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Abstract

This paper introduces mixed non-parametric continuous and discrete Bayesian Belief Nets
(BBNs) using the copula-vine modelling approach. We extend the theory for non-parametric
continuous BBNs to include ordinal discrete random variables; that is variables which can be
written as monotone transforms of uniforms. The dependence structure among the variables
is given in terms of (conditional) rank correlations. We use an adjusted rank correlation coef-
ficient for discrete variables, and we emphasise the relationship between the rank correlation
of two discrete variables and the rank correlation of their underlying uniforms. The approach
presented in this paper is illustrated by means of an example.

1 Introduction

Applications in various domains often lead to high dimensional dependence modelling. Decision makers
and problem owners are becoming increasingly sophisticated in reasoning with uncertainty. This
motivates the development of generic tools, which can deal with two problems that occur throughout
applied mathematics and engineering: uncertainty and complexity.

Graphical models provide a general methodology for approaching these problems. A bayesian belief
net is one of the probabilistic graphical models, which encodes the probability density or mass function
of a set of variables by specifying a number of conditional independence statements in a form of an
acyclic directed graph and a set of probability functions. The visual representation can be very useful in
clarifying previously opaque assumptions about the dependencies between different variables. Our focus
is on mixed non-parametric continuous and discrete BBNs.

In a non-parametric continuous BBN, nodes are associated with arbitrary continuous invertible
distribution functions and arcs with (conditional) rank correlations, which are realised by a copula
with the zero independence property (Kurowicka and Cooke 2004). The (conditional) rank correlations
assigned to the edges are algebraically independent, and there are tested protocols for their use in
structured expert judgement (Morales et al. 2007). We note that quantifying BBNs in this way also
requires assessing all (continuous, invertible) one dimensional marginal distributions. On the other
hand, the dependence structure is meaningful for any such quantification, and need not be revised if the
univariate distributions are changed.

We extend this approach to include ordinal discrete random variables which can be written as
monotone transforms of uniform variates, perhaps taking finitely many values. The dependence
structure, however, must be defined with respect to the uniforms. The rank correlation of two discrete
variables and the rank correlation of their underlying uniforms are not equal. Therefore one needs to
study the relationship between these two rank correlations.

The paper is organised as follows: Section 2 introduces the details of non-parametric continuous BBNs
using the normal copula vine modelling approach presented in Hanea et al. (2006). In order to extend
this approach to include ordinal discrete random variables, an adjusted rank correlation coefficient for
such variables is defined. Section 3 presents a correction for the population version of Spearman’s rank



correlation coefficient r for discrete random variables, and describes the relationship between the rank
correlation of two discrete variables and the rank correlation of their underlying uniforms (Hanea et al.
2007). For a better understanding of the methodology described here, an application model is presented
in Section 4. Finally, Section 5 presents conclusions and recommendations for future work.

2 Non-Parametric Continuous BBNs

A continuous non-parametric BBN is a directed acyclic graph, together with a set of (conditional) rank
correlations and a set of marginal distributions. Nodes are associated with arbitrary continuous invertible
distribution functions and arcs with constant (conditional) rank correlations that are realised by a copula
for which (conditional) correlation 0 entails (conditional) independence1 (Kurowicka and Cooke 2004).
For each variable i with parents i1...ip(i), we associate the arc ip(i)−k −→ i with the conditional rank
correlation: {

r(i,ip(i)), k = 0

r(i,ip(i)−k|ip(i),...,ip(i)−k+1), 1 ≤ k ≤ p(i)− 1.

The assignment is vacuous if {i1...ip(i)} = ∅ (see Figure 1).

Figure 1: Node i of a BBN and the set of parent nodes for i.

Therefore, every arc in the BBN is assigned a (conditional) rank correlation between parent and child.
These assignments are algebraically independent. Moreover they uniquely determine the joint distribu-
tion. The proof of this fact is available in Kurowicka and Cooke (2006) and it is based on the close
relationship between non-parametric BBNs and another graphical model, namely vines (Cooke 1997;
Bedford and Cooke 2002).

A way of stipulating a joint distribution is by sampling it, hence we use a sampling protocol based
on vines to specify and analyse the BBN structure. As we already mentioned, the (conditional) rank
correlations assigned to the arcs of a BBN can be realised by a copula with the zero independence prop-
erty. Unfortunately, for sampling a large BBN structure with a general copula, extra calculations may be
required. These calculations consist of numerical evaluations of multiple integrals, which are very time
consuming. This disadvantage vanishes when using the normal copula (Hanea et al. 2006). Hence we will
present the sampling algorithm for non-parametric continuous BBNs with the normal copula. Let us start
with a BBN on n variables X1, . . . Xn, with continuous, invertible distribution functions F1, . . . , Fn. We
transform X1, . . . Xn to the standard normal variables Y1, . . . Yn via the transformation Yi = Φ−1(Fi(Xi)),
(∀i)(i = 1, . . . , n), where Φ is the cumulative distribution function of the standard normal distribution.
Since Φ−1(Fi(Xi)) are strictly increasing transformations, the same (conditional) rank correlations cor-
respond to the pairs of transformed variables Y1, . . . Yn. Further, since all conditional distributions are
normal we can use Pearson’s transformation (Pearson 1907) to calculate ρi,j|D = 2 sin(π6 · ri,j|D), where
ri,j|D is the conditional rank correlation between Yi and one of its parents, Yj , given a subset of parents,
denoted by D (see Figure 1). For normal variables, conditional and partial correlations are equal.

1Such copulae are said to have the zero independence property.



The relationship between vines and continuous non-parametric BBNs ensures that there is a unique joint
normal distribution for Y1, . . . Yn satisfying the partial correlation specifications. Moreover there is a
unique corespondent correlation matrix R (Bedford and Cooke 2002). One can calculate the correlation
matrix R, using the recursive formula for partial correlations (Yule and Kendall 1965):

ρ12;3,...,n =
ρ12;4,...,n − ρ13;4,...,n · ρ23;4,...,n

((1− ρ2
13;4,...,n) · (1− ρ2

23;4,...,n))
1
2
. (2.1)

We can now sample the joint normal distribution of Y1, . . . , Yn, with correlation matrix R (Tong 1990) and
for each sample ((yj1), (yj2), . . . , (yjn)), j = 1, ..., N , calculate: (F−1

1 (Φ(yj1)), F−1
2 (Φ(yj2)), . . . , F−1

n (Φ(yjn))).
In this way we realise the joint distribution of the initial variables X1, . . . Xn, together with the

specified dependence structure.

We intend to use the same protocol in the case of mixed non-parametric continuous and discrete BBNs.
Hence, we will further consider BBNs whose nodes represent both discrete and continuous variables. We
are interested in discrete ordinal variables which can be written as monotone transforms of uniform
variables. This should be understood as follows: let X be a discrete variable with m possible values
x1, ..., xm each with probability p1, ..., pm, respectively. We call UX the underlying uniform for the discrete

variable X, if P (UX <

k∑
j=1

pj) =
k∑
j=1

pj , k = 1, ...,m. The dependence structure in the BBN must be

defined with respect to the underlying uniform variables. The rank correlation of 2 discrete variables
and the rank correlation of their underlying uniforms are not equal, hence one needs to establish the
relationship between them.

3 Spearman’s Rank Correlation for Ordinal Discrete Random Variables

Before defining the rank correlation of 2 discrete variables, we will first recall the definition of the popu-
lation version of Spearman’s rank correlation coefficient, in terms of the probabilities of concordance and
discordance (e.g., Nelsen 1999).

Consider a population distributed according to 2 variates X and Y. Two members (X1, Y1) and (X2, Y2)
of the population will be called concordant if:

X1 < X2, Y1 < Y2 or X1 > X2, Y1 > Y2.

They will be called discordant if:

X1 < X2, Y1 > Y2 or X1 > X2, Y1 < Y2.

The probabilities of concordance and discordance are denoted with Pc, and Pd respectively. The pop-
ulation version of Spearman’s r is defined as proportional to the difference between the probability of
concordance, and the probability of discordance for two vectors (X1, Y1) and (X2, Y2), where (X1, Y1)
has distribution FXY with marginal distribution functions FX and FY and X2, Y2 are independent with
distributions FX and FY ; moreover (X1, Y1) and (X2, Y2) are independent (e.g., Joe 1997):

r = 3 · (P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]). (3.1)

The above definition is valid only for populations for which the probabilities of X1 = X2 and Y1 = Y2

are zero. The main types of such populations are an infinite population with both X and Y distributed
continuously, or a finite population where X and Y have disjoint ranges (Hoffding 1947).

In order to formulate the population version of Spearman’s rank correlation coefficient r, for discrete
random variables, one needs to correct for the probabilities of X1 = X2 and Y1 = Y2. This correction is
derived in Hanea et al. (2007). In this section we present the main results.



Let us consider the discrete random vectors (X1, Y1), (X2, Y2), where X2 and Y2 are independent
with the same marginal distributions as X1 and Y1, respectively; moreover (X1, Y1) and (X2, Y2) are
independent. The states of Xi are ranked from 1 to m; the states of Yi are ranked from 1 to n.2 The joint
probabilities of (X1, Y1) and (X2, Y2) are given in terms of pij and qij , i = 1, ..,m; j = 1, .., n, respectively.

Table 1: Joint distribution of (X1, Y1) (left); Joint distribution of (X2, Y2) (right)

X1 \ Y1 1 2 ... n
1 p11 p12 ... p1n p1+

2 p21 p22 ... p2n p2+

... ... ... ... ... ...

m pm1 pm2 ... pmn pm+

p+1 p+2 ... p+n

X2 \ Y2 1 2 ... n
1 q11 q12 ... q1n p1+

2 q21 q22 ... q2n p2+

... ... ... ... ... ...

m qm1 qm2 ... qmn pm+

p+1 p+2 ... p+n

where pi+, i = 1, ...,m represent the margins of X1 and X2; and the margins of Y1 and Y2 are denoted
p+j , j = 1...n. One can rewrite each qij as qij = pi+p+j , for all i = 1, ...,m, and j = 1, ..., n. Using
this terminology we calculate the difference between the probabilities of concordance and discordance as
follows:

Pc − Pd =
m∑
i=1

n∑
j=1

pij
∑
k 6=i

∑
l 6=j

sign(k − i)(l − j)qkl

 (3.2)

The adjusted rank correlation coefficient of two discrete variables is given by the following theorem:

Theorem 3.1. Consider a population distributed according to two variates X and Y. Two members
(X1, Y1) and (X2, Y2) of the population are distributed as in Table 1. Let Pc − Pd be given by formula
(3.2). Then the population version of Spearman’s rank correlation coefficient of X and Y is:

r̄ =
Pc − Pd√√√√√

∑
j>i

pi+pj+ −
∑
k>j>i

pi+pj+pk+

 ·
∑
j>i

p+ip+j −
∑
k>j>i

p+ip+jp+k


As we already mentioned, the discrete distributions which interest us are the ones that can be obtained
as monotone transforms of uniform variables. These distributions can be constructed by only specifying
the marginal distributions and a copula. Each term pij from Table 1 (left) can be written in terms of the
chosen copula, as follows3:

pij = C

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
+ C

(
i−1∑
k=1

pk+,

j−1∑
l=1

p+l

)
− C

(
i−1∑
k=1

pk+,

j∑
l=1

p+l

)
− C

(
i∑

k=1

pk+,

j−1∑
l=1

p+l

)
(3.3)

Each copula can be parameterised by its rank correlation r, so we will use the notation Cr instead of C.
The main result for our approach is given by the following theorem, namely the relationship between

the rank correlation of the discrete variables and the rank correlation of the uniform variates.

2In Section 2 we used the letter n for the number of variables in a BBN. We now use the same letter, in a
different context, without any connection with the previous use.

3It is worth mentioning that by using this construction we do not obtain all possible joint distributions, given
the margins.



Theorem 3.2. Let Cr be a copula and (X,Y) a random vector distributed as in Table1(left), where each
pij is given by formula (3.3) . Then the rank correlation of X and Y is denoted r̄C and it has the same
expression as r̄, where:

Pc − Pd =
m−1∑
i=1

n−1∑
j=1

(
pi+ + p(i+1)+

) (
p+j + p+(j+1)

)
Cr

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
−
m−1∑
i=1

n−1∑
j=1

pi+p+j (3.4)

Moreover, if Cr is a positively ordered copula (Nelsen 1999), then r̄C is an increasing function of the
rank correlation of the underlying uniforms.

Note that any copula can be used in expression 3.4 from Theorem 3.2. If the independent copula is used,
the equation simplifies to zero, as expected.

In contrast with the continuous case, the adjusted coefficient for the discrete variables is a function
of not only the copula, but also the marginal distributions.

Examples. We will further investigate the relationship between r̄C and the dependence parameter, r,
of the copula. We choose different copulae (with more emphasis on the normal copula) and different
marginal distributions for 2 discrete random variables X and Y .

If we consider 2 ordinal responses X and Y , both uniformly distributed across a small number of
states, r̄C and r tend to be very similar, for any choice of a positive ordered copula. Moreover r̄C covers
the whole range of r. Increasing the number of states for X and Y , makes r̄C approximately equal4 to r.

When marginal distributions are not uniform, the relationship changes. Figure 2 presents the relation-
ship between r and r̄C , for 2 discrete variables X and Y , with 3 states each. Their marginal distributions
are the same, namely5: p1+ = p+1 = 0.01; p2+ = p+2 = 0.98 and p3+ = p+3 = 0.01. We use Frank’s copula
to obtain Figure 2a, and the normal copula in Figure 2b.
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(a) p1+ = p+1 = p3+ = p+3 = 0.01, p2+ = p+2 =
0.98. The joint distribution is constructed using
Frank’s copula.
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(b) p1+ = p+1 = p3+ = p+3 = 0.01, p2+ = p+2 =
0.98. The joint distribution is constructed using
the Normal copula.

Figure 2: The relationship between the parameter r, of a chosen copula, and the adjusted rank correlation
r̄C , for discrete random variables with equal and symmetric marginal distributions.

As both Frank’s copula and the normal copula are positively ordered, r̄C is an increasing function of r.
Since the marginal distributions are symmetric, the range of rank correlations realised for the discrete

410 states for each variable will suffice to obtain differences of order 10−3, between r̄C and r.
5We use the same notation as in Table 1 to describe the marginal distributions of X and Y .



variables is the entire interval [−1, 1]. Notice that the relationship is very nonlinear. This strong nonlin-
earity is caused by the choice of p2+ = p+2 = 0.98.

If we now consider variables with identical, but not symmetric marginal distributions, the relationship
is not symmetric around 0 anymore. In this case the whole range of positive dependence can be attained,
but the range of negative association is bounded below, as shown in Figure 3a.

We will further consider marginal distributions that are not identical, but ”complementary”, in the
sense that: p1+ = p+3; p2+ = p+2 and p3+ = p+1. Then the entire range of negative association is possible,
but the range of positive association is bounded above, as shown in Figure 3b.
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(a) p1+ = p+1 = p2+ = p+2 = 0.01, p3+ = p+3 =
0.98.
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(b) p2+ = p3+ = p+1 = p+2 = 0.01, p1+ = p+3 =
0.98.

Figure 3: The relationship between the parameter r, of the Normal copula, and the adjusted rank corre-
lation r̄C , for discrete random variables with equal (a), and ”complementary” (b) marginal distributions.

Further, if variables X and Y have 3 states, such that p1+ = 0.01, p2+ = 0.98, p3+ = 0.01 (for X) and
p+1 = 0.19, p+2 = 0.01, p+3 = 0.80 (for Y ), we can observe (see Figure 4a) that both positive and negative
dependencies are bounded.
One can also calculate bounds for r̄C , by using the Frechet bounds for Cr in expression 3.4. These bounds
are shown in Figure 4a. Since we know the bounds, we can normalise the rank coefficient r̄C , such that
it covers the entire interval [−1, 1]. The result of this normalisation is displayed in Figure 4b.

These results provide a better understanding of the techniques involved in modelling dependence
between discrete random variables, using copula functions.

4 Illustrations

We will further illustrate the concepts and methods described until now, with an example. This example
is loosely based on a project undertaken by the European Union. The name of the project is Beneris
(which stands for Benefit and Risk) and it focuses on the analysis of health benefits and risks associated
with food consumption6. The model introduced here is a highly simplified version of the BBN model
used in the project (Jesionek and Cooke 2007). The goal is to estimate the beneficial and harmful
health effects in a specified population, as a result of exposure to various contaminants and nutrients
through ingestion of fish. Figure 5a resembles the version of the model that we are considering for purely
illustrative purposes.
The variables of interest for this model are the health endpoints resulting from exposure to fish con-
stituents, namely cancer and cardiovascular risk. These risks are defined in terms of remaining lifetime

6http://www.beneris.eu/
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(a) The relation between r and r̄C , for X and Y ,
with not uniform, not equal, not ”complemen-
tary” marginal distributions.
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(b) The relation between r and the normalised
r̄C , for X and Y , with not uniform, not equal,
not ”complementary” marginal distributions.

Figure 4: The relation between the parameter r, of the Normal copula, and r̄C (a); the relation between
r of the Normal copula, and the normalised adjusted rank correlation r̄C (b).

(a) Simplified fish consumption BBN. (b) Simplified fish consumption BBN with
histograms.

Figure 5: Simplified Bayesian Belief Net for fish consumption risks.

risks.
The 3 fish constituents that are considered are: dioxins/furans, polychlorinated biphenyls, and fish

oil. The first two are persistent and bio-accumulative toxins which cause cancer in humans. Fish are
a significant source of exposure to these chemicals. Fish oil is derived from the tissues of oily fish and
has high levels of omega-3 fatty acids which regulate cholesterol and reduce inflammation throughout the
human body.

Moreover, personal factors such as smoking, socioeconomic status and age may influence cancer and
cardiovascular risk. Smoking is measured as yearly intake of nicotine during smoking and passive smok-
ing, while the socioeconomic status is measured by income, which is represented by a discrete variable
with 4 income classes. The age is taken, in this simplified model, as a discrete variable with 2 states, 15
to 34 years, and 35 to 59 (we are considering only a segment of the whole population).

The distributions of the variables that form the BBN are presented in Figure 5b. They are chosen
by the authors for illustrative purposes only. As we already mentioned there are 2 discrete (age and
socioeconomic status), and 6 continuous random variables. Some indication of the relationships between



variables is given in their description above. For example, the personal factors: smoking and age will
be positively correlated with both risks, whereas the socioeconomic status will be negatively correlated
with cancer and cardiovascular risk. The (conditional) rank correlations assigned to the arcs of the BBN
must be gathered from existing data or expert judgement (Morales et al. 2007). In this example, the
numbers are, again, chosen by the authors. Figure 6a presents the same BBN, only now (conditional)
rank correlations are assigned to each arc, except one.

(a) Simplified fish consumption BBN with
(conditional) rank correlations.
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(b) The relation between the parameter r,
of the Normal copula, and r̄C .

Figure 6: Simplified Bayesian Belief Net for fish consumption risks; (conditional) rank correlations are
assigned to the arcs of the BBN.

The arc between the 2 discrete variables ”age” and ”soci econ status” is not assigned any rank correlation
coefficient. Let us assume that the correlation between them can be calculated from data, and its value
is 0.63. As we stressed in the previous sections, the dependence structure in the BBN must be defined
with respect to the underlying uniform variables. Hence, we first have to calculate the rank correlation of
the underlying uniforms, r, which corresponds to r̄C = 0.63. In doing so, we use the normal copula. The
relationship between r and r̄C is shown in Figure 6b. Therefore, one must assign the rank correlation
0.9 to the arc of the BBN, in order to realise a correlation of 0.63 between the discrete variables. To
double check this, we can sample the structure, using the protocol described in Section 2, and calculate
the sample rank correlation matrix (see Table2).

Table 2: The sample rank correlation matrix.

dioxins pcb fish smoking socioecon. age cancer cardiovasc.
furans oils status risk risk

dioxins/furans 1 -0.0002 -0.0021 0.0012 0.0013 0.0012 0.322 0.0014
pcb -0.0002 1 0.0033 0.0008 -0.0015 -0.0011 0.2718 -0.001

fish oils -0.0021 0.0033 1 0.0015 -0.0007 -0.0022 -0.0006 -0.1654
smoking 0.0012 0.0008 0.0015 1 0.0018 0.0005 0.2953 0.501

socioecon. status 0.0013 -0.0015 -0.0007 0.0018 1 0.6376 -0.124 -0.2684
age 0.0012 -0.0011 -0.0022 0.0005 0.6376 1 0.1348 -0.0554

cancer risk 0.322 0.2718 -0.0006 0.2953 -0.124 0.1348 1 0.5391
cardiovasc. risk 0.0014 -0.001 -0.1654 0.501 -0.2684 -0.0554 0.5391 1

Similarly, we can choose the required correlations between a uniform variable underlying a discrete, and
other continuous variables (e.g. the uniform underlying ”age”, and ”cardiaovasc risk”). The theory
for this is in development, but not yet rigourously proven. For this example, we simply discretised the
continuous variable in a large number of states, and proceed as for 2 discrete random variables.



Figures 5 and 6a are obtained with a software application, called Unicorn7. Unicorn allows for quan-
tification of mixed non-parametric continuous and discrete BBNs (Kurowicka and Cooke 2006; Ababei
et al. 2007). Once the BBN is specified, via the marginal distributions and the (conditional) rank cor-
relations, the structure can be sampled. Moreover, evidence can be propagated through the graph, via
analytical conditioning (Hanea et al. 2006). One or more of the variables can be set to a point value
within their range, and the BBN can then be updated.

Let us return to the fish consumption example. We will further examine the situation in which there
is a very high risk of cancer. We will conditionalise on the 0.9 value of cancer risk. Figure 7 presents how
this information affects the other variables in the graph.

Figure 7: Conditionalised BBN for cancer risk = 0.9.

The grey distributions in the background are the unconditional marginal distributions, provided for
comparison. The conditional means and standard deviations are displayed under the histograms. Figure
7 summarises the combination of factors that increases the risk of cancer to 0.9. From the shift of the
distributions, one can notice that if a person is neither very young, nor very wealthy, smokes a lot, and
ingests more dioxins/furans, and polychlorinated biphenyls, is more likely get cancer. Because some of
this factors influence also the cardiovascular risk, the shift in their distributions causes an increase in
the cardiovascular risk as well.

5 Conclusions

We have shown how mixed non-parametric continuous and discrete BBNs can be modelled with the
copula-vine approach. We have extended the theory for continuous BBNs to include discrete random
variables that can be written as monotone transforms of uniform variables. In this approach, the de-
pendence structure must be defined - via (conditional) rank correlations - with respect to the uniform
variates. We have described the relationship between the rank correlation of two discrete variables (r̄C)
and the rank correlation of their underlying uniforms (r).

Once r̄C for 2 discrete variables is obtained, we use this relationship to calculate the rank correlation
of their respective underlying uniforms. A value for r̄C can be either obtained from data, or form experts.
The technique for eliciting (conditional) rank correlations for discrete variables is still an open issue.

A mixed non-parametric continuous and discrete BBN will contain arcs that connect discrete nodes
with continuous nodes. Hence, correlations between uniforms underlying the discrete variables, and other
continuous variables, will be also required. A rigourous proof for the theoretical results in this direction
is under development.

7A light version of Unicorn is available at http://dutiosc.twi.tudelft.nl/ risk/index.php.
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