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Bayesian belief nets (BBNs) have become a popular tool for specifying high-
dimensional probabilistic models. Commercial tools with an advanced graphical
user interface that support BBNs construction and inference are available. Thus,
building and working with BBNs is very efficient as long as one is not forced to
quantify complex BBNs. A high assessment burden of discrete BBNs is often caused
by the discretization of continuous variables. Until recently, continuous BBNs were
restricted to the joint normal distribution. We present the ‘copula—vine’ approach
to continuous BBNs. This approach is quite general and allows traceable and
defendable quantification methods, but it comes at a price: these BBNs must be
evaluated by Monte Carlo simulation. Updating such a BBN requires re-sampling
the whole structure. The advantages of fast updating algorithms for discrete BBNs
are decisive. A hybrid method advanced here samples the continuous BBN once,
and then discretizes this so as to enable fast updating. This combines the reduced
assessment burden and modelling flexibility of the continuous BBNs with the fast
updating algorithms of discrete BBNs. Sampling large complex structures only
once can still involve time consuming numerical calculations. Therefore a new
sampling protocol based on normal vines is developed. Normal vines are used to
realize the dependence structure specified via (conditional) rank correlations on the
continuous BBN. We will emphasize the advantages of this method by means of
examples. Copyright (© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION: DISCRETE, NORMAL AND NON-PARAMETRIC BBNS

Bayesian belief net (BBN) is a directed acyclic graph, together with an associated set of conditional
probability distributions. The nodes of the graph represent random variables, which can be discrete or
continuous, and the arcs represent causal relationships between variables. BBNs enable us to model
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high-dimensional uncertainty distributions. The visual representation can be very useful in clarifying previously
opaque assumptions about the dependencies between different variables.

1.1. Discrete BBNs

Discrete BBNs specify the marginal distributions for source nodes, and specify conditional probability tables
for child nodes. They suffer three serious disadvantages.

e Applications involving high complexity in data-sparse environments are severely limited by the excessive
assessment burden which leads to rapid, informal and indefensible quantification. Thus, if a child node has
seven parents, and each node is discretized to take three possible values, then the conditional probability
table for the child node contains 6561 entries, i.e. 6561 conditional probabilities must be acquired and
maintained. This assessment burden can only be reduced by a drastic discretization of the nodes, or
simplification of the model. In many cases continuous nodes would be more appropriate.

e The marginal distributions can often be retrieved from data, but not the full interactions between children
and parent nodes. These marginal distributions often represent the most important information driving the
model; dependence information is often less important. Thus the construction of conditional probability
tables should not molest any available data input. Rough discretization of course does exactly that.

e Discrete BBNs take marginal distributions only for source nodes, marginals for other nodes are computed
from the conditional probability tables. When these marginals are available from data, this imposes
difficult constraints on the conditional probabilities. Thus in quantification with expert judgment, it would
be impractical to configure the elicitation such that the experts would comply with the marginals.

Some of the drawbacks listed above are mentioned in Cowell et al.' and a typical example of how things can
go wrong in modelling complex problems with discrete BBNs is given by Edwards”.

1.2.  Normal and discrete-normal BBNs

Continuous BBNs developed for joint normal variables interpret ‘influence’ of the parents on a child as partial
regression coefficients when the child is regressed on the parents®*. For each normal variable, the unconditional
mean and (by assumption constant) conditional variance must be assessed. For each arc a conditional regression
coefficient must be assessed. This is the answer to a question of the following type: ‘Suppose that one parent
variable were moved up by One Normal Unit, by how many Normal Units would you expect the child to move?’

One can also construct a discrete-continuous model' in which continuous nodes can have discrete parents but
not discrete children* and the conditional distribution of the continuous variables given the discrete variables is
multivariate normal.

The price of the normal and discrete-normal BBNs is the restriction to the joint normal distribution, and, in
the absence of data, to experts who can estimate partial regression coefficients and conditional variances. If the
normality assumption does not hold, then:

e the individual variables must be transformed to normals (requiring of course the marginal distributions);

e the conditional variance in Normal Units must be constant;

e the partial regression coefficients apply to the normal units of the transformed variables, not to the original
units (this places a heavy burden on any expert elicitation);

e if a parent node is added or removed, after quantification, then the previously assessed partial regression
coefficients must be re-assessed (this reflects the fact that partial regression coefficients depend on the set
of regressors).

Hence, circumventing the restriction to joint normality is primarily of theoretical interest.

"L'Theoretically there is no need for such a restriction. However in applications, if this restriction is violated, some conditional marginals
become mixtures of normals and this extension is technically demanding1 .

Copyright © 2006 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:709-729
DOI: 10.1002/qre



HYBRID METHOD FOR QUANTIFYING AND ANALYZING BAYESIAN BELIEF NETS 711

1.3.  Non-parametric BBNs

In Kurowicka and Cooke’ the authors introduced an approach to continuous BBNs using vines®’ together
with copulae that represent (conditional) independence as zero (conditional) rank correlation. In the procedure
proposed here, nodes are associated with arbitrary continuous invertible distributions and arcs with (conditional)
rank correlations, which are realized by the chosen copula. No joint distribution is assumed, which makes the
BBN non-parametric. In order to quantify BBNs using this approach, one needs to specify all one-dimensional
marginal distributions and a number of (conditional) rank correlations equal to the number of arcs in the BBN.
A way of stipulating a joint distribution is by sampling it, hence we use a sampling algorithm, fully described
in Section 3, to specify and analyse the BBN structure.

The sampling procedure works with arbitrary conditional copulae. Thus it can happen that variables X, and
Y are positively correlated when variable Z takes low values, but are negatively correlated when Z is high.
This behaviour indicates that it would be appropriate to use non-constant conditional copulae (hence non-
constant conditional correlations), but the use of such copulae would significantly complicate the Monte Carlo
sampling and the assessment. We will therefore restrict our study to constant conditional rank correlations.
This is a prudent choice in a first implementation.

Conditional rank correlations are not elicited directly or estimated from data directly. Rather, given a copula,
these can be obtained from conditional exceedence probabilities. Thus suppose node A has parents B and C.
According to the protocol described in Section 3, we need the rank correlation rop and the conditional rank
correlation racig. We extract these from answers to the following two questions.

e ‘Suppose that B was observed to be above its median, what is the probability that A is also above its
median?’

e ‘Suppose that B and C were both observed to be above their medians, what is the probability that A is
also above its median?’

The conditional rank correlations, obtained in the way described above, can be realized using any copula that
represents (conditional) independence as zero (conditional) rank correlation. Given that the conditional copulae
are constant, there are great advantages to using the joint normal copulae (see Section 5).

Section 2 of this paper presents a number of definitions and preliminary results necessary in the development
of the methods introduced here. Section 3 introduces the details of non-parametric BBNs using the copula—vine
modelling approach. The protocol for assigning constant (conditional) rank correlations to the edges of a BBN
is presented. The main result from this section (Theorem 3.1) shows that these assignments, the choice of the
copula, and the marginals uniquely determine the joint distribution. Moreover, the (conditional) rank correlations
assigned to the edges of a BBN are algebraically independent. The dependence structure is meaningful for any
such quantification, and need not be revised if the univariate distributions are changed.

In case of complex structures, some conditional distributions have to be calculated. These calculations consist
of evaluating multiple integrals. For each sample (from the sample file), one needs to calculate the numerical
value of these multiple integrals and this can be very time consuming. In the case of a large number of variables,
one would have to be prepared to run the model for a few days. Moreover, updating such a BBN requires re-
sampling the whole structure every time new evidence becomes available. In these cases the advantages of fast
updating algorithms for discrete BBNs are decisive. This motivates the hybrid approach advanced in Section 4
of this paper, which consists of combining the reduced assessment burden and modelling flexibility of the
continuous BBNs with the fast updating algorithms of discrete BBNs. This is done using vine sampling together
with existing discrete BBNs software. Even though this procedure has some attractive features, remarkably in
the fact that the structure needs to be sampled just once, it also has disadvantages. We will present a small
example in which sampling just this one time becomes very complicated and time consuming under certain
conditions.

To overcome this problem, a new method for sampling the BBN is proposed in Section 5. The influences will
still be represented as (conditional) rank correlations and they will be realized by the joint normal copula. We use
the joint normal distribution to realize the dependence structure specified via (conditional) rank correlations on
the continuous BBN. We will transform the variables to standard normals and the (conditional) rank correlations
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to (conditional) product moment correlations via Pearson’s formula®. Using the properties of the multivariate
normal distribution, we now have a partial correlation vine specification that uniquely determines the correlation
matrix, as shown by Bedford and Cooke’. Furthermore, we can induce this product moment correlation structure
using well-known methods, and transform back to the original variables.

In doing so we circumvent the expensive numerical evaluations of multiple integrals that are necessary in
the copula—vine method. The normal copula—vine approach requires only calculating new partial correlations.
These calculations are not very time consuming, so the computational time is reduced considerably.

Section 6 of this paper describes a very important feature of the normal copula—vine method, namely that
conditioning can be performed analytically. Since all the calculations are performed on a joint normal vine,
any conditional distribution will also be a normal with known mean and variance. Finding the conditional
distribution of the corresponding original variable will just be a matter of transforming it back using the inverse
distribution function of this variable and the standard normal distribution function. Examples and comparisons
will be presented throughout the paper for a better understanding of the methods.

2. DEFINITIONS AND CONCEPTS

In this section we introduce notations and terminology needed to describe the approach proposed for non-
parametric BBNs using copula—vine modelling. All definitions presented here can be found in Kurowicka and
Cooke”. We will start by defining copulae and vines.

The copula of two continuous random variables X and Y is the joint distribution of Fx (X) and Fy(Y), where
Fx, Fy are the cumulative distribution functions of X, Y respectively. The copula of (X, Y) is a distribution
on [0, 1]* with uniform marginal distributions. A copula is said to have the zero independence property if zero
correlation entails the independent copula.

A graphical model called vines was introduced by Bedford and Cooke’. A vine on n variables is a nested set
of trees. The edges of the jth tree are the nodes of the (j + 1)th tree. V is called a regular vine on n elements if:

L V=T,...,Ty;

2. Ty is a tree with nodes Ny =1, ..., n and edges Ey, and fori =2, ...,n — 1, T; is a tree with nodes
Ni=E;1;

3. Fori=2,...,n—1,a,be E;, #a A b =2, where A denotes the symmetric difference.

We will distinguish two particular regular vines.

e A regular vine is called a D-vine if each node in 77 has the degree at most 2 (see Figure 1(a));
e A regular vine is called a C-vine if each tree 7; has a unique node of degree n — i. The node with maximal
degree in 77 is called the root (see Figure 1(b)).

In the next sections we will restrict our attention only to D-vines.

Each edge of a regular vine may be associated with a constant (conditional) rank correlation which can
be arbitrarily chosen in the interval [—1, 1] (see Figure 1). Using a copula to realize these (conditional) rank
correlations, a joint distribution satisfying the copula—vine specification can be constructed and it will always be
consistent. For rigorous definitions and proofs we refer to Kurowicka and Cooke’. Each vine branch may also be

associated with partial correlations. First, we will recall the definition of the partial correlation!C, If X Lo ooos X
are random variables, the partial correlation of X1 and X5 given X3, ..., X, is
P12:4,...n = P13;4,...n " P23:4,....n
P12:3,.n = 5 3 2.1
(A = pi34,.0) (1= '023;4,.‘.,n))1/2
Partial correlations can be computed from correlations using the above recursive formula.
Copyright © 2006 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:709-729
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Figure 1. (a) A D-vine on five variables and (b) a C-vine on four variables showing the (conditional) rank correlations
associated with the edges.

A complete partial correlation vine specification is a regular vine with a partial correlation specified for each
edge’. One can remark that in defining a complete partial correlation vine specification there is no reference to
a copula as, in general, the partial correlation is not a property of a copula. However, this is not the case for the
bivariate normal distribution, hence a complete normal partial correlation specification is a special case of a
regular vine specification. We note that for the joint normal variables the partial correlation is just equal to the
conditional product moment correlation. The following theorem shows how the notion of a regular vine can be
used to construct a joint normal distribution’.

Theorem 2.1. Given any complete partial correlation vine specification for standard normal random variables
X1, ..., Xy, there is a unique joint normal distribution for X, ..., X, satisfying all partial correlation
specifications.

Another important result from Bedford and Cooke’ is that each partial correlation vine specification uniquely
determines the correlation matrix, even without the assumption of joint normality.

Theorem 2.2. For any regular vine on n elements there is a one to one correspondence between the set of n X n
positive definite correlation matrices and the set of partial correlation specifications for the vine.

In the end of this section we will summarize some well-known facts about the multivariate normal
distribution:

e If (X, Y) has the bivariate normal distribution, a necessary and sufficient condition for X and Y to be
independent is that p(X, Y) =0.

e In the joint normal distribution’s case, one can find the relationship between product moment
correlation (p) and rank correlation (r) using Pearson’s transformation.

Proposition 2.1. (Pearson®) Let (X, Y) be a random vector with the joint normal distribution, then

p(X, Y) =2sin<% (X, Y))

§For the exact definition of a partial correlation vine specification we refer to Bedford and Cooke’ .

Copyright © 2006 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:709-729
DOI: 10.1002/qre



714 A. M. HANEA, D. KUROWICKA AND R. M. COOKE

e With respect to conditioning a multivariate normal, let X be a n-dimensional random vector with
multivariate normal distribution. Let the vector u be the expected value of X, and V be its covariance
matrix. For a fixed k < n consider the following partition of X, u and V:

Xq Ha Vaa  Vab
X = s = s V =
<Xb> H (Mb) <Vha th)
WhereXa:(X17"'9Xk)/$ sz(Xk+17'~~7Xﬂ)’&l‘ba:(l‘l/l?"'a,bl/k)/’/"l'bz(ljfk-’-l?"'7Mﬂ)/’ ‘/ll:
var(X;e(q,p)) and Vg, = cov(X,, Xp). The conditional variance of X;, given X, is denoted by varp|, (Xp).

Proposition 2.2. (Marginal and conditional density function'!) If the partitioned random vector follows the
distribution

\% V,
(Xa» Xh>~N[(ua, [4h), v=( aa ”)]
Voa Vi

then:

(1) the marginal distribution of X, is normal with mean v, and variance V,,;
(ii) the conditional distribution of (Xp|X4) is normal with the mean

Epja(Xp) = 116 + Bpja - (xa — ia),  Where Bpja = Vi Vg
and the variance

varpia(Xp) = Vibla = Vb — VoaVq Vab

3. CONTINUOUS BBNS AND VINES

Having put all definitions and concepts in place, let us now consider a non-parametric continuous BBN. As we
already said, in this case, the nodes represent continuous univariate random variables and the arcs are associated
with (conditional) parent—child rank correlations. We assume throughout that all univariate distributions have
been transformed to uniform distributions on (0, 1). The high-dimensional joint distribution is specified using
the copula—vine approach. Any copula with invertible conditional cumulative distribution function may be
used as long as the chosen copula represents (conditional) independence as zero (conditional) correlation.
The conditional rank correlations assigned to the arcs of the BBN are algebraically independent, and there
are tested protocols for their use in structured expert judgement (these protocols are presented by Kurowicka
and Cooke” (ch. 2)). We note that quantifying BBNs in this way requires assessing all (continuous, invertible)
one dimensional marginal distributions. One can assign (conditional) rank correlations to the arcs of a BBN
according to the protocol presented by Kurowicka and Cooke’. The conditional rank correlations need not be
constant, although they are taken to be constant in the following examples. In contrast, in Section 5, where we
introduce normal vines, the conditional rank correlations must be constant. We will illustrate the protocol for
assigning (conditional) rank correlations to the arcs of a BBN with an example.

Example 3.1. Let us consider the undirected cycle on four variables from Figure 2. There are two sampling
orders for this structure: 1, 2, 3,4, or 1, 3,2, 4. Let us choose 1, 2, 3, 4. The factorization of the joint distribution
is

P P2 PA3I21) P (4]32D) (3.1)

The underscored nodes are those which are not necessary in sampling the conditioned variable. Hence, the
(conditional) rank correlations that need to be assigned to the edges of this BBN arel {ra1, 731, ra2, r432}.

10ne could as well specify {ra1, 731, 743, 4|3} instead.

Copyright © 2006 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:709-729
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Figure 2. BBN with four nodes and four arcs

] I f42
2 —1 3 1 2 4 2 3 1
0 l43p
0
Figure 3. D2, D3, D4 for Example 3.1
Foreachtermi (i =1, ..., 4) of the factorization (3.1), a D-vine on i variables is built. This D-vine is denoted

by D' and it contains the variable i, the non-underscored variables, and the underscored variables, in this order.
Figure 3 shows the D-vines built for variables 2, 3, 4.

Building the D-vines is not a necessary step in specifying the rank correlations!, but it is essential in proving
the main result for continuous BBNs. In order to formulate this result, we need a more general setting. For a
BBN on n variables the factorization of the joint distribution in the standard way (following the sampling order
1,...,n)is

P,....,n)=P(HPQ2IHPABI2,1)...Pnln—1,..., 1) (3.2)

In this factorization, we will underscore the nodes from each conditioning set, which are not parents of the
conditioned variable. For each term i with parents (non-underscored variables) i; . .. i,(;) in Equation (3.2),
we associate the arc i ,(;)—x — i with the conditional rank correlation:

T . S (33)
r(i, Lpiy—klipGys - 5 Ipay—k+1), 1<k =<p()—1
The assignment is vacuousiif {i1 . . .i,(;)} = ¥. Assigning (conditional) rank correlationsfori =1, ..., n, every

arc in the BBN is assigned a (conditional) rank correlation between parent and child.

The following theorem shows that these assignments uniquely determine the joint distribution and are
algebraically independent.

Theorem 3.1. Given the following conditions, the joint distribution of the n variables is uniquely determined:

a directed acyclic graph (DAG) with n nodes specifying conditional independence relationships in a BBN;
n variables, assigned to the nodes, with continuous invertible distribution functions;

the specification (3.3), i =1, ..., n, of conditional rank correlations on the arcs of the BBN;

a copula realizing all correlations [—1, 1] for which correlation 0 entails independence.

b

I These are assigned directly to the arcs of the BBN. Each arc is associated with a (conditional) parent—child rank correlation.

Copyright © 2006 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:709-729
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This joint distribution satisfies the characteristic factorization (3.2) and the conditional rank correlations
in (3.3) are algebraically independent.

Proof. Given that all univariate distributions are known, continuous, invertible functions, one can use them to
transform each variable to a uniform on (0, 1). Hence, we can assume, without any loss of generality, that all
univariate distributions are uniform distributions on (0, 1).

The first term in (3.3) is determined vacuously. We assume the joint distribution for {1, ...,7 — 1} has
been determined. The ith term of the factorization (3.2) involves i — 1 conditional variables, of which
{ip@)+1, - - ., ii—1} are conditionally independent of i given {i1, ..., ip()}. We assign

r(i,ij|i1,...,ip(l-))=0, ip(i)<ij§i—1 (3.4)

Then the conditional rank correlations (3.3) and (3.4) are exactly those on D' involving variable i. The other
conditional bivariate distributions on D' are already determined. It follows that the distribution on {1, ..i} is
uniquely determined. Since zero conditional rank correlation implies conditional independence,

P,....,H)=PGl...i—-DPA,...,i =D =P@li1...ipe))PA,...,i—=1)

from which it follows that the factorization (3.2) holds. O

After specifying the joint distribution, we will now show how to sample it. In order to sample a BBN
structure we will use the procedures for vines. We can sample X; using the sampling procedure for the vine D' .
When using vines to sample a continuous BBN, it is not in general possible to keep the same order of variables
in successive D-vines. In other words, we will have to re-order the variables before constructing Di*! and
sampling X;41, and this will involve calculating some conditional distributions. We will present the sampling
procedure for BBNs using the structure from Example 3.1. In Figure 3, one can notice that the D-vine for the
third variable is D3 = D(3, 1, 2), and the order of the variables from D* must be D(4, 3, 2, 1). Hence, this
BBN cannot be represented as just one D-vine. The procedure, which is presented below, starts with sampling

four independent, uniform (0, 1) variables, say Uy, ..., U,
X1 =uy
xz = F’;II;XI (MZ)

vy = Fl (B @3)

r313X1 0 3 Fyy

-1 —1 —1
X4 = Fr42§x2(Fr43\2§Fr32;x2(x3)(Fr4l\32;Fr2”3;Fr32:x3

(x) (Fr31 1x3 (x1)) (M4)))

where F,;,.x; (X j) denotes the cumulative distribution function of X ;, given X; under the conditional copula
with correlation k.

The BBN structure reads the conditional independence of X3 and X» given X (r32)1 = 0), and of X4 and X
given X7, X3 (r41)32 = 0), hence

-1

7411323 Fry 5:F,

Frszu:ﬂz,;x, (Xz)(u3) =u3 and

Uugq) —=1u
32:x3(x2)(Fr31;)(3(xl))( 4) 4

Consequently, using these conditional independence properties, the sampling procedure can be simplified as

X1 =uj
x=Fl ()
x3= F,;I;xl (u3)
x4=F ' (F! (u4))

r42:%2 % 143125 Frpi0, (X3)

Copyright © 2006 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:709-729
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We shorten the notation by dropping the ‘7’ terms and write F|; (x;) instead of F;
distribution F33(x3) is not given, so it must be found by calculating

jixi (xj). The conditional

x3 pl
F32(x3) =/ / c21(x2, x1)c31(v, x1) dxy dv
o Jo

where c;1 is the density of the chosen copula with correlation r;1, i € {2, 3}. In our study we will use Frank’s!?
copula™*,

For each sample, one will need to calculate the numerical value of the double integral”. In this case, when
only one double integral needs to be evaluated, it can be easily performed without excessive computational
burden.

If some of the variables become certain, the results of sampling this model—conditional on their values—are
obtained either by sampling again the structure (cumulative approach), or by using the density approach. We will
present a summary of both methods; for details we refer to Kurowicka and Cooke”.

Let us assume we learn X, = 0.85. In the cumulative approach the sampling procedure becomes

X1 = Fl_\21:x2 (ul)
x2=0.85
x3 = Fyl,,, (u3)
~1 —1
X4 = Fyp oy (Fay30: by () (U4))
In the density approach, the joint density can be evaluated as follows’:

g(x1, ..., x4) = c21(x2, x1)c31(x3, X1)c42(x4, X2)C4312(Fap(x4), F312(x3))

The conditialization is made using xp = 0.85 in the previous formula. Whichever of the two methods is
preferred, the double integral still needs to be evaluated for each sample and for any new conditionalization.

If the BBN consists of a cycle* of five variables, and the same sampling procedure is applied, a triple integral
will have to be calculated. The larger the cycle is, the larger the number of multiple integrals that have to be
numerically evaluated. And yet, this is not the worst that can happen™; an example of such a situation will be
presented in Section 5 of this paper.

The BBNs that resemble real life problems will often be quite large, and may well contain cycles of five or
more variables. Updating such a structure is performed by re-sampling the network each time new evidence is
obtained. In the case of a large number of variables, one would have to be prepared to run the model for a few
days. To overcome this limitation we would like to combine the vine approach with the continuous BBNs, with
the benefits of the discrete BBNs software. This is done in Section 4.

4. HYBRID METHOD

Sampling a large BBN structure every time new evidence becomes available does not seem a very good idea
in terms of computational time. On the other hand, sampling it just once, and employing the easiness of use,
flexibility, good visualization, and fast updating of a commercial BBN tool, provides an elegant solution to this
problem. The hybrid method proposed in this paper can be summarized as follows:

**The reasons for this choice are: it has the zero independence property; it realizes a specified rank correlation without adding to much
information to the product of the margins; its density covers the entire unit square; it has tractable functional forms for the density;
conditional distribution and inverse of the conditional distribution.

t All numerical results in this paper are obtained using Matlab.

*Whenever we speak of cycles, we mean undirected cycles.

fMore examples of BBN structures in which additional numerical calculations are needed are presented by Kurowicka and Cooke? (ch. 6).

Copyright © 2006 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:709-729
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1. quantify nodes of a BBN as continuous univariate random variables and arcs as parent—child rank
correlations;

2. sample this structure creating a large sample file;

3. use this sample file (in a commercial BBN tool) to build conditional probability tables for a discretized
version of the continuous BBN;

4. use the commercial tool to visualize the network and perform fast updating for the discretized BBN.

Most often, when continuous non-parametric BBNs have to be quantified, their discretized version is used
instead. A large number of states should be used for each node, in order for the quantification to be meaningful.
This leads to huge conditional probability tables that must be filled in, in a consistent manner and, hence, to
rapid, informal, and indefensible quantification. In contrast, the first step of the hybrid method can significantly
reduce the assessment burden, while preserving the interpretation of arrows as influences. Not only is the degree
of realism greater in the continuous model, but also the quantification requires only the marginal distributions
and a reduced number of algebraically independent (conditional) rank correlations. After quantifying the
continuous model, the discretized version of the model is used. Discretizing the nodes in fairly many states
will ensure preserving the dependence structure specified via (conditional) rank correlations. The conditional
probability tables for the discretized version of the model are immediately constructed by simply importing
the sample file in a commercial BBN tool (third step of the hybrid method). The main use of the BBNs is
updating on the basis of newly available information. We have shown how this can be performed using the
copula—vine method and what its disadvantages are. This motivates the fourth step of the hybrid method which
offers immediate updating.

There is a large variety of BBN software tools. Some of them are free (e.g. Bayda, BNT, BUGS, GeNlIe) and
others are commercial, although most of the latter have free versions that are restricted in various ways'>. In our
experience, the commercial tools have some advantages over the free versions, either from the functionality
point of view or even because the graphical user interface is sometimes not included in the free software.
Two of the most popular commercial tools for BBNs are Hugin'# and Netica'”. They both provide an elegant
graphical user interface and their main features are very similar (at least the features that we need to use in our
study). Comparing the technical support, the number of references, the efficiency of algorithms, and the price,
we chose Netica for our further study.

In order to perform the third step of the hybrid method, a network has to be pre-prepared in Netica. This will
contain the nodes of the BBN, each discretized in a certain—not necessarily small—number of states, together
with the connections. The way in which variables are discretized is a choice of the analyst. To preserve the
information about the dependence structure in the sample file, a large number of discretization intervals is
preferred. On the other hand, when the number of discretization intervals increases for each variable, the size
of the conditional probability tables that Netica constructs from the sample file increases as well. There is
a trade-off between the number of discretization intervals and the size of the conditional probability tables.
After a few comparisons (for particular cases) between the choices of 5, 10 and 20 discretization intervals
(for each variable), one can observe that the dependence structure assigned by the experts is maintained up
to a difference of order 1073 in the case where the variables are discretized in 10 intervals each and that the
sample file imported in Netica does not need to be of extraordinary size. Based on this result, the variables
from the following examples will be discretized each in 10 intervals. Another choice that one has to make, also
with respect to the discretization, is the size of the discretization intervals. The variables can be discretized in
equal intervals, or according to the quantiles of their distributions, or at random. The third choice is of course
not very useful. After the sample file is imported in Netica, the marginal distributions can be visualized (via the
option ‘Style/Belief bars’). If the variables are discretized in equal intervals, the shape representing each variable
corresponds to the shape its real distribution. If, on the other hand, the variables are discretized according to their
quantiles, Netica will show uniform marginals. We will illustrate the method described above by means of an
extensive example.

Example 4.1. (Flight crew alertness) In Figure 4, the flight crew alertness model is given. A discrete form of
this model was first presented by Roelen et al.'® and an adapted version of it was discussed by Kurowicka and
Cooke’. In the original model all chance nodes were discretized to take one of two values OK or NotOK.
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Recent Hours of Nighttime
workload (1) sleep (2) flight (7)

I'31|2 =-0.9 r32= 0.9 Ig7i63 = -0.4

Pre-flight
fitness (3)

Crew
alertness

(8)

raas = 0.85

rgs = -0.8

Operational
load (6)

fes= 0.5 Fosja = -0.95

Fly duty
period (4)

Figure 4. Flight crew alertness model. A number is assigned to each variable (on the right-hand side of each name)

M54 = 0.8

The names of nodes have been altered to indicate how, with greater realism, these can be modelled as
continuous variables. Alertness is measured by performance on a simple tracking test programmed on a palmtop
computer. Crew members did this test during breaks in-flight under various conditions. The results are scored
on an increasing scale and can be modelled as a continuous variable. The alertness of the crew if influenced by
a number of factors such as: how much time the crew slept before the flight, the recent work load, the number
of hours flown up until this moment in the flight (flight duty period), pre-flight fitness, etc. Figure 4 resembles
the latest version of the model.

In order to use the hybrid method described in the beginning of this section, continuous distributions for each
node and (conditional) rank correlations for each arc must be gathered from existing data or expert judgement.
The distribution functions are used to transform the variables to uniforms on (0, 1). The (conditional) rank
correlations assigned to each arc of the BBN are chosen by Kurowicka and Cooke® for illustrative purposes.
The marginal distributions are chosen to be uniforms on (0, 1). The sampling order is 1, 2, 3, 4, 5, 6, 7, 8.
The sampling procedure uses Frank’s copula, and does not require any additional calculations:

X1 =U1
X2 =up

F3p. xz(F3|21 oy (U3))
X4 = U4

—1
X5 = F5|4-x4(u5)

X6 = Feya x4( 6|54 Fsa(xs) (46))

X7 =U7

8|6x6( 8|63x3( 8\763)(7(”8)))

Figure 5 shows the BBN from Example 4.1, modelled in Netica. The variables are uniform on the (0, 1)
interval, and each is discretized in 10 states. A case file containing 8 x 10 samples, obtained using the sampling
procedure described, was imported in Netica via the option ‘Relation/Incorporate Case File’. This automatically
creates the conditional probability tables.
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Figure 6. Distribution of Xg|X>, X4. Comparison of updating results in vines and Netica using 10% samples

The quantification of the discretized BBN would require 12 140 probabilities, whereas the quantification
with continuous nodes requires only eight algebraically independent (conditional) rank correlations and eight
margins.

The main use of BBNs in decision support is updating on the basis of possible observations. Let us suppose
that we have some information about how much the crew slept before the flight and about the flight duty period
of the crew. Figures 6 and 7 present the distribution of the crew alertness in the situation when the crew’s hours
of sleep are between the 20th and the 30th percentiles (the crew did not have enough sleep) and the flight duty
period is between the 80th and 90th percentiles (the flight duty period is long).
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Figure 7. Distribution of Xg| X5, X4. Comparison of updating results in vines and Netica (a) using 10* from 8 x 10° samples
and (b) using 8 x 100 samples

The conditional distribution of the ‘Flight crew alertness(8)’ from Figures 6 and 7 is obtained in two ways:

e using the vines-Netica updating;
e using the vines updating with the density approach.

After the sample file is imported in Netica, we condition on ‘Hours of sleep’e[0.2, 0.3] and ‘Fly duty
period’ € [0.8, 0.9]. We can use Netica to generate samples from the conditional distribution of ‘Crew alertness’.
In the same manner, we sample from ‘Hours of sleep’ € [0.2, 0.3] and ‘Fly duty period’ € [0.8, 0.9] and save the
samples that Netica generates via the option ‘Network/Simulate Cases’. In the simulation for vines updating,
we will have to re-sample the structure, in the same conditions. For better results of the comparisons, we use the
samples that we saved from Netica, in the simulation for updating with vines.

In Figure 6, the conditional probability tables from Netica were built using 10* samples. The agreement
between the two methods is very poor. For example, one can notice from both curves that the combination of
the two factors (not enough sleep and a long flight duty period) has an alarming effect on the crew alertness.
The difference is that in vines-updating, with probability 50%, alertness is less than or equal to the 15th
percentile of its unconditional distribution®, whereas in vines-Netica updating with probability 50% alertness is
less than or equal to the 35th percentile of its unconditional distribution. This disagreement is due to the number
of samples from which Netica calculates the conditional probability tables (10%). There are 10° different input
vectors for node 8, each requiring 10 probabilities for the distribution of 8 given the input. With 10* samples,
we expect each of the 10% different inputs to occur 10 times, and we expect a distribution on 10 outcomes to
be very poorly estimated with 10 samples. Moreover, updating with vines does not produce a very smooth and
accurate curve, also because the simulation was performed with 10* samples.

In Figure 7(a), the sample file imported in Netica contains 8 x 10° samples which allows a very good
estimation of the conditional distribution of ‘Crew alertness’. Another 10* samples for ‘Hours of sleep’e
[0.2,0.3] and 10* for ‘Fly duty period’e [0.8, 0.9] are saved from Netica and used in the vines updating.
The curves start to look very similar indeed, but the curve corresponding to vines updating is still not smooth
because of the number of samples. If we do everything with the entire sample file of 8 x 10° samples,

<Crew alertness’ is an uniform variable, and therefore its unconditional distribution function is the diagonal of the unit square.
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Figure 8. BBN with four nodes and five arcs

the agreement between the two conditional distributions is impeccable (see Figure 7(b)). This motivates the
use of a very large sample file.

For a BBN with nodes that require a large number of inputs (large number of parent nodes, discretized in
fairly many states) the sample files should also be very large. The main advantage is that this huge sample file
needs to be done only once.

Note, however, that in some cases it might happen that sampling the structure, even just once, will cause
problems, as we already mentioned in Section 3. We will further present a BBN structure, which at a first glance,
seems very easy to deal with, in the sense that it offers a lot of information about the dependence structure.

Example 4.2. Let us consider the BBN from Figure 8. If the set of (conditional) rank correlations that can be
elicited is either {rp1, 731, 742, 74112, r43121} or {ra21, 731, r43, r41)3, 742131} then the BBN can be represented as
one D-vine, and so the sampling procedure does not require any extra calculations. If, for some reason, these
rank correlations cannot be specified, and the only correlations available are: {ry1, r31, 743, 1423, r41)32} the
situation worsens considerably.

The BBN can no longer be represented as one D-vine, since the order of the variables in D3is3, 1,2, and in
D*is4,3,2,1. To sample X4, one needs to calculate

—1 -1 -1
X4 = Fapsay (Faps pys () Fa123: 7y g () (#4)))

The conditional distribution F33(x2), can be found by evaluating a double integral as in Example 3.1.
Furthermore, F1j23(x1) needs to be calculated. This is, in fact, the conditional distribution of Fyp(x1), given
F32(x3). Even though all the information needed seems to be available, evaluating the joint distribution of these
two quantile functions turns out to be very difficult. Moreover, at each step of its evaluation, one should calculate
the numerical value of the double integral for F32(x3). This is a task that takes time and patience.

If this kind of calculation is necessary for such a small BBN, it is very likely that more complicated
calculations will be involved in larger structures. The time spent to solve this sort of problems would be, by far,
much longer than one can afford.

5. NORMAL COPULA-VINE APPROACH

All the troubles discussed until now are caused by the different sampling order of variables from one vine to
another. To avoid these problems we advance here a new way of realizing the rank correlation specification on
aregular vine using the joint normal distribution.

Let us start with a rank correlation vine specification on the variables X1, . .., X, with continuous, invertible
distribution functions Fi, ..., F;,. We adopt the following protocol.

1. Transform Xi, ..., X, to the standard normal variables Yi,..., Y, via the transformation Y; =
OY(F; (X)) (Vvi)(i =1, ..., n), where ® is the cumulative distribution function of the standard normal
distribution.
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2. Construct the vine for the standard normal variables Yi, ..., Y,. Since ®~! (Fi (X)) are strictly
increasing transformations, the same (conditional) rank correlations correspond to the edges of this vine.

3. To each edge of this vine assign p; jjp =2 sin(x - r; jp/6), where {i, j} and D are the conditioned
and conditioning sets, respectively, of the edge, and r; j|p is the conditional correlation assigned to the
corresponding edge from the initial vine. We now have a complete partial correlation vine specification®
for Yy, ..., Y,. Theorem 2.1 ensures that there is a unique joint normal distribution for Yq, ..., Y,
satisfying all partial correlation specifications. Moreover there is a unique correlation matrix determined
by this vine (Theorem 2.2).

4. Compute the correlation matrix R using the recursive formula (2.1).

5. Sample the joint normal distribution of Y;, . .., ¥,, with correlation matrix R ‘(Tong”). _ ‘
6. For each sample, calculate (F; ' (@(y))), F5 '(®(¥3)), ..., F; N (@ (7)), where ((v]), (»)),
..., (y1)) is the jth sample from the previous step.
In this way we realize the joint distribution of the initial variables X1, ..., X,,, together with the dependence

structure specified.

The normal copula—vine method might seem very similar to the joint normal transform method presented by
Ghosh and Henderson'® and Imam and Helton'”, but the presence of vines is crucial in avoiding the problems
encountered in the latter method. In the joint normal transform approach, the rank correlation matrix must be
first specified and then induced by transforming distributions to standard normals and generating a dependence
structure using the linear properties of the joint normal. In absence of data, specifying a rank correlation matrix
can be a very difficult task. Moreover, it is not always possible to find a product moment correlation matrix
generating a given rank correlation matrix via Pearson’s transformation, as shown by Kurowicka and Cooke’
(ch. 4). Using the normal copula—vine approach we avoid these problems because we do not specify a rank
correlation matrix, but rather a rank correlation vine. Moreover, for such a specification all assignments of
numbers between —1 and 1 are consistent.

In case of a BBN that cannot be represented as one vine, we can make use of the protocol described above.
Everything is calculated on the joint normal vine, hence we can re-order the variables and recompute all partial
correlations needed. We expect a dramatic decrease in the computational time using this method. We note that
the assumption of constant conditional rank correlations, previously a matter of convenience, is now required.

Furthermore, we will present comparisons between the normal copula vine method and the copula—vine
method together with Netica updating, using the BBN from Example 3.1.

The marginal distributions of X1, X2, X3, X4 are uniform on the interval (0, 1). We sample the structure
both with the copula—vine, and the normal copula—vine approach. Hence, we produce two sample files, each
containing 10° samples. The resulting files are imported in Netica, and conditioning is performed in both cases.
Figure 9 presents the conditional distribution of the variable X4 given that X € [0.1, 0.2] and X» € [0.3, 0.4],
obtained using the sample files produced with the two methods. One can notice a small disagreement between
the two conditional distributions. If we think of the normal copula—vine method in terms of the copula—vine
method, where we made use of the normal copula, we can say that the difference between the two conditional
distributions from Figure 9 is due to the different choice of the copula.

Another way of comparing these methods is to calculate and compare the two sample correlation matrices.
The matrices presented below correspond to the sample file obtained using the copula—vine approach (left) and
the sample file generated with the normal copula—vine method (right):

1 0.4031 0.7028 0.3746 1 0.4000 0.6974 0.3843
0.4031 1 0.2843 0.2028 | | 0.4000 1 0.2837 0.1985
0.7028 0.2843 1 0.5201 0.6974 0.2837 1 0.5271
0.3746  0.2028 0.5201 1 0.3843 0.1985 0.5271 1

SAs we already mentioned, conditional and partial correlations are equal for normal variables.
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Figure 9. The distribution of X4|X{, Xp. Frank’s copula—vine versus normal copula—vine (conditioning in
Netica using 10° samples)

Comparing these two matrices one can observe differences of order 1073, which represent a reasonable result
taking into account the sampling errors.

The main advantage of the normal copula—vine method is that the simulation runs for a few seconds, whereas
with the previous sampling algorithm (in which a double integral needs to be numerically evaluated for each
sample) the results were available in hours. Both methods were implemented in Matlab for a fair comparison
of the computational times. The normal copula—vine method is implemented in a new software application,
called UniNet!. UniNet allows for quantification of non-parametric continuous/discrete BBNs. The program
has a friendly interface and the simulations are very fast (faster than Matlab).

The same kind of results we find when we examine the structure from Example 4.1. Figure 10 shows the
conditional distribution of the variable ‘Crew alertness(8)’ given that ‘Hour of sleep(2)’ is in the interval
[0.2, 0.3] and ‘Fly duty period(4)’ € [0.8, 0.9]. We can again notice that the choice of the copula produces a
small discrepancy between the curves. Comparing the two sample correlation matrices for this example we find
that the maximum difference is 8 x 1073,

6. ANALYTICAL UPDATING

A very important feature of the normal copula—vine method is that conditioning can be performed analytically.
Since all the calculations are performed on a joint normal vine, any conditional distribution will also be normal
with mean and variance given by the formulas in Proposition 2.2. Finding the conditional distribution of the
corresponding original variable will just be a matter of transforming it back using the inverse distribution
function of this variable and the standard normal distribution function.

Proposition 6.1. Ler X1 and X, be random variables with continuous, invertible distribution functions F)
and F». Let Y1 and Y be the transformation of X1 and X, to standard normal variables. Then the conditional
distribution X 1| X7 can be calculated as F 1_1 (@ (Y11|Y2)), where @ is the cumulative distribution function of the
standard normal distribution.

qIFigures 2, 4 and 8 are made using UniNet.
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Figure 10. The distribution of Xg|X», X4. Frank’s copula—vine versus normal copula—vine (conditioning in
Netica using 8 x 100 samples)

Proof. Fori e {1,2},Y; = &~ 1(F;(X;)), and therefore we can write X; = Fi_1 (D(Y)).

Remark. For A, B, C random variables and f a function such that A = f(B), then A|C = f(B|C).

We will use the above remark for Xy, X», Y1, Y2, | 1o @ and X7 an arbitrary value of X»:

X11(X2 = x2) = F{ 1 (@(Y11(X2 = x2))) = F] (@ (V1(F; (@ (Y2) = x2))))
= F7 N @M |(Y2 = @7 (F(x2) = F 1 (@(Y1](Ya = y2)))

where we denoted @~ (F>(x2)) = y». O

Let us illustrate this result on the BBN structure from Example 4.1. In Figure 11 we present a comparison
between updating in the normal copula—vine method and the copula—vine method. The updating is performed
both in Netica and analytically.

As one would expect, the pairs of curves corresponding to the two methods (copula—vine and normal
copula—vine) follow exactly the same patterns regardless of the way we perform conditioning. The distance
between the pairs of curves is caused by the different choice of the copula.

We will now consider (for the same example) the univariate distributions to be standard normals instead of
uniforms on (0, 1). The same kind of comparisons as before are performed. In doing so, a new model should be
pre-prepared in Netica. The differences between the new model and that presented in Figure 5 are the range of
the variables and the discretization intervals. We will keep the same number of intervals for the discrete version
of each variable, only they will not be equally sized anymore. The variables are discretized with respect to the
quantiles of their distributions.

We conditionalize on ‘Hours of sleep’ between its 0.2 and 0.3 quantiles and ‘Fly duty period’ between its 0.8
and 0.9 quantiles!. The conditional distribution of the ‘Crew alertness’, obtained with the methods previously
discussed, is presented in Figure 12(a).

In the previous comparisons(for uniform marginals) the conditioning was ‘Hours of sleep’€ [0.2, 0.3] and ‘Fly duty period’€ [0.8, 0.9].
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Figure 11. The distribution of Xg|X>, X4. Comparison of updating results in Frank’s copula—vine (using Netica and the
copula—vine updating) versus updating in normal copula—vine (using Netica and analytically). All univariate distributions
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Figure 12. The distribution of Xg|X,, X4. (a) Comparison of updating results in Frank’s copula—vine (using Netica and the
copula—vine updating) versus updating in normal copula—vine (using Netica and analytically). (b) The Flight Crew Alertness
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model in Netica. All univariate distributions are standard normals
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by Netica updating, in both methods, are completely different from the results of the analytical updating™*.

**The word ‘analytical’ is appropriate only for the normal copula—vine method. For the copula—vine method, updating is performed via

re-sampling the structure.
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Figure 13. The distribution of Xg|X;, Xg, X7. (a) Comparison of updating results in Frank’s copula—vine (using Netica
and the copula—vine updating) versus updating in normal copula—vine (using Netica and analytically). (b) The Flight Crew
Alertness model in Netica. All univariate distributions are standard normals

As already stated, the discretization of the variables was made according to their quantiles, hence the first
interval and the last one (for each variable) are much wider than the rest of the intervals. This can be noticed in
Figure 12(b), which shows the Flight Crew Alertness structure in Netica, after we updated the model. A sample
file of 8 x 10°, obtained with the normal copula—vine method, was imported in Netica in order to create the
conditional probability tables. For the variable ‘Crew alertness’, the first and the last discretization intervals are
approximately 12 times wider than the rest of the intervals from its discretization (see Figure 12(b)). In order
to plot the conditional distribution of ‘Crew alertness’ given by Netica, one will need to generate samples
from it. Netica simply samples uniformly from each discretization interval, taking into account its probability.
The information that most of the samples from the first interval should be concentrated in its right-hand side, is
not included. Therefore, the first part of each of the curves given by Netica does not resemble reality. The same
kind of discrepancy would happen in the last interval if its probability were larger.

We will further consider another updating of the same model. We conditionalize on ‘Hours of sleep’ between
its 0.3 and 0.4 quantiles, ‘Operational load’ between its 0.3 and 0.4, and ‘Nighttime flight” between its 0.4 and
0.5 quantiles. Figure 13(b) shows the structure in Netica, after updating. Looking at the conditional probability
of ‘Crew alertness’, one can notice that the first and the last discretization intervals have very small probabilities.
In these conditions, we expect the curves for the conditional distribution of the ‘Crew alertness’, obtained with
the four methods, to be very similar on the entire domain. As Figure 13(a) shows, there is perfect agreement
between the methods.

Although in most cases Netica updating has a reasonable outcome, in some particular cases, its results are not
to be trusted. Therefore the opportunity to perform analytical updating is a key advantage of the normal vine
method.

7. CONCLUSIONS

We have presented the copula—vine approach to continuous non-parametric BBNs, addressed its computational
problems and proposed ways to solve them.
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Quite often, real life problems are modelled with large BBNs, which might contain large cycles. In most cases,
in the copula—vine approach extra calculations are needed in order to sample a structure. These calculations
are numerical evaluations of multiple integrals, which are very time consuming. Moreover, updating such a
structure is performed by re-sampling the network each time a new policy is evaluated. Hence, even though the
copula—vine approach to continuous non-parametric BBNs provides a practical and flexible way of stipulating
a high-dimensional distribution, it has the disadvantage that a large model could run for days.

In this paper, we have shown how to overcome this limitation by making use of the advantages of BBNs
software. We sampled the structure just once, imported the sample file in Netica and performed fast updating
for the discretized version of the BBN, without losing information about the dependence structure specified in
a coherent and defendable way. We have chosen Netica for the reasons described earlier (in Section 4) but any
software can be used for the purposes presented in this paper, as long as it has the same features as Netica.
The results presented here are independent of the choice of software.

For a large BBN, which contains nodes with many parents, discretized in fairly many states, a very large
sample file is needed in Netica. Furthermore, we presented a very simple example in which unexpected problems
appeared and made this one time sampling very complicated and time consuming. If this happens for a small
BBN, it is very likely that for a larger calculation, more difficulties will emerge.

These problems are caused by the different ordering of variables in the D-vines that represent the BBN
structure. We solved this issue by realizing the rank correlation specification on a joint normal vine.
We transformed the rank correlation vine to a partial correlation vine on standard normal variables; computed the
correlation matrix and sampled from a joint normal distribution with standard normal margins and the calculated
correlation matrix. We transformed back, and in this way, we realized the joint distribution of the initial variables
with the specified dependence structure. In the joint normal vine we can re-order the variables and compute the
re-ordered partial correlations, using the properties of the joint normal distribution. Hence, no extra calculations
are involved. The main advantage is that the computational time reduces from hours to seconds.

The normal copula—vine method can be used to sample any non-parametric continuous BBN and stipulate its
joint distribution in a fast and flexible way.

A very attractive feature of the normal vine sampling algorithm is that conditioning can be performed
analytically. However, the advantages of porting to a familiar BBN platform with friendly support and post
processing options should not be underestimated.

The theory presented here can be extended to include ‘ordinal’ variables; that is variables which can be
written as monotone transforms of uniform variables, perhaps taking finitely many values. The dependence
structure must be defined with respect to the uniform variates. The case of dichotomous variables (and generally
variables with few states), and the rank correlations between two such variables, is still an open issue. We still
have to answer questions such as ‘is it possible to realize all rank correlations between this kind of variables?’.
Another subject to investigate is the possibility of specifying functional relationships between variables.
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