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Abstract. This paper introduces mixed non-parametric continuous discrete

Bayesian Belief Nets (BBNs) using the copula-vine modgllapproach. We ex-
tend the theory for non-parametric continuous BBNs to idelwrdinal discrete
random variables; that is variables which can be written esatone transforms
of uniforms. The dependence structure among the variablgs/€n in terms of
(conditional) rank correlations. We use an adjusted ramketation coefficient for

discrete variables, and we emphasise the relationshipeleeatthe rank correlation
of two discrete variables and the rank correlation of theiterlying uniforms. The
approach presented in this paper is illustrated by means example.
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Introduction

Applications in various domains often lead to high dimenaladependence modelling.
Decision makers and problem owners are becoming incrdgssoghisticated in rea-
soning with uncertainty. This motivates the developmeiggaaferic tools, which can deal
with two problems that occur throughout applied mathensadicd engineering: uncer-
tainty and complexity.

Graphical models provide a general methodology for appriogcthese problems.
A bayesian belief net is one of the probabilistic graphicaldels, which encodes the
probability density or mass function of a set of variablespgcifying a number of con-
ditional independence statements in a form of an acyclextid graph and a set of prob-
ability functions. The visual representation can be vemfuisin clarifying previously
opaque assumptions about the dependencies betweenmdiffar@bles. Our focus is on
mixed non-parametric continuous and discrete BBNs.

In a non-parametric continuous BBN, nodes are associatddasbitrary continu-
ous invertible distribution functions and arcs with (cdratial) rank correlations, which
are realised by a copula with the zero independence profgrtfhe (conditional) rank
correlations assigned to the edges are algebraically erdignt, and there are tested pro-
tocols for their use in structured expert judgement [2]. Weerthat quantifying BBNs
in this way also requires assessing all (continuous, ifejtone dimensional marginal
distributions. On the other hand, the dependence strugtureeaningful for any such
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guantification, and need not be revised if the univariateidigions are changed.

We extend this approach to include ordinal discrete randanalles which can be
written as monotone transforms of uniform variates, peshaking finitely many values.
The dependence structure, however, must be defined witkeegpthe uniforms. The
rank correlation of two discrete variables and the rankeadation of their underlying
uniforms are not equal. Therefore one needs to study thears$hip between these two
rank correlations.

The paper is organised as follows: Section 1 introducesetedld of non-parametric
continuous BBNSs using the normal copula vine modelling apph presented in [3]. In
order to extend this approach to include ordinal discreteloan variables, an adjusted
rank correlation coefficient for such variables is definestt®n 2 presents a correction
for the population version of Spearman’s rank correlatioefficientr for discrete ran-
dom variables, and describes the relationship betweerattie gorrelation of two dis-
crete variables and the rank correlation of their undedyiniforms [4]. For a better
understanding of the methodology described here, an apiolicmodel is presented in
Section 3. Finally, Section 4 presents conclusions andmetendations for future work.

1. Non-Parametric Continuous BBNs

A continuous non-parametric BBN is a directed acyclic graplyether with a set of
(conditional) rank correlations and a set of marginal distions. Nodes are associated
with arbitrary continuous invertible distribution funatis and arcs with constant (condi-
tional) rank correlations that are realised by a copula feictv (conditional) correlation
0 entails (conditional) independerfdd]. For each variable with parentsiy...i, ), We
associate the afi,;)_;, — 7 with the conditional rank correlation:

{T(ivip(i))v k=0

7 (%, (i) —klip(i)s o Tp(i)—ht1)s L <k < p(i) — 1.

The assignment is vacuous(if; ...i,;) } = 0 (see Figure 1).
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Figure 1. Node i of a BBN and the set of parent nodes for i.

Therefore, every arc in the BBN is assigned a (conditioraaikicorrelation between par-
ent and child. These assignments are algebraically indieerMoreover they uniquely
determine the joint distribution. The proof of this fact isdable in [5] and it is based
on the close relationship between non-parametric BBNs aothar graphical model,

2Such copulae are said to have #exo independence property



namely vines [6,7].

A way of stipulating a joint distribution is by sampling itehce we use a sam-
pling protocol based on vines to specify and analyse the BfI¢t&ire. As we already
mentioned, the (conditional) rank correlations assigioetthé¢ arcs of a BBN can be re-
alised by a copula with the zero independence property. ttinfately, for sampling a
large BBN structure with a general copula, extra calcuteticmay be required. These
calculations consist of numerical evaluations of multipliegrals, which are very time
consuming. This disadvantage vanishes when using the haopala [3]. Hence we
will present the sampling algorithm for non-parametrictommous BBNs with the nor-
mal copula. Let us start with a BBN om variablesX1, ... X,,, with continuous, in-
vertible distribution function$, . . ., F;,. We transformX+, . .. X, to the standard nor-
mal variables7, . ..Y,, via the transformatio®; = ®~1(F;(X;)), (Vi)(i = 1,...,n),
whered is the cumulative distribution function of the standardmatdistribution. Since
®~1(F;(X;)) are strictly increasing transformations, the same (cantif) rank cor-
relations correspond to the pairs of transformed variables. . Y;,. Further, since all
conditional distributions are normal we can use Pearscarsformation [8] to calculate
pijip = 2sin(§ - i 5p), Wherer; ; p is the conditional rank correlation betwegh
and one of its parentd;;, given a subset of parents, denotedBy(see Figure 1). For
normal variables, conditional and partial correlatiorseqgual.

The relationship between vines and continuous non-paranB®Ns ensures that there
is a unique joint normal distribution fdf , . . . Y,, satisfying the partial correlation spec-
ifications. Moreover there is a unique corespondent cdioglamatrix R [7]. One can
calculate the correlation matrik, using the recursive formula for partial correlations

(9]

p12:3 _ P1234,...n — P13i4,...,n " P23:4,...,n 1)
[ PRRTRY (2 1

((1 - p%3;4 ..... n) ! (1 - p33;4,...,n))2
We can now sample the joint normal distribution ®f,...,Y,, with correlation

matrix R [10] and for each samplé(y]), (¥3),....(¥%)), i = 1,..,N, calculate:
(Fr N @), Fs H(@(3))s -, By H(D(yh)))

In this way we realise the joint distribution of the initishwablesXy, ... X, to-
gether with the specified dependence structure.

We intend to use the same protocol in the case of mixed noempetric continuous
and discrete BBNs. Hence, we will further consider BBNs vehnedes represent both
discrete and continuous variables. We are interested anedes ordinal variables which
can be written as monotone transforms of uniform varialiiess should be understood
as follows: letX be a discrete variable withh possible values, ..., x,, each with
probabilitypy, ..., p,,, respectively. We call/x the underlying uniform for the discrete

k

k

variable X, if P(Ux < Y p;) = > _pj;, k = 1,...,m. The dependence structure in
j=1 j=1

the BBN must be defined with respect to the underlying unifeariables. The rank

correlation of 2 discrete variables and the rank corretatibtheir underlying uniforms

are not equal, hence one needs to establish the relatidnstvigen them.



2. Spearman’sRank Correlation for Ordinal Discrete Random Variables

Before defining the rank correlation of 2 discrete variabheswill first recall the defini-
tion of the population version of Spearman’s rank corretatioefficient, in terms of the
probabilities of concordance and discordance (e.g., [11])

Consider a population distributed according to 2 variatesn® Y. Two members
(X1,Y1) and(X,, Y,) of the population will be calledoncordanif:

X1 < Xg,Yl <YsorX; > Xg,Yl > Y5,
They will be calleddiscordantif:
X1 < Xg,Yl >YsorX; > Xg,Yl <Ys.

The probabilities of concordance and discordance are ddmnwith P., and P; respec-
tively. The population version of Spearman’ss defined as proportional to the differ-
ence between the probability of concordance, and the piiityals discordance for two
vectors(X1, Y1) and(Xs, Y3), where( X7, Y1) has distributionF’yy with marginal dis-
tribution functionsF'y and Fy and X, Y; are independent with distributiorfsy and
Fy; moreover( X1, Y:) and(X», Ys) are independent (e.g., [12]):

r=3-(P[(X1 — X3)(Y1 — Y2) > 0] - P[(X1 — X2)(Y1 = Y2) <0]). (2

The above definition is valid only for populations for whitietprobabilities ofX; = Xo
andY; = Y, are zero. The main types of such populations are an infinitailption
with both X and Y distributed continuously, or a finite popida where X and Y have
disjoint ranges [13].

In order to formulate the population version of Spearmaaiskrcorrelation co-
efficientr, for discrete random variables, one needs to correct fopthbabilities of
X; = Xy andY; = Ys. This correction is derived in [4]. In this section we presie
main results.

Let us consider the discrete random vectoXs, Y1), (X2, Y3), whereX, andY>
are independent with the same marginal distribution¥asndY;, respectively; more-
over(X1,Y7) and(X,, Y2) are independent. The statesXf are ranked from 1 ten;
the states o¥; are ranked from 1 ta.2 The joint probabilities of X, Y1) and (X5, Y3)
are given in terms of;; andg;;, i = 1,..,m;j = 1, .., n, respectively.
wherep;., i = 1, ..., m represent the margins &f; and X5; and the margins of; and
Y, are denotegh,;, j = 1...n. One can rewrite eacty; asq;; = pspsj, forall i =
1,...,m,andj = 1,....,n. Using this terminology we calculate the difference betwee
the probabilities of concordance and discordance as fstlow

Po=Py=Y % |y | > Y signlk—i)(l—j)au 3)

i=1j=1 ki 1]

3In Section 1 we used the letterfor the number of variables in a BBN. We now use the same Jéiter
different context, without any connection with the prexsaise.



Table 1. Joint distribution of( X1, Y1) (left); Joint distribution of( X2, Y2) (right)

Xl\Yl 1 2 n X2\Y2 1 2 n
1 P11 piz2 ..  pin | p1+l q11 qi2 ... qin | D1+
2 P21 P22 ... Pan | p2+2 21 Q22 ... Q2n | D2+
m Pm1 Pm2 <o Pmn | PmiM dm1 qm?2 «v gmn | Pm+
p+1 p+2 DP+n p+1 p+2 D+n

The adjusted rank correlation coefficient of two discretealdes is given by the follow-
ing theorem:

Theorem 1. Consider a population distributed according to two varg@d€ and Y. Two
memberg X1, Y1) and(Xs, Y2) of the population are distributed as in Table 1. LF&t—
P, be given by formula (3). Then the population version of Spears rank correlation
coefficient ofX andY  is:

P.— Py

Zpi+pj+ - Z Di+DPj+Pk+ | - Zp+ip+j - Z D+iD+jP+k

§>i k>j>i J>i k>j>i

(4)

=
Il

As we already mentioned, the discrete distributions whithrest us are the ones that
can be obtained as monotone transforms of uniform variablesse distributions can
be constructed by only specifying the marginal distribogsi@and a copula. Each tegyy
from Table 1 (left) can be written in terms of the chosen capas follow$:

pm_c@pm,z@+c<kzlpk+,zp+l>— (;pk+,zp+l>— <;pk+,zp+l>s

Each copula can be parameterised by its rank correlatiso we will use the notation
C, instead ofC.

The main result for our approach is given by the followingaitean, namely the re-
lationship between the rank correlation of the discretébdes and the rank correlation
of the uniform variates.

Theorem 2. LetC, be a copulaand (X,Y) arandom vector distributed as in Ta(tdt),
where eaclp;; is given by formula (5) . Then the rank correlationfandY is denoted
7¢ and it has the same expressioniasvhere:

m—1n—1

m—1n—1
= (pie + Piis1)r) (P + Poin)) (ZpkthH) = pip(p)
=1 j=1 k=1

i=1 j=1

4t is worth mentioning that by using this construction we @b abtain all possible joint distributions, given
the margins.



Moreover, ifC, is a positively ordered copula [11], thef is an increasing function of
the rank correlation of the underlying uniforms.

Note that any copula can be used in expression 6 from Theoréfitiz independent
copulais used, the equation simplifies to zero, as expected.

In contrast with the continuous case, the adjusted coeitiéa the discrete vari-
ables is a function of not only the copula, but also the maigiistributions.

Examples. We will further investigate the relationship betwegnand the dependence
parameter,r, of the copula. We choose different copulae (with more esiptan the
normal copula) and different marginal distributions fdiscrete random variableX
andY'.

If we consider2 ordinal responseX andY’, both uniformly distributed across a
small number of stateg andr tend to be very similar, for any choice of a positive
ordered copula. Moreovet- covers the whole range of Increasing the number of
states forX andY, makes - approximately equalto r.

When marginal distributions are not uniform, the relatlapschanges. Figure 2
presents the relationship betweemand 7, for 2 discrete variableX andY’, with 3
states each. Their marginal distributions are the samegely@np,. = p.; = 0.01;

P2+ = ps2 = 0.98 andps:. = p.3 = 0.01. We use Frank’s copula to obtain Figure 2a, and
the normal copula in Figure 2b.
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(@) p1+ = p+1 = p3+ = p+3 = 0.0, p2+ = (D) p1+ = p+1 = p3+ = p+3 = 0.01,p2+ =
p+2 = 0.98. The joint distribution is con- p+2 = 0.98. The joint distribution is con-
structed using Frank’s copula. structed using the Normal copula.

Figure 2. The relationship between the parameteof a chosen copula, and the adjusted rank correlation
for discrete random variables with equal and symmetric matglistributions.

As both Frank’s copula and the normal copula are positivetered, ¢ is an increas-
ing function ofr. Since the marginal distributions are symmetric, the ranfyeank
correlations realised for the discrete variables is th@eirterval[—1, 1]. Notice that
the relationship is very nonlinear. This strong nonlingais caused by the choice of
D2+ = p2 = 0.98.

510 states for each variable will suffice to obtain differenogorderl0—3, betweens- andr-.
6We use the same notation as in Table 1 to describe the madisabutions ofX andY .



If we now consider variables with identical, but not symrigetnarginal distribu-
tions, the relationship is not symmetric arounhdnymore. In this case the whole range
of positive dependence can be attained, but the range ofimegasociation is bounded
below, as shown in Figure 3a.

We will further consider marginal distributions that are identical, but "comple-
mentary”, in the sense thati, = p.s; p2« = p.2 andps. = p.1. Then the entire range of
negative association is possible, but the range of posiigeciation is bounded above,
as shown in Figure 3b.

1 08 -06 -04 -02 o 0z 04 06 08 1 Y05 o5 04 -0z é 0z o4 o8 08 1
(@) p1+ = p+1 = p2+ = p+2 = 0.0, p3+ = (b) p2+ = p3+ = p+1 = p+2 = 0.01, p1+ =
p+3 = 0.98. p+3 = 0.98.

Figure 3. The relationship between the parameteof the Normal copula, and the adjusted rank correlation
7¢, for discrete random variables with equal (a), and "completary” (b) marginal distributions.

Further, if variablesy andY have 3 states, such that. = 0.01, po. = 0.98, p3. = 0.01
(for X) andp.; = 0.19, p.2 = 0.01, p,3 = 0.80 (for '), we can observe (see Figure 4a)
that both positive and negative dependencies are bounded.
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(a) The relation between and7¢, for X and (b) The relation between and the normalised
Y, with not uniform, not equal, not "comple- 7, for X andY’, with not uniform, not equal,
mentary" marginal distributions. not "complementary" marginal distributions.

Figure 4. The relation between the parametenf the Normal copula, and- (a); the relation between of

the Normal copula, and the normalised adjusted rank ctioelac (b).

One can also calculate bounds fer, by using the Frechet bounds f6%. in expression
6. These bounds are shown in Figure 4a. Since we know the bpwedcan normalise



the rank coefficient¢, such that it covers the entire interall, 1]. The result of this
normalisation is displayed in Figure 4b.

These results provide a better understanding of the teabsigvolved in modelling
dependence between discrete random variables, usingaciymdtions.

3. lllustrations

We will further illustrate the concepts and methods desttilntil now, with an example.
This example is loosely based on a project undertaken bydhgdgan Union. The name
of the projectis Beneris (which stands for Benefit and Risk) iafocuses on the analysis
of health benefits and risks associated with food consumftithe model introduced
here is a highly simplified version of the BBN model used inpheject [14]. The goal
is to estimate the beneficial and harmful health effects ipeci§ied population, as a
result of exposure to various contaminants and nutrientsitih ingestion of fish. Figure
5a resembles the version of the model that we are considéingurely illustrative
purposes.
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(a) Simplified fish consumption BBN.  (b) Simplified fish consumption BBN with
histograms.

Figure 5. Simplified Bayesian Belief Net for fish consumption risks.

The variables of interest for this model are the health eimdpoesulting from exposure
to fish constituents, namely cancer and cardiovascular Tiskse risks are defined in
terms of remaining lifetime risks.

The 3 fish constituents that are considered are: dioxins/furpoljchlorinated
biphenyls, and fish oil. The first two are persistent and loicuanulative toxins which
cause cancer in humans. Fish are a significant source of @etis these chemicals.
Fish oil is derived from the tissues of oily fish and has higiele of omega-3 fatty acids
which regulate cholesterol and reduce inflammation througthe human body.

Moreover, personal factors such as smoking, socioeconstaties and age may in-
fluence cancer and cardiovascular risk. Smoking is meassrgdarly intake of nicotine
during smoking and passive smoking, while the socioecoaataitus is measured by
income, which is represented by a discrete variable withcérime classes. The age is
taken, in this simplified model, as a discrete variable wigita2es, 15 to 34 years, and 35
to 59 (we are considering only a segment of the whole pomuiati

The distributions of the variables that form the BBN are préed in Figure 5b.

"hitp://www.beneris.eu/



They are chosen by the authors for illustrative purposeg & we already mentioned
there are discrete (age and socioeconomic status),@odntinuous random variables.
Some indication of the relationships between variablewegn their description above.
For example, the personal factors: smoking and age will ksitipely correlated with
both risks, whereas the socioeconomic status will be negjgtcorrelated with cancer
and cardiovascular risk. The (conditional) rank correlasi assigned to the arcs of the
BBN must be gathered from existing data or expert judgen®@ntij this example, the
numbers are, again, chosen by the authors. Figure 6a psdhergame BBN, only now
(conditional) rank correlations are assigned to each aoe one.
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(a) Simplified fish consumption BBN with (b) The relation between the parameter
(conditional) rank correlations. of the Normal copula, andlc.

Figure 6. Simplified Bayesian Belief Net for fish consumption risksyr{ditional) rank correlations are as-
signed to the arcs of the BBN.

The arc between the discrete variable$age" and"soci_econ_status’s not assigned
any rank correlation coefficient. Let us assume that theetation between them can
be calculated from data, and its valueDi§3. As we stressed in the previous sections,
the dependence structure in the BBN must be defined with ce$pehe underlying
uniform variables. Hence, we first have to calculate the camkelation of the underlying
uniforms,r, which corresponds toc = 0.63. In doing so, we use the normal copula.
The relationship betweenand7 is shown in Figure 6b. Therefore, one must assign
the rank correlatiod.9 to the arc of the BBN, in order to realise a correlatior0df3
between the discrete variables. To double check this, wesaaple the structure, using
the protocol described in Section 1, and calculate the sarapk correlation matrix (see
Table2).

Similarly, we can choose the required correlations betveagriform variable underlying

a discrete, and other continuous variables (e.g. the umitorderlying'age", and"car-
diaovasc_risk). The theory for this is in development, but not yet rigowsigyproven.
For this example, we simply discretised the continuousaldei in a large number of
states, and proceed as for 2 discrete random variables.

Figures 5 and 6a are obtained with a software applicatidiectinicorr®. Unicorn
allows for quantification of mixed non-parametric contine@nd discrete BBNs [5,15].
Once the BBN is specified, via the marginal distributions @ired(conditional) rank cor-
relations, the structure can be sampled. Moreover, evaean be propagated through
the graph, via analytical conditioning [3]. One or more o thariables can be set to a

8A light version of Unicorn is available at http://dutioseittudelft.nl/ risk/index.php.



Table 2. The sample rank correlation matrix.

dioxins pcb fish smoking  socioecon. age cancer  cardiovasc.
furans oils status risk risk
dioxins/furans 1 -0.0002 -0.0021 0.0012 0.0013 0.0012 0.322 0.0014
pcbh -0.0002 1 0.0033 0.0008 -0.0015 -0.0011  0.2718 -0.001
fish oils -0.0021  0.0033 1 0.0015 -0.0007 -0.0022 -0.0006 -0.1654
smoking 0.0012 0.0008 0.0015 1 0.0018 0.0005 0.2953 0.501
socioecon. statug 0.0013  -0.0015 -0.0007 0.0018 1 0.6376 -0.124 -0.2684
age 0.0012 -0.0011 -0.0022 0.0005 0.6376 1 0.1348 -0.0554
cancer risk 0.322 0.2718  -0.0006 0.2953 -0.124 0.1348 1 0.5391
cardiovasc. risk | 0.0014 -0.001  -0.1654 0.501 -0.2684 -0.0554  0.5391 1

point value within their range, and the BBN can then be uptiate
Let us return to the fish consumption example. We will furtteamine the situa-
tion in which there is a very high risk of cancer. We will cotiainalise on the 0.9 value

of cancer risk. Figure 7 presents how this information affe¢lke other variables in the
graph.

dioxins_furans pcb fish_oils

0.46340.23 24144 86
017

b
cardiovasc risk

_w_0.866:0.118
s A

smoking |-~ [socio_econ_status ~] age

1.9440.53 2.13:0.747 1.78:0.417

Figure 7. Conditionalised BBN focancer_risk = 0.9

The grey distributions in the background are the unconutitionarginal distributions,
provided for comparison. The conditional means and stahdeviations are displayed
under the histograms. Figure 7 summarises the combinatifaciors that increases the
risk of cancer td).9. From the shift of the distributions, one can notice that jifeison
is neither very young, nor very wealthy, smokes a lot, aneé&tg more dioxins/furans,
and polychlorinated biphenyls, is more likely get cancexc&8i1se some of this factors

influence also the cardiovascular risk, the shift in thestributions causes an increase
in the cardiovascular risk as well.

4, Conclusions

We have shown how mixed non-parametric continuous andetes&BNs can be mod-
elled with the copula-vine approach. We have extended #aryfor continuous BBNs
to include discrete random variables that can be written@satone transforms of uni-



form variables. In this approach, the dependence structust be defined - via (con-
ditional) rank correlations - with respect to the uniformigates. We have described the
relationship between the rank correlation of two discretéables {¢) and the rank cor-
relation of their underlying uniforms.

Oncer¢ for 2 discrete variables is obtained, we use this relatignghcalculate
the rank correlation of their respective underlying unifist A value forr~ can be either
obtained from data, or form experts. The technique fortatigi(conditional) rank corre-
lations for discrete variables is still an open issue.

A mixed non-parametric continuous and discrete BBN willteémarcs that connect
discrete nodes with continuous nodes. Hence, correlalietvgeen uniforms underlying
the discrete variables, and other continuous variabldsbealso required. A rigourous
proof for the theoretical results in this direction is undevelopment.
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