Chapter 1

Introduction
1.1.  Introduction

In the Netherlands, predicting tides has been long an important activity. Accurate water level prediction in the Dutch coast is required for example to ensure that the dike barrier will be closed in time. Furthermore, with the increase in the size of ships using the Euro Channel and the Meuse Channel to Rotterdam harbour, this port has become inaccessible to many ships except during a short period of high water. Therefore, to allow safe passage, there is a demand for accurate tidal prediction.

The operational tidal prediction techniques in the Netherlands are based on the superposition of the astronomical tide and the meteorological effect. The meteorological effect on the tide propagation is called a surge. A surge that is generated by severe storms outside the North Sea area is called an external surge when it enters this area. This storm surge propagates through the North Sea approximately like the tide. The meteorological effect is created by two phenomena. Firstly, the atmospheric pressure profile of a storm affects the water level lying directly underneath. Secondly, wind blowing over water creates a frictional force on the surface of the water that sets up the water level in the direction of the wind. In shallow waters, such as the North Sea, the wind effect in general is strongly predominant in relation to the pressure effect. The prediction of the meteorological tides is generally performed by solving the shallow water equations, which are based on the physical laws like conservation of mass and momentum.

The astronomical tide of the oceans is created by the forces of the sun and the moon. Variations in the relative positions of the earth, moon, and sun cause fluctuations in the strength of the astronomical forcing. Tides are predictable far into the future due to the predictability of the astronomical forcing. These forces are expressed as the tidal potential, which consists of a limited number of discrete frequencies whose amplitudes and phases are determined by using the method of Harmonic Analysis. Once the amplitudes and phases of these discrete frequencies are known, the tidal signal at that point can be predicted indefinitely into the future provided that there are no major changes to the bathymetry in the vicinity of that location. The harmonic analysis method is based on the periodic nature of the water level variation. In this method, the variation is approximated by using the sum of several sine functions with different frequencies, each of which is called constituent. 

Although the harmonic analysis of the tide is very popular and is used frequently to predict the astronomical tide, there are still difficulties associated with the method. The tidal signal at any point in the world has been affected by the bathymetry of the oceans, seas, bays, and river estuaries as the tidal forces are transmitted and modified by the fluid dynamic forces. The frequencies are unchanged but the amplitudes and phases of each frequency or tidal constituent has been changed by varying amounts. If shallow water effects become significant, the number of constituents required to describe the tide becomes very large. Along the coast of the Netherlands often more than hundred constituents are taken into consideration. There are probably many constituents that are still unknown. As a result, the harmonic “constants” that are taken into account appear to be time varying during a year. Furthermore, since in the Netherlands the conditions change continuously due to channel dredging, sedimentation, and the building of two storm surge barriers, the harmonic “constants’ also vary slowly from year to year. Moreover, if the tide is influenced by the meteorological conditions, some harmonic constituents cannot be determined accurately or have to be left out of consideration. These effects also result in harmonic “constants” that appear to be time varying. If we take a Fourier transform for the residual data, that is the measurement data minus the astronomical tides taken using harmonic analysis, we will see that there are still some peaks within the spectrum, which correspond to the harmonic tides. This suggests that there is still opportunity for improvement.

1.2. Research Goal

As described in the previous section, for some reasons the harmonic parameters of the astronomical tides are slowly varying in time. When this variation occurs, this should be observed in the measurement. Although the parameters are varying, we expect that they vary slowly that short-term prediction is still possible to be carried out. The goal of this research is then to develop a method, which incorporate recent measurement to gain a more accurate short-term astronomical tides prediction. To achieve the goal, in this research we approach the problem using the Kalman filter technique, an estimator which incorporate the information from the system model and the measurement. We study several possibilities that may lead to some improvements. The modelling about the astronomical tides and the explanation about Kalman filter are given in the second chapter. In Chapter 3, we implement the filter based on the model developed in Chapter 2 using generated signal to investigate the filter performance and sensitivity. In Chapter 4, we present some experiments using real measurement data. At the end we draw some conclusions based on these experiments in Chapter 5.

The rest of this chapter is not very relevant to the research that the readers may skip. In the next section we present a brief explanation about the astronomical tides phenomena. This section is intended just to give the readers an idea of how the phenomena work and how the constituents are determined. Most of the explanation is taken from Godin [1972], to which interested readers are referred for more detail explanation. In the last section, the harmonic analysis method is described.

1.3. Tidal Phenomena

Tide is a phenomenon of regular rising and falling of sea’s water level. Tides are produced by the attraction of the sun and moon on the waters of the ocean. They generally occur approximately twice a day; the interval between two high waters is approximately twelve hours and twenty-five minutes. The height to which the water rises varies from day to day. At full moon, the tidal range – i.e. the difference in height between high and low water – is often maximal. 

Tidal phenomena can be explained by using the concept of gravitation and force in physics. It states that the presence of a particle E at a point of space (x,y,z) creates a gravitational field: if there were some other particle in the vicinity of (x,y,z), it would experience a force created by the presence of E. Even if there is no such particle at a particular moment, E still has the capability (potential) of exerting an attractive force on any matter in its neighbourhood. If another particle M happens to be in the vicinity of E, separated with distance r, then it will be attracted by the force exerted by E, whose magnitude is given as

F = kEM/r2, 




(1.1)

where k = 6.658 x 10-8 cm3/g s2 is the universal constant of gravitation, M and E are the masses of M and E, and r is the distance between the two particles. The force is directed from M to E and the acceleration of M is proportional to this force. At the same time, E is attracted by M, the attractive force having the same magnitude but directed from E to M.

These facts are summarized in the Newton’s law of motion:

1. The law of inertia. A particle which is not subjected to any external force will remain at rest or will continue to move at a constant speed in a straight line.

2. The law of acceleration. The acceleration of a particle is directly proportional to the force applied to it and is inversely proportional to its mass.

3. The law of action and reaction. When two particles interact, the force exerted by the first particle on the second (the action) is equal in magnitude but opposite in direction to the force exerted by the second particle on the first (the reaction).

One consequence of Newton’s law is that when two moving point masses, E and M, in the course of their motion, start feeling mutual attraction, they do not fall into each other (except in the case of a head-on collision) but each traces a path that is always a conic section. When the two particles cannot escape from their mutual attractive field, this conic section is an ellipse: the two particles move in elliptical paths around their common centre of mass, which occupies one of the foci of each of the ellipses.

For this elliptic configuration to be stable there must be an exact balance between the centrifugal force and the gravitational force. The centrifugal force on M can be attributed to its inertia, according to which it tends to move in a straight line and therefore outward along the instantaneous radius of curvature r, while the attraction of E tends to retain it in an elliptic path.

If at this stage we allow E to be a rigid body of definite extent in space, that is to say an aggregate of particles whose relative positions never change, rather than a single particle, the slight motion of E still consists of a small elliptic path around its common centre of mass with M. Therefore the gravitational force exerted on each point of E will be different dependent on the distance of each point to M. The resultant of the gravitational force and the centrifugal force is the tidal force. From this fact we can see that the tidal force will vary, depending on the position of the particle.

Since the earth lies in the vicinity of the moon, the sun, and the planets, it is not surprising that tidal forces and tidal phenomena exist on it. The intensity of the tidal forces depends on the distance between the earth and the disturbing body. Celestial motion is on the whole periodic, so we may expect that the tidal phenomenon is also periodic.

In order to facilitate the study of the tidal forces, the potential function V is introduced, which is defined from the force vector F by the relation

F = -(V. 



(1.2)

From this definition, by substituting the gravitational force exerted by the moon and the sun on the earth, we can derive that the tidal potential at a point P on earth induced by the moon and the sun respectively are (Godin [1972]):
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(1.3)

where a the radius of the earth, M the mass of the moon, S mass of the sun, rM the distance from the earth to the moon at instant t, rS the distance from the sun to the earth at instant t, (M the angle of a point on earth-the centre of the earth-the moon at instant t, and (S is the angle of a point on earth-the centre of the earth-the sun at instant t. Pj(x) are called the Legendre polynomials, and satisfy the recurrence relation
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The next step is to rewrite the tidal potential above in terms of variables that are more fundamental than (M and (S. These new variables will be the co-latitude and longitude of P, M, and S on the celestial shell, and will be denoted by ((,(), ((M,(M), ((S,(S). After having effected this transformation, we shall be able to derive general conclusions about the periodicities present in the tidal forces induced by the moon and the sun. As shown in (Godin [1972]), we can rewrite the tidal potential as
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the ajs and a’js being combinations of sines and cosines of (M or (S and constants, ( the lunar time and t is the solar time.

In the course of one lunar or solar day, (M and (S will change little while ( and t will go through a complete cycle of 360o. Over this time interval, the above equations will give rise to oscillations in the tidal forces of frequencies

0 cycle/lunar day, 1 cycle/lunar day, 2 cycles/lunar day,

and

0 cycle/solar day, 1 cycle/solar day, 2 cycles/solar day,

respectively, plus some very much weaker oscillations of frequencies 3 cycles/day and 4 cycles/day.

Further development of tidal potential shows that the tidal potential can be separated into long period, diurnal, semi-diurnal, and other components. The complete development by Doodson has shown that there are hundreds of harmonic terms.

1.4. Harmonic Analysis Method

The harmonic analysis method is basically a method to determine the harmonic parameters of the constituents described in the previous section from the time-series observation data. 

The vertical tide at any place can be expressed in terms of the sum of harmonic functions:
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(1.6)

which expresses the height, h, of the tide at any time, t. The A0 is the height of the mean water level above the datum used and each cosine term is a tidal constituent. The datum is the reference of zero level used for all vertical measurements of the height of the land and the depth of the sea as well as the variation of the water levels. 

Since the data is obtained during a finite interval, we have to confine ourselves to an approximate expression for Equation (1.6) above, in which a finite selection of constituents is considered. The number of constituents to be used will depend upon the accuracy required. The choice of the constituents must be such that the future tides will also be sufficiently represented.

The quantities used in the practical application comprise the amplitudes and phases of the constituents. The determination of these constants is carried out by using the least square method as described in Dronkers [1964].

Let yt (t = -n, -n+1,…, 0,…, n-1, n) be the time-series observations taken by a tidal gauge, with respect  to the central time t = 0 (i.e., n = 0 is the middle observation and is called t = 0). The harmonic series for k constituents is written in the form
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This series will approximate the observational series as closely as possible if
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The conditions under which (2 is minimum are
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(1.9)

Hence, the following 2k+1 equations are obtained for A0, As, and Bs.
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(1.10)

Substituting the harmonic series equation (7) to these three equations (10) yields:
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In addition, 
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where S(x) is defined as 
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(1.15)
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(1.16)

Substituting equations (1.14) - (1.16) to the three equations of minimal conditions (1.11) - (1.13) above, the following normal equations are found:

If s = 0 :
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(1.17)

If s ( 0 (s = 1,…,k):
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(1.18)
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(1.19)

where N = 2n + 1.

From these 2k + 1 equations, the 2k + 1 unknowns A0, Ar, and Br (r = 1…k) can be computed, assuming that the determinant of the coefficients on the left side is not equal to zero. Knowing these variables, we can determine the amplitude and phase of each constituent. The prediction then is carried out by constructing y(t) (Equation (1.7)) with these constants for the future time t.
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