Chapter 2

Narrow Band Process and Kalman Filter 

2.1. Introduction

In this chapter, we present some basic theory on which the adaptive harmonic analysis method is based. If in the harmonic analysis the tidal signal is considered to be consisting of several sinusoid functions with different harmonic frequencies, the adaptive harmonic analysis considers the tidal signal to be consisting of several narrow band processes centred at different harmonic frequencies. The next section is devoted for the explanation about the narrow-band processes. It is shown how a narrow band process can be considered as a sinusoid with slowly varying amplitude and phase. The state space representation of the narrow band processes is discussed in the third section. As the amplitude and phase of the narrow band processes will be estimated using Kalman filter, in the fourth section a brief explanation about the theory of Kalman filter is given. The aspect about stability is discussed in the fifth section. Most of the explanation presented in this chapter is taken from the work of Heemink [1986] and [1991]. In the final section, the implementation of the Kalman filter based on the model developed in section 2 is described.

2.2. Narrow-band processes

Consider a weakly stationary stochastic process ((t) described by Wong [1971]:
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(2.1)

where Z(() is a complex valued stochastic process with zero mean and with independent increments such that:
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(2.2)

with S(() as the two-sided energy spectral density function of the process ((t).

Since ((t) is a real process we can rewrite (2.1) as:
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(2.3)

where


dV(() = [dZ(()-dZ(-()]/2






(2.4)


dW(() = i[dZ(()+dZ(-()]/2

are mutually independent processes, both real and with independent increments such that:
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(2.5)

If ((t) is a narrow-band process, the spectral density function has a form as shown in Figure 2.1. 
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Figure 2.1. Spectral density function of a narrow band process

Here (( << (m. In this case equation (2.3) can be rewritten as follows:
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(2.7)

where the mutual independent stochastic processes:
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(2.8)
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vary slowly in time since their spectral density:
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is concentrated near v = 0. From this, we conclude that a narrow-band process can be considered as a harmonic oscillation with slowly varying amplitude:
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(2.10)

and phase:
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(2.11)

2.3. State space representation

The spectral density of tidal signal usually consists of a number of narrow band peaks, as for example shown in Figure 2.2. This figure shows the spectral density of the water elevation in Hoek van Holland, which was taken from 00:00 January 1, 1999 until 23:00 December 31, 1999, with time interval 10 minutes. 
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Fig. 2.2. Spectral density of water level taken from 

Hoek van Holland, 1 January 1999 - 31 December 1999 23:00
This fact suggests that the water level y(t) can be approximated by the sum of all of these narrow band processes:
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(2.12)

In order to derive a state space model for y(t), the power spectral density function Si(v) of Ai(t) and Bi(t) is parameterised according to: 
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(2.13)

For small values of ai, Si(v) is a narrow band spectrum. The autocovariance ri(() of Ai(t) and Bi(t) is given by:


[image: image17.wmf](

)

(

)

|

|

2

2

t

nt

s

n

n

t

i

a

i

i

i

i

e

a

d

S

e

r

-

¥

¥

-

=

=

ò

 .






(2.14)

The processes Ai(t) and Bi(t) can then be modelled by means of the stochastic differential equation (Jazwinski [1970]): 
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(2.15)

where ((t) and ((t) are mutually independent stochastic processes with zero mean and with independent increments such that:
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(2.16)

Since (i is constant the stochastic differential equations above are the same in the Ito and Stratonowitz sense. Using the Euler scheme, these equations can be approximated by:


[image: image20.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

k

i

k

i

i

k

i

k

i

k

i

i

k

i

t

t

B

ta

t

B

t

t

A

ta

t

A

b

s

a

s

D

+

D

-

=

D

+

D

-

=

+

+

1

1

1

1

.





(2.17)


[image: image21.wmf](

)

k

i

t

A

 and 
[image: image22.wmf](

)

k

i

t

B

 represent the numerical approximation of 
[image: image23.wmf](

)

k

i

t

A

 and 
[image: image24.wmf](

)

k

i

t

B

 respectively. Furthermore, (t is the time step and ((i(tk) and ((i(tk) are mutually independent random variable with zero mean and variance (t.

In the state space form, these equations can be written as
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(2.18)

where the state vector X(tk) is defined as:
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(2.19)

and W(tk) consists of the random variables ((i(tk) and ((i(tk). Because ((i(tk) and ((i(tk) are assumed to be mutually independent random variable with zero mean and variance (t, the covariance matrix Q of W(tk) can be shown to be I(t. ( and ( are coefficient matrices that consist of the terms (1-(t ai) and (i respectively.

If a measurement Z(tk) of water level y(t) is available, it can be modelled by the relation:
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(2.20)

where V(tk) is the measurement noise with variance R(tk) that depends on the meteorological conditions and M(tk) is the measurement vector given as
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2.4. Kalman Filter

In this section we give a short review of the filtering theory. We have concentrated our attention on the aspects of discrete filtering theory that are of major relevance to the problems dealt with in this study. Rather than striving for the mathematical precision of a theorem-proof structure, we merely recall the basic assumptions and characteristics of filtering theory. 

Assume that modeling techniques have produced an adequate description in the form of a linear stochastic system to describe the propagation in time of a state vector 
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is a p-vector white Gaussian noise process. The statistics of this noise process are assumed to be:
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with Q(k) being a p-by-p symmetric positive-semi definite matrix. The system noise 
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includes the effects of variability in the natural system as well as model structure errors. The initial condition 
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where Po is an n-by-n symmetric positive-definite matrix.

Measurements are available at discrete time points t1, t2, … and are modelled by the relation:
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Here 
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is the m-vector measurement process, 
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The measurement noise 
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 represents the uncertainty associated with the measurement process. It is further assumed that R(k) is a symmetric positive-definite matrix and that the initial state 
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It is desired to combine the measurements 
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, taken from the actual system, with the information provided by the system model in order to obtain an estimate of the system state 
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Under the assumptions of the model described above it can be shown that the conditional density is also Gaussian. As a result it is completely characterized by its mean and covariance matrix. Therefore, the mean, mode, median or any other logical choice of estimate of 
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and the same covariance matrix of the estimation error P(k|l). Recursive filter equations to obtain these quantities can be summarized as follows. The optimal state estimate is propagated from measurement time tk-1 to measurement time tk by the equations:
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At measurement time tk, the measurement 
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, becomes available. The estimate is updated by the equations:
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(2.30)

where:
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(2.31)

is the filter gain. The initial condition for the recursion is given by:
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The filter just described is the Kalman filter for a discrete problem formulation. The derivation of these filter equations can be found for instance in Maybeck (1979). Maybeck uses a probabilistic approach to the filtering problem: The state vector is considered to be a stochastic process evolving in time, whose probability law is to be determined by using observations of another, related stochastic process. Since any logical choice of estimate of the state 
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will result in the same filter equations, the Kalman filter can also be derived using classical statistical methods such as maximum likelihood or least square estimation (Jazwinski, 1970). 

The Kalman filter has a predictor-corrector structure. Based on all previous information, a prediction of the state vector at time tk is made by means of the equations (2.27) and (2.28). Once this prediction is known it is possible to predict the next measurement by means of the equation (2.25). When this measurement has become available the difference between this measurement and its predicted value is used to update the prediction of the state vector by means of the equations (2.29) – (2.30). Figure 2.3 is a block diagram representation of the algorithm. Note that the filter gain K(k) does not depend on the measurements and therefore may be precomputed.
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Figure 2.3. Block diagram representation of the Kalman filter

The performance of the filter can be judged by monitoring the innovations I(tk), defined as the difference between the measurements and the predictions of the measurements based on all previous information:
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From this definition, it can be derived that
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Since the theoretical statistics of the innovations are known, the actual innovations can be monitored and compared with this description. By checking whether the innovations indeed possess their theoretical statistical properties we are able to judge whether the mathematical model satisfactorily describes the real system behaviour.

2.5. Stability

Optimality of the filter does not imply stability. In order to define the stability of the filter it is useful to rewrite the Kalman filter as:
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where K(k) is determined by the equations (2.28), (2.30), and (2.31) and
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is the state transition matrix of the filter. The just described is said to be stable if there exists a constant c1>0 so that:
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Here 
[image: image80.wmf].

denotes a matrix norm.

The filter is exponentially stable if there exist constants c2>0 and c3>0 so that
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Exponential stability of the filter implies that bounded inputs 
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An immediate consequence of the exponential stability of a filter is that if P1(k|k) and P2(k|k) are two solutions to the filter equations for different initial conditions 
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This essentially means that the effect of the initial condition Po vanishes as more and more measurements are incorporated. This is important since Po is often poorly known and sometimes is arbitrarily set. 

One approach to the stability of the filter can be obtained from the filter equations (2.27) – (2.31). In Heemink [1986], it is shown that for the model described in Section 2.3:
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so that:
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This implies that if the original system (2.22) is (exponentially) stable the Kalman filter is also (exponentially) stable. From equation (2.42) it can be seen that the filter is always more stable than the original system. This stability improvement property of the filter is a very favourable property. Note that if the filter is uniformly completely observable and controllable the stability of the original system is not required for filter stability. A system model can be unstable while the Kalman filter is stable.

2.6. Implementation

Applying the filter equations (2.27) – (2.31) to the model in equations (2.18) – (2.20), we obtain the Kalman filter design as follows:
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(2.46)

where:
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(2.47)

and (, ( the model coefficient matrices, M the measurement matrix, Q covariance matrix that can be shown to be I(t, as described in section 2.3. ( and ( consist of the terms (1-(t ai) and (i respectively. 

It should be noted here that since ( is a diagonal matrix consist of terms (1-(t ai), then 
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. Therefore, based on the stability improvement property described in section 2.5, the Kalman filter based on this model is also stable.

The model representation in equation (2.18) is a numerical approximation of the continuous-time model (2.15). The quantity X in the equations is often called the coloured noise, while W is the white noise. In implementing the Kalman filter we require to specify the statistics of both the system and measurement noise. There are two possible ways to specify the system noise statistics: either specifying the coloured or the white noise statistics. It is more preferable to specify the coloured noise than the white, because it gives more physical interpretation. This is important because in tuning the filter we often need to use physical insights to propose changes in the noise statistics. Therefore, in the implementation, instead of specifying standard deviation of white noise ( in the equation (2.17) for each constituent, we specify the standard deviation of coloured noise (c, which is related to the white noise by the equation (Maybeck [1979]):
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The term (t appears in the covariance matrix Q in equation (2.44) due to the fact that we approximate the continuous model with the numerical approximation.
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