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Chapter 1

Introduction

This thesis has been evaluated in the context of the CATS (Causal Model for

Air Transport Safety) project. CATS is a project commissioned by the Dutch Min-

istry of Water Management and Transport to different European organizations to

investigate risks in the aviation industry [17]. The full model is being developed

by a consortium including the Delft University of Technology (TUD), Det Norske

Veritas (DNV), the National Aerospace Laboratory (NLR) and White Queen (WQ).

The purpose of this model is to describe and understand better the air traffic sys-

tem and its safety functions in such a way that it is possible to analyze the risk

reduction alternatives and that serves as means of communication between experts

and managers within the industry.

The aviation industry is considered as one of the safest ways of traveling nowa-

days. However, accidents and incidents may still occur. These accidents tend to

result from a combination of different casual factors (e.g. human errors, technical

failures, environmental and management influences) in certain accident scenarios

(e.g. loss of control, fire, collision, etc.) and the causes and consequences differ

according to the phase of flight in which they may occur (e.g. take-off, en route

approach and landing, etc.). As it was already mentioned, human errors may have

big influence on the accidents and incidents scenarios. Therefore, it is really impor-

tant to define those human factors in a proper way and understand the associated

risks of those factors. This effort may be used later on to improve the safety as

effectively as possible. For this reason, 3 human reliability models were developed

- Flight Crew performance model, Air Traffic performance model and Maintenance

Technician performance model whose evaluation is a part of this master thesis.

The CATS project approaches the complexity by evaluating separate causal mod-

els for each accident scenario in each flight phase. This are represented by Event

Sequence Diagrams (ESDs), and Fault Trees (FTs) and all of these separate ele-

ments are converted later on to a single structure - Bayesian Belief Net (BBN). In

1



2 CHAPTER 1. INTRODUCTION

practice, to build and analyze the CATS model a software package UniNet is used.

UniNet is being developed at the Delft Institute of Applied Mathematics of the

Delft University of Technology for dealing with large continuous/discrete non para-

metric BBNs. UniNet is able to update a joint distribution (assuming a normal

copula) in real time. Inputs for UniNet are marginal distributions, and rank and

conditional rank correlations as described in [1]. A description of some features of

the program may be found in [4].

1.1 Goal of the thesis

The goal of the thesis is to:

• develop and build the Maintenance Technician performance model.

• explain the structure of the CATS model giving an overview of its different

parts.

• describe different steps required for constructing the full model.

• present analysis with the version of the model that is available at the moment

of writing this thesis.

• recommend possible directions for exploiting research resources in the future.

The model as stands at the present is not a final version. In particular 2 event

sequence diagrams ESD36 - Ground collision imminent and ESD37 - Wake vortex

encounter will be added to the model. Also the distribution of some human errors

(base events in the FTs) might change as new data becomes available. More details

will be presented along the thesis.

1.2 Outline if the thesis

This thesis has been structured as follows. In this first chapter we present

an introduction to the subject of study and an overview of the structure of the

thesis. In Chapter 2 we will present the theoretical “tools” used later on in the

thesis, like a description of different types of the Bayesian Belief Nets and the elici-

tation procedures for marginal distributions and the (conditional) rank correlations.

Chapter 3 will present the 3 human reliability models. We will give a brief de-

scription and analysis of the Flight Crew (FC) performance model and Air Traffic

Control (ATC) performance model. Next, in more details we will present the Main-

tenance Technician (MT) performance model. The description of the development
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of the model, the most influential contribution factors on the MT error, the quantifi-

cation of that model and as well as analysis using software UniNet will be presented.

In Chapter 4 we will focus on the CATS model. We will present a brief de-

scription of the Event Sequence Diagrams (ESDs) and Fault Trees (FTs). Next,

we will present the progress of developing the CATS model. This chapter will fin-

ish with the description of the procedure to obtain the underlying error distribution.

In Chapter 5 we will present the analysis of the CATS BBN with respect to

MT performance model and accident scenario representing three flight phases, take-

off, en route and approach and landing. We will present also the sensitivity analysis.

Finally some conclusions and recommendations for the future work will be pre-

sented in the Chapter 6.





Chapter 2

Methodology

This chapter provides the main information about the theoretical “tools” used

later on in this thesis. We present a brief description of Bayesian Belief Nets mod-

els with emphasis on non parametric BBNs. Also, the elicitation procedures for

marginal distributions and the (conditional) rank correlations will be presented. We

will finish this chapter presenting the basic ideas of the sensitivity analysis measures

that will be used later in chapters 3 and 5.

2.1 Bayesian Belief Nets (BBNs)

Bayesian Belief Nets (BBNs) (also called Bayesian Networks) are graphical tools

used to represent and model high-dimensional uncertainty distributions.

A BBN is a directed acyclic graph. The nodes of a BBN represent random

variables, which can be either discrete or continuous, and the causal arcs represent

relationships between them.

Figure 2.1 presents an example of a Bayesian Belief Net on four variables. Vari-

able 4 is called child node and variables 1,2 and 3 are called parent nodes.

Figure 2.1: BBN on 4 variables.

5



6 CHAPTER 2. METHODOLOGY

In order to specify the BBN form figure 2.1 one needs to specify the marginal

distributions of 1,2 and 3 and the conditional distribution of 4 given 1,2,and 3.

In general, to specify a BBN, the marginal distributions of the variables without

parents (source nodes) are needed, and the conditional distributions of each other

variable given its parents in the graph.

In the literature, 3 types of BBNs are discussed: discrete, normal and non para-

metric, [1, 2]. Each of the mentioned types will be shortly presented, along with its

advantages and disadvantages.

2.1.1 Discrete BBNs

The nodes of a discrete BBN represent discrete varaibles. There are some ad-

vantages and disadvantages of this kind of BBNs.

A discrete BBN requires the specification of the marginal distributions for the

source nodes and conditional probability tables for all child nodes. Discrete BBNs

have become a very popular tool in modeling risk and reliability. If the variables

involved in the analysis are truly discrete, and data are available for calculating

the conditional probability tables needed, there are advantages in working with this

kind of models. One of them is that fast updating algorithms are available. More-

over, commercial tools with an advanced graphical interface that support discrete

BBNs construction and inference are also available. Nevertheless if the models are

large and complex, the discrete BBNs suffer the disadvantage of a high assessment

burden. For example, if a child node has 7 parents and all nodes have 3 states, then

6561 (38) conditional probabilities are required [1]. Moreover, if data is available

for the marginal distribution of a child node and not available for its conditional

distribution, the latter information should be gathered from experts. Specifying the

conditional distribution such that it complies with the marginal retrieved from data

can be a difficult task for any expert. If the variables involved in the model are

continuous, modeling their dependence with discrete BBNs requires a simplification

of the model or a drastic discretization of the nodes. For these reasons, working with

discrete BBNs is sometimes inappropriate. In these cases the continuous approach

seems more suitable.

2.1.2 Normal BBNs

Continuous BBNs were first developed for the joint normal variables. ‘Influ-

ences’ of the parents on a child were interpreted as partial regression coefficients,

when the child is regressed on the parents [2]. For each normal variable, the uncon-

ditional mean and constant conditional variance must be assessed together with a

set of partial regression coefficients [1]. Discrete nodes can be also incorporated and

modeled together with normal nodes (discrete-normal BBNs). However, there is the
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restriction that continuous nodes can have discrete parents but not discrete children.

One of the advantages of normal BBNs is that the means, conditional variances and

partial regression coefficients can be assessed algebraically independent. As in the

case of discrete BBNs, this approach is suitable if the variables are truly normal.

If the normality assumption does not hold, then the individual variables must be

transformed to normal variables. The conditional variance in normal units must be

constant. Moreover, the partial regression coefficients apply to the normal units of

the transformed variables, not to the original units, which places a heavy burden of

any expert elicitation1. Also, if the parent node is added or removed after quantifica-

tion, then the previously assessed partial regression coefficients must be re-assessed.

Hence, if the normality assumption does not hold, all mentioned requirements make

a normal BBNs unappealing for modeling high dimensional distributions.

2.1.3 Non parametric BBNs

In [2], a non parametric approach was proposed for the continuous BBNs. No

parametric form for the joint distribution is assumed. In order to quantify BBNs

using these approach, one needs to specify all one-dimensional distributions and a

number of (conditional) rank correlations equal to the number of arcs in the BBN.

Each node of the graph is assigned with a continuous invertible univariate dis-

tribution. The dependence between variables is described via (conditional) rank

correlations. This measure of dependence was chosen for several reasons: it always

exists; does not depend on marginal distributions; measures monotonic relationships

and successful expert elicitation procedures have been developed for rank correla-

tion. The (conditional) rank correlations on a BBN are algebraically independent.

Any number between [-1,1] can be attached to the arcs of a continuous non para-

metric BBNs. For example, for the BBN structure from figure 1.1 one needs to

specify (conditional) rank correlations between variable 4 and its parents. A (non

unique) order of the parents should be chosen. Let us assume we choose the order

1,2 and 3. The rank correlation between 4 and its first parent is the unconditional

rank correlation r4,1. The rank correlations between 4 and its next parent 2 will

be conditioned on the value of the previous parent 1, i.e. r4,2|1. In the same man-

ner the arc between 4 and 3 is associated with the conditional rank correlation r4,3|2,1.

Using these quantification nodes and arcs can be added or delated from a BBN

without re-assessing previously specified correlations. Furthermore, the dependence

structure is significant for any such quantification and there is no need to revise it

if univariate distributions are changed. When data are not available the conditional

rank correlations are elicited from experts. The elicitation procedure is presented

1When data is not available.
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in the next sub-section.

The theory for non parametric continuous BBNs is extended in [18] to include

discrete ordinal variables. These are variables that can be written as monotone

transforms of uniform variables. The rank correlation of two discrete variables is

translated in terms of the rank correlation of their underlying uniforms.

The (conditional) rank correlations assigned to the edges of a BBN are real-

ized using copulae. Any copula with invertible conditional cumulative distribution

function, that realizes all correlations between -1 and 1, may be used as long as

it represents (conditional) independence as zero (conditional) correlation. Never-

theless we choose the normal copula for realizing the dependence structure. The

biggest advantage of the normal copula is the conditioning/updating can be done

analytically.

The present discussion concerns only probabilistic nodes. However, a node in

the BBN can be also functional, i.e. a function of other variables. This function

captures all the dependence between the parents (arguments of the function) and

their child. Therefore, there is no need to assess the (conditional) rank correlations

to the arcs connecting functional nodes with their parents. It is worth mentioning

that the influence defined by the (conditional) rank correlation can be considered

as “softer” than the influence determined by the functional relationship.

A restriction in using functional nodes is that a functional node can not have

probabilistic children.

In order to fully quantify the model we need to obtain the marginal distributions

together with (un)conditional rank correlations specified by the edges. When data

are not available, we can use expert judgment for that purpose.
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2.2 Expert Judgment

Expert opinion has been used in many fields. If some information about param-

eters are not known and cannot be estimated from any experiments or observations

expert judgment is used instead.

In this project expert judgment is used for two purposes:

• to provide information about unknown marginal distribution for variables of

interests in the Maintenance Technician performance model;

• to obtain information about the strength of the dependence relationships be-

tween variables in the Maintenance Technician performance model.

In order to estimate the marginal distributions we used the so-called classical

model of expert judgment2.

2.2.1 Marginal distribution

In order to obtain marginal distribution the classical method of expert judg-

ment is used. The classical model constructs the weighted combination of expert’

probability assessments. Experts are asked to provide their subjective probability

distribution in the form of a number of specified quantiles. Most of the times, an ex-

pert is asked to specify his/her 5%, 50% and 95% quantile of uncertainty distribution

for each of the variables of interest. These are defined as follows:

• The 5% percentile value means that there is 5% chance that realization of the

variable is lower than this value.

• The 50% percentile (median) of the distribution, i.e. the value that has 50%

chance of observing values higher or lower.

• The 95% percentile value means that there is 5% chance that realization of

the variable is higher than this value.

Weights are derived based on some performance measures and satisfy the strictly

proper scoring rule. There exist two quantitative measures of the performance of

the experts - calibration and information (or informativeness). They are assessed

based on experts’ estimates on so-called seed or calibration variables. These are

variables from the experts field of experience and their true values are unknown to

the experts when they give their opinions, but known to the analyst. Calibration

measures the statistical likelihood that a set of experimental results correspond, in

a statistical sense, with the experts assessments. Information represents the degree

to which the distribution provided by an expert is concentrated. For more details,

see [7].

2In the elicitation only one expert was used
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2.2.2 Elicitation of unconditional and conditional rank correla-

tions

In this section we explain the methods used in the elicitation of unconditional

and conditional rank correlations. The BNN in figure 2.2 will be used as an example.

Figure 2.2: A BBN on 4 variables with associated set of the (conditional) rank
correlations.

First, we present the conditional probability method for estimating rank corre-

lations and next, we present how to extend the elicitation procedure from uncondi-

tional to conditional rank correlations.

Conditional probabilities of exceedance and rank correlations

To elicit the rank correlation r4,1 between variables X4 and X1, for the BBN

presented in figure 2.2, we ask expert the following question:

• Suppose that the variable X1 was observed above its qth quantile. What is the

probability that also X4 will be observed above its qth quantile?

An answer to that question is equivalent to an estimate of P1 = P (FX4(X4) >

q|FX1(X1) > q). In practise we can use any quantile value. However, the resulting

rank correlation is dependent of the choice of copula3.

To calculate the exceedence probability we can integrate numerically the bivari-

ate normal density φ(x1, x4, ρ4,1) over the region corresponding to the quantile’s

exceedance region [Φ−1(q),∞)2, where Φ−1 is the inverse standard normal cumula-

tive distribution function.

P1 =
1

1− q

∫ ∞

Φ−1(q)

∫ ∞

Φ−1(q)

φ(x1, x4, ρ4,1)dx1dx4. (2.1)

3The normal copula is desired because the choice of other copulas imposes computational
restrictions in terms of speed and numerical accuracy. For more information see[12].
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After that, the analyst finds the ρ4,1 which satisfies the expert’s conditional

probability assessment and transforms this to the corresponding rank correlation

using the relationship in equation 2.24

ρ4,1 = 2sin(
π

6
r4,1). (2.2)

The relationship between the conditional probability (equation 2.1) and the rank

correlation r4,1 is presented in figure 2.3. In figure 2.3 we use the 50th percentile

while eliciting exceedence probabilities and the normal copula to find relationship

between probability of exceedence and the rank correlations.

Figure 2.3: Relationship between P (FX4(X4) > 0.5|FX1(X1) > 0.5) and the rank
correlation r4,1.

When we know the value of P1 the corresponding value of rank correlation r4,1

can be read from figure 2.3. It is worth mentioning that:

• if P1=0 then r4,1 = −1

• if P1=0.5 then r4,1 = 0

• if P1=1 then r4,1 = 1

For example, if expert tells us that P1 = P (FX4(X4) > q|FX1(X1) > q) = 0.7

then form figure 2.3 we can read that r4,1 = 0.57.

Next, we will present a procedure of eliciting conditional rank correlations. We

will continue with an example of BBN presented in figure 2.2.

4If (X,Y ) is a random vector with joint normal distribution then ρX,Y = 2sin(π6 rX,Y ). Pear-
son, 1904 in [2]
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Conditional probabilities of exceedance and conditional rank correlations

As it was already mentioned we will use q=0.5 while eliciting exceedance proba-

bilities and the normal copula to find relationship between probability of exceedance

and the (conditional) rank correlations. To assess the conditional rank correlation

r4,2|1, we ask the expert the following question:

• Suppose that not only variable X1 but also X2 were observed above their medi-

ans. What is now the probability that also X4 will be observed above its median

value?

This question requires expert’s estimate of P2 = P (FX4(X4) > 0.5|FX1(X1) >

0.5, FX2(X2) > 0.5). The probability that the expert can provide in this situation

will depend on the estimate given for the question presented in previous subsection.

For example, if expert thinks that variables X2 and X4 are independent given X1,

then the answer to second question is identical to the answer to first question. If the

expert regards variables X1 and X4 as completely positively (negatively) correlated

then he/she would have answered P1 = 1 (P1 = 0) and the second question would

not have been necessary at all, as X4 would be completely explained by X1. Any

answer for P1 different than 0, 0.5 or 1 means that the expert believes that X1

explains at least in part X4 and hence X2 can only explain part of the dependence

that was not explained already by X1.

In the BBN presented in figure 2.2, variables X1 and X2 are independent, there-

fore the rank correlation (r1,2) between them is equal to 0. Since all rank correlations

in BBN presented in figure 2.2 are algebraically independent, then r4,2|1 can take

any value in (-1,1). The correlation matrix of the joint normal distribution looks as

follows:

Σ4,1,2 =

 ρ4,4 ρ4,1 ρ4,2

ρ4,1 ρ1,1 ρ1,2

ρ4,2 ρ1,2 ρ2,2

 =

 1 ρ4,1 ρ4,2

ρ4,1 1 0

ρ4,2 0 1



The value of correlation ρ4,1 was assessed by expert in previous step. We can

determine the relationship between ρ4,2|1 and the conditional probability P2 from

useful properties of normal copula. If we know the values of ρ4,1, ρ4,2 and ρ1,2 we

can calculate partial correlation ρ4,2;1 with the recursive formula [2]:

ρ4,2;1 =
ρ4,2 − ρ4,1 · ρ1,2√
1− ρ2

4,1

√
1− ρ2

2,1

(2.3)

As for joint normal distribution partial and conditional correlations are equal,

therefore ρ4,2;1 = ρ4,2|1. Now, using the Pearson transformation (ρ4,2|1 = 2sin(π
6
r4,2|1))

we can obtain r4,2|1.
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Relationship between ρ4,2|1 and probability obtained from expert is as follows

P2 =
1

0.5

1

0.5

∫ ∞

0

∫ ∞

0

∫ ∞

0

φ(x4, x1, x2, ρ4,1, ρ4,2|1)dx4dx1dx2. (2.4)

Figure 2.4 presents the the relationship between conditional probability P2 and

the conditional rank correlation r4,2|1, where the previous expert’s estimate for P1

was equal to 0.7. One can notice that the probability of exceedance is constrained by

the expert’s previous estimate. If P1 = 0.7 then the possible values for probability P2

are restricted to interval (0.4,1). This can be explained in the following way. While

expert provides his estimate for P1 he/she describes how much of the information of

X4 is explained by X1. Thus, P2 can only explain the remaining part of information

of X4 which was not explained by X1.

Figure 2.4: Relationship between P (FX4(X4) > 0.5|FX1(X1) > 0.5, FX2(X2) > 0.5)
and the rank correlation r4,2|1.

For example, if expert provides that P2 = 0.6 then the corresponding conditional

rank correlation r4,2|1 is equal to -0.37.

A similar procedure would be applied to find other higher order conditional rank

correlations in a given BBN.

Different approaches may be used to elicit the unconditional and conditional

rank correlations. We present here 2 possible elicitation procedures additional to

the one presented so far.

First, for the BBN presented in figure 2.2, the expert is asked:
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• What is the probability that variable 4 is above its qth4 quantile given that 1 is

above its qth1 quantile?.

This information is translated into the rank correlation r4,1. As it was already

mentioned q4 and q1 may be different, however the usual choice is the median for

both of them. This question is exactly the same as in procedure 1.

We can ask similar question for the rest of the variables. The second question

may be:

• What is the probability that variable 4 is above its qth4 quantile given that 2

is above its qth2 quantile? From this exeedence probability one can calculate

r4,2|1.

• What is the probability that variable 4 is above its qth4 quantile given that 3 is

above its qth3 quantile? The answer to this question is translated in r4,3|1,2.

A third option is to elicit directly a rank correlation as opposed to probabilistic

statements. Once the first conditional probability has been assessed and translated

to its corresponding rank correlation (r4,1 in this case), the analyst may elicit ra-

tios of rank correlations and translate them into conditional rank correlations. The

first (unconditional) rank correlation, r4,1, follows from eliciting the corresponding

probability of exceedence5. Later on, the ratio r4,2

r4,1
is elicited and translated into

the conditional rank correlation r4,2|1, followed by the elicitation of r4,3

r4,1
, which is

translated into r4,3|1,2.

The answer to each of the subsequent questions is constrained by the answers

provided by the previous questions. Therefore at each step of the elicitation, bounds

for the rank correlations have to be computed. The experts’ assessments will depend

on these bounds which are derived from his previous answers.

2.3 Sensitivity Analysis

According to [2], sensitivity analysis is concerned with identifying “important

parameters”. In general, we would like to know how much input parameters (base

variables) influence output data (predicted variables). Sometimes if the analyst

considers some dependence to be not strong enough he/she might decide to leave

variables outside the model to make the model more simple. Such kind of decisions

might be taken on the basis of sensitivity analysis.

To carry out the sensitivity analysis, several statistical and sensitivity measures

are calculated using the sensitivity analysis software Unisens which is a satellite

program of UniNet. For example, during the sensitivity analysis we can compute

5Hence in the three methods the first question would be the same.
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the following statistical and sensitivity measures: product moment correlation, rank

correlation, regression coefficient, correlation ratio, linearity index, partial correla-

tion, partial regression coefficient, and etc.6

However, in our analysis we will only use 3 statistics: product moment correla-

tion, rank correlation and correlation ratio. Below, we present a short description

and definitions of these statistics.

Product moment correlation

If random variables X and Y have finite expectation and finite variance, then

the product moment correlation is defined as follows:

ρ(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

, (2.5)

where Cov(X, Y ) = E(XY )− E(X)E(Y ).

The product moment correlation takes values between -1 and 1 and it measures

the degree of linear relationship between X and Y :

• ρ(X, Y ) = 1 if and only if Y = aX + b for some a > 0,

• ρ(X, Y ) = −1 if and only if Y = aX + b for some a < 0,

• if X and Y are independent then ρ(X, Y ) = 0 (although the converse is not

always true).

Rank Correlation

For example, when two variables X and Y are functionally related, but in

a non-linear way, then the product moment correlation may be small. For this

reason the rank correlation is often used as a measure of the degree of monotone

relationship (i.e. rank correlation measures the extent to which large values of X

occur with the large values of Y and small values of X occur with small values of Y).

The rank correlation of random variables X and Y with cumulative distribution

function FX and FY is defined as follows:

ρr(X, Y ) = ρ(FX(X), FY (Y )). (2.6)

Correlation ratio

Correlation ratio (CR) is an instrument which can give insight into relations

between base variables X, Y, Z, . . . and predicted variable G(X, Y, Z, . . . ).

6For more information see [2, 19].
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Correlation ratio of predicted variableG and base variableX is a squared product

moment correlation between G and function f(X) which maximizes this correlation.

The function f that maximizes ρ2(G, f(X)) is the conditional expectation of G given

X.

CR(G,X) = max
f

ρ2(G, f(X)) =
var(E(G|X))

var(G)
. (2.7)

Therefore it is a ratio of the variance of the conditional expectation of G given

X and the variance of G. Correlation ρ2(X, Y ) is always less than or equal to cor-

relation ratio CR(X, Y ).

Example

The example of the sensitivity analysis is based on Project 4.1 (Investment)

from [2]7.

In the sensitivity analysis we will take into consideration the following variables:

• variable “5yrReturn” which can be understood as amount of money which will

be return after 5 years when the initial capital equal to 1000,

• variable “start” which is defined as the initial capital (equal to 1000),

• variables “V1, . . . , V5” which are representing the yearly interest; each of

these variables is uniformly distributed on [0.05,0.15]. V1 is rank correlated

0.7 with V2, V2 is rank correlated 0.7 with V3, V3 is rank correlated 0.7

with V4 and V4 is rank correlated 0.7 with V5. The dependence structure is

induced by a dependence tree [2].

5yrReturn = start ∗ (1 + V 1) ∗ (1 + V 2) ∗ (1 + V 3) ∗ (1 + V 4) ∗ (1 + V 5) (2.8)

Now, we would like to check if there is any dependence between predicted variable

“5yrReturn” and base variables “V1, . . . , V5”. In this sensitivity analysis we drawn

2000 samples. Figure 2.5 presents the results the results of this analysis.

7This example does not have any connection with this master project. It is only used here to
explained the sensitivity analysis.
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Figure 2.5: Example of the sensitivity analysis.

In figure 2.5 we can see different measures which can be used in the sensitivity

analysis, e.g. product moment correlation, rank correlation, regression coefficient,

correlation ratio, linearity index and partial correlation coefficient. During the anal-

ysis we will focus mostly on the product moment correlation, the rank correlation

and the correlation ratio.

As we can observe, the variable V3 (the interest after third year) has the biggest

influence on predicted variable “5yrReturn”. The correlation ratio is equal to 0.7516.

It means that the variance of the “5yrReturn” is explained by 75.2% of the variance

of the conditional expectation of “5yrReturn” given V3. The next variable which

has big influence on the “5yrReturn” is the interest after fourth year (V4), whereas

the variable V1 has the lowest influence on the predicted variable “5yrReturn”.

The ratio of the highest to lowest correlation ratio is equal to 1.5153. The

difference between the product moment correlations and rank correlations do not

vary significantly. These measures are between 0.7 and 0.8 approximately indicating

a relatively high degree of linear dependence. This can be checked in equation 2.8

by observing that the interaction terms though still present almost vanish. For an

extensive account on sensitivity analysis measures the reader is referred to [2].





Chapter 3

Human Reliability Models

According to [13], the “human” factor accounts for 56% of the fatal accidents

in worldwide commercial aviation. Therefore the human factor should be properly

described in any risk model that illustrates the causes of aviation accidents. The

CATS model includes the human factors through human performance models, which

describe the human errors that can occur in different flight phases. Two human per-

formance models have been previously developed. These were Flight Crew (FC) and

Air Traffic Control (ATC) performance models. The goal of our work is to develop

a third human reliability model, the Maintenance Technician (MT) model.

As it was mentioned already, generic human performance models can be used

to represent the roles of flight crew, air traffic control crew and maintenance crew

in different situations. Some of the requirements of the human performance models

were:

• The human performance models should focus on those human operations that

influence the accident scenarios the most and be as simple as possible.

• It is not required to include every task or job to the model.

• These factors should have a simple and clear definition and operational mean-

ing.

This last remark is essential as the quantification of the model is based either

on available data or on expert opinion. The human performance is modeled with

continuous-discrete non parametric Bayesian Belief Nets, which allows the repre-

sentation of “probabilistic influences rather than deterministic cause-effect relation-

ships” ([5]).

In this chapter first, we briefly present the Flight Crew (FC) and Air Traffic

Control (ATC) models and describe the development of the Maintenance Technician

(MT) model. Next an analysis of the model will be performed.

19
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3.1 Flight Crew Performance Model

3.1.1 Description of the model

The Flight Crew Performance Model was the first of the generic models that

have been developed to describe the influence of humans in aviation operations.

Figure 3.1 presents the BBN representing the Flight Crew Performance Model.

Variables taken into account in the model are described below. The names of most

variables in the text appear abbreviated in the BBN. There are only two exceptions,

intra-cockpit communication, which is described as language difference (LangDif)

in the BBN, and man machine interface, which is described in BBN as aircraft gen-

eration (AirGen).

Figure 3.1: BBN representing the Flight Crew Performance Model.

The distributions of the variables are obtained from data or experts as indicated

in the description. However, the distribution of flight crew error is obtained from

the associated Fault Tree1.

1The description and explanation of FT will be presented in more details in Chapter 4.
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1. FIRST OFFICER EXPERIENCE (Data): Total number of hours flown (all

type aircrafts) for the First Officer.

2. FIRST OFFICER TRAINING (Data): Number of days since the last type

recurrent training for the First Officer.

3. FATIGUE (Data): Stanford Sleepiness Scale, where: 1-Completely awake and

7-sleep onset soon .

4. CAPTAIN TRAINING (Data): Number of days since the last type recurrent

training for the Captain.

5. CAPTAIN EXPERIENCE (Data): Total number of hours flown (all type

aircrafts) for the Captain.

6. CAPTAIN UNSUITABILITY (Structured Expert Judgment): Likelihood that

the Captain fails a proficiency check.

7. FIRST OFFICER UNSUITABILITY (Structured Expert Judgment): Likeli-

hood that the First Officer fails a proficiency check

8. WEATHER (Data): Rainfall rate in mm/hr translated to cockpit radar.

9. WORKLOAD (Structured Expert Judgment): Likelihood that the flight crew

needs to follow a procedure of the “abnormal/emergency procedures” section

of the Aircraft’s Operating Manual.

10. CREW UNSUITABILITY (Structured Expert Judgment): Likelihood the

Captain or the First Officer fail a proficiency check.

11. INTRA-COCKPIT COMMUNICATION (Structured Expert Judgment): Dif-

ference in mother tongue between Captain and First officer; yes or no

12. MAN MACHINE INTERFACE (Data): Aircraft generation; 1, 2, 3, or 4.

13. TOTAL TRANSMISSION TIME (Expert Judgment): The total duration (in

seconds) of the air/ground communications, per aircraft, for the approach and

landing flight phase.

14. FLIGHT CREW ERROR (From the associated Fault Tree): Likelihood that

the flight crew makes an unrecovered error that is potentially hazardous for

the safety of the flight.

The nodes of the BBN in figure 3.1 show the marginal distributions of the vari-

ables listed above. The mean and the standard deviation of the distribution of each

variable is shown at the bottom of each node. The marginal distributions that were

not obtained from data were elicited from experts [7]. The (conditional) rank corre-

lations were elicited according to the second method described in section 2.2.2. Five

experts were interviewed and asked 23 questions in total. 11 of these questions were
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used to obtain the dependence information, 4 to obtain the marginal distributions

and 8 of them to elicit the calibration variables. Experts answers were combined in

the standard way, as described in [7]. Table 1 presents the resulting (conditional)

rank correlations. For details about the FC performance model, we refer to [5].

(Un)Conditional
Rank Correlations

r7,1 -0.95 r14,10 0.30
r7,3|1 0.86 r14,12|10 -0.32
r7,2|1,3 0.24 r14,8|10,12 0.46
r6,5 -0.95 r14,9|10,12,8 0.18
r6,3|5 0.86 r14,11|10,12,8,9 0.19
r6,4|5,3 0.24 r14,13|10,12,8,9,11

a 0.16
r10,6 0.71
r10,7|6 1.00

Table 3.1: Dependence Information in the Flight Crew Performance Model.

ar14,13|10,11,8,12,9 was elicited later from a single expert who is not a pilot but a risk analyst
at National Aerospace Laboratory (NLR).

For instance, r7,1 represents the dependence between “first officer unsuitability”

and “first officer experience” and they are highly negatively correlated meaning that

the first officer with low experience is more likely to make errors.

Next, we present the analysis and the sensitivity analysis of the FC performance

model.

3.1.2 Analysis of FC performance model

Once the model is quantified we can further use it for prediction. We can

conditionalize on certain values of the bottom variables (ancestors of maintenance

error) and observe how this changes propagate to the top node “FC Error”. Let us

assume that the crew flies in “good” weather (figure 3.2). That would be translate

in 0.8 mm/hour rainfall rate. We can observe that the average number of errors

when flight crew is flying in good weather conditions will be reduced from 11e+4 to

6,83e+4.



3.1. FLIGHT CREW PERFORMANCE MODEL 23

Figure 3.2: Conditional distribution of FCError|Weather=0.8.

If additionally we consider flights that not only take place in good weather,

but also “high” workload (describes the number of times the crew encounters an

abnormal procedure per 100,000 flights) then we can notice that the mean value for

the FC error has increased to 7.67e+4 (figure 3.3). This means that high workload

makes flight crew errors more probable but does not neutralize the benefit of good

weather. It is still lower than the unconditional mean 11e+4.
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Figure 3.3: Conditional distribution of FCError|Weather=0.8, Workload=4000.

Finally, we conditionalize on the aircraft generation. Namely, we know that

the aircraft was designed in the 1950s, hence the oldest design, generation 1. All

previous conditioning has been kept. As we can notice, the mean value for the

flight crew error has increased to 15.7e+4 (figure 3.4). This value is higher than the

unconditional mean of FC error, meaning that ”good” weather cannot compensate

for ”high” workload and an old aircraft.
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Figure 3.4: Conditional distribution of FCError|Weather=0.8, Workload=4000, Air-
Gen=1.

This type of analysis can be done quite efficiently with non parametric continu-

ous BBNs and with UniNet software.

To see which variable influences the FC error the most or in other words to try

to explain the variability of which variable contributes the most to the variability

of FC error, sensitivity analysis can be performed.

The sensitivity analysis is based on 50000 samples drawn from the BBN created

in UniNet.

We would like to check how the “predicted variable”, i.e. the FC error, depends

on the “base variables”: aircraft generation, weather, man-machine interface, work-

load, total transmission time, etc. As it was mentioned in Chapter 2, in our analysis

we only used 3 statistics: product moment correlation, rank correlation and corre-

lation ratio.

In figure 3.5 we present the sensitivity analysis for FC error related to each of

the base variables based on the three measures described before.
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Figure 3.5: Sensitivity indices for the predicted variable FC Error and given base
variables.

Each row in figure 3.5 shows the sensitivity indices for a given base variable,

with respect to the predicted variable FC error. We can notice that the smallest

correlation ratio of FC error is obtained with captain training and first officer train-

ing, while the highest with weather and it is equal to 0.1732. This means2 that the

variance of the FC error is explained by 17.3% of the variance of the conditional

expectation of FC error given weather. The ratio of the largest to smallest rank

correlation (different than zero) is 895. The product moment correlation and rank

correlation do not vary significantly. The largest rank correlation is equal to 0.414

and it is corresponds to weather. Weather is followed by crew unsuitability with

the rank correlation equal to 0.3021. The smallest rank correlations corresponds

to first officer training and captain training and they are equal 0.0129 and 0.0078

respectively.

Next, we will discuss the Air Traffic Controller performance model.

2According to the formula 2.7.
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3.2 Air Traffic Control Performance Model

3.2.1 Description of the model

The second of the generic models is the Air Traffic Control Performance Model.

The BBN representing the Air Traffic Control Performance Model is shown in figure

3.6. Variables taken into account are briefly described below. The names of all

variables in the text appear abbreviated in the BBN.

Figure 3.6: BBN representing the Air Traffic Control Performance Model.

The distributions of the variables are obtained form the data as indicated in the

description. However, the distribution of ATCo error comes from the associated

Fault Tree3.

1. TRAFFIC (Data): Number of aircraft (any type) simultaneously under con-

trol.

2. MAN-MACHINE INTERFACE (Data): Four states variable. From 1- using

radio only to 4-using radio, primary and secondary radar and additional tools.

3. COMMUNICATION - COORDINATION (Data): 1 - The communication

with other ATCos takes place in the same room 2 - The communication with

other ATCos does not take place in the same room.

4. ATCo EXPERIENCE (Data): Number of years working as an ATCo in the

same position.

3The description and explanation of FT will be presented in more details in Chapter 4.
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5. VISIBILITY PROCEDURE (Data): Five states variable. From 1 - normal

operations to 5 - operations below 200 meters visibility.

6. TOTAL TRANSMISSION TIME (Expert Judgment): The total duration (in

seconds) of the air/ground communications, per aircraft, for the approach and

landing flight phase.

7. ATCo ERROR (Form the associated FT): Likelihood that the ATC control

will make an error of a given kind.

The (conditional) rank correlations are obtained from experts using the third

elicitation method described in section 2.2.2. 6 experts were interviewed and asked

19 questions. 5 of these questions were used to assign the marginal distributions

and 12 to elicit calibration variables. Unfortunately, the estimates of one expert

could not be used because the ratios which he/she gave were inconsistent4. The

(un)conditional rank correlations obtained with the performance based combination

of experts’ assessments are presented in table 2. The ATC performance model is

explained in more details in [6].

(Un)Conditional
Rank Correlations

r7,1 -0.179
r7,2|1 -0.21
r7,3|1,2 0.18
r7,4|1,2,3 -0.06
r7,5|1,2,3,4 0.02
r7,6|1,2,3,4,5

a 0.18

Table 3.2: Dependence Information in the Air Traffic Control Performance Model
Model.

ar7,6|1,2,3,4,5 was elicited later from a single expert who is a risk analyst at NLR.

The rank correlations in table 2.2 are indexed by the variables labelling in figure

3.6. For instance r7,1 represents the dependence between “ATCo Error” and “traf-

fic” and r7,2|1 represents the dependence between “ATCo Error” and “traffic” given

“man-machine interface”.

3.2.2 Analysis of ATC Performance Model

We can analyze the ATC performance model by conditioning on different values

of some variables.

4The ratios of rank correlations are constraint by expert’s previous estimates. In this case
some estimates were outside the range available.
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First, we conditionalize on the Man-Machine Interface (figure 3.7). We have

selected a high value for this discrete variable, meaning that the air traffic controllers

have the most advanced surveillance technology, i.e. radio, primary and secondary

radar and additional tools (4). We can observe that the average number of errors

when air traffic controllers are using the most advanced technology will be reduced

from 6.6 to 5.56.

Figure 3.7: Conditional distribution of ATCError|Interface=4.

If in addition to the controllers using the most advanced technology we consider

that the communication with other air traffic controllers takes place in different

rooms (Coord=2) we notice a small change in the mean value of the ATC error. It

decreases from 5.56 to 5.54 (figure 3.8). It means that given that the ATC works with

proper technology (Man-Machine interface = 4) obstruction of the communication

with other controllers does not have much influence on the number of ATC errors.
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Figure 3.8: Conditional distribution of ATCError|Interface=4, Coord=2.

Finally, we condition on the continuous variable that is traffic. We assume that

the air traffic controller has to direct and monitor 15 aircraft simultaneously. The

mean value for the ATC error decreases to 4.66 (figure 3.9). It can be interpreted

as high values of traffic influence ATC controller in a such way that he/she makes

less errors5.

5According to the experts working in high traffic situations kept them alert and less likely to
commit errors.
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Figure 3.9: Conditional distribution of ATCError|Interface=4, Coord=2, Traf-
fic=15.

Next, we present sensitivity analysis of ATC performance model.

We would like to check how the predicted variable, i.e. ATC error, depends

on the base variables: traffic, man-machine interface, communication-coordination,

ATC experience, visibility procedure and total transmission time. In the analysis

we use the same statistics as for FC performance model. As in the case of the FC

performance model, the sensitivity analysis is based on 50000 samples drown from

the BBN created in UniNet.

In figure 3.10, we present the sensitivity analysis for ATC error related to each

of the base variables.
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Figure 3.10: Sensitivity indices for the predicted variable ATC Error (AL19B8122
in this case) and given base variables.

Each row in figure 3.10 shows the sensitivity indices for a given base variable,

with respect to the predicted variable ATC error. We can notice that visibility pro-

cedure has the smallest correlation ratio to ATCo error; traffic on the other hand

has the highest value for correlation ratio of the model variables equal to 0.0328. In

general it may be observed that the pattern of “importance” shown by the model

variables is consistent across the three measures of dependence shown in figure 3.10.

However according to the combination of experts’ dependence estimates all vari-

ables are only slightly rank correlated to the ATC error the largest one (in absolute

value) being traffic explaining only about 3.3% of the ATC error variance. However,

the ratio of the largest to smallest correlation ratio is equal to 164. The values of

the product moment correlation and rank correlation are similar. The largest rank

correlation (in absolute value) corresponds to traffic (0.1844) while the smallest one

to visibility procedure (0.0135).

Next, we discuss the Total Transmission Time node and its role in the model.

3.3 The Total Transmission Time node

In Chapter 4 we describe in more details how human performance models are

connected to the rest of the CATS model. It is enough to mention here that
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different copies of these models are incorporated in different flight phases rep-

resented by the model. The structure of these models does not differ from one

flight phase to the other. Some nodes, e.g. aircraft generation, experience, intra-

cockpit communication, working condition, shift overlap time, etc. do not change

through flight phases. Nodes like weather, workload, traffic, man-machine interface,

communication-coordination, etc. may change during flight.

For en route and approach and landing phases an extra node connecting ATC

and FC models is added. Interaction between flight crew and air traffic controllers

should be modeled. The added node is called the total transmission time and its

formal definition is as follows: the total duration (in seconds) of the air/ground

communications per aircraft, for the approach and landing flight phase. Figure 3.11

represents the structure of the model for approach and landing which includes the

Flight Crew performance model and the Air Traffic Control performance model.

Figure 3.11: Two Human Reliability Models for Approach and landing flight phase.
From left: Flight Crew performance model and Air Traffic Control performance
model.
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The conditional rank correlations for that node were elicited later from a single

expert who is a risk analyst at NLR. In table 3.3, we present the conditional rank

correlations of this node with the Flight Crew error and the Air Traffic Controller

error.

Conditional
Rank Correlations

FC Error ATC Error

0.16 0.18

Table 3.3: Dependence Information for the Total Transmission Time in the Flight
Crew Error and the Air Traffic Control Error.

Next, we present the last of human reliability models: the Maintenance Tech-

nician performance model. The development of the Maintenance Technician model

as well as an analysis of the model will be performed.

3.4 Maintenance Technician Performance Model

Maintenance refers to “all activities necessary to keep the aircraft in, or re-

store it to, a specified condition”. Aircraft maintenance is a complicated and costly

process. It is characterized by large amounts of regulations, procedures and docu-

mentation [9].

In the next sections we will present the Maintenance Technician Performance

Model. We start by describing the influencing factors of the Maintenance Technician

Error that have been considered the most important. We will briefly describe the

variables and propose a way to quantify them.

3.4.1 Building the model

Since human behavior is quite difficult to predict, we looked for factors which

would influence the human error. An overview of these influencing factors and the

motivation for our choice will be presented in the following section. BBNs have

been used to model the influences of those factors on the error probability. In order

to specify the BBN a marginal distribution for each factor considered has to be

assessed. Only for two variables (experience and aircraft generation), information

was available from data. For the other variables (working condition, fatigue, shift

overlap time and workload), expert judgment was used. To complete the Mainte-

nance Technician Performance Model, we have quantified the dependencies between

those factors and the maintenance technician error with help of expert opinion.

Figure 3.12 displays the structure of the Maintenance Technician Performance

Model. It is a simplified representation of how the number of maintenance techni-
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cian errors can be influenced. Five factors considered as the most important have

been chosen: working condition, fatigue, experience, shift overlap time, aircraft

generation and workload.

Figure 3.12: Structure of Maintenance Technician Performance Model.

The final graphical structure of the model in figure 3.12 was decided together

with analysts of NLR and TU Delft upon the considerations stated at the beginning

of this chapter. As stated previously one of the main requirements was to keep the

model as simple as possible. Some of the dependencies that could have appeared

in the model are not considered due to the operational definition of the nodes in

the BBN (see next section). For instance, the time available to transfer a job was

considered to be independent of wether the job is performed outside the ramp or

inside the ramp because it depends on the shift duration rather than on the place

where the job is being carried out.

Another rank correlation that was not considered in the model is that between

fatigue and the estimated delay in the release of the aircraft. The delay in the re-

lease of the aircraft depends most of times on the availability of parts to be replaced

and the availability of the mechanic to release the aircraft from a particular job.

With these kind of considerations in mind and the fact that the model required to

focus only on those factors that have the largest direct influence on errors, it was the

decision of the research team to concentrate on the joint distribution as represented

in figure 3.12.

Next, we present a short description of the variables considered in the Mainte-

nance Technician Performance Model.
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3.4.2 Model variables

The Maintenance Technician Performance Model contains the following variables:

Working Condition

Depending on the job to be performed, the maintenance technicians can work in the

hangar or outside of the hangar. In general, the maintenance working conditions

are preferable in the hangar rather than at the ramp. The main reason to do a job

outside, e.g at the ramp, is lack of space or time. For instance, when only “small”

work have to be performed on the aircraft, there is no need to take the aircraft inside

the hangar. Taking the aircraft inside the hangar and then bringing it back takes

on average 20 minutes. This imposes difficult time restrictions on the maintenance

crew when the aircraft needs to be quickly released.

For the purpose of the model, the working condition is defined as a variable with

two possible states: at the ramp (outside - 1) and in the hangar (inside - 2). The

marginal distribution for this variable, describing the number of operations which

are performed outside or inside the hangar, is obtained via expert judgment.

Fatigue

Fatigue is often mentioned as one of the most important human performance shaping

factors in aircraft maintenance. One of the reasons is that much of the maintenance

work is carried out during the night. Since maintenance teams work in shifts, some

of the workers might have difficulties to adjust to the schedule. A shift system has,

as well, influence on their social life. The human performance is influenced by the

time of day. In general, people perform worst during the early hours in the morning

[9]. According to a BASI study, the biggest relative frequency of incidents occurred

during the night shift between 2 am and 4 am [11].

In our model Fatigue is represented by the Stanford sleepiness scale, where:

• 1 is feeling active, vital, alert, or wide awake;

• 2 is functioning at high levels, but not at peak; able to concentrate;

• 3 is awake, but relaxed; responsive but not fully alert;

• 4 is somewhat foggy, let down;

• 5 is foggy; losing interest in remaining awake; slowed down;

• 6 is sleepy, woozy, fighting sleep; prefer to lie down;

• 7 is no longer fighting sleep, sleep onset soon; having dream like thoughts.



3.4. MAINTENANCE TECHNICIAN PERFORMANCE MODEL 37

The marginal distribution for this variable, describing percentage of the mainte-

nance technicians been on one of 7 states during the time of performing the job, is

obtained using expert judgment.

Experience

In our model Experience will be described as a number of years in the current

position. We use data from the Bureau of Labor Statistics. In table 3.4 the data is

presented.

Experience in years % of the maintenance crew

3 or less years 22.8%

4-9 years 28.5%

10-19 years 16.2%

more than 20 years 32.5%

Median 9.4 years

Table 3.4: Summary of experience data.

Figure 3.13: Data about experience, where the “solid” curve represents the minimum
information solution assuming no MT has more that 40 years experience.

As we can see in the table 3.4, 67.5% of the whole maintenance crew has less

than 20 years of experience. In the same table, we notice that 32.5% of the main-

tenance crew has more than 20 years of experience. The number of years working

in the same position is considered as a continuous variable. Therefore we built

the histogram from 0 to 40 years and after integration we obtain the cumulative

distribution function in figure 3.13.
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Shift overlap time

Most of the time, maintenance technicians have to deal with the situation when

the tasks span more than one shift. This requires information to be passed from

one shift to another. In these cases, the transfer of information might be a source

of errors. In the model, shift overlap time will be described as a time available to

transfer a task.

Expert judgment has been used to quantify the marginal distribution of this

variable describing the available time (in minutes) to transfer a job.

Aircraft generation

In general, the ease with which aircrafts are maintained might change according

to their design (older or newer designs); although some of maintenance technicians

may still have personal preference for older types of aircraft. When thinking about

the effect of technological advances on safety of air transport we should consider

four different generations of aircraft.

First generation of aircraft is typically designed in the 1950s. Most of the air-

craft were certified before 1965, according to BCAR’s (British Civil Airworthiness

Requirements) or other certification bases. Jet engines were still very new and the

aircraft had very limited cockpit automation, simple navigational aids and limited

approach equipment. Examples of first generation of aircraft are: the DH Comet,

Fokker F-27 and Boeing 707.

Second generation of aircraft is designed in the 1960s and 1970s and have more

reliable engines. The aircraft were certified between 1965 and 1980, but not yet

based on common JAR-25/FAR-25 rules. Cockpit equipment is more advanced,

with better auto pilots, auto throttles, flight directors and better navigational aids.

Examples of second generation aircraft are: Fokker F-28, Boeing 737-200 and Air-

bus A-300.

Third generation of aircraft is designed in the 1980s and 1990s, typically show

considerations for human factor aspects in the cockpit. Electronic Flight Instrument

Systems (EFIS) and improved auto pilots are being used. Furthermore, the aircraft

are equipped with ACMS data systems and high-by-pass engines designed according

to higher certification standards. Examples of third generation aircraft are: Fokker

50 and Boeing 737-700.

Fourth generation of aircraft, like the Airbus A 320 and Boeing 777, have fully

glass cockpits and digital fly-by-wire systems. The four aircraft generations provide

a convenient classification for the human factors aspects of the man-machine inter-

face and the associated maintenance procedures. Even though the aircraft operator
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has some freedom in developing its own maintenance schedule and associated proce-

dures, this will have to be based upon the documentation developed by the aircraft

manufacturer,which is subject to the aircraft type certification process [9].

In the table 3.5, we present a summary of aircraft generation data.

Type of aircraft Participation

1 0.08%

2 6.14%

3 90.78%

4 3%

Table 3.5: Summary of aircraft generation data.

The data which we consider for aircraft generation is obtained from “Schiphol

Statistical Annual Review 2000-2002”. The data was defined by a scale from 1 to

4, where 4 is the most recent generation of aircrafts and 1 is the oldest generation

of aircraft used nowadays.

Workload

High workload exists when task requirement is close to the operator’s maximum

capacity, while workload is low when the task requirement is much below the oper-

ator’s capacity. Hence, workload is not only sensitive to multiple characteristics of

tasks, i.e. task requirement, but as well to the operator’s capacity. When thinking

about the task requirement we should have in mind that it is determined by:

• number of actions,

• sequence of actions,

• time required for action to be completed,

• and type of action.

The number of tasks which have to be completed by a single maintenance tech-

nician depends of the number of available technicians per aircraft. Furthermore, it

depends on certain characteristics, such as visibility of crew, average age of the crew

and the distribution of the tasks between technicians [9].

In the Maintenance Technician Performance Model, workload is defined as es-

timated delay in release of the aircraft. The delay in the release of the aircraft is

normally influenced by the four statements above and additionally by the availabil-

ity of the human or material resources requires for actions to be computed. Since

we do not have available data about this variable, we use expert judgment to obtain
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the marginal distribution.

Next, we will present Maintenance Technician Error variable.

Maintenance Technician Error

The formal definition of this variable is the number of unrecovered errors that the

maintenance technician makes per number of jobs that are potentially hazardous

for the safety of the flight. Since the duration of a job may vary from place to place,

from time to time, or from position to position we are mostly interested in number

of maintenance technician errors in the context of specific jobs, like component re-

placement, wheel replacement or fuel unit replacement, etc., rather than complete

checking (which might even take 1,5 week).

In table 3.6, below we present a summary of the variables in the Maintenance

Technician Performance Model, their formal definitions and the data sources for the

marginal distributions.

Source for
Node Definition Unit # marginal

distribution

Maintenance Number of unrecovered errors that the maintenance Number of 7 DNV FT
Technician technician makes per # of jobs that are potentially errors per job

Error hazardous for the safety of the flight

Working Whether the work is performed at the ramp 1-2 1 Expert
Condition (outside - 1) or in the hangar (inside - 2) Judgment

Fatigue Stanford sleepiness scale, where: 1-7 2 Expert
1 - Feeling active, vital, alert, or wide awake; Judgment
2 - Functioning at high levels, but not at peak;
able to concentrate;
3 - Awake, but relaxed; responsive but not fully alert;
4 - Somewhat foggy, let down;
5 - Foggy; losing interest in remaining awake;
slowed down;
6 - Sleepy, woozy, fighting sleep; prefer to lie down;
7 - No longer fighting sleep, sleep onset soon;
having dream-like thoughts.

Experience Number of years in current position Number 3 Data
of years

Shift Overlap Time available to transfer a job Minutes 4 Expert
Time Judgment

Aircraft Four generations of aircraft, where 4 is the most 1-4 5 Data
Generation recent generation of aircrafts

Workload Estimated delay in release of the aircraft Hours 6 Expert
Judgment

Table 3.6: Variables used in the Maintenance Technician Performance Model.

After we defined the model variables the influences on the maintenance error

will be considered as in figure 3.14. Each of the variable presented in table 3.6 is a

node in the structure of the model.
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Figure 3.14: Maintenance Technician Performance Model.

In the next section we will present the quantification of the Maintenance Tech-

nician Performance Model.

3.4.3 Quantification of the model

In table 3.6 we can see that only for two variables, Experience and Aircraft

Generation, the data for marginal distribution is available. For the other variables:

Working Condition, Fatigue, Shift Overlap Time, Workload and Maintenance Tech-

nician Error as well as for dependence information, the expert judgment procedure

needs to be performed.

The meeting with the single expert, who is a maintenance engineer for NLR

(National Aerospace Laboratory), took place at NLR, on 28th May 2008. One of

the reasons that we did elicitation only with one expert was the lack of time. The

CATS model should have been built and completed at the end of June and it should

have contained the Maintenance Technician model. The other reason was that it

was difficult to find a good expert who is working as a maintenance engineer and

who was available that time.

The expert was asked 21 questions in total, where 5 questions were used to assign

marginal distributions and 13 of them were used to elicit calibration variables. As

stated previously the quantification presented here is not the final one for the CATS

model. In principle the opinions of more experts will be obtained at later stages and

combined using the classical method of expert judgment ([7]). All questions in the

elicitation protocol refer to a population of maintenance technicians in the West-

ern world (e.g. Europe, North America, Australia) and Western-built large aircraft

(> 5, 700kg Maximum Take-off Weight) currently flying in worldwide commercial

operations.
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As it has been already mentioned, the expert was asked 5 questions concerning

marginal distribution. The expert was asked to specify his 5%, 50% and 95% quan-

tile of uncertainty distribution for each of the variable of interest.

As an example, we will present one of the questions that have been asked the

expert for the elicitation of marginal distribution. The rest of the questions and the

protocol for elicitation can be found in the appendix.

• Q4 (Shift Overlap Time): What are your estimates for the 5th, 50th and 95th

percentiles of the distribution of the time available to transfer a job (minutes)?

He gave us the following answers to that question:

5% 5 50% 10 95% 20

In figure 3.15 we present a distribution of shift overlap time which was obtained

from expert’s answers.

Figure 3.15: Distribution of shift overlap time obtained from expert’s answers.

In order to gain insight about the relationship between the number of mainte-

nance technician errors and the variables: working condition, fatigue, experience,

shift overlap time, aircraft generation and workload, the expert was asked to rank

variables according to the one which the considered most highly rank correlated (in

absolute value) to the number of the maintenance technician errors. The results are

presented in the table 3.7.
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Variable Rank

Working Conditions 4

Fatigue 1

Experience 1

Shift overlap time 3

Aircraft generation 3

Workload 2

Table 3.7: Ranking of variables according to the expert.

The expert chose Fatigue and Experience as variables witch have the strongest

influence on the number of Maintenance technician error. The first rank correlation

elicited was that between Fatigue and Maintenance technician Error and the order

of variables were elicited according to the expert’s ordering shown in table 3.7 as

follows: 2,3,6,4,1 (e.g. fatigue, experience, workload, aircraft generation, shift over-

lap time and working condition). To obtain the rank correlation between fatigue

and number of maintenance technician errors the usual probability of exceedence

was used. For Fatigue the expert was asked the following question (Q7):

Suppose that 20,000 Maintenance technician are randomly chosen from our

total population. Out of those, 10,000 are selected for which the chosen variable

(namely: Fatigue) has values above its median value (or above a certain percentile).

What portion of these 10,000 Maintenance technician will commit more than

the median number of errors per median (50% quantile in question Q1) jobs. Ob-

serve that the median number of Maintenance technician errors was specified in

question Q2).

where

• Q1 (Number of Maintenance technician jobs): What are your estimates

for the 5th, 50th and 95th percentiles of the distribution of number of jobs that

each Maintenance technician makes during a day?

• Q2 (Number of Maintenance technician errors): What are your esti-

mates for the 5th, 50th and 95th percentiles of the distribution of number of

errors that each Maintenance technician makes per median (50% quantile in

previous question) number of jobs ∗median average duration in hrs of a job?

Observe that the average duration of hours per job was asked previously. The

expert was asked to express the influence of the remaining variables (other than

Fatigue) as a portion of the influence of the variable ranked the highest (0− 100%).

He was asked also to specify the dominant direction (positive or negative) of the in-

fluence. This information was needed to compute the unconditional and conditional

rank correlations required by the Maintenance Technician performance model. The



44 CHAPTER 3. HUMAN RELIABILITY MODELS

results of expert’s answers are shown in figure 3.16. This figure presents the panel

form UniExp6 software which accompanied elicitation process. The (conditional)

rank correlations are obtained using the third elicitation method briefly described

in section 2.2.2.

Figure 3.16: The panel from UniExp, where the numbers 1-7 corresponds to the
following variables: 1 - Fatigue, 2 - Experience, 3 - Workload, 4 - Aircraft generation,
5 - Shift overlap time, 6 - Working condition and 7 - Maintenance technician error.

The “Description” window contains an explanation of the node of interest and all

of its parents. Number 7 is assigned to Maintenance Technician Error (x), whereas

numbers from 1-6 are assigned to contributed factors in the following order: 1 -

Fatigue (y), 2 - Experience (z), 3 - Workload (v), 4 - Aircraft generation (w), 5 -

Shift overlap time (s), 6 - Working condition (u).

Bounds for the conditional probability P1 (Q7) are filled in by the program. As

mentioned in the Chapter 2, P1 is not restricted in any way and the expert can give

us any number from [0, 1].

6Brief description of that software is presented in [10, 15]
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The conditional probability P1 corresponds to the question Q7, i.e. the expert

was asked to give us the conditional probability that MT error is above median given

that fatigue is above 4th class. The answer which he gave was 0.7 and from that

answer we obtain that MT error and Fatigue are positively correlated, i.e. when

fatigue takes low values then MT error will be low as well. Having that probability

we can compute the rank correlation between “maintenance technician error” and

“fatigue” which is equal to 0.23. Figure 3.17 presents the plot of the relationship

between probability P1 and rank correlation r7,1.

Figure 3.17: Relationship between P (MTError > median|Fatigue > 4) and rank
correlation r7,1.

UniExp program fills the correlation obtained in the rank correlation matrix

which is placed in the right hand side in the main window.

The expert was asked for the direction of the rank correlation (positive or neg-

ative) between maintenance technician error and experience, workload , aircraft

generation, shift overlap time and working condition. As we can see, the direction

of rank correlation (r7,1) between “maintenance technician error” and “experience”

is negative (it means that when experience takes high values then the MT error

takes low values). Next we can see, the maximum value that the ratio between r7,2

and r7,1 may take according to the expert’s previous answer. This ratio is computed

by the program while the second ratio is the actual expert’s belief. The procedure

to compute the maximum and minimum values for the expert’s next assessment fol-

lows the same idea presented in chapter 2 for computing the limits of the exceedence

probabilities (see [12]).

Observe that in this case the ratio given by the expert has to be smaller than the

ratio computed by the program and each ratio given by the expert cannot be bigger

than the previous one7. Having specified direction of the rank correlations between

7Because the expert was asked to rank variables according to the absolute value of the rank
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“maintenance technician error” and “experience” and the ratio between r7,2 and r7,1

we can compute the conditional rank correlation r7,2|1. r7,2|1 represents the rank cor-

relation between “maintenance technician error” and “experience” given “fatigue”

and it is equal to −0.24. Observe that the unconditional rank correlation in the

correlation matrix is equal to the previous one as this was the expert’s constraint.

Immediately after r7,2|1 is computed, we obtain the conditional probability of

exceedence that the expert would have stated if we would have been asked the

probability that MTError is above median given that Experience is above the me-

dian. Figure 3.18 presents the plot of relationship between conditional probability

and conditional rank correlation r7,2|1.

Figure 3.18: Relationship between P (MTError > median|Experience > median)
and conditional rank correlation r7,2|1.

Observe that in this case the conditional probability of exceedence is ∈ (0.08, 0.91)

because part of the dependence has been explained by fatigue. The same procedure

is used to obtain other conditional rank correlations.

The summary of the results from the elicitation of the dependence information

is presented in table 3.8.

correlation and the dependence is asked in the order specified by each expert.
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Probabilitya (Un)Conditional Rank Correlations

P1 0.7 r7,2 0.23

P2 0.423 r7,3|2 -0.24

P3 0.538 r7,6|2,3 0.12

P4 0.435 r7,5|2,3,6 -0.07

P5 0.477 r7,4|2,3,6,5 -0.07

P6 0.48 r7,1|2,3,6,5,4 -0.02

Table 3.8: Dependence Information in the Maintenance Technician Performance
Model.

aP1 = P (MT Error > median|Fatigue > 4), P2 = P (MT Error > median|Experience >
median), P3 = P (MT Error > median|Workoad > median), P4 = P (MT Error >
median|Aircraft generation = 4), P5 = P (MT Error > median|Shift overlap time > median),
P6 = P (MT Error > median|Working condition = 1)

The Maintenance Technician Performance Model has been quantified. Figure

3.19 presents the (un)conditional rank correlations assigned to each arc of the model,

together with marginal distribution to each of the nodes.

Figure 3.19: Quantification of the Maintenance Technician Performance Model.

In the next section, we will present the analysis of the Maintenance Technician

Performance Model.
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3.4.4 Analysis of the Maintenance Technician Performance Model

In the following section the goal is to update our belief in the Maintenance

Technician Performance Model given some observations. For the simulations we use

UniNet.

In the table 3.9 we present unconditional rank correlations between MT error and

fatigue, experience, workload, aircraft generation, shift overlap time and working

condition which we calculated and have seen in the rank correlation matrix presented

in figure 3.16:

Unconditional Rank Correlations

Fatigue Exp Workload AirGen ShiftOverTime WorkCond

MTError 0.23 -0.23 0.115 -0.069 -0.069 -0.023

Table 3.9: Rank correlations for MT model.

From table 3.9, we notice that 4 variables are negatively correlated with vari-

able MT error. Therefore, when we conditionalize on high values (above median)

of experience, aircraft generation, shift overlap time, working condition, we should

observe a decrease in the estimated number of MT Errors. Fatigue and Workload

are positively correlated with MT error. Therefore, when we conditionalize on low

values (below median) of Fatigue, Workload we should observe an increase in the

estimated number of MT errors.

Figure 3.19 presents the Maintenance Technician model with assigned condi-

tional rank correlations and marginal distributions. The probability of MT Error is

equal to 0.50 in this particular case.

From table 3.9 we can notice that the highest rank correlations in absolute value

are between MT error and the 2 variables, Fatigue and Experience, they are equal

to 0.23 and -0.23 respectively.

In figure 3.20 we can see how low value of the Experience, i.e. maintenance

technician has 3 years of experience, influences the total number of mistakes by

maintenance technician. Such a small experience can “negatively” influence the be-

havior of maintenance technician and the number of possible mistakes he/she can

make. The expected number of MT Errors increased in this situation from 0.5 to

0.52.
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Figure 3.20: Conditional distribution of X7|Exp=3, where X7 refers to MTError.

In figure 3.21 we can observe how the previously obtained expected value of MT

error changes if evidence additional to experience is available. We also consider

that the maintenance technicians are feeling active, vital, alert or wide awake dur-

ing their work (1st class). We can notice that the mean MT errors increases back

to 0.515, which means that inexperienced but not fatigued maintenance technician

does not commit too many mistakes or are nit vary different than the unconditional

distribution as shown in figure 3.19.

Figure 3.21: Conditional distribution of X7|Exp=3, Fatigue=1, where X7 refers to
MTError.
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Finally, we conditionalize on another two variables, workload and shift overlap

time. We took into consideration the estimated delay in release of aircraft 5.5 hours

(above median) and the time available to transfer a job is 6 minutes (below median)

(3.22). We noticed that the mean of the MT error increased form 0.515 to 0.548,

which means that if we additionally consider high delay in release of the aircraft

and low time to transfer a task between workers then the maintenance technician

can commit more mistakes than with unconditional case.

Figure 3.22: Conditional distribution of X7|Exp=3, Fatigue=1, Workload=5.5,
ShiftOverTime=6, where X7 refers to MTError.

In the next section, we will present the analysis of the Maintenance Technician

Performance Model.

3.4.5 Sensitivity Analysis of Maintenance the Technician Per-

formance Model

As with the ATC model and the FC performance model, to carry out the sen-

sitivity analysis several statistical and sensitivity measures are obtained by using

UniNet. We drawn 50000 samples from the BBN created in UniNet and analyzed

in Unisens.

The objective is to check how the predicted variable, i.e. Maintenance techni-

cian error, depends on the base variables: fatigue, experience, workload, aircraft

generation, shift overlap time and working condition.

In figure 3.23, we present the sensitivity analysis for maintenance technician er-

ror related to each of the base variables.
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Figure 3.23: Sensitivity indices for the predicted variable Maintenance technician
error (AL25B21 in this case) and a given base variable.

We can notice that the smallest correlation ratio is between the MT error and

the working condition; while the highest, equal to 0.0584, is between experience and

MT error. It means that8 the variance of the MT error is explained by 5.8% of the

variance of conditional expectation of MT error given experience. The ratio of the

highest to lowest rank correlation is equal to 584. The differences in absolute value

of the product moment correlation and the rank correlation are not significant. We

can notice that the highest rank correlation is equal to 0.2325 in absolute value

and is obtained for experience. Experience is followed by fatigue with the rank

correlation ratio equal to the 0.2116. The rank correlation of fatigue and MT error

is slightly lower that the theoretical one because fatigue is a discrete variable. As

expected, the sensitivity analysis gives almost the same results given by the expert.

3.5 Final Remarks

In table 3.10, we present the result of scoring the expert that participated in

the elicitation of the marginal distribution and unconditional and conditional rank

correlations in the MT performance model.

8According to the formula 2.7.
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Id Calibration Mean relative
realization

Expert1 9.215E-005 0.383

Table 3.10: Expert’s performance.

In table above, we present the calibration and information score for the expert

used in the study of MT performance model. The first column gives expert id and

the second column gives the calibration score. As we can observe, the expert is

poorly calibrated with calibration score equal to 9.215E− 005. If robustness analy-

sis9 is performed itemwise the calibration score would rise to 0.0006036 by removing

any of CQ3, CQ4, CQ5, CQ7, CQ12 or CQ13 in Appendix A.

The information score for calibration items are shown in the third column. We

can notice that this score is equal to 0.383 and it is relatively small.

For comparison purposes, during the elicitation procedure in ATC performance

model the best calibrated expert was expert A with the correlation score equal to

0.1012 and in the same time he/she had the lowest information score for the calibra-

tion variables, which is a recurring pattern. Whereas, two of the experts were less

calibrated than the Expert1. In case of the elicitation procedure in FC performance

model, the expert with the best calibration score (expert B) has also one of the

lowest information scores for the calibration variables, which is recurring pattern.

His/her calibration score is equal to 0.6638. For more information about expert’s

performance in FC performance model and ATC performance model, check [5, 6].

In this chapter we saw that the sensitivity analysis performed, showed the most

influential factors on human errors represented by the FC performance model, ATC

performance model and MT performance model. We noticed that the largest prod-

uct moment correlation and correlation ratio is in the FC performance model. The

smallest product moment correlation, rank correlation and correlation ratio is in the

ATC performance model. This may reflect the expert’s belief that the air traffic

controllers are aided by technological developments more than pilots or maintenance

crew.

Weather has the biggest influence on the FC error. The correlation ratio between

them is equal to 0.1732. In the ATC model, traffic has the strongest influence on

ATC error with the correlation ratio between them equal to 0.0328. Whereas, the

MT error is influenced the most by experience. The correlation ratio between these

variables is equal to 0.0584. We can notice that correlation ratios between ATC

error and traffic and between MT error and experience are small. It may be inter-

9Removing one item at the time and recomputing the scores in table 3.10 to see wether removing
some item would give very different scores from those presented in table 3.10.
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preted that only 3.28% of the variance of ATC error is explained by the variance of

traffic, while the variance of MT error is explained by 5.84% of the variance in the

maintenance technician experience. As compared with ATC error and MT error,

the FC error variance is explained by 17.32% of the variance in weather.

It is worth mentioning that in the ATC performance model traffic and ATC

error are negatively correlated. One may think that these variables should be pos-

itively correlated and maybe it is reasonable to think that high traffic may cause

more errors. On the other hand, the experts told us that when ATC workers have

more aircraft to control they are more careful, paying more attention and are more

aware of the errors. That is the reason why these variables are negatively correlated.

One may notice that some of the (conditional) rank correlations in the ATC

model, are rather small, for example, r7,5|1,2,3,4 and r7,4|1,2,3. This means that ex-

perts considered these two variables as the variables with the lowest influence on

the ATC error.





Chapter 4

Causal Model for Air Transport

Safety

As it was already mentioned, the Dutch Ministry of Transport and Water Man-

agement has initiated a research to investigate risks in aviation safety and develop

a causal model for aviation safety. In this chapter we will present CATS model in

more details. First, we present introduction to CATS model. We will give a brief

description and example of Event Sequence Diagrams (ESDs), Fault Trees (FTs)

and how human reliability models are attached in this model. Next, we show the

development of the CATS model. We finish this chapter with procedure to obtain

the underlying error distribution.

4.1 Introduction to CATS model

The Causal Model for Air Transport Safety (CATS) combines Event Sequence

Diagrams (ESDs), Fault Trees (FTs) and Bayesian Belief Nets (BBNs) into a single

structure, i.e. to continuous-discrete non parametric BBN. A schematic representa-

tion of the CATS model is presented in figure 4.1

55
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Figure 4.1: Schematic representation of the CATS model with ESDs, FTs and BBNs.

Figure 4.1 presents a conceptual structure of CATS model. ESDs are used to

represent the top part of the model. They start with the initiating event which

connects ESDs with FTs. The FT contains base events which are connected to

BBNs. These represent one of the three human reliability models (FC performance

model, ATC performance model and MT performance model) presented in previous

chapter. It is visible that the simple idea presented in figure 4.1 realizes a very

complicated graphical structure integrated into a single BBN.

More details about ESDs and FTs will be presented in the next section.

4.1.1 Event Sequence Diagram (ESD)

In figure 4.21 we can see an Event Sequence Diagram (ESD) which is a flow

chart of paths leading to different end states. Each path through the flow chart is

an accident scenario. Different accident scenarios are identified: abrupt manoeuvre,

cabin environment, uncontrolled collision with ground, forced landing, controlled

flight into terrain, mid-air collision, collision on ground, structure overload, and

fire/explosion. In this way, 31 generic accident scenarios have been developed. Along

each path, pivotal events are identified as either occurring or not occurring. The

event sequence starts with an initiating event that requires some kind of response

from operators or pilots or one or more systems ([3]). Operators, pilots or systems

can solve the problem caused by the initiating event then aircraft continuous flying

(green state). They may however fail to react properly which leads to accident (red

state) or to incident that may influence later flight phases (orange state). Figure 4.2

presents the schematic representation of ESD with green, red and orange paths2.

1Figure is taken from [3]
2For more information see [20].
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Figure 4.2: Event Sequence Diagram with green, red and orange paths.

The quantification of Event Sequence Diagram will be discussed next.

Quantification

In [3] three different ways to quantify ESDs are presented. In this section we

only focus on one idea which was used to quantify ESDs. For more details see [3].

In the study, all probabilities are expressed as probability of occurrence condi-

tional to the preceding pivotal event. The numbers at the pivotal events represent

conditional probabilities, while the numbers at the initiating event and the end

states are absolute probabilities. The sum of the probabilities of the end states is

equal to the probability of the initiating event. At each pivotal event, the condi-

tional probabilities add up to 1.

For the quantification of ESDs the data from NLR Air Safety Database were

used. The NLR Air Safety Database includes the following databases3

• FAA Service Difficulty Reports (SDRs)

• Air Safety Reports (ASRs)

• Airclaims database

• ICAO ADREP

• NTSB aviation accident database

• FAA AIDS database

3For more details see [3]
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• Aviation Safety Reporting System

Next, we will present one of ESDs as an example. We will explain in short

initiating event, pivotal events and end sates. We will present also quantification of

that ESD.

Example

As an example we present ESD 33, which is described as “Cracks in aircraft

pressure cabin”. Figure 4.34 represents the structure of that ESD, with an accident

type described as “structure overload” and initiating event as “cracks in aircraft

pressure boundary” in the take-off, initial climb, en route and approach and landing

flight phases.

Figure 4.3: Structure of ESD 33 - Cracks in aircraft pressure cabin.

The initiating event, pivotal events and end states, in ESD 33, are defined as

follows.

Cracks in aircraft pressure boundary (initiating event)

This event covers a crack in an aircraft pressure boundary. This crack can be

different in location and size and it is developed over time. In this ESD, the focus

is on those cracks that should have been detected during maintenance or line checks.

Explosive decompression (pivotal event)

In an explosive decompression, the aircraft cabin quickly decompresses resulting

in major structural failure to the aircraft fuselage. Although there have been cases

where aircraft landed “safely” following an explosive decompression (e.g. Aloha

Airlines flight 243 on 28 April 1988).

4Figure is taken form [3]
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In-flight break-up (end state)

The end state covers a severe damage to the aircraft caused by an explosive de-

compression. This could be a crash of the aircraft but also damage without crashing.

Aircraft damage / aircraft continues flight (end state)

This is the outcome of a crack in the aircraft pressure boundary which did not

cause an explosive decompression. This could mean that there has been decompres-

sion of the pressure cabin but not of an explosive nature and it did not result in an

accident, or nothing happened at all and the aircraft could safely continue the flight.

Quantification of ESD 33

Figure 4.4 presents the schematic representation of quantified ESD 33 with

associated set of the probabilities representing initiating event, pivotal events and

end states.

Figure 4.4: Quantified ESD 33 - Cracks in aircraft pressure cabin.

For example, an estimate of the frequency of occurrence of the initiating event

“cracks in the pressure boundary” is based on service difficulty reports5. The

dataset of service difficulty reports contains descriptions of all occurrences where “re-

portable” cracks have been detected during maintenance or line checks.The dataset

contains at total of 3050 occurrences of cracks in aircraft pressure boundary and

covers a total of 153.5 million flights. The associated frequency is equal to 1.9910−5

per flight. The probability of end state, “in-flight break-up”, is computed as follows:

1.99 · 10−5 ∗ 4.58 · 10−4 = 9.12 · 10−9, whereas the probability of end event “aircraft

damage” is calculated as follows: 1.99 · 10−5 ∗ (1− 4.58 · 10−4) = 1.99 · 10−5

5For details see Appendix A in [3].
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For more details about quantification of the ESD 33 see [3].

In the CATS model, Event Sequence Diagrams (ESDs) are combined with Fault

Trees (FTs). In the next section we present an overview of FTs.

4.1.2 Fault Tree (FT)

In practice, Event Sequence Diagrams are typically used to describe progress of

events over time, while Fault Trees best represent the logic corresponding to failure

of complex systems. Fault Trees are used to model initial and pivotal events in

Event Sequence Diagrams in sufficient detail. The initiating and pivotal events in

the Event Sequence Diagram are the top events in the Fault Trees.

FT’s are used to describe the occurrence of an event in terms of the occurrence

of another events or causes. They are logical trees and the sate of each block can

only be “true” or “false”. “True” usually can be interpreted as the failed state in

the block described by the process, while the “false” describes the opposite state of

that process.

When the FT is quantified, a probability is attached to each of the blocks, i.e.

probability at any given time that the condition in the block is true (system is

failed). Usually, the quantified probabilities are assumed to be independent (e.g.

the probability of rapid decompression following fuselage failure is independent of

the probability of rapid decompression following window failure). Other probabil-

ities are assessed under the condition that other blocks in FT are true and then

these probabilities are conditional probabilities.

For example, in figure 4.5, the probability of the right hand side branch un-

der AND gate is conditional on the left hand block being true. In figure 4.5 the

probability of “Failure propagates catastrophically” is conditioned on the left event,

“Rapid Decompression”. For each event, the FT provides the probability per de-

mand. Mostly, for the events on the left, the regarding demand is a flight. As well,

the contribution of each event to the failure is provided, as we can see in figure 4.5.
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Figure 4.5: Part of FT associated with ESD 33.

To each FT a color coding is assigned to indicate the pedigree of the probability

and contribution for each event. Four categories are distinguish:

• probabilities based on probability data (green),

• contributions based on the causal factors distribution of the accident data

(blue),

• probabilities and contributions deducted from other values (white),

• probabilities based on pure expert judgment in the absence of data (yellow).

In the FT, the probabilities of events are generated by the AND or OR gates.

They are quantified from the probabilities of the two inputs, which are assumed to

be independent, as follows:

P (A AND B) = P (A)P (B)

and

P (A OR B) = 1− (1− P (A))(1− P (B)).

Extensions to more that two events follow the same line. The FTs, in CATS

model, were quantified using a top-down approach, which protected that the overall

probabilities are consistent with the actual accident data. Some FTs were quantified

independently (by DNV and NLR) form the ESDs, these independent quantifica-

tion gave the consortium an opportunity to compare them. The results showed a

remarkable resemblance in both quantifications, hence later quantification of FTs

was based in NLR’s ESDs. The FTs provide the best estimates of the average prob-

abilities of events among commercial flights worldwide. The development of the
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fault trees is documented and presented in details in the DNV reports [16].

The base events are the most detailed layer of the FTs. Some of the base events

represent human errors, detailed in human reliability models. This will be discussed

in the next section.

4.1.3 Human reliability models in CATS model

CATS model describes human error, along with its contributing factors through

3 human reliability models: Flight Crew performance model, Air Traffic Control

performance model and Maintenance Technician model. These generic models are

presented in previous chapter.

Maintenance Technician model is defined for all flight phases, whereas Flight

Crew performance model and Air Traffic Control performance model are specific to

each of the three flight phases (take-off, en route and approach and landing).

As an example, we present the Flight Crew performance model for the approach

and landing flight phase (figure 4.6).

Figure 4.6: Information about human errors.
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As we can see in figure 4.6, the FC error is replaced by the base event “AL23B222”.

AL23B222 refers to the flight for which the base event is defined as “pilot fails

to execute a successful windshear escape manoeuvre (WEM)” and its formal def-

inition is “the flight crew fails to execute and complete a successful windshear

escape manoeuvre (WEM)”. The procedure to obtain the underlying error dis-

tribution will be presented in section 4.3 in this chapter. For example, variable

“zFC TOERALAirGen”, i.e. aircraft generation, is defined for the whole flight,

whereas variable “zFC ALWeather” is defined for each flight phase separately.

The same applies for the Air Traffic performance model.

4.2 Development of CATS model

In this section we present an overview of building the Causal Model for Air Trans-

port Safety (CATS) in UniNet.

The Excel file (080523 DNV Collected Fault Trees v6 1.xls) provided

by DNV, specifies among other things, to which base event is a specific human

reliability model attached to. Figure 4.7 presents the classification of the base events

according to human reliability models, FC performance model, ATC performance

model and MT performance model. For example, as presented in figure 4.7, the

event “Door Check Unsuccessful” (ER33B1322) belongs to the FC performance

model. The event TA32B114, on the other hand corresponds to an ATC performance

model outcome.
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Figure 4.7: Information about human errors.

Each of the human reliability models is represented by a different color. For

example, the FC performance model is represented by green, the ATC model by

orange/red and the MT model by blue. We may notice that some base events do

not represent one of mentioned human errors. This reflects the fact that the base

event corresponds to a non-human error. These events are represented by the white

color. For example, in figure 4.7 when we are looking for the FC error and ATCo

error we should look on the performance influences column in the Excel file. For the

MT error, we should look at the aircraft quality in the quality influences columns

in Excel file provided by DNV.
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In building the CATS model the aforementioned Excel file has been consulted

to be able to identify all base events corresponding to one of the three considered

human errors. In the CATS model there are 280 nodes representing the FC error,

57 nodes representing the ATC error, 197 nodes representing the MT error and 240

nodes representing non-human error. It is worth to mention that the number of FC

errors outruns both ATC and MT errors, which means that the FC performance

has bigger influence on the accident probability than ATC or MT perfroamnce.

Next, we present a brief description of the structure of one ESD, ESD 33 -

cracks in aircraft pressure cabin. This ESD already quantified corresponds to figure

4.3. Figure 4.8 presents the initiating event, the pivotal event and end events in the

ESD 33. The initiating event is described as “Cracks in aircraft pressure boundary”,

whereas the pivotal event is described as “Explosive Decompression” and it is either

occurring or not occurring. The end states are described as follow: “In-flight break

up” and “Aircraft damage”.

Figure 4.8: Initiating event, pivotal event and end events in ESD 33.

As previously mentioned, where necessary, the initiating and pivotal events are

detailed into breakdown causes using fault trees. The initiating and pivotal events

are the top events of the FTs. For ESD 33, both initiating and pivotal events have

been detailed using FTs.

Figure 4.9 presents the structure of ESD 33 and its corresponding FTs, as it

has been build in UniNet. The whole ESD 33 along with its corresponding FTs,

contains 56 nodes. 2 of them are end states and they are the top nodes in figure

4.9. Below these two end state nodes, 1 initiating event and 1 pivotal event are

observed. 17 nodes are intermediate events and 35 of them represent base events.

Out of the 35 base events, 23 are for MT error, 5 for FC error, 0 for ATC error and

7 for non-human error. Whenever the base events represent a human error they are

connected to the correspond human reliability models as illustrated in figure 4.9.
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Figure 4.9: The representation of ESD 33 with human reliability models (from left:
MT performance model and FC performance model).

We will start our description from the top of BBN. As we can see in figure 4.9,

there are 2 nodes representing end states. The first one from the left is “in-flight

break up” and the next one on the right is “aircraft continues flight damaged”.

These 2 end events are connected with the initiating event, described as cracks in

aircraft pressure boundary (node on the left side), and the pivotal event, described

as explosive decompression. The pivotal event is identified as either occurring or

not occurring. The initiating event and the pivotal event represent the top events

in the corresponding FTs. Therefore, they are connected to the 17 intermediate

events. The end events, the initiating event, the pivotal event and the intermediate

events are functional nodes. Finally, the intermediate events are connected to the

base events. Some base events are representing one of human errors, i.e. FT error

(36.2%), ATC error (7.4%) and MT error (25.4%). The other base events represent

non-human errors (31%)6.

Figure 4.10 presents the CATS model in UniNet as it stood before the work

described in this thesis began. The model contained at the time 1479 arcs and

649 nodes. From these nodes, 332 were functional nodes representing ESDs and

6As stated before, the procedure to obtain the underlying error distribution will be presented
in section 4.3 in this chapter.
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FTs as boolean functions and 317 were probabilistic nodes. The 20 ESDs (out of

31 generic accidents scenarios) presented in the figure 4.10 are listed below. Three

phases are represented in the CATS model: Take-off (TO), En-route (ER) and

Approach-landing (AL). As we can notice not all of end event(s) are connected to

the Accident/Incident node (the node on the top of BBN).

A similar situation is observed on the bottom part of the BBN, where we have

FC performance model for: take-off, en route and approach and landing and as well

as ATC performance model for: take-off and approach and landing. The first 20

ESDs shown in figure 4.10 are listed next.
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• ESD 1 - Aircraft system failure,

• ESD 2 - ATC event,

• ESD 3 - Aircraft handling by flight crew inappropriate,

• ESD 4 - Aircraft directional control related system failure,

• ESD 5 - Incorrect configuration,

• ESD 6 - Aircraft takes off with contaminated wing,

• ESD 7 - Aircraft weight and balance outside limits during take-off,

• ESD 8 - Aircraft encounters a performance decreasing wind shear after rota-

tion,

• ESD 9 - Single engine failure during take-off,

• ESD 10 - Pitch control problems,

• ESD 11 - Fire onboard aircraft,

• ESD 12 - Flight crew spatially disoriented,

• ESD 13 - Flight control system failure,

• ESD 14 - Flight crew incapacitation,

• ESD 15 - Anti-ice/de-ice system not operating,

• ESD 16 - Flight instrument failure,

• ESD 17 - Aircraft encounters adverse weather,

• ESD 26 - Aircraft handling by flight crew during landing roll inappropriate,

• ESD 29 - Thrust reverser failure,

• ESD 30 - Aircraft encounters unexpected wind.

The first aim was to add all missing ESDs to the model. The 11 ESDs (out of

31 generic accidents scenarios) that were added to the model are:

• ESD 18 - Single engine failure in flight,

• ESD 19 - Unstable approach,

• ESD 21 - Aircraft weight and balance outside limits during approach,

• ESD 23 - Aircraft encounters wind shear during approach,

• ESD 25 - Aircraft handling by flight crew during flare inappropriate,
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• ESD 27 - Aircraft directional control related system failure during landing,

• ESD 28 - Single engine failure during landing,

• ESD 31 - Aircraft are positioned on collision course,

• ESD 32 - Incorrect presence on runway in use,

• ESD 33 - Cracks in aircraft pressure cabin,

• ESD 35 - Flight crew decision error/operation of equipment error (CFIT).

After we add the missing ESDs to the model, the number of arcs increased by

731, the number of functional nodes by 337 and the number of probabilistic nodes

by 300.

The next aim is to add all arcs which connect the end event(s) with Acci-

dents/Incidents node on top of the BBN. We specified as well the Accident/Incident

node for flight phases: take-off, en route and approach and landing and connect them

to end event(s). In the bottom part we have connected the probabilistic nodes to

FC performance model for: take-off, en route and approach and landing as it can

be seen in figure 4.11. 759 arcs were added to the model. After these implemen-

tations the model consisted of 2969 arcs and 1288 nodes. From these nodes, 671

are functional nodes representing ESDs and FTs as boolean functions, and 617 are

probabilistic nodes.



4.2. DEVELOPMENT OF CATS MODEL 71

F
ig

u
re

4.
11

:
T

h
e

C
A

T
S

m
o
d
el

.



72 CHAPTER 4. CAUSAL MODEL FOR AIR TRANSPORT SAFETY

We grouped all ESDs which belong to take-off, en route and approach and land-

ing to make the structure of this BBN more readable. The breakdown groups are

listed below.

• Take-off: ESD 1, ESD 2, ESD 3, ESD 4, ESD 5, ESD 6, ESD 7, ESD 8, ESD

9, ESD 10,

• En route: ESD 11, ESD 12, ESD 13, ESD 14, ESD 15, ESD 16, ESD 17, ESD

18, ESD 21, ESD 31, ESD 32, ESD 33,

• Approach and landing: ESD 19, ESD 23, ESD 23, ESD 26, ESD 27, ESD 28,

ESD 29, ESD 30, ESD 35.

At this stage, several implementations and changes were done in the model. For

example, the accident/incident node representing en route flight phase has been

delated from the model. Besides that, some specific accident nodes, such as: run-

way overrun, runway veer-off, collision with ground, collision in mid-air, collision on

runway, aircraft damaged and etc., have been added to the model. Some of those

nodes are representing all flight phases, e.g. collision with ground. Some of them

are specific to each of the flight phase, e.g. fire in flight in en route, collision on

runway in en route and etc. Some of accidents are represented in two flight phases,

e.g. runway overrun in take-off and approach and landing, aircraft damaged in take-

off and approach and landing and etc. These changes were done to gain a better

understanding of different types of accidents in CATS model.

Throughout the construction of the model, DNV’s Excel file was updated (for

example, more quantiles were added to that file). As the reason of this update, the

structure of BBN suffered minor changes. For example, ESD 32 (Incorrect presence

of aircraft/vehicle on runway in use) changed and was split into two flight phases

- take-off and approach and landing (previously it has been linked to the en route

flight phase exclusively). Some of the functional nodes were changed to probabilistic

nodes.

In the bottom part of the BBN the last of human reliability models, namely the

Maintenance Technician model has been added representing all phases during the

flight. Moreover, the Total Transition Time node has been added to the BBN. This

node is connecting to models: ATC performance model and FC performance model

in approach and landing and en-route flight phases.

After these changes, the model consists of 4745 arcs and 1366 nodes. From these

nodes, 532 are functional nodes representing ESDs and FTs as boolean functions

and 834 are probabilistic nodes. Figure 4.12 presents the latest version of the model

from 27 June 2008. We have to be aware of the fact that the presented model is not

a final one, it is still under development and in the future may vary from this one.
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Next, we present some summary figures describing the progress in the construc-

tion of the CATS model.

The complete model in figures

In the table below we present summary of arcs and nodes which have been

added to the model in different stages.

# of functional nodes # of probabilistic nodes # of arcs

1 332 317 1479

2 669 617 2210

3 671 617 2969

4 532 834 4745

Table 4.1: Number of nodes and arcs in individual stages.

In table 4.1, 1 corresponds to the period when 20 ESDs were added to the model,

2 corresponds to the period when all ESDs were added to the model, 3 corresponds

to the time when the bottom part of BBN was connected with the FC performance

model and the top part was connected with accident node in flight phases and gen-

eral accident node, and 4 correspond to 27 June 2008 when the latest model was

updated. As stated above the model presented in figure 4.12 is not final. Two no-

torious changes which the model will undergo in short are the addition of 2 missing

ESDs: ESD 36 and ESD 37.

4.3 Procedure to obtain the underlying error distri-

bution

Once the generic models for human reliability were available the marginal distri-

bution of each basic event (top node in each of the three models previously described)

had to be obtained. A central estimate (average) of the probability of occurrence

of a human error has been computed using Fault Trees by DNV. Estimates of the

“variability” of the central estimates have also been obtained by them. Firstly,

our main source of information about the distribution of errors (representing base

events in the FTs) was in the form of values for 5%, 50% and 95% - quantiles.

This information was included in the Excel file (080214 DNV Collected Fault

Trees v5 1.xls) and provided by DNV. Since the data about distribution of errors

have changed, our main source of information about these distributions have been

enhanced by the values for 10%, 25%, 75%, 90%, 99% - quantiles and minimum and

maximum value of the base events. Finally, in the procedure of finding error dis-

tribution we used the Excel file (080523 DNV Collected Fault Trees v6 1.xls)
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containing the form of values for 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99% - quan-

tiles and minimum and maximum value of base events. In figure 4.13, we present

the percentiles of the FTs base event error distribution from DNV.

Figure 4.13: Percentiles of the FT’s base event error distribution from DNV.

To obtain the minimum value that the base event probability that event ER33B11111

can take, we do: 0.071 ∗ E(ER33B11111)7 where E(ER33B11111) denotes the ex-

pectation of ER33B11111. In the same way the maximum value of ER33B11111

should be equal to 91.534 ∗ E(ER33B11111). Other quantiles maybe obtained in

the same way.This information is used to fit a parametric distribution to the data

to represent the distribution over the base events probability. In total there are 756

base events representing 31 ESDs. With the percentiles provided by DNV in the

document 080523 DNV Collected Fault Trees v6 1.xls a minimally informa-

tive distribution (with respect to uniform measure) can be found. This distribution

will be compatible with the percentiles provided by DNV. However, a parametric

distribution could be fit to these data as well. The reasons to use a parametric

distribution are as follow:

7The expectation is provided as the probability of occurrence of each event in the FTs. See,
for example figure 4.8.
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• It is easier to maintain model. The minimally informative distribution requires

to store the whole distribution, while a parametric distribution only requires

to store a number of parameters which describe the distribution.

• In general, the minimally informative distribution fitted to the quantiles pro-

vided by DNV will not preserve the expectation provided by DNV8.

• We wanted to have the model with the functionality that by specifying a

different mean than the one computed by DNV and keeping the variance

constant, we could obtain a new distribution.

The procedure used to obtain the underlying error distribution is described be-

low:

1. Obtain the minimally informative distribution (in log uniform scale to avoid

negative values) that fits provided information. As it was mentioned already,

this distribution is a distribution over the probability of error. Observe that

the minimally informative distribution will always capture the percentiles pro-

vided by DNV, however, the minimally informative solution might give some-

times inconsistent results9. To meet these goals the following steps are taken:

2. Find the parameters of a Weibull or Gamma distribution that minimize the

sum of squared difference between the minimally informative solution found

in step 1 and the parametric distribution such that,

a) The expectation of the parametric distribution is equal to the estimate

provided by DNV and,

b) The distribution lies in the interval (0,1),

c) The 0.999999999% - quantile of distribution is less or equal than the

maximum value provided by DNV.

3. This Parametric distribution will be used as an estimate of the error distribu-

tion in the CATS model.

In general, it was observed that Weibull and Gamma better characterized the

data provided by DNV. After all, to improve the speed of finding parametric dis-

tribution, the procedure presented above was applied only to search Weibull and

Gamma parameters to the 756 base events provided by DNV.

8This is because the expectation of the minimally informative distribution is determined by
quantiles specified by DNV. While, the expectation provided by DNV is not determined by these
quantiles, [16]

9In previous Excel files provided by DNV, for example part of the distribution might be outside
the (0,1) interval, because the minimum and maximum of teh distribution were not specified. In
general, this distribution would not have the expectation provided by DNV (as the probability of
base events in FTs).
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In the situation, where no convergence in step 2 was possible, we focus on search-

ing the parameters for Beta and Log-normal distribution. Since the mean and max-

imum value of DNVs data entered as constrains in the optimization procedure, were

better captured by the fitted distribution. In some cases, some fits may be far from

DNVs data. Next, we present two examples of “good” and “bad” fit only for illus-

tration purposes.

In figure 4.14 we present two examples showing different levels of convergence.

One could say that the parametric distributions obtained with the procedure de-

scribed above shown in the left present “better” convergence than those in the figure

in the bottom.

Figure 4.14: From the left: ”better” example of convergence and ”worst” example
of convergence.

In each of the two plots in figure 4.14 we see 3 curves. The “solid” curve rep-

resents the minimum information solution, the “dashed” one a Weibull distribution

and the “dotted” one represents a Gamma distribution. As we can see on the first

figure (the top one), the Gamma and Weibull distributions are relatively close to



78 CHAPTER 4. CAUSAL MODEL FOR AIR TRANSPORT SAFETY

the quantiles specified by DNV (comparing to the bottom figure). They capture the

mean (which is equal to 4.63) and the variability of the minimum information solu-

tion relatively well. In this case the Gamma distribution converge in 26 iterations

and the value of the sum of squared difference is 3.73871495e+002. The Weibull

distribution converged in 22 iterations wit a value of the sum of squared difference

is 4.53437414e+002.

On the second figure we see that the curves “dashed” and “dotted” do not

capture well the variability of the minimum information solution as well as mean

for Gamma distribution. Only the mean is well captured for Weibull distribution

(which is equal to 2e5) which converged in 46 iterations . We can observe big dif-

ference in the values of the sum of the squared differences between the Gamma and

Weibull distribution. The sum of squared differences for Weibull distribution is equal

to 4.51882540e+012, whereas for Gamma distribution is equal to 14.7308225e+012.

The example was taken from ESD 11. Once the parametric distribution correspond-

ing to each base event in the FTs is obtained, one instance of the corresponding

human reliability model is introduced in the CATS model. In the next chapter

analysis of the full model as now stands will be performed.



Chapter 5

Analysis of the CATS BBN

In this chapter we present the analysis of the CATS BBN. During the analysis

we use the version of the model from 27 June 2008. First, we present the analysis

of the accident in take-off, en route and approach and landing with respect to the

MT performance model. The main reason of this choice is that accident node is of

prime importance at this stage of the analysis and MT performance model has been

elaborated in the context of this thesis. In general, we would like to check if there

is any influence between accident probability and contribution factors representing

MT model and how strong this relation is. First, we will conditionalize on the con-

tribution factors and check the differences in the mean of accident probability. Later

on, we perform the sensitivity analysis to point out the most influential contribution

factors on accident probability.

In the next sections, we will present the sensitivity analysis. First, the sensitivity

analysis of FC performance model, ATC performance model and MT performance

model with respect to the overall accident will be presented. Next, the same analysis

will be presented with respect to the accident in take-off. Also, the sensitivity

analysis of base event representing human errors on accident node in take-off, en

route and approach and landing flight phases and other different accident scenarios

will be performed. The base events used in the sensitivity analysis are those from

the ESD 30 - “Aircraft encounters unexpected wind”.

5.1 Conditional and Unconditional distribution of ac-

cident probability

In this section, we will present and use in the analysis two ways to perform the

conditioning on the contribution factors. Firstly, we can perform sampling-based

conditioning, which can be applied to both probabilistic and functional nodes. Sec-

ondly, we can perform analytical conditioning (as we did in Chapter 3), which can
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be applied only to probabilistic nodes. One of the differences between them is that

using analytical conditioning we can conditionalize on single values of the condi-

tioning nodes, whereas sample-based conditioning allows us to conditionalize on

intervals. Mostly, we are interested in conditioning on intervals and that is why

we chose sampling-based conditioning. The interest is in checking the differences

between the means of the conditional and unconditional distributions. For exam-

ple, we would like to check how the mean of the unconditional distribution of the

output variable will change when we conditionalize on the group of the maintenance

technicians who just start their job as the maintenance worker and maintenance

technicians who already worked in current position for some years.

In table 5.1 we present results of sampling based-conditioning. To perform sam-

pling based-conditioning we used 100000 samples. The mean of the accident proba-

bility node1 representing take-off, en route and approach and landing after sampling

is equal to 3.2319e-6.

Condition Conditional mean Conditional Ratioa

standard deviation
Fatigue=[1,4] 3.1709e-6 2.6370e-5 0.9811
Fatigue=[5,7] 4.5367e-6 2.4659e-5 1.4037
Fatigue=[1,2] 3.0358e-6 2.7163e-5 0.9393
Fatigue=[6,7] 4.6513e-6 2.5615e-5 1.4392

AirGen=[1,2] 1.4974e-5 7.0090e-5 4.6332
AirGen=[3,4] 2.4370e-6 1.9896e-5 0.7540
AirGen=[2,3] 3.2852e-6 2.6216e-5 1.0165

Exp=[1,5] 5.7895e-6 2.4455e-6 1.7914
Exp=[8,14] 3.2620e-6 2.2542e-5 1.0093
Exp=[18,25] 2.8989e-6 2.9033e-5 0.8970

Workload=[0.1666,2] 3.0847e-6 2.5768e-5 0.9545
Workload=[3,7] 3.4161e-6 2.8480e-5 1.0570
Workload=[9,16] 3.8919e-6 2.9406e-5 1.2045

ShiftOverTime=[0.5,5] 3.3042e-6 3.0293e-5 1.0224
ShiftOverTime=[7,13] 3.1172e-6 2.5944e-5 0.9645
ShiftOverTime=[17,22] 2.6913e-6 1.3347e-5 0.8327

# of samples = 100000
Mean and standard deviation of the accident node after sampling

mean = 3.2319e-6
stdDev = 2.6298e-5

Table 5.1: Sample based-conditioning on contribution factors with respect to
accident node.

aRatio= conditional mean
unconditional mean

1See figure 4.10
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The largest difference in the conditional distribution of accident as measured by

the ratio of conditional mean to unconditional mean is observed in aircraft genera-

tion. When we conditionalize on AirGen=[1,2] (1 and 2 are the oldest generations of

the aircraft), the conditional mean increased from 3.2319e-6 to 1.4974e-5. In chap-

ter 3 it was observed that experience was the most influential factor in maintenance

error. However its importance is not as notorious in the overall accident probability

as aircraft generation is. Indeed, when we conditionalize on Exp=[1,5], we see that

the mean of accident node increased to 2.5576e-6. This is due to the fact that the

aircraft generation is also a node in the FC performance model. Hence its influence

in the overall accident probability is not only through MT performance but also

through the FC error.

It is worth mentioning that the lowest conditional mean is obtained when we

conditionalize on the most recent generation of the aircraft (3 and 4). The ratio

between conditional mean and unconditional mean is equal to 0.7540 and it is rela-

tively small comparing to other ratios of conditional and unconditional means2. It

means that the accident probability decreases when maintenance technicians have

to maintain the most recent generation of aircraft. This point out a possible per-

formance of maintenance technicians to work on newer aircraft.

After we obtained these results perform also analytical conditioning and condi-

tionalize on single values of the contribution factors. In table 5.2 we present the

analytical conditioning for different contribution factors.

2For comparison the ratio of the smallest percentile to the mean in the unconditional distri-
bution of accident probability is equal to 0.0326, and the ratio of the the largest percentile to the
mean of accident probability is 550.8874
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Condition Conditional mean Conditional Ratio
standard deviation

Fatigue=1 2.9729e-6 2.7093e-5 0.9360
Fatigue=6 4.6383e-6 3.2694e-5 1.4604

AirGen=1 5.1411e-5 1.9272e-4 6.1779
AirGen=2 8.9990e-6 4.8716e-5 2.8333
AirGen=3 5.1091e-7 2.2270e-6 0.1609
AirGen=4 2.4494e-7 5.5711e-7 0.0771

Exp=1 9.9652e-6 4.9652e-6 3.1376
Exp=3 5.9813e-6 3.6873e-5 1.8832
Exp=30 2.5569e-6 2.5379e-5 0.8050

Workload=10min 2.9128e-6 2.6701e-5 0.9171
Workload=30min 3.0238e-6 2.7108e-5 0.9520
Workload=22hrs 4.0257e-6 3.0403e-5 1.2675

ShiftOverTime=1min 3.1656e-6 2.7570e-5 0.9967
ShiftOverTime=22min 2.9290e-6 2.6731e-5 0.9222

WorkCond=1 3.2370e-6 2.7796e-5 1.0192
WorkCond=2 3.0135e-6 2.7022e-5 0.9488

# of samples = 100000
Mean and standard deviation of the accident node after analytical conditioning

mean = 3.1761e-6
stdDev = 2.7587e-5

Table 5.2: Analytical conditioning of the contribution factors with respect to
accident node.

When we conditionalized on single values of aircraft generation we may see how

big influence the type of the aircraft has on the accident node. The first generation

of the aircraft represents the class of the aircraft designed in the 1950s. From table

5.2 we can see that when we conditionalize on this class of aircraft generation the

conditional mean increases from 3.1761e-6 to 5.1411e-5. On the other hand, when we

conditionalize on the fourth generation of the aircraft, the most recent, we see that

the ratio between conditional and unconditional mean is equal to 0.0771. Observe

that the third generation of aircraft contains most of the aircraft (90.78%). The

ratio between the conditional mean and unconditional mean of the accident node

is equal to 0.1609. This node reflects the belief in the industry that technological

advances have made the industry more safe over the years. We may also speculate

that experts consider the interaction between men and technology fundamental in

risk mitigation.

Next, we will present a graphical interpretation of the accident node before

and after conditioning on first and third generation of the aircraft. Figure 5.1

presents the empirical cumulative distribution function of the accident node (the

left one is normal scale and the right one is zoom in to see better the difference
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between the empirical cumulative function before and after analytical conditioning

on AirGen=1).

Figure 5.1: The empirical cumulative distribution function of accident node before
conditioning (solid line) and after conditioning on AirGen=1 (dotted line).

In figure 5.1, we see two plots. The “solid” line represents the empirical cumu-

lative distribution function of the accident node before performing the conditioning

and the “dotted” line represents the empirical cumulative function of the accident

node after performing the conditioning on the AirGen=1. We can notice the dif-

ferences between these two curves. The conditional probability of the accident is

smaller than the probability when no conditioning is performed. The biggest differ-

ences are observed after the 85th percentile of the distribution.

In figure 5.2 we present the relationship between the empirical cumulative dis-

tribution function of the accident node when no conditioning is performed and the

empirical cumulative distribution function after conditioning on AirGen=3. Similar

explanation of the curves is provided here.
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Figure 5.2: The empirical cumulative distribution function of accident node before
conditioning (solid line) and after conditioning on AirGen=3 (dotted line).

As we can see in figure above, the conditional probability of the accident node

is bigger than the probability of accident node without conditioning. The biggest

differences are observed after the 96th percentile of the distribution.

Now, we would like to check how the probability of accident representing all

flight phases will change when we conditionalize not only on the oldest class of

aircraft (AirGen=1) but also on low values of maintenance technician experience

(Exp=1 year). Figure 5.3 presents the relationship between the empirical cumulative

distribution function of the accident node without conditioning (“solid” curve) and

the empirical cumulative function of the accident node after the conditioning on

AirGen=1 and Exp=1 was performed (“dotted” curve).
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Figure 5.3: The empirical cumulative distribution function of accident node be-
fore conditioning (solid line) and after conditioning on AirGen=1 and Exp=1 year
(dotted line).

As we can see in figure above, the conditional probability of the accident node

is bigger than the probability of accident node without conditioning. The biggest

differences are observed after the 85th percentile of the distribution. We want to

mention that the mean of accident node increased from 3.1761e-6 to 9.0749e-5.

From the data we know that 0.08% of the aircraft represent the oldest generation

of aircraft. To make sure that the aircraft generation is influencing the accident

node the most, we will do the sensitivity analysis and point out the most influential

contribution factors.

5.2 Sensitivity analysis of MT performance on acci-

dent probability

Figure 5.4 presents the sensitivity analysis of the predicted variable accident

in take-off, en route and approach and landing (OUT TOERALAccident)3 with re-

spect to the base variables representing the MT performance model. In the analysis

we drawn 100000 samples.

The sensitivity analysis confirms that the aircraft generation has the strongest

influence on the accident node from the MT performance model. The next, big

influence on the accident node is that of experience. The difference between the

correlation ratio of the aircraft generation and other contribution factors is signif-

3See figure 4.10.
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Figure 5.4: Sensitivity analysis of predicted variable OUT TOERALAccident with
respect to base variables from MT performance model.

icant. For example, correlation ratio of the aircraft generation is equal to 0.0150

while the correlation ratio of the experience is equal to 0.0004. This is explained

as mentioned earlier because the aircraft generation is an influencing factor in both

the MT and FC performance models4.

Now, we would like to check which one of the contribution factors representing

the human reliability models has the strongest influence on the accident node. To

check this we will perform sensitivity analysis of the predicted variable, accident

in take-off, en-route and approach and landing, with respect to the base variables

representing the contribution factors from FC model, ATC model and MT model.

Also, in this sensitivity analysis 100000 samples were used. Figure 5.8 presents

result of these analysis.

4Sensitivity analysis was also done using 50000 samples. The results were similar and the
order of the most influential base variables on the predicted variable, OUT TOERALAccident is
the same as when using 100000 samples. That is, aircraft generation has the strongest influence
on the accident node, then experience, etc. We noticed only the differences in the absolute value
of the correlation ratio, for example, aircraft generation has correlation ratio equal to 0.0365 while
the correlation ratio of the experience is equal to 0.007. As we can see the difference between these
values are about a factor two.
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Figure 5.5: Sensitivity analysis of predicted variable OUT TOERALAccident with
respect to base variables representing the human reliability models.

As we can observe, the crew unsuitability at approach and landing flight phase

has the strongest influence on the accident node. However, the correlation ratio is

small and equal to 0.0205. We can also notice the fact that the most influential

factors on the predicted variable are those representing the FC performance model.

The next variable which has the biggest influence on the accident node is a weather

during the approach and landing, a crew unsuitability representing en route and

take-off flight phase, then is the aircraft generation, first officer unsuitability for

approach and landing, en route and take-off flight phases, and etc.

In general the correlation ratio values for all variables are small. For example the

ratio of highest to lowest (different than zero) is 205. The first 13 variables ranked
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according to their correlation ratio value have comparable values for their absolute

rank correlation. However, their difference in terms of correlation ratio is up to a

factor 3.36. Significant differences may also be observed in terms of product mo-

ment correlations and rank correlations for each variable to the accident probability

indicating a higher degree of monotonic relation rather than simply linear.

In general, it may appear that the human reliability models do not have such a

significant influence on the accident in three flight phases. However, this conclusion

is also determined by the accident probability distribution which by conditionalizing

on a single value for a single conditioning variable (as in table 5.1) the difference in

means between conditional and unconditional accident probabilities may be a factor

6 in absolute value. We may conclude that the “most” influential factor is the crew

unsuitability at approach and landing flight phase and other factors representing the

FC performance model and aircraft generation representing FC performance model

and MT performance model.

5.3 Sensitivity analysis of human performance mod-

els on TO accident probability

Sensitivity analysis for the predicted variable OUT TOTake off with respect to

contribution factors representing FC performance model, ATC performance model

and MT performance model was also performed. In this sensitivity analysis 100000

samples were used. Figure 5.6 presents the result of these analysis.
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Figure 5.6: Sensitivity analysis of predicted variable OUT TOTake off with respect
to base variables representing the human reliability models.

As we can observe, the weather during take-off flight phase has the strongest

influence on the take-off node. However, the correlation ratio is low and equal to

0.0332. As in the previous sensitivity analysis of the accident node with respect

the same contribution factors, we can also notice that the most influential factors

on the predicted variable are those representing FC performance model. The next

variables with the biggest influence on the take-off node are: crew unsuitability rep-

resenting the take-off, approach and landing and en-route flight phase, then aircraft

generation representing the FC performance model and MT performance model,

first officer and captain unsuitability representing the take-off flight phase, and etc.

Also, in this sensitivity analysis the correlation ratio values for all variables are

small. The ratio of the highest to lowest (different than zero) in this situation is

equal to 332. We can notice that the first 6 variables, ranked according to the corre-

lation ratio value, have rank correlations that differ a factor 1.8 at most. However,

the difference between their correlation ratio is up to a factor 8.3. Similarly to the
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accident node, we can observe significant differences in product moment correlation

and rank correlation.

As a final remark, we can conclude that of the human reliability models those

representing the influential factors of the FC performance model have the biggest

influence on the take-off node. This pattern is similar when analyzing the overall

accident probability. Similar kind of analysis as the one presented in this chapter

may be conducted for other summary nodes.

In next sections, we will present the sensitivity analysis of base events represent-

ing FC errors, ATC errors, MT errors and non-human errors on accident node and

as well as on other accident nodes. As an example we choose base events from ESD

30 - Aircraft encounters unexpected wind and is representing approach and landing

flight phase. In table 5.3 we present the division of the base events (representing

FC errors, ATC errors, MT errors and non-human errors) which will be used later

on in the sensitivity analysis.

FC errors ATC errors MT errors Non-human errors

AL30B213 AL30B211 AL30B42 AL30B111
AL30B214 AL30B212 AL30B112
AL30B32 AL30B12
AL30B33 AL30B22
AL30B34 AL30B31
AL30B43 AL30B41

Table 5.3: Division of the base events representing FC, ATC and MT errors and
non-human errors.

As we can see from table 5.3, 40% of base events are representing the FC errors,

13.33% of them ATC errors, 6.67% are the MT errors and 40% of the base event

are representing the non-human errors.

5.4 Sensitivity analysis of base events representing

FC, ATC, MT and non-human errors on accident

probability

Figure 5.7 presents the sensitivity analysis of the predicted variable OUT TOERALAccident

with respect to base events representing FC, ATC, MT and non-human errors. In

this sensitivity analysis 100000 samples were used.
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Figure 5.7: Sensitivity analysis of predicted variable OUT TOERALAccident with
respect to base events representing FC, ATC, MT and non-human errors.

As we can observe, the base event AL30B214 defined as “pilot disregards cross-

wind limit” and representing FC error has the strongest influence on the accident

node. However, the correlation ratio is small and equal to 0.0495. The next, big

influence on accident node has AL30B32 defined as “lack of control”, AL30B43 de-

fined as “brakes not applied correctly”. Both of these base events are representing

FC error. As we can see the correlation ratio of these base events does not vary sig-

nificantly. The next three base events which has also big influence on accident node

are those representing FC error. They are: AL30B33 defined as “incorrect control”,

AL30B34 - “insufficient control” and AL30B214 defined as “pilot fails to calculate

wind correctly”. The base variable AL30B42 defined as “brakes not functioning cor-

rectly” and representing MT error does not have a big influence on accident node.

The correlation between this variable and accident node is low and equal to 0.0003.

It means that the variance of the accident node is explained by 0.03% of variance

of the conditional expectation of the accident node given AL30B42.

In general, the correlation ratio values are small for all variables. The ratio of

highest to lowest (different than zero) is 495. The first 6 variables ranked according

to their correlation ratio value have comparable values for their rank correlation and
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also for product moment correlation. However, their difference in terms of correla-

tion ratio is up to a factor 1.8333. In general, one may see a differences between

the product moment correlation and the rank correlation. The last being larger and

indicating a higher degree of monotonic relationship rather than simply linear. As

a final remark, we want to notice that base events representing the FC errors have

the biggest influence on accident node representing take-off, en-route and approach

and landing.

Now , we would like to check which one of events (initiating, pivotal, end or

base) representing ESD 30 has the strongest influence on Accident node. To check

this we will perform sensitivity analysis of OUT TOERALAccident with respect to

the events representing ESD 30. Also, in this sensitivity analysis we used 100000

samples. Figure 5.8 presents results of these analysis.

Figure 5.8: Sensitivity analysis of predicted variable OUT TOERALAccident with
respect to ESD 30.
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The strongest influence on accident node has end state AL30c1 01 representing

the runway veer-of. However, the correlation ratio is low and equal to 0.0747. It

means that the variance of accident node is explained by 7.5% of the variance of

runway veer-off. The next variable which has the biggest influence on accident node

is the pivotal event, AL30b1 defined as “flight crew fails to maintain control”. Then

is the intermediate event, AL30B21 define as “failure to anticipate severe wind con-

ditions”, and the end state, AL30d1 02 representing runway overrun, which have

the same correlation ratio. Other variable which has big influence on accident node

is the intermediate event, AL30B2 define as “failure to avoid encounter” and 3 vari-

ables which have the same correlation ratio, i.e. the pivotal event (AL30a1 - aircraft

encounters unexpected wind), the base event (AL30B214 representing the FC error)

and end state (AL30d1 04 - aircraft continues landing roll) and etc.

Also in this sensitivity analysis the correlation ratio values for all variables are

not high. The ratio between the highest and lowest correlation ratio (different than

zero) is equal to 747. We can notice significant differences in rank correlation to the

accident probability, whereas the differences in product moment correlation are not

that significant.

In the next section, we will present the sensitivity analysis of base events repre-

senting FC errors, ATC errors, MT errors and non-human errors on accident node

and other accident scenarios, e.g. runway veer-off, runway overrun, aircraft dam-

aged, collision with ground and etc. Also, in this sensitivity analysis we will use

base events representing ESD 30 - Aircraft encounters unexpected wind and is rep-

resenting approach and landing flight phase and division of base events presented

in table 5.3.

5.5 Sensitivity analysis of base events representing

FC, ATC, MT and non-human errors on different

accident scenarios probability

Sensitivity analysis for the different accident scenarios with respect to base

events from ESD 30 representing FC, ATC, MT and non-human errors was per-

formed. As in the previous analysis 100000 samples were used. Figure 5.9 presents

the results of these analysis.
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Figure 5.9: Sensitivity analysis of different accident scenarios with respect to base
events representing FC, ATC, MT and non-human errors.

In this sensitivity analysis we used 18 different accident scenarios. As it was al-

ready mentioned some of these accidents are representing whole flight phases, some

of them are specific for flight phase and some of them are represented in 2 flight

phases, for example, take-off and approach and landing.

Table 5.4 presents some of the the accidents categories together with correspond-

ing ESDs in which these accidents appear.
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Accident category ESDs

Landing (OUT ALLanding) 19-30

Accident in TO, ER and AL all
(OUT TOERALAccident)

Runway veer-off 3,4,9, 19-30
(OUT TOALRunway veer off)

Runway overrun 1-5,9,10,19-26,28-30
(OUT TOALRunway overrun)

Aircraft damaged 25
(OUT TOALAircraft damaged)

Table 5.4: Accident categories and corresponding ESD in which these accidents
appear.

As we can observe, most of the time the same base variables have the strongest

influence on the specific accident scenarios. For example, landing in approach

and landing flight phase (ALLanding) is influenced the most by the base events

AL30B32, AL30B214 and AL30B43 (all of them are representing the FC error).

Again, these sensitivity analysis showed that the correlation ratios are not too high.

However, the correlation ratios of 3 first variables do not vary significantly. The

ratio between the highest and the lowest of these correlation ratios is equal to 1.11.

For example, the variance of the ALLanding is explained by 5.9% of the variance

of the conditional expectation of ALLanding given AL30B32. We would like to

mention that the differences in product moment correlation and rank correlation of

3 first variables are not significant. Moreover, we can notice that the difference in

correlation ratio of the 29 variables presented in figure 5.9 is up to 2.61.

Another predicted variable, accident representing take-off, en route and approach

and landing is influenced by the same base variables as landing in approach and land-

ing flight phase. Again, to base events representing FC error (AL30B214, AL30B32)

and ATC error (AL30B214) have the biggest influence on accident node (as it was

showed in section 5.4). Similar explanation may be provided for other predicted

variables with respect to base events representing FC, ATC, MT and non-human

errors (table 5.3).

We can notice that accident scenarios such as: landing in approach and landing,

accident node representing take-off, en route and approach and landing, runway

veer-off, runway overrun and aircraft damaged are influenced the most by base

events representing the FC error.





Chapter 6

Summary and conclusions

In this chapter we present the summary of the work which was done in context

of investigating the aviation risks with continuous-discrete non parametric BBNs.

The following problems have been formulated and solved during the master

project:

• developed and built the Maintenance Technician performance model by per-

formed the quantification of the unconditional and conditional rank correla-

tions1 together with marginal distributions2

• explained the structure of the CATS model giving an overview of its different

parts, describing the different steps required for constructing the full model

and,

• presented analysis with the version of the model that is available at the mo-

ment of writing this thesis.

The human error in maintenance may impact on safety and performance in sev-

eral ways. For this reason while building the Maintenance Technician performance

model, which is a part of the Causal Model for Air Transport Safety, we had to

point out only these factors which may influence the MT error the most. Each of

these factors have to be described with unambiguous and simple definition. For the

purpose of the model we chose the following contribution factors: working condition,

fatigue, experience, shift overlap time, aircraft generation and workload. Further-

more, the source of the marginal distribution needed to be assign. In case where no

data was available the expert judgment procedure was used.

In order to quantify the Maintenance Technician performance model the infor-

mation about unconditional and conditional rank correlations was required. In this

1For this purpose the expert judgment was used.
2Based on data or expert judgment.
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situation we used expert judgment as well. In practise, the conditional rank cor-

relations are not elicited directly from experts. Instead conditional probabilities

of exceedence or ratios of unconditional rank correlations are asked. From these

probabilities we can retrieve the rank correlations by assuming a copula. In our

situation, we assumed the joint normal copula. We used this kind of copula, be-

cause of its useful properties, such as know relationship between rank and product

moment correlation and the fact that partial and conditional correlations are equal

[2]. Then by integrating appropriate normal distribution the relationship between

required conditional rank correlation and the conditional probability is found.

The CATS model combines Event Sequence Diagrams (ESDs), Fault Trees (FTs)

and Bayesian Belief Nets (BBNs) into a single structure, i.e. to continuous-discrete

non parametric BBN. ESDs are used to represent the top part of the model and are

representing accident scenarios. FTs are used to model initial and pivotal events

in ESDs in sufficient detail. The initiating and pivotal events in the ESD are the

top events in the FTs. The ESDs were quantified by NLR, whereas the FTs were

quantified by DNV. The FT contains base events which are connected to BBNs.

These represent one of the three human reliability models (FC performance model,

ATC performance model and MT performance model).

We want to mention, that 36.2% of base events in the CATS model are repre-

sented by the FC error, 7.4% of them are represented by ATC error, 25.4% by the

MT error and non-human errors are represented by 31%.

Before working on the CATS model, the model consisted of 1479 arcs and 649

nodes. From these nodes, 332 were functional nodes representing ESDs and FTs

as boolean functions and 317 were probabilistic nodes. The 20 ESDs (out of 31

representing the generic accident scenarios) were added to the model. Three phases

were represented in the CATS model: Take-off (TO), En-route (ER) and Approach-

landing (AL) and also accident node representing these flight phases. After, several

implementations have been done in the model, e.g. all missing ESDs and FTs have

been added to the model, all end states were connected to the accident node and

all base events were connected to specific human performance models, and the data

were updated (e.g. more quantiles were added to the Excel file provided by DNV)

the minor changes in the CATS model were observed. Finally, The CATS model

consists of 4745 arcs and 1366 nodes. From these nodes 532 nodes are functional

nodes representing the ESDs and FTs as boolean functions and 834 are probabilistic

nodes. Approximately, 3266 more arcs have been added to the model and 717 nodes

(probabilistic and functional) in total.

Large graphical structures such as the CATS BBN, can be analyzed (for exam-

ple, the sensitivity analysis) in reasonable time. For the analysis we used the version

of CATS BBN from 27 June 2008.
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The sensitivity analysis of the MT performance model on accident in three flight

phases confirms that the strongest influence on accident probability has the aircraft

generation. This node is representing 2 human reliability models - FC model and

MT model.

The sensitivity analysis of human reliability models on accident node showed

that the most influential factors on accident probability are those representing FC

performance model. Crew unsuitability in approach and landing flight phase was

pointed out as the one with the strongest influence on the accident probability.

Also, we performed the sensitivity analysis of the base events representing three

human errors and non-human errors on accident in take-of, en route and approach

and landing flight phase. Again, this analysis confirms that most of the time the

base events expressing the FC errors have to biggest influence on accident node.

The last sensitivity analysis was performed to obtain the dependencies between

different types of accident scenarios and the base events from ESD 30 (Aircraft

encounters unexpected wind). This analysis confirmed that different accident prob-

abilities are mostly influenced by the same variables, e.g. AL30B214, AL30B32 and

AL30B214 (all of them are linked to FC error). We may conclude that the accident

scenarios such as: landing in approach and landing, accident in take-off, en route

and approach and landing, runway veer-off, runway overrun and aircraft damaged

are depending on the base events connected to the FC error.

We may gather that if we take into consideration different base events (those

representing different ESDs in flight phases) it may happened that they will influ-

ence the most different accident categories. For example, base events representing

3 human and non-human errors in en route flight phase may have strong influence

on those accident scenarios which are representing the en route flight phase (fire in

flight, engine failure in flight, collision in mid air and etc.).

During preparations to meet with other experts for the quantification of the MT

model, it is recommended to apply the expert’s suggestions to the questionnaire to

make the questions more clear. For example, to be more specific with types of jobs

which we have in mind when we are thinking about maintenance technician jobs.

Since jobs are different and they could take different amount of time, for example,

the complete checking might take 1.5 week. The expert suggests to take, for exam-

ple, component replacement such as wheel or fuel.

In future work, the CATS model will add two ESDs - ESD36 - Ground collision

imminent, representing two flight phases - take-off and approach and landing and

ESD37 - Wake vortex encounter, representing en route flight phase.



100 CHAPTER 6. SUMMARY AND CONCLUSIONS



Appendices

101





Bibliography

[1] A.M. Hanea, D. Kurowicka, R.M. Cooke, Hybrid Method for Quanti-

fying and Analyzing Bayesian Belief Nets, Delft Institute of Applied

Mathematics, Delf University of Technology, The Netherlands

[2] D. Kurowicka, Roger M. Cooke, Uncertainty Analysis with High Di-

mensional Dependence Modeling, Delf University of Technology, The

Netherlands, 2005

[3] A. Roelen, B. van Doorn, J. Smeltink, M. Verbeek, R. Wever, Quan-

tification of event sequence diagrams for a causal risk model of

commercial air transport., Tech. Rep. NLR-CR-2006-520, Nationaal

Lucht- en Ruimtevaartlaboratorium (National Aerospace Laboratory

NLR) (2007).

[4] O. Morales-Napoles, D. Kurowicka, R.M. Cooke, D. Ababei,

Continuous-Discrete Non-Parametric Bayesian Belief Nets in Avi-

ation Safety with UniNet, Delft Institute of Applied Mathematics,

Delft University of Technology, The Netherlands.

[5] A. Roelen, G. van Baren, J. Smeltink, P. Lin, O. Morales, A generic

flight crew performance model for application in a causal model of air

transport, Tech. Rep. NLR-CR-2007-562, Nationaal Luchten Ruimte-

vaartlaboratorium (National Aerospace Laboratory NLR) (2007).

[6] O. Morales-Napoles, D. Kurowicka, R.M. Cooke, Description of the

Expert elicitation Results for the ATC Performance Model, Delft

University of Technology, The Netherlands, 2007

[7] R.M. Cooke, Experts in uncertainty, Oxford University Press, 1991

[8] A.L.C. Roelen, R. Wever, Accident scenarios for an integrated avia-

tion safety model, NLR-CR-2005-560, Nationaal Lucht- en Ruimte-

vaartlaboratorium (National Aerospace Laboratory NLR) (Novem-

ber 2005)

[9] A.L.C. Roelen, Maintenance technician report (working draft)

103



104 BIBLIOGRAPHY

[10] I.D. Jagielska, Quantification of non-parametric continuous BBNs

with expert judgment, Delft University of Technology, The Nether-

lands, July 2007.

[11] BASI.1997. Human factors in airline maintenance: a study of incident

reports,Department of Transport and Regional Development, Bureau

of Air Safety Investigation, Australia.

[12] O. Morales, D. Kurowicka, A. Roelen, Elicitating conditional and un-

conditional rank correlations from condiotional probabilities, Relia-

bility Engineering and System SafetyDoi: 10.1016/j.ress.2007.03.020.

[13] Civil aviation safety data 1989-2003, brochure

[14] G. van Baren, K. Krugla, O. Morlaes-Napoles, Minutes of meeting

- Elicitation of input parameters for the maintenace performance

model, Code-/Ordernumber: 1325000.3 (May 2008)

[15] I.D. Jagielska, K. Jozwiak, UniExp - Software Tool for the Elicitation

of Conditional Rank Correlations by Experts as Input for Continuous

Distribution Free BBNs, MANUAL

[16] 080523 DNV Collected Fault Trees v6 1.xls

[17] B.J.M. Ale, Causal Model for Air Transport Safety, Modified Seventh

Interim report (15 March 2007)

[18] A. M. Hanea, D. Kurowicka, Mixed non-parametric continuous and

discrete bayesian belief nets, Advances in Mathematical Modeling for

Reliability ISBN 978-1-58603-865-6 (IOS Press).

[19] Unisens, MANUAL

[20] Causal Model for Air Transport Safety, Draft of the final report, 31

July 2008



Appendix A

Excitation protocol

Introduction

Thank you for participating in this expert judgment exercise of the probabilistic

characterization of the performance of maintenance technicians. Within the CATS

project, in which NLR and TU Delft participate, a model has been developed to

represent the causal factors that are supposed to influence the probability of making

errors by maintenance technicians.

Objective

The objective of this exercise is to gather information on the variables that

influence the number of errors that a maintenance technician makes per jobs. The

potential variables are working condition, time of day, workload, aircraft generation,

etc. This information will be used to quantify the maintenance technician perfor-

mance model.

In the current version of the model we assume that the influence of a certain

variable is independent of the values of other variables.

The Maintenance Technician Performance Model

The picture below displays the structure of the maintenance technician performance

model. It obviously is a simplified representation of how the number of maintenance

technician errors depends on certain factors. However, these five influential factors

(Working conditions, Fatigue, Experience, Shift overlap time, Aircraft generation,

and Workload) are considered to be most important.
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The model structure itself is not subject of discussion in the current exercise,

and should be considered as it is.

The definition of the variables is given in the table below.
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Part I: Elicitation of probability distributions.

All questions in this section refer to a population of maintenance technicians

in the Western world (Europe, North America, Australia) and Western-built large

aircraft (> 5, 700 kg Maximum Take-off Weight) currently flying in commercial op-

erations worldwide.

Marginal distributions

When we speak about maintenance technician errors, we think of errors that

are not immediately recovered, e.g.,

• Part damaged during repair

• Wrong equipment or part installed

• Panel or system not close

• Material left in aircraft

• Required service not performed
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Dependence information.

In this section, we are interested in the relationship between the variable Num-

ber of Maintenance Technician Errors and the variables 1-5 in Table 1 (repeated

below).

Please assign number 1 to the variable that you consider to have the strongest

influence (highest absolute rank correlation coefficient) on the number of Mainte-

nance technician errors, 2 to the next most important and so on until 5 to the least

influential variable.
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For the variable that you ranked highest, we have the following question:
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For the remaining variables, please indicate their influence as a portion of the

influence of the variable that you ranked highest:

Part II: Calibration Variables.

All questions in this section refer to a population of Maintenance technicians

in the Western world (Europe, North America, Australia) and Western-built large

aircraft (> 5, 700 kg Maximum Take-off Weight) currently flying in commercial op-

erations worldwide.

To capture your uncertainty, in all questions from this section, we will ask you

to provide the 5%, 50% and 95% percentiles of your uncertainty distribution, which

can be interpreted as that we ask for your best estimate (50%), the value which

would surprise you if the real value would be lower (5%), and the value which would

surprise you if the real value would be higher (95%).
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