, to compute the expected damage given a location

vector and a pollution in a certain cell, there are only 24 − 1 = 15 possibilities to use

cleaning vessels, so 15 cases to analyze for each individual into the population. For

ten cleaning vessels, the number of cases that have to be analyzed for each individual

is 210−1 and the running time will increase to 25−29 hours, even more, as we will see

in the next section. For our problem we choose the maximum number of generation

equal to 15.
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6.2 Results

In this section we will present the results and we will try to interpret them. The

computations are made for each category separately and for two groups of vessels

(first group includes four vessels, and the second group includes six more vessels).

First category of oil spills

The first category of oil spills includes the spills that have the volume less then

20 m3. Their frequency is 0.001653 per year. The mean spill size is 12 m3; this value

we will use in our computations.

The computations for the first group of vessels ended up with a solution which

brings a reduction of 25% of the damage. Figure (6.8) shows the convergence of the

genetic algorithms.

Figure 6.8: Convergence of the genetic algorithms for first category of oil spills, first
group of vessels

The location vector is v = (1 5 2 2). The solution implies that Arca has to be

located in Scheveningen (as it is now), Terschelling in Terneuzen, Rijndelta and Hein
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in Terschelling. The actual location and the optimum location of the cleaning vessels

are presented in figure (6.9).

(a) actual location: v = (1 2 3 3) (b) optimum location: v = (1 5 2 3)

Figure 6.9: Location of the cleaning vessels from the first group, for the first category
of oil spills

We have to remark that the location of vessel Hein is not important, since if we

change its location, we obtain the same value for the expected damage. So, all the

location vectors with the form: v = (1 5 2 ∗) give the same value of the expected

damage, and other criterium has to be used to decide the location of vessel four. Also,

for vessels 1 and 3 the location of the arms is on board, but for vessel 2, the location

is in port 2 (Terschelling); more then this, in the optimum location vector, it seems

that the best location for vessel 2 is in port 5 (Terneuzen), so at the other end of the

coast. We have to remind that a vessel which hasn’t the arms on board has to sail

first to the arms location and then to leave for the polluted area. So, the vessel 2 has

to sail almost 10 hours to the arm location. Hence, it would be interesting to see what

would happen if we locate the vessel 2 in the port where its arms are; this means that

we would like to compute the expected damage if the location vector is (1 2 2 2). The

result is 2.2952 · 10−5, which is still better then the expected damage for the actual

location of the cleaning vessels (3.0450 · 10−5), but worse than the optimum value
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(2.2905 · 10−5).

For the second group of vessels, the optimum value of the expected damage is

2.115 · 10−5 and this is obtained for the location vectors:

(3 5 2 4 3 6 3 5 4 4)

(3 5 2 4 3 6 1 5 4 4)

(3 5 2 4 3 4 3 5 4 4)

The result shows that only vessel 7 (Geopotes) remains (eventually) at the same

location as present, but the others vessels have to be moved. The reduction in the

value of the expected damage would be 28%. The actual and the optimum locations

are presented in figure (6.11)

Figure 6.10: Convergence of the genetic algorithms for first category of oil spills,
second group of vessels

It is difficult to interpret the optimum location found, but several remarks can be

made, especially if we look at the arm locations.

The first vessel seems to be very effective, since it is one of the fastest vessels,

has a large cleaning capacity, the mobilization time is only one hour and, more than

this, the arms are located on board. This can explain why it is located in port 3
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(a) actual location: (b) optimum location:
v = (1 2 3 3 4 4 3 3 5 6) v = (3 5 2 4 3 6 3 5 4 4)

Figure 6.11: Location of the cleaning vessels from the second group, for the first
category of oil spills

(Rotterdam), where the largest probability of pollution seems to be. It would be

interesting to see what will happen if we locate this vessel in port 1 (Scheveningen),

where it is in its actual location. If we change only vessel 1, three possible location

vectors appear:

v1 = (1 5 2 4 3 6 3 5 4 4)

v2 = (1 5 2 4 3 6 1 5 4 4)

v3 = (1 5 2 4 3 4 3 5 4 4)

and the value of the expected damage is equal to 2.2213 · 10−5, which increases the

value with 5% comparing with the optimum value. Hence it seems to be important

that the vessel 1 to be located in port 1.

For vessels 2 and 3 (Terschelling and Rijndelta) we have to remark that their

optimum locations in this group of vessels coincides with their optimum locations in

case that only four vessels are considered. Again vessel 2 has to sail to the other

end of the coast, which delays with 10 hours the starting moment of the cleanup
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operation. This makes us to check what happens if we move this vessel in the port

where the arms are located; in this way, we obtain three now location vectors:

v4 = (3 2 2 4 3 6 3 5 4 4)

v5 = (3 2 2 4 3 6 1 5 4 4)

v6 = (3 2 2 4 3 4 3 5 4 4)

which give the same value of the expected damage: 2.4620 · 10−5.

Vessels 4, 5, 6 and 7 are all located close or in the port where there arms are.

Comparing with the mobilization time which is 10 or 12 hours, the sailing time to

the arm location which is at most 3 hours is not too much. Taking into account that

in this model we assume that the vessels have to wait for the slowest one to start

the cleanup operation, the large time before these vessels leave for the polluted area

can explain why for the vessel number 2, although it has its arms at one end of the

coast, its optimum location seems to be at the other end of the coast. We have to

remark also that in the three optimum location vectors that we have found there are

eight vessels that have the same location and only two (vessels 6 and 7) have different

locations. Thus it would be good to check what it is the value of the expected damage

if we locate these vessels where their arms are, namely in port 3 (Rotterdam); in this

case, at least the cost of the sailing to the arms location would be saved. Hence, for

the location vector v = (3 5 2 4 3 3 3 5 4 4) we obtain the value of the expected

damage 2.1150 ·10−5, which is equal to the optimum value. Thus, this location vector

can be also considered optimum.

For vessel 8 (HAM 316), the optimum location is again not very far from the port

where its arms are (only 2.5 sailing hours). If we move the vessel in port Rotterdam

to save this time and also the cost of the sailing, the expected damage would be equal

to the optimum value.

The same situation holds for vessel 9 (Lesse), with a larger time (5 hours) to

reach the port where its arms are located. An eventual move of this vessel in port

Terneuzen brings no change in the value of the expected damage.

One problem that we have to solve is to find a way to combine more optimum
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locations vectors and to combine also the results for the two groups of vessels. For the

first case, it can be seen that the optimum vectors found have many similarities and

only few vessels appear with more possible optimum locations. It is very probable

that some other considerations have to be taken into account to decide the location

for this kind of vessels. One possibilities is to locate the vessels where their arms are,

if this doesn’t influence the value of the expected damage.

In order to combine the results for the two groups of vessels, we can consider

for the first four vessels the optimum location found for the first group of vessels

and for the other six vessels, the optimum location found for the second group of

vessels. Hence, if the two optimum location vectors are (1 5 2 2) and respectively

(3 5 2 4 3 6 3 5 4 4), for example, it would be interesting to check how the value

of the expected damage would change if the location vector is (1 5 2 2 3 6 3 5 4 4)

and to compare this value with the actual value of the expected damage and with the

optimum value found. The results shows that this new location vectors increases the

expected damage with 5% comparing with the optimum value, but is still with 25%

better than the actual value.
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The second category of oil spills

In this category are included the spills that have the volume between 20 and 150 m3;

the average volume of oil is 76.2 m3. The frequency of spills from this category is

0.003442 per year, which is larger than the frequency of spills from the first category.

The actual location of the four vessels which are owned by RKS gives an expected

damage with the value 2.3984 ·10−4. The genetic algorithms applied for this category

of oil spills find an optimum value of the expected damage equal to 1.891 ·10−4, which

brings a reduction with 20%. The optimum locations found by the genetic algorithms

are:
v1 = (3 5 2 5)

v2 = (3 5 2 1)

The convergence of the genetic algorithms is presented in figure (6.12).

Figure 6.12: Convergence of the genetic algorithms for the second category of oil
spills, first group of vessels

The same value of the expected damage is obtained if we move the fourth vessel

in any of the six ports. Hence, again, the optimum location vector for this category

of oil spills has the form: (3 5 2 ∗).
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We have to remark that comparing with the results obtained for the first category,

only the first vessel (Arca) has another optimum location. If for the previous category,

the optimum location was at Scheveningen, for this category, the optimum location

is at Rotterdam. Moreover, if we compute the value of the expected damage with the

first vessel located in port 1 (as for the previous category), we obtain a larger value

(1.9042 · 10−4, so 10% larger).

Analyzing the possibilities of locations derived from the optimum location vector,

namely moving the vessels in the port where there arms are located, we do not obtain

any other location which gives a better value of the expected damage.

(a) actual location: v = (1 2 3 3) (b) optimum location: v = (3 5 2 1)

Figure 6.13: Location of the cleaning vessels from the first group, for the second
category of oil spills

For the second group of vessels, the optimum value of the expected damage

(1.8590 · 10−4) brings an improvement with 23% comparing with the value of the

expected damage for the actual locations of the cleaning vessels (2.3986 · 10−4). The

optimum solutions are:

(4 5 2 5 6 1 6 3 6 3)

(4 5 2 5 6 1 6 3 4 3)
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which differ only by the location of vessel 9 (Lesse).

Figure 6.14: Convergence of the genetic algorithms for the second category of oil
spills, the second group of vessels

Comparing with the actual location (1 2 3 3 4 4 3 3 5 6), we observe that only

vessel 8 has the same location and all the other vessels have to be moved in other

ports.

Vessel 1 (Arca) has the optimum location in port 4 (IJmuiden), which is very close

to the actual location (Scheveningen), only 1.76 sailing hours. But, if we locate Arca

in Scheveningen, hence the location vector would be (1 5 2 5 6 1 6 3 6 3) the expected

damage is 1.9092 · 10−4.

For vessels 2 and 3 (Terschelling and Rijndelta), their optimum locations are the

same with their optimum locations found for the first group of vessels, and moreover,

with those for the previous category of oil spills. An eventual change of the location

of vessel 2 from port 5 (Terneuzen) to port 2 (Terschelling) produces a change also

of the expected damage, to 2.1169 · 10−4.

Vessel 4 (Hein) has the optimum location in port 5 (Terneuzen), which is not too

far (only 2.7 sailing hours) from the port where its arms are located. If we change

its location to the port of its arms, there is no change in the value of the expected
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(a) actual location: (b) optimum location:
v = (1 2 3 3 4 4 3 3 5 6) v = (4 5 2 5 6 1 6 3 6 3)

Figure 6.15: Location of the cleaning vessels from the second group, for the second
category of oil spills

damage; hence, a new optimum location vector is found, namely: (4 5 2 3 6 1 6 3 6 3)

For the vessel 5 (Cornelia) there is no considerable change from the actual location

(from IJmuiden to Den Helder), only 2 sailing hours far. But if we keep the actual

location for this vessel, the same value of the expected damage is found, namely

the optimum value. Also, if we locate this vessel in the port where its arms are

(Rotterdam), the value of the expected damage in equal to the optimum value. So,

for this vessel there are three possibilities to locate it such that the expected damage

has the optimum value.

Comparing with the actual location, vessel 6 (Gateway) has an optimum location

closer to the arms location. But, still, if we keep it in the actual location, no change

in the value of the expected damage would be found. The same situation is for vessels

7 (Geopotes), 8 (HAM 316) and 9 (Lesse).

Vessel 10 (Waker) is very slowly and this can explain the fact that its optimum

location is in an area where the spills are more probably to appear close to the coast,

as in the area of Rotterdam.
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In order to combine the optimum solutions formed for the two groups of vessels,

we use the same method as for the previous category of oil spills: we keep the first

four vessels in the optimum positions found for the first group and we locate the rest

of the vessels in ports found for the second group of vessels. In this way, we obtain the

location vector: (3 5 2 5 6 1 6 3 6 3), for which the expected damage is 1.9663 · 10−4

(6% larger than the optimum value).

The third category of oil spills

In the third category of oil spills are included those spills that have the volume

of oil between 150 and 750 m3, with an average size of 424.1 m3. They are more

frequently in the North Sea (0.015155 per year) comparing with the spills from the

first two categories.

The optimum value of the expected damage in case that only first four vessels

are considered is 3.0469 · 10−3 and it is obtained for the (optimum) location vectors:

(3 5 2 3) and (3 5 2 6). This brings an improvement with 20% compared with the

value of the expected damage for the actual location of the cleaning vessels (3.8·10−3).

We have to remark that the optimum locations for the first three vessels coincide

with their optimum locations for the second category of oil spills. Also, in these two

optimum vectors, only the position of the last vessel is different; moreover, wherever

the last vessel is located, the value of the expected damage is the same and it is equal

to the optimum value. We have to remind that the same situation has been met for

the previous two categories of the oil spills.
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Figure 6.16: Convergence of the genetic algorithms for the third category of oil spills,
first group of vessels

(a) actual location: v = (1 2 3 3) (b) optimum location: v = (3 5 2 6)

Figure 6.17: Location of the cleaning vessels from the first group, for the third cate-
gory of oil spills
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For the second group of vessels, the optimum value found using genetic algorithms

is 3.352 ·10−3, which is with 17% better then the actual value of the expected damage.

For the optimum solutions, there are six locations vectors. They have in common only

few components, namely the locations of the first three vessels, of the eight vessel and

of the last vessel.
(5 3 2 3 1 6 1 2 4 4)

(5 3 2 3 1 2 2 2 4 4)

(5 3 2 3 4 2 2 2 4 4)

(5 3 2 3 4 2 2 2 5 4)

(5 3 2 3 5 2 2 2 5 4)

(5 3 2 6 6 2 2 2 1 4)

For the rest of the vessels it is quite difficult to analyze their optimum locations,

but it can be seen that for the fourth vessel the predominant location is port 3, for

the sixth and seventh vessels, the predominant location is port 2. For the vessels 5

and 9, the optimum location can be any of the locations 1, 4 and 5.

Figure 6.18: Convergence of the genetic algorithms for the third category of oil spills,
second group of vessels
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(a) actual location: (b) optimum location:
v = (1 2 3 3 4 4 3 3 5 6) v = (3 5 2 3 4 2 2 2 5 4)

Figure 6.19: Location of the cleaning vessels from the second group, for the third
category of oil spills

Taking account of the actual location of the cleaning vessels, we can combine all

the optimum solutions in a single location vector, namely: (5 3 2 3 4 2 2 2 5 4) for

which the expected damage has the value 3.352 · 10−3, equal to the optimum value.

If we would like to combine the optimum location vectors for the two groups

of vessels as we did for the previous categories of oil spills, we obtain the vector

(3 5 2 3 4 2 2 2 5 4), for which the value of the expected damage is 3.241 · 10−3, even

smaller than the value found by the genetic algorithms. Hence, this is an example for

which the genetic algorithms falls in a local optimum.
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The fourth category of oil spills

The spills form the fourth category (750 m3 < V < 3000 m3) are more frequently

(0.024028 per year) than the spills from the first three categories. The mean size of

a spill from this category is 1736.3 m3.

The optimum location vector for the first group of vessels found by the genetic

algorithms are:

(3 5 2 2)

(3 5 2 3)

(3 5 2 1)

with an optimum value of the expected damage 0.0146, with 18% better than the

actual value of the expected damage (0.0178).

Figure 6.20: Convergence of the genetic algorithms for the fourth category of oil spills,
first group of vessels

It is interesting to remark that the optimum vectors are very similar to the opti-

mum solutions found for the previous three categories. Moreover, if we try to move

the fourth vessel (Hein) in any of the six harbors, we obtain the same value for the

expected damage. Hence, again, for the first group of vessels, the optimum location

vectors has the form: (3 5 2 ∗).
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(a) actual location: v = (1 2 3 3) (b) optimum location: v = (3 5 2 1)

Figure 6.21: Location of the cleaning vessels from the first group, for the fourth
category of oil spills

Figure 6.22: Convergence of the genetic algorithms for the fourth category of oil spills,
second group of vessels
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The first vessel (Arca) is not far from its actual location; more then this, it is

located in an area where the frequency of the oil spills is large. Since Arca is one of

the most effective vessels, it seems to be a reasonable optimum location. If we try to

move it in port 1 (Scheveninghen), where it is located now, we obtain the value of

the expected damage equal to 0.0152, with 4% larger than the optimum value.

For vessel 2 (Terschelling), the optimum position is again in an area where the

spills appear more frequently, but, at the same time, very far from the harbor where

its arms are located. We can try to move it to other places, but other location doesn’t

bring any improvement.

For the second group of vessels, the genetic algorithms end up with four optimum

solutions:
(3 4 2 6 1 2 1 4 5 3)

(3 4 2 6 1 2 2 4 5 3)

(3 4 2 1 5 5 2 1 1 3)

(3 4 2 1 5 4 2 1 1 3)

for which the (optimum) value of the expected damage is 0.015678, 27% better than

its value for the actual location of the cleaning vessels (0.021237).

The four optimum solutions have few common elements. The locations of the

first three vessels and of the last vessel are the same. More then this, the location of

the first and the third vessels coincide with their optimum locations obtain for the

first group of vessels. If we try to locate the second vessel at port 5, as its optimum

location was for the first group, the expected damage is the same.

If we try to combine all these four optimum solutions, we have to take into account

where the arms are located and if there are more possibilities for the optimum location,

we have to choose that one which is closer to the arms location. In this way, we obtain

the location vector (3 4 2 1 1 5 1 1 5 3) for which the expected damage has the value

0.0156, equal to the optimum value.
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(a) actual location: (b) optimum location:
v = (1 2 3 3 4 4 3 3 5 6) v = (3 4 2 1 1 5 1 1 5 3)

Figure 6.23: Location of the cleaning vessels from the second group, for the fourth
category of oil spills

The fifth category of oil spills

In this category are included the spills that have a volume between 3000 and

10000 m3, which are more frequently (0.024399 per year). The average spill size is

equal to 5917.5 m3.

For the first group of vessels, the optimum solutions bring a reduction with 15%

comparing with the actual value of the expected damage. The optimum solutions are

very similar to the optimum solutions found for the previous categories of oil spills.

They are: (3 5 2 2 ) and (3 5 2 4), with a general form (3 5 2 ∗).
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Figure 6.24: Convergence of the genetic algorithms for the fifth category of oil spills,
first group of vessels

(a) actual location: v = (1 2 3 3) (b) optimum location: v = (3 5 2 1)

Figure 6.25: Location of the cleaning vessels from the first group, for the fifth category
of oil spills
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For the second group of vessels, the genetic algorithms end up with four optimum

solutions:
(3 2 2 1 1 1 1 2 3 3)

(3 2 2 1 1 1 1 2 6 3)

(3 2 2 1 5 1 1 2 3 3)

(3 2 2 1 5 1 1 6 6 3)

for which the (optimum) value of the expected damage is 0.043389, 37% better than

its actual value (0.068089). It is easy to observe that the four optimum solutions have

many similarities; for all of them the locations of the first four vessels, of vessel 6 and

7 and of the last vessel are the same. For each of the rest of the vessels, there are

only two possibilities to be located in order to obtain the optimum expected damage.

If we take account of the location of the arms for choosing between these optimum

possibilities, we find the location vector (3 2 2 1 1 1 1 6 3 3), for which the value of

the expected damage is 0.043388, equal to the optimum value.

It is easy to remark that spills from this category appear in north of the Dutch part

of the Continental Shelf. This is in accordance with the optimum location vectors,

in which port 2 (Terschelling) appears more times then for the previous categories.

Also, port 5 (Terneuzen) doesn’t appear too much, because there are only few spills

close to it and these can be cleaned by the vessels from port 1 (Scheveningen) and 3

(Rotterdam). Anyway, most of the vessels are concentrated around ports Rotterdam

and Scheveningen.
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Figure 6.26: Convergence of the genetic algorithms for the fifth category of oil spills,
second group of vessels

(a) actual location: (b) optimum location:
v = (1 2 3 3 4 4 3 3 5 6) v = (3 2 2 1 1 1 1 6 3 3)

Figure 6.27: Location of the cleaning vessels from the second group, for the fifth
category of oil spills
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The sixth category of oil spills

For the spills from the sixth category, the volume is between 10000 and 30000 m3,

with a mean spill size of 1696.5 m3. They are less frequently than the spills from the

previous category (0.016209 m3 per year).

The optimum solution for the first group of vessels reduces with 18% the value

of the expected damage, compared with its actual value. The solutions found by the

genetic algorithms are (3 3 2 4) and (3 3 2 2); the location of the fourth vessel in any

other port doesn’t change the optimum value of the expected damage (0.0702).

Figure 6.28: Convergence of the genetic algorithms for the sixth category of oil spills,
first group of vessels

The first and the third vessels (Arca and Rijndelta) have the same optimum

location as for the previous category. The second vessel is optimum located in harbor

3 (Rotterdam) and not in harbor 5 (Terneuzen), as before. As we can be seen in figure

(6.29), most of the spills from this category appear in the area of harbors Rotterdam

and Scheveningen, and this explain the fact that the optimum location is also in port

Rotterdam for two out of four vessels.

For the second group of vessels the predominant locations in the six optimum

solutions are also 1 and 3. The optimum value of the expected damage is 0.069722
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(a) actual location: v = (1 2 3 3) (b) optimum location: v = (3 3 2 1)

Figure 6.29: Location of the cleaning vessels from the first group, for the sixth cate-
gory of oil spills

(40% better than its actual value) and the optimum location vectors are:

(1 3 2 5 4 2 4 6 1 1)

(1 3 2 5 4 2 3 6 1 1)

(1 3 2 5 4 4 3 2 1 1)

(1 3 2 5 3 2 3 2 1 1)

(1 3 2 1 4 4 3 2 3 1)

(1 3 2 1 3 4 3 5 3 1)

For these six vectors there are only few similarities: only the first three vessels

and the last vessel have the same location in all six vectors.

If we try to change vessel 1 (Arca) from port 1 to port 3, where its optimum

location was found for the first group of vessels, an increment with 1% in the value

of the expected damage appears.

Vessel 4 is located in port 1 (Scheveningen) or port 5 (Terneuzen), so in an area

where the frequency of the oil spills is larger. If we move it in port 3 (Rotterdam),

which is in the same area, the value of the expected damage in not changed.
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The optimum location of vessel 5 (Cornelia) is either port 3 or port 4, that, in

fact, are the ports in which its arms are located, respectively, its actual location is.

The sixth vessel (Gateway) has the optimum location in port 2 or in port 4, but

if we have to choose between them, we would choose port 4, because it is closer to

the harbors where the arms of this vessels are located.

For the seventh vessel (Geopotes), the predominant optimum location is port 3,

which coincides with both the actual location and the arms location for this vessel.

For vessel 8 (HAM 316) there are three possibilities for the optimum location:

two of them (port 2 and port 6) in the north part of the coast and port 5 in the

south part. But, the fact that its arms are located in Rotterdam explains why port

5 (Terneuzen) is considered an optimum location. If we try to move this vessel in

Rotterdam, the value of the expected damage doesn’t change.

Vessel 9 (Lesse) is located close to its arms location and also in the area with the

most of the spills from this categories. For this vessel, we have to choose between

ports 1 and 3.

Figure 6.30: Convergence of the genetic algorithms for the sixth category of oil spills,
second group of vessels
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(a) actual location: (b) optimum location:
v = (1 2 3 3 4 4 3 3 5 6) v = (1 3 2 3 4 4 3 3 3 1)

Figure 6.31: Location of the cleaning vessels from the second group, for the sixth
category of oil spills

Trying to combine all six optimum location vectors, and taking account on the

comments that we have made, we obtain the location vector (1 3 2 3 4 4 3 3 3 1), for

which the expected damage is equal to the optimum value.

The seventh category of oil spills

The spills from this category have the volume between 30000 and 100000 m3, with

an average spill size equal to 57920.7 m3. They appear more frequently in the area

of ports Rotterdam and Scheveningen, and only few in the north part of the coast.

The optimum solutions found for the first group of vessels is in accordance with this

remark. For the three location vectors, (3 3 2 6), (3 3 2 1) and (3 3 2 2), the first two

vessels are located in this area. They improve with 21% the value of the expected

damage (from 0.25361, the actual value, to 0.2024, the optimum value).

There are several characteristics of these optimum solutions that we comment
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upon. First of all, the optimum locations of the first three vessels coincide with their

optimum locations found for the previous categories. Moreover, wherever the fourth

vessel is located, the value of the expected damage doesn’t change.

Figure 6.32: Convergence of the genetic algorithms for the seventh category of oil
spills, first group of vessels

If we look, also, at the optimum location vector found for the second group of

vessels, (3 3 2 4 3 1 3 2 3 3), we observe that the positions of the first four vessels are

the same with their positions for the first group of vessels.

We remark, also, that the optimum location for the vessel four coincides with its

actual location, vessels 5 and 7 are located in the ports in which their arms are. For

vessel 4, the optimum location (port 1) is closer to the arms location (port 3) than

the port in which it is now.

Vessel 8 (HAM 316) is moved in port 2 (Terschelling), very far from its arms. If

we change its location in port 3, we obtain an expected damage equal to the optimum

value.

Vessel 9 (Lesse) is moved from port 5, which coincides also with the port where

its arms are located, to port 3. If we try to keep it in port 5 (Terneuzen), the value

of the expected damage will not change.
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(a) actual location: v = (1 2 3 3) (b) optimum location: v = (3 3 2 1)

Figure 6.33: Location of the cleaning vessels from the first group, for the seventh
category of oil spills

Figure 6.34: Convergence of the genetic algorithms for the seventh category of oil
spills, second group of vessels
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(a) actual location: (b) optimum location:
v = (1 2 3 3 4 4 3 3 5 6) v = (3 3 2 4 3 1 3 2 3 3)

Figure 6.35: Location of the cleaning vessels from the second group, for the seventh
category of oil spills

The eighth category of oil spills

The last of the categories of oil spills includes the spills that have the volume

larger than 100000 m3, with an average spill size equal to 186605 m3. The spills from

this category appear with a frequency of 0.006835 per year. We have to remark that

this frequency is larger than the frequency of the spills from the first two categories,

hence than the spills that have a volume less than 150 m3, but this can be explained

by the fact that many of the small spills are not registered.

The optimum location for the first four vessels are: (3 3 2 1), (3 3 2 2 ), (3 3 2 5),

for which the value of the expected damage is equal to 0.5407, 20% better than its

value for the actual location (0.6747). Again we have to remark that the general form

for the optimum location vector is (3 3 2 ∗) and this coincides with the form of the

optimum vectors found for categories 6 and 7 of oil spills, but differs from those found

for the rest of the categories by the position of the second vessel. If we try to move

this vessel to obtain the general form (3 5 2 ∗), the value of the expected damage
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increases with 10%.

Figure 6.36: Convergence of the genetic algorithms for the eighth category of oil spills,
first group of vessels

For the second group of vessels there are nine optimum solutions found by the

genetic algorithms. They are:

(3 3 2 3 4 3 3 6 4 3)

(3 3 3 3 4 3 3 6 4 3)

(3 3 3 3 4 3 3 6 6 3)

(3 3 3 4 4 3 4 6 5 3)

(3 3 3 1 4 3 4 6 5 3)

(3 3 3 1 6 3 4 1 5 3)

(3 3 3 4 6 3 4 1 5 3)

(3 3 3 4 6 3 4 5 5 3)

(3 3 3 4 6 3 4 3 3 3)

and the value of the expected damage for them is 0.45331, 35% better than the actual

value of the expected damage (0.69127).

In all these optimum vectors we can find few similarities. The first two vessels,

the sixth vessel and the last one have the same location in all nine vectors; more then
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(a) actual location: v = (1 2 3 3) (b) optimum location: v = (3 3 2 1)

Figure 6.37: Location of the cleaning vessels from the first group, for the eighth
category of oil spills

this, all these vessels are located in port 3 (Rotterdam). For the other vessels, there

are more possibilities to locate them in an optimum way.

First of all it is interesting to remark that only the first optimum vectors

(3 3 2 3 4 3 3 6 4 3) includes in it the optimum location found for the first group of

vessels (3 3 2 ∗). Hence, if we would choose one of these vectors, probably the first

one will be the most convenient.

We can see in figure (6.37) that the majority of the spills from this category appear

in the area of ports Rotterdam an Scheveningen, and only few in the north part of

the coast. This explains the fact that the predominant location in these optimum

vectors is port 3 (Rotterdam).

For vessel 4 (Hein), the optimum location can be any of the ports 1, 3 or 4, but

since its actual location is port 3, probably this would be a good choice. For vessel 5

(Cornelia), for an optimum value of the expected damage we can choose between the

harbors 4 and 6, but since it is located at this moment in port 4 and, moreover, port

4 is closer to its arms location, this is what we would choose.
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Figure 6.38: Convergence of the genetic algorithms for the eighth category of oil spills,
second group of vessels

(a) actual location: (b) optimum location:
v = (1 2 3 3 4 4 3 3 5 6) v = (3 3 2 3 4 3 3 3 3 3)

Figure 6.39: Location of the cleaning vessels from the second group, for the eighth
category of oil spills



101

Vessel 6 (Gateway) is located at this moment in port 4, but its optimum location

is port 3, where its arms are located as well. If we want to see what happens if we

keep this vessel in its actual location, we have to compute the expected damage for

the vector: (3 3 2 3 4 4 3 6 4 3); the result is equal to the optimum value of the

expected damage.

The actual location and the arms location for vessel 7 (Geopotes) are in port 3

(Rotterdam), which appears also in possible optimum locations for this vessel. The

same situation is for vessel 8 (HAM 316) and vessel 9 (Lesse).

Taking account of these remarks, if we try to combine all the nine optimum vectors

found, we obtain a location vector (3 3 2 3 4 3 3 3 3 3) for which the expected damage

has a value equal to the optimum value.

6.3 Conclusions

All the optimum vectors that we have found for each category of oil spills bring

reduction of the value of the expected damage, if we compare with the damage corre-

sponding with the actual location. But, each of them is good for one category of oil

spills. Of course, it would be better if we can find only one vector which is as good

as possible for all spills, from all categories. This seems to be possible if more data

about the spills is available, namely, the average size of a spill in each cell and the

probability to have a spill in that cell, but not divided by categories. Since we do not

have this kind of data, we will try to find a location vector which is better than the

actual one for all categories of oil spills.

For vessels that are owned by RIKZ, the optimum vector has one of the forms:

(1 5 2 ∗), (3 5 2 ∗) or (3 3 2 ∗). It is clear that the location of vessel Hein is not

important if only these four vessels are taken into consideration.

For all ten vessels is difficult to find only one location vector which is optimal for

all eight categories. Probably all vessels will be used for large spills and this leads us to
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consider the location vectors obtained for the categories 6, 7 and 8. Even considering

only these three categories is difficult to find a single location vector which reduces

the actual value of the expected damage.

Taking account of the remarks that we have made for each category of oil spills

separately, we end up with three location vectors for the last three categories. They

are:
(3 3 2 3 4 4 3 3 3 1)

(3 3 2 4 3 1 3 2 3 3)

(3 3 2 3 4 3 3 3 3 3)

If we look at the similarities that these vectors have, we can conclude that a good

vector for the large spills have to have the form: (3 3 2 ∗ ∗ ∗ 3 ∗ 3 ∗). For the rest of

the vessels there are only two possibilities for each of them. The final decision, which

for sure has to take into consideration many other aspects, needs to choose between

these possibilities.



Chapter 7

Conclusions

The response at sea in case of oil pollution is a topic for which many studies are

made and is, at the same time, a very difficult topis. For a good analysis there are

several things that have to be very well defined.

First of all, the damage produced by an oil spill at sea is a very important item

that has to be clarified when we start to optimize the response in case of an emergency

situation. It has to be defined very clearly and then to be quantified using data. Most

of the studies include both economical and ecological aspects of the damage. For these

kind of studies, a common unit for the damage has to be found. In general, money is

chosen; this implies a very ‘sensitive’ measure of the ecological loss.

Another item that has to be taken into consideration are the contingency maps.

The zones from a maritime area are not equal vulnerable. It is known that a pollution

in an area close to a beach or to a harbor produces more economical damage than

one which appears far from the coast.

The oil transport has to be included in this kind of studies, taking account of

the weather conditions and of the maritime currents. It is known that there are

differences between the behavior of the spills from different types of oil. Hence, for a

good analysis, it is important also to take account of the type of oil.

All these things make a study of this kind complex and difficult. That is why, for

this thesis, a more simple analysis was carried out.

103
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Basic assumptions in our simplified analysis are that we have introduced a damage

function which depends upon the area of pollution only, not trying to classify all

economical consequences in detail and that we have assumed that the vessels wait and

start cleaning at the arrival time of the slowest one. Another important assumption

is that in our model we have not taken into account the transport of the pollution.

For several categories of oil spills and two strategies of exploring the cleaning

vessels, we have computed optimum location vectors, presenting the optimum harbors

for the location of the cleaning vessels. For this purpose we have used a genetic

algorithm which has been evaluated with respect to its performance and its sensitivity

to change in some of the steering parameters. The genetic algorithm has been found

to perform satisfactory. The optimum location vectors found differ a little between

the studied categories of oil spills which impedes us drawing a straightforward definite

conclusion. However, clear trends have been signaled leading to an average reduction

of 25% of the total damage if we compare it with the damage resulting from a cleaning

operation based upon the present location of vessels. Thus it is considerable and

therefore it is recommended to extend this study in order to enhance its realism.

There are still possibilities to improve the analysis from this thesis, if we have

more detailed data. We have to remaind that the optimum location vectors have

been found for each of the eight categories separately. Of course that we would like

to have an optimum location for all categories. For this, we need other incidents

data, namely, for each cell, the probability of pollution (but not separately for each

category) and, what is more important, an average size of a spill in each cell. What

we had was an average size for each category and we considered that the spill has

this size in each cell.

A sensitivity map can be included also in this model. Weights can be given for

damage for each cell, such that the more sensitive cells can have a larger influence on

the total expected damage.

The way in which the vessel work in a cleanup operation can be improved also,

such that they do not have to wait for the slowest one. Also, limitations regarding
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the vessels that are involved in a cleanup operation, taking account the number, or

the arrival time to the polluted area, or the cleaning capacity, can be included.

All these thinks can make our study to be more realistic. But, even without them,

it is important to notice that the optimum solutions found using genetic algorithms

are better then the actual location vectors. For the case in which there are more

optimum solutions, other considerations can help to decide which of them can be

chosen.

Once more, this study proves that the pollution at sea is a taft subject which

demands much work and energy to be clarified.





Appendix

The expected damage D(c, v)

% the damage in cell c, if the location vector is v...

% and we use only one vessel

function dam1=D1A(c,v) global V; global DistLocPort; global data;

global Vess; global K1; global vess; global port; global n;

clear T; tempVess=vess; for i=1:size(vess,1)

if vess(i,4)==0

tempVess(i,4)=v(i);

end;

end;

% initialization

i1=1;use=[i1];

% the arrival time

T=tempVess(use,3)+dist(port(v(use),:),port(tempVess(use,4),:))/...

tempVess(use,1)+DistLocPort(c,tempVess(use,4))/tempVess(use,1);

T_ar=max(T); qq=tempVess(i,2);

dam1=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/qq;

for i1=2:n

use=[i1];

T=tempVess(use,3)+dist(port(v(use),:),port(tempVess(use,4),:))/...

tempVess(use,1)+DistLocPort(c,tempVess(use,4))/tempVess(use,1);

T_ar=max(T);

qq=tempVess(i,2);

poss_dam=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/qq;
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if dam1>poss_dam

dam1=poss_dam;

end;

end;

%--------------------------------------------------------------------

% the damage function in cell c if the location vector is v

% and we use only 2 vessels

function dam2=D2A(c,v)

global Vess; global K1; global vess; global port; global n;

clear T; tempVess=vess;

for i=1:size(vess,1)

if vess(i,4)==0

tempVess(i,4)=v(i);

end;

end;

% initialization

i1=1; i2=2; use=[i1 i2];

T=tempVess(use,3)’+dist(port(v(use),:),port(tempVess(use,4),:))/...

tempVess(use,1)+DistLocPort(c,tempVess(use,4))./tempVess(use,1)’;

T_ar=max(T); q=sum(vess(use(:),2));

dam2=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/q;

comb2=nchoosek(1:n,2); for i1=1:size(comb2,1)

use=comb2(i1,:);

T=tempVess(use,3)’+dist(port(v(use),:),port(tempVess(use,4),:))/...

tempVess(use,1)+DistLocPort(c,tempVess(use,4))./tempVess(use,1)’;

T_ar=max(T);

q=sum(vess(use(:),2));

poss_dam=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/q;

if dam2>poss_dam

dam2=poss_dam;

end;

end;
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%-----------------------------------------------------------------

% the damage in cell c if the location vector is v

% and we use 3 vessels

function dam3=D3A(c,v)

global Vess; global K1; global vess; global port; global n;

clear T; tempVess=vess; for i=1:size(vess,1)

if vess(i,4)==0

tempVess(i,4)=v(i);

end;

end;

% initialization

i1=1; i2=2; i3=3; use=[i1 i2 i3];

T=tempVess(use,3)’+dist(port(v(use),:),port(tempVess(use,4),:))/...

tempVess(use,1)+DistLocPort(c,tempVess(use,4))./tempVess(use,1)’;

T_ar=max(T); qq=sum(vess(use(:),2));

dam3=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/qq;

comb3=nchoosek(1:n,3); for i1=1:size(comb3,1)

use=comb3(i1,:);

T=tempVess(use,3)’+dist(port(v(use),:),port(tempVess(use,4),:))/...

tempVess(use,1)+DistLocPort(c,tempVess(use,4))./tempVess(use,1)’;

T_ar=max(T);

qq=sum(vess(use(:),2));

poss_dam=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/qq;

if dam3>poss_dam

dam3=poss_dam;

end;

end;

%--------------------------------------------------------------------

...

% the damage in cell c if the location vector is v and we use 9 vessels

function dam9=D9A(c,v)

global Vess; global K1; global vess; global port; global n;
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clear T; tempVess=vess;

for i=1:size(vess,1)

if vess(i,4)==0

tempVess(i,4)=v(i);

end;

end;

% initialization

i1=1;i2=2;i3=3;i4=4;i5=5;i6=6;i7=7;i8=8;i9=9;

use=[i1 i2 i3 i4 i5i6 i7 i8 i9];

T=tempVess(use,3)’+dist(port(v(use),:),port(tempVess(use,4),:))/...

tempVess(use,1)+DistLocPort(c,tempVess(use,4))./tempVess(use,1)’;

T_ar=max(T); qq=sum(vess(use(:),2));

dam9=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/qq;

comb9=nchoosek(1:n,9); for i1=1:size(comb9,1)

use=comb9(i1,:);

T=tempVess(use,3)’+dist(port(v(use),:),port(tempVess(use,4),:))/...

tempVess(use,1)+DistLocPort(c,tempVess(use,4))./tempVess(use,1)’;

T_ar=max(T);

qq=sum(vess(use(:),2));

poss_dam=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/qq;

if dam9>poss_dam

dam9=poss_dam;

end;

end;

%-----------------------------------------------------------------------

% the damage in cell c if the location vector is v and we use 10 vessels

function dam10=D10(c,v,dist)

global data; global Vess; global K1; global vess; global port;

% initialization

i1=1;i2=2;i3=3;i4=4;i5=5;i6=6;i7=7;i8=8;i9=9;i10=10;

use=[i1 i2 i3 i4 i5 i6 i7 i8 i9 i10];

T=vess(use,3)’+dist(c,v(use))./vess(use);
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qq=sum(vess(use(:),2));

T_ar=max(T);

dam10=(2/3)*sqrt(2*K1)*V^(2/3)*T_ar^(3/2)+K1*V^(4/3)*T_ar/qq;

%----------------------------------------------------------------------

% damage in cell c if the location vector is v

function dam=D(c,v)

global group; global arm; global data;

if arm==0 % the arms location is not considered

if group==1

rez=[D1(c,v);D2(c,v);D3(c,v);D4(c,v)];

else

rez=[D1(c,v);D2(c,v);D3(c,v);D4(c,v);...

D5(c,v);D6(c,v);D7(c,v);D8(c,v);...

D9(c,v);D10(c,v)];

end;

else % the arms location is considered

if group==1

rez=[D1A(c,v);D2A(c,v);D3A(c,v);D4A(c,v)];

else

rez=[D1A(c,v);D2A(c,v);D3A(c,v);D4A(c,v);...

D5A(c,v);D6A(c,v);D7A(c,v);D8A(c,v);...

D9A(c,v);D10A(c,v)];

end;

end;

dam=min(rez);

%---------------------------------------------------------------------

% expected damage (the evaluation function) if the location vector is v

function I=expect_damage(v)

global p; global data;

I=0;

for c=1:length(p)

if p(c)~=0
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I=I+p(c)*D(c,v);

end;

end;

The initial population

% initial generation (population)

function pop=initialize(pop_size);

global data;global m; global n;

pop=zeros(pop_size,n);

% generate a pop_size X n matrix with integer numbers from [1,m]

pop=unidrnd(m,pop_size,n);

for i=1:pop_size

pop(i,n+1)=expect_damage(pop(i,:));

end;

The crossover operation

% crossover

function [c1,c2,rr]=simpleXover(p1,p2)

numVar=size(p1,2)-1; % get the number of variables

% generate randomly the cutting point

cPoint=unidrnd(numVar-1);

c1=[p1(1:cPoint) p2(cPoint+1:numVar)];

c2=[p2(1:cPoint) p1(cPoint+1:numVar)];

The mutation operation

% mutation

function [parent, r]=simpleMutate(parent,gen)

global m;

r=unidrnd(m);% generate the new value of the gene

parent(gen)=r;

Selection
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% selection

function newPop=selection(oldPop,pop_size,q,gen)

global data;

ee=size(oldPop,2); % nr. colowmns

nn=size(oldPop,1); % nr. rows

newPop=zeros(nn,ee); % allocate space for return population

fitt=zeros(nn,1); % allocate space for probability of selection

x=zeros(nn,2); % sorted list of rank and index

x(:,1)=[1:nn]’; % to know what element it was

[y x(:,2)]=sort(oldPop(:,ee));

% nonlinear function

r=q/(1-(1-q)^nn);

fitt(x(:,2))=r*(1-q).^(x(:,1)-1);% nonlinear function

fit=cumsum(fitt);

rNums=sort(rand(nn,1)); % generate nn sorted random numbers

fitIn=1; newIn=1;

while newIn<=nn

if (rNums(newIn)<fit(fitIn))

newPop(newIn,:)=oldPop(fitIn,:);

newIn=newIn+1;

else

fitIn=fitIn+1;

end;

end;

The genetic algorithm (the main program)

clc;clear; time=cputime; input_data;

fid=fopen(’Solution.txt’,’a’);

fprintf(fid,’Category of oil spill%2.0f\n’,categ);

fprintf(fid,’Group of vessels:%2.0f\n’,group);

fprintf(fid,’Population size:%3.0f\n’,pop_size);

fprintf(fid,’Number of generations:%3.0f\n’,max_gen);

fprintf(fid,’\n’);

% supply a population P0 of pop_size individuals and ...
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%respective function values

startPop=initialize(pop_size);

xZomeLength=size(startPop,2);% length of xZome=numVar+fitness

numVar=xZomeLength-1; % number of variables

endPop=zeros(pop_size,xZomeLength); % a secondary population matrix

c1=zeros(1,xZomeLength); c2=zeros(1,xZomeLength);

[oval oindex]=min(startPop(:,xZomeLength)); % best value

opt_position=startPop(oindex,(1:numVar)); % optimum solution

gen=0; % current generation

while gen<max_gen

gen=gen+1;

endPop=startPop;

[bval,bindex]=min(startPop(:,xZomeLength));% keep the best solution

best=startPop(bindex,(1:numVar));

traceInfo(gen,1)=gen;

traceInfo(gen,2)=min(startPop(:,xZomeLength));

traceInfo(gen,3)=mean(startPop(:,xZomeLength));

traceInfo(gen,4)=max(startPop(:,xZomeLength));

if oval>bval % if we have a new best solution

oval=bval; % update the best val

opt_position=best; % update the best solution

elseif oval==bval

index=0;

for j=1:size(opt_position,1)

if best==opt_position(j,:)

index=1;

end;

end;

if index==0

opt_position=[opt_position;best];

opt_position

end;

end;

% crossover

for kk=1:(pop_size/2)

rr=rand;

if rr<probXover
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a=endPop(2*kk-1,:);

b=endPop(2*kk,:);

[c1 c2 rr]=simpleXover(a,b);

if c1(1:numVar)==a(1:numVar)

c1(xZomeLength)=a(xZomeLength);

elseif c1(1:numVar)==b(1:numVar)

c1(xZomeLength)=b(xZomeLength);

else c1(xZomeLength)=expect_damage(c1(1:numVar));

end;

if c2(1:numVar)==a(1:numVar)

c2(xZomeLength)=a(xZomeLength);

elseif c2(1:numVar)==b(1:numVar)

c2(xZomeLength)=b(xZomeLength);

else c2(xZomeLength)=expect_damage(c2(1:numVar));

end;

endPop(2*kk-1,:)=c1;

endPop(2*kk,:)=c2;

end;

end;

% mutation

randMutate=[];bitNum=[];chromNum=[];bitPos=[];

for i=1:pop_size*numVar

rr=rand;

if rr<probMutate

randMutate=[randMutate rr];

bitPos=[bitPos i];

gn=mod(i,numVar);

if gn==0

gn=numVar;

end;

bitNum=[bitNum gn];

chrom=(i-gn)/numVar+1;

chromNum=[chromNum chrom];

parent=endPop(chrom,:);

[c1 aleat]=simpleMutate(parent,gn);

% make sure we created a new solution before evaluating

if c1(1:numVar)==endPop(chrom,(1:numVar))



116

c1(xZomeLength)=endPop(chrom,xZomeLength);

else c1(xZomeLength)=expect_damage(c1(1:numVar));

end;

endPop(chrom,:)=c1;

end;

end;

% selection

startPop =selection(endPop,pop_size,q,gen); % for rank selection

[bval,bindex]=min(startPop(:,xZomeLength));% keep the best solution

best=startPop(bindex,(1:numVar));

if oval>bval % if we have a new best solution

oval=bval; % update the best val

opt_position=best; % update the best solution

elseif oval==bval

index=0;

for j=1:size(opt_position,1)

if best==opt_position(j,:)

index=1;

end;

end;

if index==0

opt_position=[opt_position;best];

opt_position

end;

end;

end;

traceInfo(gen,1)=gen;

traceInfo(gen,2)=min(startPop(:,xZomeLength));

traceInfo(gen,3)=mean(startPop(:,xZomeLength));

traceInfo(gen,4)=max(startPop(:,xZomeLength));

x=opt_position;xx=oval;

time=cputime-time;time=time/60; %(minutes)

fprintf(fid,’Optimum value is:%5.4f\n’,xx);

fprintf(fid,’\n’); fprintf(fid,’Optimum solution is:\n’); if

group==1

for i=1:size(x,1)

fprintf(fid,’%2.0f %2.0f %2.0f %2.0f\n’,x(i,:));

end;

else
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for i=1:size(x,1)

fprintf(fid,’%2.0f %2.0f %2.0f %2.0f %2.0f %2.0f %2.0f ...

%2.0f %2.0f %2.0f\n’,x(i,:));

end;

end;

fprintf(fid,’Running time is (in minutes):%6.2f\n’,time);

fprintf(fid,’\n’);

fclose(fid);

figure(1)

plot(traceInfo(:,1),traceInfo(:,2),’r*-’); hold on;

plot(traceInfo(:,1),traceInfo(:,3),’b.-’); hold on;

plot(traceInfo(:,1),traceInfo(:,4),’g+-’); hold off;

figure(2)

plot(traceInfo(:,1),traceInfo(:,2),’r*-’); hold on;

plot(traceInfo(:,1),traceInfo(:,3),’b.-’); hold on;
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