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ABSTRACT. The development of the Netherlands international airport Schiphol has been the subject of 
fierce political debate for several decades. One of the considerations has been the safety of the population liv-
ing around the airport, the density of which has been and still is growing. In the debate about the acceptability 
of the risks associated with the air traffic above The Netherlands extensive use has been made of statistical 
models relating the movement of airplanes to the risks on the ground. Although these models are adequate for 
the debate and for physical planning around the airport, the need has arisen to gain a more thorough under-
standing of the accident genesis in air traffic, with the ultimate aim of improving the safety situation in air 
traffic in general and around Schiphol in particular. To this aim a research effort is underway to develop 
causal models for air traffic risks in the expectation that these will ultimately give the insight needed. In ear-
lier papers we described the model, the underlying concepts and the mathematical principles used in building 
the model. In this paper the complete model is briefly described and a few examples are given of the use of 
this model in comparing the risk of alternative solutions for airtraffic problems in and over the Netherlands. 
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1 INTRODUCTION 
Third party risks of air transport have been a sub-
ject of political debate in the Netherlands ever 
since the crash of a Boeing 747 into an apartment 
building in one of the densely populated suburbs of 
Amsterdam in 1992 (Ale and Piers, 2000). This has 
lead to a continuous effort in developing and im-
proving the understanding of these accidents. 
Originally these efforts were aimed at developing 
models to describe the probability and conse-
quences of crashes based on statistical evaluation 
of similar accidents in the past. Such modelling is 
very limited  in its ability to investigate and evalu-

ate actions to reduce the probability of these acci-
dents. 

The Netherlands Ministry of Transport and 
Waterworks embarked on a project to model the 
accident genesis of air transport accidents with the 
aim of quantifying the risks of air traffic and 
supporting the development of further measures 
and methods to reduce these risks and improve 
safety (Ale et.al, 2005, 2006). The model is being 
developed by a consortium including Delft 
University of Technology (TUD), Det Norske 
Veritas (DNV), National Aerospace Laboratory 
(NLR), White Queen (WQ) and JPSC consulting. 

The original design was based on work done in 
preparatory projects on air traffic risk estimation 
(DNV 2002, Roelen et al 2000) and work done in 
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ckbone” of the model development. For each 
phase in a journey – taxi, take-off, en route, 
approach, landing and taxi – these categories of 
accidents are developed in event sequences, as 
preparation for inclusion into the BBN. The events 

in the event sequences are the broad parts of 
accident scenarios such as the loss of control or the 
decision to abort a take-off.  

Each event is defined such that it can go in 
only two d

the area of occupational safety, linking 
technological risks to management influences (Ale 
et al 1998, Papazoglou et al, 2002, 2003, Bellamy 
et al, 1999). This design called for the combination 
of three modelling techniques in a single model: 
Event Sequence Diagrams (ESD), Fault Trees (FT) 
and Bayesian Belief Nets (BBN). 

In Ale et al (2007) we described how the the 
ESDs and the FTs were converted into

bling the construction of the CATS model as 
one integrated BBN. This allows the use of 
distributions of values rather than point estimates 
wherever appropriate. It also allows a convenient 
and consistent handling of dependencies and 
interdependencies thr

es away the need for artificial transfer points in 
the model between ESDs, FTs and BBNs. 

In this paper we use the term accident as 
defined by ICAO (ICAO, 2002). Usually such an 
accident involves the end of a flight, but there are 
exceptions, such as a pass
walking trough the aisle, hitting his head and 
subsequently dying. 

As the model in principle was described in the  
the papers (loc cit). The uncertainties wer 
described in Ale (2008). In this paper we address 
particularly the advantages of using BBN as a 
modell

lication of the model. 

2 THE MODEL CONSTITUENTS 
The Causal model for Air Transport Safety 
(CATS) integrates models for technical failures 
such as event sequence diagrams, fault trees, event 
trees and models for human behaviour in a single 
BBN. 

All potential accidents are divided into accident 
categories,.which collect similar types of accidents 
with similar groups of causal factors for analysis in 
one part of the model. The accident categories 
chosen for the CATS project are defined in the 
NLR report (Roelen et al, 2000). They are: (1) 
Abrupt manoeuvre, (2) Uninhabitable cabin 
environment, (3) Loss of control (unrecovered), (4) 
Forced landing, (5) Controlled flight into terrain 
(CFIT) , (6) Mid-air collision, (7) Collision on 
ground, (8) Structural failure and (9) 
Fire/explosion. These Event

er direction is determined by the outcome of a 
fault- tree. For each event in each of the event 
sequences, a separate fault tree is developed. In 
this stage of building the model, states could only 
be failed or not failed. However later, when the 
fault-trees are converted to elements of the BBN 
multiple (degraded) states

lean logic was replaced by the probabilistic 
relationships which are used in the BBN wherever 
necessary. 

Where humans are involved in fault 
development then models for human operators are 
attached. In the current CATS models are being 
developed for three types of human operators: 
Pilots for

ing Air Traffic Management and Mechanics 
ng maintenance.  

Many of the model elements are repeated. For 
instance, although the pilots remain the same 
during the flight, they may be tired at the end of 
the journey. The weather could be different for the 
two ends of the flight. Separate instances of the 
pilot model, of the weather influence and 
parameters associated with airports are used when 
required. 

performi

The resulting BBN is partially depicted in 
Figure 4. The final outcome is the probability of an 
accident. In this BBN the interdependencies 
between different sections of the model, such as 
the relationship between engine failure, fue

introduced. 
over the event and fault trees starts to manifest 
itself. The effects of interdependencies on the final 
result can be modelled directly. 

No less useful is the fact that the states of the 
nodes can be distributed over many values and that 
this distribution can be continuous rather than 
discrete and that the edges of the BBN are – 
conditional – probabilities as will be shown later

3 DATA. 
A model such as CATS has large data require-
ments, the major problem being the exposure data. 
It is not sufficient to know how many failures of a 
certain piece of equipment are recorded in an acci-
dent database. It is necessary to also know how 
many failures of that same instrument occurred 
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 the model whenever possible. 
For each number in the model, the uncertainty 

in the estimate was expressed by a standard 
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deviation. The estimate and the standard deviation 
are used in the BBN to define the distribution of 
values or probabilities in the nodes of the BBN.  

When no data could be found, expert 
judgement was employed. For this the method 
developed by Cooke et al (EUR 18820, 2000) was 
employed to maximise the chance of unbiased 
estimates.  

For several entities in the model proxy entities 
needed to be established. For instance it is 

raining is 
imp

For the development of CATS in all a few 
be extracted or 

This not only helps future users of CATS in 
interpreting the results of an analysis, but also 
forms a basis for recording data in the future. By 
targeted recording, weaknesses and holes in the 
data structure can gradually be remedied.  

4 MAPPING OF VARIABLES 
As was mentioned above, the model was devel-
oped top down. From a set of typical accidents 
down to base events. The development was 

ipment did not fail at all. 
Data are gathered from ICAOs ADREP 

database (ICAO, 2002), from data made available 
by airlines and by airports. In addition work is 
underway to use data from the Line Operatio

ety Audit (LOSA) database (ICAO, 2002a; Lin, 
2008) to establish the performance of pilots with 
and without accidents. If the performance was – in 
part- influenced by the equipment or by 
circumstanc

ortant, but a definition of what a well trained 
pilot means is lacking. In CATS we use the days 
since last recurrence training as a measure for 
training. The correlation between this number of 
days and the pilots proficiency in handling aircraft 
and emergencies is developed from the data and 
from expert opinion sessions with pilots and 
instructors. These correlations were obtained in a 
way presented in Morales et.al. 2007.   

thousand numbers needed to 
estimated. The origin and a characterisation of the 
quality of the data are held in a separate database. 
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Figure 1: Fault-tree and BBN (see text) 



 
stopped at point where it was judged to be doable 
to develop probability numbers from either data or 
expert judgement. 

In many cases however this is not the way air 
traffic experts actually look at the air traffic 
system. They use in many cases aggregate notions 
such 
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par

plexity of airspace, good or adverse runway 
conditions and aircraft generation. These notions 
translate into changes in probabilities of many of 
the model constituents. Therefore a translation or 
mapping has to be made of the variables or notions 
common in the industry and the base events of the 
BBN. 

For instance runway condition influences the 
probability of incorrect application of brakes. In 
the ADREO database there is no definition of bas 
or good runway conditions.

ether it rained at the time of the accident 
Therefor in the database rain is a proxy for bad 
runway conditions. 

In the expert judgement exercise it is 
subsequently asked to what extent the probability 
of incorrect

erse runway conditions. 
In CATS the estimates from experts and the 

estimates from data are brought together in one 
system. Calculations are performed to establish a 
consistent picture between all the “known” 
quantities in the BBN by adjusting the “unknown” 
quantities. 

In the course of the development and testing 
several occasions have been identified where the 
total of the information is inconsistent. For 
instance experts expect an increase in probability 
of incorrect handling of the brakes on landing – all 
other remaining equal – under wet runway 
conditions of a factor of 10. The accident data 
suggest a factor of 7. Although it may seem that 
the difference is small and that an order of 
magnitude is an acceptable expert representation of 
a factor of 7, it should be realized that a fault 
sequence may have many of these steps, especially 
if management factors are taken into account. 
When there are a number of these differences in a 
single chain, the resulting estimate of the 
probability may exceed the maximum derived from 
the data. This may be caused by the uncertainty in 
the data or by the uncertainty in the estimate by the 
experts. The discrepancy between what experts 
expect of certain conditions

lly can be achieved may also be orders of 
magnitude. If the data are “real” and when 

decisions are made on the basis of expert 
judgments, which is often the case in the absence 
of quantified models, the expectations of safety 
measures, including those in the realm of resilience 
may be grossly overstated. 

In this stage of our investigation this issue has 
to remain unsolved. In the next stage of the 
developm

repancies between expectations, judgments and 
reported facts. The latter of these three is just as an 
issue as the former two. As we have reported 
earlier, there are many inconsistencies in the 
available data. Therefore it may be necessary to set 
up a program to observe a number of key 
parameters over time. This will give a better 
assessment of the real probabilities of underlying 
events. 

Even when the model is kept relatively simple 
there are many layers in the model when safety 
management systems are taken into account. 
Differences of a factor of 1.5 build up quickly to 
orders of magnitude. This may be seen as an 
argument against quantitative modelling as the 
accuracy of these models then cannot be better that 
orders of magnitu

loaded with uncertainties. The currently dom
way of making dec
of investments in safety, safety measures and 
safety management is mainly based on expert 
opinion. The dec

 bring what was expected is the unavoidable 
result, if these opinions consistently overestimate 
effects of change. 

5 ADVANTAGES OF USING BAYESIAN 
BELIEF NETS 

Using Bayesian Belief Nets as the modelling vehi-
cle has several advantages over using fault trees 
and event trees.  

First of all in BBNs the events do not have to 
be linked deterministically as in the trees. In trees 
the state of an event can only be a binary quantity: 
yes of no, true of false. This state is completely 
determined by the states of the events lower in the 
tree and the logic of the gates that connect them. 
Therefore, once the states of the base events have 
been defined, the state of the top event is known. If 
probabilities are assigned to the states of the base 
events, the probability of the corresponding state of 
the top event is the result of a straightforward but 
often computationally expensive calculation .

ticular, if there are repeated events in the FT 



 
then Boolean reduction must be applied before 
substituting probabilities for Boolean variables.  
Uncertainty analysis with fault trees is performed 

 

by sampling probabilities from the distributions of 
base events, in order to obtain a distribution of 
probabilities of the top event. Dependencies 
between the probabilities of occurrence of base 
events must be captured outside the fault tree. 

BBNs support both functional and probabilistic 
nodes. Roughly, this means that they can capture 
all functional relations within a fault tree and also 
dependences between probabilities of occurrence 

of base events.  If a fault tree is used with Boolean 
variables, then a BBN representation represents the 
gates as Boolean functional nodes. Repeated 
events are represented as functional identities. If 
Boolean reduction has been applied and the fault 
tree is in a form suitable for substituting 

BN is 
stra

These advantages come at a price, however. 
Whereas the fault tree shows the type of relation 
between events as an AND gate or OR gate, etc., 
the BBN merely shows that there is some 
relationship. One has to open the BBN and go 
inside to see the  type of relation. (Figure 1) 

Many studies struggle with the explanation of 
rare events or accidents that seem to be almost 
extraneous to the system at hand. The problem of 

explaining accidents and incidents in high 
reliability organizations has led to many metaphors 
such as the functional resonance metaphor by 
Hollnagel (2006). In these organisations it is often 
the combination of extreme values of parameters 
that is the cause of an accident. In a model using 

probabilities, then the transcription to a B
ightforward. In either case, dependencies 

between nodes can be modelled within the BBN.  

 

 
Figure 2: Importance estimation 

 
Figure 3: Sensitivity analysis 



 
BBN’s the distribution of values of parameters can 
be explicitly taken into account. Therefore it 
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which the answer is “known”. It is 
conclusion. Accident probability is 

do not have any other than stay out of the bad con-
ditions.. 
 

7 EXAMPLE 

The example presented builds on this notion. In 
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l factor of the accident: “The 
runway allocation system at Schiphol Airport 
resulted in strong crosswind conditions for the 
landing runway in use”. [RvTV 1999] 

It would be desirable if this limit could be 

particularly suitable for t
causation. Unfortunately it also makes the model 
less intuitive to use. More than in tree models the 
analyst has to ask herself whether she uses the 
model correctly given the question being asked. 

6 INITIAL ANALYSES 
In the example given in Figure 2, the distribution 
of accident probability and the distributions of a 
number of underlying factors is given in the case 
the aircraft generation is set to the most recent: 
generation 4. It can be seen that generation 4 air-
craft mainly are involved in accidents with a low 
probability. This is not the same as the statistical 
fact that generation 4 aircraft have a lower accident 
rate than the older generations of aircraft. Not only 
have generation 4 aircraft a smaller accident ratio, 
if they are involved in an a

be an accident of a rare or unusual or unex-
pected type. This re-inforces the rationale behind 
the development of CATS. It is indeed necessary 
to look at the more extreme values within the de-
sign range to detect combinations that will promote 
or even cause an accident. 

In another analysis the correlation of accident 
probability and weather resulted in the relationship 
between accident probability given a certain state 
of the weather and the weather. From the graph 
depicted in Figure 3 it can be seen that the weather 
is indeed the dominant factor influencing accident 

robabilitp
b
those cases for 
also a sobering 
dominantly influenced by a factor over which we 

particular we looked at the calculated difference 

between landings at crosswinds below 15 knots 
and above 15 knots. 

The speed of crosswind is a proxy for what the 
general pubic would characterise as lousy weather. 
Around Schiphol airport two situations with high 
crosswinds can be distinguished. One is a steady

m with a component perpendicular to the 
runway in use, and the other is unstable gusty wind 
with locally highly variable wind speeds and 
directions. In the latter situation the weather 
reports sent to the pilot usually are not capable of 
stating precisely what the wind will be at the 
runway during the few minutes that the airplane 
will be on the runway to complete its landing roll. 

For Schiphol, crosswind – or bad weather – is 
of particular importance. Bad weather is usually 
associated with high gusty winds predominantly 
from the West, while the direction of the runway 
system is predominantly North-South. Only one of 
the runways has an East-West orientation (09-27). 
When the wea

t-West runway only, the capacity is greatly 
restricted. Furthermore it is this runway that the 
unfortunate flight in 1992 tried to approach when it 
crashed on the city. Both from an operational point 
of view and from a political point of view it is 
important to avoid use of this runway. ICAO rules 
demand 15 knots as the limit for runway 
assignement.  

At night runway 09-27 is closed. This means 
that the airport is essentially closed when the 
crosswind exceeds the set limit. An aircraft veered 
off runway 19R on December 24th, 1997, while 
attempting to land with an actual crosswind of up 
to 35 knots. Runway 24, which w

lted in a practically negligible crosswind 
component as the wind direction wa

sed as it was close to midnight (and Christmas 

identified as a causa

relaxed without compromising safety. 

Table 1 relative probabilities of runway veeroff 

 



 
In this paper we address one of the scenario’s 

associated with bad weather: runway veer of. 
The model does not reveal any specific 

technical issue associated with bad weather 
conditions when on the ground. Two issues can be 
identified: the handling of the airplane during the 
landing roll and the way a thrust reverser failure is 
handled. From the data and from the expert 
opinions underlying the quantification of the crew 
behaviour model it can be derived that the 
probability of inappropriate handling of the aircraft 
and of the thrust reverser failure is more 
problematic during bad weather as during 
moderate weather. When the probability of a veer 
off during moderate weather is set to 1, table 1 
gives the relative probabilities of the other 
event/circumstance combinations. It can be seen 
that the probability of leaving the runway in a veer 
off is more than two orders of magnitude larger 
under  weather conditions with high crosswinds 
and rain. However, a wet runway seems to be a 
much larger influence than crosswind. Hence the 
difference between low or high crosswinds cannot 
be seen when the runway is wet.. The next step in 
the analysis will be to investigate to what extent 

 extremes of the distribution of 

the actual wind speeds on the ground may solve 
this problem for much higher average cross winds, 
and enable Schiphol to use its runways to capacity 
in worse weather than currently is safely possible. 

 

8 VALIDATION 
Validation of the CATS model will only be 
possible to the extent that changes in safety 
performance of the past resulting from design 
decisions in the past are calculated correctly. The 
available data are barely enough to populate the 
model with the required initial set. Independent 
quantitative validation is impossible. Therefore 
other approaches will be used to maximize the 
validity of the model, such as comparison with 
other existing models, expert and peer review on 
the equations, probabilities and distributions used. 
Once this validation has been done, the model will 
be used first as an additional input to safety 
decisions in the Netherlands aerospace industries.  
It took about 20 years between the conception of a 
causal model for chemical plants and the 
introduction in the legal system in the Netherlands 
(Ale, 2003). A similar cautious introduction of 
these sorts of techniques in the Air Traffic industry 
should be expected 

 

this is caused by the
wind speeds associated with bad weather and rain. 
If indeed this is caused by the high end of the 
spectrum, a more accurate and timely warning of 
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As was discussed ea
reliable system such as the airtraffic system there 
are not many accidents for which a single defined 
cause can be established. Correlation analysis may 
give a lead to combinations of more extreme val-
ues of parameters is the system, that could cause an 
accident. A system was developed which displays 
the distributions of parameters associated with a
certain selection of values of other parameters or 
variables. 

9 CONCLUSION 
The work that started three years ago resulted in a 
single Bayesian Belief N

bability of an air traffic accident. The first ap-
plications indicate that the model functions cor-
rectly and produces results that are in accordance 
with observations and expert insight. 

However CATS or similar quantitative meth

facts, opions, judgem
help to improve our insight into what can make air 
traffic safer. It also suggests a pathway to a further 
development of m

Expected an
be carefully evaluated in the next period to gain 

nfidence in this new way of building a causal 
del. For the time being the results and perform-

ce of the model exceed the initial expectations. 
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