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S U M M A R Y 

We developed an individual-based ( IB) model to explore the stochastic attributes o f state 

transitions, the heterogeneity o f the individual interacdons, and the impact o f different network 

structure choices on the pohovirus transmission process in the context o f understanding the 

dynamics o f outbreaks. We used a previously published differential equation-based model 

to develop the I B model and inputs. To explore the impact o f different types o f networks, 

we implemented a total o f 26 variations o f six different network structures in the I B model. 

We found that the choice o f network structure plays a critical role in the model estimates o f cases 

and the dynamics o f outbreaks. This study provides insights about the potential use o f an I B 

model to support policy analyses related to managing the risks o f polioviruses and shows the 

importance o f assumptions about network structure. 
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I N T R O D U C T I O N 

Global efforts to eradicate w i l d pohoviruses continue, 

w i t h types 1 and 3 w i l d polioviruses remaining en

demic in fou r countries (Nigeria, India, Afghanistan, 

Pakistan) and causing fewer than 2000 global cases o f 

paralytic pol io annually [1]. While w i l d polioviruses 

circulate in these areas, the rest o f the wor ld must 

continue to keep poho vaccination levels very high [2], 

due to the risk o f outbreaks i n susceptible people 

in polio-free countries. I n addit ion, post-eradication 

policy planning must anticipate that outbreaks (de

fined as one or more cases o f paralytic poho) w i l l 
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occur after the successful disruption o f wi ld polio virus 

transmission [3, 4], largely due to the risks o f circu

lating vaccine-derived polioviruses (cVDPVs) [5], 

Mos t people infected w i t h pohovirus do not show any 

symptoms, which necessitates modell ing the trans

mission o f infections [5], but about 1/200 susceptible 

people becomes paralysed f r o m a wi ld poliovirus 

infection [6-8]. The costs o f outbreaks include both 

health costs experienced by paralysed individuals plus 

the impacts on their families, and the financial costs 

associated w i t h treating patients and responding to the 

outbreak w i t h vaccine campaigns to reduce trans

mission [9-11]. T w o vaccines provide protection f r o m 

disease (paralytic poliomyehtis), but incomplete pro

tection f r o m infect ion: live oral poliovirus vaccine 

(OPV) and inactivated poliovirus vaccine ( IPV) . OPV 

represents the vaccine o f choice f o r the Global Polio 
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(a) Fully connected (fc) Random (c) Scale-free 

(rf) All-in-range (e) Small-world 

Fig. 1. Examples of the five different theoretical network structures, with each network including 20 individuals (nodes) 
(« = 20) and each node connecting to six other nodes on average (K=6). The initial layouts of nodes in the networks shown in 
panels (fl)-(c) appear as a ring, but the reasonable representation of the initial structure for the networks shown in panels 
{d)-{e) require random distribution of nodes. The network obtained in panel (e) results from rewiring the network in panel (d) 
as described in the text. 

Eradication Init iat ive because o f its low cost, ease o f 

administration, induction o f mucosal immuni ty , and 

ability to provide secondary protection (i.e. spread 

to contacts). However, OPV can cause vaccine-

associated paralytic poho in rare cases and lead to 

outbreaks w i th cVDPVs in populations w i th large 

numbers o f susceptibles, and consequently fo l lowing 

the successful eradication o f wi ld polioviruses global 

health leaders plan to ehminate the use o f OPV [12]. 

Min imiz ing the risks o f outbreaks w i l l require co

ordinat ion o f OPV cessation, creation o f a global 

vaccine stockpile, and development o f specific plans 

f o r outbreak response [13, 14]. M a n y countries wiU 

also consider switching f r o m OPV to IPV because i t 

carries no risk o f vaccine-associated pol io paralysis, 

but IPV represents a relatively expensive choice and 

its ability to prevent pohovirus transmission in some 

settings (notably low-income areas wi th relatively 

poor hygiene and inadequate health systems) remains 

uncertain [3, 4]. 

Previous work by two of the authors (R .D .T . and 

K . T . ) developed a differential equation-based (DEB) 

model [9] to explore the dynamics o f pohovirus 

infection outbreaks and response strategies [15]. 

This model yields useful insights, but we recognize 

the opportuni ty to address difl"erent questions using 

a stochastic, individual-based ( IB) (or agent-based) 

modeUing approach that explicitly considers the 

network structure of individuals and the stochastic 

interactions between individuals. 

Previous studies identified the selection o f the 

network structures as a critical assumption [16-22], 

and show that D E B and I B models can yield different 

insights, in part due to the difl'erences in their 

abilities to capture network structures and populat ion 

heterogeneity [22]. I n contrast to the assumption 

o f homogenous mixing in D E B models, I B models 

typically require a network structure that governs the 

interactions o f individuals. Analysts must identify 

links between individuals (nodes in the network) 

that specify 'who acquires infection f r o m w h o m ' 

( W A I F W ) to mimic the interaction patterns o f in 

dividuals in a real populat ion [23, 24]. 

We identified five major theoretical network struc

tures in the literature: fu l ly connected, random [25], 

small-world [26], scale-free [27], and all-in-range 

(local) [28]. Figure 1 provides a graphical represen

tat ion o f example networks f r o m each category. The 

literature also includes examples o f empirical net

works, which seek to closely mimic individual contact 
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Fig. 2. Immunity and infectiousness states based on [9] along with possible transitions in the IB model. 

patterns determined through: (1) contact tracing o f 

individuals [29, 30], or (2) capturing physical locations 

(mixing-sites) in which individuals spend time w i t h 

others (e.g. schools, workplaces, recreation centres, 

shopping maUs) that determine interactions based on 

emerging co-location patterns [31]. 

Despite the importance o f network structure, I B 

models remain l imited w i th respect to the available 

in format ion about W A I F W in real populations [32]. 

Consequently, ident i fying the critical network par

ameters that influence outbreak dynamics is essential 

to develop appropriate I B models to address pohcy 

questions and guide data collection [24, 33]. This 

study describes our efforts to develop an I B model to 

characterize pohovirus outbreaks at the level o f in 

teracdons among individuals and explore the impacts 

o f network choices. The I B model explicitly captures 

immuni ty states and transition rates similar to those 

developed earlier [9], but focuses on stochastic at

tributes o f state transitions and the impact o f different 

network structures on the transmission process. 

M E T H O D S 

We developed an I B model fo r a hypothetical out

break in a low-income country setting, corresponding 

to the prospectively modeUed outbreak in Figure 2 o f 

Duin t je r Tebbens et al. [9]. The model assumes com

plete eradication o f w i l d pohoviruses and starts the 

outbreak wi th a single poliovirus in t roduct ion 5 years 

after cessation o f aU polio vaccinations. We explored 

multiple different network structures, including the 

five theoretical networks shown in Figure 1 and sev

eral empirical mixing-site networks. Figure 2 shows 

the basic structure o f the immuni ty states f r o m the 

D E B model [9] and individual state transitions in our 

I B model fo r poliovirus infections. The 13 different 

states modeUed capture infectible people (top row) , 

people w i t h latent infections (second row), infected 

people ( th i rd row) , and removed people (bot tom 

row). The model captures four different types o f 

immuni ty : (1) ' f u l l y s u s c e p t i b l e s n e v e r exposed to 

live or ki l led pohovirus, (2) 'recent l ive ' partially 

iiffectibles - individuals recently infected wi th live 

poliovirus, (3) 'historic l ive ' partially infec t ib les -

individuals historically, but not recently, infected wi th 

hve poliovirus, and (4) ' I P V - i n d i v i d u a l s never in 

fected wi th hve poliovirus but vaccinated wi th IPV [9]. 

A l though not shown in Figure 2, the D E B and I B 

models also include 25 different age groups [9], which 

influences the network patterns in mixing-site settings. 

We define inputs to the I B model w i t h a fu l l y con

nected network parallel to the D E B model and keep 

the same basic reproduction number (R^ across both 

models (see Appendix, available online). To model 

transmissions at the individual level rather than at the 

populadon level in the D E B model, we disaggregate 

the concept o f into separate inputs for contact rate 

(C) and infectivi ty ii) o f a contact (i.e. the probabil i ty 

o f a contact leading to infection). Specifically, we start 

w i th the equation i?o = C * / * fo r each type o f i n 

fectious and infectible person, using d as the average 

durat ion o f infectiousness f o r ' f u l l y susceptible' i n 

dividuals, and we calculate /' based on an assumed 
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vakie o f C = 5 contacts per day and the values o f 

Ro and d in the D E B model [9], The choice o f C does 

not impact RQ as long as i adjusts to C. We confirmed 

that we obtained the expected Rf, in the simulations 

by calculating the average number o f individuals 

directly infected by a single infectious individual i n 

troduced in a f u l l y susceptible populat ion (see online 

Appendix) . 

Consistent w i th the D E B model [9], which begins 

w i t h a populat ion immuni ty profile that distributes 

members in the populat ion to appropriate ini t ia l i m 

muni ty states, the I B model begins by assigning each 

individual to an in i t ia l state as susceptible or part ial ly 

infectible. The in i t ia l populat ion immuni ty profile 

fol lows the projected age distr ibution fo r low-income 

countries and places all children aged < 5 years in the 

' infect ible-ful ly susceptible' state given the assump

t ion o f cessation o f all polio vaccination 5 years pr ior 

to the outbreak [9]. We assigned members o f the 

populat ion aged > 5 years to the 'infectible-historic 

hve' or ' infect ible-ful ly susceptible' state according 

to assumptions about the historical OPV vaccination 

rates [9]. Given the assumed lack o f I P V or OPV use 

pr ior to the outbreak, none o f the individuals start in 

the ' i n f ec t i b l e - IPV or 'infectible-recent l ive ' states. 

We compared the transmission dynamics across all 

five o f the major theoretical network categories f r o m 

the literature and three empirical mixing-site net

works. The top part of Table 1 describes the con

struction rules applied to create the theoretical 

networks, and the bo t tom part provides the assump

tions used to create three mixing-site networks, which 

reflect possible scenarios to bring individuals into 

contact at identifiable locations (e.g. home, work , 

school). A l though modell ing real populat ion inter

actions using mixing-sites requires significant data 

and detailed in format ion about types o f contacts 

leading to infection [34], we determined that in the 

absence o f specific data we could still learn about how 

mixing-site networks funct ion by considering the 

scenarios in Table 1. We chose to model two basic 

types o f empirical mixing-site networks: one that 

focuses on workplaces and schools as hubs o f trans

mission within a large population (mixing-sites 1 and 2) 

and one that focuses on modeling the populat ion as 

a collection o f villages f r o m which individuals connect 

periodically (mixing-site 3). Whi le the selection o f 

network type and model inputs may lead to different 

results and infinitely many options exist fo r develop

ing empirical network strucutres, we focused our 

analysis on demonstrating the differences between a 

range of typical empirical and theoretical networks. 

I n order to explore networks consistently, we used the 

same total number o f individuals (nodes, agents) (AO, 

and the same average number o f connections per 

individual (K) when comparing networks that use K 

as an input. However, recognizing the uncertainty 

in network parameters, we repeated comparisons fo r 

three different values o f K. Table 2 summarizes the 

specific input values used fo r the networks. 

Each simulation o f the I B model begins by creating 

a populat ion o f A' '= 100 000 individuals. The I B model 

distributes the individuals into their age and ini t ial 

immuni ty groups and then sets up the chosen network 

structure to connect individuals using a construction 

rule. D u r i n g the simulation births occur and suscep

tible newborns enter the network wi th connections 

created by applying the same construction rule used 

to create the ini t ia l network, wi th the net effect of 

increasing the potential number o f people who could 

become infected to > 100 000. Consistent w i th the 

original model designed fo r outbreaks o f short dur

ation [9], this model ignores deaths. Thus, the net

work is dynamic in the sense that new individuals get 

added and wired to the rest o f the population, but the 

existing connections do not change dynamicaUy (e.g. 

because o f self-quarantine). 

We introduce the first, randomly selected, infec

tious individual (patient zero) into the populat ion at 

time zero o f each simulation to initialize the infection 

process. The outbreak may die out i f the patient is 

removed before infecting others. However, an out

break occurs in the populat ion when the imported 

poliovirus establishes effective transmission in in 

dividuals (presumably pr imari ly via the faecal-oral 

route and possibly to some extent via the ora l -ora l 

route [35]) and infects enough people to cause at least 

one paralytic case [9]. Infect ion depends on the exist

ence of connections between infectious and infectible 

individuals in the network and the contact rate (C). 

N o t every contact between an infected individual and 

an infectible individual leads to infection, and the 

probabil i ty o f infection foUowing contact (i) depends 

on the individual 's immuni ty state. 

We performed repeated analyses fo r three different 

average numbers o f connections per individual 

{K=10, 50, 100) to explore a range given l imi ted 

knowledge about how contacts lead to poliovirus 

transmission. We also explored all five o f the theor

etical networks in the top part o f Table 1, and f o r the 

small-world network, we explored the impact o f three 

different values fo r the probabil i ty o f random rewiring 
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Table 1. Summary of model inputs for an individual-based model that differ from those used for the differential 

equation-based {DEB) model [9] via different types of social contact networks 

Network Construction rule Notes 

Theoretical networks 
Fully connected Connect every node to every other node {K does not 

apply) 

Structure consistent with the assumption of 
homogeneous mixing and represents a discrete, 
stochastic equivalent of the DEB model 

Not very realistic for most human interaction 
patterns given the low clustering of contacts, 
but one of the earlies and most commonly used 
networks 

Relatively small number of highly connected 
individuals and many individuals with limited 
connections, such that the average distance 
between individuals is fairly small 

Random Randomly select K^Njl of the N{N- l)/2 possible 
links in A' nodes, leading to a Poisson degree 
distribution (the distiibution for the number of 
links per node) with mean K [25] 

Scale-free Select K initial nodes with K^Kjl randomly assigned 
links in them, then add new nodes to the network 
(until N nodes are reached), each with Kfl links to be 
connected to previous nodes based on a preferential 
attachment, such that the probability of connecting 
to a node is proportional to the number of existing 
links to that node [27] (the degree distribution of 
connections follows a power law (/"(/c = x) ~ x*'') 

Randomly assign people to locations on a square 
grid, then assign contacts locally (i.e. limited to local 
geographical neighbours within a given radius), and 
select the radius of interaction to obtain an average 
number of connections equal to K 

Begin with the all-in-range network, and then with 
probability P, detach each link from one end and 
rewire it to a random other node in the population 
(with duplicate hnks not allowed) 

Assumes (1) all individuals link to an average of six others in their households between 5 pm and 9 am, 
(2) all children aged between 3 and 15 years and two-thirds of adults (i.e. 5=16 years) go to a randomly 
selected workplace or school between 9 am and 5 pm, where they are connected with W co-workers or 
S classmates, respectively, (3) all other individuals (i.e. very young children and one-third of adults) 
remain connected at home between 9 am and 5 pm, (4) same contact rate (C) applies for homes, 
workplaces, and schools 

Mixing-site 2 Same as mixing-site 1, except assumes contact rate at home (C/,) twice the rate used for workplace or 
school (C,,,), with the overall expected number of contacts in the population (C) kept the same as other 
networks by adjusting C/, and C„. 

Mixing-site 3 Assumes (1) 100 different villages, each with 1000 villagers (randomly selected), (2) individuals spend their 
time in their isolated villages, except for half a day per week when subgroups of them attend one of ten 
randomly selected community centres (e.g. a market or place of worship) and interact with people from 
other villages, (3) the subgroup mixing in the community centre includes children aged between 3 and 
15 years and two-thirds of adults (5=16 years) (similar to mixing-site 1) 

All-in-range 

Small-world 

Empirical networks 
Mixing-site 1 

Realistic structure when intimate interaction 
is required for diffusion and the nodes 
cannot move 

High clustering and small average distance 
between individuals [26] 

of the local links ( ^ = 0-01, 0-05, OT), which makes a 

total o f seven simulated theoretical networks. We 

note that the random, small-world(s), and aU-in-range 

networks represent a cont inuum of different levels o f 

clustering and average distances between nodes. The 

clustering and distances decrease as we increase P, 

because a smaU-world network w i t h P=\ yields a 

random network, while setting _P = 0 yields an all- in-

range network. To facilitate some comparison be

tween the seven simulated theoretical networks and 

the three simulated mixing-site networks, we selected 

the number o f co-workers per workplace {W) and 

students per class {S) such that time-weighted average 

connections per person {K) remain the same as the 

value used f o r other network settings, not ing that 

K does not exist f o r the fu l l y connected and mixing-

site 3 networks. We used the same contact rate (C) 

f o r al l networks, except fo r mixing-site 2, fo r which 

we used twice the contact rate f o r home than that f o r 

schools and workplaces to explore the impact o f 
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Table 2. Summary of model inputs for the IB model that differ fvom those used for the DEB model [9] for the 

different networks structures described in Table 1 

Model input (units), abbreviation Value Notes 

Total population (people), N 100 000 
Daily number of contacts per individual (people/ 5 
day), C 

Average connections per individual (connections/ 10, 50, 100 
individual), K 

Random rewire probability of small- world network 0-1, 0-05, 0-01 
(dimensionless), P 

Power law input for scale-free network, M 2-6 
Age of adulthood (yr) 16 
Age of school entry (yr) 4 
Proportion of children aged <4 years in the 0-07 
population (proportion) 

Proportion of students in the population (proportion) 0-26 
Proportion of working adults in the population 0-45 
(proportion) 

Proportion of adults staying at home in the 0-22 
population (proportion) 

Number of students per school (people/place) 
51 

S, 345 
S, 711 

Number of co-workers per workplace (people/place) 
r-Fi 17 
W, 115 
W, 237 

Contact rate at home (people/day), C/, 6-4 For mixing-site 2 
Contact rate at workplace or school (people/day), C„. 3-2 For mixing-site 2 
Number of community meeting places (places) 100 For mixing-site 3 
People per village (people) 1000 For mixing-site 3 

Number of individuals 
Assumed value used to calculate the rate of sending 
the infection message for a given (see text) 

These children stay at home in mixing-sites 1 and 2 

Two-third of adults work during daytime for 
mixing-sites 1 and 2 

One-third of adults not working 

For mixing-sites 1 and 2, correspond to: 
A:=IO 
/<:=50 
A : = I O O 

For mixing-sites 1 and 2, correspond to: 
/<:=10 

differential contact intensity in different locations while 

also maintaining the same R^, as noted in Table 2. 

We projected the trajectory o f potential pol io out

breaks and we compared the results across different 

network and model inputs using the A n y L o g i c ™ (XJ 

Technologies, Russia) simulation environment. We 

recorded an outbreak upon detection o f the first 

paralytic case, which occurs stochastically in about 

1/200 infections o f ' f u l l y susceptible' individuals [9]. 

We tracked the trajectory o f the outbreak un t i l i t 

finished (i.e. no latent or infected individuals remain 

in the population) or un t i l day 2000, whichever comes 

first. Each simulation started w i th construction o f a 

new network consisting o f 100 000 ini t ia l individuals, 

and a randomly selected patient zero. Due to the 

stochastic nature o f the simulations, we ran 100 sim

ulations for each o f the 10 simulated networks fo r 

three different values o f K ( for networks that include 

TT) fo r a total o f 26 combinations (i.e. the fuUy con

nected and mixing-site 3 networks do not include K). 

D u r i n g the simulation, we captured the foUowing 

metrics: 

• Die-out fraction (dimensionless). The f rac t ion of 

simulations that do not lead to an outbreak, defined 

as detection o f a paralytic case. 

• Detection day (day). The day that the first paralytic 

case occurs. 

• Peak time (day). The day wi th the highest number 

o f infections observed wi th in the durat ion o f 

pohovirus diffusion. 

• Epidemic duration (day). The time i t takes fo r the 

outbreak to end (i.e. the time unt i l no latent or in

fectious individual remains), which we record as 

>2000 days i f transmission continued beyond the 

maximum simulation length. 

• Number of infections (number o f people). The 

cumulative number o f people who become infected 

and get removed (recover or die f r o m the infection) 

at the end o f the simulation. 
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• Number of paralytic cases (number o f people). The 

total number o f paralytic cases accumulated by the 

end o f the simulation. 

• Peak infections (number o f people). The number o f 

people infected at the peak time. 

I f the event captured by the first metric occurs (i.e. the 

transmission o f infection dies out and does not lead 

to an outbreak), then the remaining metrics do not 

provide interesting or meaningful in format ion , and 

consequently we report their results f o r only the sub

sets o f 100 simulations that did not die out. For these 

metrics we f o u n d statistically robust means w i t h the 

sample o f 100 simulations. We performed 1000 simu

lations to characterize the die-out f rac t ion results to 

obtain more statistically robust estimates. 

R E S U L T S 

Table 3 reports the results o f the f ract ion o f ' d i e - o u t ' 

cases fo r different network structures and numbers o f 

connections per individual {K) based on 1000 simu

lations. One o f the significant advantages o f I B models 

compared to a D E B model emerges simply f r o m the 

abihty to characterize the stochastic possibility o f die-

out. For example, although the comparable D E B 

model w i t h the relativley high o f 13 predicts an 

outbreak, the I B model wi th a fu l l y connected net

work dies out by chance about 15 % of the time, be

cause the infection does not go beyond the first (few) 

patient(s) who get removed before infecting a larger 

populat ion. 

Table 3 shows some differences in die-out behavior 

as a func t ion o f the type o f theoretical network 

structure and number o f connections {K). The ran

dom network fo r K=5Q and K=\<dQ behaves simi

larly to the f u l l y connected network because relatively 

low clustering (i.e. neighbours o f the same individual 

are not that likely to be connected to each other) leads 

to quick propagation o f infection throughout the 

network, reducing the chance o f die-out compared 

to a highly clustered populat ion. However, w i th fewer 

connections per individual {K=\0) we observe a 

larger die-out f rac t ion (~21 % ) , because the Poisson 

distr ibution o f K implies a relatively large f rac t ion o f 

individuals w i th very few connections and thus a 

relatively lower probabil i ty o f pushing the virus be

yond patient zero. Notably , i f patient zero is one o f 

the relatively poorly connected individuals, then the 

outbreak is more likely to die out. For the scale-fee 

network, we see a relatively small die-out f rac t ion 

Table 3. Results of 1000 simulations of the fraction 

of'die-out' cases (dimensionless) for 26 combinations 

of different network structures and numbers of 

connections between individuals (K) 

K Network Mean 95% CI 

n.a. Fully connected 0-14 0-12-0-17 
10 Random 0-21 0-18-0-24 
50 Random 0-16 0-14-0-17 
100 Random 0-17 0-14-0-19 
10 Scale-free 0-12 0-10-0-14 
50 Scale-free 0-12 0-09-0-15 
100 Scale-free 0-12 0-10-0-14 

10 AU-in-range 0-98 0-97-1-00 
50 AU-in-range 0-17 0-14-0-19 
100 AU-in-range 0-18 0-15-0-21 

10 SmaU-world {P = 001) 0-27 0-24-0-30 
50 SmaU-world (P = 0-01) 0-13 0-11-0-15 
100 SmaU-world (P = 0-01) 0-15 0-12-0-17 
10 SmaU-world (P = 0-05) 0-16 0-14-0-17 
50 SmaU-world (P = 0-05) 0-16 0-14-0-18 
100 Small-worid (P = 0'05) 0-12 0-09-0-15 

10 SmaU-world (P = 0-10) 016 0-15-0-18 
50 SmaU-world {P = 0-10) 0-14 0-12-0-15 
100 SmaU-woiid (P = 0-10) 0-13 0-10-0-15 

10 Mixing-site 1 0-46 0-42-0-46 
50 Mixing-site 1 0-44 0-40-0-48 
100 Mixing-site 1 0-43 0-40-0-46 

10 Mixing-site 2 0-44 0-41-0-46 
50 Mixing-site 2 0-43 0-40-0-45 
100 Mixing-site 2 0-45 0-40-0-50 
n.a. Mixing-site 3 0-20 0-18-0-22 

n.a.. Not appUcable. 

( ~ 10-13%), which indicates that the few 'hubs ' o f 

highly connected individuals serve as relatively effec

tive spreaders, because they connect most people in 

the populat ion wi th small distance between ind i 

viduals. Thus, although the fixed number o f connec

tions (IC) requires the existence o f many individuals 

w i t h relatively few connections to average out the 

hubs ( for aU three values o f K), in most cases patient 

zero infects a hub directly, and then the hubs infect 

each other and much o f the rest o f the populat ion 

fa i r ly quickly. The all-in-range network behaviour 

depends heavily on K. W i t h /<:=10, only a smafi 

number o f outbreaks occurred in the 1000 simu

lations, given the highly localized nature o f inter

actions, which implies that nearly all o f the infections 

died out pr ior to causing a paralytic case. Individuals 

in the all-in-range network share many connections 

wi th their neighbours, which lessens the impact o f 

infection o f two connected people since they probably 
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share many contacts, and this overlap reduces their 

ability to transmit the virus to new people. However, 

as K increases, the all-in-range network goes through 

a phase shift , in which the larger radius o f interaction 

makes the progression o f virus viable and die-out 

drops to ~ 1 8 % . For the small-world network, we 

generally see low die-out fractions (i.e. 12-16%), be

cause long-range connections seed the virus in m u l 

tiple locations and therefore reduce die-out. However, 

fo r the small-world network wi th P = 0-01 and 10, 

we see the same type o f phase shift as occurred w i t h 

the all-in-range network wi th K=\0, which appears 

consistent w i th previous observations o f such a phase 

transition [26]. 

For mixing-sites 1 and 2, which move individuals 

between home and work or school, we observed a 

significant increase in the f ract ion o f simulations that 

die out (i.e. 40-50 %o) compared to what we f o u n d fo r 

most o f the theoretical networks (i.e. 12-19%), w i th 

the notable exceptions o f the results o f the random, 

all-in-range, and smaU-world networks w i th K=IG). 

We believe that this may occur because: (1) most 

contacts happen in highly clustered fami ly units, 

which limits transmission beyond the fami ly in the 

relatively fewer contacts between infectious members 

of the household and their co-workers/schoolmates, 

and (2) one-third o f adults and young children stay at 

home, which reduces opportunities f o r transmission. 

The young age o f fu l l y susceptibles (wi th relatively 

higher infectivity) fur ther increases the importance o f 

the mixing-site dynamics. I n contrast, the contact 

pattern in mixing-site 3, which is independent o f K, 

shows a much lower die-out f ract ion (~20%o). For 

mixing-site 3, people connect to each other across 

1000-member villages, i n which the virus can spread 

w i t h no restriction i f the virus gets transmitted during 

the l imited weekly mixing time at community centres 

(e.g. markets or places o f worship). 

Table 4 shows the results f o r the metrics that pro

vide insights about the nature o f the simulated out

breaks that do not die out, and Figure 3 a provides a 

visual representation o f the outbreak dynamics by 

showing the number o f infected fu l ly susceptibles as a 

func t ion o f time. The detection day o f the first para

lytic case provides an indication o f the speed o f 

the transmission o f infections in ' f u l l y susceptible' 

individuals under different network structures. The 

peak day provides an indication o f the overall speed 

of transmission in the whole populat ion. The out

break durat ion provides insight about how quickly 

the infection passes through the entire populat ion. 

and indicates whether the outbreak could continue for 

>2000 days absent intervention. The total number o f 

infections serves as an indicator o f the impact o f the 

network on the extent to which infection spreads 

through the populat ion. The peak infections allow us 

to see the maximum numbers o f people infected sim

ultaneously, which reflects the max imum intensity o f 

the transmission o f infection under the different types 

o f network structures. The last column o f Table 4 

provides the estimated number o f paralytic cases, 

which would typically represent the only observable 

outcome, and Figure 3 b shows large differences in the 

accumulation o f these cases over time fo r various 

network structures. 

Table 4 shows some important differences in the 

outbreaks depending on the assumptions about the 

network. I n contrast to the stochastic variat ion that 

we observed related to die-out fractions (Table 3), we 

observed negligible stochastic variat ion across f o r the 

outbreak metrics in Table 4 relative to the number 

o f significant figures supported by the model, and 

consequently Table 4 reports only the robust mean 

values fo r these metrics. On average, the outbreaks 

that occur w i th the f u l l y connected network take 

o f f relatively quickly (e.g. detection day = 82, peak 

time = 133, compared to detection day = 78, peak 

time=128 fo r the D E B model [9]). A t its peak, the 

typical outbreak w i t h the f u l l y connected network 

involves >18 000 infected individuals and the rapid 

spread o f infection Unfits the overall durat ion o f the 

epidemic to 585 days on average, wi th >95 %o of the 

populat ion becoming infected and an average o f 

82 paralytic cases. The results w i t h the random net

w o r k show similar behaviour, although the average 

outbreak occurs relatively later (detection day = 123), 

proceeds more slowly (peak time = 178), and leads to 

fewer numbers o f infected individuals (74 %> of the 

populat ion becomes infected) and paralytic cases (64). 

For the scale-free network, we see a very fast take-off 

fo r the outbreak, which increases the peak infections 

and reduces the durat ion o f the outbreak. As noted 

above, patient zero typically infects a hub directly or 

w i t h one degree o f separation in the scale-free net

work , which leads to rapid infection o f all o f the hubs, 

which then infect most o f the populat ion. However, 

the existence o f some poorly connected individuals 

means that the outbreak fails to reach all o f the i n 

dividuals, such that between 72-84%) of the popu

lat ion becomes infected, depending on K. Higher K 

values appear to speed up the outbreak shghtly, but 

do not have a large impact because enough hubs 



Individual-based model f o r polioviruses 9 

Table 4. Results of 100 simulations for outbreak metrics for 26 combinations of differettt networks and values 

of K based on the subsets of simulations in which outbreaks did not die out {robust simulation mean, in units 

indicated for each metric) 

Detection Peak Duration Infection Peak infections Paralytic cases 
K Network day (day) time (day) (day) (1000s of people) (1000s of people) (people) 

n.a. Fully connected 82 133 585 95 19 82 

10 Random 123 198 580 74 10 64 

50 Random 92 145 541 92 17 77 

100 Random 90 142 562 93 18 79 

10 Scale-free 67 116 471 72 15 74 

50 Scale-free 57 99 456 82 18 80 

100 Scale-free 58 99 463 84 19 79 
10 All-in-range* n.a. n.a. n.a. n.a. n.a. n.a. 

50 AU-in-range 214 1068 1808 99 1-8 104 

100 AU-in-range 160 688 1304 98 3 99 
10 Small-world {P = Q-Q\) 471 1499 1921 11 0-36 28 

50 SmaU-world (P = 0-01) 100 238 >2000 97 10 113 

100 Small-world (P = 0-01) 78 190 >2000 105 12 143 

10 SmaU-world (P=0-05) 202 417 1932 62 4 80 

50 SmaU-world (F = 0-05) 87 172 >2000 99 14 120 

100 SmaU-world (P=0-05) 73 152 >2000 105 15 140 

10 SmaU-world (P=0-10) 142 284 1901 76 6 98 

50 SmaU-world (P = 0-10) 82 154 >2000 102 15 132 

100 SmaU-world (P = 0-10) 72 139 >2000 106 16 143 

10 Mixing-site 1 165 283 729 57 6 56 

50 Mixing-site 1 159 258 709 59 6 59 
100 Mixing-site 1 157 253 699 59 7 58 

10 Mixing-site 2 170 284 769 63 6 63 

50 Mixing-site 2 163 265 808 66 7 64 

100 Mixing-site 2 154 251 764 66 7 63 

n.a. Mixing-site 3 105 178 637 86 14 83 

n.a., Not appUcable. 
* No outbreaks observed in 100 simulations. 

exist w i th K=\Q to start and support widespread 

transmission. For the aU-in-range network, the out

break depends heavily on K, w i t h essentially no out

breaks fo r K= 10, and relatively slow outbreaks fo r 

K= 50 and K= 100 that move through the populat ion 

i n a wave-hke progression f r o m the location o f patient 

zero outwards. Given the slower di f fus ion w i th 

K=5Q, this setting leads to larger peak time, detection 

date, and durat ion than does the setting wi th K= 100. 

Notably , slower diffusion actually increases the to ta l 

number o f infections because i t extends the epidemic 

to affect more newborn babies over time. For the 

small-world network, we generally observe high 

numbers o f infections, except fo r the network w i t h 

mainly local connections fo r K= 10 and P = 0-01. We 

observe the highest numbers o f infections and para

lytic cases fo r the all-in-range network wi th /C=50, 

100 w i t h outbreaks that continue beyond 2000 days in 

most cases, because the slow transmission that results 

f r o m largely local links (see the large peak time) 

essentially matches the speed of entry o f fuUy suscep

tible newborns. 

For mixing-sites 1 and 2, the outbreaks that take

of f appear relatively insensitive to K and C. For these 

mixing-site networks, we see a slow outbreak (e.g. 

later detection day and peak times than most other 

network types) that affects the major i ty o f the popu

lat ion before ending after about 700-770 days. 

Shif t ing the weight o f the contacts more towards 

homes (mixing-site 2) leads to slightly higher numbers 

o f infections and faster outbreaks, presumably be

cause household links act as a bottleneck on trans

mission f o r mixing-site 1. By increasing the relative 

speed of transmission in the home f o r mixing-site 2, 

the one-third o f household members who do not mix 

outside o f the home become more prone to infection. 

I n contrast to mixing-sites 1 and 2, the contact pattern 

in mixing-site 3 allows infection to spread through the 
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Fig. 3. Visual representation of the behaviour of outbreaks for eight selected simulated networks as a function of time: 
(a) number of infections occurring in fully susceptible people as a function of time, and (b) accumulated number of paralytic 
cases as a function of time. 

whole populat ion, only slightly slower than the fu l l y 

connected network, w i th the major i ty o f people be

coming infected at the end o f the outbreak, which 

occurs wi th in a few months. 

D I S C U S S I O N 

Previous research demonstrates the importance o f 

structural and model input assumptions fo r other 

diseases [36, 37], but this paper presents the first I B 

model fo r polio outbreaks. By developing this model, 

we created the opportunity to both represent the 

stochastic nature o f polio outbreaks and consider 

the impact o f different network structures to model 

heterogeneous human interactions. W i t h realistic 

network structures, I B models may show behaviours 

that differ significantly f r o m the parallel D E B models, 

and offer opportunities to characterize interventions 

that target specific types o f individuals or parts of 

networks. We anticipate that I B models could play a 

valuable role in evaulating different polio outbreak 

response strategies, such as comparing mass vacci

nation and r ing vaccination options. 

Despite the potential uses o f I B models, our results 

suggest important considerations. The computation 

time, which includes both network set-up and trans

mission dynamics, increases significantly w i th popu

lat ion size. Notably , the scale-free network we 

modeUed required about 30 m i n per simulation just 

to set up the network on an Intel Core"' 2 C U P 6400 



Individual-based model fo r polioviruses 11 

@ 2T3 G H z desktop. The computation times f o r 

transmission simulation and data recording scale 

approximately linearly w i th populat ion size. Thus, 

simulating very large populations (e.g. mill ions o f 

individuals) would require specialized computer clus

ters, al though improved hardware and algorithms 

continue to reduce computational barriers [32, 34, 38]. 

The necessity o f conducting comprehensive sensitivity 

analyses to characterize the impacts o f uncertain as

sumptions adds another dimension o f computational 

time. However, sensitivity analyses reveal critical i n 

sights and help analysts address the false certainty and 

precision projected through the use o f detailed I B 

models [39], and our analyses suggest that the level 

o f stochastic uncertainty may differ across outcome 

metrics. We note that the closed-source nature o f the 

AnyLogic modeUing tool makes i t dif f icul t to evaluate 

the impact o f software algorithms and programming 

choices that could affect the results. We do not believe 

that choosing a different software program would 

change the insights that we obtained here related to 

our comparisons between networks, but we mention 

this as a l imi ta t ion because we only compared our 

results to the previous D E B model and we did not 

compare results between open and closed-source 

software tools. 

Our analysis o f various options fo r network struc

tures, which underhe all I B models, highlights the 

importance o f choices related to both model structure 

and inputs. Previous studies indicate that scale-free 

and small-world networks might make the most sense 

fo r infections transmitted through individual-to-

individual networks, like sexually transmitted diseases 

[40, 41]. I n contrast, mixing-site networks may pro

vide a better representation fo r airborne diseases such 

as flu [24, 31, 42]. For poliovirus infections, we expect 

that using mixing-sites may also offer the best strat

egy, but even w i t h a l imited set o f scenarios f o r these 

we found potentially large differences in the behav

iour o f outbreaks. I n this regard, we expect that i m 

provement o f I B models fo r polioviruses wiU require 

a more detailed understanding o f the processes that 

create W A I F W patterns in specific populations o f 

interest, and that addit ional insights about the relative 

importance o f faecal-oral vs. o ra l -ora l transmission 

pathways may also help to influence choices about 

network structures and contact rates both wi th in and 

between mixing-sites. Epidemiological investigations 

could provide important insights that would signifi

cantly improve our abihty to model outbreaks. As 

long as hve pohoviruses continue to circulate, the 

opportuni ty exists to better characterize the role o f 

potential mixing-sites in poliovirus transmission i n 

low-income countries, including markets, schools, 

places o f worship, sewage, rivers, and workplaces. 

The role o f migrant populations also represents an 

important consideration, and data on populat ion 

movement in countries o f highest concern fo r pol io

virus transmission could provide significant insights 

w i th respect to developing appropriate networks. 

Whi le polioviruses can spread over long distances 

[43], the relative frequency o f short-distance to long

distance poliovirus infectious contacts remains un

known and requires fur ther investigation. 

Several observations also suggest the need f o r 

addit ional development o f the I B model. First, we 

observed persistent transmission as a result o f a re-

int roduct ion in small-world networks, which suggests 

the need to include age-dependent mortahty rates and 

waning o f immuni ty . Second, i f we seek to use the 

model to evaluate specific outbreak response strat

egies, then we would need to use serotype-specific 

model inputs and explicitly characterize the trans

mission and evolution o f OPV viruses to address 

questions related to the development o f cVDPVs. 

Thus, although this w o r k suggests that I B modelling 

offers an important opportuni ty to better characterize 

the actual dynamics o f the spread o f infection, using 

I B models appropriately fo r polio outbreaks w i l l de

pend on obtaining high-quality informat ion about the 

nature o f polioviruses, immuni ty , and social inter

actions. 
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