The Geneva Papers, 2012, 37, (206-227)
© 2012 The International Association for the Study of Insurance Economics 1018-5895/12
www.genevaassociation.org

Explaining the Failure to Insure Catastrophic Risks
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It has often been observed that homeowners fail to purchase disaster insurance.
Explanations have ranged from behavioural biases to information search costs. We show
that the decision to forego disaster insurance may be quite rational. Solvency-constrained
insurers are required to have access to enough capital to cover a particular percentile of
their aggregate loss distribution. When insuring risks with loss distributions characterised
by fat tails, micro-correlations or tail dependence, insurers need to charge a price that is
many times the expected loss in order to meet their solvency constraint. Homeowners,
facing a budget constraint and a constraint that their utility with insurance exceeds that
without it, may find the required loadings too high to make insurance purchase an optimal
decision.

The Geneva Papers (2012) 37, 206-227. doi:10.1057/gpp.2012.14

Keywords: catastrophe; insurance; fat tails; dependence

Introduction

It has often been observed that individuals fail to purchase disaster insurance,
even when offered at rates that are subsidised or appear well within the range that a
consumer would pay given reasonable levels of risk aversion.! This observation is
frequently explained with reference to behavioural heuristics or biases that prevent
individuals from making rational decisions about low-probability, high-consequence
events.” These biases, or lack of information, could make individuals’ perceived risk
differ from the actual risk.> A related explanation that has been given is based on
bounded rationality: individuals have limited information on loss probabilities and
improving their information involves transaction costs that they may not believe are
worth incurring.*

While all these factors play a role in the demand for insurance, we show in this
paper that the failure to purchase insurance for catastrophic risks could also be
rational—that is, insurance purchase may not be optimal for catastrophic risks even
when individuals have perfect information about the risk and are not subject to
any biases when evaluating low-probability risks. By “catastrophic risks”, we mean
those characterised by occasional severe losses and also by dependence. In particular,
we focus on three characteristics of loss distributions: fat tails, micro-correlations and

! For example, Palm (1995), Dixon et al. (2006), Powell (2006).
2 For example, Johnson et al. (1993).

* Kunreuther (1996).

4 Kunreuther and Pauly (2004).
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tail dependence.” With fat-tailed loss distributions, the probability of ever larger
damages decreases more slowly than for thin-tailed distributions to which we are
accustomed. Micro-correlations are small, positive, average correlations between risks
that can have a large impact if such risks are aggregated. Tail dependence refers to
the tendency of extreme losses to occur together. These three characteristics of
catastrophic risks all combine to create, with low probability, the potential for enor-
mous losses.

Insurers are often managed to meet solvency constraints. This means they must
have access to enough capital to meet a certain level of loss, say the 99th percentile of
the insurer’s total loss distribution. This solvency constraint may be determined by
regulation, rating agencies or internal firm decisions. For catastrophic risks, firms face
an inter-temporal smoothing problem of trying to match regular premium payments,
insufficient in any given year to cover a large loss, with the need for enormous sums of
capital in the catastrophic years.® This need to access a large amount of capital to
cover a catastrophic loss drives up premiums. We show here that, in fact, the premium
could be so high that it would not be rational for a consumer to purchase the policy.

The next section of the paper discusses the particular aspects of catastrophic losses
that we are considering in this paper. The subsequent section presents our model of the
property insurance market and the homeowner’s insurance decision, along with our
main findings. The penultimate section discusses policy implications and the final
section concludes.

The nature of catastrophes

Risks that people colloquially term “catastrophic” are usually characterised by fat
tails and dependence. With fat-tailed loss distributions, the probability of an event
declines slowly, relative to its severity. Simply, very large losses are possible. The
precise mathematical definition of fat tails is rather subtle,” but a working notion is
that damage variable X has a fat tail if, for sufficiently large values x, the probability
that X exceeds x is kx~%, for some constants o, k > 0. The variable « is referred to as the
tail index and it roughly governs how fat the tail of the distribution will be.® Many
natural catastrophes, from earthquakes to wildfires, have been shown to be fat tailed.’

Catastrophic risks are also dependent and this dependence can take a number of
forms. First, catastrophic risks tend to be spatially correlated. When a disaster hits
a region, a large number of structures are all affected simultaneously. In practice, this
correlation declines with the spatial distance between policies. When it declines to zero, it
allows insurers to diversify by holding policies in different regions. Unfortunately, “close
to zero” does not count as zero for diversification benefits. Even small, positive, average
correlations among policies, which we term micro-correlations, can cause problems when

5 Cooke and Kousky (2010).

® Jaffee and Russell (1997).

7 Resnick (2007).

8 For more on the technical details of fat-tailed distributions, see Cooke and Nieboer (2011).
° For example, Schoenberg e7 al. (2003), Newman (2005), Holmes ez al. (2008).
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risks are aggregated. This is because the correlation between aggregations of weakly
correlated variables balloons.'” Thus, for example, if losses across lines of business are
weakly correlated, the correlation between portfolios of such policies could be large.

Catastrophes, when they occur, also often impact multiple lines of business for an
insurer—for example, homes may be damaged, cars may be damaged and businesses
may be hurt, all simultaneously. This can introduce another type of dependence: tail
dependence. Tail dependence refers to the probability that one variable exceeds a
certain percentile, given that another has also exceeded that percentile. More simply, it
means bad things are more likely to happen together. This has been observed for lines
of insurance covering over 700 storm events in France.'' Different types of damages
can also be tail dependent, such as wind and water damage,’ or earthquake and fire
damage. We show here that when insurers hold a portfolio where the loss distribution
is characterised by any of these three phenomena, it requires a solvency-constrained
insurer to have access to a large sum of capital that in turn necessitates loadings that
may be beyond what a consumer is willing to pay.

The Model

The optimisation problem of a solvency-constrained insurer can be modelled as
follows. They hold policies indexed by i, across lines of business indexed by j, and
regions indexed by s, where o denotes the coverage level chosen by the policyholder.
Let a=) > > o be the portfolio of policies—the total exposure—held by the insurer.
Let total claims in one year for the insurance company be given by C,=> > "> ¢;s. An
insurer has access to some level of assets to support losses, given by 4, and may also
purchase reinsurance, K, at cost r per dollar covered.'> We ignore marketing and
transaction expenses here, although obviously prices will need to be high enough to
cover these costs, as well as to provide a fair rate of return on equity (while these are
important considerations, we suppress them here to focus attention on the impact of
the loss distribution on pricing). For a solvency-constrained insurer, the firm cannot
spend more on claims in a given year than the sum of total yearly revenue (with the
price of insurance per dollar coverage given by ¢, total revenue is ) > 3> q;0), assets
and reinsurance. Following Kleindorfer and Klein,'? expected profits for the insurer,
E[Il(g;s, A, K)], are thus given by:

E[H(qu‘v Av K)} = Z Z Z qjs%ijs — rK

1
— EMin(Cy, Y > > g1 — 1)K + A)). W

19 This is seen by calculating the correlation between two portfolios of N policies, with the average
covariance between the individual policies given by ¢ and the average variance give by ¢’=(N*-¢)/
(N + N(N—1)c). This goes to 1 as N— 0.

! Lescourret and Robert (2006).

12 This is, of course, a very simplified construction of reinsurance. For alternate forms of reinsurance, see
Ladoucette and Teugels (2006).

13 Kleindorfer and Klein (2002).
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The insurer manages aggregate risk to keep the probability of insolvency below
some target level 1.'* F(Co) is the cumulative distribution function of claims an insurer
faces for a given portfolio. The insurer will then maximise expected profits subject to
the following constraint:

Pr(C,> > > > g + (1 — 1)K + A) <. (2)

Define S, ; to be the required capital, or surplus, the insurer must have to cover
claims that will occur with probability 1—4 when holding a given portfolio «. Then:

F'(1—=2)=S,,. (3)

If the loss distributions of the lines or policies in the portfolio are characterised by
fat tails or dependence, more surplus will be required than if they were thin-tailed and
independent, since the upper quantiles of the inverse of the aggregate claims
distribution (F~') increase in the presence of fat tails and dependencies. This can be
seen in numerical simulations.

Simulating required surplus and the impacts on pricing

We simulate an insurer’s portfolio when holding risks characterised by dependence
and/or fat tails. To do this, we loosely base the loss distribution on the distribution of
yearly flood insurance claims in Broward County, Florida. These claims are roughly
lognormally distributed, with a ratio between the median and the 95 percentile of 7.
We standardise the median to 1; the mean is then 2. First, consider an insurer holding
100 independent policies, all with this same loss distribution. The grey curve in
Figure la depicts the required surplus for a given percentile. The sum of independent
variables is nearly normal with a 99th percentile of 302. This means that for an insurer
managing its portfolio to keep the probability of insolvency below 0.01, they must
charge 1.51 (302/200) times the expected loss per policy (discussed further below) to
have sufficient capital (the scale of losses here is irrelevant as what we are ultimately
concerned about is the relative amount of required surplus to expected loss).

Now consider what happens to the required surplus when the policies have a small,
average, positive correlation of 0.04. We chose this value—although any small positive
correlation would produce a similar result—because it was found that flood insurance
claims in the U.S. at a county level had this average correlation.’ This pair-wise
correlation among 100 variables is shown in the black curve in Figure la. With these
positive, global correlations, the mean is unaffected, but the 99th percentile is now 434.
The insurer needs more capital than when policies were independent and now must
charge 2.17 (434/200) times the expected loss to guard against the 1-in-100 year event.

!4 Here, this probability is taken to be exogenous, perhaps set by capital regulations. For instance, in the
European Union, beginning in 2012, insurance companies will be regulated through the Solvency 11
regulations. The Solvency Capital Requirement component of the regulations takes a Value-at-Risk
approach, whereby an insurer must keep the probability of insolvency below a certain level, currently set
at 0.5 per cent.
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Figure 1. Cumulative distribution functions for sums of 100 (a) and 200 (b) independent and micro-
correlated lognormal variables.
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Figure 2. Required multiplier for micro-correlated portfolio of 10,000 normal variables.

To show how quickly tiny, positive correlations between policies can become
pernicious, consider Figure 2. In this figure, we simulate a portfolio of 10,000 policies,
each with a yearly 0.01 probability of a 10,000 unit loss occurring and a 0.99
probability of no loss. We again assume the insurer requires capital equivalent to the
99th percentile of the aggregate loss distribution. The horizontal axis shows the
average correlation among policies, increasing from 0 to 0.05.'° The vertical axis
shows the multiplier of the expected damages that the insurer must charge (in this
simplified simulation) to achieve the necessary level of capital. As the graph shows, the
multiplier increases fairly quickly for only small increases in the average correlation.

15 Note that for the correlation of groups of counties, to be, say, 0.04, as used earlier, the correlation
between the individual policies must be much lower.
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Figure 3. Cumulative distribution functions for sums of 100 and 200 micro-correlated and tail-dependent
lognormal variables.

When policies are independent, expanding an insurer’s portfolio can help reduce the
amount of capital they need to hold. Consider an insurer holding just one policy, again
roughly corresponding to Broward County, as mentioned above. With an expected
loss of 2, in order to cover the 1-in-100 loss event, the insurer would require 14.8 units
of capital, which is the 99th percentile of the lognormal distribution. That would
require charging 7.4 (14.8/2) times the expected loss. In other words, neglecting profit
and transaction costs, the insurer would have to charge 7.4 times the actuarial fair
price to meet their capital requirements. If the insurer can sell 100 similar policies, and
if the claims from these policies are independent, then the expected loss from all 100
policies is 200, and the capital requirement is 302, giving a multiplier of 1.51 (302/200).
This demonstrates the benefit of pooling the risks of these 100 policies; indeed, this is
what makes insurance possible. The grey curve in Figure 1b shows the benefits of
further aggregation. This is the same simulation as the grey curve in Figure la, except
for 200 variables, as opposed to 100. Here, the 99th percentile is 534, requiring the
insurer to charge 1.34 (534/400) times the expected loss, less than when they only held
100 policies.

These benefits of aggregation can also be obtained, although to a lesser degree,
when policies are micro-correlated. The black curve in Figure 1b shows 200 policies
with the 0.04 mutual correlation. Now, to cover the 99th percentile, the insurer needs
840 units of capital, requiring a fair price multiplier of 2.10 (840/400), again, less than
with 100 policies (2.17), but not as much of a decline in price as when the policies were
independent.



The Geneva Papers on Risk and Insurance—Issues and Practice

212

09 // v

/ d 100 policies. 0.04 correlation [
08 /
/ / 200 policies. 0.04 correlation [Jij
0.7 ,-‘

08 '

05 ff r
04 /
03 J "
02

0.1

17.8 116 214 312 41 509 607 705 804 902 1E03

09 ; Pl 100 policies, tail dependent |
58 / / 3 200 policies, tail dependent [l
0.74 / /

061 / ,

051

0.4
03]
024/ !

0.14

0 " +
178 118 214 312 am 509 607 705 804 902 1E03

Figure 4. Cumulative distribution functions for sums of 100 and 200 micro-correlated (a) and tail-
dependent (b) Pareto (2) variables.

We next consider the impact of tail dependence. Tail dependence can be imposed
on variables by using copulas. Copulas were developed to separate the effect of
dependence from the effect of marginal distributions; a copula is a distribution on
the unit square with uniform marginal distributions.'® The previous simulations
used the normal copula, which has no tail dependence. Figure 3 shows the
cumulative distribution functions for sums of 100 and 200 lognormal variables with
the same micro-correlation of 0.04, but now joined with the tail dependent Gumbel
copula. The 99'" percentiles are now 737 and 1,480, respectively. This requires fair

1 For more on copulas and dependence modelling, see: Nelson (1999), Kurowicka and Cooke (2006), and
Kurowicka and Joe (2011).
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Table 1 Expected loss multipliers required to meet the 0.01 solvency constraint
Sum of 100 Sum of 200
Lognormal (standard deviation= 3.5, mean=2)
Independent 1.51 1.34
Correlated (0.04), no tail dependence 2.17 2.10
Correlated (0.04), tail dependence 3.7 3.7
Pareto (tail index=2, mean=1)
Independent 1.77 1.49
Correlated (0.04), no tail dependence 2.45 2.31
Correlated (0.04), tail dependence 4.43 8.69

price multipliers of 3.7 (737/200) and 3.7 (1,480/400). The additional pooling of
holding 200 policies, as opposed to 100 policies, has no effect at all on the required
price in the presence of tail dependence. The distribution functions are also
decidedly less normal.

Finally, we consider the impact of fat-tailed loss distributions on required surplus.
In Figure 4a, the individual variables are assigned a fat-tailed Pareto distribution
with mean 1 and a tail index of 2, indicative of infinite variance—a very fat tail.
If these policies are independent (not shown in a figure), then for 100, the required
fair price multiplier is 1.77 (recall the mean of these policies is now 1). For 200 policies,
the required multiplier drops slightly to 1.49, thus, again, aggregation can help reduce
the required costs. These benefits of aggregation still accrue when the fat-tailed
variables are micro-correlated, but not as strongly. Figure 4a shows the same Pareto
variables with a micro-correlation of 0.04 but without tail dependence. Here, the
multiplier for 100 policies is 2.45 and for 200 policies, it is 2.31. These benefits of
aggregation disappear, however, when the insurer is faced with policies that are both
fat-tailed and tail dependent. When the micro-correlations are realised with the
Gumbel copula, shown in Figure 4b, the multipliers for sums of 100 and 200 variables
are 4.34 and 8.69, respectively. In this case, aggregation actually makes things worse
for the insurer.

The required multipliers for sums of 100 policies are summarised in Table 1. These
simple simulation results are not out of line with empirical research on this topic.
A study undertaken by Wharton’s Risk Management and Decision Processes Center
found that premiums for insuring large-scale disasters can be five to ten times higher
than the expected loss.'” It is important to keep in mind that this finding was for highly
concentrated insurers in Florida and thus is not broadly applicable, but is an example
of insurance for a catastrophic risk.

Table 1 clearly shows how fat-tailed or dependent loss distributions can be more
expensive to insure than non-catastrophic risks. It also shows some interesting findings
regarding the benefits of aggregation. When aggregating independent policies, the

17 Kunreuther et al. (2009).
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multiplier always decreases. For lognormal policies, it decreases when aggregating
micro-correlated, tail-independent policies, but only slightly; the benefits of aggrega-
tion are not as strong. All benefits of aggregation are lost when the policies are tail
dependent. When facing policies that are fat tailed (simulated here as Pareto
variables),'® there is still some benefit to aggregation, but if the policies are fat tailed
and tail dependent, aggregation actually requires an increase in price. This latter
finding has been explored by Ibragimov et al.'®

Impact of higher multipliers on demand

In the case of catastrophic insurance lines, maintaining the same solvency probability
thus means increasing premiums, either to raise capital directly to meet the surplus
requirement or to finance the purchase of reinsurance. Two potential difficulties
emerge. First, regulators may limit the price of insurance. It has been noted by
insurance scholars that state insurance commissioners in the U.S.—who have the
power to regulate premiums—tend to weight low prices and availability of policies
more heavily than solvency considerations or management of catastrophe risk.?° If
insurers cannot charge prices that they feel are sustainable, they will leave the
market.?' This creates the need for so-called residual market mechanisms. These are
programmes set up by states to provide insurance policies to those people who cannot
find a policy in the voluntary market.”> Some residual market mechanisms have
underpriced insurance, perhaps out of ignorance of the fat-tailed or dependent nature
of a risk, due to a lack of foresight, or from political pressure, creating enormous
exposures for some states.

Second, and more problematically for insurance markets, even if the price of
insurance is not capped by regulators, homeowners might not be willing to pay the
higher premiums required for catastrophic and dependent lines. Consider i=1, ..., N
policyholders in a given region or line of business. We focus on a homeowner’s
decision. Each year homeowner i faces a potential loss of L; An insurer offers
coverage to homeowners at a rate of ¢ per dollar of coverage (rates may vary across
lines or regions, but individual-specific rates are not possible). The basic theoretical
model of an individual’s decision to purchase insurance® is formalised in most
microeconomics and decision analysis textbooks. Adapted to our current set-up, let p
be the yearly probability of disaster for each individual, let w; be the individual’s total

'8 In fact, the Pareto variables used in the simulation here have infinite variance. Though the empirical
variance and correlations are defined in every sample, their theoretical values are infinite and this
means that the empirical values are unstable. The micro-correlations are realised with rank correlations
and are always finite, but all second moment properties of these distributions are unstable. Hence the
numbers for the Pareto (2) variables may change substantially when simulations are repeated with
other random seeds.

19 Ibragimov et al. (2009).

20 Klein and Wang (2007).

21 Klein (2005).

22 See Kousky (2011).

2 For example, Mossin (1968).
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wealth, let ¢ be the price per dollar of coverage and let o; be the amount of dollars of
insurance coverage purchased. The expected utility (EU) for a potential consumer of
insurance is then given by:

EU=(1-p)-ulwi—a;-q)+p-ulwi—a;-q— L+ a). 4)

A risk-averse homeowner chooses o by maximising expected utility (subject to the
constraint that ¢;>0), giving the first-order condition (where o* is the optimal amount
of insurance purchased)**:

—q-(1—p) - (wi—a-q) )
+p-(1—¢q)-u(wi—ai-q—Li+o)=0.
Assume insurance is priced actuarially fairly (ignoring transaction and marketing
costs), such that p=q. In this case, we get the well-known result that a risk-averse
consumer, facing actuarial rates, will fully insure: of=L,.
To get a first-order estimate of the impact of the price of catastrophe insurance on
demand, assume the homeowner’s utility follows the common constant relative risk
aversion function, with w indicating wealth (and now suppressing the subscript i):

7177,
U="""ify#£1
I—n
and
U=Inw) ifn=1 (6)

The parameter 7 is the coefficient of relative risk aversion. It governs the curvature of
the utility function, and gives an indication of aversion to risk. Higher values for 5
indicate higher levels of risk aversion.

Insurance is not an all or nothing decision. The homeowner can choose to partially
insure and when ¢ > p, from Eq. (8), a risk-averse homeowner will choose a* < L.?*> For
simplicity, however, we assume that the homeowner chooses «*=L, and that the loss is
equal to the value of their home. We relax this assumption below. The homeowner
faces two constraints. The first is that utility with insurance must be greater than utility
without insurance or:

Uw—L-q)=(1—p)-Uw)+p-Ulw—L). (7)

Note that, when the homeowner fully insurers, their total wealth is the same with or
without a disaster, since loss is fully compensated by the insurance company. Let
g=x*p. This allows us to focus on x, or the multiple of the actuarial fair price that a

24 This equation holds with equality for risk-averse consumers since, in that case, o' (w—L) >/ (w).

5 This can be seen by rearranging the first-order condition in Eq. (9) to give: o/ (w—a}, q)=[p,(1—qy)/
qs(1—p)ld (w—0; sqs—L; + 0 5). For ¢> py, the term in the brackets on the right-hand side of the equation
is less than 1. This implies that u'(w—o; yq,—L; + o 5) >t (w—a, ). Since for a risk-averse consumer, ' is
decreasing in wealth, we have: w—o; ,q,—L;+ o; ;< w—of gy = aX < L.
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homeowner would be willing to pay for insurance. Also, set w=1 and let L thus be the
fraction of wealth that the homeowner’s home represents, which we assume is the same
as the fraction of wealth at risk. Making these substitutions and solving for x gives
what we term the utility constraint. For n=1, this is**:

(8)
And for =2, this is:

1 (1-1L)
x< — .
L-p L-p-(p+(1-p)-(1-1L))

©)

Second, the owner cannot spend more on insurance than their disposable wealth,
which is simply their total wealth, w, minus the value of their home, which is
equivalent to the potential loss they face. Again, set g=xp and w=1. Then, their budget
constraint is given by:

L-xp<l— L. (10)
Solving for x gives:
(1-1L)
<—7. 11
ST -p (1)

This budget constraint is binding only if a// disposable income is spent on insurance,
which, of course, is unrealistic. To avoid model complexity, we leave the constraint in
the above form. A numeraire good could be added to the model to account for other
purchases; this would have the effect of decreasing the amount of income available for
purchasing insurance. As seen in the figures below, when homeowners have lower
wealth, they are more likely to purchase affordable insurance; however, if they have
more income apart from the asset of their home, they will have a lower percentage of
their wealth at risk, and they will have more funds to spend on insurance. Previous
theoretical work has shown the role of changes in income to be ambiguous. Holding
all else constant, an increase in an individual’s wealth will have no effect on demand if
insurance is actuarially fair, such that p=¢g. We are examining, however, the high
positive loadings associated with catastrophe coverage. In such cases, whether
increases in income lead to more or less demand for insurance depends on whether an
increase in income increases losses and on whether the consumer has increasing or
decreasing absolute risk aversion.”” Insurance could be an inferior good if risk

26 Note that if L;=0, then this expression is undefined. Using L’Hépital’s Rule, the limit of this expression
as the loss approaches zero is 1. This makes intuitive sense. As the loss gets smaller and smaller,
homeowners will be willing to pay less and less above the expected loss. At the limit, x goes to 1,
indicating an unwillingness to pay more than the expected loss (it just so happens that at a loss of zero,
the homeowner would not actually insure anyway).

27 Cleeton and Zellner (1993).
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Figure 5. Homeowner budget and utility constraints (n=1); p=0.1 (a) and p=0.01 (b).

aversion decreases with wealth and the loss remains constant.”® If insurance were
inferior, higher-income individuals would be observed self-insuring. An empirical
estimate of the income elasticity of earthquake insurance (a catastrophic risk) found
the relationship positive but relatively inelastic at 0.77.%°

For a given probability of disaster, we can plot the two constraints to determine the
range of values of x and L for which a homeowner would insure. This is shown in
Figure 5a for p=0.1 and Figure 5b for p=0.01. A homeowner will only insure when
values of x (y-axis) and L (x-axis) are below both curves. As the probability of a
disaster decreases, the income constraint relaxes, as seen in Figure 5b, since insurance
is cheaper for lower probability risks for a fixed loss level.*® It is clear that insurance is
not rational for most homeowners at multiplier levels that are not terribly high. A
more risk-averse homeowner (y=2) is shown in Figure 6. With greater risk aversion,
the individual is willing to insure at higher multipliers. For p=0.1, insurance with a fair
price multiplier of 3 is attractive if 76 per cent of the wealth is at risk, and for p=0.01, it
is attractive for homeowners whose fractional wealth at risk is between 68 per cent and
96 per cent.

Figure 7 shows our constraints also as a function of p. For a homeowner with more
wealth apart from their home, the fraction at risk will be lower and thus the budget
constraint will be less binding. On the other hand, the utility constraint becomes more
binding since wealthier homeowners will prefer to self-insure. Note that the low slope
of the utility constraint for multipliers in the region 1 to 3 means that a small change in

28 Mossin (1968) and Rees and Wambach (2008).

2 Athavale and Avila (2011).

30 As the probability decreases, the utility constraint shifts out very slightly. This is because even though as
the probability decreases, a homeowner is willing to pay less for insurance; the graphs in Figure 5 are
plotting x, not q.



The Geneva Papers on Risk and Insurance—Issues and Practice

218
10 10
5 8 5 8 i
=1 a
g g |
£ 6 £ i
3 S |
= =
S 4 L 4 |
s 8 :
: : ]
0 02 04 06 08 1 0 02 04 06 08 1
utility constraint utility constraint
budget constraint budget constraint
- e s = s s = s m’ultlp]j_er=3 - . & = s s = = = m'l]ll'.ip]lel“=3

Figure 6. Homeowner budget and utility constraints (n=2); p=0.1 (a) and p=0.01 (b).
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Figure 8. Optimal coverage as a function of the multiplier and wealth at risk (y=1).

this multiplier corresponds to a large shift in fractional wealth at risk for which

insurance is rational. Similar results emerge for other risk-averse utility functions.
Now, we relax the assumption that a homeowner must purchase full coverage and

examine how optimal coverage levels vary with x, p and L. In this case, for n=1:

. xp(l =L)+p(Lxp—1)
t e xp(xp —1) ' (12)

In Figure 8, it is clear that the coverage level chosen decreases dramatically as the
multiplier increases, suggesting that less than full coverage may be common for
homeowners insuring catastrophic risks.

Less than full coverage can be achieved by choosing a lower coverage level or a
higher deductible. Deductibles have the effect of lowering the probability of claim
triggering events and lowering the fractional wealth at risk.>' Insurers may prefer
higher deductibles and lower coverage levels, as well, since this can limit an insurer’s
total exposure or their possible loss at any percentile of the distribution. Such
limitations may thus be one component of managing catastrophe risk (the role of
diversification and possible policy interventions are discussed in the next section).
Lower premiums would be able to be offered for lower exposure to catastrophe risk. It

31 Setting total wealth equal to 1, let & be the expected payment for damages beneath the deductible limit, as
percentage of wealth. Effective wealth becomes 1—4, and effective insurable loss is L—4. Since L< W, L/
W>(L—-9)/(W-90). For claims caps the argument is similar, except that ¢ then denotes the expected
payment for losses above the cap.
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is worth noting that one of the primary uses of high deductibles, however, is that they
limit the need of the company to process many small claims; part of these transaction
cost savings can then be passed on to the insureds in terms of lower prices for policies
with high deductibles.

Figures 5-8 show that our risk-averse homeowner will not pay much more than a
couple times expected loss for disaster insurance—and this is when a very large portion
of wealth is at risk. Although this model is overly simple, it makes plain that for
catastrophic risks that require high multipliers, failing to purchase insurance or under-
insuring may be a rational consumer response. While a great deal of literature lays the
blame for failing catastrophe insurance markets on the irrationality of those at risk,
this simple analysis suggests that that may not be the case. The extra loading required
to cover catastrophic lines can be substantial since for these types of risks, bundling
policies does not offer the benefits it does for thin-tailed and independent loss
distributions. In some cases, therefore, insurance does not provide enough of a benefit
to homeowners to pay the required loadings, or becomes too expensive as homeowners
bump against their budget constraint. In these situations, no amount of homeowner
education or outreach activities will increase demand.

Of course, the situation will be exacerbated by the well-documented biases
individuals exhibit when evaluating low-probability risks.*> In the simple model
presented here, homeowners are assumed to know the probability and loss they face
with certainty. In reality, these are often unknown and in forming subjective
assessments about low-probability risks, homeowners have been found to exhibit a set
of biases, such as treating low-probability risks as zero-probability and being overly
optimistic about losses.*® For fat-tailed risks, homeowners could also be estimating
expected loss based on only a few years of their past experience. If these were years
with low losses, it will lead them to incorrectly believe that premiums should be low.
There is already a documented bias towards individuals assuming that small samples
are representative®®; the impact of this will be even more pernicious with fat tails.
These types of biases can lead to sub-optimally low levels of insurance, but the simple
model here suggests that a bigger problem may simply be the inherent difficulty in
insuring catastrophic risks due to the required loadings.

Our simple model agrees with one empirical study that the price elasticity of
catastrophe insurance is much greater than for non-catastrophe insurance.>> Empirical
estimates of the price elasticity for disaster insurance are difficult, however, since risk
and price are positively correlated. Athavale and Avila?® address this with a two-
equation model for earthquake insurance in Missouri and find that once the impact of
risk on price is accounted for, demand is inelastic with respect to price. This is a region
with no recent extreme earthquakes and not a huge variation in price apart from risk.
As the authors note, low demand could be also be influenced by expectations of relief
for catastrophic events, although empirical evidence on this is limited. Theoretically,

32 For example, Kahneman et al. (1982).

3 For example, Camerer and Kunreuther (1989).
3 Tversky and Kahneman (1982).

35 Grace et al. (2004).
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the effect of an increase in the price of insurance on demand depends on the
individual’s level of risk aversion. If absolute risk aversion increases or is constant
with an increase in wealth, then demand decreases when the price of insurance
increases.

Our model has examined the homeowner’s decision to insure, assuming that their
decision does not influence the premiums of the insurer. We assume that the insurer
knows how additional policies in a given region or line will impact the tail risk of their
loss distribution (potentially estimated with catastrophe models) and prices policies
accordingly. When catastrophes occur infrequently, though, it can be difficult to get a
good estimate of the tail of the loss distribution. And we have seen that correlations
below a threshold of statistical significance can still be problematic. It is thus possible
for an insurer to not be aware of the nature of the tail of their aggregate loss
distribution and thus not manage the risk appropriately. Sometimes an extreme event
may convince an insurer that they have been mis-estimating a catastrophic risk and
they may then seek to adjust their pricing or the amount of insurance written. This was
seen, for instance, after Hurricane Katrina along the Gulf Coast. These adjustments,
however, can be limited by state regulatory constraints,*® some of which were
discussed above.

Policy implications

We have shown that catastrophic loss distributions can require premiums that may
be greater than homeowners are willing to pay. That is, given the necessarily high
premiums, it may be quite rational to not buy catastrophe insurance. Insurance,
however, can generate positive externalities. Uninsured homeowners are often given
federal disaster relief, paid for by all taxpayers, and insurance can reduce the need for
this aid.?” Insured home- and business-owners are more likely to have the funds to
rebuild and to do so quickly, generating economic spillover effects in the community.
As homeowners do not consider the benefits to neighbours of insuring, too few people
may insure, suggesting that if insurance could be provided more cheaply for these risks
without threatening the solvency of insurers, it could provide both private and public
benefits.

The necessary multipliers for catastrophe insurance can, of course, be decreased
somewhat with appropriate diversification. Some companies will rely heavily on
diversifying across regions and lines of business, others will use reinsurance to transfer
risk, and still others may choose to create subsidiaries in high-risk areas to wall off the
rest of the firm from exposure to a particular risk. Diversification strategy is related to

3 Born and Klimaszewski-Blettner (2009).

37 The interaction between relief and insurance is an important topic but one beyond the scope of this
paper. Currently, some forms of disaster relief are not available to homeowners that could have insured,
in order to help create an incentive for insurance. Still, it is likely that significant aid goes to those
homeowners without insurance or who are under-insured and this would be reduced if insurance
penetration increased. There has also been research on the political nature of relief payments
(e.g. Garrett and Sobel, 2003; Michel-Kerjan and Wise, 2011); how this is influenced by take-up of
private insurance is worthy of further study.
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many things beyond management of catastrophe risk, such as efficiency gains,
managerial incentives and ownership structure. Diversification across product lines
and geographic regions can improve management of catastrophe risk if done
appropriately, but will also interact to have a complex relationship on firm
productivity.*® Discussion of firm trade-offs in determining how much to diversify
and in what manner is beyond the scope of this paper. Our findings simply caution
against simple assumptions that policies or lines of business are not correlated, since
low correlations can still be critical, and suggest that attention be paid to estimating
possible tail dependence and the thickness of the tail of aggregate loss distributions as
decisions are made about where to increase holdings.*”

It may be worth noting that, potentially problematically for reinsurance and broad
geographical diversification, tail dependence has been found between equity returns
across insurance markets in different regions of the world. Sheremet and Lucas*
estimate that for Europe-America and Europe-Australia/Asia, about 60 per cent of the
dependence is due to correlated losses, as opposed to correlation in investment
portfolios. The percentage is higher for America-Australia/Asia. The authors also find
some evidence to suggest that dependence is increasing over time, potentially from
climate change. This could be one of the causes of the low levels of reinsurance and
high prices that have been documented for catastrophe risks.*' Interestingly, the
authors find far less correlation between American and Australian-Asian markets,
suggesting some areas where diversification can still occur.*® Still, if large losses are
tending to be correlated across the globe, this will fundamentally undermine the ability
of (re)insurers to diversify natural disaster risk.

One potential policy response is to make it cheaper for insurance companies to build
and access surplus. A mechanism to do this is allowing for tax-deferred catastrophe
reserves.*? Currently, insurance companies must keep catastrophe funds in general
surplus accounts where they may be depleted, regulators may treat the extra funds as
reasons for more stringent price regulations, and additional surplus and the investment
earnings on it are taxed as income.?® To help overcome this problem, insurers could
choose to allocate catastrophe funds to a trust or separate account where they could
accumulate tax free, and only be withdrawn for payment of claims following pre-
defined triggers.**

Another approach to address high loss layers is for the federal government to act as
a reinsurer for catastrophic lines. The government can always provide (re)insurance
more cheaply than the private sector since it would not need extra loadings to cover
the cost of capital and need not adhere to strict solvency constraints since it can
borrow intertemporally. It has been shown that public insurance programmes in other

3 Elango er al. (2008).

3 Beyond diversification, the ability of insurers to cover catastrophic lines depends on aspects of the firm,
such as ownership structure, profitability, size, leverage and its tax position (Kleffner and Doherty,
1996), and our simple model does not address those issues.

40 Sheremet and Lucas (2008).

4! Froot (2001) and Froot (2008).

“2 Harrington and Niehaus (2001) and Milidonis and Grace (2007).

43 Davidson (1998).
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countries have very low operating expenses and these savings can be passed on to
customers.* Lewis and Murdock® have argued for federal excess-of-loss contracts for
very high layers of coverage. The authors suggest industry-wide triggers to minimise
moral hazard. Litan*® proposes a pre-funded programme administered by a quasi-
independent group in the Treasury Department to provide reinsurance to insurance
companies or state plans. Premiums would be risk-based and could be reduced if the
entity adopted risk reduction measures. Government would only cover losses above
a relatively high threshold, with lower level losses being covered by private insurance
and state and local governments. This layered approach, it is argued, will pro-
vide incentives for all parties to adopt mitigation measures. Cutler and Zeckhauser*’
note that federal reinsurance could allow private market functioning for smaller losses,
internalise some loss costs that the government has control over and raise revenues for
a service the government may provide anyway.

While government (re)insurance could likely bring down the cost of disaster
insurance, this would have to be carefully balanced against three potential problems.
The first is the potential to push private (re)insurers out of the market. However, if
limited to truly catastrophic layers and designed carefully, it is possible that the
programme would help private companies limit their exposure and provide coverage
for lower loss layers. The second is that the lower price offered for catastrophe
insurance, while potentially increasing take-up rates, could introduce moral hazard
problems. If moral hazard was a significant problem, the public intervention could
perversely increase exposure. It may be possible to control moral hazard through
heavy state investment in mitigation. More empirical research is needed on how severe
of a moral hazard problem has been generated by government interventions in
catastrophe insurance to date and what politically feasible mechanisms are successful
in limiting it. Finally, with public—private programmes, all high-risk losses being
pushed to the public sector could undermine the financial viability of the public
programme.*® Some of the methods around this, such being used by the Florida
Hurricane Catastrophe Fund—assessing fees on captive policyholders ex post—have
been challenged on grounds of equity and moral hazard.

We believe that the biggest priority for addressing catastrophic risks should be
mitigation. With national mapping of structures and populations, governments can
target intervention to encourage mitigation at “hot spots” through the use of
catastrophe modelling, as suggested by Muir-Wood.* The government should prefer
to lower damage costs as this would reduce ex post aid, minimise the economic
impacts of disasters and reduce pain and suffering. Homeowners, too, given the
uninsurable costs of a disaster, should prefer, for a range of costs, to protect their
home against damage rather than face a risk of disaster and insure. Indeed, there is
evidence to suggest that in high-risk areas, homes built under stronger building codes

4 yon Ungern-Sternberg (2004).

4 Lewis and Murdock (1996).

46 Litan (2006).

4T Cutler and Zeckhauser (1999).

“8 For more discussion on this topic, see Jametti and von Ungern-Sternberg (2010).
4 Muir-Wood (2011).
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command a price premium® and a study of residents in and outside New Orleans
found both groups willing to pay for public flood protection projects.’’ Many
mitigation measures have proven to be cost-effective, paying for themselves in
reasonable time frames. Far fewer homes are fortified against disasters, however, than
this would suggest. Partly, this is because insurers do not promote or encourage
mitigation (a few state laws forcing premium reductions for mitigation are an
exception). Homeowners may fail to mitigate for a variety of other reasons: they
underestimate or dismiss the probability of a disaster, are myopic, do not see or
understand the mitigation in place when purchasing a home, do not have the necessary
upfront costs, do not consider the benefits to their neighbours, and/or are not as
concerned about disaster losses due to federal aid.’* Creative solutions for overcoming
these barriers would provide public benefits.

Conclusion

Insuring risks with loss distributions characterised by fat tails and dependence is expensive.
These costs are passed on to consumers in the form of higher loadings on catastrophic
lines. Given this, we have shown in a very simple model that, in a range of cases, it may be
rational for consumers to forego catastrophe insurance. Since such insurance may provide
public benefits, however, there may be social benefits in helping consumers manage the
catastrophic risks they face, such as through incentives for mitigation or policy structures
that lower the costs to insurers of bearing catastrophic risks. Future work should explore
these findings in a more nuanced model of the insurance market.
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