Chapter 3

Experiments Using Generated Signal

3.1. Introduction

In Chapter 2 we have derived the model for tidal signal, which consists of a number of narrow band processes and the Kalman filter formulation based on the model. Before we implement the Kalman filter to the real tidal signal, it is necessary to study how it performs under various conditions. To implement the Kalman filter, we need to specify the model dynamic parameter as well as the system and measurement noise. All these quantities are usually unknown. What people usually do is to determine these quantities by trial and error. It is then important to have ideas of the effects of each of these factors on the filter performance. This chapter presents a study with objective to gain insights of how the Kalman filter performs in different conditions. 

The approach followed here is to construct some set of periodic signal to represent tidal measurement. Usually, in analysing the performance of Kalman filter, one will generate simulated data from a so called “truth model”, which is the best model that can be developed to represent the real phenomena. In our case, we do not have such a truth model. What we do here is to generate some periodic signal using the model developed in Chapter 2 with certain astronomical component frequencies. The generated signal in these experiments, although generated using astronomical component frequencies, do not necessarily resemble the real tidal signal. This can be justified since our goal is to have an algorithm that can extract periodic components from a signal. We can also combine the generated signal with noise to simulate noisy circumstances. 

Having generated the measurements, the Kalman filter is applied to study whether it is able to reconstruct the signal and to estimate the values of the harmonic parameters that are used in generating the measurements. Furthermore, if the filter model is chosen different than the model used in generating the measurement, it is possible to investigate whether the filter still performs satisfactorily. This is possible since we know the true value of the parameters used in the signal generation, to which we can compare the filter estimates to evaluate the filter performance. 

In the second section we describe how the measurements are generated. We present some experiments to show whether the Kalman filter can reconstruct the measurements in the third section. Here, two signals are generated to simulate a simple noise free signal and a rather more realistic noisy signal. From the formulation of the Kalman filter described in the previous chapter, we can identify that the filter comprises four factors, each of which contributes in determining the filter performance. Those are the measurement noise R, the system noise (2, the model dynamics parameter a, and the choice of components in the filter model. The rest of the chapter is the study of the effect of each of these factors on the filter performance. The effects of measurement and system noise on the performance are presented in the fourth and fifth section. In the sixth section, some experiments showing the effects of different model dynamics are presented. In using the real measurement, it is very likely that we miss to select certain harmonic components that are significant in tidal formation. The last experiment is to represent the problem of selecting harmonic components and is presented in the seventh section.

3.2. Signal Generation

In generating the measurements used in all the experiments in this chapter, the neap-spring tides components are used; those are O1, K1, MU2, 2SM2, M2, S2, 3MS4, M4, MS4, M6, 2MS6, M8, 3MS8, 4MS10, A0. The frequencies of these components are given in the Appendix. The signal is generated by first generating the amplitude of each component at every instant using the model described in equation (2.17). Then, the signal is generated by using equation (2.20). The time interval is 10 minutes.

To simulate the noise-free signal with constant amplitude and phase, we just specify model dynamic parameter a of each component as well as the variance of both the measurement and system noise to be zero. In another signal generation, the standard deviation of both system and measurement noise is specified to be 0.02 m and the correlation time (1/a) to be 3 month. All of the signals are generated using non-zero initial value.

3.3. Experiment 1: Signal Reconstruction

The objective of this experiment is to see whether the Kalman filter can predict signal with periodic behaviour. Two signals are used for this purpose. The first signal is the simplest signal, which is generated without any noise and with constant harmonic parameters. The second one is the signal generated with both system and measurement noise and whose amplitudes and phases vary slowly in time. The second signal represents the narrow band processes. By doing these experiments we can also judge whether the filter can yield good estimates although it starts from incorrect initial values of parameters.

Figure 3.1 shows some results of the experiment using noise free signal. In the figures, the generated signal and the prediction using Kalman filter are shown. The prediction is taken at one time step ahead (10 minutes). The initial guess of water level used in these experiments is zero. From these figures, we see that for the case of noise free signal, the Kalman filter can also yield very good estimates of the signal being analysed.
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Figure 3.1. Noise free signal reconstruction

Figure 3.2 shows the results of the experiments using the noisy signal. From figure 3.2 we see that the Kalman filter can predict well the signal even in the noisy circumstance.

The results of the experiments presented above show that the Kalman filter could yield very good prediction both in the ideal and noisy circumstances. Moreover, we also see that the Kalman filter can still reconstruct the signal although it starts from the initial condition, which is different from the correct one. This is in accordance to the fact that Kalman filter ‘forget’ the initial conditions as discussed in the previous chapter. The Kalman filter takes several first steps before it can yield good estimates. This is more visible if we look at the estimates of the harmonic parameters as shown in Figure 3.3 for the component M2(A).
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Figure 3.2. Noisy signal reconstruction

From this figure we see that the Kalman filter takes around ten days before it can yield accurate estimates of the parameter. This means that the harmonic parameters can be estimated accurately by using time series that are shorter than the Rayleigh criterion indicates, which in this case for the neap-spring tides it is around 14 days. In term of estimate variance, the same information can also be obtained as for example shown in figure 3.4. In the beginning the estimate variance is big and it is decreasing until less than 10 days, before it becomes steady.
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Figure 3.3. Estimates of M2(A): a. constant amplitude, b. slowly varying amplitude
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Figure 3.4. Estimates variance: a. M2(A), b. S2(A)
3.4. Experiment 2: Measurement Noise R

The objective of this experiment is to see the effect of measurement noise R to the filter performance. Three different values of R are used in the experiments to encompass all possible cases: less than the correct value, equal to the correct one, and larger than the correct one. To evaluate the filter performance in all these three possible conditions, we use R equal to 10 Rt, Rt, and 0.1 Rt respectively, where Rt is the true measurement noise variance. The results are shown in term of each component estimates. Some results are shown figure 3.5 for the estimate of M2(A).
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Figure 3.5. Estimates of M2(A) for various measurement noise

From these figures, we see that keeping all other factors correct, the filter always yield good estimates regardless of the value of measurement noise R. This indicates that the filter performance is not sensitive to the measurement noise R. However, there are some differences in the estimates from these three different values of R. When the value of R is small, the estimates become varying very rapidly; and the estimates become smoother for bigger R. The comparison can be performed easily by placing all the estimates from the three different value of R in the same figure as shown in figure 3.6. The comparison is more obvious by looking at the lower figure, which is the zoomed version of some part of the upper figure.
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Figure 3.6. Comparison of M2(A) estimates for various measurement noise
From these figures we see that the estimates become more varying when R is small. When the measurement noise R is small, the memory of the filter will be very short and the filter will give large weight the most recent measurement. Therefore, any changes indicated in the measurement will cause the filter to adapt the states estimates immediately.

3.4. Experiment 3: System Noise (2
The objective of this experiment is to see the effect of system noise on the Kalman filter performance. Like in the previous section, three different value of system noise are used to encompass all three possible conditions: larger than the correct value, equal to the correct one, and less than the correct one. The values of system noise variance used in this experiment are 10 (t2, (t2, and 0.1(t2 respectively, where (t2 is the true value of the system noise variance. Some of the results, which are the estimates of M2(A), are shown in figure 3.7.
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Figure 3.7. Estimates of M2(A) for various system noise

From these figures, we see that by keeping all other parameters correct, the Kalman filter always yield satisfactory performance, regardless of the value of system noise. This again indicates that the filter performance is not sensitive to the system noise variance. The noticeable difference between these three estimates is that for big system noise variance the estimates are varying more rapidly. Figure 3.8 shows this difference more clearly. When the system noise is big, the filter put a large weight to the most recent measurement and the memory of the filter is short. With the same explanation of the previous experiment, when there are changes observed in the measurement, this causes the filter to adapt the states estimates immediately. As a result, the estimates are varying rapidly. In this case the filter is said to be too adaptive.
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Figure 3.8. Comparison of M2(A) estimates for various system noise
3.5. Experiment 4: Model Dynamics a
To see the effect of different model dynamics, in this section we present some experiments using three different values of parameter a. The values are chosen to be 3 at, at, and 1/3 at, again to represent the case of larger, equal, and smaller than the true parameter at, respectively. Some of the results, which are the estimates of M2(A), are shown in figure 3.9.
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Figure 3.9. Estimates of M2(A) for various model dynamics parameter
From figure 3.9 we see that the effect of parameter a is very significant on the performance of the Kalman filter. It is shown that only when we set the parameter equal to the correct value that the Kalman filter yields satisfactory performance. If we set parameter a less than the correct one, the Kalman filter always yields estimates that are larger than the true value. In this case, the filter over estimate the states values. On the other hand, if the parameter a is larger than the correct one, the Kalman filter yields underestimation. Moreover, we also see from this figure that not only the filter will yield overestimation or underestimation if a is incorrect, it also yields estimates that are varying periodically. The period of this variation in this experiment is around 14 days, which is a period that corresponds to the smallest frequency difference among the constituents used in the filter model. In this case it corresponds to the frequency difference between components M2 and S2. Another fact that can be seen from figure 3.9 is that the estimates error is larger when a is larger than the true value compare to when a is smaller than the correct one. We also see that the deviation of the estimates from the true values is decreasing in time. Hence, we may expect that after some time the estimates will be very close to the real values.

3.6. Experiment 5: Missing Component

In reality, we may encounter the problem where we do not include all components into our filter model. This may be done intentionally for example to reduce computational burden in the implementation. It may also because the missing component is not noticeable from the fourier spectrum of the signal. Therefore, it is important to study the effect of the missing component on the Kalman filter performance. 

To achieve this objective, two experiments using two different types of signal are performed. The first signal is noise free and generated with constant harmonic parameters. The filter model is set to consist of the same set of constituents that used to generate the signal. An additional component is then added into the signal whose frequency is 10% higher than the frequency of M2. The amplitude of the additional component is 0.01. Some of the results of this experiment are shown in figure 3.10.
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Figure 3.10. Estimates of M2(A), S2(A), and A0 for the case of filter with a missing component

From figure 3.10, we see that the existence of the missing component in the signal influences the estimates of the other components. The results show that the missing component causes the estimates to vary periodically. The period of the estimate variation of each component corresponds to the frequency difference between the missing component and the respective component. For example from figure 3.10(a), we see that the estimates of M2(A) varies with period around 52 days, which corresponds to the period of a signal whose frequency is equal to 0.01 times frequency M2. Another observation from this figure shows that the effect of the missing component is more significant to the estimates of the components whose frequency is close to the frequency of the missing component. We also see that the amplitude of the variation decays over time and the estimates converge to the true value. Therefore, we may expect that the effect of the missing component will vanish after some time.

Another experiment was performed using noisy generated signal as described is section 3.2. But this time we add one more component to the signal with constant amplitude 0.01 and frequency 10% higher than M2 as in the previous experiment. This additional signal, acting as the missing component, is not included in the filter model.

Some of the results are shown in figure 3.11. From these figures we see that for the case of non-zero a, the effect of the missing component is not noticeable. Of course the effect will become significant if the amplitude of the missing component is very big. But in this case we will be able to identify the component from the fourier spectrum of the signal, so that we can include it in the filter model.
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Figure 3.11. Estimates of M2(A), S2(A), and A0 for the case of filter with a missing component 

and noisy signal
3.7. Discussion

In this chapter some experiments using generated signal have been presented. The results show that the Kalman filter performs very well in reconstructing the generated periodic signal, both in noise-free and noisy circumstances, given that the filter model is exactly the same as the real model that generates the signal. However, other experiments show that the filter is not very sensitive to both the system and measurement noise statistics. Nevertheless, the performance is very sensitive to the model dynamics parameter a. The experiment with this parameter shows that the filter will yield underestimation if a is bigger than the correct one. On the other hand, it will yield overestimation if a is smaller than the true one. Moreover, the estimates deviation due to the underestimation is larger than the deviation due to overestimation. This gives rise to the question of how to determine a in the real measurement. However, the experiments also show that the estimates deviations from the correct values are decreasing over time. We may expect therefore that after some time the filter will yield satisfactory performance. Besides yielding over and underestimation, the incorrect parameter a also causes the estimates to vary periodically with period that corresponds to the smallest frequency difference between harmonic components used in the filter model. The filter performance is also sensitive to the existence of missing component within the signal being analysed. The missing component causes the estimates of other components to vary periodically with period that corresponds to the frequency difference between the missing component and the respective component. The effect of the missing component is more significant on the estimates of components whose frequency is close to the frequency of the missing component. However, the experiment also shows that the effect decays with time. Hence, we may also expect that the filter will again yield satisfactory performance.

The findings obtained from the experiments in this chapter may also be used in the tuning process of the filter when it is implemented with the real measurement data. By trial and error we can always check whether the estimates of the components are satisfactory. If we think the estimates are varying too rapidly, then we can try to smooth them by reducing the system noise variance (2 or by increasing the measurement noise variance R. If the estimates are varying periodically, then we can examine whether the model dynamics parameter a is incorrect or whether we have included all components in the model.
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