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Chapter 1

Introduction

The main focus of this theses is on the properties and applications of the T
copula. This distribution was initially considered as a good alternative to the
Normal copula used in non parametric continuous BBN’s. However, it was
discovered quite early, that it is not possible as the t distribution does not
have the independence property, which is the key assumption in modeling
BBNs. Despite that, the t distribution appeared to be a very interesting one
itself. And the project was carried out to learn more about properties of this
distribution as well as its use in analysis a data. The project was not meant
initially to analyze a certain dataset. However, a small dataset was chosen
later to illustrate challenges in estimating the t distribution. The t distribu-
tion is often used in financial data returns such as equities, assets or foreign
exchange rates that tend to be uncorrelated but dependent. They have heavy
tails and extremes appear in clusters. The t distribution is often suggested,
because of its properties following mostly from the fact that it belongs to the
family of the elliptical distributions. It enables to capture correlations in the
extreme market movements, since it has the tail dependence property. It is
also easy to simulate and the corresponding copula allows combining different
margins using dependence function that exhibits tail dependence property.
The Student t distribution can be parameterized by the correlation, which is
easily estimated from the data, as well as the degrees of freedom parameter
that controls degree of tail dependence. The t distribution is very interesting
and offers a convenient way for building models.

The multivariate t-distribution allows however a single degrees of free-
dom parameter. This may be seen as significant restriction. The pairwise
relations between variables can be preserved by applying graphical depen-
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dence model called vines. It is a set of nested trees that can be specified by
rank correlations, distributions or copulas. Vine is a structure that allows
to construct a model based on different bivariate T copulas. In this way
dependences between variables are preserved more appropriately, especially
tail dependences.

We will start with introducing the Student t distribution We limit ourself
to presenting properties that are important for applications. Chapter 2 treats
univariate t distribution as well as the multivariate one. As an example, we
present the heavy tails analysis to determine degrees of freedom parameter
for the univariate foreign exchange rates data. For higher dimensions, there
are estimators for computing parameters of the t distribution. We can also
use semi-parametric likelihood function, meaning that we can estimate the
correlation matrix using Kendall’s τ, and maximize likelihood with respect
to the remaining parameter. Doing so, we automatically assume that the
marginals are the same, which is not necessarily a true assumption. Instead,
we can estimate only a dependence structure - copula. Chapter 3 focuses
on T copulas. This mathematical functions separate the marginal behavior
from the underlying dependence structure and are based on the t distribu-
tion. The methodology for estimating T copulas that is shown.

It is not easy to capture pairwise dependences between variables, when a
multivariate model is built. Application of the multivariate T copula gives
bivariate marginals that have the same degrees of freedom parameter. In
practice, however, it is rare that pairs of analyzed variables have the same
tails. In order to overcome this difficulty we apply vines. Chapter 4 provides
a basic introduction about vines. This model builds a joint distribution from
bivariate and conditional bivariate distributions. Using bivariate T copulas
in the vine model allows better modeling flexibility than given by multivari-
ate T copula.
We compare the model with the three dimensions T copula estimated for the
same dataset.
We end this work with a discussion about the results and further research.
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Chapter 2

Student T Distribution

In recent years more attention has been paid to the Student T Distri-
bution. It is considered to be an appealing alternative to the normal dis-
tribution. Both the multivariate T distribution and the multivariate normal
distribution are members of the general family of elliptical distributions. The
multivariate T distributions generalize the classical univariate Student T dis-
tribution.
It can have many different forms with different characteristics. Application
of the multivariate T distributions is a very promising approach in multivari-
ate analysis.The multivariate T distribution is more suitable for real world
data than normal distribution, particularly because its tails are heavier and
therefore realistic.

This chapter contains the background information about the best known
form of the T distribution, the canonical T distribution.
We start with introducing basic properties of the univariate Student t dis-
tribution. Since it is a heavy tail distribution, we present the tail index
estimators and show how it can be used in order to estimate the degrees of
freedom parameter. This is an alternative approach to maximum likelihood
method for estimating this parameter. Student t distribution is commonly
used to model financial data. We fit using tail index estimators univariate
Student t distributions to the foreign exchange returns datasets.
Further, we present some chosen properties of the bivariate Student t distri-
bution. These will be extended to the multivariate case.
The notion of the copula will be presented in this chapter as well. We will
show the construction of the t copula together with its properties. We will
present method for the inference for this copula, which is based on the semi
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parametric pseudo - likelihood method. We will show how it works in prac-
tice by fitting the t copula to the foreign exchange returns datasets. We will
see that this methodology is quite effective.

2.1 Univariate Student T distribution

The student T distribution ([2],[3]) is an absolutely continuous probability
distribution given by the density function

fv(x) =
Γ(v+1

2
)√

πvΓ(v
2
)

(
1 +

x2

v

)−( v+1
2

)

, −∞ < x < ∞, (2.1)

where v > 0 is a degrees of freedom parameter, called also shape parameter,
and Γ(.) is the Euler gamma function of the form

Γ(z) =
∫ ∞

0
tz−1e−tdt.

The Student t distribution with v degress of freedom is denoted as tv, and
the density by dtv.
In particular, when v = 1, then the density (2.1) takes the form:

ft,1(x) =
1

π(1 + x2)
, −∞ < x < ∞

which corresponds to the Cauchy distribution. The T distribution is sym-
metrical around zero. The odd moments vanish, when they exist. The kth

moment exists if and only if k < v

E(Xk) =





0 k odd, 0 < k < v,
Γ( k+1

2
)Γ( v−k

2
)v

k
2√

πΓ( v
2
)

k even, 0 < k < v,

NaN k odd, 0 < v ≤ k,
inf k even, 0 < v ≤ k.

The variance and kurtosis are given by the formulas:

v

v − 2
, for k > 2,

3 +
6

v − 4
, for k > 4,

respectively.
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The density (2.1) can be constructed, (see [1]), by letting Z0, Z1, . . . , Zv be
independent standard Normal random variables and setting

χ2
v = Z2

1 + . . . + Z2
v ,

where χ2
v is a chi-squared random variable with v degrees if freedom, mean

v, variance 2v and density given by

qv(z) =
1

2Γ(v
2
)
e−( z

2
)
(

z

2

)( v
2
−1)

.

Then the Student T random variable is defined as follows:

T =
Z0√
χ2

v \ v
.

In order to obtain the density fv(t) it suffices to notice that the conditional
density of T given χ2

v is the normal density function with mean zero and
variance v

u
of the form:

fv(t|χ2
v = u) =

√
u

2πv
exp

(
−t2u

2v

)
, (2.2)

In order to derive the joint density function of T and χ2
v, the conditional

density (2.2) is multiplied by the chi squared density, qv(z). Finally, to ex-
tract the univariate density (2.1) for T , we integrate the following expression:

∫ ∞

0
fv(t|χ2

v = u)qv(u)du ≡
∫ ∞

0

du

2Γ(v
2
)

√
u

2πv

(
u

2

)( v
2
−1)

e
−
(

u
2
+ t2u

2v

)
.

The resulting density is of the univariate Student t distribution given by
(2.1).

The cumulative distribution function (cdf) of the T distribution is given
by the formula:

Fv(x) =
∫ x

−∞
fv(t)dt =

Γ(v+1
2

)√
πvΓ(v

2
)

∫ x

−∞

(
1 +

t2

v

)−( v+1
2

)

dt.

It can be written in terms of geometric functions:

Fv(x) =
1

2
+

Γ(v+1
2

)√
πvΓ(v

2
)
x 2F1

(
1

2
,
v + 1

2
,
3

2
,−x2

v

)
,
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where 2F1 is a Gaussian hypergeometric function. We can rewrite it also in
terms of β functions:

Fv(x) =
1

2

(
1 + sign(x)

(
1− Iv/x2+v

(
v

2
,
1

2

)))
.

The regularized β - function is given by

Ix(a, b) =
Bx(a, b)

B(a, b)
,

where B(a, b) is the ordinary β function and Bx(a, b) is the incomplete β
function of the form:

Bx(a, b) =
∫ x

0
ta−1(1− t)(b− 1)dt.

The inverse cumulative distribution function is:

F−1
v (u) = sign

(
u− 1

2

)
√√√√√v


 1

I−1
if [u<1/2,2u,2(1−u)](n/2, 1/2)

− 1


.

This result is not easy to implement. Generally it is not used in practice, as
there are other, faster methods for calculating the quantile function. Some
of them are discussed by William Shaw ([3]).

Sampling from T distribution can be accomplished in a simple way. A
survey of the classical methods for simulation is given in Section IX.5 by
Devroey ([4]). We sample T distribution, first by using v + 1 samples from
the standard Normal distribution, assumed that v is an integer. (Deegres of
freedom parameter v can take also real values in its range.) Alternatively,
the normal variate can be divided by scaled sample from the χ2 distribution.
Figure 2.1 shows the results of sampling the student T distribution with 3
degrees of freedom, using two methods:

• We take 1000 samples for four independent standard normal variables,
Z1, Z2, Z3, Z4, and calculate:

Z1 ×
√

(3)

Z2
2 + Z2

3 + Z2
4

,

which has the student T distribution with 3 degrees of freedom. (Figure
2.1 a)).
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• 1000 independent samples are taken from the standard normal vari-
able Z1 and chi-squared variable, χ2

3, with 3 degrees of freedom. We
calculate:

Z1 ×
√

(3)

χ2
3

,

which is the sample from the student T distribution with 3 degrees of
freedom, (Figure 2.1 b)).

Both approaches follow straight forward from the construction of the T dis-
tributed random variable.

To see that the tails of the T distribution are heavier than those of the
normal distribution, the standard normal distribution was sampled as well
2.1 c). The univariate normal and T student density functions are plotted
in Figure 2.1 d). We can observe that the T density function approaches
normal density, as the parameter of the degrees of freedom grows.

In fact, the student T distribution converges to normal distribution as
parameter of degrees of freedom goes to infinity and we have following rela-
tions:

lim
v→∞ ft,v(x) = φ(x),

lim
v→∞Pt,v(X ≤ x) = Φ(x).

2.1.1 Parameter Estimation

In order to draw conclusions about a population we use information ob-
tained from data. That involves parameter estimation, hypothesis testing
and modeling.

A standard way of estimating the density function of the population is
to identify appropriate characteristics, such as symmetry, range and so on.
Then we choose some well known parametric distribution that has those char-
acteristics and estimate the parameters of that distribution. For instance, if
the probability density of interest has an infinite support on both ends, then
a normal or a Student’s T distribution may be an useful approximation.
One of the most common ways of estimating parameters is the maximum
likelihood method,([5]).
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Figure 2.1: a),b)-Sampling the univariate t distribution with the comparative
plot of the normal density; c)-Sampling of the normal distribution; d)- plot of
the standard normal density and student t densities with 1, 3 and 10 degrees
of freedom.

Maximum Likelihood

The method of maximum likelihood involves the use of a likelihood function
that is the joint density for a random sample. Suppose that f(y|θ) is the
density function of variable Y , where θ denotes the vector of parameters. And
supppose that we have n independent samples from Y. Then the likelihood
function is the function of the parameter vector θ and is defined as follows:

L(θ; y1, . . . , yn) = Πif(yi|θ).
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The maximum likelihood estimate of θ for the given data is the value of
θ for which L(θ; y1, . . . , yn) attains its maximum value. The data, which
are realizations of the variables in the density function, are considered as
fixed and parameters are considered as variables of the optimization problem,
([5]). In many cases it is more convenient to work with natural logarithm of
function L(θ; y1, . . . , yn) than with the function L(θ; y1, . . . , yn) itself.

The maximum likelihood function for Student T distribution has the fol-
lowing form:

L(v; x1, . . . , xn) = Πn
i=1

Γ(v+1
2

)√
πvΓ(v

2
)

(
1 +

x2
i

v

)−( v+1
2

)

.

Taking the logarithm results in:

log L(v; x1, . . . , xn) = log

(
Γn(v+1

2
)√

πv
n
Γn(v

2
)

)
− v + 1

2
Σn

i=1 log

(
1 +

x2
i

v

)
.

Taking the derivative with respect to v and equating to zero gives:

d log L(v; x1, . . . , xn)

dv
=

1
2
Γn( v+1

2 )nΨ( v+1
2 )√

πv
n
Γn( v

2)
−

1
2
Γn( v+1

2 )√
πv

n
Γn( v

2)
n
v

−
1
2
Γn( v+1

2 )√
πv

n
Γn( v

2)nΨ( v
2)

Γn
(

v+1
2

)√
πv

n
Γn

(
v
2

) − 1

2

(
Σn

i=1 log(1 +
x2

i

v
)

)

−v + 1

2
Σn

i=1 −
x2

i

v

1

1 +
x2

i

v

= 0,

where Ψ(x) has the form:

Ψ(x) =
d log Γ(x)

dx
.

Solving this equation for v is very difficult.
In order to obtain an estimate for v we can calculate the log L(v; x1, . . . , xn)
for various v and find the maximum among those. As an example, let’s take
a 100 samples from the Student T distribution with v = 4 degrees of free-
dom. The picture 2.2 presents the log L(v; x1, . . . , xn) computed for v = 1
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Figure 2.2: The log-likelihood function for Student T distribution for v =
1, . . . , 10 degrees of freedom.

to 10 with step 1. The maximum is obtained for v = 4. Since Student t
distribution has heavy tails governed by the degrees of freedom parameter v,
we can apply alternative methods for estimating this parameter.
Proceeding section provides background informations about the theory be-
hind the tail index estimators. We explain the relation between the tail index
and the degrees of freedom parameter. By means of simulation we examine
the performance of presented estimator for the Student t distribution. We
will see that they are quite accurate.

Estimation of the Tail Index

The basic ideas behind the methodology are presented. The various esti-
mators for tail index are provided, however without rigorous mathematical
treatment. These can be found in [6], [7],[8],[9]. The bootstrap method is
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applied in order to improve performance of the Hill estimator ([7]).

Heavy tail is the property of a distribution for which the probability of
a large values is relatively big. Insurance losses, financial log-returns, file
sizes stored on a server are examples of heavy tailed phenomena. The mod-
eling and statistic of such phenomena are tail dependent and much different
than classical modeling and statistical analysis. Heavy tail analysis does not
give the primacy to central moments, averages and the normal density with
light tail as the classical approach does. Heavy tail analysis is the study of
systems whose behavior is governed by large values which shock the system
periodically. In heavy - tailed analysis the asymptotic behavior of descriptor
variables is determined by the large values.

Roughly speaking, a random variable T has a heavy tail (right) if there
exists a positive parameter α > 0 such that

P (T > t) ∼ x−α, x →∞. (2.3)

Examples of such random variables are those with Cauchy, Pareto, Student
t, F or stable distribution. An elementary observation is that a heavy -tailed
random variable has a relatively large probability of exhibiting a large value,
compared to random variables, which have exponentially bounded tails such
as normal, Weibull, exponential, or gamma random variables. The concept
of heavy-tail distribution should not be confused with the concept of a dis-
tribution with infinite right support. For instance, both normal and Pareto
distributions have positive probability of achieving a value bigger than any
preassigned threshold. However, Pareto variables have much bigger proba-
bility of exceeding the threshold.

The theory of regularly varying functions is the appropriate mathematical
analysis tool for proper discussion of heavy - tail phenomena. We can think
of regularly varying functions as functions which behave asymptotically like
power functions. The formal definition of regularly varying function is given
below:

Definition 2.1A measurable function U : R+ → R+ is regularly varying
at ∞ with index p ∈ R if for x > 0

lim
t→∞

U(tx)

U(t)
= xp.

13



We call p the exponent of variation.
The canonical p-varying function is xp. The following functions are not reg-
ularly varying: ex, sin(x). In probability applications we are concerned with
distributions whose tails are regularly varying. Examples are

1− F (x) = x−α, x ≥ 1, , α > 0,

where F (x) is the cumulative distribution function:

• The tail of the Student t distribution is regularly varying,[3]. Addition-
ally we have that a decay in probability density function of a Student
t distribution with v degrees of freedom is

O(t−v−1),

which means that its tails are bounded by a polynomial with degree
(−v − 1). The decay for the cumulative distribution function is

O(t−v).

Because of the symmetry of this distribution, also 1 − F (x) has the
same decay. If we estimate the tail index α we can take parameter v
equal to α. Figure 2.3 shows 1− F (x) for t3 and function x−3, c > 0.
As x increases, the 1− F (x) behaves like the x−3 function.

• The extreme-value distribution

Φα(x) = exp(−x−α), x ≥ 0.

Φα(x) has the property

1− Φα(x) ∼ x−α as x →∞.

• A stable law with index α, 0 < α < 2 has the property

1−G(x) ∼ cx−α, x →∞, c > 0.

The detailed discussion the theory of regularly varying functions can
be found in [6].
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Figure 2.3: The 1-F(x) function for Student t distribution with v = 3 degrees
of freedom and x−3 function.

Estimators for Heavy Tail Index α

There is a number of estimators that can be applied in order to obtain
an estimate for tail index α, and therefore for parameter v for Student t
distribution. We present three of them. The formal mathematical proves
that they are consistent is omitted here. These can be found in [6],[9],[8].

Majority of the tail index estimators are actually estimators for 1/α. They
are based on the two competing models described below:
Suppose X, X1, . . . , Xn have the same distribution F (x) and that inference is
to be based on x1, . . . , xn denoting the observations for each variable. There
are at least two competing heavy-tail models:

1. We can assume that F has a Pareto right tail from some point on. This
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means that there exists some xl > 0, and α > 0 such that

P (X > x) = cx−α, x > xl.

So we assume an exact Pareto tail from xl onwards. The form of the
tail for x < xl may or may not be specified in this approach.

2. Assume that F has regularly varying right tail with index (−α),

P (X > x) = 1− F (x) = x−αL(x),

where L(x) is a slowly varying function, that is with p = 0.
The expression above is the semi-parametric assumption of regular vari-
ation. The focus is on estimating the index of regular variation α.

List below contains three estimator for 1/α together with their short descrip-
tion.
Suppose we have independent and identically distributed variables that are
observed X1, . . . , Xn. For 1 ≤ i ≤ n, write X(i) for the ith largest value of
X1, . . . , Xn, so that

X(1) ≥ X(2) ≥ . . . X(n)

are order statistics.

• The Hill estimator is a popular estimator of 1/α, (see [9],[6].) It is
based on k upper-order statistics and is defined as follows:

Hk,n :=
1

k
Σk

i=1log
X(i)

X(k+1)

.

To understand the idea behind it, suppose for a moment that instead of
semi-parametric assumption (2), we have independent and identically
distributed data from the Pareto parametric family:

1− F (x) = P (Xi > x) = x−α, x > 1, α > 0.

Thus F is a Pareto with support [1,∞) and corresponding density
function is given by:

f(x) =
α

xα+1
.
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Then the maximum likelihood estimator for 1/α is

α−1 =
1

n
Σn

i=1logXi.

This follows from the fact that logXi, 1 < i < n is a random sample
from the distribution with tail

P (logX1 > x) = P (X1 > ex) = e−αx, x > 0,

which is the exponential distribution tail. The mean of this distribution
is α−1 and the Maximum Likelihood function is X, which in this case
is the given estimator.
The strong assumption about the Pareto distribution of the population
in most cases needs to be weakened. It means that we assume a Pareto
tail from some point onwards, as in model (1), rather than the exact
model.
In practice we make a plot of the Hill estimator Hk,n of 1/α for different
number of upper - order statistics k :

(
(k, H

(−1)
k,n ), 1 ≤ k ≤ n

)
.

Then, as long as the graph looks stable, we can pick out the value of α.
Sometimes it is not easy. The difficulties when using the Hill estimator
are the following:

1. It is sensitive to the choice of the number of upper order statistic
k since we have to choose the estimate for α looking at the graph.

2. The graph may exhibit volatility, so finding the true value for α
becomes difficult.

3. It gives optimal results for underlying distributions if they are
close to the Pareto distribution. If they are not, then the error
may be big.

4. The Hill estimator is not location invariant. A shift in location
does not theoretically affect the tail index but it may seriously
affect the Hill estimator.

• The Pickands estimator is based on the assumption that the distri-
bution function F of the sample belongs to the family of extreme value
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distributions, denoted by D(Gγ). The extreme value distributions can
be defined as one parameter family:

Gγ(x) = exp
(
−(1 + γx)−(1/γ)

)
, γ ∈ R, , 1 + γx > 0.

Now, if we consider support (S) of this family with respect to the
parameter γ, we can observe the following:

S =





(
− 1

γ
,∞

)
if γ ≥ 0,

((−∞,∞)) if γ = 0,(
−∞, 1

|γ|
)

if γ ≤ 0.

The heavy-tailed case corresponds to γ ≥ 0, and then γ = 1/α.
The Pickands estimator is a semi-parametric estimator of γ. It uses
differences of quantiles and is based on three upper-order statistics,
Z(k), Z(2k), Z(4k) from a sample of size n. The estimator is given by
the formula:

γPickands
k,n =

1

log2
log

(
Z(k)− Z(2k

Z(2k)− Z(4k)

)
.

The advantage over the Hill estimator is that it is location invariant.
It is also scale invariant. If estimated parameter γ is negative or equal
to zero, it indicates that the heavy tail model is inappropriate. The
Pickands estimator is sensitive to the choice of number of upper order
statistics k. The estimation of the parameter is read from its plot vs
number of upper order statistics k, (see [6],[8]).

• The Deckers - Einmahl - de Haan Estimator, (DEdH), for γ =
1/α. This estimator can be thought of as the extended Hill’s estimator.
Tt performs well for the class of extreme distribution functions. It is
defined as follows:

γDEdH
k,n = 1 + H

(1)
k,n +

1

2


(H

(1)
k,n)2

H
(2)
k,n

− 1




(−1)

,

where

H
(1)
k,n :=

1

k
Σk

i=1log
Xi

Xk+1
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is the Hill’s estimator and

H
(2)
k,n :=

1

k
Σk

i=1

(
log

Xi

Xk+1

)2

.

Because H
(1)
k,nandH

(12)
k,n can be interpreted as empirical moments, this

estimator is also referred to as a moment estimator of γ, (see [8]).
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Figure 2.4: Hill, Pickands and DEdH estimators for 1/α = 1/v for student t
distribution with v = 2, 4 degrees of freedom.

Presented estimators are proven to be consistent. Except for Pickands
estimators, all the others are applicable only in case of heavy tail distribu-
tions. To perform well, they require that k(n) →∞. It is not known how to
choose k optimally for a finite sample.

In order to see how good these estimators are for the Student t distribu-
tion with v = 2 and v = 4, they are applied to 10000 random samples. The
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samples are sorted in descending order. The k = 250 upper order statistics
are used in estimation. Figure 2.4 shows the results.

It can be observed that the Pickands estimator is very noisy. The hill and
DEdH estimators oscillate around the true value of 1/α ∼ 1/v. Figure 2.5
shows how sensitive these estimators are to the data. The variation of these
estimators over 100 simulations is presented by plotting the average values
and their standard deviations. It can be observed that there are strong
fluctuations when the number of upper ordered statistics goes to zero. It
means that for low values of k the estimator should not be trusted. The
plots of means of the estimators indicate the true values for 1/α ∼ 1/v. The
estimators are all biased.
In the literature, the Bootstrap method, jackknife method and variants of
the Hill plot are proposed to improve the estimation, ([6],[7]). We shall take
a close look at the bootstrap method for the Hill estimator.
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Figure 2.5: The variation of the Hill, Pickands and DEdH estimators over
100 samples from student t distribution with v = 2, 4 degrees of freedom.
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The bootstrap method for Hill estimator.

Picket, Dacorogna and Muller in [7], proposed a method of improving the
performance of the Hill estimator. They suggested using bootstrap method
to find an appropriate number of upper order statistics k∗ and compute the
Hill estimator of the tail index for this chosen k∗.
We describe their work and perform numerical simulations for the Student t
distribution.
The Hill estimator is normally distributed. Authors of the method computed
the expectation of the Hill estimator in asymptotic expansion and showed
that it is biased:

E(Hk,n) =
1

α
+ B,

where B is the bias or systematic error. It is equal to:

B = E(Hk,n)− 1

α
.

Further, they computed the variance of the Hill estimator in asymptotic
expansion. These results were used to compute the error of the Hill estimator.
The error has two components: the systematic error B and a stochastic error
with the variance computed from:

E([Hk,n − E(Hk,n)]2).

The total error has the following variance:

E([Hk,n − 1

α
]2) = B2 + E([Hk,n − E[Hk,n]]2) =

=
1

α2

β2b2

(α + β)2
a−

2β
α

(
k

n

) 2β
α

+
1

α2k
, (2.4)

where α, β, a, b are positive constants that were obtained while asymptotic
expansion of the expectation and variance of the Hill estimator.
This total error is large both for large k (where the first term dominates)
and very small k (where the second term dominates). The error becomes
smaller in a middle of region for moderately small k. The total error of the
Hill estimator can be minimized with respect to k. Alternatively it can be
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constructed from the Hill estimator in order to obtain a bias - corrected
estimator. The second approach is more difficult. Therefore the authors
concentrated on the minimization of the Hill estimator with respect to k.

In order to find a minimum of the error given in (2.4) with respect to
k, zero of the derivative of the error with respect to k is determined. The
resulting k is given by:

k =

(
α(α + β)2

2β3b2

) α
α+2β

(a× n)
2β

α+2β . (2.5)

It means that the expected value of the total error, E([Hk,n − 1
α
]2) as a

function of k, has a horizontal tangent at k. Then the neighboring integer
values are almost as good as k.

The resulting k may be reinserted into the total error equation to give the
minimum error variance that can be achieved by Hill estimator. However,
the interest is only in the dependence of the error variance on the sample size

n, and we have that E([Hk,n− 1
α
]2) is proportional to n−

2β
α+2β . Increasing the

sample size n leads to smaller error of the Hill estimator.
The best k can not be computed from equation 2.5, because we do not

know the parameters. In order to overcome this situation, authors follow
approach introduced by Hall, [10]. He proposed using bootstrap re-samples
of a small size n1 and k1 values, which differ from n to m. These new samples
are then used for computing Hk1,n1 . Hall suggested finding the optimal k1 for
the subsamples from

mink1E([Hk1,n1 −H0]
2|Fn), (2.6)

where Fn is the empirical distribution and H0 = Hk0,n is some initial full sam-
ple estimate for 1/α with a reasonably chosen but non- optimal k0. Equation
(2.6) is a new approximate version of equation (2.4).
The quantity H0 is a good approximation of 1/α, for subsamples, since we
know that the error is proportionally larger for n1 than for n observations.
The value k1 is found by recomputing Hk1,n1 for different values of k1 and
then empirically evaluating and minimizing equation (2.6). Given k1, the k

for the full sample size can be found by taking the ratio k
k1

and using the

equation (2.4). It results in the following:

k∗ = (k1)
(

n

n1

) 2β
2β+α

, (2.7)
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where k∗ is the bootstrap estimate of k and α∗ = 1/Hk∗,n is the final esti-
mate of the tail index α.

To apply this procedure, we need to know the parameters α and β. For
α0 we use the initial estimate by means of H0, that is 1/H0. The authors of
the article [7] used in their investigation β = 0.01, 0.5, 1, 2. As it turned out
in their studies, the results of the estimation is insensitive to the choice of
this parameter, among those that were tested.

In order to test the quality of the method for estimating parameter of de-
grees of freedom for the Student t distribution, the random samples are taken
from the Student t distribution with parameter v = 2, 3, 4, 5, 6. The sample
sizes are 1000, 5000, 10000. We apply the estimating method to each sample
for each parameter degrees of freedom. In order to improve the method, also
negative tails are considered. The final estimation is the average taken from
the estimation of the right and left tail indexes. To obtain results indepen-
dent of the particular choice of the initial seed of the random generator, we
take the average results computed over 10 realizations for t distribution.
The results presented in Table 1 are calculated with the bootstrap method
under the following conditions:

• For the initial H0 in equation (2.6), the k0 value is chosen as 10% of
the full sample size n.

• The re-sample size is chosen as n1 = n/40. The number of re-samples
is 100. The re-samples are randomly picked from the full data set. One
data point can occur in several re-samples.

• The search space for k1 in order to find k1 through the equation (2.6)
is restricted to 10% of subsample size of n1.

• We apply the equation (2.7) with α = 1/H0 and β = 0.1 to obtain k∗
for the full sample size.

• The 95% confidence interval is computed from the stochastic variance,
and is given by: ±1.96[ 1

α∗2k∗ ]
1/2.

Table 1.

Sample v = 2 v = 3 v = 4 v = 5 v = 6
1000 2.05± 0.67 3.14± 0.44 3.8± 0.36 4.5± 0.45 4.9± 0.26
5000 1.97± 0.28 2.83± 0.21 3.7± 0.15 4.5± 0.13 4.7± 0.12
10000 2.09± 0.2 2.97± 0.13 3.93± 0.1 4.5± 0.09 5.3± 0.08
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Table 1 above presents estimated tail indexes for the Student t distribution
with different degrees of freedom for different sample sizes. As expected the
results are better when the sample size increases. The estimation is not very
accurate for small samples, especially when the degrees of freedom parameter
of theoretical distribution increases. However, we can always use a goodness
of fit test for population with estimated parameters to confirm the results.
We apply this methodology to the foreign exchange rates in the next section.

2.1.2 Foreign Exchange rates

Knowledge of the distribution of the exchange rates is important in studies
where the uncertainty regarding exchange rates movements must be mea-
sured, for instance, in modeling the foreign exchange transaction costs.
Many analysts find the Student t distribution to be among others a good
model for exchange rates ( [11],[12]). We will see, that indeed these data
have heavy tails and that we can use tail index estimators to fit an appro-
priate Student t distribution.

We examine three daily foreign exchange rates versus the U.S. dollar:
Canadian dollar, German mark and Swiss francs for the time period 2 of
January 1973 to 8 of August 1984. The samples size is 2909. No special
adjustment was made for holidays, so the differencing interval between daily
series represents changes between business days. In the analysis that follows
we model returns of the exchange rates. First, define the return process Ri

as:
Ri = (Si − Si−1)/Si−1,

where (Si) is the stochastic process representing the exchange rate at times
i. It gives the relative difference of rates at each time point i. If the returns
are small, then the differenced log - price process approximates the return
process

Ri = log Si − log Si−1 = log
Si

Si−1

= log

(
1 +

(
Si

Si−1

− 1

))

≈ Si

Si−1

− 1 = Ri,

what follows from the fact that for |x| small,

log(1 + x) ∼ x, x → 0.
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Therefore, now we call the process (Ri) the returns process. This process has
stationary property. It is scale free and independent of the units as well as
the initial rate value.

We transform the data to obtain the return process Ri. Figure 2.6
presents the time series plots of daily exchange rates and corresponding re-
turn series for the three datasets.
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Figure 2.6: Plots of the daily exchange rates and returns of the Canadian
dollar, German Mark and Swiss francs vs American dollar.

The following descriptive statistics were calculated for all datasets: location1

1Location parameter-µ, determines the origin of the underlying distribution.
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(mean), scale 2 (standard deviation), skewness 3 and kurtosis 4. Table 2
below presents values of these statistics for three datasets:

location, scale skewness kurtosis
Candian dollar/U.S.dollar 9.24e-005 0.0022 0.32 5.02
German Mark/U.S.dollar -3.37e-005 0.0064 -0.015 9.3
Swiss Franc/U.S. dollar -1.48e-004 0.0076 0.23 5.76

We can observe that on average the Canadian dollar declined against U.S.
during the sample period - its mean is positive. The German mark and Swiss
Franc rose on average, both have negative mean. There is a slight positive
skewness for the Canadian dollar and Swiss francs. For German mark skew-
ness is small and negative. Since skewness is small, we can assume symmetry
of the distributions, because it is not strongly contradicted by the data. All
three currencies have positive excess kurtosis. This means that their densi-
ties are more peaked and heavy tailed than normal density. We compute the
tail indexes α for them using estimators described in the previous section. It
will give an estimation of the degrees of freedom parameter v for Student t
distribution for each dataset.

Figure 2.7 presents plots of the 1/(Hillestimator) and 1/(DEdHestimator).

2Scale parameter, standard deviation-σ, indicates the concentration of the underlying
density around the origin.

3Skewness is a measure of the asymmetry of the data around the sample mean. If
skewness is negative, the data are spread out more to the left of the mean than to the
right. If skewness is positive, the data are spread out more to the right. The skewness of
a distribution is defined as

S =
E(x− µ)3

σ3
,

where µ is the of x and σ is the standard deviation of x. Skewness for symmetric distri-
butions, such as normal and Student T distribution should be equal to zero.

4Kurtosis is a measure of how outliers-prone a distribution is. Higher kurtosis means
more of the variance is due to infrequent extreme deviations, as opposed to frequent
modestly-sized deviations. A distribution with positive kurtosis has a higher probability
than a normally distributed variable of values near the mean. It also has heavy tails,
that is a higher probability than a normally distributed variable of extreme values. A
distribution with negative kurtosis has opposite properties. Kurtosis is defined as follows:

K =
E(x− µ)4

σ4
− 3,

where µ is the of x and σ is the standard deviation of x. Kurtosis defined in this way is
also called excess kurtosis. The excess kurtosis of the normal variable equals 0.
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Figure 2.7: 1/Hill and 1/DEdH estimators of the degrees of freedom pa-
rameter for Canadian dollar, German mark and Swiss franc.

The Pickand estimator is very noisy and uninformatively and therefore it was
not plotted.
The value of parameter v for Canadian dollar indicated by the Hill and DEdH
estimators is in the interval [3.5, 4] when number of upper order statistics is
smaller than 100. Estimators depart from each other as the number of upper
order statistics is greater than 100. The Hill estimator decreases towards 2
and DEdH estimator increases to over 6.
Estimators behave in stable ways for German mark and Swiss franc and in-
dicate the values of the degrees of freedom parameter v in the interval [2, 4].
It is not easy to pick one value for the degrees of freedom parameter, there-
fore, we apply the bootstrap method for Hill estimator. It will give us just
one value. Next, we perform the Kolmogorov-Smirnov goodness of fit test5

5Kolmogorv-Smirnov goodness of fit test is used to determine whether two underlying
one-dimensional probability distributions differ, or whether an underlying probability dis-
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for Student t distribution with estimated parameter v. Additionally, we also
test null hypothesis that the currency returns are Student t distributed with
the degrees of freedom parameter from the interval [2, 8].

We apply Kolmogorv-Smirnov test to the standardized returns data, see

[13]. It means that we divide T −µ by
√

var(T ), where T is random variable
representing our random sample of size N.
If t1, . . . , tN is a sequence of observations, then the unbiased estimators for
µ is computed from:

T =
1

N

N∑

1=i

(ti)

The unbiased estimator for variance for the univariate t distribution, when
parameter v is assumed to be known, is given by the formula:

V =
(v − 2)

v

1

(N − 1)

N∑

1=i

(ti − T )(ti − T ).

In terms of scale parameter:

V =
(v − 2)

v
σ2.

We use this transformation with the estimated degrees of freedom parameter
v in order to obtain a sample from a univariate canonical distribution with
v degrees of freedom. Then we use the Kolmogorov Smirnov test to confirm
whether, data is t distributed with estimated degrees of freedom parameter.

Table 3 below shows the results:

Canadian dollar German mark Swiss franc
v 4.3± 0.19 3.2± 0.22 4.1± 0.2

Accepted v : [3.7, 7.6] [3, 4.5] [3.8, 6.2]

As we can see, the Kolmogorov Smirnov test accepted null hypothesis that
Canadian dollar, German mark and Swiss franc returns are t distributed with
estimated degrees of freedom parameter. The null hypothesis for degrees of

tribution differs from a hypothesized distribution, in either case based on finite samples.
It uses the statistics:

max(|F (x)− Fe(x)|),
where F (x) is hypothetic distribution function - null hypothesis and Fe(x) is empirical
distribution function of the sample.
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freedom parameters relatively close to the estimated one can not be rejected
either.

We can conclude that datasets are Student t distributed with parame-
ters v equal to the results of the improved Hill estimators for each dataset.
Student t distribution is a reasonable statistical model for foreign exchange
rates.

Figure 2.8 presents density histograms of the three currencies returns.
It shows density histograms of rescaled data together with plots of fitted
Student t density functions with estimated parameters v.
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Figure 2.8: Density histograms, rescaled density histograms and fitted t den-
sities functions for returns of the Canadian dollar, the German Mark and the
Swiss Francs vs American dollar.
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2.2 Multivariate Student t distribution

This section is devoted to the multivariate Student t distribution. Many
different constructions of this distribution are available in the literature.
They have different features and properties. Kotz and Nadarajah collected
most of them in the book Multivariate t Distributions and Their Applica-
tions, see [14]. We describe here the most common and natural form, that
directly generalizes the univariate Student t distribution. We call it canoni-
cal multivariate Student t distribution.

We devote a separate subsection for the bivariate case. We rewrite some
of the general results for the bivariate Student t distribution such as condi-
tional distribution. It will be used later on to obtain the conditional copula,
which is of practical importance. We will also present the T distribution
derived by William Shaw with the independence property.
Let us start with defining a multivariate canonical Student t distribution.

The p-dimensional random vector T = (T1, . . . , Tp) is said to have mul-
tivariate t distribution ([15]) with v degrees of freedom, mean vector µ =
(µ1, . . . , µp)T, location parameter, and positive definite correlation matrix
R6, if its density is given by

fR,v(t) =
Γ(v+p

2
)

Γ(v
2
)(πv)p/2|R|1/2

(
1 +

(t− µ)T × |R|−1(t− µ)

v

)−( v+p
2

)

. (2.8)

We denote this by T ∼ tdp(v, µ,R). The cumulative distribution function
will be denoted by tp(v, µ, R).
The degrees of freedom parameter v is also referred to as the shape parameter.
The peakedness of the density may be diminished, preserved or increased by
varying v. The distribution is said to be central if µ = 0, otherwise is said
to be non-central. The particular case of (2.8) for µ = 0 and R = I is a
mixture of the normal density with zero means and covariance matrix vI -
in the scale parameter v.

The Student t distribution (2.8) can also be written as

6For the purposes of this report R is assumed to be the correlation matrix. In gen-
eral, however, it is a positive definite matrix of scale parameters, sometimes called also
a dispersion matrix. When multiplied by v

v−2 it becomes a covariance matrix. To get
the correlation matrix, the covariance matrix Σ is multiplied by the following matrix D,
DΣ∗D. On the diagonal of the D, 1

σx is put and the rest of the entries are zeros.
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fR,v(t) =
∫ ∞

0

|ω2R|− 1
2

(2π)
exp

(
−(t− µ)T (ω2R)(−1)

(
t− µ

2

))
h(ω)dω (2.9)

which is a mixture of the multivariate normal distribution Np(µ, ω2R) and
ω has the inverted gamma distribution with probability density function:

h(ω) =
2(v

2
)

v
2

Γ(v
2
)

ω−(v+1)exp
(−v

2ω2

)

where v is the degree of freedom of inverted gamma distribution. Equiva-
lently, vω−2 has a chi-square distribution with v degrees of freedom. Thus
for a given ω, the random vector T has a multivariate normal distribution

(T |Ω = ω) ≈ Np(µ, ω2R).

As v → ∞, the random variable Ω becomes a degenerate random vari-
able with all the non-zero mass at the point unity and the probability den-
sity function of the multivariate T distribution in (2.8) converges to that of
the multivariate normal distribution Np(µ,R). The uncorrelatedness of the
T1, . . . , Tp does not imply that they are independent of each other, unless
v → ∞.The Student t distribution does not posses the independence prop-
erty.
Taking µ = [0, 0]T , the equation (2.8) simplifies to

fR,v(t) =
Γ(v+p

2
)

Γ(v
2
)(πv)p/2|R|1/2

(
1 +

tT|R|−1t

v

)−( v+p
2

)

. (2.10)

When the correlation matrix R is an identity matrix I, then the expression
above simplifies to

fR,v(t) =
Γ(v+p

2
)

Γ(v
2
)(πv)p/2

(
1 +

tTt

v

)−( v+p
2

)

, (2.11)

which is not a product of the p univariate Student t density functions. Be-
cause of the lack of the independence property, it is more appropriate for
some applications to use the uncorrelated t model , which is presented later
on.
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2.2.1 Representation

The multivariate Student t distribution with v degrees of freedom, mean
vector µ and correlation matrix R can be represented at least in three different
ways. Each representation results in the canonical multivariate Student t
distribution. Representation number 1 is more convenient for computing
moments of the t distribution, whereas representation 3 is used to sample
the t distribution. They are shown below, see [14],[22].

1. Y is a p-variate normal random vector with mean 0 and covariance
matrix R, and if vS2/σ2 is the chi-squared random variable with degrees
of freedom v, independent of Y, then

T = S−1Y + µ (2.12)

is a Student t distributed random variable with parameters µ, v, R. This
implies that T|S = s has a p-variate normal distribution with mean
vector µ and covariance matrix (1/s2)R.

2. If V1/2 is the symmetric square root of V, that is,

V1/2V1/2 = V ∼ W2(R
−1, v + 2− 1),

where W2(Σ, n) denotes the p-variate Wishart distribution 7 with de-
grees of freedom n and covariance matrix Σ, and if Y has the p-variate
normal distribution with zero means and covariance matrix vIp (Ip is
the p-dimensional identity matrix), independent of V, then

T = (V1/2)−1Y + µ.

That implies that T|V has p-variate normal distribution with mean
vector µ and covariance matrix vV−1.

7Wishart distribution- is an multivariate analogue to a chi-squared distribution. If
x1, . . . , xk are a sequence of independent identically distributed random variables, each
having distribution N(0, σ2), then 1/σ2Σx2

i has a chi-square distribution with k degrees
of freedom. The multivariate analogue occurs when x1, . . . , xk form a sequence of inde-
pendent p-variable random vectors each with distribution N(0,Σ) and the matrix C is
defined by C = Σk

i=1xix
T
i . The (i, i)th element of the matrix C is the sum of squares of

the ith elements of the vectors x1, . . . , xk, while the (i, j)th element of C, i 6= j is the sum
of products of ith and jth elements of these vectors. The joint distribution of all elements
of C is said to be a Wishart distribution based on p variables, with k degrees of freedom
and parameter Σ. It is denoted by Wp(k, Σ), see [16]
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3. If T has the stochastic representation

X = µ +

√
v√
S

Z, (2.13)

where µ ∈ Rp, S ∼ χ2
v and Z ∼ Np(0,R) are independent, then X has

an p-variate Student t distribution with mean µ and covariance matrix
v

v−2
R. This representation is commonly used for sampling purposes.

The sampling procedure will be provided later on.

2.2.2 Moments

Since variables Y and S in the representation 1 (2.12) are independent, the
conditional distribution of (Ti, Tj), given S = s, is the bivariate normal with
means (µi, µj), common variance σ2/s2 and correlation coefficient ri,j. Thus,

E(Ti) = E[E(Ti|S = s)]

= E(µi)

= µi.

We use the classical identity

Cov(Xi, Xj) = E[Cov(Xi, Xj)|S = s] + Cov[E(Xi|S = s)E(Xj|S = s)],

for i, j = 1, . . . , p, in order to calculate the second moments. Using the
assumptions above, we can write:

E[Cov(Ti, Tj)|S = s] = σ2ri,jE(
1

S2
)

and
Cov[E(Ti|S = s)E(Tj|S = s)] = 0.

E( 1
S2 ) exists if v > 2. It is computed by integrating the chi square distribution

in representation (2.1) multiplied by 1
s2 . It equals to

v

σ2(v − 2)
.
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By choosing i = j and i < j, respectively, one obtains

V ar(Ti) =
v

v − 2

and
Cov(Ti, Tj) =

v

v − 2
ri,j.

(For further results see [14].)

2.2.3 Characteristic function

Literature provides characteristic functions for univariate and multivariate t
distributions derived by different authors. We present a derivation due to
Joarder and Ali (1996), which is relatively recent one, [14].

The characteristic function of T following a multivariate Student t dis-
tribution (2.8) is given by

φT(t) = e(itTµ) ||
√

vRt||v/2

2v/2−1Γ(v/2)
Kv/2(||

√
vRt||), (2.14)

where ||t|| =
√

(tTt) and Kv/2(||
√

vRt||) is the MacDonald function with

order v/2 and argument (||√vRt||).
An integral representation of the MacDonald function is

Kα(t) =
(

2

t

)α Γ(α + 1)√
π

∫ ∞

0
(1 + u2)−(α+1/2)cos(tu)du,

where t > 0 and α > −1/2.
For the univariate Student t distribution with the density function (1.1) the
characteristic function in terms of the MacDonald function is of the form:

φX(t) =
vv/4|t|v/2

2v/2−1Γ(v/2)
Kv/2(

√
vt).

For details see [14].
The characteristic function of T in (2.14) can be written as follows:

φT(t) = E(eitT T ) = eitT µψ(tT Rt), (2.15)

for some function ψ.
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2.2.4 Elliptical Distribution

The class of the elliptical distributions can be defined in a number of different
ways. We present one of the possible definitions.

Definition 1 If X is a p-dimensional random vector and, for some µ ∈ Rp

and some p × p nonnegative definite symmetric matrix Σ, the character-
istic function φX−µ(t) of X− µ is a function of the quadratic form ttΣt,
φX−µ(t) = ψ(tTt), we say that X has an elliptical distribution with parame-
ters µ, Σ and ψ, and we write X ∼ Ep(µ, Σ, ψ).

Therefore, elliptical distribution is a family of distributions whose charac-
teristic function takes the form:

φX(t) = eitTµψ(tT Σt),

for some function ψ, vector µ and nonnegative definite matrix Σ, see [17].
Looking at the characteristic function given in (2.14), we can see that Student
t distribution belongs to the elliptical distribution family and therefore enjoys
some useful properties of this family, such as:

1. Marginal distributions of elliptically distributed variables are elliptical.

2. Conditional distribution of X1 given the value of X2 is also elliptical,
but in general not of the same type.

3. Any linear combination of elliptically distributed variables is elliptical.

4. For multivariate elliptical distributions partial and conditional corre-
lations are equal. Zero conditional correlation does not necessarily
indicate conditional independence. This is the property of the normal
distribution.
Baba, Shibata and Sibuya in [20] provided a necessary and sufficient
conditions for coincidence of the partial covariance with the expecta-
tion of the conditional covariance. Essentially, that is the linearity of
the conditional expectation. A corollary of their main result shows that
the partial correlation is equal to the conditional correlation if the con-
ditional correlation is independent of the value of the condition, and
also if the conditional expectation is linear.
They showed that this holds for elliptical distributions and therefore
for the Student t distribution.
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5. The relation between product moment correlation and Kendall’s tau
for bivariate elliptical distribution with correlation ρ is given by the
formula:

ρ = sin
(

π

2
τ
)

.

This is a useful result especially for statistical purposes. It can be
used to build a robust estimator of linear correlation for elliptically
distributed data, see [19]

For proves of these result, we refer to [22], [17],[18].

2.2.5 Marginal Distributions

Suppose that T is a Student t distributed with parameters µ,v and correlation
matrix R. They can be partitioned as follows:

T =

(
T1

T2

)
, µ =

(
µ1

µ2

)
,R =

(
R1,1 R1,2

R2,1 R2,2

)
,

where T1 is p1×1 and R1,1 is p1×p1. Then T1 has the p1-variate t distribution
with v degrees of freedom, mean vector µ1 and correlation matrix R1,1 with
the joint density function given by

fT1(t1) =
Γ((v + p1)/2)

(vπ)p1/2Γ(v/2)|R1,1|1/2

(
1 +

1

v
(t1 − µ1)

T R−1
1,1(t1 − µ1)

)−(v+p1)/2

.

Moreover, X2 also has the (p − p1)- variate t distribution with v degrees
of freedom, mean vector µ2, correlation matrix R2,2, and with joint density
function

fT2(t2) =
Γ((v + p− p1)/2)

(vπ)p−p1/2Γ(v/2)|R2,2|1/2

(
1 +

1

v
(t2 − µ2)

T R−1
2,2(t2 − µ2)

)−(v+p−p1)/2

,

see [14].

2.2.6 Conditional Distribution

In order to provide a conditional distribution we use now a slightly differ-
ent notation. Instead of the correlation matrix R, we consider a covariance
matrix defined as v

v−2
R = v ∗ R, where v∗ = v

v−2
. Then we denote the t
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distribution with these altered parameters as tp(v, µ, v ∗R). With the above
partition, the conditional distribution of T1 given T2 = t2 has the p1-variate
Student t distribution with mean µ1.2, and covariance matrix v ∗1.2 R1,1.2

given by

• µ1.2 = µ1 + R1,2R
−1
2,2(t2 − µ2) is conditional mean,

• v1.2 = v
v+p−p1+2

,

• R1.2 = (1 + (t2 − µ2)
T (vR2,2)

−1(t2 − µ2))R1,1.2 is the conditional cor-
relation matrix, where

R1,1.2 = R1,1 −R1,2R
−1
2,2R2,1.

For the details of this result see [14] and references in [15].

2.2.7 Distribution of a Linear Function

If T has a multivariate t distribution with degrees of freedom v, mean vector
µ, and correlation matrix R, then for any nonsingular scalar matrix A and
for any b, the variable

AT + b

is multivariate Student t distributed with degrees of freedom parameter v,
mean vector Aµ + b and correlation matrix AXAT . The degree of freedom
parameter remains the same,see [14], [15].

2.2.8 Dependence Measures

An important issue in practical applications is to determine the dependence
between variables. To do so, several measures are applied. The best known
is the following:

Definition 2. Product Moment Correlation of random variables X, Y
with finite expectations E(X), E(Y ) and finite variances σ2

X , σ2
Y is:

ρ(X,Y ) =
E(XY )− E(X)E(Y )

σXσY
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This coefficient is a measure of linear dependence between two variables.
The bivariate T distribution can be parameterized by this coefficient.
There are also other dependence coefficients, which are based on ranks of the
variables. In contrast to the product moment correlation, they are indepen-
dent of the marginal distributions and invariant under continuous increasing
transformations.

Definition 3. Rank Correlation -Spearman’s ρr of random variables
X,Y with cumulative distribution functions FX and FY is defined as

ρr(X,Y ) = ρ(FX(X), FY (Y )).

There is no explicit relation between rank correlation and linear correlation
for elliptical distributions, except for normal one. It is possible, though, to
compute analytically the rank correlation corresponding to a given linear
correlation. We are not showing such calculations here. Instead we explain
this relationship vie Monte Carlo simulations.

1. 1000 samples are taken for each ρ from the student T distribution with
fixed v.

2. The rank correlation is computed for each sample;

3. Steps 1 and 2 are repeated 1000 times;

4. The average of the computed rank correlations is taken for each product
moment correlation.

Figure 2.9 shows the results. It looks like the rank correlation does not
depend on the degrees of freedom parameter. The plot of the rank correlation,
solid line, lies below the product moment correlation. It tends to be a bit
lower than the corresponding linear correlation.

Another popular measure of dependence is Kendall’s tau, τ. The following
definition of τ is taken from the [22].

Definition 3. Kendall’s τ for a random vector (X, Y ) is defined as fol-
lows:

τ(X, Y ) = P (X −X)(Y − Y ) > 0− P (X −X)(Y − Y ) < 0,
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Figure 2.9: Rank Correlations for the T distribution, obtained by the Monte
Carlo method.

where (X, Y ) is an independent copy of (X, Y ), and X, Y are random
vectors of length n.
For elliptical distributions we know the relation between τ and ρ, that was
given in section 2.2.4. We can find τ from samples.

The sample estimator τ is given by the following. In a sample of length
n there are n(n−1)

2
pairs of points {(xi, yi), (xj, yj)}, where a point can not

be paired with itself and two points in either order count s one pair. Let c
denote the number of pairs such that (xi−xj)(yi−yj) > 0, concordant pairs,
and d the number of pairs such that (xi − xj)(yi − yj) < 0, discordant pairs.
Then the estimator for τ is given by:

τ =
c− d

c + d
.

In practice however, it might occur that xi = xj and/or yi = yj. In this case,
tie, the pair is neither concordant nor discordant. If there is a tie in x′s the
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pair will be called an ”extra y pair”,ey, and an ”extra x pair”,ex, if there is a
tie in the y′s. The adjusted sample version of Kendall’s tau is then given by

τ =
c− d√

c + d + ey

√
c + d + ex

.

It is an unbiased estimator of τ. Since the τ is an unbiased estimator of τ
and from the relation

ρ = sin
(

π

2
τ
)
,

the we have that

ρ = sin
(

π

2
τ
)
.

is a natural estimator of linear correlation for elliptical distributions, and
therefore for Student t distribution. This estimator is, however, not unbi-
ased, but it is an robust estimator of the linear correlation. This result is of
great practical importance and will be used in order to estimate the correla-
tion matrix for T copulas later on. For details see [23]

2.2.9 Uncorrelated T Model

In practice, one may be confronted with the situation where the observed
data has a symmetrical distribution with tails which are fatter than those
predicted by the normal distribution. In such cases, we can use the multivari-
ate t model. We introduce here the independent and uncorrelated t model.
Since we want sometimes to estimate the scale parameters matrix Σ instead
of the correlation matrix R, we present the uncorrelated t model with scale
parameter matrix Σ. We will give also the unbiased estimators for Σ and
mean.

The joint probability density function of k independent observations that
have p-variate t distribution with v degrees of freedom, mean µ and the
covariance matrix Σ can be written as:

f(t1, t2, . . . , tk) = f(t1)f(t2) . . . f(tk).

We may call it independent t model. However, many authors (see refer-
ences in [14],[15],[21]) found it more instructive to consider dependent but
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uncorrelated t distributions model:

f(t1, . . . , tk) =
Γ((v + p)/2)

(πkv)p/2Γ(v/2)|Σ|k/2

(
1 +

1

v
Σk

i=1(ti − µi)
T Σ−1(ti − µi)

)−(v+kp)/2

(2.16)
It was proven that the tails of this model are thicker than those of the

independent t model. As degrees of freedom parameter v → ∞, the obser-
vations in uncorrelated model are independent and the uncorrelated t model
becomes a product of k independent p-dimensional random variables each
having normal distribution Np(µ, Σ), see [15] and [21]. This model can be
used to obtain the likelihood estimators of the parameters µ and Σ, given in
the next section.

Parameters Estimation for One Population.

The maximum likelihood estimators of the µ and Σ of the uncorrelated t-
model in (2.16) are given by

µ = T =
1

n
Σn

i=1Ti

and
Σ = A/n =

(
Σn

i=1(Ti − T )(Ti − T )
)
/n,

where n is the sample size and AΣn
i=1(Ti − T )(Ti − T ) is the sum of product

matrix based on the uncorrelated t-model. For details see [15] and [21]. How-
ever, maximum likelihood estimators in this case are not appealing because
most important properties of maximum likelihood follow from the indepen-
dence of the observations. This is not the case for t-model 2.16 for finite
value of the degrees of freedom parameter v. The sample mean is obviously
an unbiased and consistent estimator of µ. The unbiased estimator of Σ is
given by

Σ = A
v − 2

v
/(n− 1).

2.2.10 Sampling the Multivariate Student t Distribu-
tion

Simulation of the distribution is an important issue. The sampling procedure
for multivariate t distribution is based on its stochastic representation 3.
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There are also other methods for sampling t distribution, see [21],[4].
The general algorithm for sampling canonical p-variate t distribution with v
degrees of freedom and correlation matrix R is the following.

Algorithm 1

• Find Choleski decomposition A of the correlation matrix R,

• Simulate p independent random variates z1, . . . , zp from N(0, 1),

• Simulate a random variate s from χ2
v independent of z1, . . . , zp,

• Set y = Az. In this way we obtain a p-variate normal random variable
with correlation matrix R.

• Set x =
√

v√
s
y.

x is a random sample from p-variate t distribution with correlation
matrix R and v degrees of freedom. It is based on the representation
3.

2.2.11 Bivariate Student t distribution

All the results that were given for multivariate Student t distribution hold
naturally for the bivariate case. We rewrite some of them here, as they will
be used in next section to construct conditional copula. The construction of
the Student t distribution with the independence property will be presented
as well. This distribution is not canonical. It was derived by William Shaw,
see [1].

The two dimensional random vector T = (T1, T2) is said to have bivariate
T distribution ([15]) with v degrees of freedom, mean vector µ = (µ1, µ2)

T

and positive definite correlation matrix R if its density is given by

ft,v(t1, t2) =
Γ(v+2

2 )
Γ(v

2 )πv
√

(1− ρ2)

(
1 +

(t1 − µ1)2 + (t2 − µ2)2-2ρ(t1 − µ1)(t2 − µ2)
v(1− ρ2)

)−( v+2
2

)

.

(2.17)
Taking µ = [0, 0]T , it becomes

ft,v(t1, t2) =
Γ(v+2

2
)

Γ(v
2
)πv

√
(1− ρ2)

(
1 +

(t1)
2 + (t2)

2-2ρ(t1)(t2)

v(1− ρ2)

)−( v+2
2

)

. (2.18)
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When the correlation is zero, this expression simplifies further to:

ft,v(t1, t2) =
Γ(v+2

2
)

Γ(v
2
)πv

(
1 +

1

v
(t21 + t22)

− v+2
2

)
,

which clearly is not the product of the two T student density functions.
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Figure 2.10:

Figures 2.10 and 2.11 show how this density looks likes like compared to
the bivariate standard normal probability density function, which is given by
the equation

p(x1, x2; ρ) = [2π
√

1− ρ2]−1exp[− 1

2(1− ρ2)
(x2

1 − 2ρx1x2 + x2
2)]. (2.19)

43



Student T pdf, ρ=−0.1,v=6

X

Y

−2 0 2
−3

−2

−1

0

1

2

3

Student T pdf, ρ=0.5,v=6

X

Y

−2 0 2
−3

−2

−1

0

1

2

3

Student T pdf, ρ=−0.1,v=3

X

Y

−2 0 2
−3

−2

−1

0

1

2

3

Student T pdf, ρ=0.5,v=3

X

Y

−2 0 2
−3

−2

−1

0

1

2

3

Figure 2.11: Contour plots of the standard bivariate Normal density with
ρ = −0.1, 0.5 and student T density functions with for v = 3, 6, 15 for ρ = −.1
and 0.5

Plots shows normal and student t densities with ρ = −0.1. and 0.5. It
can be observed that, as the degrees of freedom decreases, the tail of the
student T densities becomes heavier.

We can derive central bivariate distribution given by (2.18) is as follows:

• Let Wi be independent standard Gaussian random variables;

• Let
Z01 = αW1 + βW2, Z02 = γW1 + δW2,
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where α, β, γ and δ satisfy:

α2 + β2 = 1 = γ2 + δ2,

which ensures that Z01 and Z02 have standard normal distributions. It
gives:

Z01 = W1, Z02 = W1 sin θ + W2 cos θ,

where θ is a mixing angle.

• Construct variables

T1 = Z01

√
v

C2
, T2 = Z02

√
v

C2
,

where C2 is a sample from the χ2
v with v degrees of freedom.

• The inversion of these relationships results in:

W1 =

√
v

C2
T1 W2 =

1

cos θ

√
C2

v
(T2 − T1 sin θ) .

• The conditional density of T given a fixed value of C2 = z is

f(t1, t2|C2 = z) =
z

2πv cos(θ)
exp

{
− z

2v cos2(θ)
(t21 + t22 − 2t1t2 sin(θ))

}
.

It was obtained by changing variables and exploiting the independence
of W1 and W2. The product of their densities is a normal density. Then
integrating over the χ2

v density of z results in the density form (2.18).

We provide detailed derivation of the t distribution with independence prop-
erty and since it is similar to that of the canonical one, all the details will
become more clear.

Conditional Distribution If (T1, T2)
T has a bivariate t distribution with

mean zero, correlation ρ and v degrees of freedom parameter, then T2|T1 = t
is t-distributed with v + 1 degrees of freedom and

µ2.1 = E(T2|T1 = t) = ρt, V ar(T2|T1 = t) =

(
v + t2

v + 1

)
(1− ρ2).
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It is denotes as

dtv+1


 t1 − ρt√

(v+t2)(1−ρ2)
v+1




and the inverse of the conditional distribution is also t distributed:

dtρ,v


t1

√
(v + t2)(1− ρ2)

v + 1
+ ρt


 .

Sampling bivariate canonical Student t distribution To sample the
bivariate t distribution we use the algorithm presented in section (2.2.10). In
order to show the difference between the normal and Student t distribution,
we show in Figure 2.12 two samples generated for tρ=.5,v=3 and normal distri-
bution with correlation ρ = 0.5. The vertical and horizontal lines mark true
theoretical 0.005 and 0.995 quantiles for bivariate normal and t distribution.
We can observe that number of points below and above these lines for the
normal distribution is much smaller than for the t distribution. This comes
as a consequence of the tail dependence of the t distribution. Tail dependence
expresses the expectation of the joint extreme events to occur together. This
concept will be explained in the next section.

Bivariate Student t Distribution with the Independence Property.

The independence property is a desired distribution property in practical
applications, such as Bayesian Belief Nets. We present here the t distribu-
tion, which possess this property. It was derived recently, by William Shaw,
see([1]). The density function of this distribution is complicated and it is dif-
ficult to derive the conditional distribution. The correlation of the variables
depends strongly on the degrees of freedom parameter. As we will see, for
small degrees of freedom the correlation does not cover the interval [−1, 1].
Therefore we are unable to apply this distribution to Bayesian Belief Nets.
The Student t distribution with the independence property is constructed as
follows:

• Let Wi be independent standard Gaussian random variables;

• Let
Z01 = αW1 + βW2, Z02 = γW1 + δW2,
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Figure 2.12: Contour plots of the standard bivariate Normal density with
ρ = 0.5 and student T density functions with for v = 3 and ρ = 0.5 together
with 2000 samples from each distribution. Horizontal and vertical lines mark
the 0.005 and 0.995 quantiles.

where α, β, γ and δ satisfy:

α2 + β2 = 1 = γ2 + δ2,

which ensures that Z01 and Z02 have standard normal distributions. It
gives:

Z01 = W1, Z02 = W1 sin θ + W2 cos θ,

where θ is an mixing angle.

• Construct variables

T1 = Z01

√
v

C2
1

, T2 = Z02

√
v

C2
2

,
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where C1, C2 are independent samples from the χ2
v with v degrees of

freedom. This gives:

T1 =

√
v

C2
1

W1 T2 =

√
v

C2
2

(W1 sin θ + W2 cos θ). (2.20)

• The product moment correlation of the variables Z01 and Z02 is to be
found. By definition we get:

ρ(Z01, Z02) = E(Z01Z02).

Because of the assumption about the independence of the W1 and W2,
the following relation holds:

Z01 = W1 ⊥ Z02 −W1 sin(θ) = cos(θ)W2.

Now, we use the property of the normally distributed variable, that its
linear combination remains normally distributed. Multiplying densities
of the independent random variables resulting from the relation above
and substituting appropriate variables we get the joint density of Z01

and Z02:

1

2π
√

1− sin2(θ)
e
− 1

2(1−sin2(θ))
(z2

1+z2
2−2sin(θ)z1z2)

.

It is clear now, that the product moment correlation between Z01 and
Z02 is ρ = sin θ.

• The inversion of the relationship (2.20) results in:

W1 =

√
v

C2
1

T1 W2 =
1

cos θ




√
C2

2

v
T2 −

√
C2

1

v
T1 sin θ


 .

By fixing values z1, z2 of C2
1 , C

2
2 , it can be deduced that:

W1 =

√
z1

v
T1|z1 =⇒ T1|z1 ∼ N(0,

v

z1

).

Because of the fact that W2 ∼ N(0, 1),we can deduce that:
(

1

cos(θ)
T2|z2

√
z2

v
−W1sin(θ)

1

cos(θ)

)
∼ N(0, 1).
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Then, knowing that:

W1sin(θ)
1

cos(θ)
∼ N

(
0,

sin2(θ)

cos2(θ)

)
,

the distribution function of the variable T2|z2 can be found. Solution of
the following equation provides the variance of the normally distributed
T2|z2 :

1

cos2(θ)
x
z2

v
− sin2(θ)

cos2(θ)
= 1,

it yields that T2|z2 ∼ N(0, v
z2

).

• The standard normal density for W1, W2 has the form

1

2π
e(−

1
2
(w2

1+w2
2)).

• Since variables √
v

z1

W1 = T1|z1 and

√
v

z2

W2cos(θ) = T2|z2 −
√

v

z2

z1

v
T1|z1sin(θ)

are independent and by substitution:

w1 = t1,

w2 = t2 −
√

v

z2

z1

v
t1sin(θ),

the conditional density of the T1, T2 given fixed values z1, z2 of C2
1 , C

2
2

is given by:

fv(t1, t2|C2
1 = z1; C

2
2 = z2) =

=

√
z1z2

2πv cos θ
exp

(
− 1

2π cos2 θ
(z1t

2
1 + z2t

2
2 − 2t2t1 sin θ

√
z1z2)

)
.

49



• This conditional density is integrated with respect to the product den-
sity of z1, z2 with v degrees of freedom, which is given by

1

2vΓ2(v
2
)
(z1z2)

v
2 e(− 1

2
(z1+z2)).

• After integration, the density function of the T distribution with inde-
pendence property has the form:

C ∗ (α1α2)
− v

2
−1

(
Γ

(
v + 1

2

)2

2F1

(
v + 1

2
,
v + 1

2
;
1

2
;

γ2

4α1α2

)√
α1

√
α2

)

−γΓ
(

v

2
+ 1

)2

2F1

(
v

2
+ 1,

v

2
+ 1;

3

2
;

γ2

4α1α2

)
, (2.21)

where 2F1 is Gaussian hypergeometric function and

α1 = 1 +
t21

v cos2 θ
, , α2 = 1 +

t22
v cos2 θ

, δ =
2t1t2 sin θ

v cos2 θ

are intermediate variables and

C∗ =
1

cos(θ)πvΓ(v
2
)2

is the normalizing constant.

• Later on we will see, that the correlation of this distribution is depen-
dent on the sin(θ) and has the form:

ρ(T1T2) =
sin(θ)

Γ2
(

v
2

)Γ2
(

v − 1

2

) (
v

2
− 1

)

Hence, when θ = 0 the correlation is zero and the density function
simplifies to the expression:

Γ(v+1
2

)2

Γ(v
2
)2vπ


 1

1 +
t21
v




v+1
2


 1

1 +
t22
v




v+1
2

,

which is the product of the two marginal T densities functions. There-
fore, presented T distribution has indeed the independence property.
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Figure 2.13: Contour plots of the t student density with the independence
property.

Shaw and Lee are probably the first, who introduced the T density for-
mulated in this way. Figure 2.13 shows contour plots for this density.

The shape of this density is different than the shape of the canonical T
distribution. It does not look like an ellipse. The mass of the density is more
concentrated, when the degrees of freedom parameter increases.

We calculate now the product moment correlation for the student T dis-
tribution with the independence property. In calculations we use the condi-
tionally Gaussian nature of this distribution. Let the values z1, z2 of C2

1 , C
2
2
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respectively to be fixed,then:

ρ(T1, T2|z1, z2) =
E(T1T2|z1,z2)− E(T1|z1)E(T2|z2)

σT1|z1σT2|z2
,

knowing that

T1 ∼ N(0,
v

z1

) and T2 ∼ N(0,
v

z2

),

we can write:
E(T1T2|z1, z2) = sin(θ)

v√
z1z2

,

where sin(θ) is a correlation between T1, T2. Integrating over the product of
the univariate gamma distributions with parameters α = v−1

2
, β = 2,( χ2

v is
a special case of the gamma distribution), we obtain:

E(T1T2) =
sin(θ)

Γ2
(

(
v
)(2)

)Γ2
(

v − 1

2

)
v

2
.

Knowing that the marginal distributions are also Student t, it suffices to
multiply this result by standard deviations of T1, T2 that are equal to

√
v

v−2
:

ρ(T1T2) =
sin(θ)

Γ2
(

v
2

)Γ2
(

v − 1

2

) (
v

2
− 1

)
. (2.22)

Figure 2.14 presets relationship between ρ = sin(θ) and θ ∈ [0, 2π] for dif-
ferent degrees of freedom. Function sin(θ) that corresponds to correlation of
the underlying normal variables Z01, Z02 is also plotted.

Dotted fat line is the sin function corresponding to the correlation between
underlying normal variables. The solid lines, are the correlations curves that
are obtained from (2.22) for θ and for different degrees of freedom. We
marked the correlation curve for the distribution with 3 degrees of freedom.
Clearly, it does not cover the interval [0, 1], but its subset [−0.63, 0.63]. When
degrees of freedom increase, this range increases as well.

There are several generalizations of the above construction for marginal
distributions with different degrees of freedom. We present one that is based
on the grouped T copula developed by Demarta ([25]). The density function
is obtained in a similar way. The main difference is that the χ2

v variables in
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Figure 2.14: Dotted fat line is the sin function and the curves below it rep-
resents the correlations that can be reached starting with degrees of freedom
equal 2 (the lowest) till 15.

the construction have different degrees of freedom, v1, v2. For fixed values
z, w of C2

1 , C
2
2 and change of variables the conditional density has the form:

f(t1, t2|C2
1 = z, C2

2 = w) =√
zw

2π cos θ
√

v1, v2

exp

(
− 1

cos2θ

(
z

v1

t21 +
w

v2

t22 − 2sinθt1t2

√
zw

v1v2

))
.

Integrating over the product of the densities of C2
1 , C

2
2 results in the density

formula:

C∗(α1)
− v

2
−1(α2)

− v2
2
−1

(
Γ

(
v1 + 1

2

)
Γ

(
v2 + 1

2

)
2F1

(
v1 + 1

2
,
v2 + 1

2
;
1

2
;

γ2

4α1α2

)√
α1

√
α2

)

−γΓ
(

v1

2
+ 1

)
Γ

(
v2

2
+ 1

)
2F1

(
v

2
+ 1,

v

2
+ 1;

3

2
;

γ2

4α1α2

)
, (2.23)
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where 2F1 is the Gaussian hypergeometric function and

α1 = 1 +
t21

v1 cos2 θ
, α2 = 1 +

t22
v2 cos2 θ

, δ =
2t1t2 sin θ√
v1v2 cos2 θ

are intermediate variables, and

C∗ =
1

cos θπ
√

v1v2Γ(v1

2
)Γ(v2

2
)

is the normalizing constant.
When θ = 0 this density reduces to the product of the marginal densities:

Γ(v1+1
2

)Γ(v2+1
2

)
(
1 +

t21
v1

)− v1
2
−1 (

1 +
t22
v2

)− v2
2
−1

√
v1
√

v2πΓ(v1

2
)Γ(v2

2
)

.

The product moment correlation is of the form:

ρ = sinθ
Γ(v1−1

2
)

Γ(v1

2
)

√
v1

2
− 1

Γ(v2−1
2

)

Γ(v2

2
)

√
v2

2
− 1.

Picture 2.15 presents contour plots of this density. It looks very similar
to the density of the T distribution with the independence property with the
same marginal. However, it is wider in the direction of the variable that has
lower degrees of freedom.

Sampling these distribution is accomplished by constructing variables from
(2.20) and extracting the sin(θ) from the equation for the correlation (2.22).
It is possible to extend this derivation for the higher dimensions.

As we can see from this chapter, the canonical Student t distribution has
many interesting properties. We showed here only few of them, that are
important for practical purposes of this work. We could also observe, that
altering the construction of the t distribution resulted in a distribution with
different properties than those of the canonical one. (We refer interested to
the book of Kotz, [14].)
It is also worth of mentioning that Student t distribution becomes more and
more popular in statistical applications, for example to model errors. It is
also a basis of the construction of the T copulas. Copulas are of special
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Figure 2.15: Contour plots of the t student density with the independence
property.

interest as they separate the dependence structure from margins. Because
of its properties, the T copula is used in financial applications as an more
realistic alternative to the normal copula.
Next chapter is devoted to these functions.
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Chapter 3

T Copula

In recent years copulas has become a popular tool used to model depen-
dencies in risk modeling, insurance and finance. Analysts have to deal in
practice with multi-dimensional probability distributions, where there is no
clear multivariate distribution. They want to explore the dependence be-
tween variables of interest, as well as their marginal behavior. The idea of
separating a distribution into a part which describes the dependence struc-
ture and a part which describes the marginal behavior only, has led to the
concept of copula.
A Copula is a mathematical function that combines marginal probability into
a joint distribution ([24]).

Copulas refer to the class of multivariate distribution functions supported
on the unit cube with uniform marginals. The formal definition of the copula
is given below. (Nelsen, [24], provides broad background for the concept of
the copulas.)
Definition 3.1 (Copula)A function C : [0, 1]p → [0, 1] is a p-dimensional
copula if it satisfies the following properties:

1. For all ui ∈ [0, 1], C(1, . . . , 1, ui, 1, . . . , 1) = ui.

2. For all u ∈ [0, 1]d, C(u1, . . . , ud) = 0 if at least one of the coordinates,ui,
equals zero.

3. C is grounded and p-increasing, i.e., the C−measure of every box whose
vertices lie in [0, 1]p is non-negative.

As already mentioned, the importance of the copula comes from the fact
that it captures the dependence structure of a multivariate distribution. We
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present now the fundamental fact known as Sklar’s theorem, which can be
found in [22].
Theorem 3.1 Given a p-dimensional distribution function H with continu-
ous marginal cumulative distribution functions F1, . . . , Fp, then there exists
a unique p-dimensional copula C : [0, 1]p → [0, 1] such that

H(x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)).

From Skar’s theorem we can see that for continuous multivariate distribu-
tion functions, we can separate the multivariate dependence structure from
univariate margins and the dependence structure can be represented by cop-
ula.
In order to explain how this unique copula is related to the distribution func-
tion, we need the following definition.
Definition 3.2Let F be univariate distribution function. The generalized
inverse of F is defined as

F−1(t) = inf(x ∈ R : F (x) ≥ t)

for all t ∈ [0, 1], using the convention inf∅ = ∞.

Corollary 3.1Let H be a p-dimensional distribution function with continu-
ous marginals F1, . . . , Fp and copula C (where C satisfies conditions in defi-
nition 1.)Then for any u ∈ [0, 1]p,

C(u1, . . . , up) = H(F−1
1 (u1), . . . , F

−1
p (up)).

Without the continuity assumption the above may not hold. Copula sum-
marizes the dependence structure for any multivariate distribution with con-
tinuous margins.
The copula has also an important property, that strictly increasing transfor-
mations of the underlying random variables result in the transformed vari-
ables having the same copula. Therefore, the copula function of the random
vector (X1, . . . , Xp) is invariant under strictly increasing transformations. It
also means that the copula corresponding to tp(v, µ, Σ) is identical to that of
tp(v, 0, R). This is summarized in the following theorem.
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Theorem 3.2Consider p continuous random variables (X1, . . . , Xp) with
copula C. If g1, . . . , gp : R → R are strictly increasing on the range of
X1, . . . , Xp, then (g1(X1), . . . , gp(Xp)) also have C as their copula.

The multivariate T copula corresponding to the canonical T distribution
(and also the T student distribution with independence property with equal
and unequal degrees of freedom) is constructed as follows:

Ct
R,v(u1, . . . , up) =

∫ t−1
v (u1)

−∞
. . .

∫ t−1
v (up)

−∞
f(t)dt,

where f(t) denotes the Student t density function and t−1
v denotes the quan-

tile function of a standard univariate tv distribution.
The density of the T copula can be computed by differentiating from

C(u1, . . . , up) = F (F−1
T1

(u1), . . . , F
−1
Tp

(up)).

Applying standard integration rules

(∫ g−1(x)

−∞
f(s, t)ds

)′
= f(g−1(x), t)(g−1(x))′ = f(g−1(x), t)

1

g′(g−1(x))
,

the T copula density is obtained:

ct
R,v(u) =

f t
v,R(F−1

1 (u1), . . . , F
−1
p (up))

Πp
i=1fi(F

−1
i (ui))

. (3.1)

For the bivariate T copula we have

Ct
ρ,v(u1, u2) =

∫ t−1
v (u1)

−∞

∫ t−1
v (u2)

−∞
f(t1, t2)dt1dt2,

and

cρ
v,p(u) =

f t
v,ρ(F

−1
v1

(u1), F
−1
v2

(u2))

f t
v(F

−1
v1

(u1))f t
v(F

−1
v2

(u2))
,

where F−1
vi

(u1) denotes the quantile function of the underlying marginal T
distribution with v degrees of freedom and f t

v,ρ denotes appropriate joint
density function.
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Figure 3.1: Plots of the density functions of the canonical T copula.

Figure 3.1 shows the density functions for the T copula with ρ = −.1 and
ρ = .5 with v = degrees of freedom. We can see that it resembles Gaussian
copula. The conditional T copula Ct

v,ρ(u|w) is given by the equation:

tv+1,ρ




u− ρ× t−1
v (w)√

(v+(t−1
v (w))2)(1−ρ2)

v+1




and denoted by h(u,w, θ), where second parameter corresponds to the con-
ditioning variable and θ is a set of parameters. The inverse of the conditional
T copula (Ct

v,ρ)
−1(u|w) is also t distributed:

tv,ρ


u

√
(v + (t−1

v (w))2)(1− ρ2)

v + 1
+ ρ× t−1

v (w)


 .

It is denoted by h−1(u, w, θ). These equations are very important in practice
as we will see later.
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3.1 Properties of the T Copula

Most of the properties of the T copula are inherited from the properties of
the underlying Student t distribution. They are essentially the same.

• The t copula is a symmetric copula;

• It is based on elliptical distribution and therefore it belongs to the class
of the elliptical copulas;

• It does not posses the independence property, but the copula based on
the Student t distribution with this property does have it. The plots
of this copulas are shown on the Figure 3.2 We can see that they differ
from the copulas based on the canonical Student t distribution.
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Figure 3.2: Plots of the density functions of the T copula with equal degrees
of freedom of the marginal distributions.
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• There is an explicit relation between product moment correlation and
Kandall’s τ

ρ = sin
(

π

2
τ
)

• Partial correlation is equal to conditional correlation. It is important
for practical applications to vines. It enables to complete the corre-
lation matrix. The notion of the vines will be explained in the next
chapter.

• The T copula exhibits so called tail dependence. We will explain this
concept more carefully.

3.1.1 Tail Dependence

The concept of tail dependence relates to the amount of dependence in the
upper-right-quadrant tail or lower-left-quadrant tail of a bivariate distribu-
tion. This concept is relevant for the study of dependence between extreme
values. It reflects the tendency of the two random variables to move together.
Tail dependence gives an asymptotic indication of how often we expect to
observe joint extreme values. It turns out that tail dependence between two
continuous random variables X, Y is a copula property and hence the amount
of tail dependence is invariant under strictly increasing transformations of X
and Y, see [22].

Definition 3.3 (Tail Dependence) Let X and Y be a random variables
with continuous distributions F and G respectively. The upper tail depen-
dence coefficient of X and Y is given by

λU := lim
u→1

P (Y > G−1(u)|X > F−1(u)),

provided that the limit λU ∈ [0, 1] exists.

The lower tail dependence coefficient λL is defined in analogous way.
If λU ∈ (0, 1], then X and Y are said to be asymptotically dependent in the
upper tail; if λU = 0 then X and Y are said to be asymptotically independent
in the upper tail.
Since P (Y > G−1(u)|X > F−1(u)) can be written as

1− P (X ≤ F−1(u))− P (Y ≤ G−1(u)) + P (X ≤ F−1(u), Y ≤ G−1(u))

1− P (X ≤ F−1(u))
,
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an alternative and equivalent definition can be provided (for continuous ran-
dom variables), from which it is seen that the concept of tail dependence is
indeed a copula property. It is the following:

Definition 4 If a bivariate copula C such that

lim
u→1

(1− 2u + C(u, u))/(1− u) = λU

exists, then C has an upper tail dependence if λU ∈ (0, 1], and upper tail
independence if λU = 0.

Tail dependence for the bivariate t distribution and for the corresponding
T copula with v degrees of freedom, mean µ and correlation ρ are the same.
Moreover, because of the symmetry, the upper and lower coefficients are
equal, λU = λL, and given by

λU = λL = 2

(
1− tv+1

(√
v + 1

√
1− ρ√

1 + ρ

))
. (3.2)

For details see [22]. Figure 3.3 shows plots of tail dependence for bivariate
t distribution with v = degrees of freedom and for bivariate standard nor-
mal distribution with different correlations. We can observe that the tail
dependence for the normal distribution goes to zero as u → 1.

For random variables with the bivariate Student t distribution or joined
by the corresponding T copula we can expect joint extreme movements to
occur with positive probability, even when the random variables have small
correlation.
Figure 3.4 shows tail dependence coefficient computed from (2.20) for differ-
ent degrees of freedom for zero correlation. We can see that the tail depen-
dence coefficient is quite high for small degrees of freedom and correlation
zero. This also illustrates a fundamental difference between T copula de-
pendence structure and normal copula dependence structure. In the normal
case, zero correlation implies independence, while for the t distribution it is
essentially the degrees of freedom parameter v that controls the extent of the
tail dependence. The tail dependence coefficient increases in ρ and decreases
in v.
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Figure 3.3: Tail dependence for bivariate T copula with v=3 degrees of free-
dom and for bivariate normal copula with different correlations.

3.2 Sampling the T copula

Sampling the T copula can be accomplished in a simple way. The algorithm
is based on the sampling procedure of the multivariate Student t distribution.
We present it below.

Algorithm 2

• Find Choleski decomposition A of the correlation matrix R,

• Simulate p independent random variates z1, . . . , zp from N(0, 1),

• Simulate a random variate s from χ2
v independent of z1, . . . , zp,

• Set y = Az. In this way we obtain a p-variate normal random variable
with correlation matrix R.
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• Set x =
√

v√
s
y. This is the random sample from p-variate t distribution

with correlation matrix R and v degrees of freedom. It is based on the
representation 3 given in section 2.2.

• Set ui = tv(xi), for i = 1, . . . , p, where tv denotes the univariate cumu-
lative t distribution function with v degrees of freedom.

• (u1, . . . , up)
T ∼ Ct

R,v is a sample from T copula with v degrees of free-
dom and correlation matrix R.

• In order to use this dependence structure to join some continuous
marginal distributions F1, . . . , Fp, we set

(w1, . . . , wp) = (F−1
1 (u1), . . . , F

−1
p (u + p)).

Figure 3.5 shows a sample from a bivariate t copula with correlation ρ = 0.5
and 3 degrees of freedom. For comparison a sample from normal copula with
ρ = 0.5, which is simulated in a similar way to the T copula, is plotted.
In order to observe the difference between these dependence structures, we
plotted also two standard normally distributed random variables joined by
both copulas. We can see that the t copula dependence structure exhibits
more dependence in upper and lower corners than the normal one.
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3.3 Estimating T copula

We present a pseudo-semi-parametric likelihood method to estimate a T cop-
ula, see [26]. The idea is to focus on the dependence structure of the data.
Therefore, first we rule out the marginal distributions as these are irrele-
vant from definition of the copula. The term pseudo- likelihood is used to
indicate that the raw data must first be transformed. Further, we use a
semi-parametric estimation of the degrees of freedom parameter.
We present here an example of estimating the T copula for the datasets
analyzed in section 2.1. We estimate the T copula’s parameters from the
pseudo-samples obtained by rank transformation of the datasets.

Recall that having a random sample X = {Xi}n
i=1 that contains obser-

vations Xi = (Xi1, . . . , Xi,p). Each is a vector of data for each time period
i ∈ {1, . . . , n}. Since copulas are defined on the unit hypercube, we first need
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to transform the data. We use the empirical marginal transformation for this
purpose. For each x ∈ R define

F j(x) :=
1

n
Σn

i=1I{Xij≤x},

for j = 1, . . . , p. Next, define

U i =
(
F 1(Xi1), . . . , F p(Xip)

)
,

for i = 1, . . . , n. Un = {U i}n
i=1 is the pseudo-sample. We slightly altered the

definition of the empirical marginal transformation, namely n/(n + 1)F , to
avoid edge effects that occur as some of the variables tend to one, which may
result in unboundedness of the log-likelihood function. For large samples
sizes the F converges to F uniformly on the real-line, almost surely. From
the central limit theorem we also have that F is asymptotically normal and
centered around the true distribution F.
In order to find the parameters, we need to maximize the pseudo-likelihood
function. It is constructed using the density ct

v,R from (3.1) of the T copula

Ln(θ) = IIn
i=1c

t
R,v

(
(U i; θ)

)
,

where θ = (v,R) is the set of parameters.
The maximum likelihood function should be maximized simultaneously with
respect to both v and Σ. This procedure is quite involved. Instead it is
suggested to use the rank correlation estimator, Kendall’s τ, in order to ob-
tain the correlation matrix R. Based on this estimator, we can maximize the
pseudo-likelihood function with respect to degrees of freedom parameter v.
In section 2.5 we presented the Kendall’s τ and we showed also how to esti-
mate this parameter from the data. Exploiting the relation between Kendall’s
τ and linear correlation for elliptical distributions, we obtained an estimator
for the linear correlation. Since the rank correlation is invariant under strictly
increasing transformations of the marginals we anticipate that the empirical
marginal transformation ought to work well for large enough financial time-
series. The estimate τ does not use the information on the degrees of freedom
parameter v, what justifies applying semi-parametric method. The general
procedure is summarized in the following algorithm.

Algorithm 3
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• Transform the data, Xn, to the pseudo-sample, Un, using the empirical
marginal transformation.

• Estimate the correlation matrix R using the relation Rij = sin
(

π
2
τij

)

with Kendall’s τ, which can be estimated from the data.

• Maximize the pseudo-log-likelihood function in order to find v,

v = argmaxv∈(2,∞]

{
Σn

i=1log
(
ct
R,v

(
U i; v, R

))}
.

We can see that this procedure is quite appealing and easy to implement.
It would be desired to have a tool to verify if the estimated dependence
structure of a dataset is appropriately modeled by a chosen copula. For this
purpose we could use the goodness of fit test. The literature provides a few
tests, with no suggestion of which is the best. We are not going to treat this
issue here, but Appendix A provides a description of the goodness of fit test
for copulas based on the Rosenblatt transformation. This test often appears
in the literature and we should be aware of its advantages as well as of its
drawbacks, which are shortly pointed out.

3.4 Case Study

The methodology described above will be applied now to estimate the pa-
rameters of the T copula for the datasets from section 2.1. Those are the
returns of the foreign exchange rates of the German mark, X3, Canadian
dollar,X1, and Swiss franc,X2, vs. the American dollar. A bivariate T cop-
ula will be estimated for each pair of data and a three-variate one for all
of them together. Figure 3.6 shows the scatter plots of pairs of data and
their rank transformation are presented in Figure 3.6. We can observe small
correlations between pairs (X1, X2) and (X1, X3). The correlation between
variables X2 and X3 seems to be high.

Applying the pseudo-semi-parametric log likelihood to estimate T copula for
each pair of exchange rates and for all of them results in the following table.
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Figure 3.6: Plots of pairs of the foreign exchange returns and plots of pairs
of corresponding pseudo-samples.

Table 3.1 c12 c13 c23 c123

τ 0.1533 0.1506 0.6835




1 0.1533 0.1506
0.1533 1 0.6835
0.1506 0.6835 1




ρ 0.2384 0.2344 0.8789




1 0.2384 0.2344
0.2384 1 0.8789
0.2344 0.8789 1




v 14 14.6 4.4 8.2
MaxLogLike 84.8 87.27 2116.3 2166.6

Copula joining variables Ui, Uj is denoted here as cij.
Table 3.1 contains estimated Kendall’s τ , corresponding linear correlation, ρ,
estimated degrees of freedom parameter v and maximal value of the pseudo-

68



log-likelihood.
In case of the three-variate T copula c123 and copula c23 the maximum

value of the pseudo-likelihood is very high. The reason will become clear
when we look at Figures 3.7 and 3.8.
They show the values of density functions of all copulas with estimated pa-
rameters for which the pseudo-log likelihood function reached its maximum
for the pseudo-samples. Figures 3.7 and 3.8 present also corresponding log-
arithms of these values. Table 3.2 contains means of the densities values
and means of the logarithms of these values. When we multiple them by
the sample size, which is 2909, we get the maximum pseudo-log likelihood
values, (see table 3.1.)

Table 3.2 c12 c13 c23 c123

mean of the density values 1.0657 1.0681 4.2115 4.7415
mean of the logarithm( density values) 0.0292 0.03 0.7275 0.7448

As we can see, the copula density values for some points of the uniform
marginals can be very high. We marked some of them on the pictures. It
turns out that the points for which these densities are large lie in the right
upper and left lower corner of the uniform cubes, (hypercube for c123) what
can be observed on the picture 3.9 Those high values are the cause of the
large pseudo-log likelihood function.

We built a three dimensional copula for foreign exchange data with v = 8.2
degrees of freedom. However, bivariate copulas estimated for each pair of
data have different v. It means that the tail dependence of each pair will
not be preserved correctly when we model the data with three dimensional
T copula. In general, that would be a problem with higher dimensions. A
way of overcoming this inconvenience is to decompose a multivariate den-
sity function using copulas and apply dependence model called vines as it
was proposed in [27]. Next chapter presents pair-copula decomposition and
provides a short description of vines.
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Figure 3.7: Plots of the copula densities values for the pseudo-samples and
values of the corresponding logarithms.
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Chapter 4

Vines

Vine is a graphical dependence model. It was introduced in Cooke in 1997
and studied in Bedford and Cooke in 2002, see [28].
A multivariate density can be decomposed into a product of conditional den-
sities. We apply vines in order to organize a pair-copula decomposition of
a multivariate distribution. There are many possible decompositions and
a computational effort of estimation and simulation can be diminished by
applying vines. This procedure enables to incorporate more dependencies
between pairs of variables than the multivariate T copula itself.
We follow work of Kjersti Aas, [27].

4.1 Pair-Copula Decomposition

Suppose we have a vector (X1, . . . , Xp) of random variables with a joint
density function f(x1, . . . , xp). It can be factorized in the following way:

f(x1, . . . , xp) = fp(xp)f(xp−1|xp) . . . f(x1|x2, . . . , xp). (4.1)

This decomposition is unique up to re-labeling of the variables. It de-
scribes a dependence between variables and their marginal behavior.

From chapter 3, we know that copula separates the dependence structure
from the margins. From Corollary 3.1, we also know that we can express the
p-dimensional copula in terms of the joint p-variate cumulative distribution
function F and the quantile functions of the margins:

C(u1, . . . , up) = F (F−1
1 (u1), . . . , F

−1
p (up)).
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For an absolutely continuous F with strictly increasing, continuous marginal
densities f1, . . . , fp, the multivariate density function can be written in terms
of the uniquely defined multivariate copula density function:

f(x1, . . . , xp) = c1,...,p(F1(x1), . . . , Fp(xp))f1(x1), . . . fp(xp).

It follows from the equation 3.1. For the bivariate case it simplifies to

f(x1, x2) = c12(F1(x1), F2(x2))f1(x1)f1(x2),

where c12 is a pair copula density for the pair of transformed variables F1(X1)
and F2(X2). The conditional density is of the form:

f(x1|x2) = c12(F1(x1), F2(x2))f1(x1),

for the same copula c12. For three random variables X1, X2 and X3 we can
write

f(x1|x2, x3) =
f(x1, x2|x3)

f(x2|x3)
=

c12|3(F (x1|x3), F (x2|x3))f(x1|x3)f(x2|x3)

f(x2|x3)

= c12|3(F (x1|x3), F (x2|x3))c13(F1(x1), F3(x3))f1(x1). (4.2)

for the appropriate c12|3 copula applied to the transformed variables F (X1|X3)
and F (X2|X3). An alternative decomposition is

f(x1|x2, x3) = c13|2(F (x1|x2), F (x3|x2))c12(F1(x1), F2(x2))f1(x1),

where c13|2 is different from c12|3. Proceeding in this manner leads to the
pair-copula decomposition of the density in 4.1. Each term in equation 4.1
can be rewritten into an appropriate pair-copula multiplied by a conditional
marginal density. The general formula is given by

f(x|v) = cxvj |v−j
(F (x|v−j), F (vj|v−j)),

for a d-dimensional vector v. Here vj is an arbitrary chosen element of v and
v − j denotes v−vector, excluding component j.
For a three-variate case, the joint density can be decomposed as follows:

f(x1, x2, x3) = f1(x1)f2(x2)f3(x3)c13(F1(x1), F3(x3))c23(F2(x2), F3(x3))
(4.3)

×c13|2(F (x1|x2), F (x3|x2)).
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Under appropriate regularity conditions, a multivariate density can be
expressed in terms of a product of pair-copulas acting on several different
conditional probability distributions. The construction is iterative. Given a
specific factorization, there are many different re-parameterizations.
The pair-copula decomposition involves marginal conditional distributions of
the form F (x|v). They can be written as

F (x|v) =
∂Cx,vj |v−j(F (x|v − j), F (vj|v − j))

∂F (vj|v − j)
, (4.4)

where Ci,j|k is a bivariate copula distribution function. When v is univariate,
we have that

h(x, v, θ) = F (x|v) =
∂Cv,x(F (x), F (v))

∂F (v)
, (4.5)

where the second parameter of h(.) function always corresponds to the con-
ditioning variable and Θ denotes the set of parameters for the copula of the
joint distribution function of x and v. Further, h−1(u, v, θ) denotes the inverse
of the h−function with respect to the first variable u, see [27] and references
there.

4.2 Vines

The concept of vines will be introduced in this section. It will be applied to
organize pair-copula decompositions of the multivariate density. There are
many such decompositions and their number grows rapidly with the dimen-
sion. Regular vines, canonical and D-vine, will be used to organize them.
For details see [29]. Each model gives a special way of decomposing density.

A vine on N variables is a nested set of trees, where the edges of tree j are
the nodes of tree j + 1, for j = 1, . . . , N − 2 and each tree has the maximum
number of edges.

A regular vine on N variables is a vine in which an edge in tree j + 1
connects two edges in tree j, which share the same node. To each edge of a
vine, the following sets of variables are prescribed:

• Constraint set of an edge contains variables that can be reached from
this edge.
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• Conditioning set of an edge e is formed by the intersection of the
constraint sets of edges in the previous tree joined by edge e.

• Conditioned set of an edge e is a symmetric difference of the constraint
sets of the edges in the previous tree joined by edge e.

A regular vine. V is a vine on n elements if

1. V = (T1, . . . , Tn−1).

2. T1 is a connected tree with nodes N1 = (1, . . . , n) and edges E1; for
i = 2, . . . , n− 1 Ti is a connected tree with nodes Ni = Ei−1.
and v is a regular vine on n elements if additionally

3. (proximity) For i = 2, . . . , n−1 if {a, b} ∈ Ei, then #a∆b = 2, where
∆ denotes the symmetric difference. In other words, if a and b are
nodes of Ti connected by an edge in Ti, where a = {a1, a2}, b = {b1, b2},
then exactly one of the ai equals one of the bi.

Definition 4.2 A regular vine is called a

• D-vine if each node in T1 has degree as most 2.

• Canonical or C-vine if each tree Ti has a unique node of degree n− i.
The node with maximal degree in T1 is the root.

Above definitions are taken from [29].
Figures below show examples of regular vines, canonical and D-vine. To each
edge, sets of variables are assigned. Those on the left of the sign | are the
conditioned set and on the right - conditioning set. Both of them are the
constraint set.
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Figure 17. Canonical vine.

Regular vines can be specified by copulas. It means that to each edge we can
assign a copula density with appropriate subscript. For instance, edge 14|23
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can correspond to a copula density c14|23. Formally, a copula-vine specifica-
tion is defined as follows:

Definition 4.1 Copula-vine specification (F, V, B) is a copula-vine speci-
fication if

1. F = (F1, . . . , FN) is a vector of distribution functions for random vector
X1, . . . , XN such that Xi 6= Xj for j 6= i.

2. V is a regular vine on n elements.

3. B = {Cj,k|e(j, k) ∈ ⋃N−1
i=1 Ei}, where e(j, k) is the unique edge with

conditioned set {j, k}, and Cj,k is a copula for {Xj, Xk} conditional on
the conditioning set for the edge e(j, k).

The whole decomposition is then defined by n(n − 1)/2 edges and the
marginal densities of each variable. Looking at the pictures and from defi-
nitions we see that nodes in tree Tj are necessary to determine labels of the
edges in tree Tj+1. Two edges in Tj are joined by an edge in Tj+1 only if these
edges in Tj share a common node.

Density of a p-dimensional distribution written in terms of a regular vine
can be found in Cooke and Bedford,[28]. It can be specialized to a D-vine
and canonical vine, see [27]. Density f(x1), . . . , xp) corresponding to a D-vine
may be written as

p∏

k=1

fk(xk)
p−1∏

j=1

p−j∏

i=1

ci,i+j|i+1,...,i+j−1(F (xi|xi+1, . . . , xi+j−1), F (xi+j|xi+1, . . . , xi+j−1)),

(4.6)
where index j identifies the trees and i the edges in each tree.
The p-dimensional density corresponding to a canonical vine is given by

p∏

k=1

fk(xk)
p−1∏

j=1

p−j∏

i=1

cj,j+i|1,...,j−1(F (xj|x1, . . . , xj−1), F (xj+1|x1, . . . , xj−1)).

(4.7)
D-vine and canonical vines have different structures. The choice between
them depends on whether or not there is one variable that governs interac-
tions in the dataset. If there is one, then a canonical vine should be chosen
to model the data, see Figure 17.

Applying equations 4.4 and 4.5 to a three-variate case, we can get three
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different decompositions. What is more, in this particular case a D-vine and
canonical vine decompositions of the density are the same. For instance the
density can take the following form:

f(x1, x2, x3) = f1(x1)f2(x2)f3(x3)c13(F1(x1), F3(x3))c23(F2(x2), F3(x3))

×c13|2(F (x1|x2), F (x3|x2)). .

It can be recognized as the decomposition given by the equation 4.3.
For four variables there are dozen of different D-vine decompositions and a
dozen of different canonical decompositions. None of them are equal. There
are no other possible regular vine decompositions. In five dimensional case,
there is 60 different D-vines and 60 different canonical vine. None of these
D-vines is the same as any of the canonical vines decompositions. What
is more, there are 120 other regular vines, so in total we have 240 possible
decompositions. We can see from these examples, that indeed the number of
possible decompositions grows fast with dimension of the density function.

It is possible to specify vine on p elements in such a way that the resulting
p-variate distribution will be Gaussian. In this case we deal with a normal
vine. Namely, correlations and partial correlations are prescribed to each
edge. Then we use the fact that partial and conditional correlations for
normal distribution are equal, so we can exploit the recursive formula, given
below -see [29], in order to complete correlation matrix:

ρ12;3,...,p =
ρ12;3,...,p−1 − ρ1p;3,...,p−1 × ρ2p;3,...,p−1√

1− ρ2
1p;3,...,p−1

√
1− ρ2

2p;3,...,p−1

. (4.8)

We can also specify normal vine using rank correlations ρr, which can be
easily estimated from the data. In order to obtain a correlation matrix we
apply the implicit relation between linear correlation ρ and Spearman’s ρr :

ρ = 2 sin (
π

6
ρr).

For example, for a three variate case showed on the Figure 18, we calculate
a positive definite correlation matrix R using the above relations:
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Figure 18. Specification of a normal vine.

Here ρr,ij and ρij are rank correlations and linear correlations respectively.
Another way of specifying normal vine is assigning bivariate Gaussian copulas
to each edge with appropriate parameters. Details about specifying vines can
be found in [29] and references there.

Analogous procedure can be applied in order to obtain a T vine. That
would be a vine, such that the marginal distributions would be Student t
distributed with the same degrees of freedom parameter v. It is essential that
the marginals have the same v, in order to obtain a canonical multivariate
t distribution. Instead a Spearman’s ρr we would assign Kendall’s τ for the
edges and exploit the implicit relation with linear correlation:

ρ = sin
(

π

2
τ
)

.

Further in order to complete the correlation matrix, we use the fact that
partial correlation equals conditional correlation. For the three-variate we
have the following example:
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Figure 19. Specification of a T vine.
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A T vine can also be obtained by assigning a bivariate T copula to each edge.
It is important that the degrees of freedom parameter v is the same for each
t copula in tree T1. Otherwise, resulting distribution will not be canonical t
distribution, see chapter 2.

Normal vine and T vine can be applied to realize variables X1, . . . , Xp with
arbitrary continuous distribution functions and with stipulated conditional
rank correlations. This procedure is described in [29].

Conditional independence. Assuming conditional independence may re-
duce the number of levels of the pair-copula decomposition. For instance,
if we decompose a three variate density function in (4.2) and assume that
variables X1 and X3 are independent given variable X2, then we have that

c13|2(F (x1|x2), F (x3|x2)) = 1.

It follows from the fact that we can write copula c13|2 in terms of conditional
densities, see equation (4.2).

c13|2(F (x1|x2), F (x3|x2)) =
f(x1|x2, x3)

f(x1|x2)
=

f(x1|x2)

f(x1|x2)
= 1.

Then given that X2, X1 and X3 are conditionally independent, we will not get
any additional information about X1 given X2 and X3. Using this assumption
the pair-copula decomposition 4.3 simplifies to

f(x1, x2, x3) = f1(x1)f2(x2)f3(x3)c13(F1(x1), F3(x3))c23(F2(x2), F3(x3)).

In general, for any vector of variables V we say that two random variables
X, Y are conditionally independent given V if and only if

cx,y|v(F (x|v), F (y|v)) = 1.

Assuming conditional independence of the variables simplifies model.
Therefore, initial factorization of the density should be made in such a way
that takes it into account conditional independence assumptions.
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4.2.1 Vine Simulation

General procedure for sampling D-vine and canonical vine is the same. It
was discussed in [29] and [28].
Let assume for simplicity, that the margins of the distribution of the interest
are uniform. Then the algorithm for sampling p dependent uniform U(0, 1)
variables from a D-vine and canonical vine is the following:

Algorithm 4

• Sample w1, . . . , wp independent uniform on [0, 1].

• Set
x1 = w1,

x2 = F−1(w2|x1),

x3 = F−1(w3|x1, x2),

. . . = . . .

xp = F−1(wp|x1, x2, . . . , xp−1).

In order to determine the conditional distribution F (xj|x1, x2, . . . , xj−1) for
each j, definition of the conditional copula is applied. It is used recursively.
Depending on the choice between D-vine and canonical vine, we use an ap-
propriate conditioning variable vj. For the canonical vine we take:

F (xj|x1, x2, . . . , xj−1) =
∂Cj,j−1|1,...,j−2(F (xj|x1, x2, . . . , xj−2), F (xj−1|x1, x2, . . . , xj−2

∂F (xj−1|x1, x2, . . . , xj−2

,

and for the D-vine we use:

F (xj|x1, x2, . . . , xj−1) =
∂Cj,1|2,...,j−1(F (xj|x2, . . . , xj−1), F (x1|x2, . . . , xj−1

∂F (x1|x2, . . . , xj−1

.

The algorithms for sampling the canonical and D-vine can be found in [27].
Here we only provide sampling algorithm for a three dimensional case. It is
the same for both ,the canonical and D-vine. It will be used later on.
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Algorithm 5

• Sample w1, w2, w3 independent uniform on [0, 1],

• Set x1 = w1,

• We have that F (x2|x1) = h(x2, x1, θ11), and we set

x2 = h−1(w2, x1, θ11),

• Further we have F (x3|x1, x2) = h(h(x3, x1, θ12), h(x2, x1, θ11), θ21) and
we set

x3 = h−1(h
−1(w3, h(x2, x1, θ11), θ21, x1, θ12).

The set of parameters θi,j of the copulas corresponds to the copula assigned
to the edge j of the tree i.

4.2.2 Estimating Vine

Estimating vines proposed in [27] is based on the pseudo-likelihood method.
This method was presented in section 3.3. However, estimating vines dif-
fers from estimating copulas in that a cascade of pair-copulas is estimated
instead of one multivariate copula. Asymptotic properties of the method are
not known yet. A general procedure is introduced here and a three variate
example is given as well.

Suppose we observe p variables at T time points. Since in practice, we
do not know empirical distributions of the variables, it is proceeded as in
section 3.2. It means that we transform dataset by normalizing ranks of the
data. The log-likelihood for the canonical vine is then given by

p−1∑

j=1

p−j∑

i=1

T∑

t=1

log(cj,j+i|1,...,j−1(F (xj,t|x1,t, . . . , xj−1,t)), F (xj+i,t|x1,t, . . . , xj−1,t))).

The log-likelihood for the D-vine is given by

p−1∑

j=1

p−j∑

i=1

T∑

t=1

log(cj,j+i|1+1,...,i+j−1(F (xi,t|xi+1,t, . . . , xi+j−1,t)), F (xi+j,t|xi+1,t, . . . , xi+j−1,t))).

First sum in the equations goes over the trees, second sum goes over the
nodes in each tree and the last sum goes over T observations of the variables.
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For each copula in this equation there is a set of parameters to be determined.
It depends on the copula applied. For the T copula the set of parameters
consists of the degrees of freedom parameter and the correlation matrix R.
In this particular case we apply semi-parametric log-likelihood function in
order to estimate a vine decomposition. Algorithms for estimating canonical
and a D-vine are provided in [27].

The inference procedure for a specific pair-copula decomposition is as
follows:

1. Estimate the set of parameters of the copula in tree T1 from the original
data.

• The data are transformed in order to obtain a pseudo-sample and
then the pseudo log-likelihood method is applied to each copula.

2. Compute observations for tree T2 using the copula parameters from
tree T1.

• A conditional distribution functions F (x|v) are computed using
function h(.).

3. Estimate the set of parameters of the copula in tree T2 using the ob-
servations generated in 2.

4. Compute the observations for tree T3 using the copula parameters from
tree T2 and the h-function.

5. Estimate the parameters of the copula in tree T3 using the observations
generated at 4.

6. Repeat the procedure for the remaining trees.

The estimation of this form is easier to perform than maximizing the log-
likelihood with respect to all parameters involved, since we deal only with
bivariate copulas recursively.

As an example we present an estimating procedure for a three-variate
model. The pseudo log-likelihood reduces to:

T∑

t=T

(log c12(u1,t, u2,t), θ11 + log c23(u2,t, u3,t), θ12 + log c13|2(w1,t, w2,t), θ21),
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where

w1,t = F (u1,t|u2,t) =
∂C12(u1,t, u2,t)

∂u2,t

= h(u1, u2, θ11),

and

w2,t = F (u2,t|u3,t) =
∂C23(u2,t, u3,t)

∂u3,t

= h(u2, u3, θ12).

The parameters to be estimated are Θ = (θ11, θ12, θ21), where as before θi,j is
the set of parameters corresponding to the copula density ci,j+i|i+1,...,i+j1(

.,. ).
Figure 20 presents the procedure graphically:
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c13|2(w1, w2) 3. Estimate parameters for c13|2.

2. Generate observations for tree 2.
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Figure 20. Estimation procedure of the three variable vine model.

The estimating procedure described in this section is meant for a specific
pairs of copulas. It should be stressed, however, that in order to select an
appropriate model for a dataset, an appropriate factorization should be cho-
sen. The type of copulas applied is also very important.

Recalling that the number of possible density decompositions grows rapidly
with the dimension of the dataset, makes it hard to compare all possibili-
ties. Only for small dimensions like 3 or 4 we can estimate parameters for
all of them and pick the best one. For higher dimensions it is suggested
to determine which bivariate relationships are the most important and let
them determine the choice of the decomposition to be used. For instance, in
a canonical vine there is one variable for which we determine the relations
with the rest of variables. However, in a D-vine structure we can select more
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freely which pairs to model.
The type of copulas applied is very important to model the dependences

correctly. What is more, the pair-copulas do not have to belong to the same
family. The resulting multivariate distribution will be valid if we choose for
each pair of variables the parametric copula that best fit data. A model
obtained in such a way will be even more accurate.
An important issue is to verify whether a dependence structure of data is
modeled correctly. There are attempts made in order to construct a good-
ness of fit test for vines. Some details about that can be found in [27]. We
do not study this issue here.

Comparison of the models fitted to the dataset can be accomplished by
computing an AIC criterion. The concept of the AIC is explained below.

Akaike Information Criterion,AIC. Model selection for the dataset is
based on the AIC criterion. It represents an information-theoretic selec-
tion based on the Kullback-Leibler information loss approach for choosing a
model. The Kullback-Leibler number can be interpreted as the information
lost when model g, probability distribution, is used to approximate f, full
reality. It is defined for continuous functions as the integral

I(f, g) =
∫

f(x) log

(
f(x)

f(x, θ)

)
dx,

where θ is a set of parameters for model g. The best model looses the least
information relative to other models. This is equivalent to minimizing I(f, g)
over g.
The criterion cannot be used directly in the models selection, because it re-
quires knowledge of full reality and the parameter θ in the approximating
models gi. There is substantial uncertainty in the parameter estimation from
the data. Models based on estimated parameters represent a major distinc-
tion from the case where model parameters are known. Therefore a change
in the model selecting criterion is required. Expected estimated K-L is min-
imized instead of minimizing known K-L information.

K-L information can be expressed as

I(f, g) =
∫

f(x) log(f(x))dx−
∫

f(x) log(g(x, θ))dx

or
I(f, g) = Ef [log(f(x))]− Ef [log(g(x, θ))],
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where the expectations are taken with respect to the truth. The quantity
Ef [log(f(x))] is a constant, C, across the models. Hence, we can write

I(f, g) = C − Ef [log(g(x, θ))],

where
C =

∫
f(x) log(f(x))dx

does not depend on the data or the model. Thus, only relative expected K-L
information, Ef [log(g(x, θ))], needs to be estimated for each model in the set.

Akaike showed that the critical issue for getting a rigorous model selection
criterion based on K-L information was to estimate

EyEx[log(g(x, θ(y)))].

The inner part is just Ef [log(g(x|θ))] with θ replaced by the maximum likeli-
hood estimator of θ based on the assumed model g and data y. It is convenient
to think about x and y as independent random samples from the same dis-
tribution. Both expectation are taken with respect to truth f.

Akaike found a formal relation between K-L information and likelihood
theory. According to his findings a biased estimate of Ex[log(g(x, θ(y)))] is
the maximized log-likelihood value and the bias is approximately equal to K,
the number of estimable parameters in the approximating model, g. There-
fore, an approximately unbiased estimator of Ex[log(g(x, θ(y)))] for large
samples and ”good” models, is log(L(θ|data))−K. This is equivalent to

log(L(θ|data))−K = C − Eθ[I(f, g)],

where g = g(.|θ). In this manner estimation and model selection are com-
bined under a unified optimization framework. Akaike found an estimator
of expected, relative K-L information based on the maximized log-likelihood
function, corrected for asymptotic bias,

ralative E(K − L) = log(L(θ|data))−K,

where K is the asymptotic bias correction term. This result was multiplied
by −2 and this became Akaike information criterion, (AIC),

AIC = −2 log(L(θ|data)) + 2K.

The preferred model is the one with the lowest AIC value. The AIC method-
ology attempts to find the model that best explains the data with a minimum
of free parameters. For details it is referred to [30].

87



The individual values AIC are not interpretable as they contain arbitrary
constants and are affected by the sample size. Therefore it is suggested to
rascal AIC to

∆i = AICi − AICmin,

where AICmin is the minimum of the different values AICi. The best model
has ∆i = 0 and the rest of the models have positive values. The constant
representing Ef [log(f(x))] is eliminated from these ∆i values. Consequently
∆i is interpreted as the information loss due to using model gi instead the
best model gmin. Therefore a meaningful interpretation can be made without
the unknown scaling constants and sample size issue that enter into AIC
values.

The ∆i allow to compare and rank the hypothesis or models. The larger
the ∆i, the less plausible is fitted model i with respect to the model with
minimum AIC value. It is sometimes important to know the second best
model in the candidate set. The ∆i can be a measure of its standing with
respect to the best model. Simple rules allowing to interpret relative merits
of models in the set are the following:

• If ∆i ≤ 2, then model has substantial support,

• If 4 ≤ ∆i ≤ 7, then model has considerably less support,

• If ∆i ≥ 10, then model has essentially no support.

These are rough guidelines, but the importance of a ∆i = 10 should not be
questioned, even if two values of the AIC are very big or very small. The
reason is that ∆i are free of large scaling constants. The ∆i are interpretable
as the strength of evidence.

Before we compare models fitted to the dataset using AIC and ∆i, a simple
test is performed.
A 3000 sample from a three variate vine is taken, using procedure described
in section 4.3. This vine is specified by T copulas with parameters given on
the Figure 18. Sample size is close to the size of the foreign exchange dataset.
In this way, the results of the experiment should be plausible for the case
study.
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Figure 18. Sampling Vine.

We estimate a vine for this sample as well as a three variate T copula. A
T copula can be interpreted as the special case of the vine model. For each
estimated model AIC is computed. We repeat it 100 times and take the
average over AIC criterion. For an estimated vine average AIC is -3325.7
and for the estimated three variate T copula AIC criterion equals -3315.5.
Clearly, The AIC criterion indicates that vine model is more appropriate for
this sample than the T copula. The value of ∆Tcopula is 10.2. According to
the guidelines, there is no strong evidence for the T copula model for the
sample.
Similar procedure is performed for a sample from a T copula with 8 degrees

of freedom and correlation matrix R =




1 0.2 0.2
1 0.8

1


 . Again a vine and a

T copula were estimated for this sample and the AIC computed 100 times.
Average values of the AIC criterion for the vine is -3386.3 and for the T
copula is -3394.1. Criterion indicates that T copula is more plausible for
this data than the vine. The ∆i = 7.8 meaning that estimated vine has less
support than the T copula. That what was expected.
We can conclude that the AIC criterion can be applied in order to find the
best model for the foreign exchange dataset. It is used to compare different
vines as well.
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4.3 Case Study

In the previous chapter we fitted a bivariate T copulas for each pair of foreign
exchange rates datasets. A three dimensional copula was fitted to the data as
well. We noticed, that the three-variate copula was not capable of capturing
all the dependences between pairs of the data. Applying the methodology
described in this chapter results in a model that can capture the pair-wise
relations between variables. It will be compared with a three dimensional
copula estimated in chapter 3.

Three-variate density function can be decomposed in three distinct ways.
These correspond to both a canonical and a D-vine decomposition, which are
equal in this case. Estimation procedure will be performed for all of them.
A AIC criterion will be applied to decide, which model is the best for the
dataset. Bivariate T copulas will be fitted on each level of the estimation.
First, it need to be decided how to order variables in tree 1. In a three-
variate case we will compare all three possibilities. For higher dimensions
it is suggested to proceed a bit differently. A bivariate T copulas should be
fitted to each pair of data, obtaining estimated degrees of freedom parameter
for each pair. Having these information, the variables in the first tree should
be ordered such that the corresponding bivariate T copulas are in increasing
order with respect to the estimated degrees of freedom parameter, v. A low
number of v indicates strong dependence. The smaller v the more significant
tail dependence.
Table 1 contains values of the degrees of freedom parameters estimated in
Chapter 3.4.

Table 4.1 c12 c13 c23

ρ 0.2384 0.2344 0.8789
v 14 14.6 4.4

Clearly the strongest dependence is between variables 2 and 3 and further
between variables 1 and 2. Following suggested ordering, first decomposition
is presented on the Figure 21. On the edges of the vine the estimated pa-
rameters for the corresponding T copula are written. Maximal value of the
log-likelihood with respect to the set of K = 6 parameters of the vine is
given beside the figure. Additionally the AIC criterion is given, in order to
compare this vine with two other vines, which are presented on Figure 22
and 23.
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Figure 21. Vine 1.
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Figure 22. Vine 2.
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Figure 23. Vine 3.

According to the AIC criterion, the best model for the dataset is vine 1.
The second best model is vine 2 and the third one is vine 3, with the least
support.
A three variate T copula estimated for the dataset has 8.2 degrees of free-

dom and the correlation matrix R =




1 0.2384 0.2344
1 0.8789

1


 . The max log-

likelihood with respect to the set of K = 4 parameters is 2166.6. The AIC
criterion equals -4341.2 and ∆Tcopula = 67.3. It means that the T copula
model for the dataset has essentially the least support among the set of
models.
What is more, taking a sample from a vine 1 given on the Figure 21 and es-
timating bivariate copulas for each pair of data we have the following result:

Table 4.2 c23 c13 c12

ρ 0.82 0.18 0.24
v 4.8 23.6 17.2

It means that vine structure preserves bivariate relations between variables
of the dataset. We can see that parameters of the copula c12, that was not
modeled directly are preserved quite well. That is an advantage of the vine
structure over the T copula.
Consequently, the tail dependence between variables is better estimated us-
ing vines. This quantity is of importance for practical applications, when a
decisions are made looking at the probability of the extreme co-movements.
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Table 4.3 presents tail dependence coefficients computed for vine 1 and
marginal copulas of the estimated T copula. Clearly, they are different for
both structures. In this case, T copula overestimate this coefficients for c12

and c13, and underestimate it for c23.

Table 4.3 Vine1 Tcopula
c12 0.0083 0.0401
c13 0.0069 0.0407
c23 0.577 0.45
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Chapter 5

Conclusions

The Student t distribution has useful properties that make it an alternative
for the normal distribution. It can describe extreme events. The additional
parameter of degrees of freedom governs the heaviness of the tails. The form
of the density is more complicated in contrast to the normal distribution and
canonical Student t distribution does not posses the independence property.
There exists, however, a construction that has this feature. It was shown in
section 2.4. The T distribution is applied in statistics, risk management and
to model financial data. In this work an example of foreign exchange dataset
was shown in section 2.5.
T copula that is based on the Student t distribution is easy to derive and
simulate. It is an elliptical copula and therefore have properties that fol-
low from membership in this family. The T copula can be applied to model
the dependence structure of the financial data. It captures the extreme co-
movements of the datasets, because of the nontrivial tail dependence. De-
composing multivariate distribution using T copulas and vines results in a
model that captures complicated dependence structures. This hierarchical
structure, where copulas are simple building blocks preserves the pair-wise
interactions between variables. Moreover, cascade inference is based on the
bivariate copulas and therefore is easy to perform.

The possibility of constructing vine based model using different types of
copulas should be explored further, as it results in a good approximation of
the dependence structure. The algorithms for finding the best decomposi-
tions could be developed. The other criteria for comparing models should be
investigated as well as the goodness of fit tests for vines.
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Chapter 6

Appendix A

A Goodness of Fit Test for Copulas
This appendix is based on the paper of J.Dobric and Friedriech Schmid,

see [31]. The authors investigated goodness of fit test for copulas based on
Rosenblatt transformation, which is an example of the probability integral
transformation: Let X be a real-valued random variable defined on a proba-
bility space (Ω, F, P ) . Let F (x) = P (ω : X(ω) ≤ x), x ∈ (−∞,∞) define the
cumulative distribution function (CDF). Let U(0, 1) denote a random vari-
able that is uniformly distributed on (0,1). The probability integral transform
theorem is the following.

Theorem A. If X has CDF F (.) which is continuous, then the random
variable Y = F (X) has the distribution of U(0, 1).

P (Y ≤ y) = P (FX(X) ≤ y) = P (X ≤ F−1
X (y)) = FX(F−1

X (y)) = y.

The following theorem is related to the probability integral transform the-
orem but applies to general CDFs.

Theorem B. Let F be a CDF. If F−1 : (0, 1) → (−∞,∞) is defined by
F−1(y) = inf{x : F (x) ≥ y}, 0 ≤ 1 and U has the distribution function
U(0, 1), then X = F−1(U) has CDF F.

Rosenblatt transformation Let X and Y denote two random variables
with joint distribution function FX,Y (x, y) = P (X ≤ x, Y ≤ y) for (x, y) ∈
R2 and the marginal distribution functions FX(x) = P (X ≤ x) and FY (y) =
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P (Y ≤ y) for x, y ∈ R . Assume that FX and FY are continuous functions.
Therefore, by Sklar’s theorem, there exists a unique copula C : [0, 1]2 → [0, 1]
such that

FX,Y (x, y) = C(FX(x), FY (y)).

Let z = (z1, z2) = T (x, y), where T is the Rossenblatt’s transformation given
by

T (x) = z1 = P (X ≤ x) = FX(x),

T (y) = z2 = P (Y ≤ y|X = x) = FY |X(y|x).

Then the random variables Z1 = T (X), Z2 = T (Y ) are uniformly distributed
on [0,1] and independent, what follows from:

P (Z1 ≤ z1, Z2 ≤ z2) =
∫

{Z|Z−1≤z1}

∫

{Z|Z2≤z2}
dyFY |X(y|x)dxFX(x)

=
∫ z1

0

∫ z2

0
dz1dz2 = z1z2 = P (Z1 ≤ z1)P (Z2 ≤ z2),

where z1, z2 ∈ [0, 1], by their definition and vector Z = (Z1, Z2) is uniformly
distributed on [0, 1]2.

Suppose now that C is a copula such that

FX,Y (x, y) = C(FX(x), FG(y)).

Let C(u, v) denotes the joint distribution function of the variables U =
FX(X) and V = FY (Y ). The conditional distribution of V given U is given
by

C(v|u) = P (V ≤ v|U = u)

= lim
∆u→0

P (V ≤ v|u ≤ U ≤ u + ∆u)

= lim
∆u→0

C(u + ∆u, v)− C(u, v)

∆u

=
∂

∂u
C(u, v).

Hence, we can write variables Z1, Z2 using conditional distribution C,

Z1 = C(FX(X), 1) = FX(X) = U,

Z2 = C(FY (Y )|FX(X)) = C(V |U).
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If (F (FX(X)), FY (Y )) has distribution C, then Φ−1(Z1) and Φ−1(Z2) are
independent and normally distributed. Consequently,

S(X,Y ) = [Φ−1(Z1)]
2 + [Φ−1(Z2)]

2

has chi-square distribution with two degrees of freedom. Now, if (X1, Y1), . . . , (Xn, Yn)
is a random sample from (X, Y ), then c is a random sample from chi-square
distributed variable.

Goodness of fit test for copulas Above preliminaries are used to perform
a test for the null hypothesis of interest:

H0 : (X, Y ) has copula C(u, v),

where the marginal distributions are known. In that case the values of
S(X1, Y1), . . . , S(Xn, Yn) can be computed and can be used to test the aux-
iliary null hypothesis

H∗
0 : S(X, Y ).2cmis χ2

2 distributed.

As H0 implies H∗
0 we reject H0 is H∗

0 is rejected.

Dobric and Schmid’s results. The Dobric and Schmid suggested testing
this hypothesis with the Kolmogorow Smirnov test, the Cramer von Mises
test or the Anderson Darling test. They checked performance of the test
using Anderson Darling, which is a modification of Kolmogorow Smirnov
test. They wanted to deny the assumption of Beayman that the test ”will
not be significantly affected by the use of the empirical distribution function”.

To do so, they focused on the first kind error probability α and on the
power of the test. Dobrovic and Schmid used Monte Carlo method to check
whether the true error probability of the test corresponds to prescribed level.
They considered two cases:

1. The marginal distributions are known and parameters of copula is
known as well.

2. The marginal distribution are not known and replaced by corresponding
empirical distribution functions; the parameters for a chosen copula are
estimated form the data. (This case is relevant for applications.)

97



Investigation of these two cases allowed them to make comparison and to
check correctness of their programming in Matlab. What they obtained was
almost perfect agreement of the prescribed and true error probability of the
first kind in case one. However, in the second case, replacement of the true
marginal distribution functions by corresponding empirical ones caused that
true level of the test was .00 regardless of the prescribed level. It means that
the test does not work correctly. They concluded that the reason of such
situation was using empirical marginal distributions. Test’s ability to reject
the null hypothesis when it is actually false- its power, was investigated as
well. According to simulations which were made, there was an effect of re-
placing marginal distributions by their empirical counterparts. The authors
showed that the goodness of fit test based on the Rosenblatt transformation
works well in the standard case, when parameters and marginal distribu-
tion functions are known. They presented improved test for the second case.
Critical values of Anderson Darling statistic were determined by bootstrap-
ping1because of their strong dependence on parameter p, which was unknown
in the second case. Having this, the null hypothesis was rejected if Ander-
son Darling computed from the original observations (xi, yi), i = 1, . . . , n was
larger that critical value.

1The bootstrap is a method of Monte Carlo simulation where no parametric assump-
tions are made about the underlying population that generated the random sample. In-
stead, we use sample as an estimate of the population. This estimate is called the empirical
distribution F, where xi has the same likelihood of being selected in a new sample taken
from F. When we use F as our pseudo-population, then we re-sample with replacement
from the original sample (x1, . . . , xn). We denote the new sample obtained in this manner
by x∗ = (x∗1, . . . , x

∗
n). Since we are sampling with replacement from the original sample,

there is a possibility that some points xi will appear more than once in x∗ or maybe not
at all. We are looking at the univariate situation, but the bootstrap concept can also be
applied in the multivariate case. In many situations, the analyst is interested in estimating
some parameter θ by calculating a statistic from the random sample.
Basic Bootstrap Procedure

• Given a random sample x = (x1, . . . , xn), calculate θ.

• Sample with replacement from the original sample to get x∗b = (X∗b
1 , . . . , x∗bn ).

• calculate the same statistic using the bootstrap sample in step 2 to get θ∗b.

• Repeat steps 2 and 3 B times.

• Use this estimate of the distribution of θ, (bootstrap replicates), to obtain desired
characteristic.
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They showed that their bootstrap version of the test keeps the prescribed
values for sufficiently well and further, that the improved test has ability to
detect correct null hypothesis.
The algorithm of the bootstrapped version of the test for the normal copula
is given below.

Algorithm A

1. Product moment correlation ρ for a sample (x1, y1), . . . , (xn, yn) is es-
timated by applying the equation

ρ = 2 sin(ρrπ/6)

to the Spearman’s ρr computed from the data.

2. 1000 i.i.d. observations (x∗1, y
∗
i ), . . . , (x

∗
n, y

∗
n) from Normal Copula cor-

responding to ρ are generated.

3. Correlation ρ∗ is estimated and S∗(x∗1, y
∗
1), . . . , S

∗(x∗n, y
∗
n) is calculated

in order to get the value of the test statistic, Kolmogorov-Smirnov or
ANderson-Darling.

4. Steps 2 and 3 are repeated B times and new critical value of the test
is determined as the (1− α) quantile of the test statistics.

Depending on the test, we reject or accept null hypothesis with respect to
the new critical value.

There was also third case mentioned in [31]. Namely, when the distribu-
tions of X and Y are modeled in a parametric way, FX(x) = FX(x, α) and
FY (y) = FY (y, β), where α and β are vectors of parameters which can be
estimated from X1, . . . , Xn and Y1, . . . , Yn, respectively. Estimation of the
copula parameter set θ and goodness of fit testing for the copula is based on
FX(x, α) and FY (y, β). The encountered problems are the following:

• Parametric model for the distributions of X and Y may introduce mis-
specification. Some preliminary goodness of fit testing for the margins
is necessary and it will have additional impact on the properties of fit
test for the copula.
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• The effect of pretesting is very difficult to investigate, because rejection
of the parametric model is a possible consequence of pretesting and
will often occur in practice, even if the parametric model is correctly
specified.

Dobric and Schmidt did not find the way of improving the test to solve these
problems. They believe that bootstrap method will work.
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