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ABSTRACT: Vine and independence graphs are employed to extract conditional independence relations 
from multivariate meteorological data so as to construct a simple graphical model which adequately represents 
the interrelationships between observations and corresponding model results at different sites. The independence 
graph approach identifies partial correlations of maximal order. Statistically negligible partial correlations are 
set to zero. Iterative proportional fitting is used to find a maximum likelihood distribution satisfying the stipulated 
zero partial correlations. The deviance between the fitted distribution and the original distribution measures the 
goodness of fit. The vine approach constructs a regular vine in which negligible partial correlations are set to zero. 
No proportional fitting is required. Again, deviance is used to measure goodness of fit. The connection between 
vines and continuous belief nets, where an arc from node i to j is associated with a (conditional) rank correlation 
between i and j is presented. 

INTRODUCTION 

This paper investigates interaction structures between 
observed December mean temperatures at four Euro­
pean stations and corresponding ‘forecasts’of a regres­
sion model based on sea-level pressure (SLP) fields as 
explanatory variables. With temperatures at different 
stations being correlated each local forecast can be 
expected to be informative to a certain extent about 
observations at other locations as well. The following 
three questions naturally arise: 1) Is the local forecast 
really more informative about local conditions than 
forecasts delivered for other sites are? 2) Knowing the 
local forecast, can additional information be obtained 
from consulting other forecasts? 3) If other forecasts 
are found to contain additional information, how much 
of this incremental information can be attributed to cor­
relations between observations at different sites? 

The statistical notion of conditional independence 
allows these questions to be formalized. Callies (2000) 
contrasted the concepts of conditional independence 
and sufficiency, which both refer to the complete sta­
tistical information embodied in the joint distribution of 
forecasts and subsequent observations. Brooks & 
Doswell (1996) contrasted the distribution-oriented 
approach to forecast verification with the more 

conventional approach of calculating global measures 
of correspondence between forecasts and observa­
tions. The purpose of this study is to explore the use 
of different techniques of graphical modelling for 
forecast evaluation. Throughout the paper a multinor­
mal joint distribution of observations and correspon­
ding forecasts is assumed. 

2 DATA 

Observations of local December mean temperatures 
at 14 European stations were taken from the World 
Monthly Station Climatology (WMSC) of the National 
Center for Atmospheric Research (NCAR). Corre­
sponding diagnostic “forecasts” between 1900 and 
1993 were produced by regressing local temperatures 
on monthly mean regional-scale atmospheric sea-level 
pressure distributions as represented by 5° � 5° 
analyses (Trenberth & Paolino 1980) at 60 gridpoints 
covering the region 40°N to 64°N and 20°W to 25°E. 
Data are made available through NCAR. The regression 
scheme was calibrated for 1960–1980. This period 
was excluded from the analysis below. 

Prior to regression, both regional and local data 
were filtered by standard principal component analysis 
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to reduce the number of degrees of freedom and to 
avoid overfitting. In both data sets only four degrees 
of freedom were retained. Accordingly the complete 
amount of information contained in the forecasts is 
available after selecting any four of the predictions. 
The following (8 � 8) sample correlation matrix, 
S, embodies all information about the interactions 
between observations, �, and the corresponding fore-
casts, F, at the four stations Geneva (G), Innsbruck (I), 
Budapest (B) and Copenhagen (K): 

(1) 

The values for the observation–forecast correlations 
vary from 0.43 for Budapest to 0.68 for Copenhagen. 

3 FITTING INDEPENDENCE GRAPHS 

The graphical modelling approach elaborated by 
Whittaker (1990) identifies genuine variable interac­
tions that are not mediated through any third variable in 
the data set. For this purpose maximum order pairwise 
partial correlations given all remaining variables in the 
data set are analysed. The two independence graphs in 
Figure 1, for instance, are made up by only 11 edges. In 
a process of recursive model simplification, which 

starts from the saturated graph, 17 edges have been dis­
carded by setting corresponding partial correlations to 
zero. The two different graphs represent structural 
ambiguity caused by the very high correlation (0.97) of 
FG and FI. The maximum likelihood correlation matrix 
V(a) in Eq. (3) corresponds with graph (a) in Figure 1. 
It arises from a constrained fit for the non-zero partial 
correlations and minimises the following entropy 
measure (deviance) of the distance between S and V as 
function of V (N denotes sample size): 

(2) 

The graphical constraint manifests itself by the fact 
that all elements of (V(a))�1 corresponding with mis­
sing links in the graph must be zero. It turns out that 
only elements (given in bold type) of V(a) in the same 
position differ from the sample correlation matrix S 
(Whittaker 1990): 

(3) 

The total deviance of graph (a) in Figure 1 is 41.9 
for sample size 63 (years with incomplete data have 
been discarded). All but three of these incremental 
deviances are larger than the total deviance of 41.9 due 
to 17 missing links. Therefore, the truncated interaction 

Figure 1. Two conditional independence graphs for observations, �, and corresponding forecasts, F, at four locations. 17 
edges have been discarded. Numbers indicate partial correlations and EEDs (in parentheses). 
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structure portrayed by the graph seems to provide a 
reasonable model for the data. 

For each link the corresponding partial correlation 
and the increase of the graph’s total deviance, dev (S, 
V) that would arise from the link’s omission (Edge 
Exclusion Deviance, EED) are given. Note that the 
partial correlations �G–FG in graph (a) and �G–FI in 
graph (b), respectively, are very small due to the high 
correlation between FG and FI (cf. matrix S). Never­
theless large deviances (33.7 and 31.9, respectively) 
indicate that the corresponding links are relevant. 

The matrices V(a) (cf. Eq. (3)) and V(b) have been 
specified numerically using iterative proportional fit­
ting (Whittaker 1990). Generally, analytic solutions 
of the maximum likelihood problem are not available. 
This is related to the fact that partial correlations in 
the independence graph cannot be prescribed indepen­
dently without violating the positive definiteness of 
the correlation matrix. Graphical vines are an alterna­
tive representation of correlation matrices, for which 
this is possible. 

4 FITTING C- AND D-VINES 

Vines have been introduced recently by Bedford & 
Cooke (2001, 2002). Basically, a vine on N variables 
is a nested set of trees, where the edges of tree j are 
the nodes of tree j � 1; j � 1, …, N � 2, and each tree 
has the maximum number of edges (Cooke 1997). A 
regular vine on N variables is a vine in which two 
edges in tree j are joined by an edge in tree j � 1 only 
if these edges share a common node, j � 1, …, 
N � 2. There are (N � 1) � (N � 2) � … � 1 � 
N(N � 1)/2 edges in a regular vine on N variables. 
Figure 2 shows a regular vine on 5 variables. The four 
nested trees are distinguished by the line style of the 
edges; tree 1 has solid lines, tree 2 has dashed lines, 
etc. The conditioned (before |) and conditioning (after |) 
sets associated with each edge are determined as fol­
lows: the variables reachable from a given edge are 
called the constraint set of that edge. When two edges 

12 45
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Figure 2. The D-Vine on 5 variables D(1, 2, 3, 4, 5) show­
ing conditioned and conditioning sets. 

are joined by an edge of the next tree, the intersection 
of the respective constraint sets are the conditioning 
variables, and the symmetric difference of the con­
straint sets are the conditioned variables. The regularity 
condition ensures that the symmetric difference of the 
constraint sets always contains two variables. Note 
that each pair of variables occurs once as conditioned 
variables. 

We recall two generic vines, the D-vine D(1, 2, …, 
n) and C-vine C(1, 2, …, n), shown on Figures 2 and 
3. Both C and D-vine are determined by the choice of 
the first tree. 

In contrast with independence graphs vines are made 
up by partial correlations of varying order (the order 
of a partial correlation is the number of conditioning 
variables). Generally, the lower the order of an inde­
pendence relation (i.e. partial correlation equals 
zero), the stronger this relation is. Whereas in an inde­
pendence graph all partial correlations are all order 
N � 2, in a regular vine there is only one correlation 
of order N � 2, and N � 1 correlations of order zero. 
Hence, setting K partial correlations in a regular vine 
equal to zero imposes stronger independence than 
setting K partial correlations of maximal order equal 
to zero, as with independence graphs. Vines are 
derived from tree structures and therefore (again in 
contrast with independence graphs) assume a particu­
lar ordering of variables. 

There is a one to one relationship between correla­
tion matrices and partial correlation–vine specification 
so that the deviance defined in Eq. (2) can be used for 
the assessment of vines as well. Since the deletion of 
any partial correlation from a vine does not change 
other partial correlations no proportional fitting algo­
rithm is needed to guaranty consistent correlation 
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Figure 3. The C-vine on 4 variables C(1, 2, 3, 4) with asso­
ciated to the edges partial correlations. 
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matrices. However, additional efforts are needed to variables is clearly better determined for D-vines. For 

search for that permutation (ordering) of the set of C-vines the deviances tend to be more clustered and

variables, which allows for the most effective model show a very flat minimum.

simplification. Figure 5 depicts the best fitting C-vine (one among


Generally to try all models with different degrees of four options with the same deviance) and D-vine, 
simplification based on different orders of the variables respectively, both being made up by 11 edges. It should 
is a tremendous task. Here it was assumed a priori that be noted that the notation used in the graphs differs 
the number of edges being discarded from the vine from the notations that was used in Figures 2 and 3. 
should be 17 as it is in Figure 1. Then, for each of 40320 Instead of emphasizing the nature of a vine as a nested 
(�8!) permutations of variables EEDs of all individual set of trees, links in Figure 5 indicate pairs of correlated 
links were calculated and the edge with the minimum variables. Numbers between variables specify marginal 
EED was excluded from the graph (for the symmetric correlations. The C-vine allows also for marginal corre-
D-vines it was sufficient to test 8!/2 orderings of vari- lations between non-neighboring variables. These are 
ables). This procedure was iterated until 17 links had indicated by dashed lines above the variable names. 
been discarded. Even though other partial correlations Partial correlations indicated below the variable names 
are not affected by the removal of individual links, this are to be interpreted differently for the two vines. In 
is not true for the EEDs of the remaining links. Thus a the C-vine partial correlations are conditioned on all 
strict optimisation would have needed the testing of all variables to the left of the first variable connected 
possible combinations of edges rather than using the by the respective solid line. In the D-vine the set of 
sequential edge exclusion scheme. This, however, conditioning variables comprises all variables in 
would have been too computationally demanding. between the two correlated variables. 

Figure 4 depicts the total deviances, which emerge Similar to the independence graphs both the C-vine 
from the 60 most successful orders of the eight vari- and the D-vine employ three edges for establishing the 
ables when using C-vines and D-vines, respectively. link between observations and forecasts. Like the inde-
In our example D-vines allow for a better fit than pendence graph (b) in Figure 1 both vines include edges 
C-vines (note that the two panels are scaled differently), FK–�K and FI–�G. 
the deviance of the best D-vine is smaller than the In particular the D-vine tends to establish links con-
deviances of the independence models in Figure 1. ditioned on no or a small number of variables. However, 
In addition, the optimum choice of the ordering of (in contrast with the C-vine) no marginal correlation 

between observations and forecasts is maintained. The 
alignment of observations is the same as in the inde-

C-Vines pendence graphs.
86.1 Generally edges corresponding with strong partial 

correlations have been retained. There are, however, 
86.0 exceptions. In the C-vine the marginal correlation 
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Figure 4. Deviances of graphical vine models with 17 mis­
sing edges as function of the 60 most successful permutations 
of variables. Figure 5. Optimized vines with 11 links (see text). 
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Table 1. Edge exclusion (inclusion) deviance for the C-vine

in Figure 5. Existing links are written in bold. The first col-

100
umn (“Level”) gives the number of variables that are held

fixed for the respective partial correlation. The last column 80

specifies the order in which the 17 links have been removed. 

60


C-Vine D-Vine 

C-Vine D-Vine 

2 

Level EED EID Corr 40 

0 FK–FI 3254.0 0.507 
20 

0 FK–FB 651.3 0.714 0 
0 
0 

FK–�G 

FK–FG 760.8 
�2.36 

0.325 
(7) 0 5 10 

Number of missing links 
15 

0 FK–�B 0.24 (6) 
0 FK–�K 55.8 0.684 
0 FK–�I 0.12 (8) 100 

1 
1 

FI–FB 

FI–�G 
272.0 
60.3 

0.891 
0.655 

80 

1 FI–FG 477.0 0.984 60 

1 
1 

FI–�B 

FI–�K 
14.31 

�9.29 
(17) 
(12) 

40 

1 FI–�I 43.8 0.581 20 

2 FB–�G �0.72 (1) 0 
FB–FG 78.9 �0.845 0 5 10 15 

2 FB–�B 6.14 (15) Number of missing links 
2 FB–�K 1.59 (4) 
2 FB–�I 3.77 (11) Figure 6. Upper panel: Total deviance as function of the 
3 �G–FG 0.30 (3) number of edges discarded from the optimal C- and D-vine, 
3 �G–�B 0.91 (16) respectively. Lower panel: Differences between total deviances 
3 �G–�K �8.71 (13) and sums of individual edge inclusion deviances. 
3 �G–�I 37.5 0.668 
4 FG–�B �0.76 (5) 
4 FG–�K 1.97 (10) (cf. Table 1) to 13.4. The lower panel of Figure 6 reveals 
4 FG–�I 0.09 (2) that for both kinds of vines the differences between the 
5 �B–�K 31.0 0.601 total deviances and the sums of individual EIDs 
5 �B–�I �2.02 
6 �K–�I 4.70 

(14) increase with model truncation, i.e. the assessment of(9) 
interaction structures becomes less local. Beyond 15 
missing links, this non-locality increases dramatically 
for the C-vine while it still remains on the same level for 

between forecasts FK and FG, 0.325, has been retained the D-vine. 
despite of its relatively small value. According to 
Table 1 the EED of this edge, 761, is much higher 
than, for instance, the EED of the link FI–�G, 60, 5 ASSOCIATING A D-VINEWITH A 
although the partial correlation for the latter pair of BELIEF NET 
variables is 0.655. We may conclude once more that 
partial correlations do not necessarily provide infor- The idea of parameterizing the correlation structure 
mation about the statistical significance of links in with algebraically independent partial correlations, as 
graphical models. A surprising result is that in contrast in a regular vine, can also be extended to belief nets. 
with independence graphs for vines the decrease of In fact, the idea of capturing “influence” via condi­
total deviance resulting from a link’s inclusion (Edge tional sampling leads to a natural homomorphism 
inclusion deviance, EID) can be negative telling that between regular vines and belief nets, which we now 
the removal of a link would result in an improvement (!) describe. 
of the model. A belief net is a directed acyclic graph with nodes 

The upper panel of Figure 6 depicts for the two vines representing random variables and arcs representing 
in Figure 5 the total deviances as functions of the num- “influence”. In continuous belief nets we associate 
ber of discarded links. Obviously the total fit of the C- nodes in a belief net with continuous univariate random 
vine could be much improved by re-establishing the variables, and arcs with (conditional) rank correlations 
link FI–�B, which has been removed last (according to (Kurowicka & Cooke 2002). The following steps indi-
Table 1 the total deviance would decrease by a value of cate how translate this into partial correlations on vines, 
14.3). When doing so, however, the EID of the link �G– and hence compute the entire correlation structure. We 
�B turns out to increase from its former value of 0.91 number the nodes in a belief net 1, …, n. 
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Step 1 Sampling order 

We construct a sampling order for the nodes, that is, 
an ordering such that all ancestors of node i appear 
before i in the ordering. A sampling order begins with 
a source node and ends with a sink node. Of course 
the sampling order is not in general unique. 

Step 2 Factorize joint 

We first factorize the joint in the standard way fol­
lowing the sampling order. If the sampling order is 
1, 2, …, n, write: 

P(1, …, n) � P(1)P(2|1)P(3|12)…P(n|1, 2, …, n � 1). 

Next, we underscore those nodes in each condition 
which are not necessary in sampling the conditioned 
variable. This uses (some of) the conditional inde­
pendence relations in the belief net. For each term, 
we order the conditioning variables, i.e. the variables 
right of the “|”, such that the underscored variables (if 
any) appear right-most and the non-underscored vari­
ables left-most. 

Step 3 Quantify D-vine for node n 

Suppose the last term looks like: 

P(n | n � 1, n � 3, …, n � 2, 3,2,1). 

Construct the D-vine with the nodes in the order in 
which they appear, starting with n (left) and ending with 
the last underscored node (if any). 

If the D-vine D(n � 1, n � 3, …, 1) is given, the D-
vine D(n, n � 1, …, 1) can be obtained by adding the 
edges: 

(n, n � 1), (n, n � 3| n � 1), …, (n, 1 | n � 1, …, 2). 

For any underscored node k, we have 

(n ⊥ k | all non-underscored nodes � any subset of 
underscored’s not including k). 

The conditional correlation between n and an 
underscored node will be zero. 

For any non-underscored node j, the bivariate 
distribution 

(n, j | non-underscored nodes before j) 

will have to be assessed. The conditioned variables (n, j) 
correspond to an arc in the belief net. 

Write these conditional bivariates next to the cor­
responding arcs in the belief net. Note that we can 
write the (conditional) correlations associated with 
the incoming arcs for node n without actually drawing 
the D-vines. If the last factor is P(5|1, 2, 3, 4), we have 
incoming arcs (5, 1), (5, 2) and (5, 3) which we 

associate with conditional correlations (5, 1), (5, 2|1) 
and (5, 3|12). 

Step 4	 Quantify D-vine for node n � 1, for node 
n � 2 etc. 

Proceed as in step 3 for nodes 1, 2, …, n � 1. Notice 
that the order of these nodes need not be the same as 
in the previous step. Continue until we reach the 
D-vine D(1 2) or until the order doesn’t change in 
smaller subvines, i.e., if for node 4 the D-vine is 
D(4 3 2 1) and for node 3 it is D(3 2 1) then we can stop 
with node 4; or better, we can quantify the vine 
D(3 2 1) as a subvine of D(4 3 2 1). 

Step 5	 Construct partial correlation 
D-vine (1, …, n) 

As a result of steps 1–4 each arc in the belief net is 
associated with a (conditional) bivariate distribution. 
These conditional distributions do not necessarily 
agree with the edges in D(1, …, n) since the orders in 
the different steps may be different. However, if the 
conditional bivariate distributions are given by partial 
correlations, then given D(1, …, k) we can compute 
D(p(1)…p(k)) where p � k! Is a permutation of 
1, …, k. Repeatedly using this fact, we compute the 
partial correlations for D(1, …, n). 

Since the values of conditional correlations on reg­
ular (sub)vines are algebraically independent and 
uniquely determine the correlation (sub)structure, the 
above algorithm leads to an assignment of correla­
tions and conditional correlations to arcs in a belief 
net which are algebraically independent and which, 
together with the “zero edges” in the corresponding 
D-vines, uniquely determine the correlation matrix. 

EXAMPLE 1 

1  3  4  2 

Sampling order: 1234

Factorization: P(1)P(2|1)P(3|12)P(4|231)

D-vine 4231:


4  2  3  1 
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The dotted edge has partial correlation zero, the 
bold edges correspond to (4, 2) and (4, 3|2). These are 
written on the belief net and must be assessed. 

We now consider the term P(3 | 1 2). The order is 
different than for the term P(4 | 2 3 1). We construct 
D(3 1 2): 

3  1  2 

The dotted edges have partial correlation zero, the 
bold edge must be assessed, it is added to the belief 
net. The belief net is now quantified: 

(1,3) (3,4|2) (4,2) 

1  3  4  2 

With the partial correlations in D(3 1 2) we compute 
using the recursive relations D(2 3 1). In fact, we find 
r2 3  � r2 3,1 � 0. 

We now have D(4 2 3 1) which corresponds to the 
belief net: 

4  2  3  1 

The distribution having specified univariate mar-
gins and satisfying rank correlation structure of the 
regular vine above can be obtained and sampled 
(Kurowicka & Cooke 2001). 

ASSOCIATING A BELIEF NET 
WITH A D-VINE 

Starting with a D-vine, we associate a belief net by 
identifying the sampling order of the belief net with 
the ordering of the vine. Let us assume that 
D(n, n � 1, …, 1) is given, hence the sampling order 
is 1, 2, …, n. Start with the variable 1, draw arcs to all 
variables j such that partial correlation �1j;2,…,j�1 on 
the D-vine is not equal to zero. Proceed the same way 
with the next variable in the ordering, that is 2 etc. 

We illustrate this procedure using the D-vine in 
Figure 5. The ordering of this vine is: �K, �B, �I, �G, 
FK, FI, FG, FB. We start with �K. Both the marginal 
correlation �K and �B and the partial correlation �K 

and FK given �B, �I, �G are non-zero. Therefore we 

FK 

FI 

FG 

FB 

�G 

�I 

�B 

�K 

Figure 7. A belief net corresponding to the D-vine 
in Figure 5. 

draw arcs from �K to �B and from �K to FK. Similarly 
arcs must be drawn from �B to �I and from �B to FG 

etc. Following this procedure the belief net in Figure 7 
can be created that corresponds to the D-vine in 
Figure 5. 

The graphs in Figure 1 and 7 are quite similar. Only 
the link �B–FG is surprising since it was discarded in 
both cases in Figure 1. It must be emphasized, however, 
that in order to derive an undirected conditional inde­
pendence graph from a directed belief net, generally 
new links must be added connecting all variables with 
a common child (moral graph; cf. Lauritzen & 
Spiegelhalter 1988, Whittaker 1990). This formal rule 
does not include a statement about whether or not the 
new links are statistically relevant, so that that the 
comparison of Figures 1 and 7 is not straightforward. 

7 DISCUSSION 

Numerical climate models are important tools for cli­
mate change studies. A general problem, however, is 
that global atmospheric models are not able to resolve 
the local scales at which most users require information 
so that statistical models must be employed to relate 
large-scale climate model output to regional scale 
observations (cf. Zorita & von Storch 1999). The tem­
perature forecasts analyzed in this paper have been 
produced by such a “downscaling” method using 
observed large scale atmospheric pressure data as 
explanatory variables. A main objective of the study 
was to explore the application of two different tech­
niques of graphical modeling for the assessment of 
the amount of genuine local information conveyed by 
the results of downscaling. 

In the specific example it turned out that, for 
instance, the partial correlation between predictions 
for the stations Budapest, FB, or Innsbruck, FI, and 
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observations at any of the four locations of interest 
are quasi zero given the values of forecasts for the two 
stations Geneva, FG, and Copenhagen, FK. This means 
that regression on forecasts FG and FK could be used 
as a surrogate for the forecasts delivered for Innsbruck 
or Budapest. In this sense the latter two forecasts, FI 

and FB, could be skipped without significant loss of 
information. 

Another conclusion from the graphical independ­
ence model was that none of the four forecasts con­
tained a significant amount of incremental information 
about temperature in Innsbruck as soon as the tem­
peratures at Geneva and Budapest are known. This 
exemplifies how the analysis of interaction patterns 
can be used to identify sets of local stations, for which 
the downscaling scheme provides relevant independent 
information. Given the forecasts for these key stations 
observations at other stations might be simulated by 
an interpolating regression scheme. 

A by-product of the graphical analysis is an esti­
mate of the dimensionality of the interaction between 
the set of observations and the set of forecasts. Such 
information could also be achieved by considering, 
for instance, the number of pairs of correlated patterns 
that turn out to be relevant in conventional canonical 
correlation analysis. The main advantage of the graphi­
cal methods studied here is that they refer to the original 
set of variables and do not introduce derived artificial 
variables. Generally the exclusion of irrelevant derived 
variables (low correlation and/or explained variance) 
does not result in an reduction of the number of original 
variables the analysis is based on. 

Graphical modeling intends to eliminate unimpor­
tant relations that may be present in empirical data in 
order to define parsimonious models with maximal 
explanatory power. Whittaker’s method of independ­
ence graphs is currently the state of the art. The results 
of this study indicate that vines might offer improve­
ments by imposing stronger independence relations 
(i.e. zeroing partial correlations of lower order) while 
deviating less from the original distribution. However, 
the computational burden is formidable. 

Independence graphs discussed by Whittaker (1990) 
are defined by sets of pairwise conditional independ­
ence restrictions of maximum order. Non-zero partial 
correlations cannot be prescribed but must be esti­
mated from data in a consistent way. In contrast, partial 
correlations in a vine can be prescribed independently 
so that the maximum likelihood estimate of non-zero 
partial correlations is trivial (simply choose the 
observed value). However, the occurrence of negative 
EIDs only for vines seems to be related to this fact 
that edges of vines are defined without adjustment of 
other links. 

The main difficulty when fitting vines lies in the 
particular tree structure that each vine imposes onto 
the set of variables. It is an open question whether 

methods can be designed that circumvent the need for 
testing all possible permutations of variables. Fitting 
independence graphs does not impose any ordering 
onto the set of variables, which makes fitting independ­
ence graphs computationally much less demanding. 

The notation of D-vines is in closer correspon­
dence with independence graphs than the notation of 
C-vines. Both use the very intuitive notation of con-
text variables put in between those variables, the par­
tial correlation of which is calculated. For instance, 
the orderings of observations in the graphical model 
and in the D-vine were found to be identical. In the 
present example D-vines performed clearly better 
than C-vines. This is an interesting result because due 
to its asymmetric topology for C-vines the number of 
different options for ordering variables is twice as 
large as for D-vines. 

Fitting a C-vine, however, might be advantageous 
when a particular variable is known to be a key vari­
able that governs variable interactions in the data set 
(maximum average correlation with other variables?). 
In such a situation one may decide to locate it at the 
root of the canonical vine. 

All graphical models discussed in this study por­
trayed the mechanism of interactions between obser­
vations and forecasts in a consistent way. All methods 
used three edges for establishing interaction between 
observations and forecasts. Both the independence 
graph and the D-vine concluded that forecasts do not 
contain a significant amount of site specific informa­
tion about �I, which cannot be replaced by using 
observations �B and �G as a surrogate. The C-vine 
with forecasts at its root has not the proper structure 
for portraying this fact. 
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