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This paper presents methods to evaluate the reliability and optimize the maintenance of engineering
systems that are damaged by shocks or transients arriving randomly in time and overall degradation is
modeled as a cumulative stochastic point process. The paper presents a conceptually clear and
comprehensive derivation of formulas for computing the discounted cost associated with a
maintenance policy combining both condition-based and age-based criteria for preventive main-
tenance. The proposed discounted cost model provides a more realistic basis for optimizing the
maintenance policies than those based on the asymptotic, non-discounted cost rate criterion.
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1. Introduction

Critical engineering systems in nuclear power plants, such as
the reactor fuel core and piping systems, experience degrada-
tion due to stresses and unfavorable environment produced by
transients or shocks in the reactor. For example, unplanned
shutdowns and excursions to poor chemistry conditions result in
degradation of components through corrosion, wear and fatigue of
material. To control the risk due to failure of critical engineering
systems in the plant, maintenance and replacements of degraded
components are routinely performed. Because of uncertainty
associated with the occurrence of shocks and damage produced
by them, theory of stochastic processes plays a key role in
estimating reliability and developing cost-effective maintenance
strategies.

The failure of a system or structure occurs when its strength
drops below a threshold that is necessary for resisting the applied
stresses. This paper investigates the reliability of a structure that
suffers damage due to shocks arriving randomly in time.
Technically the total damage experienced by a system can be
modeled as a sum of damage increments produced by individual
shocks. To incorporate uncertainties, shocks are modeled as a
stochastic point process and the damage produced by each shock
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is modeled as a positive random variable. In essence, the
cumulative damage is modeled as a compound point process [1].

The theory of stochastic processes and its applications to
reliability analysis have been discussed in several monographs
[2-6]. Mercer [7] developed a stochastic model of wear (degrada-
tion) as a cumulative process in which shocks arrive as a Poisson
process. A more generalized formulation of the first passage time
or reliability function due to damage modeled as a compound
renewal process was presented by Morey [8]. Kahle and Wendt [9]
modeled shocks as a doubly stochastic Poisson process. Ebrahimi
[10] proposed a cumulative damage model based on the Poisson
shot noise process. Finkelstein [11] presented a non-homogeneous
Poisson process model of shocks and considered the effect of
population heterogeneity.

The cumulative damage models are popularly applied to the
optimization of maintenance policies using the condition or age
based criteria. Nakagawa [12] formulated a preventive mainte-
nance policy, and an age-based policy was analyzed by Boland and
Proschan [13]. Later several other policies were investigated
by Nakagawa and co-workers [14-16]. Aven [17] presented an
efficient method for optimizing the cost rate. An in-depth
discussion of inspection and maintenance optimization models
is presented in a recent monograph [18]. Grall et al. [19,20]
analyzed condition-based maintenance policies by modeling the
damage as a gamma process.

Previous studies mostly adopted asymptotic cost rate criterion
for optimizing maintenance policies. However, the optimization of
discounted cost is more pertinent to practical applications. Our




experience also suggests that practical applications of compound
point processes are limited due to lack of clarity about the
mathematical derivations of cost rate and life expectancy.
The primary objective of this paper is to present a conceptually
clear derivation of discounted cost criterion for optimizing the
maintenance of systems subject to stochastic cumulative damage.
The proposed derivation is general and it can be reduced to special
cases of homogeneous or non-homogeneous Poisson processes, or
renewal process.

This paper is organized as follows. In Section 2, stochastic
models of degradation and maintenance are presented. Section 3
describes a mathematical framework to evaluate the total
expected discounted cost of maintenance. Expressions are derived
for three specific maintenance policies. Illustrative examples
are presented in Section 4 and conclusions are summarized in
Section 5.

2. Stochastic model for degradation

In this paper the degradation is modeled as a stochastic
cumulative damage process, where the system suffers damage
due to shocks produced by transients (extreme of pressure,
temperature and chemical environment). In this model occur-
rences of shocks are random in time and the damage produced by
each shock is also a random variable. The total damage at time t is
a sum or cumulation of damage increments produced by all j
shocks occurred up to this time. In this section we present some
well-known results, see for example Tijms [6] or Nakagawa [18].

Random occurrences of shocks over time, 81,8,,...,§;j,..., are
taken as points in a stochastic point process on [0, o), as shown in
Fig. 1. The total number of shocks in the interval (0, t] is denoted by
N(t) and AN (0)=0.

Define the probability of occurrence of j shocks in (0, t] as

H;j(t) =P () =), M
and the expected number of shocks as
R(t) =EWN(1)). @)

In a given time interval (0, t], the probability associated with the
number of shocks (j) is related with that of the time of occurrence
of the j th shock (S;) as

Fi(t)=P(S; <) =P () =)) = Y Hi(t). ©)
i=j
Using this, Eq. (1) can also be rewritten as
Hj(t) =PI (t) =2)) = PN () =j+1) = Fi(t) — F+1(0). 4

Note that F;(t) depends on the distribution of the time between
the shocks.

A shock produces a random amount of damage Y, and its
cumulative distribution function is denoted as
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The evaluation of cumulative damage is based on two key
assumptions: (1) damage increments, Yy, Y,..., are independent
and identically distributed (iid), and (2) the damage increments
(Y));»1 and the shock process {N(t) : t = 0} are independent.

The total damage caused by j shocks is given as

i
Dp="Y"%, j=1, ©)
i=1

and Dy = 0. The distribution of D; is obtained from the convolution
of G(x) as

P(D; <x) = GO(x), 7)

where

61w = [ -y dcy)= [ Gx-)d6ho). ®
0 0

" Note that G@(x)=1, x> 0. The total damage, Z(t), at time t,

however, depends on the number of shocks N (t) occurred in this
interval, i.e.,

N(©)

Z(t)= Y Yi=Dyq. ©
j=1

Using the total probability theorem and independence between
the sequence Y, Y, ... and N(t), we can write for x >0

PZ®) >x) =Y PD;>xN®) =)= > (1 - GOX)H). (10)
j=1 j=1

Using the facts that 3772 ; Hj(t) =1 and G@(x) =1, the distribution

of the total damage can be written as

PZ(t) <X)=Ho()+ Y GP®H;(t)= Y GPOx)H;(t). an
j=1 j=0

Substituting Ho(t) =1 — Fi(t) and H;(t)=F(t) — F,1(t) from Eq.

(4), it can be written as

PZt)y<x)=1- i[GU_”(X) — GOIF(t). (12)
j=1

This is a fundamental expression that can be used to compute the
system reliability. Suppose damage exceeding a limit zr causes the
component failure, Eq. (12) provides P(Z(t) < z¢) which is synon-
ymous with the reliability function.

We conclude this section with a formula for the mean value of
the first time 7p that the total damage exceeds a level B

1p = minft : Z(t) > B}. (13)
So {tp > t} = {Z(t) < B} and

G(X) =P(Y <X). ®  Eep= S ciE) / Hy(Hdt. (14)
The damage occurred at the j th shock is denoted as Y;. j=0 0
g Iy 7
5 Y Y Y
£ %2
: |l | |
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Fig. 1. A schematic of the stochastic shock process causing random damage.
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3. Maintenance model

In practice, reliability of safety-critical systems in a nuclear
plant is maintained by implementing preventive maintenance and
replacement programs. In the proposed cumulative damage
model, the failure can take place at time t when a shock occurring
at t causes the total damage Z(t) to exceed a critical threshold zf.
The failure prompts a corrective maintenance (CM) action
involving the system renewal through replacement or complete
overhaul (as good as new repair). We will study a preventive
maintenance (PM) plan based on: (1) a condition-based strategy
in which the system is renewed preventively as soon as Z(t)
exceeds a maintenance threshold value zy, zy < zr, (2) an age-
based strategy in which the system is replaced at certain age q,
irrespective of its condition. It is assumed here that system’s
degradation is continuously monitored. The probabilities of
occurrence of any such maintenance actions at time t need to be
evaluated, considering the stochastic nature of the shock process
and randomness associated with damage increments. This section
presents the derivation of these probability terms.

3.1. Formulation

First we investigate three basic disjoint events that can take
place at the time of occurrence (S;) of any j th shock, as shown in
Fig. 2.

Define an event, A;, that the total damage exceeds the PM
threshold, zy, at the j th shock (j=1,2,...) as

Aj = {Dj_1 <Zm < D_,} (15)

The event A; consists of two disjoint events, namely, the
occurrence of PM or CM action, and they are defined as

AFM :Aj n {Dj <zr} and AJCM =A_,‘ n {Dj >Zr}
Finally, the event that no maintenance action is needed up to time

S; is defined as

Bj={Dj<zm}= U A (16)
For the sake of conciseness, denote the probabilities of these
events by o; =P(@4)), f;=P@AM), y;=PAM) and 7; = P(B)). Now
these probabilities can be derived in terms of the distribution
of damage increments G(x) as follows:

A O

¥ o &
A
Zr 4 i Aj
M|
Al i
()] 1
o) 1
= =
a) B;
I ¥
| | |
| | >
Si-1 S Sjsq

Shock Arrival Time

Fig. 2. Events related to the maintenance model.

o = GI(zm) — GO(zm), a7
b= 16tz - ~ Giaw ~ 01460, 18)
V=% = Bj» (19)
m=1- XJ: o = GP(zy). (20

i=1

The derivation of these probabilities is given in detail in
Appendix A.

Note that o; = f;+7;. Furthermore, for any n > 1, the collections
{A1,...,An, By} and {ARM AM, . ATM AM B} are both finite
partitions of the sample space, so that we can write

ioci+nn:zn:/)’,-+ En:y,«i-nn:l. 2n

i=1 i=1 i=1

4. Probabilities associated with maintenance actions

The proposed model involves an interaction of age-based and
condition-based preventive maintenance criteria. We start at time
0 when a new system is put into service. The system will be
replaced at age a, should it survive up to this age. On the other
hand, a corrective or preventive maintenance action before age a
will be required if the cumulative damage at this time, Z(a),
exceeds the PM threshold zy;. The probability associated with this
event, Pcp, can be derived using Egs. (10) and (20) as

Pep = PE@>2) =1 - io Oy =1 - fjo mHi(a).
j= i=

Defining A; = E’,:: 1 %, it follows from Eq. (20) that

Pep= i A;jHj(a). 22)
i=

Using Eqs. (12) and (17), we can also rewrite

Pep = i o;Fj(a). (23)
i=

Let Pr be the probability that a corrective maintenance will be
performed before age a.

Pr= " PAM,S;<a)="Y_ y;F(a). (24)
ji=1 ji=1

Using Eq. (3), we can express Pr also in terms of the probability
distribution of the total number of shocks as follows:

Pe= > yF@= 7> Hi@.
i=1 i=1"i=j

Interchanging the order of the double sum, we get

Pr= " CiHi(a), (25)
i=1

where C;j= Z}':zl y;. Similarly, the probability of preventive
maintenance before a can be obtained as

Pu= Y PAM 8 <a)= > BF@= > BHia), 26)

j=1 ji=1 i=1
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where B;= E_;::l p;. Finally, the probability of (age-based)
replacement at age a is obtained as

Pa=1-Pp=1-> oF@=1-" AHa). 27)
fi=il =1

The results of this section are useful in computing the cost
associated with a particular maintenance policy.

5. Discounted maintenance cost

Let T denote the length of renewal cycle and C the cost
associated with the renewal. After the first renewal at time Ty, a
new cycle starts, and it survives the duration T, and so on,
as shown in Fig. 3. The renewal cost varies depending on
the maintenance actions. We assume cost ¢g for CM, ¢, for
replacement at age a and ¢y for PM before age a. A random vector
of renewal cycles and associated costs, (Tp, ) is an iid sequence
generated by random variables T and C with the following joint
distribution if M(a)=n, n>1:

(Sjcm) on AM, j<n,
(T,O) =< (Sjc)) onAM, j<n, (28)
(a,cy,) on By.

If no shocks occurred up to time a, i.e. N(a)=0, then
(T,O) = (a,ca).

The total cost over a time interval (0,t] is a sum of costs
incurred over M(t) number of completed renewal cycles, given as

M)
Kty=>"G. 29)

i=

So M(t) is the renmewal process associated with the times
Ui=Y%_,T,j=1,2,..., at which new cycles start.

Note that K(t) is a random function involving random variables
M(t) and C, and its distribution is very difficult to evaluate.
Therefore it is convenient to work with asymptotic formulas for
long term expected cost. A well-known result is that the long-
term or asymptotic cost rate Q (i.e., cost per unit time) is given as
(6]

1 EC)
Q= lim ZK(5)= B 30
Note that E(T) < a denotes the expected length of renewal cycle
and E(C) is the expected cost over a renewal cycle.

A
CM

S T
@
S
(—;u PM PM
3 M
g
14 AR

Cp

T T, T3 T
Renewal Cycles

Fig. 3. Illustration of renewal cycles and costs (PM, preventive maintenance; CM,
corrective maintenance; AR, age-based replacement).

Similarly, the discounted cost can be evaluated over a time
horizon (0,t] considering an exponential discounting factor with
interest rate r per unit time as
M(t)

K=Y e™g, 31)
j=1

where Uj=Ti + --- +T;j denotes the time of j th renewal.

The long-term expected equivalent average cost per unit time
is given as [21]:

rECe™™)

T Eey’ 32)

Qn = [1112 rE(K(t, 1)) =
Note that

=1T
lrilr{)lQ(r)zlim FECe ) L) =Q.

r0T—Ee ™) ET)

6. Key formulas

In this section we present the formulas for the asymptotic cost
rate Q and the long-term expected equivalent average discounted
cost Q(r) per unit time. Before the analysis of a general case, we
discuss a simple case of a condition-based maintenance strategy
without age replacement to illustrate the key ideas. Our numerical
examples in Section 6 indicate that this simplified strategy could
prove quite effective.

6.1. Without age replacement

First we will consider the simpler condition-based mainte-
nance strategy in which the system is renewed preventively as
soon as Z(t) exceeds a maintenance threshold value zy, zy < zF,
without age replacement. In this case a renewal cycle ends only if
the total damage exceeds the PM level zy;. We have

(Sj,cm) on A,
(T: C) = ™
(Sj,cr) on Aj s

In order to derive the cost rate using Eq. (30) or (32), a number of
expectations have to be evaluated:

ECeMy= S (emf+crEe™),
j=1
and substituting C=1, we get
Ee M= > ayEe ™),
j=1

and substitution of r= 0 yields
EC)= i(fmﬁﬁcm)-

i=
For the expected value of the cycle length we get
E(T) = 2 %ES)).

j=
It follows that
> 1(emBi+cryy)

= 33
- 252 1 94E(S) we
and
Q) = r 372 1(emBj+crypE(E™) (34)

Ty oyEe™)
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These formulas for Q and Q(r) contain the information of the
shock process in terms of the occurrence times of the shocks.
Especially when the shock process is a renewal process we can
simplify formulas (33) and (34). In this case Sj=X;+ - +X;
where (X)) is the iid sequence of inter-occurrence times and we
can substitute E(S;)=jm and E(e~"%)=w/, where m=E(X;) and
=E(e™),

We now continue with expressions for Q and Q(r) in terms of
the probability distribution of the total number of shocks. Using
partial integration and Eq. (3) we get

E(e S = * ~XdF;(x) = 3 OOH,' —*d
(e™") /0 e ™ dF;(x) rigj /0 (x)e ™ dx
and

ES) = [ i .

=3 [ Hiax

Note that, interchanging the order of the double sum, we can
write for example

Do wEET )= o> /w Hiwe ™ dx=r>" A /oo Hi(0e—"™ dx.
i=1 j=1 " i=jJ0 = Jo

It follows that

S5 1(emBi+cry))

T A TP H®)dx 35
& Z,?c:]Ai fo Hi(x) dx (35)
and

2 00 ; N %01y _x
Q= Xz B+ erC) Jo” Hite ™ d o6

1T—-1Y02 1 A Jo Hitoe ™ dx

6.2. With age replacement

We will present now the results for condition-based PM with
age replacement. The derivations can be found in Appendix B.

6.2.1. No discounting

As discussed before, there are three possible ways for the
renewal of a structure at time T: PM when zy <Z(T) <z,
replacement when T=a, and CM when Z(T) > zr. The expected
length of the renewal cycle is given as

EN=m / Hj(x) dx. 37
f=0 0

A complete derivation is presented in Appendix B.

The expected cost incurred in a renewal cycle is simply a
product of probabilities of the three possible renewal actions with
the associated costs:

E(C) = cpPa+cyPy+CcrPr=ca+ Z[CMBJ'-{-CF'))J- — cAocj]Fj(a). (38)
i=1

These probabilities are derived in Section 2.2.3. From now on we

will assume that

co=cy=cs and cr=cCo+0F. 39)

Substituting Eq. (25), the following expression is obtained:

E(C)=co+0rPr =Co+0F Y CiHi(a). (40)
i=1

Substituting this expression for E(C) and Eq. (37) in Eq. (30), the

asymptotic cost rate Q is obtained as

Co+9r > i~ 1 CiHi(a)

= L

41)

It is also possible to express Q in terms of the distribution
functions F; of the occurrence times S; of the shocks. Using Eq.
(20), we can write the enumerator as

o0 a a o) j a
J;)nj/o Hj(x)dx:/o Ho(x)dx+J; (1—;%-)/0 Hj(x) dx.

Since }~;H;(x) = 1, we get, interchanging the double sum and using
Eq. (3)

J;) nj/o Hi®dx=a— ]; oc,-/o Fi(x) dx.

The enumerator can be written as

Co+0F Z CiHi(@) = co+5r Y yiFi(@).

=71 =1

These expressions are useful if the shock process A is a renewal
process.

6.2.2. With discounting
A general expression for expected discounted cost in a renewal
cycle T is derived in Appendix B as formula (72)

- 00 o) a
E(Ce™My=e <c0+5F Z C,,Hn(a)> + Z(coAn+5Fcn) / Hp(x)re™™ dx.
n=1 0

n=1
(42)

From this expression, the expected (discounted) length of the
renewal cycle can be obtained by substituting C =1

BeM=1-Y", /O * Hoore=™ dx. 43)
n=0

It follows that the long-term expected equivalent average

discounted cost per unit time is given as

e~(Co+0F S 1 CuHn(@)+1 30 1(CoAn+0rCn) fy Ha(x)e~™ dx
%o Tn Jo Ha(x)e— dx

Qn=
(44

In the case that the shock process A is a renewal process, it is
useful to have an expression for Q(r) in terms of the times S; at
which the shocks occur. We refer to Appendix B for the
expressions. Also here Laplace transforms can be used for the
calculations.

All the expressions derived in this section are completely
general, without making any specific assumptions about the form
of the point process N that describes the random arrival of shocks
in time.

7. Applications

In Section 3 we have derived formulas for the cost of
maintenance of systems that deteriorate as a consequence of
the cumulative damage of shocks occurring randomly in time.
The damage per shock was also assumed to be random, but
independent of the shock process. Monitoring is continuous and if
the level of damage exceeds some critical threshold zr the system
needs a major repair (CM). A preventive maintenance (PM) will
be performed if the total damage to the system exceeds the
intermediate level zy < zr and a planned replacement takes place
at age a. After repair the system is good as new. To get simpler
expressions, we assume as in Section 3, that the cost ¢y for PM is
the same as for age replacement. The cost for CM is cg+ Jf. In this
section, a specific case is analyzed and results are presented in
explicit analytical form. We will assume that the damage
increments are exponentially distributed. For the shock process
we will consider a homogeneous Poisson process (HPP) and also
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an example of non-homogeneous Poisson process (NHPP). Results
will be presented for the maintenance cost rate considering both
discounted and non-discounted cases.

7.1. Damage process

The damage increment per shock follows an exponential
distributed with mean 1/4 > 0, and its distribution is given as

Gx)=1—e%, x>0, (45)
The distribution of the sum D; of k damage increments is then
obtained as

k=

Z O i 1,2, . 46)

P(Dy <x)=GPx) =
We continue with the calculation of the probabilities o, 5}, ; and

7; defined in Section 3.1. Note first that for any { > zy, we have by
partial integration and the definition of G

Zy . 2 .
/ 1 - G - 014G V(9 = e 2060 D(zy;)
0
- / N GU-D(x))e~*E) dx.
0

Substituting Eq. (46), it follows after simplification that

/ "1 - G = %] d6I-D ) = WM)’ oK
0 G-
So
Bi= A M[G(ZF — %) — Gz —X)]dGIVx) = ( ZM);)' (e~ #m — e=¥r)
(47)
and
1
% =GI"V(zm) ~ GP(zm) = % e, “8)
A
Vj = OCJ' - ﬁ) ((]Zf)‘;)' 7}ZF’ (49)
7 =1- Z ()ZM)l —).zM (50)

It follows that Bp=(1—e @24, C,=e*&24, and
p =1 — Ap. Define the sums

= i Aan(a),

n=:1

o0 a
I= Y A A Hp(x)dx,

n=1

o a
Y3= Z Ap / Hp(x)e ™ dx.
0

n=1
It follows from Egs. (40) and (37) that
E(C)=cg +5F€_)'(ZF_Z“)Z1

and
ED=Sn [ Hedx=>0-4) [ Hed—a- 5.
(T J;)n, /0 [i(%) dx J;( A)) /0 Hi(x)dx=a- 2,

Hence, the asymptotic non-discounted cost rate can be given as

Co+ 5pe—)'(zF—ZM)Z1
a—2, ’

Q= (51)

To get the expected equivalent average discounted cost per unit
time Q(r), we first note that

o a oo a _
> 7 / Ha®e™™dx= 3 (1 - Ap) / Hn(x)e‘”‘dx=1 g
n=0 0 n=0 0

Substituting this in Eq. (44) we get

—ra

e (o +5Fe‘)(z"’z’”)21)+ r(co +5Fe—/1(zp—z”))z3
1—e T —r12;

QN = (52)

For a condition based maintenance plan without age replacement,
the formulas (33) and (34) can de simplified to

Co+ 5Fe—}-(zF—zM)

Q= a1 ¢3)
and

—Mzr—2n) —Jzy(1-w)
Q(T):T(CO+5F8 Zr=2m))(pe =2 . (54)

1= weJ_zM(l—cu)

where m =E(X;) is the mean of the inter-occurrence time X; and
w = E(e"™1) the moment-generating function evaluated in the
discount rate r.

7.2. Shock process

We will consider three examples of shock processes: (1) a
homogeneous Poisson process with intensity p and (2) a non-
homogeneous Poisson process with intensity u(t)=2t and (3) a
renewal process with Weibull distributed inter-occurrence times.
It is clear from Section 7.1 that for a calculation of the cost we have
to calculate the sums X1, 2, and X3. Define

H; = Hy(a),
= [ Heodx,
0

a
int]:/ Hj(x)e™™ dx.

0
For a homogeneous Poisson process with intensity x4 we have
(utyeH

j!

The calculation of the sums X;, 2, and X3 is based on the
following recursion. For j=1,2,...

Hj(t) = , j=0,1,2,.... (55)

ua
Hi=£H,,
e

a
i=- ]—-ij1 +l1,

Y L noy
M= =Gy 1
and

Ho = e Ha,

1
= (1 —eHa
I= m (1 —e™9

intg = L(1 e~ (H+nay,
n4+r
Based on this recursion we can set up an algorithm that calculates
the sums X, X, and 23 and the cost.
For a nonhomogeneous Poisson process with intensity yu(t) =
we have

H(t)— tZJe*", i=0,1,2,.... (56)
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As for a HPP, we can set up an recursion to calculate the sums 2y,
25 and X3 and the cost.

In the end, we also consider a more general case in which
shocks arrive as a renewal process with Weibull distributed inter-
occurrence times with probability density

fo=a(%) = B (%) } . 57)

In this case, we compute the costs of a condition-based
maintenance plan without age replacement, and compare the
costs with and without discounting.

7.3. Results

This section presents a number of numerical examples to
illustrate the optimization of cost rate in terms of the replacement
age a and the PM level zy. In all the calculations, we use the
following parameter values. The parameter A of the damage
increment distribution is taken to be A=0.5. The failure level
zr = 30. The cost parameters are chosen as ¢y = 20 and 6 = 80 and
the discount rate is r=0.05. The intensity of the HPP is chosen
as it =4.06. For this choice of 1, the expected value of the time 739
to exceed the failure level zr =30 is equal to 3.9, for both the HPP
and the NHPP shock processes.

7.3.1. Optimization of the replacement age a for a specified PM level
Zm

Suppose that the threshold for PM is specified as zy =28 and
the objective is to find an optimal value of the replacement age (a)
that would minimize the cost rate. Fig. 4 contains plots of the cost
rate as a function of the replacement age a, for HPP and an NHPP
shock processes. The optimal replacement age (appr) through the
discounted analysis is found as 2.8 for HPP case and 2.1 for the
NHPP shock process. In this example, results with and without
discounting are relatively close.

7.3.2. Simultaneous optimization of replacement age a and PM level
ZMm

The cost rate can be optimized with respect to both variables
zye[0;zr] and ae[0.1;15]. The results of two-dimensional
optimization can be presented in a more concise form. For
example, first we select a zy € [0; z¢] value and compute the cost
for all possible values of the replacement age a €[0.1; 15], and then
select the minimum cost rate. Fig. 5 shows one dimensional
variation of these minimal cost rates as a function of the PM level
zy for both cases of HPP and NHPP shock processes. The global
minimum discounted cost rate over is 6.8 for zy; =22.6, and in
case of NHPP, it is 5.5 for zy =21.3.

In this optimization, the relationship between the discounted
cost rate and replacement age for the optimum value of zy is
shown in Fig. 6. The first plot shows the impact of the replacement
age in HPP case with an optimal zy =22.6, and the second plot
shows results for the NHPP case (zy; = 21.3). In both cases we see
that the minimum is attained almost after the replacement age of
a=>5, and after that there is no influence of the replacement age
on the cost. It seems to suggests that age replacement could
be deleted from the cost optimization. In the next subsection we
will compare maintenance strategies with and without age
replacement.

7.3.3. Optimal PM level for a maintenance strategy without age
replacement

Motivated by the results of Fig. 6, we compute cost rate as a
function of zy; only, and ignore the replacement age from the
analysis. Results presented in Fig. 7 show that in HPP case the
minimum discounted cost is 6.8 for zy =22.5, whereas in NHPP
case the result is 5.5 for zy; = 21.3. The optimal PM level in both
the cases (HPP and NHPP shock processes) is the same as that
we obtained considering the age-based replacement strategy
in Section 7.3.2. Thus the comparison of results shown in Figs. 6
and 7 confirms that for condition-based maintenance with
continuous monitoring, age-based replacement is not contri-
buting to minimization of the cost. This may also be due to the
asymptotic cost criterion that we are using in the analysis. For a
finite time horizon, it is possible that replacement age may have
more pronounced effect in the minimization of the cost rate.

7.3.4. Optimum replacement age without PM

The consideration PM can be excluded from the analysis by
setting the PM level zj; equal to the failure level zz. Now the cost
rate is a function of only the replacement age, as shown by the
results presented in Fig. 8. Although an optimal age exists
(a~ =2.5-3) for both HP and NHPP cases, the associate cost
rate is much higher (almost double) than that obtained from the
optimization based on PM level (see results in Fig. 7).

7.3.5. Is discounting important?

Results presented in Figs. 4-8 suggest that results obtained
from with and without discounting are in close agreement. We
wish to assert that it is not a general conclusion. The consideration
of discounting is very important in practical maintenance
optimization problem. The reason is that in practical situations
money is borrowed from Banks to implement the maintenance
programs. Therefore, deferring the maintenance cost to future
results in a lower net present value, which should be accounted
for in the optimization process.

26 v 26
24 ¢ —-discounted cost 24 ——discounted cost
22 - - -cost without discounting 22 - - -cost without discounting
20 20
18 18
16 16
14 14
12 12
10 10
8 8
6 6

age a

age a

Fig. 4. Cost rate as a function of the replacement age a, left HPP, right NHPP shock process.
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Fig. 5. Minimum cost rate over the replacement age a as a function of the PM level zy, left HPP, right NHPP shock process.
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Fig. 6. Discounted cost rate as a function of the replacement age a for optimal value of zy, left HPP with zy, = 22.6, right NHPP shock process with zy = 21.3.
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Fig. 7. Cost rate as a function of the PM level zy without considering age replacement, left HPP, right NHPP shock process.

The effect of discounting depends on the magnitude of
the intensity (rate) of shock process. To illustrate this point,
we consider an example in which the shock process is
modeled as a renewal process with Weibull inter-occurrence
times. We choose the following parameters in (57): the scale
parameter #=3 and «=2. This results in the mean time
of the first occurrence, m=2.9867 unit of time. We compute
both discounted and non-discounted cost rate as a function
of the PM level zy. Results plotted in Fig. 9 show the
importance of discounting, since the discounted minimum
cost rate is approximately half of that obtained without
discounting.

8. Conclusions

The theory of stochastic point processes and the renewal
theorem have been fundamental to the development of risk-based
maintenance models for critical engineering systems. The paper
presents a comprehensive analytical formulation of the condition
and age based maintenance policies for systems subject to
random shocks occurring randomly in time. Explicit expressions
are derived for asymptotic cost rate with and without discounting.
The proposed framework allows to determine preventive main-
tenance (PM) level and age of replacement that would minimize
the maintenance cost rate.
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Fig. 8. Cost rate as a function of the age a considering only age replacement, left HPP, right NHPP shock process.
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Fig. 9. Cost rate as a function of the PM level zy without age replacement for a
renewal shock process with Weibull inter-occurrence times.

Numerical examples of maintenance cost optimization are
presented in the paper to illustrate the proposed model. Shock
processes are modeled as homogeneous (HPP) and non-homo-
geneous Poisson (NHPP) processes, and the renewal process.
The damage increments are taken as exponentially distributed.
The optimization variables are the PM damage threshold (zy)
and the replacement age (a). For a specified zy;, an optimal a can
be found that would minimize the cost rate. It is interesting to
note that the global minimum of the cost rate is rather insensitive
to the age of replacement (a), and it is the same as the minimum
cost associated with a condition-based strategy only. This
suggests that a condition-based strategy is likely to supersede
the age-based replacement for minimizing the cost rate.

The following key conclusions are drawn:

e The derivation of discounted cost rate is a main contribution of
this paper. This provides more practical solutions to the
optimization of maintenance policies than those based on
the asymptotic (non-discounted) cost rate criterion.

e This formulation can be extended to include dependent
damage increments, such as the damage following a Markov
chain.

e The proposed formulation can incorporate a general point
process as a shock process. This topic will presented in a future
paper.
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Appendix A

First ~we explain the derivation of PA)=v;
=GU-Y(zy) — GD(zy). Using the total probability theorem, we
can write

P(Dj,1 <zy)= P(Dj_] <Zm, Dj = ZM)+P(DJ',1 <Zm, Dj > Zym). (58)

Since {Dj<zy} is contained within the event {D;_q<zy}, it
reduces the first probability term in Eq. (58) to P(D; <zu). It is
clear from Eq. (15) that the event in the second probability term is
the same as {D;_; <zy < D;} =A;. Thus,

P(Dj_1 < zu) = P(Dj < z)+P(A)).
Using Eq. (7), we can simplify
G-V (zm) = GP(zm) +P(A)),
which leads to

P(A) = oy = GIV(zpy) — GO (zny).

When the PM threshold is exceeded in shocks j to (j — 1), there
are two possible mutually exclusive events: either the total
damage is below zr requiring a PM action, or the total damage
exceeds level zp leading to a CM action. It implies that o; = ;+7;.

To calculate B;, first note that

A}JM ={Dj_1 <zm,zm < Dj_1 +Y; < zf}. (59)
It follows that
Bij=P(Dj_1 <zm,2Zm <Dj_1+Y; <zp) (60)
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which can be evaluated as as follows:
y G-1) Zm o0 ) i
By= | P <x+Y <20 460060 = JRCCEEE > mHa@= > (1= o |PV@=m)=PS1 <a)
) n=1 n=1 j=1
— G(zy — 0)]1dGI D). 61) .
In the same way we can evaluate y; as _,; %P(Sj < a).

Yj =P(Dj_1 <zm,Dj_1+Yj >zp). (62)

As before, it can be rewritten as
Zm i1
yy= / (1 = G(zr — 0] dGI D). (63)
0

Finally, the probability P(B;)=m; of the event that the total
damage after the j th shock is still below zy is derived from Eq.
(16) as

o i J
nj:P(DJ-SZM)=P( U A,~)=1—ZP(A,-)=1_Za,-. (64)
i=j+1 i=1 i=1

Substituting for P(A;) = «; from Eq. (59) and further simplification
leads to

i . ,

mi=1-"Y_[6“Vzw) - CO@m)] =GP (zm). (65)
=71

Appendix B

This appendix presents the derivations of a key result (42).
First the expected discounted cost expended can be using the total
probability theorem as

E[Ce™ = f: E[Ce™; N(a) =n]. (66)

n=0

For n=0 we have a simple form
E[Ce™™T; N'(a) = 0] = cxe " Hy(a).

For n>1 we split the expectation over the disjoint events
{AM AMAPM AM B}, Using definition (28) of (T,0),
we get

n
E[Ce™™; N(@)=n]=cu Z /)’jE[e*TSf;N(a) =n]
ji=1

n
+cr Y y;Ele™; N (@) = n]+cae " TnHn(a). (67)
=1

Substitution of Eq. (67) in Eq. (66), results in two terms
involving double sum. The first such term can be simplified as
follows:

DD BEETIN@=n= ) f; > Ee " N@ =n]
n=1j=1 ji=1 n=j

=Y BEeTN@ ==Y fiEle; S <a].

j=1 j=1

The first step is obtained by interchanging the order of double
sum from n and j to j and n. The second step is obtained from the
fact that the inner sum n=j — co implies the condition M (a) >}j.
This condition further implies that the time of occurrence
of j th shock should be within the interval (0,a], which leads to
the final step in the above equation. The second double term sum
is simplified similarly. The third sum can also be expressed
in terms of the times &; at which the shocks occur

Finally, we obtain

E[Ce™ T =cue™ (P(S1 <a)— i o%P(S; < a))

i=1

+ Z(CMﬂ;'*'CFVj)E[e*rSj; Sj<d]. (68)
=1

Taking in this formula ¢4 = ¢y = cr =1 and f;+7; = &;, we get after
simplification

Ele M =e (P(S1 <a)-— i o%P(Sj < a)) + i o;E[e™™; Sj < a).
j=1 j=1
(69)

It follows that the long-term expected equivalent average

discounted cost is given as

cae(P(Sy < a) — Y72 oyP(S; < @)+ 35T 1 (emPi+crypEle ™ S < ]
1—e"(P(S; <a) - 352 1 4PS; < @) — 3577 4 o;E[e~"5; 85 < a]

Qry=r

Taking ¢o = c4 = ¢y and ¢r = co+JF, we can write Q(r) as

coe "(P(S; <a)— Zj"’: 14P(S; < @)+ ZJ?"’: 1(coaj+éfyj)E[e*’5f;Sj <a]
1—e"(PS1 <a)— 352 1 4PS < @) — 35524 o;E[e™™%; S < a

(70

We continue with the derivation of an expression for Q(r) in terms
of the probability distribution of the total number of shocks. The
term E[e~"%i; S; < a] can be evaluated in terms of its distribution F;
of §; as

a a
Ele ;S < a]= / e ™ dFj(x) =e Fj(a)+ / F(xre™™ dx,
0 0

Using Eq. (3), Fj(t) can be expressed in terms of probabilities Hn(t)
as

Ee™;Sj<al= Y hy,
n=j
where
a
h, =e ™H,(a)+ / Hy(x)re~™ dx.
0

By substituting this last expression in (68) and interchanging the
order of summation, we obtain

E[Ce™=cae™ > muHn(@+ Y (cBn+CrCr)lin,

n=0 n=1

where B,=3'_; f; and Cp= >>j—17;- Re-arranging the terms,
we can also write

E[Ce™] = cqe " Ho(a)

+€7" > (CaTtn +CuBn+CrCn)Hn(@)

n=1
o0 a
+ > (cmBn+CrCn) / Ha(x)re ™ dx. (71)
n=1 0
This formula can be simplified by taking co=ca=cy and
CF = Co+OF,

E[Ce T =eT <c0+5p > C,,Hn(a)) + > (CoBa+CrCn)

n=1 n=1
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/OaH,,(x)re‘”‘ dx.
Substituting C=1 in (71) and noting that

3 /0 Hy(re—™ dx = /D A = Hoyre " dx =1 — e

n=1
a
- / Ho(x)re~™ dx.
0

The first step in the above equation is obtained by interchanging
the order of summation and integration and recognizing that
Yon 1 Hn(®) = 1 — Hp(x). In this manner, (43) is derived as

Ele T =e"+ i 1 —my) /Oa Hp(x)re ™ dx =1

n=1
00 a
-3 / Hy(xre~™ dx. 72)
n=0 0

It follows that

e"(Co+6F Y on— 1 CnHn(@)+ Y5 1(CoBn+CrCn) fS Hp(x)re~™ dx

Qe=r 1—3%_ o7 fy Ha(x)dx

(73)

The expected length of the renewal cycle can be derived by
differentiating Eq. (72) with respect to r and then substituting
r=0:

ET= Y m /0 * Hox) dx.
n=0
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