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Abstract:  Discrete choice models normally represent the utility values of a finite set of 
mutually exclusive and exhaustive choice alternatives in terms of an expected value and 
an error. Strong assumptions are introduced on the error term. A different approach is 
sketched here. We assume that each member of a population of decision makers has a 
utility function, and that these functions can be scaled to have the same 0 and 1 values. 
Starting with a uniform distribution over the set of such utility functions, we apply 
probabilistic inversion techniques to acquire a distribution over the set of utility functions 
which optimally complies with discrete choice data.  More generally,  we may have some   
model explaining the discrete choice, where the parameters of the model are distributed 
over the population of  actors. Probabilistic inversion finds an optimal distribution over 
the model parameters, given a starting distribution. 
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1. Introduction 
 
Probabilistic inversion denotes the operation of inverting a function at a set of random 
variables, rather than at a set of points. More precisely, let ℜm denote the set of real m-
vectors, let  G be a measurable function from ℜn  to ℜm, and let C be a set of random 
vectors in ℜm. A random vector X in ℜn is called a probabilistic inverse of G at C if 
G(X) ∈ C.  Suppose   we have a number of real functions G1,…Gm defined on ℜn, and 
we would like to find a distribution on ℜn

 such that the distribution of (G1,…Gm )  
satisfies given constraints. This is an example of a probabilistic inversion problem. 
Numerical algorithms for solving such problems are available. The algorithms used here 
start with an initial distribution and adapt this via an iterative procedure so as to satisfy 
the imposed constraints, if possible.  Iterative Proportional Fitting (IPF) (Kruithof 1937,  
Deming and Stephan 1940) converges to a solution which is minimally informative 
relative to the starting distribution, if the inversion problem is feasible. If the problem is 
not feasible, little is known about its behavior.  A new algorithm (Du et al 2006) finds a 
'minimal unlikely'  distribution in case of infeasibility.  
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In this article probabilistic inversion will be applied to problems in the area of discrete 
choice. Each member of a population of decision makers has a utility function; hence the 
population of decision makers may be described as a distribution over the set of utility 
functions. Utility functions of rational decision makers are invariant up to a positive 
affine transformation; only ratio's of utility differences are meaningful. If alternative i is 
preferred to alternative j, then i can be assigned the value "1"and j the value "0".   We 
assume that our utility functions are standardized in the following way: Two alternatives, 
heaven and hell, not necessarily belonging to the set {1, 2,…n}; are selected such that the 
utility of each of the n alternatives is between the utility of heaven and hell, for all 
members of the population. Heaven and hell are then assigned the scores 1 and 0 
respectively. Hence, all utility functions on the n alternatives take values in the interval 
[0,1] and the set U of possible utility functions becomes the set Ω =  [0, 1]n.  Lebesgue 
measure on Ω may be defined in the obvious way: the measure of the set of utility 
functions taking values in the interval [aj, bj] for alternative j = 1,..n is ∏j=1..n (bj-aj). 
 
The discrete choice data may be of many forms (Anderson et al 1996, Train, 2003). 
Subjects can choose one preferred element from a discrete set, or they may choose k out 
of n elements, or they may rank some or all of the elements. The simplest type of discrete 
choice is paired comparisons, where each subject chooses one element of a pair of 
elements, for each possible pair of n elements. The set of individuals who prefer 
alternative i to alternative j (written "{i > j}") may be represented as the set of utility 
functions which assign i a higher utility than j. Assigning a probability to this set is 
equivalent to assigning a distribution to the indicator function of {i > j}. We seek a 
distribution over the set of utility functions which satisfy a given set of constraints of this 
form.   
 
When a distribution has been found, this distribution will in general make the utilities for 
the alternatives dependent. There is no need to introduce assumptions on "error terms"; 
these emerge from the data and from the starting distribution. 
 
A full formal treatment of probabilistic inversion is found in (Kraan and Bedford, 2006), 
a full discussion of algorithms deployed here is in (Kurowicka and Cooke, 2006). The 
relation between IPF and maximal likelihood is explored in Fienberg (1970), and 
Haberman (1974, 1984). Applications are found in Kraan and Cooke (2000, 2000a). 
Section 2 discusses paired comparison, section 3 elaborates on probabilistic inversion for 
paired comparison data. Section 4 looks at more general discrete choice problems; 
section 5 treats examples. 
 
2. Paired Comparisons.  
 
We consider alternatives 1,2,...n;  and we assume that we have data of the form: 
 
Prob{i  > j } = pij;  i,j  = 1…n; i ≠ j;  pij = 1 – pji. 
 
We say that a utility u ∈ Ω expresses a preference {i > j} if u(i) > u(j). A Probability 
distribution P on Ω expresses the set {pij} of pairwise preferences if:  
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1) ∀i,j;  P{ u ∈ Ω  |  u(i) > u(j)}  = pij.   
 
Similarly, a probability distribution P over the set n! of permutations of {1,…n} 
expresses a set of pairwise preferences if  
 
2)  ∀ i, j,  P{ π ∈ n!  |  π(i) > π(j)}  = pij.
 
We consider two problems: 
 
Problem 1 
Find a probability measure on the set Ω  that expresses the pairwise preferences {pij}. 
If there is more than one, or none, find the "best".  
 
Problem 2 
Find a probability measure on the set n! that expresses the pairwise preferences {pij} 
 If there is more than one, or none, find the "best". 
 
Clearly, a solution to the first problem yields a solution to the second and conversely. In 
fact, if we distribute the probability for a given ranking π ∈ n! evenly over all u ∈ Ω 
which express that ranking, then this will yield the minimum information distribution 
with respect to Lebesgue measure which satisfies (1).  
 
2.1 Feasibility 
 
The question of feasibility is explored in the following lemmata.. We write n-choose-2 
for the number of distinct unordered pairs of n objects: n (n-1) / 2.  
 
Lemma 1:  

1. For any  π1, π2 ∈  n!,  if  π1 and π2 agree on all (n-choose-2) paired comparisons, 
then π1 = π2; 

2. For (n-choose-2) – 1 pairs, there exist π1, π2 ∈ n! such that π1, π2  agree on paired 
comparisons for these pairs, but π1 ≠ π2 

 
Proof:  (1)  The top ranked alternative according to π1 is preferred to every alternative 
according to π1; by assumption the same holds for π2. Therefore this alternative is also 
top ranked in π2.  Proceeding in this way, we show π1 = π2.   (2) Suppose only pair (1,2) is 
excluded, Let π1, π2 rank 1 resp. 2 in the first position, and 2 resp. 1 in the second 
position, all other rankings being the same. Then π1, π2  agree on all paired comparisons 
except (1,2). 
 
This shows that if we wish to learn a ranking by asking pairwise preferences, we may 
need to query all pairs. . 
 
Lemma 2:  If  pij  + pjk +  pki > 2,  for some i,j,k;   then there is no probability over n! 
satisfying (2). 
 

 3



Cooke and Misiewicz, Discrete Choice with Probabilistic Inversion, presented at Mathematical Methods in Reliability, July, 2007 

Proof:  Suppose P was such a probability. Let Aij be the set of rankings satisfying π(i) > 
π(j), and similarly for Ajk, Aki.  Then P(Aij) = pij etc.   Any π ∈ Aij ∩ Ajk ∩ Aki would 
have a circular triad, so P(Aij ∩ Ajk ∩ Aki) = P(∅) = 0. We have 
P(Aik) = 1-pki  ≥  P(Aij ∩ Ajk) =  pij + pjk -  P(Aij ∪ Ajk) ≥ pij + pjk – 1, which violates the 
assumption. � 
 
Lemma 2 shows that the problems 1 and 2 above may not be feasible.  For n = 3 we can 
get a necessary and sufficient condition for the existence of a probability over n! 
expressing the pairwise comparisons. The proof is a bit fussy and is placed in the 
appendix.  It helps to understand the complexity of the feasibility questions in general. 
 
Lemma 3. If n = 3 and ∀i,j,k = 1,2,3; i ≠ j ≠ k ≠ i,   pij  + pjk +  pki ≤ 2, then there exists a 
distribution over 3! that expresses the pairwise preferences. 
 
Proof: See appendix.  
 
Recall the Condorcet voting paradox: 1/3 of the population prefer Mozart > Bach > 
Hayden, 1/3 prefer Bach > Hayden > Mozart, and 1/3 prefer Hayden > Mozart > Bach.  
Each person is consistent, but the majority preference is intransitive.  Note that pMB + pBH 
+ pHM = 2.  This example is realizes the upper bound of  intransitive majority preference 
with transitive voters. 
 
Let μ be Lebesgue measure on Ω = [0, 1]n. We may formulate our problem as  a 
constrained optimization problem as follows:  
 
9) Find a density f on [0, 1]n  minimizing ∫Ω  ln(f(x)) dμ(x), such that for all {i, j}  
 

∫ Aij f(x) dμ(x) = pij;  Aij = {u | u(i) > u(j)}. 
 
Since f(x) is the Radon Nikodym derivative of a measure ν with respect to μ, we can 
write this as ∫Ωln(dν(x)/dμ(x)) dμ(x) which is recognized as the Kullback Leibler relative 
information of ν with respect to μ. 
 
Remark A distribution on n! expressing a set of pairwise preferences is not in general 
unique. It suffices to consider p12

 = p23 = p13  = 0.5. This set of pairwise preferences is 
expressed by the uniform distribution over all 6 permutations of {1, 2, 3} and also by the 
uniform distribution over (1,2,3)  and (3,2,1). 
 
Remark Solving (9) will induce correlations. This is easy to see in the case of 2 
alternatives. Let u(1) and u(2) be independent and uniformly distributed on [0, 1]. The 
distribution which minimizes relative information relative to this starting measure and 
which satisfies p(u(1) > u(2)) = 1, is a uniform density concentrated  on one side of the 
main diagonal. The induced correlation of u(1) and u(2) is 0.5. Writing p = p(u(1) > 
u(2));   p'= 1− p,   one can calculate the correlation between u(1) and u(2) in the minimal 
information distribution given p = p(u(1) > u(2)) as: 
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                                                    ¼  − (2/3 – p/3)(2/3 – p'/3) 
ρ(u(1),u(2)) =            ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯                       (10) 
                                 [(1/2 + p/9 − p2/9 – 4/9) (1/2 + p'/9 − p'2/9 – 4/9)]0.5

 
  
For example, p(u(1) > u(2)) = 0.9 induces a correlation of 0.271. We shall see that with 
more alternatives, paired comparison data sometimes induce much stronger correlations.  
 
Starting again with the uniform distribution on the unit square, we can ask which 
distribution has minimum relative information with respect tos this measure, satisfies 
P(X>Y)=0.9, and makes X and Y independent.  The solution on a discrete grid of the unit 
square can easily be found with the method of Lagrange multipliers.  The marginal 
distributions of X and Y are shown below: 
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3. Probabilistic Inversion for paired comparisons 
As we might guess from Lemma 3, determining the feasibility of (9) is hard.  We can also 
look at this as a problem of probabilistic  inversion.  
 
Define a mapping Cij: Ω → {0,1} as  Cij(u) = 1 if u(i) > u(j), and = 0 otherwise.  
Define C:  Ω → {0,1}n-choose-2  as the mapping  C(u) = (C12(u)….Cn-1,n(u)).    Let M denote 
the set of probability measures on {0,1}n-choose-2 whose marginal probability for "1" on the 
{i,j}-th coordinate is pij.   
 
We define a probabilistic inversion problem as: 
 
10) Find a measure λ on Ω, minimally informative with respect to Lebesgue measure,  

such that C(λ) ∈  M ;  where C(λ) is the "push through" of λ  onto {0,1}n-choose-2 :  
C(λ)(B) = λ(C-1(B)) for all B ⊆ {0,1}n-choose-2. 

 
In other words, we want to invert the function C at the set M . If an inverse exists, we 
want the inverse which is minimally informative with respect to Lebesgue measure. 
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To solve these problems we restrict to a (large) finite subset Ω' of  Ω.  Formulation (9) 
then solves for the probability mass on each element of Ω'. If  Ω' is small it is less 
representative of Ω and less likely to be feasible. Making Ω' large makes the problem 
numerically intractable.  
 
Formulation (10) admits 2 algorithms based on sample re-weighting. There are no 
constraints on sample size (other than hardware). A large sample from Ω is drawn and re-
weighted to (try to) satisfy the constraints.  When we re-sample this sample using these 
weights, we are sampling a distribution whose Radon Nikodym derivative with respect to 
the original sample distribution is given by the set of weights. 
 
There are two algorithms at our disposal.  Iterative Proportional Fitting (IPF) (Kruithof 
1937, Deming and Stefan 1940, Ciszar, 1975,  Feinberg 1970, Haberman 1974, 1984, 
Bishop 1967, Brown 1967)  and PARFUM (Parameter Fitting For Uncertain Models) 
(Cooke, 1994, Du et al  2006).  
 
A brief description of these algorithms is as follows. Start with a sample from Ω of size 
N, and assign each sample weight wo(k) = 1/N; k = 1,…N.  Let Σij  denote summation 
over the samples uk for which uk(i) > uk(j). For IPF, we adapt a current set of weights ws 
for each (ij) ∈ (n-choose-2)  according to 
 
 ws(k)  →  ws+1(k)  = (pij ws(k) /  Σij ws(k))   if  uk(i) > uk(j) 
 
 ws(k)  →  ws+1(k)  = ((1-pij)ws(k) /  Σji ws(k))   if  uk(i) < uk(j). 
 
We cycle through the constraints in this manner, repeatedly. Table 1 below illustrates the 
first three iterations in a simple case with n = 3 alternatives and  N = 5 samples from Ω. 
 

sample u(1) u(2) u(3) w0 w1   w2   w3   
1 0.1 0.6 0.2 0.2 0.4*0.2 / (3*0.2)= 0.133 0.4*0.133/0.2666= 0.200 0.7*0.2 /0.755= 0.185 

2 0.4 0.3 0.9 0.2 0.6*0.2 / (2*0.2) = 0.300 0.6*0.3/0.7333= 0.245 0.7*0.245/0.755= 0.227 

3 0.6 0.8 0.7 0.2 0.4*0.2 / (3*0.2)= 0.133 0.4*0.133/0.2666= 0.200 0.7*0.2 /0.755= 0.185 

4 0.3 0.4 0.5 0.2 0.4*0.2 / (3*0.2)= 0.133 0.6*0.1333/0.7333= 0.109 0.7*0.109/0.755= 0.101 

5 0.9 0.1 0.3 0.2 0.6*0.2 / (2*0.2) = 0.300 0.6*0.3/0.7333= 0.245 0.3= 0.300 

Table 1 3 IPF iterations, p12 = 0.6, p23 = 0.4 , p13 = 0.3 

If the  inversion problem is feasible, then the IPF algorithm converges to the distribution 
whose likelihood ratio relative to the starting measure is maximal. This is equivalent to 
minimizing the Kullback Leibler information relative to the starting measure (Csiszar 
1975). If the problem is not feasible, little is known about the behavior of IPF (Csiszar 
and Tusnady (1984) discuss a special case). 
 
For PARFUM we simply average the adaptations for one complete cycle. For the 
example in Table 1, the first PARFUM iteration would be (w1 + w2 + w3)/3. Formally, 
letting 1A denote the indicator function for the set A: 
 

 6



Cooke and Misiewicz, Discrete Choice with Probabilistic Inversion, presented at Mathematical Methods in Reliability, July, 2007 

ws(k)  →  ws+1(k)  =  
 
 

∑{i, j} ∈ n-choose-2 1{uk(i) > uk(j)}pij [ws(k) / Σij ws(k)] + 1{uk(j)>uk(i)}(1-pij)[ws(k) / ∑ji ws(k).] 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
                                                           (n-choose-2) 
 
The relative information of ws+1 with respect to ws converges to a constant; that constant 
is zero if and only if the problem is feasible. In that case PARFUM's stationary points are 
solutions. If the problem is not feasible, then PARFUM's stationary points minimize an 
information functional. Whereas IPF finds a 'maximally likely' distribution among all 
feasible distributions,  if this set is non empty, PARFUM finds a "minimally infeasible 
distribution" in case of infeasibility  (Du et al 2006). Infeasibility is quite common in 
these problems.  
 
4. Probabilistic inversion for other discrete choice problems 
 
Probabilistic inversion techniques can be applied more generally. A few possibilities will 
be illustrated. If there are a large number of alternatives, say 20 or more, then a full 
paired comparison study becomes tedious for the subjects. An alternative is to let subjects 
rank their top 5 and bottom 5 alternatives. From the subjects' assessments, each 
alternative is assigned a probability of being ranked first, second, etc.  Subjects may be 
offered smaller groups of alternatives and be asked to indicate a first or first and second 
ranked alternative from each set. The only requirement is a given utility function 
uniquely determines the choice behavior. We can then find a distribution over utility 
functions which mimics the discrete choice data. 
 
Another option arises if we wish to explain the choice behavior in terms the alternative's  
attributes. Suppose we have discrete choice data on N automobiles, and our goal is to 
explain the preferences in terms of the attributes Price (P), Reliability (R), Acceleration 
(A), Roominess (Rm) and Milieu Friendliness (MF).  We know how each car scores on 
each attribute but we don't know how these attributes combine to shape the preferences.  
 
One possibility is to derive utility values from the discrete choice data and regress these 
values on the attributes. This would have the advantage placing a well developed theory 
at our disposal. It has the disadvantage of requiring a number of alternatives that is large 
relative to the number of attributes.  In situations where that is not possible, a different 
approach could be explored. We adopt a functional form for the utility of automobile x, 
for example: 
 

U(x) = B1P(x) + B2R(x) + B3A(x) + B4Rm(x) + B5MF(x). 
 
where P(x) is the price of automobile x, etc. We then choose a starting distribution over 
(B1,…B5) and adapt this such that the resulting distribution over the utilities of 
automobiles expresses the discrete choice preferences. We may also impose constraints 
on the B's, for example that they are non negative and sum to one.  These options are 
explored in a forthcoming publication. 
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5. Example  
5.1  Energy Policies 
 
 A small paired comparison study was conducted at Resources for the Future regarding 
preferences for energy policies. The policies are:. 
 

1: Tax@pump: 1$ per gallon gasoline surcharge, to be used  for research in 
renewables 
2. Tax Break: (a) No sales tax for purchase of new hybrid or electric car;  (b)First 
car owners can deduct purchase cost from their income tax;  (c) No sales tax on bio-
diesel or ethanol (c) Tax credits for energy efficiency home improvements 
(insulation, double glass windows, solar panels) 
3. Road Tax:  Annual road tax 1$ per lb on all light duty vehicles, no tax rebate for 
driving to work or parking, to be used for research in fuel efficient vehicles and bio 
fuels. 
4. CO2  cap CO2 emissions cap on electricity generation. 
5. Subsidies for clean coal Give subsidies for clean coal with carbon sequestration 
to make coal competitive with natural gas. 
6.  Do Nothing 

 
The software packaged EXCALIBUR is used to solve the Thurstone models B (constant 
variance and correlation) and C (constant variance and independence) (Thurstone 1927). 
These are called probit models in the economics literature. When scaled to the [0, 1] 
interval there is scarcely any difference between these two. The Bradley Terry model is 
similar to the logit models for discrete choice, except that it is solved using maximal 
likelihood instead of least squares (Bradely 1952, Bradley and Terry 1953). For more 
background see (Torgerson 1958, David  1963, McFadden 1974 1974, Mosteller 1952) . 
 

  Item name Bradley-Terry 
Thurstone C 
(scaled [0,1]) 

Thurstone B 
(scaled [0,1]) 

Prob. inv.  
Mean values 
scaled to [0, 1] 

1 tax@pump 0.3426 1 1 1 

2 TaxBreak 0.181 0.8003 0.7912 0.7581 

3 RoadTax 0.1408 0.675 0.6714 0.6433 

4 CO2Cap 0.2054 0.8393 0.8386 0.8296 

5 CleanCoal 0.1008 0.5531 0.5508 0.5087 
6 DoNothing 0.0294 0 0 0 

Table 2: Bradley Terry, Thurstone models, and probabilistic inversion means values compared, energy 
Policies. 

 
The average probabilistic inversion utility scores are shown in Table 2, after scaling to [0, 
1]. They agree reasonably well with the Thurstone scores, suggesting that the Thurstone 
assumptions are reasonably compliant with the paired comparison data. The Bradely 
Terry scores are not scaled to [0, 1], as they are not invariant under affine 
transformations. 
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The utility scores are not independent, but the correlation structure is weak, as shown in 
Table 3.  

  1 2 3 4 5 6

1 1.0000 0.0531 0.0938 0.0136 0.0130 0.0447

2 0.0531 1.0000 0.0333 0.0378 0.0569 0.2567

3 0.0938 0.0333 1.0000 0.0181 0.0619 0.0898

4 0.0136 0.0378 0.0181 1.0000 -0.0055 0.0741

5 0.0130 0.0569 0.0619 -0.0055 1.0000 0.0989
6 0.0447 0.2567 0.0898 0.0741 0.0989 1.0000

Table 3: Correlation matrix of IPF utilities 

 
The densities and cumulative distribution functions of U1…U6 are shown in Figure 1 
below: 
Figure 1: Energy Policiey, densities and cumulative distribution functions of U1..U6

 
 
The small correlation values does not mean that the joint distribution is independent. The 
Cobweb plots shown in Figure 2 enable us to see higher order conditional dependences. 
The utilities for the six alternatives are plotted as vertical lines. On each sample one value 
is realized on each line; a jagged line connecting these represents one sample. Figure 1 
shows 1066 samples. Note that U1 and U6 are concentrated on higher and lower values 
respectively.  The "cross densities" above the midline between variables i  and i+1 are the 
densities of Ui + Ui+1. If Ui and Ui+1 are uniform and independent, the cross density is 
triangular.   Figure 2 shows the percentiles instead of the natural scale values of Figure 1. 
The marginal distributions are now uniform by definition, and the cross densities are 
nearly triangular. The dependence becomes visible when we conditionalize. If the 
variables were independent, the distributions of U5 and U6 would not be affected by 
conditionalizing on the first four utilities lying below their median. The result of this 
conditionalization is shown in Figure 3.  Note that the cross density is far from triangular, 
showing that U5 and U6 are not independent given that U1, … U4 are beneath their 
medians. 

 9



Cooke and Misiewicz, Discrete Choice with Probabilistic Inversion, presented at Mathematical Methods in Reliability, July, 2007 

Figure 1 Cobweb plots Energy Policies 

 
 
Figure 2 Percentile cobweb plots Energy Policies 

 
 
5.2 Open wiring failure: IPF 
A study of open wiring failure (Mazzuchi et al 2007)  involved 9 experts and 15 items. 
This case is of interest, as the IPF algorithm did not converge. The percentile cobweb for 
the IPF solution after 100 iterations is shown below. 
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Figure 3 Conditional percentile cobweb plot, Energy Policies 

 
 
Figure 4:  Percentile cobweb plot for Open Wiring with IPF ( 100 iterations) 

 
 
Note that the distribution is quite sparse, and that the cross densities indicate high 
positive correlation.  Non-convergence is shown by the proportions matrix, giving the 
target and realized proportions of preferring alternative i to j  (only part of the matrix is 
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shown). Large differences between the target and realized proportions are emphasized. 
The rather high correlations are shown Figure 6, where large correlations are emphasized. 
 
 
 
Figure 5:  Proportion Matrix for Open wiring, IPF (100 iterations) 
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Figure 6: Correlation  matrix, Open Wiring. IPF (100 iterations) 

 
 
 
5.2.1 Open wiring failure: PARFUM 
 
In such cases, PARFUM  does converge to a distribution over Ω that minimizes the lack 
of fit on each pairwise comparison, in the sense of relative information. The cobweb from 
the PARFUM solution is shown in Figure 7, the marginal utility densities are shown in 
Figure 8. 
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Figure 7: Percentile cobweb plot Open Wiring, PARFUM (100 iterations) 

 
 
Figure 8:Densities, Open Wiring, PARFUM (100 iterations) 
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Table 4: Scale values for Thurstone models, IPF and PARFUM, scaled to [0,1], for Open 
Wiring. 

Item Nr 
Thurston C
(scaled to 
0,1) 

Thurston B 
(scaled to 
0,1) 

IPF 
Mean 
(Scaled to 
0,1) 

PARFUM 
Mean 
(scaled to 
0,1) 

1 0,469 0,480 0,536 0,463 
2 0,807 0,777 0,681 0,825 
3 0,321 0,352 0,316 0,313 
4 0,476 0,482 0,388 0,489 
5 0,803 0,748 0,932 0,825 
6 1,000 1,000 1,000 1,000 
7 0,120 0,194 0,109 0,129 
8 0,531 0,507 0,485 0,560 
9 0,472 0,466 0,416 0,495 

10 0,513 0,509 0,332 0,531 
11 0,232 0,268 0,178 0,235 
12 0,221 0,228 0,090 0,216 
13 0,880 0,808 0,846 0,901 
14 0,000 0,000 0,000 0,000 
15 0,374 0,369 0,411 0,371 

 
 
Now there are strong differences between Thutrstone B and C, and with the mean values 
from the PARFUM solution. IPF is somewhat eccentric. 
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Figure 9: Proportion matrix  Open Wiring (PARFUM 100 iterations)                 

 
 
 
Conclusions 
We have seen that probabilistic inversion enables us to obtain utility values without 
introducing assumptions on the error term.  In fact, we obtain a distribution over a 
population of utility functions which optimally reproduces discrete choice data, given a 
starting distribution. The starting distribution may be chosen to be minimally informative, 
or may impose constraints, for example that the utility values add to 1. The IPF algorithm 
converges very quickly IF it converges. In the case of infeasibility, the PARFUM 
algorithm is shown to distribute the lack of fit more reasonably, and yields better 
distributions. 
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Figure10: Correlation matrix Open Wiring, PARFUM (100 iterations) 

 
 
 
Appendix 
 
Lemma 3. If n = 3 and ∀i,j,k = 1,2,3; i ≠ j ≠ k ≠ i,   pij  + pjk +  pki ≤ 2, then there exists a 
distribution over 3! that expresses the pairwise preferences. 
 
Proof: The permutation (1,2,3) gives rise to the inequality p12 + p23 + p31  ≤ 2 as a 
necessary condition (lemma 2). The permutations (2,3,1) and (3,1,2) give rise to the same 
condition. The remaining permutations, (1,3,2), (3,2,1) and (2,1,3) give rise to the 
condition p13 + p32 + p21  ≤  2. Using pij = 1-pji, the latter condition can be re-written as 1  
≤ p12 + p23  +  p31. Hence we must prove that  
 
3) 1 ≤  p12 + p23 + p31 ≤ 2 

 
is necessary and sufficient for the existence of a distribution over 3! expressing these 
preferences. Where a,b,c ∈ {1,2,3} consider the "potential circular triad" formed by the 
string: 
 
4) ab, bc, ca. 
 
Where "ab" corresponds to "a better than b". If we reverse the meaning of "better" and 
"worse" the following pattern is obtained: 
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5) ba,  cb,  ac 
 
This same pattern can be obtained by writing the potential circular triad (4) in reverse 
order,  ca, bc, ab, and switching the labels "b"and "c".  The probabilities of ab, bc, ca may 
be in any of six orders; the reader may verify that by order reversal and re-labeling the 
permutations can be brought into either format (4) or (5). Let us assume that  
 
6) p12  ≥   p23  ≥  p31. 
 
which corresponds to (4). We want that 1 ≥  p12 + p31; if this does not hold then 1 > p21 + 
p13.  Switching the meaning of "better", and  "worse", our pattern would switch from (4) 
to (5):  
 
7)   p13  ≥  p32  ≥  p21   with . 1 ≥  p13  +  p21.
 
Similarly, if we started with pattern (5), we could always arrange that either pattern (4) or 
(5) emerged with the sum of the most and least probable pair less than or equal to 1.  
 
Therefore, without loss of generality, we may assume that either (7) holds or: 
 
8)  p12  ≥  p23  ≥  p31  with   1 ≥  p12  +  p31.. 
 
 
The table below gives weights to the permutations which satisfy the constraints in these 
two cases, where A = p12 + p23 + p31 -1 ≥  0: 
 
 
 (123) (132) (312) (213) (231) (321) 
(7) A p12 –A 0 1-p12 – p31 0 p31
(8) p12 0 0 1-p12 – p31 A – p12 1 - p13
 
The reader may check that the constraints are satisfied, eg in case (7); 
 
 p13 = p(123) + p(132) + p(213) = p12 + 1 – p12 – p31 = 1 – p31.    � 
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