
Dynamic Bayesian Networks as a Possible Alternative to the
Ensemble Kalman Filter for Parameter Estimation in Reservoir

Engineering

Anca Haneaa∗, Remus Haneaa,b, Aurelius Zilkoa

aInstitute of Applied Mathematics, Delft University of Technology, The Netherlands
bThe Netherlands Organization for Applied Scientific Research, Utrecht, The Netherlands

Abstract: The objective of reservoir engineering is to optimize hydrocarbon recovery. One of the most
common and efficient recovery processes is water injection. The water is pumped into the reservoir
in injection wells in order to push the oil trapped in the porous media towards the production wells.
The movement of the water front depends on the reservoir characteristics. To avoid an early water
breakthrough in the oil production wells, a good knowledge of the subsurface is imperative. The
properties of the rock, e.g. porosity and permeability, are therefore important for oil extraction since
they influence the ability of fluids to flow through the reservoir. They represent unknown parameters
that need to be estimated when simulating a reservoir. In this paper the authors are concerned with
estimating the permeability field of a reservoir. To characterise the fluid flow into the reservoir we
use a two phase (oil-water) 2D flow model which can be represented as a system of coupled nonlinear
partial differential equations which cannot be solved analytically. Consequently, we build a state-
space model for the reservoir. There are many ways of representing state-space models, one of the
most common being the Kalman Filter (KF) model and its variants, e.g. En(semble)KF. A more
general representation is a dynamic Bayesian network. Recently, the performance of the EnKF and
that of a non-parametric BN were investigated and compared in a twin experiment for permeability
estimation [1]. The NPBN approach proved a promising alternative to the EnKF. Yet a fair number
of open questions emerged from the comparison of the two methods. Moreover, in all investigations
the assumptions of the EnKF method were used in the NPBN approach for a proper comparison. In
this paper we try to answer some of the questions left open, and extend the initial work by making
more realistic assumptions.
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Bayesian Networks

1. INTRODUCTION

Reservoir simulation is meant to provide field and research engineers with a quantitative estimate of
hydrocarbon volume in a reservoir undergoing production. Both the quality of geological data for a
particular reservoir, and the quality of the modelling technique contribute to the uncertainties in the
estimates provided by simulation software. When simulating a reservoir one must account for the
physical and chemical processes taking place in the subsurface. Rock and fluid properties are crucial
when describing the flow in porous media. Large-scale numerical simulation methods for flow through
heterogeneous porous media are usually used to design optimal recovery strategies for oil reservoirs.
Such reservoir models consist of time and space discretised systems of nonlinear partial differential
equations (i.e. state-space models) that describe the time evolution of the variables involved in these
models. It is not unusual for reservoir models to contain up to millions of grid blocks with strongly
varying values of parameters like the porosity and the permeability of the subsurface.

In this paper the authors are concerned with estimating the permeability field of a reservoir. The
problem of estimating model parameters such as permeability is often referred to as a history matching
problem in reservoir engineering. To characterise the fluid flow into the reservoir we use a two phase
(oil-water), 2D flow model. From the many ways of representing state-space models, we have chosen



two to work with and compare: a Kalman Filter based model and a dynamic Bayesian network based
approach.

2. STATE-SPACE MODELS

A general state-space model is in principle any model that includes an observation process Yt and a
state process Xt at the current time t. The equations may be nonlinear, or non-Gaussian. The state
process describes an underlying/hidden state of the world that generates observations. This hidden
state is represented by a vector of variables that we cannot measure, but whose state we would like to
estimate. The state vector evolves in time and the goal of many applications is to infer the hidden state
given the observations, y1, .., yt, up to the current time. Hence the belief state P (Xt|y1, ..yt) has to be
calculated and this is done recursively using Bayes’ rule. A prior, P (X1), a state-transition function,
P (Xt|Xt−1), and an observation function, P (Yt|Xt) are needed. We can assume the model is first-
order Markov, i.e., P (Xt|X1, .., Xt−1) = P (Xt|Xt−1). Similarly, we can assume that the observations
are conditionally independent given the model, i.e. P (Yt|Yt−1, Xt) = P (Yt|Xt).

One of the most common ways of representing a state-space model is the Kalman Filter (KF) model
[2]. The KF is based on a system model consisting of a state equation and an output (measurement)
equation which are both linear. To model unpredictable disturbances, noise is added to both equations.
The state process noise and the measurement noise are assumed to be independent, white, and normally
distributed. The KF will recursively calculate the state vector Xt along with its covariance matrix,
conditioned on the available measurements up to time t, under the criterion that the estimated error
covariance is minimum. Conditioning on the measurements is referred to as the assimilation step of
the procedure. The KF method becomes computationally expensive for large scale systems and it
is not suitable for nonlinear systems. Several algorithms have been developed in order to overcome
these limitations. One such algorithm is the Ensemble Kalman filter (EnKF) [3]. EnKF represents the
distribution of the system state using a collection of state vectors, called an ensemble, and replaces the
covariance matrix by the sample covariance computed from the ensemble. Advancing the probability
distribution function in time is achieved by simply advancing each member of the ensemble. The
main advantage of the EnKF is that it approximates the covariance matrix from a finite number of
ensemble members, thus becoming suitable for large nonlinear problems. Nevertheless, very often
the number of variables to be estimated is much larger than the number of ensemble members. In
these situations the ensemble covariance is rank deficient, therefore inaccurate. Moreover, EnKF
relies on the normality assumption although it is often used in practice for nonlinear problems, where
this assumption may not be satisfied. Nevertheless, EnKF is currently one of the most widely used
methodologies which address the history matching problem in reservoir engineering [4, 5]. We would
like to compare the performance of this state-of-the-art methodology with a new approach that uses
another representation of a state-space model, namely a dynamic Bayesian network [6, 7].

Dynamic Bayesian networks provide a more expressive language for representing state-space models.
They can be interpreted as instances of a static Bayesian networks (BNs) [8] connected in discrete
slices of time. A static BN is a directed acyclic graph (DAG) whose nodes represent univariate random
variables, and the arcs represent direct influences. The BN stipulates that each variable is conditionally
independent of all predecessors in an ordering of the variables, given its direct predecessors. The direct
predecessors of a node i, corresponding to variable Xi are called parents and the set of all i’s parents
is denoted Pa(i), or Pa(Xi). In most applications, uncertainty distributions do not conform to any
parametric form, therefore we shall use non-parametric Bayesian networks (NPBNs) [9] to describe
the dynamical system. NPBNs associate nodes with variables for which no marginal distribution is
assumed, and arcs with conditional copulae [10, 11]. These conditional copulae, together with the
one-dimensional marginal distributions and the conditional independence statements implied by the
graph uniquely determine the joint distribution [12]. The (conditional) copulae used in this method
are parametrised by (conditional) rank correlations that can be calculated from data or elicited from
experts [13]. A dynamic NPBN is a way to extend a static NPBN to model probability distributions



of collections of random variables, Z1, Z2, .., ZT . The variables can be partitioned in Zt = (Xt, Yt)
to represent the hidden and output variables of a state-space model. A dynamic NPBN is defined to
be the pair (B1, B→). B1 is a NPBN which defines the prior P (Z1), and B→ is a two-slice temporal
NPBN which defines P (Zt|Zt−1) =

∏
i P (Zi

t |Pa(Zi
t)), with Zi

t the ith node at time t, which could be
a component of Xt, or of Yt.

The difference between a dynamic NPBN and a KF model is that the latter requires joint normality,
whereas a dynamic NPBN allows arbitrary marginal distributions. In addition, a dynamic NPBN
allows for a much more general graph structure. Figure 1 presents a general KF model as a dynamic
BN.

Figure 1: The KF Model as a Dynamic BN

3. EXPERIMENTAL SETUP

This exercise follows a classic twin-experiment setup, in which the true model is known and used
to generate true synthetic measurements. These measurements are further used in the assimila-
tion/conditioning step in order to try and recover the aforementioned truth. We use a five-spot
injection-production strategy. That is to say the reservoir has an injector in the middle of the field
(where water is injected) and four producers, one in each corner (where oil is pumped out). The
reservoir model considered here is a 2D square with a uniform Cartesian grid consisting of 21 grid cells
in each direction. The reservoir is considered a closed space where liquid gets in and out only through
the drilled wells. A well model is available for the injection and extraction of fluids through the drilled
wells. The flow is specified at the wells by bottom hole pressure (bhp) and fluid flow rates (q) [14].
It is imposed by the well model that either the bottom hole pressure or the fluid flow rates must be
prescribed. Let us take the injection well to be constrained by prescribed flow rates and production
wells to be constrained by bottom hole pressure. The two phase flow model is combined with the well
model and implemented in a simple in-house simulator.

The state vector contains pressures (p) and saturations (S) corresponding to each grid cell. Since we
want to perform a parameter estimation, the state vector is augmented with the parameter of interest,
i.e. the natural logarithm of the permeability1 (log(k)). Given the well model constraints, we measure
bottom hole pressure at the injector and total flow rates at the producers. The final form of the vector
Zt is:

Zt =




p(t)
S(t)

log k(t)
bhp(t)
q(t)




The reservoir is initialized with pressure equal to 3 · 107[Pa] and saturation equal to 0.2, in every grid
cell. We perform simulations for 480 days, considering measurements every 60 days.

4. COMPARISONS & QUESTIONS

The total number of uncertain variables involved in this toy model is 1328. At each time step the
joint distribution of 1328 variables has to be described and updated with measurements. Whereas for

1We consider the log(k) instead of k because the values of the permeability are of order 10−13[m2].



the EnKF methodology this number of dimensions does not constitute an impediment, for the NPBN
based approach only building a DAG with 1328 nodes can be somewhat cumbersome.

Given the incipient stage of modelling a petroleum engineering problem with a NPBN, a simplification
of the graphical model is in order. Previous comparisons were performed in [1]; there, based on expert’s
opinions, the variables representing saturations were completely excluded from the NPBN analysis.
Also, only parts of the grid were considered, rather than the entire reservoir. This implies that in the
NPBN based approach, the distribution of only a reduced number of random variables is updated every
time step, in contrast with the ENKF method, where all variables are updated in all comparisons.

We start by running the reservoir simulator for the first 60 days, and obtain the multi-dimensional
joint distribution (in form of a synthetic data set). We represent the joint distribution using a static
NPBN. Using a saturated NPBN translates into representing all possible dependencies present in the
data set, including the noisy ones. Another choice is to learn a validated NPBN from data. A learning
algorithm is introduced in [15]. The only assumption (to be validated) of the algorithm is that of a joint
normal copula. A joint distribution that approximates the distribution given by the simulator is there-
fore obtained. The static NPBN can be further used to perform the conditionalization/assimilation
step. We calculate the joint conditional distribution, given the measurement. After conditioning, we
stipulate the conditional distribution by sampling it. Further, we introduce the updated distribution
in the simulator, and we run it for another 60 days. In this way we obtain the distribution of the
variables after 120 days (with 1 assimilation step after 60 days). The new joint distribution will be
modelled with another static NPBN. The 2 NPBNs connected through the simulator are basically a
dynamic NPBN. We repeat the above steps for a period of 480 days and thus we build a dynamic
NPBN for 8 discrete time steps.

4.1. Previous Results

The results of estimating the permeability values for different locations using a saturated NPBN,
a learned NPBN, and the EnKF method are presented in [1]. The estimated parameter mean is
compared with the true value of the parameter, and the quality of the estimation is measured using
the root mean square error (RMSE).

A 7× 7 and a 13× 13 grid (that includes the 7× 7 grid) were considered in [1]. Figures 2(a) and 3(a)
show the true permeabilities, the initial ensemble mean, and the estimated means of permeabilities
after 480 days using the EnKF and using the saturated NPBN, for the two grids. Figures 2(b) and
3(b) provide the comparative time behaviour of the RMSE for both methods, in both cases. Both
methods use 900 samples/ensemble members in the simulations.

A visual comparison would suggest that the saturated NPBN gives a better estimate than the EnKF
for the 7 × 7 grid. This conclusion is supported by comparing the RMSE values as well (see Figure
2(b)). In the case of a 13 × 13 grid, Figure 3(a) only indicates that the 2 methods are comparable.
However, the RMSE from Figure 3(b) contradicts the visual analysis. The RMSE for the 13× 13 field
is clearly smaller and more stable for the EnKF than for the saturated NPBN.

4.2. Investigation, Answers & New Questions

Even though the results for the smaller grid look very promising, when we increase the number
of variables that are updated in the NPBN based procedure, the quality of the estimation decreases
dramatically, at least as measured by the RMSE. Intuitively this was unexpected, since we are actually
making more information available for every new time step. The only question remaining is how
accurate the extra information is.

It is worth stressing that the RMSE shows only an average behavior of an estimated filed, and it can
often be misleading. Keeping this in mind, the first possible explanation for the observed behaviour is
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(a) The True (top-left), the Initial (top-right), the
EnKF Estimated (bottom-left), and the NPBN Esti-
mated (bottom-right) Permeability Field of a 7× 7 Grid.
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(b) RMSE for the Estimated Permeability Field of
a 7× 7 Grid Using EnKF vs. NPBN.

Figure 2: A 7× 7 Grid.
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Figure 3: A 13× 13 Grid.

the influence of the estimated boundary of the grid. Given the lack of information in the neighboring
cells outside the boundary, one could blame the high RMSE on a presumptive bad estimation of the
boundary itself. Figure 4(a) shows two RMSEs calculated for the NPBN built for the 13× 13 grid, on
343 variables. The solid line is the same as the one in Figure 3(b), whereas the dotted line represents
the time evolution of the RMSE calculated for the permeabilities of the same grid when the bordering
cells are excluded. Not only do the two RMSEs exhibit the same behaviour, but the original RMSE
also stays lower than the new one at each time step. Consequently we conclude that the estimated
permeabilities on the boundary are not the driving values for the RMSE of the 13× 13 grid.

It is now interesting to see what we gain or lose in the estimation of a 7× 7 grid when we update the
variables corresponding to the 13× 13 grid that includes it. Figure 4(b) speaks for itself. The dotted
line corresponds to the RMSE of the above described estimation, and the solid line corresponds to
the RMSE calculated for the 7× 7 grid when we update only the variables corresponding to the same
7× 7 grid. The unstable and bizarre evolution in time of the dotted RMSE gives a strong indication
towards not trusting the estimation made using 343 variables. The NPBN based approach, just like
the EnKF, is a Monte Carlo method and its performance depends on the number of samples/ensemble
members used. Unlike the EnKF, the NPBN approach estimates more than just the first two moments
of the distribution, hence it is more prone to statistical errors due to a reduced number of samples.
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Figure 4: Boundary Influence Investigation for a 13× 13 Grid.

Is the dependence structure (expressed in terms of conditional rank correlations) of a 343 - dimensional
distribution well described with 900 samples? Figure 4(b) gives a brisk answer: no. For this reason,
the following comparisons and investigations will only be made on 7× 7 or smaller grids.

The fact that the NPBN approach needs many samples (many more than the EnKF does) is neither
surprising, nor does it constitute an impediment - fast updating is one of the advantages of the
NPBNs. A favorable conclusion that can be drawn from the above analysis is that truncating the
reservoir domain and estimating different parts of the reservoir can be performed without the menace
of losing information from the boundaries. This may suggest that interpolation methods could help
in estimating the entire field.

It is obvious from Figures 2(a) and 3(a) that the two methods recover different information about the
true permeability field. Extreme values of permeability are definitely of great interest. How the two
methods compare in extreme situations is presented in Figures 5(a) and 5(b). We call false extremes
the situations when the models predict extremely low (solid lines) or extremely high (dotted lines)
permeabilities where, in reality, the values are not so low or so high, respectively. We calculate the
relative frequencies of such situations for both the EnKF (square markers) and the NPBN (circle
markers). The situations when the models fail to find extreme values of permeability are called missed
extremes. Similar graphical distinctions are used for these in Figure 5(b).
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Figure 5: False and Missed Extremes for a 7× 7 Grid.

The NPBN model overestimates, much more than the EnKF does, the extremely low permeability



zones, and none of the methods finds extremely high permeability zones where there are none. On the
other hand, the NPBN model does not miss the very low permeability zones. It does miss some of the
very high permeability ones in the first time steps, but it improves as new information is assimilated
through conditioning.

The dependence structure of the modelled variables is estimated differently in the two approaches.
Let us compare the correlation matrices of the variables corresponding to the permeability of each grid
cell from the 7× 7 truncation. We wish to compare the values in the correlation matrices rather than
some average measure of dependence (e.g. the determinants, the norms, etc.). To do this we plotted
the colour-coded matrices obtained at the last time step of the simulations with the two methods
in Figures 6(a) and 6(c). Figure 6(b) shows the numbering of the permeability variables as they
correspond to the grid cells. The two matrices exhibit the same patterns of correlation, but the values
seem to be higher in the EnKF matrix when first examined.

(a) The Correlation Matrix of the Uncer-
tain Permeabilities in Each Grid Cell as Es-
timated by the NPBN.

(b) (c) The Correlation Matrix of the Uncer-
tain Permeabilities in Each Grid Cell as Es-
timated by the EnKF.

Figure 6: Correlation Matrices of the Permeability Variables.

After a closer inspection of the two matrices, we find that the EnKF matrix does not contain negative
values, i.e all permeability variables are either positively correlated or uncorrelated. In contrast, the
NPBN matrix shows negatively correlated variables as well. When the permeabilities of two far apart
grid cells are from the two different ends of the spectrum of permeability values (one very low and one
very high), the NPBN matrix shows a negative correlation (e.g. ρ1,43 = −0.32), whereas the EnKF
matrix shows a small positive correlation (ρ1,43 = 0.14). For closer grid cells with similar values,
the NPBN considers them uncorrelated (ρ25,48 = 0) and the EnKF strongly positively correlated
(ρ25,48 = 0.45). Which of these two descriptions of the dependence structure is more appropriate is a
question that remains open. For more insights into subsurface properties like the permeability, expert
opinion should be sought.

4.3. Different Assumptions

The synthetic measurements from the previous comparisons are obtained by adding normally dis-
tributed errors (with zero mean and 5% variance) to the production data. Running the simulator,
observing the distributions of the flow rates and the bottom hole pressure variables, and assuming
that the best estimators are the means of these distributions, allows us to fit different measurement
error distributions. For each of the five measurement errors we fit mixtures of Gaussian distributions
with different parameters. It turns out that the variance of the bottom whole pressure error is 2% and
the variances for the errors of the flow rates are all above 20%. Because of the higher variance of the
error, there is a higher chance to obtain bad measurements. By bad measurements we mean unreliable



and sometimes even unrealistic measurements. Since the uncertainty in the measured variable is not
only a result of the uncertainty in the input variables and parameters of the model, the fitted error
distribution might still be erroneous.

We consider again the 7 × 7 grid used previously, but now with the new measurements. Figure 7(a)
shows the true permeabilities, the initial ensemble mean, and the estimated means of permeabilities
after 420 days and after 480 days using the EnKF and using the saturated NPBN. Figure 7(b) provides
the comparative time behaviour of the RMSE for the two methods.
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Figure 7: A 7× 7 Grid with Non-Gaussian Noise.

The RMSE for EnKF decreases slowly and steadily with an almost constant behaviour for about 4
time steps. The RMSE for the NPBN has a very good decrease between the second and the seventh
time steps, but it increases at the second and the eighth steps. The reason for these increases are the
bad measurements and the adjustment done to those. For the second time step one can observe a slight
increase in the RMSE of the EnKF as well but not as high as in the NPBN case. The NPBN method
seems to be much more sensitive to the poor measurements than the EnKF method is. On the other
hand it also seems to recover fast, outperforming the EnKF until another poor measurement occurs.
A visual inspection of the estimated fields for the last two steps shows two very similar pictures given
by EnKF, motivating the almost constant value of the corresponding RMSE. The NPBN estimated
field from the seventh time step, which approximates the truth better than EnKF does, changes with
the new measurement in a field that still looks slightly better than the EnKF estimated field, even
though the RMSE values disagree with this visual conclusion. As mentioned earlier, the RMSE as an
average measure of fit may sometimes be deceiving.

When we consider a smaller grid of 5 × 5, closer to the measurement with less variation and further
away from one of the bad measurements, we obtain the results from Figures 8(a) and 8(b). Even
though, intuitively, both methods should benefit from the position of this field, Figure 8(b) indicates
otherwise. The RMSE for the NPBN decreases steadily with the exception of the two time steps with
bad measurements, only that the increase from both times is negligible when compared with the one in
Figure 7(b). The RMSE of the EnKF method, on the contrary, increases almost every time step. Not
only that EnKF does not seem to appreciate the proximity of a good measurement, it also performs
worse than in the previous case.

A visual comparison of the fields in Figure 8(a) is somewhat disappointing. The fields estimated using
EnKF are very smooth, unlike the true one, and fail to recover both the very permeable and the very
impermeable areas. Yet the permeable grid cells are much better approximated than in the fields
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Figure 8: A 5× 5 Grid with Non-Gaussian Noise.

estimated using the NPBN. The NPBN has its merits in estimating the very impermeable grid cells.
In fact the NPBN overestimates the impermeability of the field and this agrees with the findings from
Figure 5(a).

We were puzzled to observe that for very similar values of the RMSE, the estimated fields could look
so different to each other and to the truth. Moreover there is no visual correspondence between a
0.7 RMSE for the NPBN in the 7× 7 grid (eighth time step) and a 0.7 RMSE for the NPBN in the
5× 5 grid (seventh time step). The NPBN estimated field from the eighth time step, in the 7× 7 grid,
approximates the truth fairly well, while the one from the seventh time step, in the 5× 5 grid, shows
a completely different field from the true one. These add to our concern about using the RMSE as a
measure of performance.

5. CONCLUSIONS

The NPBN based approach for parameter estimation in reservoir engineering is still in its infancy,
but there are reasons to believe it is a promising approach. The investigations described in this paper
showed that even though, with 900 samples, the number of variables that a NPBN could handle in an
accurate manner is around one hundred, estimating truncated parts of the reservoir domain does not
affect the accuracy of the estimation. In light of these findings estimating parts of the reservoir and
interpolating the resulting subfields seems a possible way of estimating the entire reservoir.

An analysis of the methods’ behaviour with respect to extreme permeabilities shows that the NPBN
approach is very cautious in terms of impermeability, overestimating it, but in general it exhibits
a more adventurous performance, when recovering heterogeneous fields. On the contrary all EnKF
estimated fields have a very smooth transition between different permeabilities.

The two methods represent different spatial dependence between the permeability variables. The
NPBN analysis finds both positively and negatively correlated variables, whereas the EnKF method-
ology finds mostly positively correlated variables. Experts should further assert the validity of either
method.

The NPBN methodology appears to be very sensitive to bad measurements, much more so than the
EnKF, hence the former would greatly benefit from a better estimation of the measurement noise.



Another possible improvement of the NPBN method is the incorporation of saturation variables in the
model. The EnKF method uses continuous variables to represent saturation. A better representation
of saturation would use discrete random variables. Unlike EnKF, a NPBN can model both discrete
and continuous variables.
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