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A B S T R A C T 

This paper presents methods to evaluate the reliability and optimize the maintenance of engineering 
systems that are damaged by shocks or transients arriving randomly in time and overall degradation is 
modeled as a cumulative stochastic point process. The paper presents a conceptually clear and 
comprehensive derivation of formulas for computing the discounted cost associated with a 
maintenance policy combining both condition-based and age-based criteria for preventive main
tenance. The proposed discounted cost model provides a more realistic basis for optimizing the 
maintenance policies than those based on the asymptotic, non-discounted cost rate criterion. 

© 2009 Elsevier Ltd. All rights reserved. 

1. Introduction 

Critical engineering systems in nuclear power plants, such as 

the reactor fue l core and piping systems, experience degrada

t ion due to stresses and unfavorable environment produced by 

transients or shocks i n the reactor. For example, unplanned 

shutdowns and excursions to poor chemistry conditions result in 

degradation of components through corrosion, wear and fatigue of 

material . To control the risk due to fai lure of crit ical engineering 

systems i n the plant, maintenance and replacements of degraded 

components are routinely performed. Because of uncertainty 

associated w i t h the occurrence of shocks and damage produced 

by them, theory of stochastic processes plays a key role i n 

esrimating rel iabi l i ty and developing cost-effective maintenance 

strategies. 

The fai lure of a system or structure occurs w h e n its strength 

drops be low a threshold that is necessary for resisting the applied 

stresses. This paper investigates the rel iabi l i ty of a structure that 

suffers damage due to shocks arr iving randomly i n t ime. 

Technically the total damage experienced by a system can be 

modeled as a sum of damage increments produced by individual 

shocks. To incorporate uncertainties, shocks are modeled as a 

stochastic point process and the damage produced by each shock 
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is modeled as a positive random variable. In essence, the 

cumulat ive damage is modeled as a compound point process [1] . 

The theory of stochastic processes and its applications to 

rel iabi l i ty analysis have been discussed in several monographs 

[ 2 - 6 ] . Mercer [7] developed a stochastic model of wear (degrada

t ion) as a cumulat ive process i n w h i c h shocks arrive as a Poisson 

process. A more generalized formula t ion of the f i rs t passage t ime 

or re l iabi l i ty func t ion due to damage modeled as a compound 

renewal process was presented by Morey [8] . Kahle and Wendt [9] 

modeled shocks as a doubly stochasric Poisson process. Ebrahimi 

[10] proposed a cumulat ive damage model based on the Poisson 

shot noise process. Finkelstein [11] presented a non-homogeneous 

Poisson process model of shocks and considered the effect of 

populat ion heterogeneity. 

The cumulat ive damage models are popularly applied to the 

opt imizar ion of maintenance policies using the condi t ion or age 

based criteria. Nakagawa [12] formulated a preventive mainte

nance policy, and an age-based policy was analyzed by Boland and 

Proschan [13]. Later several other policies were investigated 

by Nakagawa and co-workers [14-16] . Aven [17] presented an 

eff icient method for opdmiz ing the cost rate. A n in-depth 

discussion of inspection and maintenance opt imiza t ion models 

is presented in a recent monograph [18]. Grail et al. [19,20] 

analyzed condition-based maintenance policies by model ing the 

damage as a gamma process. 

Previous studies most ly adopted asymptotic cost rate cr i ter ion 

for opr imiz ing maintenance policies. However, the opr imizat ion of 

discounted cost is more perrinent to pracdcal applications. Our 



JAM. van der Weide et ai / Reliability Engineering and System Safety 95 (2010) 236-246 2 3 7 

experience also suggests t t iat practical applications of compound 

point processes are l imi ted due to lack of clari ty about the 

mathematical derivations of cost rate and l i fe expectancy. 

The pr imary objective of this paper is to present a conceptually 

clear derivation of discounted cost cri terion for op t imiz ing the 

maintenance of systems subject to stochastic cumulat ive damage. 

The proposed derivation is general and i t can be reduced to special 

cases of homogeneous or non-homogeneous Poisson processes, or 

renewal process. 

This paper is organized as fol lows. In Section 2, stochastic 

models of degradation and maintenance are presented. Section 3 

describes a mathematical f ramework to evaluate the total 

expected discounted cost of maintenance. Expressions are derived 

for three specific maintenance policies. Illustrative examples 

are presented in Section 4 and conclusions are summarized in 

Section 5. 

2. Stochastic model for degradation 

In this paper the degradation is modeled as a stochastic 

cumulat ive damage process, where the system suffers damage 

due to shocks produced by transients (extreme of pressure, 

temperature and chemical environment) . In this model occur

rences of shocks are random in t ime and the damage produced by 

each shock is also a random variable. The total damage at t ime t is 

a sum or cumula t ion of damage increments produced by all j 

shocks occurred up to this t ime. In this section we present some 

w e l l - k n o w n results, see for example Tijms [6] or Nakagawa [18]. 

Random occurrences of shocl<s over t ime, 5 i , 5 2 , . . . , < S j are 

taken as points in a stochastic point process on [0, oo), as shown in 

Fig. 1. The total number of shocks in the interval (0, t] is denoted by 

TVCt) and AfiO) = 0. 

Define the probabil i ty of occurrence of j shocks in (0, t] as 

Hj(t) = P(m)=3\ 

and the expected number of shocks as 

R(t) = £(7V(t)). 

(1) 

(2) 

In a given time interval (0, t] , the probabi l i ty associated w i t h the 

number of shocks 0) is related w i t h that of the t ime of occurrence 

of the j t h shock (5 , ) as 

Fj(t) = P(5j < t) = PCA^Ct) > i ) = £ H,(t). (3) 

Using this, Eq. (1) can also be rewr i t t en as 

Hj(t) = P{M{t) >j) - Pmt) > i + 1 ) = Fj(t) - Fj + i ( f ) . (4) 

Note that Fj(t) depends on the dis t r ibut ion of the t ime between 

the shocks. 

A shock produces a random amount of damage Y, and its 

cumulat ive dis t r ibut ion func t ion is denoted as 

G(x) = P(Y<x). (5) 

The damage occurred at t h e j t h shock is denoted as Yj. 

The evaluation of cumulat ive damage is based on t w o key 

assumptions: (1) damage increments, Yi,Y2,..., are independent 

and identically distr ibuted (iid), and (2) the damage increments 

(X/)j>i l̂ he shock process {M(t): t > 0) are independent. 

The total damage caused by j shocks is given as 

1 
i = i 

DJ=J:YJ, J > I , (6) 

and Do = 0. The dis t r ibut ion of Dj is obtained f r o m the convolut ion 

of G(x) as 

P(Dj<x) = G^\x), 

where 

GÖ + i ) ( x ) = r G<i\x-y)dG(y)= T G(x - y ) dG®(y). 
Jo Jo 

(7) 

(8) 

Note that G<°'(x) = l , x > 0 . The total damage, Z(t), at time t, 

however, depends on the number of shocks Af(t) occurred in this 

interval, i.e., 

Mt) 

Z ( t ) = Y^Y, = D^^,y 
j = l 

(9) 

Using the total probabil i ty theorem and independence between 

the sequence Y i , 7 2 , . . . and Af(t), we can wr i t e for x > 0 

OO OO 

P(Z(t) >x)=J2 P(Dj > X, A^(t) =j) = Y^O - G'iKx))Hj(t). (10) 

Using the facts that E r = o ' ^ j ( f ) = 1 and C°\x) = 1, the d is t r ibut ion 

of the total damage can be w r i t t e n as 

P(Z(t) <x) = Ho( t )+ J2 G' ' \x)Hj(t) = ^ G^\x)Hj(t). 

J = 1 J = 0 

(11) 

Substituting Ho(t) = 1 - Fi( t) and Hj(t) = Fj(f) - F j+ i ( t ) f r o m Eq. 

(4), i t can be w r i t t e n as 

P(Z(t) < X) = 1 - X^[Gü-i)(x) - GÖ')(x)]Fj(f). 

j = i 

(12) 

This is a fundamental expression that can be used to compute the 

system reliabil i ty. Suppose damage exceeding a l i m i t Z f causes the 

component failure, Eq. (12) provides P ( Z ( f ) < Z f ) w h i c h is synon

ymous w i t h the rel iabi l i ty funct ion. 

We conclude this section w i t h a formula for the mean value of 

the f i rs t t ime TB that the total damage exceeds a level B 

-ÜB = mm{t: Z(t) > B). 

So ( T B >t] = [Z(t) < B] and 

£ ( T B ) = Y^GOXB) / ° ° H , ( t ) d t . 
j = 0 J O 

(13) 

(14) 

} 
' J 
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Fig. 1. A schematic of the stochastic shock process causing random damage. 
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3. Maintenance model 

In practice, re l iabi l i ty of safety-critical systems i n a nuclear 

plant is maintained by implement ing preventive maintenance and 

replacement programs. In the proposed cumulat ive damage 

model, the fai lure can take place at t ime t when a shock occurring 

at t causes the total damage Z(t) to exceed a crit ical threshold Zp. 

The fai lure prompts a corrective maintenance (CM) action 

involving the system renewal through replacement or complete 

overhaul (as good as new repair). We w i l l study a preventive 

maintenance (PM) plan based on: (1) a condition-based strategy 

in w h i c h the system is renewed preventively as soon as Z(t) 

exceeds a maintenance threshold value Z M , Z M <ZF, (2) an age-

based strategy i n w h i c h the system is replaced at certain age a, 

irrespective of its condit ion. I t is assumed here that system's 

degradation is continuously monitored. The probabilities of 

occurrence of any such maintenance actions at t ime t need to be 

evaluated, considering the stochastic nature of the shock process 

and randomness associated w i t h damage increments. This section 

presents the derivation of these probabil i ty terms. 

Uj = G^-'\ZM) - G « ( Z M ) , 

ft = j | | ^ " [ G ( Z F - X ) - G(ZM - X)] dGö-i)(x), 

71^ = 1 - j ] a , = G " ' ( Z M ) . 

i = l 

(17) 

(18) 

(19) 

(20) 

The derivation of these probabilities is given in detail in 

Appendix A. 

Note that aj = jij+jj. Furthermore, for any n > 1, the collections 

{A, , . . . ,A„ ,B„) and {A™,A™ . . . ,A™,A™,B„) are both f in i te 

parti t ions of the sample space, so that we can wr i t e 

n n 

1 = 1 i =1 1 = 1 

(21) 

3.1. Formulation 4. Probabilities associated with maintenance actions 

First we investigate three basic dis joint events that can take 

place at the t ime of occurrence (5,) of any j t h shock, as shown in 

Fig. 2. 

Define an event, Aj, that the total damage exceeds the PM 

threshold, Z M , at the j t h shock 0 = 1,2,. . .) as 

Aj = { D j _ i <ZM<Dj] (15) 

The event Aj consists of t w o dis joint events, namely, the 

occurrence of PM or CM action, and they are defined as 

A ? ' ^ = A j n { D j < Z F ) and A?*^ = A j n {Dj > Z F } . 

Finally, the event that no maintenance action is needed up to t ime 

Sj is def ined as 

OO 

Bj = {Dj<ZM]= U A . (16) 

i = j + i 

For the sake of conciseness, denote the probabilities of these 

events by a j = P(Aj), ft=P(Aj™), ))j. = P(Aj™) and nj = P(Bj). Now 

these probabilities can be derived in terms of the d is t r ibut ion 

of damage increments G(x) as fo l lows: 

a> 
CD 

O 
f 
1 

C M 

Sj-1 Sj 

Shock Arrival Time 

Fig. 2. Events related to the maintenance model. 

The proposed model involves an interaction of age-based and 

condition-based preventive maintenance criteria. We start at t ime 

0 when a new system is put into service. The system w i l l be 

replaced at age a, should i t survive up to this age. On the other 

hand, a corrective or preventive maintenance action before age a 

w i l l be required i f the cumulat ive damage at this t ime, Z(a), 

exceeds the PM threshold ZM. The probabil i ty associated w i t h this 

event, Pcp, can be derived using Eqs. (10) and (20) as 

OQ OO 

PCP = P(Z(a) > Z M ) = 1 - ^ C^\zM)Hj{a) = 1 - njHj{a). 
1=0 1=0 

Defining yl j = E i = i « j . ' t fo l lows f r o m Eq. (20) that 

Pcp= 
j = i 

Using Eqs. (12) and (17), we can also rewrite 

OO 

Pcp= Y^ajFj(a). 

j = i 

(22) 

(23) 

Let Pp be the probabi l i ty that a corrective maintenance w i l l be 

performed before age a. 

j = i 1=1 

(24) 

Using Eq. (3), we can express Pp also i n terms of the probabi l i ty 

d is t r ibu t ion of the total number of shocks as fo l lows: 

CO OO OO 

1 = 1 1 = 1 i=J 

Interchanging the order of the double sum, we get 

OO 

P f = £ c , H , ( a ) , (25) 
1 = 1 

where C,- = E j = i 7j- Similarly, the probabi l i ty of preventive 

maintenance before a can be obtained as 

P M = E P ( ' ^ r ' ^1 < °) = Ë = E 
j = i j = i i = i 

(26) 
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where ö i = E j = i f t - Finally, the probabil i ty of (age-based) 
replacement at age a is obtained as 

PA = 1 - Pcp = 1 - E '^M"^ = 1 - Ë •^'•^'•(°)-
j = i i = i 

(27) 

The results of this section are useful i n comput ing the cost 

associated w i t h a particular maintenance policy. 

5. Discounted maintenance cost 

Let T denote the length of renewal cycle and C the cost 
associated w i t h the renewal. Af te r the first renewal at t ime T i , a 
new cycle starts, and i t survives the durat ion T2 and so on, 
as shown in Fig. 3. The renewal cost varies depending on 
the maintenance actions. We assume cost Cp for CM, CA for 
replacement at age a and CM for PM before age a. A random vector 
of renewal cycles and associated costs, (Tm.Cm) is an iid sequence 
generated by random variables T and C w i t h the fo l l owing j o i n t 
d i s t r ibu t ion i f Af(a) = n, n > 1: 

(SJ.CM) on A ™ , 

( T , 0 = (Sj-cp) on A ™ , 

on Bn. 

occurred 

]<n, 

j<n, (28) 

up to t ime a, i.e. AA(a) = 0, then I f no shocks 

(7,0 = (a, CA). 

The total cost over a t ime interval (0, t ] is a sum of costs 
incurred over M( t ) number of completed renewal cycles, given as 

M(t) 

(29) 

So M( t ) is the renewal process associated w i t h the times 

Uj= Y,\^iTi.i='[,2 at w h i c h new cycles start. 

Note that K{t) is a random func t ion involving random variables 

M( t ) and C, and its d is t r ibut ion is very d i f f i cu l t to evaluate. 

Therefore i t is convenient to w o r k w i t h asymptotic formulas for 

long te rm expected cost. A w e l l - k n o w n result is that the long-

te rm or asymptotic cost rate Q(i.e., cost per un i t t ime) is given as 

[6] 

l i m - K ( t ) : 
t->oo t 

m 
E(Ty 

(30) 

Note that E(T) < a denotes the expected length of renewal cycle 

and E(C) is the expected cost over a renewal cycle. 

c 

a: 

i 

CM 

PM PM 

AR 

L 1 1 

T, T2 T3 Tj 

Renewal Cycles 

Fig. 3. Illustration of renewal cycles and costs (PM, preventive maintenance; CM, 
corrective maintenance; AR, age-based replacement). 

Similarly, the discounted cost can be evaluated over a t ime 

horizon (0, f] considering an exponential discounting factor w i t h 

interest rate r per un i t t ime as 

I<(t,r)-. 
Mm 

(31) 

where Uj = Ti H +Tj denotes the t ime of j t h renewal. 

The long-term expected equivalent average cost per un i t t ime 
is given as [21]: 

a(r)=limr£(fC(t,r)) = 
t—KX3 

Note that 

r£(Ce-'"'^) 

1 - E(e-'-T) • 
(32) 

lim(2(r) = l i m ^ 
r£(Ce-'' ' ') m 

E(T) 

6. Key formulas 

In this section w e present the formulas for the asymptotic cost 

rate Q and the long-term expected equivalent average discounted 

cost Q.(r) per un i t t ime. Before the analysis of a general case, we 

discuss a simple case of a condition-based maintenance strategy 

w i t h o u t age replacement to il lustrate the key ideas. Our numerical 

examples in Section 6 indicate that this s impl i f ied strategy could 

prove quite effective. 

6.1. WMout age replacement 

First we w i l l consider the simpler condition-based mainte
nance strategy i n wh ich the system is renewed preventively as 
soon as Z(t) exceeds a maintenance threshold value ZM, ZM <zp, 

w i t h o u t age replacement. In this case a renewal cycle ends only i f 
the total damage exceeds the PM level Z M - We have 

( T , 0 = 
(SJ,CM) on A ™ , 

(Sj,cp) on A ™ . 

In order to derive the cost rate using Eq. (30) or (32), a number of 

expectations have to be evaluated: 

EiCe--') = Y,(CMlij+Cpyj)E(e-'% 

1 = 1 

and substi tut ing C = 1, we get 

j = i 

and subst i tut ion of r = 0 yields 

CO 
E(C)= Y^iCMPj+Cpyj). 

1 = 1 

For the expected value of the cycle length we get 

00 

£ ( D = J2otjE(Sj). 
j = i 

It fol lows that 

^ S r ^ i ^ ^ M f t + C f T j ) 

Er=i«iE(s,.) 

and 

_ , , _ r E r = i ( C M f i + c p y j ) £ ( e ' ^ ^ 0 

(33) 

(34) 
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These formulas for Q and Q(r) contain the in fo rmat ion of the 

shock process i n terms of the occurrence times of the shocks. 

Especially w h e n the shock process is a renewal process we can 

s impl i fy formulas (33) and (34). In this case S,-=Xi + • • • + X j 

where (Xj) is the i i d sequence of inter-occurrence times and we 

can substitute E(Sj)=jm and E(^e'''^i) = mi, where m = £ ( X i ) and 

ca = £(e-'"^')-

We now continue w i t h expressions for Q and Q(r) i n terms of 

the probabil i ty d i s t r ibu t ion of the total number of shocks. Using 

partial integration and Eq. (3) we get 

£(6-'^!)= / e-"'dFj(x) = r y / H,(x)e-"'dx 
Jo i^jJO 

and 

OO /.OO 

Note that, interchanging the order of the double sum, we can 

wr i t e for example 

ajE(e-'^:) =Y.ajrY,rH,(x)e-« dx = r / ° ° H,-
j = i j = i i=j-'o i = i -lo 

(x)e-" dx. 

I t fol lows that 

^ E r = i ( C M f t + CFyj) 

and 

(2(r) = 
E r = 1 (CMgj + CpCj) H , (x )e - " ' d x 

^-rT,r=iAIS^Hi(x}e-r-dx ' 

(35) 

(36) 

6.2. With age replacement 

We w i l l present now the results for condition-based PM w i t h 

age replacement. The derivations can be found i n Appendix B. 

6.2.1. No discounting 

As discussed before, there are three possible ways for the 

renewal of a structure at t ime T: PM w h e n ZM <Z(T)<Zf, 

replacement when T = a, and CM w h e n Z(T) > Z f . The expected 

length of the renewal cycle is given as 

E(T)= f ^ n j r H j ( x ) d x . 
j = 0 " '0 

(37) 

A complete derivation is presented in Appendix B. 

The expected cost incurred in a renewal cycle is s imply a 

product of probabilities of the three possible renewal actions w i t h 

the associated costs: 

E(C) = CAPA + CMPM-i-CFPF = CA+ E ^ ' ^ ' w f t + CfTj - CAaj]Fj(a). (38) 
j = i 

These probabilities are derived in Section 2.2.3. From n o w on we 

w i l l assume that 

CO = CM = CA and CF = CQ + SF. (39) 

Substi tuting Eq. (25), the fo l l owing expression is obtained: 

E ( q = Co + ÖFPF = CO + 5F E C,Hi(a). 
i = 1 

(40) 

Substi tuting this expression for £(C) and Eq. (37) in Eq. (30), the 

asymptotic cost rate Q_ is obtained as 

n_':o + 5 F ^ L j C d m 

E r = o ^ j / o H j ( x ) d x 
(41) 

I t is also possible to express Q. in terms of the d is t r ibut ion 

funct ions Fj of the occurrence t imes Sj of the shocks. Using Eq. 

(20), we can wr i t e the enumerator as 

V nj r Hj(x) dx = r Ho(x) dx-H V f ̂  " E '^i] f ^^J W ^ • 
j = o JO Jo j ^ 1 \ i = i J Jo 

Since EjFJ/(x) = 1, we get, interchanging the double sum and using 

Eq. (3) 

f 2 T^i f H j W dx = a - f ^ a i [ F,(x) dx. 

j = 0 • '0 i=l •'0 

The enumerator can be w r i t t e n as 

OO CO 

CO+ÖFJ2 C/Hi(a) = Co + 5F E Vi-J'Ka)-
i = 1 i = 1 

These expressions are useful i f the shock process A/" is a renewal 

process. 

6.2.2. With discounting 

A general expression for expected discounted cost in a renewal 

cycle T is derived in Appendix B as fo rmula (72) 

£(Ce-'-') = e-™ Co + 5f = f^C„Hn(a)]-^- f^iCoAn + SfCn) f H„(x)re-" dx. 
n = l / n = l "'° 

(42) 

From this expression, the expected (discounted) length of the 

renewal cycle can be obtained by subst i tut ing C = 1 

OO />• 

' dx . (43) £(e - ' - ' ' ) = l - f^Ttn fHn{x)re-"<i 
„ „ n Jo 

I t fo l lows that the long- term expected equivalent average 

discounted cost per un i t t ime is given as 

e - ^ ' ' ( c o + ^ F 1 CnHn(a) ) -h r i :^ , , ( coA+^FCn) Jo H„(x)e-"'dx 
Q(r) = 

E~=o"n/o°H„(x)e-"<dx 

(44) 

In the case that the shock process is a renewal process, i t is 

useful to have an expression for Q.(r) in terms of the times Sj at 

w h i c h the shocks occur. We refer to Appendix B for the 

expressions. Also here Laplace transforms can be used for the 

calculations. 

A l l the expressions derived in this section are completely 

general, w i t h o u t making any specific assumptions about the f o r m 

of the point process J\f that describes the random arrival of shocks 

in t ime. 

7. Applications 

In Section 3 we have derived formulas for the cost of 

maintenance o f systems that deteriorate as a consequence of 

the cumulat ive damage of shocks occurring randomly in t ime. 

The damage per shock was also assumed to be random, bu t 

independent of the shock process. Moni to r ing is continuous and i f 

the level of damage exceeds some critical threshold ZF the system 

needs a major repair (CM). A preventive maintenance (PM) w i l l 

be performed i f the total damage to the system exceeds the 

intermediate level Z M < ZF and a planned replacement takes place 

at age a. Af te r repair the system is good as new. To get simpler 

expressions, we assume as in Section 3, that the cost CQ for PM is 

the same as for age replacement. The cost for CM is CQ + 5F. In this 

section, a specific case is analyzed and results are presented in 

explici t analytical f o r m . We w i l l assume that the damage 

increments are exponentially distr ibuted. For the shock process 

we w i l l consider a homogeneous Poisson process (HPP) and also 
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an example of non-homogeneous Poisson process (NHPP). Results 

w i l l be presented for the maintenance cost rate considering both 

discounted and non-discounted cases. 

7.2. Damage process 

The damage increment per shock fol lows an exponential 

distr ibuted w i t h mean 1 /A > 0, and its d is t r ibut ion is given as 

G(x) = 1 - e-^^, x>0. (45) 

The d is t r ibut ion of the sum Dj, of k damage increments is then 

obtained as 

P(Dfc<x) = G""(x) = 1 - E ^ e - ' ' , fc = l , 2 (46) 

We continue w i t h the calculation of the probabilities aj, ft, yj and 

Ttj defined i n Section 3.1. Note f i rs t that for any C > Z M , we have by 

partial integration and the def in i t ion of G 

J^"[1 - G(C - X)] dG'j'^\x) = e - ' '<f -^« 'Gö- '>(ZM) 

- r '"Gö-'"(x); .e-^'«- '<>dx. 
Jo 

Substi tut ing Eq. (46), i t fol lows after s impl i f ica t ion that 

r ' [l _ G ( f - X)] dG«-i>(x) = ^^^^e-'-'^ 
Jo Ö - 1 ) ! 

So 

ft = j^'"[G(Zf - X ) - G(2M - x)]dGö-i>(x) = | ? M ^ ( e - ^ M - e ' ^O 

and 

«j = G Ü - 1 ) ( Z M ) - GO)(ZM) -
Ö - 1 ) ! 

t i ( A Z M ) ' 

(47) 

(48) 

(49) 

(50) 

I t fol lows that B„ = (1 - e -^P f -^« ' )A , C„ = e-^'f^f-^^'Un and 

Ttn = 1 - ytn. Define the sums 

Z i = £ A H „ ( a ) , 

To get the expected equivalent average discounted cost per un i t 

t ime Q(r), we f i rs t note that 

f^TCn rH„(x)e-dx= £ ( 1 - A ) r H „ ( x ) e - " < d x = ^ ^ - Z 3 . 
n = 0 JO n = 0 JO 

Substituting this in Eq. (44) we get 

a(r) = r 

e-™(Co - I - <5f e- ' - t^ ' -^- 'Z,)+r{co-i-5Fe-»'^- ' - '^)S3 

1 _ e-™ - rSs 
(52) 

For a condit ion based maintenance plan w i t h o u t age replacement, 

the formulas (33) and (34) can de s impl i f ied to 

Co + ö p e - - " * - ^ " ' 

m(AzM + l ) 

and 

Q(r) = r 
(Co+5fe-^(^f-^'«))cüe-^'^M(i-<°' 

(53) 

(54) 
1 _ Qjg-f^MO-ai) 

where m = £ ( X i ) is the mean of the inter-occurrence t ime X i and 

cu = £(e"' '^ ') the moment-generating func t ion evaluated i n the 

discount rate r. 

7.2. Shock process 

We w i l l consider three examples of shock processes: (1) a 

homogeneous Poisson process w i t h intensity i.i and (2) a non-

homogeneous Poisson process w i t h intensity / i ( t ) = 2 t and (3) a 

renewal process w i t h WeibuU distr ibuted inter-occurrence times. 

I t is clear f r o m Section 7.1 that for a calculation of the cost we have 

to calculate the sums T i , and Z3. Define 

Hj = Hj{a), 

Ij= rHj(x)dx, 
Jo 

intj= £ Hj(x)e-'^ dx. 

For a homogeneous Poisson process w i t h intensity /.t we have 

(^i tye- '" 
Hj(t) = j = 0 , l , 2 . (55) 

The calculation of the sums Z i , X2 and Z3 is based on the 

fo l l owing recursion. For j = 1,2,. . . 

00 pa 

n = 1 •̂ O 
(x)dx, 

^3 = £ A / H „ ( x ) e - d x . 
n = l "'0 

I t fol lows f r o m Eqs. (40) and (37) that 

E{C) = CQ + ÖFe-'<-'^-'"^Z, 

and 

£(T) = £ Tij / " Hj(x) dx = £ ( 1 - Aj) r Hj(x) dx = a - Z 2 . 
j = o -'0 j = o •̂ o 

Hence, the asymptotic non-discounted cost rate can be given as 

Co+5fe-^-(^f-^«''Zi 
Q = 

a - E j 
(51) 

int, 
^lae-

Ui+r)j 

and 

Ho = e - " ° . 

-/in 

m t o = — ( 1 ). 

Based on this recursion we can set up an a lgor i thm that calculates 

the sums Z i , Z2 and Z 3 and the cost. 

For a nonhomogeneous Poisson process w i t h intensi ty ^ ( t ) = 2 t 

we have 

Hj(t) = ^t^'e-'' J = 0 , l , 2 , (56) 
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As for a HPP, w e can set up an recursion to calculate the sums Z ] , 

^2 and S3 and the cost. 

In the end, we also consider a more general case in w h i c h 

shocks arrive as a renewal process w i t h Weibu l l d is t r ibuted inter-

occurrence t imes w i t h probabi l i ty density 

/ ( t ) ^ a ( i ) " " e x p [ - g ) ] . (57) 

In this case, we compute the costs of a condition-based 

maintenance plan w i t h o u t age replacement, and compare the 

costs w i t h and w i t h o u t discounting. 

In this opt imizat ion, the relationship between the discounted 

cost rate and replacement age for the o p t i m u m value of ZM is 

shown in Fig. 6. The first p lot shows the impact of the replacement 

age i n HPP case w i t h an op t ima l ZM = 22.6, and the second plot 

shows results for the NHPP case ( Z M = 21.3). In both cases we see 

that the m i n i m u m is attained almost after the replacement age of 

Q = 5, and after that there is no influence of the replacement age 

on the cost. I t seems to suggests that age replacement could 

be deleted f r o m the cost opt imizat ion. In the next subsection we 

w i l l compare maintenance strategies w i t h and w i t h o u t age 

replacement. 

7.3. Results 

This section presents a number of numerical examples to 

illustrate the op t imiza t ion o f cost rate in terms of the replacement 

age a and the PM level ZM- In all the calculations, we use the 

fo l l owing parameter values. The parameter ). of the damage 

increment d is t r ibu t ion is taken to be A = 0.5. The fai lure level 

Zf = 30. The cost parameters are chosen as CQ = 20 and 5p = 80 and 

the discount rate is r = 0.05. The intensity of the HPP is chosen 

as /i = 4.06. For this choice of /x, the expected value of the t ime T30 

to exceed the fai lure level Z F = 30 is equal to 3.9, for bo th the HPP 

and the NHPP shock processes. 

7.3.1. Optimization of the replacement age a for a specified PiV! level 

Suppose that the threshold for PM is specified as Z M = 28 and 

the objective is to find an op t imal value of the replacement age (a) 

that w o u l d min imize the cost rate. Fig. 4 contains plots of the cost 

rate as a func t ion of the replacement age a, for HPP and an NHPP 

shock processes. The op t imal replacement age (OOPT) through the 

discounted analysis is found as 2.8 for HPP case and 2.1 for the 

NHPP shock process. In this example, results w i t h and w i t h o u t 

discounting are relatively close. 

7.3.2. Simultaneous optimization of replacement age a and PM level 

ZM 

The cost rate can be opt imized w i t h respect to both variables 

ZMe[0;ZF] and a e [ 0 . 1 ; 15]. The results o f two-dimensional 

op t imiza t ion can be presented in a more concise f o r m . For 

example, first we select a Z M e [0 ;ZF] value and compute the cost 

for al l possible values of the replacement age a e [0 .1; 15], and then 

select the m i n i m u m cost rate. Fig. 5 shows one dimensional 

variat ion of these m i n i m a l cost rates as a func t ion of the PM level 

Z M fo r both cases of HPP and NHPP shock processes. The global 

m i n i m u m discounted cost rate over is 6.8 fo r Z M = 22.6, and in 

case of NHPP, i t is 5.5 for Z M = 21.3. 

7.3.3. Optimal PM level for a maintenance strategy without age 

replacement 

Motivated by the results of Fig. 6, we compute cost rate as a 

func t ion of ZM only, and ignore the replacement age f r o m the 

analysis. Results presented in Fig. 7 show that in HPP case the 

m i n i m u m discounted cost is 6.8 for Z M = 22.5, whereas in NHPP 

case the result is 5.5 for ZM = 21.3. The opt imal PM level in both 

the cases (HPP and NHPP shock processes) is the same as that 

we obtained considering the age-based replacement strategy 

in Section 7.3.2. Thus the comparison of results shown in Figs. 6 

and 7 confirms that for condition-based maintenance w i t h 

continuous moni tor ing , age-based replacement is not cont r i 

bu t ing to min imiza t ion of the cost. This may also be due to the 

asymptotic cost cr i ter ion that we are using i n the analysis. For a 

finite time horizon, i t is possible that replacement age may have 

more pronounced effect in the min imiza t ion of the cost rate. 

7.3.4. Optimum replacement age without PM 

The consideration PM can be excluded f r o m the analysis by 

setting the PM level Z M equal to the fai lure level Zf. N o w the cost 

rate is a func t ion of only the replacement age, as shown by the 

results presented in Fig. 8. Al though an opt imal age exists 

(asa = 2 . 5 - 3 ) for bo th HP and NHPP cases, the associate cost 

rate is much higher (almost double) than that obtained f r o m the 

opt imiza t ion based on PM level (see results in Fig. 7). 

7.3.5. Is discounting important? 

Results presented in Figs. 4 -8 suggest that results obtained 

f r o m w i t h and w i t h o u t discounting are in close agreement. We 

wish to assert that i t is not a general conclusion. The consideration 

of discounting is very impor tan t in practical maintenance 

opt imiza t ion problem. The reason is that i n practical situations 

money is borrowed f r o m Banks to implement the maintenance 

programs. Therefore, deferr ing the maintenance cost to fu tu re 

results i n a lower net present value, wh ich should be accounted 

for i n the opt imiza t ion process. 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

age a age a 

Fig. 4. Cost rate as a function of the replacement age a, left HPP, right NHPP shock process. 
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discounted cost 

O 5 10 15 O 5 10 15 

age a age a 

Fig. 6. Discounted cost rate as a function ofthe replacement age a for optimal value of Z M , left HPP with Z M = 22.6, right NHPP shock process with Z M = 21.3. 

5 10 15 20 25 30 5 10 15 20 25 30 

PIVl level zM PM level zM 

Fig. 7. Cost rate as a function of the PM level ZAJ without considering age replacement, left HPP, right NHPP shock process. 

The e f f ec t o f d i s c o u n t i n g depends on the m a g n i t u d e o f 

t h e i n t e n s i t y ( ra te ) o f shock process. To i l l u s t r a t e th i s p o i n t , 

w e cons ider an example i n w h i c h the shock process is 

m o d e l e d as a r enewa l process w i t h W e i b u l l i n t e r -occur rence 

t i m e s . W e choose the f o l l o w i n g parameters i n ( 5 7 ) : the scale 

pa ramete r 9 = 3 and a = 2. This resul ts i n the mean t i m e 

o f the f i r s t occurrence, m = 2.9867 u n i t o f t i m e . We c o m p u t e 

b o t h d i s coun t ed and n o n - d i s c o u n t e d cost rate as a f u n c t i o n 

o f the P M leve l Z M - Results p l o t t e d i n Fig. 9 show the 

i m p o r t a n c e of d i s c o u n t i n g , since the d i s coun t ed m i n i m u m 

cost rate is a p p r o x i m a t e l y h a l f o f t h a t o b t a i n e d w i t h o u t 

d i s c o u n t i n g . 

8. Conclusions 

The theory of stochastic point processes and the renewal 

theorem have been fundamental to the development of risk-based 

maintenance models for crit ical engineering systems. The paper 

presents a comprehensive analytical fo rmula t ion of the condi t ion 

and age based maintenance policies for systems subject to 

random shocks occurring randomly in t ime. Explicit expressions 

are derived for asymptotic cost rate w i t h and w i t h o u t discounting. 

The proposed f ramework allows to determine preventive ma in 

tenance (PM) level and age of replacement that w o u l d min imize 

the maintenance cost rate. 
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0 5 10 15 0 5 10 15 

age a age a 

Fig. 8. Cost rate as a function of the age a considering only age replacement, left HPP, right NHPP shock process. 
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Fig. 9. Cost rate as a function of the PM level Z M without age replacement for a 
renewal shock process with Weibull inter-occurrence times. 

Numerical examples of maintenance cost op t imiza t ion are 

presented in the paper to il lustrate the proposed model . Shock 

processes are modeled as homogeneous (HPP) and non-homo

geneous Poisson (NHPP) processes, and the renewal process. 

The damage increments are taken as exponentially distr ibuted. 

The opt imiza t ion variables are the PM damage threshold ( Z M ) 

and the replacement age (a). For a specified Z M , an opt imal a can 

be found that w o u l d min imize the cost rate. I t is interesting to 

note that the global m i n i m u m of the cost rate is rather insensitive 

to the age of replacement (a), and i t is the same as the m i n i m u m 

cost associated w i t h a condition-based strategy only. This 

suggests that a condition-based strategy is l ikely to supersede 

the age-based replacement for m i n i m i z i n g the cost rate. 

The fo l l owing key conclusions are drawn: 

• The derivation of discounted cost rate is a ma in cont r ibut ion of 

this paper. This provides more practical solutions to the 

opt imiza t ion of maintenance policies than those based on 

the asymptotic (non-discounted) cost rate cr i ter ion. 

• This fo rmula t ion can be extended to include dependent 

damage increments, such as the damage f o l l o w i n g a Markov 

chain. 

• The proposed formula t ion can incorporate a general point 

process as a shock process. This topic w i l l presented in a fu tu re 

paper. 
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Appendix A 

First we explain the derivation of P(Aj) = «j 

= G'i-'^\zM)-&^(ZM). Using the total probabi l i ty theorem, w e 

can wr i t e 

P(Dj_, < Z M ) = P(Dj„i < Z M , D J < Z M ) + P(Dj_i <ZM,DJ>ZM). (58) 

Since [DJKZM] is contained w i t h i n the event { D j _ i < Z M ) , i t 

reduces the first probabil i ty t e r m i n Eq. (58) to P{Dj<ZM). I t is 

clear f r o m Eq. (15) that the event in the second probabi l i ty t e r m is 

the same as {Dj_ i <ZM< Dj} =Aj. Thus, 

P(Dj_i < Z M ) = P(Dj < ZM)+P(Aj). 

Using Eq. (7), we can s impl i fy 

G<^-'\ZM) = GO\ZM)+P(AJ), 

w h i c h leads to 

P(Aj) = aj = G(i--'\zM) - G^\ZM). 

W h e n the PM threshold is exceeded in shocks j to ö - 1), there 

are two possible mutua l ly exclusive events: either the total 

damage is below Zf requir ing a PM action, or the total damage 

exceeds level ZF leading to a CM action. I t implies that aj = pj+yj. 

To calculate ft, first note that 

A/** = {Dj_ i < Z M , Z M < D j _ i + Y j <Zf}. (59) 

I t fol lows that 

ft = P(Dj_i <ZM,ZM< D j _ i + Yj < ZF) (60) 
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w h i c h can be evaluated as 

- G ( Z M - x ) ] d G ö - i ) ( x ) , (61) 

In the same way w e can evaluate j j as 

7j = P(Dj_i < ZM, D j_ i + Yj > ZF). (62) 

As before, i t can be rewr i t ten as 

yj= IJ[1-G(ZF-x)]dG<i-'\x). (63) 

Finally, the probabi l i ty P{Bj) = nj of the event that the total 

damage after the j t h shock is st i l l below ZM is derived f r o m Eq. 

(16) as 

nj = P(Dj<ZM) = P\ U A- = 1 - E P ( A ) = 1 - E « ' - (64) 
V i = J + l 

1 

i = 1 

Substi tuting for P(A,) = a, f r o m Eq. (59) and fur ther s impl i f ica t ion 

leads to 

nj = \ - ^ [ G " - I ) ( Z M ) - G ( 0 ( Z M ) ] = Gff l (ZM). 

i = 1 

Appendix B 

(65) 

This appendix presents the derivations of a key result (42). 

First the expected discounted cost expended can be using the total 

probabil i ty theorem as 

E[Ce~'"^] = £ E[Ce-''^;Ar(a) = n]. (66) 
n = 0 

For n = 0 we have a simple f o r m 

E[Ce-'"^;J^(a) = 0] = CAe-™Ho(a). 

For n > 1 we split the expectation over the dis joint events 

( A ™ , A ™ , . . . , A ™ A™,B„}. Using def in i t ion (28) of (T,Q. 

we get 

ElCe-'"''; A/-(a) = n] = C M £ l^jE[e-''''';M(a) = n] 

j = i 

- l-Cf J2 yjEle-'^'-.ma) = n]+C/ ,e -™7t„H„(Q). (67) 

j = i 

Substi tution of Eq. (67) in Eq. (66), results in t w o terms 

involving double sum. The first such te rm can be s impl i f ied as 

fo l lows: 

OO n OO OO 

J2 Ë = " ] = E ft E E[e-''';ma) = n] 
n = l j = l j = l n = j 

= £ PjE[e-'^';ma) >j] = £ me"'''Si ^ 
1=1 1=1 

The first step is obtained by interchanging the order of double 

sum f r o m n and j t o j and n. The second step is obtained f r o m the 

fact that the inner sum n = j - oo implies the condi t ion A/'(a) > j . 

This condit ion fur ther implies that the t ime of occurrence 

of j t h shock should be w i t h i n the interval (0, a], wh ich leads to 

the final step in the above equation. The second double t e rm sum 

is s impl i f ied similarly. The t h i r d sum can also be expressed 

in terms of the times Sj at w h i c h the shocks occur 

as fol lows: 

OO CO / i ^ 
^ n„Hn(a) = J2 1 - E «J P ^ - ^ ^ ^ ) = " ) = ' ' ( ' ^ i ^ 
n = l n ^ i y j ^ l J 

- £ ^ a j P ( 5 j < a ) . 

1 = 1 

Finally, we obtain 

/ 

ElCe-''] = c^e-™ P(S, < a) - ^ ajP(Sj < a) 

CO 

+ J2(':MP} + CFyj)E[e-'^i;Sj < a]. 

1 = 1 

(68) 

Taking in this fo rmula C;, = C M = Cp = 1 and ft+Tj = «j , we get after 

s impli f icat ion 

/ CO \ OO 

£[£-'•''] = e-™ P(5i < a) - E ("̂ J ^ °) + E °^Ae'''^'; Sj < a]. 

(69) 

It fol lows that the long-term expected equivalent average 

discounted cost is given as 

' 1 - e - ™ ( P ( 5 , < a ) - i ; f ^ , c ( / ( 5 j < a ) ) - E r = i a j £ [ e " ' ' ' - ' ; ' S j < a l 

Taking CQ = CA = CM and Cp = CQ -i-<5f, we can wr i t e Q,(r) as 

cpe-" (P(5i < g) - S f ^ , gjP(5j < a)) + E f , i (Co«j+SFyj)Ele-"'' \ Sj < a] 

1-e-"'iP(Si<a)-j:]l,ajP(Sj<a))-T.r=i'^A^''''''^Sj<a] 

We continue w i t h the derivation of an expression for Q(r) i n terms 

of the probabil i ty d is t r ibut ion of the total number of shocks. The 

t e rm £[e-''"^i;5j < a] can be evaluated in terms of its d is t r ibut ion Fj 

of Sj as 

E[e-''^i;Sj<a]= / ° e-''" dF,(x) = e-™Fj(a)-h f Fj(x)re-"'dx, 
Jo Jo 

Using Eq. (3), Fj{t) can be expressed in terms of probabilit ies H„(t) 

as 

E[e-'-''i;Sj<a]= f^h^, 

n=i 

where 

h„ = e-™H„(a)+ £ Hn{x)re-" dx. 

By subst i tut ing this last expression in (68) and interchanging the 

order of summation, we obtain 

H[Ce-''''] = c,,e-™ £ 7i„H„(a)-i- £ ( C M S „ + C p C „ ) h „ , 
n=0 n=1 

where B„= E " = i f t and C„ = E " = i 7 r Re-arranging the terms, 

we can also w r i t e 

£[Ce-^''] = C;ie-™Ho(a) 
OO 

+ e-™ ^ ( C / i 7 t „ + C M S n + C F C „ ) H „ ( a ) 
n = 1 

OQ ra 

+ J^iCMBn + CFCn) / H„(x)re- '^dx. (71) 

This fo rmula can be s impl i f ied by taking CO = CA = CM and 

Cp = Co + Se, 

/ CO \ OO 

E[Ce^''''] = e-™ Co -F E " ^ " ^ " ( " ^ + E ("^o^" + ^''^"'^ 

\ n=1 I n = l 
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ƒ OaH„(x)re-" 'dx. 

Substi tuting C = l i n (71) and not ing that 

y r Hn(x)re-"' dx = / ° ( 1 - Ho(x))re-"' dx = 1 - e-™ 
„ = 1 Jo Jo 

Ho(x)re-"'dx. 

The f i rs t step i n the above equation is obtained by interchanging 

the order of summat ion and integrat ion and recognizing that 

1 H„(x) = 1 - Ho(x). In this manner, (43) is derived as 

E[e~'T] = e-™ + £ (1 - '^") f" Wn(x)re-"' dx = 1 

n = l "'0 

-Y^Kn [" Hnixye-^dx. (72) 
n = 0 Jo 

I t fol lows that 

. ^ e--°(Co+3FE?", 1 C„H„ia)) + E?", i(cpg. + CFC„) ƒ"H„(x)re-" dx 

l - E r = o ' t n / o ° H „ ( x ) d x 

(73) 

The expected length of the renewal cycle can be derived by 

d i f ferent ia t ing Eq. (72) w i t h respect to r and then subst i tut ing 

r = 0: 

m = E'^" / Wn(X)dx. 
n = 0 Jo 
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