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Abstract

Stochastic generation, i.e. electrical power production by an uncontrolled primary energy source, is expected to play
an important role in future power systems. A new power system structure is created due to the large-scale imple-
mentation of this small-scale, distributed, non-dispatchable generation; the ’horizontally-operated’ system. Modeling
methodologies that can deal with the operational uncertainty introduced by these power units should be used for
analyzing the impact of this generation to the system. In this contribution, the principles for this modeling are pre-
sented, based on the decoupling of the single stochastic generator behavior (marginal distribution-stochastic unit
capacity) from the concurrent behavior of the stochastic generators (stochastic dependence structure-stochastic sys-
tem dispatch). Subsequently, the stochastic bounds methodology is applied to model the extreme power contribution of
the stochastic generation to the system, based on two new sampling concepts (comonotonicity-countermonotonicity).
The application of this methodology to the power system leads to the definition of clusters of positively correlated
stochastic generators and the combination of different clusters based on the sampling concepts. The stochastic decom-
position and clustering concepts presented in this contribution provide the basis for the application of new uncertainty
analysis techniques for the modeling of stochastic generation in power systems.

Key words: stochastic power generation, distributed generation, steady-state analysis, uncertainty analysis, Monte-Carlo
simulation, risk management

eration under the uncertainty introduced by this
abatement in generation dispatchability.

In the traditional, ’vertical’ structure, electrical
energy is produced (the primary energy source is
converted into electricity) by a small number of large
power plants. This energy is transported to the geo-
graphically remote consumption points through ex-
tensive transmission and distribution networks. The
type of primary energy source used (fossil fuels, nu-
clear energy, hydro-power, etc.) permits sophisti-
cated control of the power output of these large
power plants and robust system operation. The tran-
sition to the new power system structure is stimu-

1. Introduction

The power system industry undergoes a radi-
cal change: the transition from the ’vertical’ to a
"horizontally-operated’ power system. One of the
major changes brought by this new structure, is the
incorporation of higher levels of non-dispatchable,
stochastic generation in the system. This necessi-
tates the development of new modeling and design
methodologies in order to analyze the system op-
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lated by special socio-economic factors, namely the
promotion of the use of renewable energy sources as
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Fig. 1. Vertical to horizontal power systems transformation

primary energy movers and the liberalization of the
energy market.

A new generation concept is responsible for this
transition, the Distributed Generation (DG). Ac-
cording to this generation scheme, the systems
of the future obtain a non-centralized, horizontal
structure (Fig. 1) [1]. In particular, electrical en-
ergy generation takes place in a large number of
small- to medium-scale, geographically distributed
power plants. These plants can either be small-
scale customer-owned conventional generators, or
stochastic generators, i.e. power plants that make
use of a non-controlled prime mover, e.g. renewable
energy sources, combined heat-power plants etc.
[2]. The operation of these units introduces gener-
ation uncertainty in the system, in addition to the
uncertainty of the consumption.

2. "Horizontally-operated’ power system

In a simplified representation, a power system
can be considered to comprise four entities, that
interact via the transmission and the distribution
systems, three energy generating ones (genera-
tion system) and one energy consuming (load), as
shown in Fig.2. The generation system consists of
the following entities: large thermo-electric power
plants that use fossil fuels or nuclear energy as
prime mover or large hydro-electric power plants
(Centralized Generation - CG), small-scale conven-
tional power plants (Dispatchable Technology DG -
DT/DG) and power plants that make use of non-
dispatchable technologies of electrical power gener-
ation, like renewables (wind, solar, run-of-the-river
hydro, wave energy, etc.) or combined heat and
power plants, cogeneration, etc. (non-Dispatchable
Technology DG - NDT/DG). According to this rep-
resentation, one can recognize two non-dispatchable
(load and NDT/DG) and two dispatchable system
entities (CG and DT/DG). The output of the non-
dispatchable entities is defined by external factors,
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Fig. 2. Power system schematic representation

such as the customer behavior in the case of the
load and the stochastic prime mover activity in the
case of NDT/DG. During the system operation,
the dispatchable generation entities adapt to the
variations of the non-dispatchable ones, so that the
necessary equalization between produced and con-
sumed power in the system is achieved, taking into
account restrictions set by the transmission and
distribution networks.

System analysis based on this scheme involves two
modeling activities: uncertainty analysis of the non-
dispatchable entities (load and NDT/DG) and eco-
nomic dispatch of the dispatchable units [3]. These
two problems are in principle independent; the out-
put of the loads and NDT /DG units is mainly de-
fined by the activity of the uncontrolled prime mover
or the customer, while the energy market mecha-
nisms define the power output of the conventional
units. Of course, NDT /DG units operate under the
same market environment; however, due to the be-
havior of the prime energy mover, their control is fo-
cused to maximize their energy yield. On the other
hand, both conventional and stochastic generating
units are subject to random unavailability, due to
equipment failures or forced outages [4], which can
be incorporated in the system uncertainty analysis.

3. Uncertainty in power systems

3.1. Computational methods for uncertainty
modeling

A power system is predominantly in steady-state
operation or in a state that can be regarded with suf-
ficient accuracy as steady-state. Although in prac-
tice there are always small load /generation changes,



switching actions and other transients occurring so
that in strict mathematical sense most of the vari-
ables are varying in time, these variations are most
of the time so small, that the use of an algebraic,
i.e. non time-varying, model of the power system is
justified. Using this algebraic model (steady-state
model), one can assign the corresponding system
states (nodal voltage angles and magnitudes) and
outputs (active and reactive power flow at each sys-
tem branch) to a set of system inputs by solving a
system of non-linear static (non time-varying) equa-
tions [5]. This is a deterministic calculation: for a
specific set of inputs the respective outputs are com-
puted.

By using deterministic system models, one can
calculate the system behavior for a ‘snapshot’ of op-
eration, a specific instant in time, in other words a
specific ‘state of the world’. For operational planning
however, the system output for all instants should
be assessed, i.e. the system response to all the differ-
ent combinations of the inputs. This requires a pro-
hibitive amount of calculations. For a network of N
loads/stochastic generators, each taking & different
values, a total of kY deterministic load flow calcu-
lations have to be performed. In order to solve this
problem, starting from the early seventies, different
computational methodologies for power systems un-
certainty analysis were introduced and a large num-
ber of research papers was published [6]. Three gen-
eral approaches can be recognized, the Probabilis-
tic Analysis [7], the Fuzzy Arithmetic (Possibilistic)
Analysis [8], [9] and the Interval Arithmetic Analysis
[10]. In this contribution, the probabilistic approach
is used for the system steady-state analysis. Based
on this analysis, the incorporation of uncertainty in
other system studies can be performed [11].

3.2. Probabilistic power system analysis

According to the probabilistic approach, the input
variables are converted to random wvariables (r.v.)
with known distributions (probability density func-
tions (pdfs)) [12]. The results are not fixed num-
bers, but pdfs, showing the possible range of the re-
sulting quantities and the corresponding probabil-
ity of each value to occur. In general, there are two
main methodologies for the solution according to the
probabilistic approach: the analytical formulation
and the stochastic simulations (Monte-Carlo simu-
lation technique - MCS). In cases of non-correlated
inputs, the analytical methods perform very well.

The analytical methods proposed in the literature
for the treatment of correlated inputs are restricted
to linear [13], [14], [15] or second order dependence,
i.e. the statistical dependence among the variables
is assumed to be captured in their second order mo-
ments [16], [17]. However, as mentioned in [15], in sit-
uations that involve complicated relations between
some or all the input r.v., the MCS technique ap-
pears to be the only option.

The Monte-Carlo simulation (MCS) is a numer-
ical simulation procedure applied to problems in-
volving random variables [12], [18]. The simulation
process is repeated by using in each simulation a par-
ticular set of values generated in accordance with the
corresponding probability distributions. A sample
from a MCS is similar to a sample of experimental
observations. Therefore, the results can be treated
statistically. The MCS method is based on a random
sampling procedure, and this makes the generation
of random numbers the basic point of this method.
There are three key phases in an MCS. The first is
to generate random numbers from the given proba-
bility distributions. The next step is a deterministic
one, where the mathematical model is solved to ob-
tain the quantities of interest. Finally, the first two
steps are repeated a finite number of times, and a
statistical analysis of the results is performed. This
method appears to offer significant advantages com-
pared to analytical methods, since the basic com-
putational part (i.e. the second step) is determinis-
tic and there is no need to simplify the mathemat-
ical models for the application of the method. But,
for obtaining proper results, the sampling procedure
has to be repeated many times and this makes the
method computationally extensive.

In the case of ’horizontally-operated’ power sys-
tems, the dimension of the stochastic model is very
large and the dependencies between the inputs may
be complex and difficult to be incorporated in the
system analysis. Since stochastic generation is ex-
pected to cover an increasing part of the energy pro-
duction, there is a need for new methodologies, that
will cope with this generation uncertainty.

4. Modeling of stochastic generation in
power systems

4.1. Definitions - problem formulation

A stochastic generator is an energy conversion sys-
tem that converts an uncontrollable primary energy



source (wind-, solar-, hydro-, wave- energy, waste
heat, etc.) into electrical power and feeds it into the
power system. The power output of a stochastic gen-
erator is defined by two factors:

(i) Stochastic Prime Mover: the type of primary
energy source used for electrical power genera-
tion. Due to their geographical dispersion, the
stochastic behavior of similar prime movers
differs at different sites in a system. According
to the probabilistic approach, the prime mover
activity is modeled as a random variable (r.v.)
following a specific statistical distribution.

(ii) Energy Conversion System: according to the
converter technology, the power output of
the generator for each input value of the
prime mover can be defined by a determin-
istic relationship. According to the system
analysis to be performed (steady-state, dy-
namic/transient stability, etc.), an appropri-
ate converter model should be utilized [19].

These two factors determine the power output of a
single stochastic generator. However, more informa-
tion is necessary for the definition of the joint con-
tribution of the stochastic generators to the system;
the coupling between the respective prime movers
should be taken into account, i.e. the behavior of
each prime mover respective to the other. In par-
ticular, the power output of stochastic generators
situated in a small geographic area show similar
fluctuations due to their mutual dependence on the
same prime mover, which is not the case for stochas-
tic generators situated in remote areas. This is the
most cumbersome problem in the modeling proce-
dure which is often underestimated in power system
modeling. In order to depict these issues, the most
simple example is chosen: the modeling of the ag-
gregated power output of two Wind Turbine Gener-
ators (WTG) in a power systern.

4.2. Example: modeling of two stochastic generators

In the case of wind power, the stochastic prime
mover is the wind activity and the energy conversion
system is the wind turbine generator. Let WT G,
and WTG4 be two wind turbine generators (WTGs)
situated in two distinct sites in a power system. We
want to calculate their joint power contribution to
the system, i.e. their aggregated power output. For
this purpose, the steps defined in the previous para-
graph will be followed. The modeling procedure is
depicted in Fig. 3.
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PRIME MOVER: WIND Turbifgeenerator (WTG) | System Model
(T TN
P (kW)
W, Py
.
2 SYSTEM: 5
P R ——— § (PP, S
P (kW)
W2
|
u (m/s)| P2

Fig. 3. Stochastic generation modeling procedure (case of
WTGs)

For the definition of the power output of each gen-
erator, the wind speed distribution at each generator
site is used for the modeling of the prime mover: Wy
for site 1 and W, for site 2. As is generally known,
they follow a Weibull distribution [20], with the pa-
rameters A and k: Ay = 8.39, ky = 2.1, and Ay =
6.34, ko = 2.02. For the energy conversion system
model, the WT'G power - wind speed characteristic
is used. In this particular case, two pitch-controlled
WTGs of IMW nominal power are considered, with
the cut-in, nominal and cut-out wind speeds equal
to 3, 13 and 25 m/s respectively. In order to ob-
tain the WTG power output distributions P; and
P5, this non-monotonic transformation is applied to
the wind speed distributions (Fig. 4). The obtained
WTG power distributions are propagated through
the system model, which is in this case defined as the
sum of the WTGs outputs, to obtain the respective
result.

As mentioned, the data presented so far are not
enough for setting up this simulation. The coupling
between the prime movers should also be taken
into account, i.e. the wind speed on one site con-
ditional to the other. A general practice in power
system modelling is to consider the r.v. W7 and W,
to be independent. This may however be a non-
realistic assumption. In practice, especially in cases
of WTGs situated in a relatively small geographic
area, where similar weather conditions prevail, the
wind activity in the two sites is expected to be
positively correlated. The notion of independence
implies that knowing the wind speed in one location
does not change our belief about the wind speed in
the other location, which contradicts reality; when
a high (low) wind speed occurs in site A, most likely
a high (low) wind speed occurs in site B. In order to
depict the influence of the dependence assumption
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on the contribution of the stochastic generators to
the system, two different simulations were consid-
ered: in the first simulation the wind speed r.v. Wy
and Wy are considered independent, while in the
second one they are considered to be totally corre-
lated. Totally correlated or comonotonic r.v. are the
ones that vary in the same way, meaning that when
the one increases (decreases) the other increases
(decreases) too.

For the system analysis, two 10000-sample Monte-
Carlo simulations (MCS) were used, for the two de-
pendence scenarios. For the modeling of the prime
mover activity, the Weibull distributions presented
in Fig. 3 were used in both simulations. In Fig. 4, the
simulation results for the wind speed and the WTG
power output distributions are presented. The ob-
tained power distributions are highly non-normal,
presenting a concentration of probability in the zero
and nominal output power. This is due to the effect
of the non-monotonic WT'G characteristic [21]; for
wind speed values lower than the cut-in and higher
than the cut-out wind speed, the generated power
equals zero, while for wind speed values between
nominal and cut-out, the generated power equals its
nominal value [19].

In Fig. 5 the simulation results concerning the
concurrent behavior of the prime mover are pre-
sented. In the upper graphs, the scatter plots for the
two dependence scenarios are presented, while in the
lower ones, a fragment of the generated time-series
sequences is shown. The spreading of the points in
the independence case is high. In the comonotonic
case, the points are linearly correlated; high (low)
values of the one r.v. are combined to high (low)
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Fig. 5. Scatter-plots and time-series data for the two depen-
dence scenarios

values of the other. The generated sequences depict
this issue: in the independence case the sequences
vary randomly, while in the comonotonic case they
follow the same variations.

These two different ways of combining the out-
puts of the generators strongly affect their aggre-
gated power output. In particular, in the case of in-
dependence, the power output distribution is more
'smooth’, since the extremes of one generator can
be combined with all power outputs of the other.
This is not the issue in the comonotonic situation,
where extreme power outputs for one generator im-
ply extremes for the other too. The simulation re-
sults depict exactly this point. As shown in Fig. 6,
the aggregated power distributions are very differ-
ent, where the independence case results in a much
more ‘moderate’ distribution. Although it is a gen-
eral practice to underestimate the impact of the de-
pendence structure in the power system stochastic
modeling by assuming independence, the results of
this simple example show that this is a fallacy. In
the case that the outputs of the stochastic genera-
tors are coupled due to their common dependence
on the prime mover, for example in the case of sto-
chastic generators situated in a relatively small ge-
ographic area, it should be expected that we move
towards the right graph in Fig. 6. An analysis based
on independence will underestimate the effect of the
stochastic generation to the system and will give a
false quantification of system risk.

In table 1, the mean values and standard devi-
ations for the WTGs single and aggregated power
outputs are shown. Concerning the power distribu-
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Table 1

Power output mean values and standard deviations
MEAN P (MW) P, (MW) P+ P, (MW)
Independ. 0.461 0.439 0.899
Comon. 0.453 0.436 0.899

ST. DEV. P (MW) Py, (MW) Py + P, (MW)
Independ. 0.343 0.316 0.468
Comon. 0.343 0.314 0.653

tions for each WT'G, the mean values and standard
deviations are the same for both dependence scenar-
ios, due to the use of the same prime mover distri-
butions. Concerning the aggregated power output,
the obtained distributions have the same mean but
different standard deviations. As known from prob-
ability theory, the expected value of a sum of r.v. is
independent of the dependence structure and equals
the sum of the expected values of the r.v., as con-
firmed by the simulation results (table 1). This how-
ever doesn’t hold for the standard deviation; in the
case of total correlation, its value is much higher.
Thus, different aggregated power output distribu-
tions around the same central point are obtained.

4.3. Modeling principles of stochastic generation

This simple exercise shows the modeling princi-
ples and potential problems concerning the imple-
mentation of stochastic generation in power sys-
tems. The modeling process involves three steps:

(i) Stochastic representation of the prime mover

in each generation site

(ii) Calculation of power distributions by applica-

tion of the energy conversion function
(iii) Combination of the power output of each gen-
erator in order to obtain the total stochastic
power contribution to the system.
The first two steps concern the single-generator sto-
chastic behavior, while the third one the information

about their combined contribution to the system.
Modeling of the third factor is the most cumbersome
part in the modeling procedure, due to data unavail-
ability or modeling complexity. For large-scale inte-
gration of stochastic generation in the system, the
mentioned problems are magnified. In this case, one
has to define the joint power contribution of a large
number (thousands) of stochastic generators situ-
ated in a large geographic area with different prime
movers and different converter technologies.

4.4. System stochastic model

In the procedure presented in the previous para-
graph, a modeling issue is advanced: the decoupling
of the power output of each generator from the joint
behavior of the generators in the system. This is the
basic principle for the stochastic modeling approach
proposed here.

The stochastic modeling of the system leads to
a multivariate uncertainty analysis problem which
involves a large number of correlated random vari-
ables (stochastic generation/load). For the system
stochastic modeling, the joint distribution over all
the random inputs has to be defined. The approach
advanced here involves splitting the modeling effort
in two separate tasks [22]:

— model the one-dimensional marginal distributions
— model the stochastic dependence structure

The one-dimensional marginal distributions refer
to the single output of the generator/load and are
usually known by measurements. The stochastic de-
pendence structure is either unknown, or is consid-
ered to be too cumbersome to be incorporated in the
system analysis. New methodologies and new depen-
dence concepts should be introduced for the better
representation of the stochastic generation in the
system. In the following analysis, two extreme de-
pendence concepts will be introduced, correspond-
ing to the cases of extreme positive and extreme neg-
ative dependence in the system (stochastic bounds).
These concepts are very useful for the modeling of
the stochastic generation.

5. Extreme stochastic dependence modeling:
stochastic bounds

Stochastic generators are energy conversion sys-
tems that convert uncontrolled primary energy into
electrical power. The power outputs of stochastic
generators situated in a relatively small geographic



area that use the same generation technology are
expected to be strongly coupled, i.e. their power
outputs are expected to follow similar fluctuations.
The same holds for the system loads; as is generally
known, similar types of loads throughout the sys-
tem show a similar stochastic behavior. Thus, the
system comprises groups (clusters) of strongly pos-
itively correlated r.v.

In order to model the stochastic behavior of
these r.v., one has to define this positive corre-
lation between all the r.v. of the group, which
is a very cumbersome procedure. However, there
is another solution: instead of taking this depen-
dence structure, one can use another, more extreme
dependence structure, which is easier to model.
This corresponds to an analysis based on a *worst-
case scenario’. The extreme dependence structures
that can be used are two dependence concepts:
comonotonicity and countermonotonicity. The the-
ory behind these concepts is extensively presented
in [23], [24], [25], while the application in power
systems has been presented by the authors in a
number of recent papers [21], [26], [27].

5.1. Stochastic bounds methodology

According to the Stochastic Bounds Method-
ology (SBM), all possible dependence structures
for a number of positively correlated r.v. can be
bounded between two extreme cases: independence
(lower bound) and comonotonicity (upper bound).
Comonotonicity is a dependence concept that refers
to the case of extreme positive dependence between
a number of r.v. It is noted that comonotonicity is a
more general concept than perfect (linear) correla-
tion, as it includes all cases of perfect positive non-
linear dependence. Thus, perfect product moment
correlation always implies comonotonicity, but not
vice versa. Similarly, the extreme case of negative
dependence between two r.v. can be modelled using
the concept of countermonotonicity. A pair of r.v.
is countermonotonic when they vary in an opposite
way.

In the case of the r.v. Y;,7 = 1,...,n the sam-
pling based on these dependence concepts can be
expressed as:

Independent : Y; = F;il(Ui) (1)
Comonotonic : Y; = F;il(U) (2)

Countermon. : Y] = Fgl(U%Yé = F;zl(l -
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Fig. 7. Comonotonic/countermonotonic sampling and gen-
erated sequences

where Uis are independent uniform r.v. In the case
of independence, different random generators are
used for the sampling of each r.v., while in the case
of comonotonicity and countermonotonicity, only
one random generator is used for the stochastic
modelling. These sampling concepts are illustrated
in Fig. 7, for the case of two normal r.v. As can be
seen, the produced comonotonic sequences follow
the same variations, while the countermonotonic
ones vary in an opposite fashion.

Taking the extremes of the dependence structure
between a vector of r.v. has important implications
for the properties of the sum of these r.v. [24], [25].
In particular, since the marginal distributions are
the same, the different extreme dependence struc-
tures produce distributions for the sum of the r.v.
with the same mean but different variances: mini-
mum in the case of independence and maximum in
the case of comonotonicity. In this case, a higher
variance implies a distribution with a larger spread
around the same central point, i.e. a higher proba-
bility of obtaining extreme values. Thus, in terms of
risk assessment, comonotonicity provides the higher
risk case (extreme distribution of the sum of these
r.v.), while independence provides a minimum risk.
Here, the fallacy concerning the use of the inde-
pendence assumption for system analysis in cases
of positively-dependent r.v. is underlined: such an
analysis is based on the ‘best case scenario’; accord-
ing to SBM, every realistic dependence structure will
induce a more severe impact to the system. This was
illustrated also in the simple example concerning the
aggregated power output from two WTGs in sec-



tion 4. All the other dependence structures produce
a sum whose variance (as well as other, more sophis-
ticated, measures of dispersion) will lie in between
those two bounds. Therefore, by using the extreme
dependence concepts, one can define the stochastic
bounds of the sum of the r.v.

In the case that the r.v. are strongly positively
correlated, the comonotonic scenario can provide an
easy method for the stochastic analysis of the sys-
tem. In particular, instead of using the exact de-
pendence structure between the r.v., the system de-
signer can use the upper stochastic bound, knowing
that it is not reality, but safe since this is the worst-
case scenario. Therefore, clusters of positively corre-
lated r.v. can be approximated by their comonotonic
versions. In order to obtain the worst-case scenario,
countermonotonic sampling should be used between
stochastic generation and load clusters, due to the
fact that in the system model the stochastic gener-
ation is subtracted from the loads [21]. Utilities of-
ten use a similar approach for estimating the stress
to the system due to the incorporation of stochastic
generation, by analyzing the system with the max-
imum (minimum) stochastic generation and mini-
mum (maximum) load.

6. Study cases

The application of the above-mentioned concepts
in two study cases will be presented in the following
sections; the case of a small distribution system and
the case of a bulk power system.

6.1. Stochastic generation in a distribution system

The implementation of a large number of stochas-
tic generators in a distribution system is considered,
in particular the implementation of 17 WTGs in the
distribution system depicted in Fig. 8.

The number of r.v. involved in the analysis is 54 in
total: 17 WTGs and 37 loads. The WTGs are mod-
eled based on the procedure presented in the two-
WTG example and their marginal distributions are
similar to the ones of Fig. 4. The loads are modelled
as normal distributions. Three stochastic generation
penetration levels were investigated in the simula-
tion scenarios, according to the nominal power of
the WTGs: (a) no generation, (b) each WTG has
a nominal power of 0.25MW, (c¢) each WTG has a
nominal power of 0.5bMW. It is supposed that the
stochastic generators do not contribute to the re-

Fig. 8. Study case 1: 34-bus/38-branch distribution system

active power support of the system, therefore their
reactive power output equals zero.

Due to the fact that the distribution system cov-
ers a small geographic area where the prime mover
activity can be considered to be uniform and similar
load types exist, two clusters of positively correlated
r.v. can be recognized: the stochastic generation and
the load cluster. Four different extreme dependence
structures can be considered following this cluster-
ing procedure. One referring to the lower stochas-
tic bound (scenario a: total independence between
all loads and stochastic generators) and three up-
per stochastic bounds based on the combination of
the comonotonic versions of the two inputs clusters:
comonotonicity between load/stochastic generation
(scenario b), countermonotonicity (scenario c) and
independence between the clusters (scenario d). Sce-
nario b implies that the stochastic generation acts
as committed generation, following the load varia-
tions, which is not a realistic consideration for wind
power. However, this type of dependence may be met
in the case of solar generation in areas that contain
air-conditioning loads. Scenario ¢ corresponds to the
worst-case scenario, when the stochastic generation
varies in the opposite way from the load and scenario
d corresponds to stochastic generation that presents
no interdependence with the load in the system.

For the stochastic analysis of the system, a 10000-
sample MCS was used. A program was developed in



Table 2
Mean values/standard deviation for voltage at node 40

Mean Value

Penetr. Level scen a scen b scen ¢ scen d

- 0.9462 0.9461 0.9461 0.9461

17x0.25 (MW) 0.9658 0.9655 0.9655 0.9658

17x0.50 (MW) 0.9844 0.9841 0.9825 0.9835

Standard Deviation

Penetr. Level scen a scen b scen ¢ scen d

0.0015 0.0064 0.0063 0.0063

17x0.25 (MW) 0.0043 0.0102 0.0220 0.0171

17x0.50 (MW) 0.0078 0.0250 0.0357 0.0307

Table 3
Mean values/standard deviation power flow branch 47-43

Mean Value

Penetr. Level scen a scen b scen ¢ scen d

- 3.4626 3.4645 3.4669 3.4675

17x0.25 (MW) 1.7797 1.8090 1.7890 1.7760

17x0.50 (MW) 0.1581 0.1749 0.2913 0.2144

Standard Deviation

Penetr. Level scen a scen b scen ¢ scen d

0.0866 0.3913 0.3874 0.3861

17x0.25 (MW) 0.3478 1.0191 1.7502 1.4270

17x0.50 (MW) 0.6592 2.3308 2.9817 2.6646

MatLab and the simulation time was 10902 sec in a
Pentium IV 2.4MHz machine. The program provides
the voltage and power flow distributions for all the
nodes and branches of the system and for all the
different scenarios.

In tables 2 and 3, the simulation results for the
mean value and standard deviation of the voltage
distribution in node 40 and power flow distribu-
tion in branch 47-43 are presented. As mentioned,
by keeping constant marginal distributions, differ-
ent stochastic dependencies between the system in-
puts lead to different aggregated power distributions
around the same mean, with the lower bound (inde-
pendence) being the case of minimum spread and the
upper bounds the cases of maximum spread. These
distributions are propagated through the algebraic
steady-state system model. The obtained results for
all system nodes show that for the voltage distrib-
utions, the mean values are more or less the same
for the different scenarios, while the standard de-
viations are minimum in the case of independence
(lower bound) and maximum for the different upper
bounds. Representative results for node 40 of the
test system are presented in table 2.

In Fig. 9, the simulation results concerning the
voltage distribution in node 40 are presented, while
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Fig. 9. Voltage distributions for node 40, for three penetra-
tion levels of wind power

in Fig. 10 and Fig. 11, the results for the power flows
in the branches between the nodes 39-25 and 47-
43 for the different dependence scenarios are shown.
In the case of no generation, the distributions for
the different upper bounds coincide, since they all
correspond to the case of total correlation between
the system loads. The upper bound scenarios pro-
vide distributions with a higher spread. This poses
a higher risk for the system, either for voltage viola-
tions (Fig. 9) or for line overloading (Fig. 10 and Fig.
11). In all cases, scenario ¢ (countermonotonicity be-
tween generation-load clusters), entails the highest
risk. The methodology is very useful for the design
of distribution systems, since the system designer
can obtain insight in the worst-case scenario impact
of the stochastic generation in the system, knowing
that every real case will induce a lower stress to the
system.

In Fig. 11, the power flow distributions for the
branch 47-43 are presented. This is actually the
power exchange between the distribution and the
transmission system. The distributions present a
high spread, and high bidirectional power flows can
be expected, especially in the case of positively-
correlated stochastic generators. This graph vi-
sualizes the impact to the power system due to
the implementation of stochastic generation. The
distribution networks are transformed into active
network clusters, exchanging power with the trans-
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Fig. 10. Power flow distributions for branch 39-25, for three
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Fig. 11. Power flow distributions for branch 47-43, for three
penetration levels of wind power

mission system that acts as an energy buffer that
interconnects the active distribution systems and
the centralized generation.

A question that could arise is the following: how
to model the joint contribution of a large number of
such active distribution systems and how to obtain
insight the behavior of a bulk power system?
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Fig. 12. 5-bus/7-branch test system (Hale network)
6.2. Stochastic generation in a bulk power system

In this study case, the impact of a large-scale
implementation of stochastic generation in a bulk
power system is considered. In particular, the large-
scale implementation of stochastic generation in the
underlying distribution systems at nodes 3, 4 and 5
of the test system presented in Fig. 12 is considered,
by the connection of 45, 40 and 60 WTGs of IMW
nominal power in each distribution system respec-
tively. More details can be found in [27].

The underlying distribution systems are repre-
sented as an aggregated load in parallel with an ag-
gregated stochastic generator. According to the pre-
ceding analysis, the data for the prime mover activ-
ity (Weibull wind speed distributions) and aggre-
gated load in each distribution system are consid-
ered to be known. These marginal distributions are
kept constant while different simulations are per-
formed for different extreme dependence scenarios
based on the Stochastic Bounds Methodology. The
application of the methodology involves the cluster-
ing of the positively correlated r.v. and the combi-
nation of the different clusters according to relative
assumptions, as presented in the previous example.

Seven clusters are defined for the test system: four
load clusters (DNs 2-3-4-5) and three WTG clus-
ters (DNs 3-4-5). Five different dependence scenar-
ios are considered for the system analysis: the lower
stochastic bound (all r.v. are independent) and four
upper bounds. They are shown in Fig. 13, ranked
in increasing order of severity for the system. First
the different clusters are considered to be indepen-
dent, corresponding to the case that no severe posi-
tive dependence appears between the loads and the
stochastic generation in the different DNs (case a).
Seven random generators U; are used for the sys-
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Fig. 14. Power flow distributions for the system lines

tem sampling in this case. In case b, the stochastic
generation remains independent between the differ-
ent DNs, but the loads in the system are considered
to be positively dependent (same type of loads in
the different DNs), therefore the upper comonotonic
bound is used for their combined modeling. In this
case, four random generators are needed for the sam-
pling of the system. In the next case c, the stochas-
tic generation is also considered to be positively cor-
related, but they are not correlated to the load in
the system. In this case, two random generators are
enough. Finally, in case d, positive correlation is con-
sidered between the stochastic generation and the
consumption in the system (this may occur due to
their mutual dependence on weather). Thus, coun-
termonotonic sampling is used in order to define the
extreme distribution for the system output, which is
the worst case for the system stochastic modeling.
In this case, only one random generator is used for
the sampling of the system.

A 20000-sample MCS was used for the system
simulation. The total number of random variables
involved in the analysis is 149: 45 WTG r.v. for DN
3,40 WTG r.v. for DN 4, 60 WTG r.v. for DN 5 and
4 load distributions. The simulation duration was
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3577 seconds on a Pentium IV 2.4GHz machine.

As mentioned in [27] the simulation results show
that the mean values are the same for all the dif-
ferent dependence scenarios, while the standard de-
viations are minimal for the lower stochastic bound
and maximal for the upper bounds. Thus, different
power flow distributions around the same central
point are obtained, as can be seen in Fig. 14 where
the power flow distributions for all the system lines
are presented. Again the lower bound represents the
"best-case scenario’, giving distributions with min-
imum dispersion for all the system lines, while the
'worst-case scenarios’ are presented for different de-
pendence scenarios in the different lines.

As can be seen from the power flow distributions
(Fig. 14), the presence of stochastic generation in the
system results in highly bidirectional power flows.
An analysis that is based on the Stochastic Bounds
Methodology focuses on the worst case of aggregated
stochastic stress for the system and is therefore quite
conservative. All real cases correspond to more mod-
erate stochastic dependence structures and there-
fore lower system stress. The advantage of the use
of the methodology is that the engineer may mea-
sure the risk of exceeding the system safety margins
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Fig. 13. Clusters for system upper bound stochastic modeling

for these worst-case scenarios and can take respec-
tive actions to reduce it. For example, the system
analysis shows that the lines 1-2 and 2-5 are the ones
that are mostly stressed. During system operation,
a large amount of power is forced through line 1-
2. This may be confronted by the installation of a
FACTS device in the line, in order to redirect the
power. Such actions can of course be analyzed using
the same methodology and the improvement of the
system behavior can be assessed.
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7. Conclusions - further work

The integration of stochastic generation in power
systems necessitates the use of new modeling tech-
niques to cope with the generation uncertainty of
this small-scale, distributed, non-dispatchable gen-
eration. A novel modeling approach has been pre-
sented, consisting of the following parts:

(i) Decoupling of the marginal behavior of the
stochastic generators from the stochastic de-
pendence modeling.

Definition of clusters of positively dependent
random variables. The dependence structure
in the cluster is approximated using extreme
dependence concepts.

Definition of the dependence structure be-
tween the clusters.

Based on these concepts, the extremes of stochas-
tic generation in a power system can be modeled.
But, is it enough for the analysis of the impact of sto-
chastic generation in the system? The case of inde-
pendence provides the ’best-case’ scenario, the min-
imum effect by the stochastic generation. The ex-
treme dependence concepts of comonotonicity and
countermonotonicity can be used for the definition
of the maximum aggregated effect of the stochastic
generation to the system (worst-case scenario). In
the cases of geographically small systems, these con-
cepts can provide a realistic approach to study the
impact of stochastic generation, due to the existence
of strong positive dependencies between the system
inputs. Although these considerations lead to a bet-
ter understanding of the impact of stochastic genera-
tion to the system, they lead to conservative results,
especially when applied in large power systems. The
differences between these 'stochastic bounds’ can be
very large, while reality will fall somewhere in be-
tween. In this case, it is important to quantify the
dependencies more in detail and find new techniques
for that. New techniques that specify dependence
structures can be considered [22]. Based on this ap-
proach, expert judgement can be used for the defi-
nition of the stochastic behavior of the system [28].

(i)

(iid)
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