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N.V. Nederlandse Gasunie is the leading Dutch gas transportation company. Its main
aim to manage, maintain the gas transport system. The grid of gas pipelines belonging
to Gasunie consists of over 11.600 km steel pipelines (diameters from 4 to 48 inch)
constructed in the 60s.

Integrity management is based on the ability of the pipeline operator to predict the
growth of defects detected in inspection programs. The predictions of the corrosion and
defect rates can be based on environmental input parameters. Accurate predictions
allow interventions/re-inspections to be scheduled in order to eliminate defects which
pose a high potential risk.

This thesis investigates three main issues. Firstly, it shows an appropriate tool for the
corrosion rate modeling when data from in-line inspections are available. A low number
of inspections contribute to high uncertainty about the corrosion rate estimation. In
many cases, a poor dataset combined with high uncertainty about the measurements
cause corrosion estimates that are not agreeable with reality; for example corrosion is
decreasing in time. The outputs from the corrosion rate model are incorporated as input
to the second section, where analysis is focused on investigating parameters influencing
Microbiologically Induced Corrosion (MIC) rates. The last part of the thesis presents the
design and results of the defect rate.

Keywords: Corrosion, Corrosion rate modeling, In-line inspection, MIC, factors
influencing MIC, defect rate
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Introduction

N.V. Nederlandse Gasunie is the main gas-transportation company in the Netherlands.
Its gas pipeline network consists of approximately 11.600 km of steel pipelines
(diameters from 4 to 48 inch) that was largely constructed in the period of the mid sixties
to early seventies.

The network is split into a high pressure part (HTL) (5600 km, 66-80 bar) and a medium
pressure part (RTL) (600 km, 40 bar). The high pressure network is possible to inspect
whereas the medium pressure part does not possess required inspection facilities.

Until 1999 Gasunie had no indications whatsoever that there was a corrosion problem
on one of its pipelines. Both regular Cathodic Protection (CP) measurements as well as
observations during excavations or reroutings indicated that no significant corrosion
problem existed.

Nevertheless Gasunie policy was to verify pipeline integrity periodically by inspecting
one of its high pressure lines on average once every 5 years since 1979. The results of
these inline inspections confirmed the existing opinion that no corrosion problem existed.

In-line inspections have been part of the verification of pipeline integrity since the late
seventies in N.V. Nederlandse Gasunie. The discovery of external microbial corrosion
(MICY) in 1999 in one of the high pressure pipelines changed the inspection policy from
inspection of a randomly selected pipeline once every 5 year to an inspection program
for the whole high pressure grid (approximately 5.600 km) to be completed in 10-12
years.

S0 S el

Figuré 0-1: detéfi'brating gas pielines

External Microbial Induced Corrosion is a type of corrosion where the corrosion rate is
influenced by the activity of bacteria, especially Sulfate Reducing Bacteria (SRB). It can
be found in many environments. Within Gasunie it is found as external corrosion on gas
pipelines. The chemical and microbial processes are complex and can therefore depend
on many parameters. Based on experience, Gasunie believed that MIC is found in
certain areas more than in others and that therefore the occurrence of MIC is related to
soil type or other soil parameters.

1 . . . .
Microbiologically Influenced Corrosion
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XV A statistical approach to determine the MIC rate of underground gas pipelines

MIC is initiated at locations of disbonded coating (usually at field applied coating) when
the bacteria and also the pipeline surface are shielded from the cathodic protection
system. Even well maintained cathodic protection systems cannot protect against
deteriorated, disbonded coating. MIC is not only dangerous due to incapacity of
protecting, but also because of relatively high corrosion rate, which is higher than for
galvanic corrosion.

TU Delft was commissioned by Gasunie to make a statistical analysis of the available
data on three high pressure pipelines where MIC was recognized.

Delft University of Technology
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The goals of the research

The main issue of the thesis is the analysis of the MIC based on the data delivered by
N.V. Nederlandse Gasunie. One of the MIC influenced lines was used to qualify MFL-
pig? (Magnetic Flux Leakage) from different suppliers. In the time period 1999-2004 four
different MFL qualification runs have taken place, resulting in 18 excavations. After the
fourth pigrun (5 years after the first) Gasunie decided to determine the corrosion and
defect rate and investigate influencing factors.

The goal of this thesis is to discuss to Microbiologically Induced Corrosion and its effects
on the safety and maintenance issues.

The main objectives of Gasunie are:
o Developing models describing the Microbial Induced Corrosion and Defect rates
e Finding a number of factors influencing both estimated rates.
These models and results can be used for prioritizations of pipelines for inspection and
determination of inspection intervals.
The structure of corrosion modeling is presented in the Figure 0-2 below.

Section 1 Section 2
Measurement
error —
Excavation distributions
Data
.Pig. —1 5 Corrosion rate Environment
Calibration estimate Data
Defect I |
measurements™

Defect rate for a
given environment

Corrosion rate
estimate for a
given environment

Environment
Data
Section 3
Figure 0-2: corrosion modeling schema

First part of the schema indicated by blue color refers to the first section of the thesis
where the corrosion rate model is presented. The results from this study are the input
for the part number two where the parameters influencing the microbiologically induced
corrosion rate are investigated. The final section shows the results of defect rate
modeling of pipeline affected by MIC. This constitutes a detailed statistical description of
a connection between environment measurements and the reported corrosion events.
The main research is directed to find factors (if there exist) that influence both: the
corrosion rate and the defect rate.
The main assumptions in the analysis are:

- Coating condition is assumed uniform and is not governing defect rate.

- Pigrun feature type and stationing indications are fully correct

- Estimates of the corrosion rate (previous study) are certain

- Nominal wall thickness is assumed to be real

2 Also called: “Intelligent Pig”, more detailed description is presented in Chapter no. 2
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XVii A statistical approach to determine the MIC rate of underground gas pipelines

Outline of the thesis

The thesis consists of three main parts.

The first section aims to model the corrosion rate. Firstly, Chapter 1 describes available
corrosion data and gives a small overview on inspection procedures and associated
inspection tools. Later on, the data will be used as an input for corrosion rate model.
The model for corrosion rate will be introduced and discussed in Chapter 2. Chapter 3
shows number of numerical approaches in order to get estimate of the corrosion rate.
The analysis is carried out starting from the simplest to more sophisticated models. The
first and the second approach are simply based on the unconstrained regression
analysis. The third model is based on the unbiased measurements and pigs’ accuracies
introduced previously in Chapter 2.

Second part of the thesis begins with Chapter 4 investigating historical data about the
potential from the test-posts. Chapter no. 5 incorporates the results from Part 1, on-
potential analysis and bio-data in order to get number of parameters influencing the
corrosion rate. The last section is dedicated to defect rate analysis. The section starts
with pipeline characteristics (Chapter 6) where general information about gas pipelines is
presented. Chapter 7 shows procedures of collecting and analyzing the soil data from
geotechnical surveys. The purpose of this chapter is to associate the defect rate of the
pipelines induced by MIC with soil compositions. The parameter which is investigated in
Chapter 8 is a groundwater step level data analysis. Chapter no. 9 combines all the
available soil data, pipelines features and groundwater levels, and treats them as inputs
for the regression model describing the defect rate.

Delft University of Technology
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Chapter 1

1 Description of the corrosion data

1.1 Introduction

In 1999 a 70 kilometer long pipeline (36 inch) in the north of the Netherlands was
inspected by MFL pig as part of the verification program. The results of the pigrun
indicated, as an unpleasant surprise, 65 external corrosion features but no internal
corrosion. After a thorough defect assessment by the safety department of Gasunie it
was decided that 6 indications had to be excavated and repaired. The first excavation by
the end of 1999 led to a second unpleasant surprise. At the excavation the appearance
of the corrosion defect turned out to be totally different from the few corrosion defects
that Gasunie had experienced in the past. Analysis of the corrosion products and the
appearance of the defect led to the conclusion that the corrosion was influenced by
sulphate reducing bacteria (SRB’s). Similar experience was obtained at three other
excavations. At the end the conclusion was that at four out of the six excavations the
corrosion was Microbially Influenced Corrosion (MIC). An additional excavation in 2000
showed also MIC.

From the results Gasunie concluded that it was no longer safe to assume that other lines
were free of this corrosion problem. Therefore the inspection policy was revised. It was
decided to start an in-line inspection program for all high pressure lines to be completed
in a time frame of approximately ten years. It was also decided that pig suppliers had to
gualify before they could inspect Gasunie pipelines. Because of gas-transport reasons
and because of the fact that some defects on the line had been repaired by clock spring®
or coating repair and thus can be used as reference points for MFL pigs, the inspected
line was appointed as a qualification line. When starting up the inspection program
Gasunie realized that a reliable corrosion rate is paramount to determine a re-inspection
time interval for its pipelines.

3 Clock Spring is a composite sleeve used to repair external defects in high-pressure pipelines

M.Sc. Thesis Lech A. Grzelak



5 A statistical approach to determine the MIC rate of underground gas pipelines

1.2 Magnetic Flux Leakage (MFL)-pig

In-line inspections are performed by so-called MFL-pigs also called “intelligent pigs” that
locate and characterize mechanical damage in pipelines. It is a common approach to
the management of external corrosion in the pipeline industry. Inspections followed by
excavations of extreme deep defects minimize potential risk.

- Figure'l-l: small and large diameter MFL-pig

1.3 Matching of the reported defects

In order to compare reported defects from two pigruns the defects will have to be
matched. This can be done by using the reported log-distances from the pig, pipeline
lengths, clock position of the defect, and distances to reference points like welds, valves.
Within Gasunie this process can be automatically done within the PIMS* software.

In this software the matching process visualization of the defects on a pipeline segment
is possible. Figure 1-2 shows a typical example of reported defects from two pigruns.

8 67680 67682 67 684

™ wa VR WA Wy

R 12 3

" 706 67.708 67.710 B e ctnai e R
Figure 1-2: visualization of matched defects
(defects 1 to 6 are from run 1 and 7 to 12 from run 2)

* Pipeline Integrity Management System
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As can be seen from Figure 1-2 it is not always clear after the matching of defects by the
program, which defects belong together (7 to 1 or 8 to 1?). In the program however the
user has the possibility to define certain areas around a defect. If a defect falls within
such an area then the two defects are considered to be the same defect. The advantage
of the software is that when many defects are close together the user can optimize the
area sizes to get the best possible matching of defects.

Factors that complicate the matching of defects are differences in terminology of
suppliers or differences in interpretation of defects: external corrosion defect, internal
corrosion defect, mill defect etc. Suppose that the software has matched a defect from
run 1 to a defect from run 2. Supplier 1 calls the defect “corrosion” whereas supplier 2
identifies it as “mill defect”. The question is then if this matched defect should be taken
for the determination of the corrosion rate. It was decided to work with two scenarios to
find out whether it was critical for the determination of the corrosion rate if only the
defects with the same identification were used (only indicated as “External Corrosion”) or
also defects with different identification (“External Corrosion” and “External metal loss,
possible mill defect”). It turned out that the corrosion rates that were calculated for both
situations were almost the same. In order to keep the uncertainties in the process as
small as possible it was decided to use only the matched defects with the identification
of “External Corrosion” in all pigruns.

1.3.1 Number of matched defects

In the matching process different categories of matching defects originated: defects from
run A that could not be matched or that could be matched only once (to B, C or D), twice
(to B and C, C and D or B and D) or three times (to B, C and D). A similar result was
obtained for the matching of defects from the other runs.

For the final data set used for the calculation of corrosion rate it was decided to use only
the defects that had been detected by three or more pigs. This resulted in a data set of
52 matched defects with a subdivision as indicated below.

A B C D

Al- 30 46 45
B|- - 36 35
cl- - - 51
DI - - - -

Table 1: number of matched defects per combination of pigruns

As can be seen from the table, the number of matching defects within this subset was
smallest for the comparison of run A and B: only 30 defects matched there.

Altogether a number of 29 defects were reported by all and only four suppliers whereas
23 defects were reported by three suppliers.

1.4 Available data

For the analysis of the data two data sets are available:
1. reported defect dimensions from the pig supplier
2. defect dimensions as determined at the excavation and repair of the defect

M.Sc. Thesis Lech A. Grzelak



7 A statistical approach to determine the MIC rate of underground gas pipelines

1.4.1 Reported defects

Although the claimed performance of the different pigs is comparable (see Table 2) the
number of reported external corrosion defects is different per supplier as can be seen in
the table below.

. Number of
. Sizing Date of
Supplier 5 external . .

accuracy corrosion inspection
A +/- 10% w.t. 65 October 1999
B +/- 10% w.t 72 April 2001
C +/- 10% w.t 1708° June 2002
D +/- 10% w.t 441 March 2004

Table 2: sizing accuracy of the pigs and number of reported defects

As it is generally known the process of defect recognition consists of three steps:
detection of the defect, sizing of the defect and identification of the defect. The
experience of Gasunie is that most of the differences between suppliers arise from
differences in identification. The distinction between a mill defect and a corrosion defect
seems to be troublesome for the suppliers in quite a number of situations. This accounts
for part of the differences in the reported number of defects.

Another explanation for the difference in numbers is time related: in general the
performance of pigs has improved over the last 5 years and corrosion defects that had a
defect depth under the reporting threshold 5 years ago may have grown to a defect
depth above the reporting threshold.

1.4.2 Excavation data

After the first pigrun 7 excavations have been performed, in which 17 separate defects
have been repaired. All of the defects that have been repaired were manually measured
in the ditch by the usual gouges. The defects that have been repaired by welded sleeves
could not be used as reference points for the pigruns B, C and D whereas the defects
that were repaired by clock spring or coating could be used as reference points.

Table 3 indicates the number of reference points that have been detected by the different
suppliers.

Supplier | Number of available reference
points from excavation

A 17
B 9

C 11
D 10

Table 3: number of reference points per pigrun

The fact that the number of reported reference defects varies between B, C and D is due
to the fact that the applied POF- interaction rules [1] lead to clustering of defects.
Differences in defect sizes or distances between defects will inevitably lead to different
numbers of reported defects.

® for defect depth of general corrosion with 80% confidence level (w.t. = wall thickness)
® of which 576 are below 10% of wall thickness
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Figure 1-4 shows reported defect depths compared to the real metal loss measured at
the excavation (all pig measurements are oscillating around a dashed line- which
indicates a linear relationship between real metal loss, and pigs’ measurements).

calibration data

a0

inspection A
4501 *  inspection B
inspection C
40+ inspection D

measured metal loss [%)]

a 5 10 15 20 25 30 35 40 45 50
intelligent pig metal loss [%)]

Figure 1-4: reported vs. measured defect depth

Because the excavations were performed in a relatively short time period after the pigrun,
it is assumed that defect depth has not significantly changed between the time of the
pigrun and the time of excavation.

1.4.3 Measurement data from matched defects

All the matched defects come from different segments with varying wall thickness. In 10
cases the defects are from a segment with a wall thickness of 11.2 [mm], while the rest
of the defects are from the pipe with a wall thickness of 12.86 [mm] (These values are

nominal wall thicknesses). The measurement dataset of matched defects is presented
in Figure 1-5.
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9 A statistical approach to determine the MIC rate of underground gas pipelines

measuremensts (hiased) against depth

9 ___________________________________________________________________________
' ' ' ' ' ' ' * inspection A

o] T R L R S I Lo v inspection B |-
: 4 * inspection C

}'_......i......,i......,i......% ...... . ...... .". ingpection O |-

depth [rmm]

defect

Figure 1-5: reported defect depth

Since the inspections are chronologically ordered (A, B, C and D), it is clear from the
above figure that some of the defects are improving in time (corrosion depth is
decreasing), which is physically impossible.

Delft University of Technology



10

Chapter 2

2 Description of the corrosion rate model

2.1 Introduction

Since the corrosion is reported by intelligent pigs, it is very important to know what the
accuracy of the pig is. Such information can be obtained from the calibration data
collected during pipeline excavations. Given that all data gathered by pigs is not certain
it is reasonable to combine the measurements with error distributions obtained from the
calibrating procedure. If the excavation indicates that for a certain pig the measurement
error is significantly smaller than for the other pigs, then the model should also take this
information into account. Another demand which model has to satisfy is to deal with the
missing data — if some of corrosion spots haven’t been registered in all inspections; so
this information also needs to be taken into account and to give physically unreadable
estimates.

This chapter shows ways of dealing with uncertainty about measurements, estimating
reasonable corrosion rate(s) (i.e. non- decreasing in time) and dealing with the missing
corrosion data.

2.2 Data calibration

The data measured at each pigrun can be calibrated by removing the bias. There can
be different reasons for this bias in defect measurements. Two of the most important
reasons are: a measurement error associated with the measurement technique of a
MFL-pig, and an effect caused by the clustering of defects. The result of clustering of
several individual defects can be caused by that only the deepest points are compared
they may not be related to the same individual defect.

The analysis starts with the measurements calibration for a possible bias. This is one of
the most important actions because the calibration influences all the collected
measurements.
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11 A statistical approach to determine the MIC rate of underground gas pipelines

Due to the small number of excavations, it is difficult to investigate how well a given pig
is calibrated for deeper or shallower defects. However, it is possible to check the pigs’
accuracies, assuming homogeneity between defects for each pig. By comparing the
calibration results, a conclusion on which pig is the best, with respect to a bias spread of
the measurement errors can be obtained. The calibration algorithms are in the next
paragraph.

2.2.1 Data calibration procedures

Algorithm 1 (Calibration data algorithm)
In order to perform data calibration we need to follow the procedure:

. take X as a vector of metal loss registered by an intelligent pig
. define an actual metal loss vector Y

. define the bias vectorZ = X -Y

o calculate the bias by taking the expectation of Z (EZ)

This procedure allows to measure (by means of the average value) how “far” is
the registered by a pig metal loss from actual the metal. The expectation is
equivalent to the measure of bias, and indicates how pig measurements are
consistent with actual data.

Algorithm 2 (Measurement error distribution algorithm)

This algorithm presents the procedure for estimating the distribution of
measurement error.
e Use the Calibration algorithm and find EZ
o Define the corrected (unbiased) pig calibration measurements as:
X'=X-EZ
¢ Define the residual random variable & = X'-Y
e Find the distribution of £ (using technigues introduced in the background
chapter- appendix Al)

From Algorithm 1 and 2:
EX'=E(X-EZ)=EX-EZ=EX-E(X-Y)=EX -EX +EY =EY
So, the expectation of “unbiased pig” equals the expected value of actual metal loss.

2.2.2 Data calibration results

The calibration procedure showed that all of the pigs have a bias. All the measurements
require removing the bias. The bias for all pigs did not exceed a value of 0.6 [mm], and
on average had a level of 0.1 [mm]. Two MFL-pigs led to underestimation and two led to
overestimation of defect depth. Table 4 presents the results of the calibration procedure
applied to the excavation dataset.

insp. no. of calibr. samp. bias [mm] conclusion
A 17 0.12 overestimated
B 9 -0.55 underestimated
C 11 -0.05 underestimated
D 10 0.12 overestimated

Table 4: calibration results
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Removing the bias can be done by subtracting it from the measurements reported by the
corresponding MFL pig. When all the measurements are unbiased, the second stage of
the pig calibration can be initiated, namely- the measurement error analysis.

Since none of the MFL pigs reports measurements without error (see Figure 1-4), all the
pigs have their own measurement error distributions. The example of the measurement
error histogram for pig A with the corresponding theoretical curve is presented in Figure
2-1.

measurernent error histogram  (pig A)

I I I I T T T
- measurement error histogram : : :
0.1H theoretical density

R = e

=
fu}
&

_____________________

frequency

0.04 f--embommeemoedenees

3 2 K 0 1 2
reasurarment error (pig A)

Figure 2-1: error distribution for pig A

When the measurement error distributions for all the pigs are known, the conclusion
about the pig’s accuracy can be drawn. It depends on two factors. Firstly: on the level of
the bias and secondly: on the standard deviation of the measurement error. The
analysis showed that for all pigs, under the null hypothesis, the measurement errors are
normally distributed cannot be rejected (a significance level is customarily chosen to be
0.05). The standard deviations of the measurement errors are tabulated and presented
beneath in Table 5.

inspection distribution’
A N(0,0.93)
B N(0,1.34)
c N(0,0.77)
D N(0,0.63)

Table 5: standard deviations of the measurement errors

The results from the table indicate that pig D (the last inspection) has the smallest
spread of the measurement error. The worst one is pig B, which has less than half the
accuracy of D. Since the uncertainty about the measurements reported by pigs is
known, it is advisable to take this information into account for corrosion rate modeling.

"N stands for a Normally distributed random variable with two parameters, mean and standard deviation
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13 A statistical approach to determine the MIC rate of underground gas pipelines

2.2.3 General model for data calibration

Let's assume that we have carried out n inspections- done by n different pigs. Each pig
is biased depending on the registered defects depth. This kind of situation requires
special treatment, which is the main part of this chapter. Proposed procedure shows
ways to avoid (reduce) the correlation between reported defect depth and measurement
error.

Suppose, we take a certain pig i for which, measurements and actual metal loss can be
presented as follows:

10

9

g

measured metal loss [mm)]
e

intelligent pig metal loss [mm]

Figure 2-2: example of defects clustering

Figure 2-2 shows that for three different defect populations three different biases can be
specified, and three associated error deviations. Of course, the decision about
combining defects (clustering®) into subpopulations generally can be subjective.
However the choice of clustering also can be done in mathematical manner.
Mathematical tools that work with this problem are so called “Clustering algorithms”.
Literature available on the topic of the clustering is introduced in references [8], [9], [10]
and [11]. Given that i'th pig measurements are presented in Figure 2-2 above, it is
possible to recognize three different defects groups: small defects (black dots) where the
bias is negative (pig gives lower values than actual loss) with small standard deviation,
second- where observations oscillate around actual values but with high spread, and
third subpopulation (blue dots) where the bias is positive. This observation motivates to
distinguish groups of shallow, middle, and deep defects. Such groups should be
calibrated separately. Presented situation, might not the case of real measurement; but
it is important to know that if such situation occurs then needs to be taken into account in
the modeling.

According to previous notation, we have n pigruns and each of them can be biased for
different clusters of defects. This leads to more general procedure of data calibration
than the one introduced before.

8 “The process of organizing objects into groups whose members are similar in some defined way”
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2.2.4 General calibration procedure:

1. Take calibration data for pig i where i =1,...,n
2. Check whether pig’s measurements are homogenous, if not, then find
number n; of defects clusters (i.e. subgroup of defects, where members are

similar in some way)
a. For each j=1,...,n apply the algorithm 1 and get the bias for

group j.
b. Remove the bias from all measurements obtained by pig i.

c. Apply the algorithm 2 and get the distributions for ¢;; where
j=1...n
The effects of applied general procedure are:

e All measurements done by pigs can be calibrated according
to pig accuracy for different defects depth.

n
e We have Zni distributions functions of measurement error,
i=1
which will be applied in order to estimate the corrosion rate.

In the previous part it was checked that the measurement error distributions for all
pigruns are normally distributed. In the general model, if both: the assumption about the
same population for all the errors and normal distribution are satisfied then in order to
estimate the corrosion rate a linear regression can be applied. On the other hand the
least squares errors approximation without imposed any constrains can produce best
estimate which for ex. indicates decreasing corrosion rate.

Next paragraph presents the general corrosion rate model and numerical results for
describing corrosion growth as a functional dependence on time (inspections).

2.3 General corrosion rate model

Let's assume that according to dataset n distinguishable defects in time were observed.
Suppose that defect i was observed in n, inspections. The task is to find the best

function of time, which describes the corrosion growth for specific defect i. The first
idea is to apply linear regression to all observed values of defect i. This is a reasonable
guess, but has significant drawbacks:
e From the collected data it is clear that in many cases inspections report the
depths for which the best linear estimate is:
0 decreasing in time- what is unacceptable
o0 the slope of a function is too high- it means that the corrosion according
to the function grows too fast, and indicates leakage- but such leakage in
pipeline was not observed
0 corrosion according to the best estimated function starts before pipeline
installation or even pipeline production
e The standard regression estimation can only be applied to the model if it is
assumed that the errors are normal, come from the same distribution and are
uncorrelated. However, in the case when the calibration procedure is applied, it
is clear that the normality might not be the case; furthermore, it can happen that
measurements error don’t come from the same population (distribution).
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15 A statistical approach to determine the MIC rate of underground gas pipelines

The model that has none of introduced drawbacks and according to delivered data gives
a functional description of the corrosion rate is presented beneath.

The idea behind the model is to give an estimate which takes into account information
about the measurement error distribution for each specific pig (if the case then also
clusters for each pig).

First, let's define:
o f.: (I'j ,aio,...,ai') — R" - theoretical model function with |+1 parameters,
associated with i'th defect,
e T, - time since pipeline installation at j'th inspection
° dij -unbiased depth of defect i, measured at j'th inspection

e W, - nominal wall thickness where i'th defect is observed
e m - total number of inspections

° PH - measurement error density function of defect i at j'th inspection

The function f, associated with i'th defect needs to satisfy following optimization task:

m
maximize : L, =HF’Lj(fi(Tj,aiO,-.-,0!il)—di,j)
j=1

subject to : fi(Tm,aio,...,ai' )—Wi <0
- fi_l(O,aiO,...,ai' )S 0
f; is non decreasing

The first restriction imposed on function f, says that a value of the function at the last

inspection cannot be higher than the pipeline wall thickness where defect i was observed.
The second condition rejects situations where corrosion initiation according to data is
before pipeline installation (if we want to find the corrosion initiation time, we need to find

a t, for such fi(t,aio,...,ai') =0i.e. corrosion level at initiation time is exactly equal to

zero, hence it is equivalent with fi‘l(O,aiO,...,ai') =t ). The third and last constraint
says that the function associated with defect’s growth cannot be decreasing in time.

2.3.1 Example
Suppose that:
e Inthree inspections one defect i was observed.
o Each time, the measurements were done using different pigs.
o From calibration procedure it is known that all three pigs have nonhomogenous
measurement error i.e. parameters (or distribution) are different for different pigs.
Assuming linearity of defect's growth, the model has to find such estimators of aio and

a; for which the Likelihood function L;is maximum. The function: f, =&’ +a;t is a

function that describes the corrosion growth in time for specific defecti. The schema of
this procedure is presented below in Figure 2-3.
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Figure 2-3: corrosion rate determination- general model

It is clear that L, gets the higher value if the estimated line is closer to real

measurements. In the case when the line goes through all observed measurements,
then this line is the best, and the likelihood is maximal, hence this approach agrees with
natural expectation.

Remark

The optimization process can be performed by applying techniques introduced in a field
of optimization as “multidimensional constrained non- linear programming”. The results
presented in the report are obtained by using Matlab® optimization toolbox. Furthermore
because of the computational complexity of introduced non-linear task it is worth to
transform the task by using logarithm transformation'®. The implementation of the
formulated problem is presented in the appendices.

2.3.2 Dealing with missing data

Many of defects were observed only in three inspections (while total number of
inspections is four). The model assumes that if depth of certain defect was not reported
during inspection, then the measurement error density function for this defect is uniform
on the interval bounded by the minimum and maximum observed defect’s depth.

Suppose that defect i was not observed at third inspection, then in optimization problem
the measurement density function for unmeasured depth is

I:)i,3 =1[mindepthofi'thdefect,maxdepthofi'thdefect]' This means that if a certain defect was not

registered, then the function describing corrosion growth is derived by using only
reported defects. The draft of such situation is presented on the Figure 2-4.

® Matlab 7.0.0.19920 (R14)
10 Any monotonic transformation of a function doesn’t change its extremes (mA1, min).
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Wall thickness
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Initiation time
Figure 2-4: corrosion rate modeling- dealing with missing data

2.4 Conclusions

The model presented in this section gives the corrosion rate estimate when low number
of the defect measurements is available. Very often standard regression model doesn’t
give reliable and acceptable results; hence alternative is required. For many defects the
regression estimates are negative or indicate defect initiation before pipeline installation.
The General corrosion rate model solves all these drawbacks, and also takes into
account information on pigs’ accuracies.

2.5 Implementation (CoroGas 1.0v)

The theory introduced in this chapter has been implemented in CoroGas, software
package developed by the author. This program analyzes the excavation data, unbiases
the measurements, assesses the weights for MFL-pigs and gives estimate of the
corrosion rate. The program has implemented algorithms for predefining the clusters for
the calibration.

inspections T |

_'fi Delft _

FuDelft

Figure 2-5: calibration data & optimizer window of CoroGas

...... o | wom | wa |

Appendix B describes CoroGas and all available functions.
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Chapter 3

3 Numerical results

This chapter is mostly based on the article “Determination of the corrosion rate of MIC
influenced pipeline using 4 consecutive pigruns” by Lech A. Grzelak & Giorgio G.J.
Achterbosch published in “International Pipeline Conference” (IPC06-10142)

3.1 Introduction

Three different approaches for corrosion rate modeling will be presented. The analysis
is carried out starting from the simplest to more sophisticated models. The first and the
second approach are simply based on the unconstrained regression analysis. The third
and the last model, is based on the unbiased measurements and pigs’ accuracy
described in the Chapter 2.

3.2 Approach 1

In the first approach all the defects are pooled in 1 dataset and no corrosion rate is
calculated for individual defects but only for the dataset as a whole.

The first approach starts with verification if the hypothesis that the measurement errors
for all MFL pigs are from the same population and are normally distributed can be
accepted. This was the case. According to the maximum likelihood estimation for the
measurement error the parameters are 0 (mean) and 0.91 (for a standard deviation). If it
is assumed that for all the errors, there is no correlation between them, then the task of
finding a corrosion rate associated with all the measurements is equivalent to a Gauss
Markov regression model.

M.Sc. Thesis Lech A. Grzelak
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Let's define necessary matrixes X and Y in following way:

(Tl)m1><1
e X=|1 . :
(Tn)mnxl
mx2
o Y=[dMp. dT)pa - ATy 0 AT, o
where:

T

o d(T)yq=|d(T,) d(T,) - d(T,,) d(,)| -avectorof

m; times

unbiased depths measured by pig at time T, , second index indicates

defect’'s number
0 n total number of inspections

m; - number of defects at i'th inspection

m is total number of observed defects at n inspections (m=m, +...+m,)
T

o 1.=[11 .11

%/—J
m times

T

0 (Ti)mixl: LT

T, T,| where T,is atime of i'th inspection

m; times

If additionally, it is assumed that the corrosion rate is uniform over time (i.e. corrosion
growth is linear), then an application of the Least Squares Error (LSE) method gives a

linear description of the corrosion growth in the following form: y=a’+alt and the

remaining issue is to find the estimator ,3’ = [0?0 o?l]T for the linear function.

Standard calculations give that the estimators for unknown parameters are:
@° =-2.42 and @' =0.12
Coefficient & is equivalent to the measure of the corrosion rate [mm/yr], so the LSE

model estimated a corrosion rate for the calibrated measurements of 0.12 [mm/yr] with
95% confidence interval [0.05, 0.20].
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unbiased measurements and associated regression line
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* inspection A : : :

71 * inspection B __________ -
inspection C 1 1 1
inspection D
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depth [mm]
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Figure 3-1: defect depth in time

To check how well the model fits the data, a determination coefficient is calculated. A

goodness of fit measure resulted in R? =0.04. This is poor because it indicates low
relative predictive power of the model. According to the model, the initiation time for
corrosion is 20 years [yrs since pipeline installation].
Even though the estimated parameters are in an acceptable range, this approach has
significant drawbacks:
e the model does not distinguish defects
e it does not take into account that some of the defects are improving in time
(decreasing defect's depth which is physically impossible), or for some the
defects initiation time is before pipeline installation
o the model assumes that all the defects have one corrosion rate

3.3 Approach 2

As was pointed out in the previous section, the first approach has significant drawbacks.
The second approach, proposes a way of dealing with some of the enumerated
disadvantages. Like before it is assumed that corrosion growth is linear in time.

The second model checks what the corrosion rate is, if the defects are analyzed
individually i.e. the model does not assume any more that there is only one corrosion
rate for all the defects but it calculates a corrosion rate per defect. A simple regression
analysis applied to each unbiased defect gives the following graph.
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Figure 3-2: corrosion rate distribution Figure 3-3: distribution of initiation time
From the histogram presented in Figure 3-2 it is clear that in many cases, simple
regression analysis applied to each defect results in negative corrosion rates. The mean
corrosion rate according to this model is 0.16 [mm/yr] which is close to the result
obtained before, however the 95% confidence interval for the corrosion rate is quite
different: [-0.31, 0.54]. The 95% confidence interval comprises negative values.

The number of the defects indicating either negative corrosion rate or corrosion initiation
time before the pipeline installation is 16. One way of dealing with a negative corrosion
rate is to remove all the outliers from the dataset. However, such treatment is
undesirable since the dataset consists of 30% bad defects. Further investigation
confirmed that the corrosion rate follows a normal distribution. The initiation time of the
corrosion is presented above, also in the form of a histogram. The red bars in the
picture indicate an initiation time outside the interval determined by the time of pipeline
installation (t=0 [yr]) and the time of the last inspection (t=44.25 [yr]). A summary of the
results obtained from the second approach is presented in Table 6.

results corrosion rate init. time
mean 0.16 [mm/yr] 44.56 [yr]
. Lower bound -0.31 [mml/yr] -28.77 [yr]
0,
9% conf.int. o hound | 0.54 mmiy]  179.49 fyr]

Table 6: corrosion rate and initiation time for approach 2

Still the Least Squares Errors approach produces negative corrosion rates or initiation
times before pipeline installation. Therefore an alternative model for the presented
models is presented: approach 3.

3.4 Approach 3

This approach is based on the General corrosion rate model introduced in previous
chapter.

The model takes into account information about the measurement error distributions for
each specific pig and according to these distributions assigns weights to the
measurements. The weights are chosen in the following way: a pig which is accurate
influences the final results stronger than a pig with a lower level of accuracy.

1 Approach 3 is simplified version of General corrosion rate model.
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Assuming that the function associated with i'th defect is linear in time

( fi(t,aio,ail)=ai0+ailt ), let’s define simplified version of general corrosion rate model in
following way:
: 0 1
. fi-(Tjﬂi 1a )—>RJr - theoretical linear function, associated with i'th defect
(number of defects is 52)

. Tj - time since pipeline installation at j'th inspection

o di J -unbiased depth of defect i, measured at j'th inspection

e Wi - nominal wall thickness where i'th defect was observed (two cases: 11.2 for
10 defects and 12.86 for 42 defects)
e M=4 - total number of inspections
° P|,j - measurement error density function of defect i observed at j'th inspection
The likelihood estimation is optimal when the following function is maximized:

m
maximize : Lj = _HlF} j(OfilTj +0‘i0—di j)
= ’

subject to : aile + aio -w; <0

aiO/a%SO

—ai1S0

The results of the corrosion rate obtained by the model are presented in the Figure 3-4.
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Figure 3-4: corrosion rate distribution Figure 3-5: distribution of initiation
for approach 3 time for approach 3

Because of the constraints the model’s output is in harmony with the physical corrosion
properties: none of the corrosion rates are negative.

12 A measurement error density function for each defect can depend on the cluster, from which the defect
comes. l.e. defects from one pig can have a few distributions- one per individual cluster, however, here in
the analysis because of low number of calibrating data each pig has one distribution
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In the other two approaches the corrosion rate distribution was normally distributed, now
it is quite different—there is no basis to reject the hypothesis that the corrosion rate is
Beta distributed (with parameters 1.25 and 3.92).

The histogram of the initiation time is presented in the Figure 3-5. The model says that
all the initiation times are in acceptable time intervals. However, 14 of the defects initiate
at the time of pipeline installation- this is indicated with a lighter blue color in the picture
above. The initiation time distribution is a composition of two distributions, discrete in O
and continuous elsewhere. The continuous part is also Beta distributed (with
parameters 1.60 and 0.50). A small summary of the results of the corrosion rate and the
corrosion initiation time is presented below.

results corrosion rate initiation time
mean 0.24 [mm/yr] 22.16 [yr]
. Lower bound 0.038 0 [yr]
0,
95% conf. int. Upper bound 0.62 38.36 [yr]

Table 7: corrosion rate and initiation time for approach 3

As is shown in the Table 7, all the results obtained from the model are acceptable
because they are physically possible. The model even for a bad dataset gives
reasonable and acceptable results. The results from Table 7 show that the model gives
a corrosion rate that is approximately 0.05 higher than the previous ones. The reason
for this is the following: in the previous cases, the result of corrosion rate was an
outcome of all corrosion rates (including negative values), which resulted in a lower
average value.

3.5 Depth influence on the corrosion rate

In order to investigate whether the defects’ depths have a significant influence on the
corrosion rate, the dataset of 52 unbiased measurements is divided into two subsets.
First, the weighted average for each defect was calculated. The weights were
associated with the measurement errors’ standard deviations i.e. an accurate pig has the
highest weight etc. Then, the dataset was divided into two subsets, namely “shallow”
and “deep” defects, in such a way that the MFL pig with the lowest number of
observations (pig B) has an equal number of measurements in both sets. For both
subsets, the General corrosion rate model was applied. The mean corrosion rate for
deep defects turned out to be 0.25 [mml/y], and for shallower ones the rate is 0.23
[mm/yr]. However statistically, there is no basis to reject the null hypothesis that these
mean values are the same. Hence it follows that statistically the corrosion rates for deep
and shallow defects are not significantly different. The histograms of the rates for
shallow and deep defects are presented beneath.
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In both cases (shallow and deep defects) there is no basis to reject the hypothesis that
the corrosion rates are from a beta distribution.

Although the number of measurements of pig B is equal in both subsets, the number of
defects is not the same in these two sets. The number of shallow defects, according to
the presented criterion, is 34. The rest (18 defects) are deep defects. Analysis showed
that if the set of unbiased measurements is divided in such a way that the number of
shallow and deep defects is equal in both subsets, it leads to the same conclusion that
there is no significant difference in corrosion rates.

3.6 Conclusions and recommendations

In order to determine reliably the bias for a MFL-pig it is crucial to have multiple
reference defects in the pipeline for which the dimensions are well known. These can
then be used to calibrate the MFL reported values. For the described pipeline the
number of available reference points was limited but still made it possible to estimate the
bias for every pig. Because the measurement uncertainty of the MFL-tool is dominant
compared to the corrosion growth in the time period between the pigruns, it is very
difficult to determine a reliable corrosion rate per defect. However, by assuming a
similar corrosion process (MIC) for each defect, based on evaluation of the MFL signals,
historical CP-measurements and results of excavations, in combination with the
assumption of a linear corrosion growth, it was possible to calculate a realistic corrosion
rate for this pipeline. Depending on the approach that was used a value for the average
corrosion rate of 0.12 mm/yr (approach 1), 0.16 mm/yr (approach 2) or 0.24 mm/yr
(approach 3) was obtained. The numbers for the 95% upper bound values were
respectively 0.20 mm/yr, 0.54 and 0.62 mm/yr. The results from the first two models are
clearly underestimating the corrosion rate since the final result is an average over
positive and negative corrosion rates. The idea of the third approach is quite different:
the estimate of the corrosion rate is an outcome of all the defects’ growths. Firstly, the
model describes each defect separately as time dependent function. A function that
needs to satisfy imposed constrains derived from physical features (i.e. function cannot
be decreasing in time etc.). When all these functions are known, then the information
about corrosion rate associated with defects’ population is a product of all functions
derived for all defects.

The estimates of the third approach are input data for the section 2 where influencing
factors are investigated.
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Part Il

Parameters influencing microbiologically
Induced corrosion rate
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Chapter 4

4 Potential analysis

4.1 Introduction

Cathodic protection (CP) systems are used to protect buried steel pipelines. The
exceptions might be instances the pipelines are installed in fairly non- corrosive soil and
where regulations do not require such CP systems. According to regulatory agency
requirements, a pipe-to-soil potential is to be at least -0.85 millivolts with reference to a
copper-copper sulfate reference electrode®. More negative potential protects more
against galvanic corrosion, but on the other hand too negative potentials may damage
the coating protection®. The idea behind cathodic protection is to ensure a current flow
towards the pipeline opposed to a corroding current away from the pipeline.

This chapter analyzes if there is any relationship between the potentials measured at
test-posts and the corrosion rate. Moreover, the results from this chapter will be applied
in the regression analysis in Chapter 5 (Microbial data analysis).

Available “potential” dataset delivered by Gasunie is not a set of potentials associated
with real potentials at the coating defects but so called on-potentials measured at test
posts. On-potentials contain an IR-drop component. This is the potential drop in the soil
between the location of the reference electrode (somewhere at ground level) and the
steel/soil interface at coating defects. The IR-drop is caused by CP- and stray currents in
the soil. These on-potentials are only an indication of the general status of the Cathodic
Protection system. Usually on-potentials were collected during a certain time (about 5,
15, 60 minutes) - during this time maximum and minimum potential were recorded.

'3 Criterion: NEN-EN 12954

* The criteria are set to prevent corrosion. This does not necessarily mean that corrosion will occur when
the criteria are not met. It is of course not the case that a pipeline corrodes at -849 mV and does not
corrode at —851 mV. The potentials are with reference to a Cu/CuSO, reference electrode.
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On-potentials can vary continuously due to e.g. interference from other currents in the
soil. These variations are superimposed upon the CP potential of the pipeline. Because
potentials are recorded over a certain time-interval (5 minutes, 60 minutes or 24 hours)
and only min/max values were recorded the exact on-potential is not always known.

It is also not clear if values indicated as max or min were measured only 1% time or a
large part of time. The assumption imposed on the measurements is that variation of the
CP on- potentials in certain local time interval is limited. To account for outliers in the
measurements a smoothing procedure was applied.

g Voltmeter T
e o
-

Reference

Cell \

e

_ _ . o B B S o TS
Figure 4-1 cathodic protection for a gas pipeline (left), voltage drops in a measuring circuit

(right)

Figure 4-2: Cu/CuSO, reference electrode

The data which will be analyzed in this chapter was collected for the pipeline for which
the estimates of corrosion rates for 52 distinguishable defects are available. Let's call
this pipeline A3.

4.2 Measurements and smoothing method

In analysis one of the smoothing methods called moving averages was applied. The
smoothing algorithm minimizes local variability of measurements, allowing to spot trends.
The moving average is one of the simplest and oldest analytical tools around. Some
patterns and indicators can be somewhat subjective, where analysts may disagree on if
the pattern is truly forming or if there is a deviation that might be an illusion. The moving
average is more of a cut-and-dry approach to analyzing potential changes and predicting
performance. The mathematical formulae for moving average are presented in appendix
A.

The on-potential measurements were collected at 67 test posts randomly distributed
along the pipeline. It was possible to distinguish 302 different dates when the
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measurements were collected. Picture below presents how measurements from the test
posts were distributed over time along the pipeline.

potential measurements
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Figure 4-3: Test posts distribution over time

From the Figure, it is clear that number of test posts increased over time from only 18
test posts in the 60’s to 67 today. Firstly, a grid which presents on-potentials variability
wrt stationing and time has to be defined. The idea is to reconstruct potentials given
partial available data. The grid will consist of 302x67 points, where each point will
present the measured average potential (since only max and min are measured the
analysis will be carried out wrt to average of these measurements). The uncertainty of
the measurements over time per test post is relatively high- it is indicated by high
variation of the potentials over a small period of time.

The Figure 4-4 below presents potentials at certain stationing before and after
smoothing method applied (spam equal to 3 was applied).

measured potential against time at 1637 stationing meter

07 T T T T I I
1 i : : : *  potentials before smoothing
08 . Ppotentials after smoothing [ |
(moving average, span 3)
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1.2
-1.3
s A 4
i
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) 10 15 20 25 0 3 40 45

tirne [yr]

Figure 4-4: on-potentials measurements and results of applied smoothing method
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average potential [v] at stationing 1637.4 [m] average potential [V] at stationing 1637.4 [m], smoothing: span 3
D7 T T T T T

average potential []
average potential [v]

10 15 20 25 30 35 40 ) 10 15 20 25 30 35 40
time since pipeline instalation [yr] tirne since pipeline instalation [yr]

Figure 4-5: on-potentials before smoothing Figure 4-6: on-potentials after smoothing

Figure 4-5 and Figure 4-6 present how the applied smoothing procedure reduced the
number of outliers in the dataset. The pattern of potential change over time can be
recognized.

Through out the analysis it is assumed that the change of potential between the
measurements is linear, it is sensible since there is no additional information available.

4.3 On-potential Grid construction

In order to define the potential grid of the pipeline, all the measurements from the test
posts are used.
Suppose that:

e §,,5,,5;,...,S, - stationing of the test posts,

o for each test post it is possible to define a function g; :t; ; —V; ; where t; ;-
indicates the time since pipeline installation at time j at stationing S;

. Vi’j - is a average potential at test post S; at time t

In order to formulate pipe-to-soil potential grid with respect to time and stationing,
following procedure is defined:

1. Apply smoothing procedure for each test post (smoothing with respect to time),
span of smoothing procedure should be chosen in a such way that the average
potential from data corresponds to physical potential phenomenon i.e. local
change of average potential cannot change too sharply.

2. Define T as ordered times of collected measurements (for all the test posts)

T = {t1,11t1,2""’ti,mi ,...,tryl,...,tr’mr}whereVi, Lkt #t, and m; - indicates
the last measurement recorded at stationing S;. T consists of ordered dates of

all collected measurements. Since none of test posts was observed for all T ,
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the interpolation for all the test posts is required. Assuming linearity between
measurements, interpolation can be done in following way:

e Suppose that two different measurements for one test post were collected
VI,J
can be presented in  following way: VIi<k VI>j

the interpolation can only be applied if t; ; and t; , are defined™.

and V;, where k > j, then convex combination for V;, (for t;, eT)

3. Because of an increasing number of test posts over time, it is possible to
generate the measurements for a given stationing (even between the test posts).
This can be done by using a linear interpolation between test posts for each time

from T . If one takes one test post i then Vt; eT Vij=A-a)V,;+aV,;
where p and (@ indicate the closest monitored test post, where
a=(S;;—S,)/(Sq;—Sp;), as before V; ; can be calculated if V, ; and V ;
are defined.

]

4. In the case when interpolation cannot be carried out, because of missing
boundaries, then the simplest way is to generate these data by using linear
regression approach applied to each test post.

Beneath, the results of the applied technique are presented. In the smoothing technique,
span 3 was chosen. Investigation showed that changing the spam for moving average
doesn't change significantly final results.

Application of the introduced technique produced the following contour and 3D plot of
the average potentials over the last 45 years along the pipeline.

contour plot of potentials

time [yr]

stationing [km]

Figure 4-7: on-potential contour plot

B tis possible to generate missing data- the procedure for that will be introduced later on in text.
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Figure 4-8: on-potential grid

The Figure 4-7 and Figure 4-8 show the average potentials registered at the test posts
during last 45 years. The contours present how potentials were changing over time.
Plot indicates lack of the cathodic protection for the first pipeline kilometers for a first few
years (the potential is significantly higher than the one registered after 20 years. From
these figures it looks like CP increased up to 30 years then stabilized more or less for
about ten years and then started to decrease. The plots show that in the first 20 km
section of the pipeline the potential has significantly decreased after first 20 years. If
one compares obtained potential with places where 52 defects are distributed, a blurry
pattern can be recognized.
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Figure 4-9: 52 distinguished defects and estimated corrosion rates

For the estimated on-potential grid a correlation between corrosion rates and average
potentials has to be calculated. For each of the 52 distinguished defects for the pipeline
A3 the potentials can be easily obtained using techniques introduced before i.e. for each
stationing it is easy to find neighboring test posts and interpolate the potentials over time.
Since the estimated corrosion rate of the 52 defects is based on 4 inspection and
measurements are carried out within 5 years the average level of on-potentials should
be taken only from that period. The results are presented below.
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4.4 Correlation between the corrosion rate and average
potentials recorded between first and last inspection.

4.4.1 Approach 1
First, let's define:

. \7I = B/i’Tl,...,Vi]Tm L , where T,and T, indicates time of first and last inspection,

V; j - is on-potential at stationing i at time t; ;, i =1,..n, n- number of the defects

yE
and | indicates number of available measurements (real and interpolated
between first and last inspection)

e R= [rl,..., r, ]Ixn - vector of corrosion rates for the corresponding defects
_ _ 1~
e V=M.,..V,[ whereV :I—ZVi (k)
k=1

The correlation between corrosion rate and average potential is defined as: p(R,V).

Small summary of applied techniques is tabulated below. The p-value'® presented in the
last column corresponds to the hypothesis:

H, : p(R,V) =0 against H; : p(R,V)#0

No. of samples | type of correlation P p-value fo_r th? h_yp(_)thc_esls that
correlation is insignificant
52 defects, Pearson 0.20 0.15
| =61 Spearman 0.17 0.23
Kendall 0.12 0.22

Table 8: correlation between the corrosion rate and average on-potential recorded
between first and last inspection

The normality condition for product moment correlation is satisfied, for a chosen
significance level = 0.05 the p-value suggests that there is no basis to reject the null
hypothesis that the correlation is insignificant. For a significance level 0.2 there are
basis to reject the null hypothesis. Overall conclusion is that there is a weak positive
correlation between average potentials and the corrosion rate of defects.

4.4.2 Approach 2

Second approach presents another way of looking at the connection between corrosion
rate for the defects and average soil-to-pipe potentials. Suppose that we observe n

distinguishable defects, and each of the defects has given an estimated corrosion rate ;
i=1,.,n. For each defect it is easy to find (from the generated grid) the average

potential vector V; = b/inl,...,Vi’Tm L where T, and T,, indicate time of the first and last

n-1
inspection (pigrun). The total number of possible different pairs of defects is Cﬁ = Zi.

i=1
For each pair of defects (i,j) verify the hypothesis:

18 Definitions and interpretations are included into appendix A
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14 - Ly
H, :TZ(VLK _Vj'k): 0 against H, :I—Z(Vi,k _Vj,k)i 0
! k=1

Under the assumption that(\/i —Vj)~ N(&, &)- parameter j is an unbiased maximum

likelihood estimator. The estimator for o is assumed to be unknown. Under the
normality condition the cases a) and b) are counted:
a) Vi>Vy&rn>rjorVi<Vy&rn<ry Db)Vi>Vy&rn<rjorV,<V;&r>r,
The first point a) is equivalent to concordance of corrosion rate and average potential,
and the second one to their discordance. In both cases there is a statistically
defendable difference between averages of potentials.
Results:

1. total number of pairs for 52 defects is 1326

2. in 1174 cases the null hypothesis was rejected

3. in 564 the null hypothesis was rejected and normality condition was satisfied

@ Concordance
m Discordance

Figure 4-10: concordance and discordance

In 57 % cases higher corrosion rate is accompanied by higher average potential (less
negative) and in 43% cases is the other way around. This approach also shows weak
positive correlation between average on-potentials and the corrosion rate.

4.5 Correlation between the corrosion rate and potentials
standard deviation recorded between first and last
inspection.

First, let’s define:

~

o V.

P = B/il,...,ViT LT , where T,andT,, indicates time of first and last inspection,

Vi j- is on-potential at stationing i at time t; ;, i =1,...n, n- number of the defects

and | indicates number of available measurements (real and interpolated
between first and last inspection)

-
o V, = %Zvi (k) Vi=1...,nand R= [rl,..., r, ]Ixn - corrosion rates for n defects

e V= b/l, V, ]Ixn whereVS—LZI:(Vi(k)—\Ti)2

1 k=1
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Then the correlation between corrosion rate and calculated standard deviation of
potential is defined as: p(R,V ).

no. of Type of P p-value for the hypothesis that
samples correlation correlations are insignificant
Pearson
52 defects,
_ Spearman -0.13 0.37
=61
Kendall -0.08 0.43

Table 9: correlation between the corrosion rate and on-potential standard deviation
recorded between first and last inspection

Table 9 shows weak negative correlation between corrosion rate and standard deviation
of the on-potential.

4.6 Conclusions

Corrosion processes take time and are therefore governed by a number of
circumstances. Unfortunately some information is missing: the measurements were
made and only min/max were recorded. The data used in this chapter is not accurate. It
is difficult to say precisely in how on-potentials describe real pipeline potential.
Introduced methodology didn't give defendable results i.e. clear massage about the
connection between corrosion rate and average on-potential.

The analysis showed certain patterns of weak®’ correlations between corrosion rate for
the 52 registered defects along the A3 and level and on-potentials and their variability.
The results from this chapter will be applied as an input into regression in the next
section. Further analysis of the on-potentials has to be carried out in order to check how
on-potentials are interacting with other variables potentially influencing the corrosion rate.

7 read: statistically insignificant
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Chapter 5

5 Microbial Data analysis

5.1 Introduction

The dataset analyzed in this chapter is delivered and collected by one company
specializing in bio-analysis, a company which collected soil samples at the stationing of
certain group of defects from the pipeline A3. The analysis of the collected soil samples
was done in order to assess the circumstances which can influence the growth of
bacteria involved in corrosion processes. Here, the bio-analysis is used as an input for
the corrosion rate regression model.

The data collection and analysis was carried out with respect to qualitative and
guantitative description of the environment where defects were reported. The defects
under analysis (18 defects) were chosen from the set of 52 defects recognized. For
each of these defects linear corrosion (constant corrosion rate) was assumed. The
corrosion rate for these defects was calculated using corrosion rate estimation model
described in first part of this thesis. The estimation was based on measurements from
four consecutive inspections done by intelligent pigs.

The analysis will be carried out in order to find the connection between the environment
data and the corrosion rate estimated using the corrosion rate model presented in Part 1
of the thesis.

5.2 Microbiologically Influenced Corrosion

According to chemists: abundant in natural environments Sulphate Reducing Bacteria
(SRB) are the most influential in MIC processes. SRB are anaerobic bacteria utilizing
sulfate as a terminal electron acceptor and organic substances as carbon sources. It is
shown that although SRB are strictly anaerobic, some subpopulations tolerate oxygen
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and are even able to grow at low oxygen concentrations. SRB has ability to reduce
sulfate produced carbonate which neutralizes acids and sulfide, which chemically
stabilizes toxic metal ions as solid metal sulfides. Experiments showed that ph levels
supposed to increase in presence of SRB metabolism'®. The soil analysis from Texas to
New Jersey has shown that number of bacteria is living in the soil at or near protective
coatings. In paper of Joseph L. Pikas [23], author suggests that if one compares two
environments with the same soil type but one at or near to ditch and second undisturbed,
then higher number of SRB is expected to be in the first environment. J. O. Harris [24] in
his notes says that since conditions of the soil do not remain static whether the soil is
close to surface or near to a pipeline at the bottom of a ditch-mostly due to water
fluctuations- bacterial populations in the soil consist of many types of different species.
Moreover, the interrelationship between different types of bacteria of microorganisms
contributes to changes that occur in the soil.

", ¢

Figure 5-1: microbiologically influenced corrosion on as pipelines

Microorganisms can be grouped into few types presented in the table below.

Prerequisite Provider Kind of growth
Light Phototropic
Energy source Chemical substances ~ Chemiotrophic
Carbon source ) €O, Autotrophlg
Organic substances Heterotrophic
Electron donor (to be oxidized) Inorgamc substances L|th0troph|g
Organic substances Organotrophic
Oxygen Aerobic
Electron acceptor (to be reduced) NO, ., NO; Anoxic
SO, CO, Anaerobic

Table 10: groups of microorganisms

Interesting result is that a very good place to live for an anaerobic organism is below an
active colony of aerobic organisms as these consume the oxygen and create anaerobic
areas which serve as habitats for the anaerobics. As a result, anaerobic organisms like
SRB can be found next to aerobic organisms that protect anaerobic bacteria which can
easily grow and multiply. The oxidation of sulfide, which can be performed sulfur
oxidizing bacteria results in decreasing pH value is typical example important for MIC.

8 p_Frank, UC Berkeley Department of Environmental Sciences
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Decreasing pH value is equivalent with transformation of weak acid in a strong one.
Chemical reaction of this transformation is shown as follows.
S* +20, — SO;

Over last decades many different models have been proposed to explain the
mechanisms by which SRB can influence the corrosion of the steel. These models were
concentrated on analysis based on cathodic depolarization by the enzyme hydrogenase,
anodic depolarization, production of corrosive iron sulphides, release of exopolymers
capable of binding Fe - ions, sulphide-induced stress- corrosion cracking, and hydrogen-
induced cracking or blistering. All the models showed that there is not only one
predominant factor influencing MIC and many different factors are involved.

Figure 5-2: imag of a sulphate-redu
bacteria on the left are about 6-8 pm long and 2 um in diameter

In order to confirm MIC it is essential to check presence of microorganisms by obtaining
samples of the natural environment surrounding the metal.

5.3 Dataset description

The dataset consists of two kinds of variables, independent which are used as an input
to the model (the variables which may influence the corrosion rate) and dependent
variable- often called variable of interest or criterion variable which is associated with the
output which is the corrosion rate.

5.3.1 Independent variables

The main bio-analysis of the samples was performed in order to give Multi Criteria
Analysis (MCA) for each specific environment. The MCA basically gives score relative
to chance of getting MIC corrosion for specific environment. The formula for the score is
based on five factors: redox, availability of a carbon, availability of nutrition, degree
of acidity (pH) and conductivity. The MCA formula is presented as follows:

MCA, = 3.S;redox 4 2. garbon 4 q gautr 4 g, gPH | 1. gEC

where: i indicates i'th measurement (place where defect was registered) and scores Sij
are assigned according to the table below. Scores are assigned by experts.
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Factor

Classification Score

redox
S i

Aerobic

Nitrate reducing
Iron reducing
Sulphate reducing
Lack of methane

carbon
Si

0-20 mg/l TOC™
20-40 mg/l TOC
>40 mg/l TOC

nutr
Si

N-tot < 1 mg/l P-tot < 0.05
N-tot > 1 mg/l P-tot < 0.05
N-tot < 1 mg/l P-tot > 0.05
N-tot > 1 mg/l P-tot > 0.05

s P

pH>5.5
pH<55

S iEC

P P WOW NN RPIWNEREIN WON PP

0-500 5
> S 3

Table 11: factors and weights for MCA score

Other factors investigated and measured in the field by bio-company are:

Variable | Notation/units Description
Amount of oxygen can indicate existence of anaerobic/ aerobic
bacteria in soil, delivered data in half cases are beyond the
Oxygen OXygen [mg“] detection limit, so the oxygen variable will be treated as a
“dummy” variable®.
redox potential | The redox potential is the reduction/ oxidation potential of a

Redox [mV] compound measured under standard conditions against a

standard reference half- cell.

cond conductivity Conductivity is a measure of a material’s ability to conduct an

: [ﬂS] electric current.
H [pH] pH is a measure of the activity of hydrogen ions in a solution
p and, therefore, its acidity or alkalinity
TOC [mg /1] The amount of carbon bound in organic compounds.
; Iron is a chemical element with the symbol Fe (L.: Ferrum) and
Fe Iron ['Ug / I] atomic number 26.
2—
S1 S [mg / I] In both cases, similarly to oxygen measurements, approximately
sulfate half of the measurements are indicatedﬂas “beyond the detection
S2 _ limit”, so the dummy variable is applied".
SO [mg /1] Y PP
The simplest hydrocarbon, methane, is a (natural) gas with a
Methane ['Ug / I] chemical formula of CHa.

SRBA SRB- A [N] Sulphate reducing bacteria: type A | N the ~measurements,
boundaries of the
possible interval of

) ) number of bacteria were

SRBB SRB- B [N] Sulphate reducing bacteria: type B | given. In the analysis
use middle of this
interval.

Water levels with respect to the top of the ground- here the water
water water level [m] (fluctuations are not taken described).
D [m] depth of cover

¥ TOC- Total organic concentration
'y dummy variable is a numerical variable used in regression analysis to represent subgroups of the
sample in a study. In research design, a dummy variable is often used to distinguish different treatment
groups, in the simplest case takes values 0 or 1

Y 1dem
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PN [m] pipeline wrt NAP level
NAP [m] NAP level of the ground
AP [mV] average of pipe-tq-soil poten?ial me.asured at the test posts
reported between first and last inspection
standard deviation of the on potentials measured between first
SP [mV] and the last inspection P
WD=D-W [m] amount of water wrt the top of the pipeline

Table 12 Microbial data description

5.3.2 Dependent variable

The analysis will be based on the 16 defects for which it was possible to associate the
corrosion rate- only for 16 defects the detailed environment data was delivered. Small
summary of corrosion rate data is presented below.

corrosion rate histogram

number of observations

0 01 0.2 0.3 04 0.5 0.6 0.7
corrosion rate [mm/yr]

Figure 5-3 Corrosion rate summary for 16 measurements indicated by bio-analysts

Mean Std corrosion Upper 95% Lower 95%
No. meas. . . ) ; .
corrosion rate: rate: conf. int. conf. int.
16 0.26 0.20 0.62 0.06

Table 13: corrosion rate summary for 16 measurements indicated by bio-analysts

5.4 Correlation analysis

Since all the measurements collected by bio-analysts were measured once, after the last
pigrun, so it is impossible to check the connection between changes of defect's depths
and change of the soil measurements (wrt e.g. groundwater fluctuations, amount of
oxygen etc.) However it is possible to check the connection between estimated
corrosion rate and reported bio measurements. Firstly, the analysis will be investigating
the correlation between the corrosion rate and all the variables.

Due to low number of measurements the predictive model will not be very reliable.
However it is enough to indicate patterns and relationships. Table below presents
correlations and p-values associated with following hypothesis testing:

2 The detailed analysis of the average pipe-to-soil potentials was introduced in “Potential analysis” chapter.
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Hy:p(X,Y) =0 against H; : p(X,Y)#0
where: X- predictor variable, Y- criterion variable (corrosion rate), pp - stands for
Pearson, pg for Spearman and p, for Kendall correlation coefficients.

Name no. of samp. Pp p-value Ps p-value Pk p-value
oxygen 9 -0.46 0.07 -0.37 0.16 -0.31 0.17
MCA 18 -0.18 0.50 -0.13 0.62 -0.08 0.71
redox 0.52 0.04 0.38 0.24 0.25 0.21
cond. -0.20 0.46 -0.39 0.13 -0.31 0.10
pH 16 -0.56 0.02 -0.52 0.04 -0.38 0.05
TOC -0.34 0.20 -0.30 0.31 -0.17 0.39
Fe -0.20 0.48 -0.28 0.29 -0.20 0.30
methane -0.20 0.47 -0.17 0.53 -0.10 0.65
SRBA 14 0 1 0 1
SRBB 0 1 0 1
water 17 -0.34 0.18 -0.19 0.47 -0.12 0.53
S1 18 0.15 0.58 0.22 0.41 0.19 0.43
S2 0.13 0.64 0.18 0.51 0.15 0.53
WD 15 -0.001 0.99 -0.13 0.64 -0.09 0.69
D -0.40 0.10 -0.49 0.04 -0.35 0.04
PN 0.34 0.16 0.30 0.23 0.25 0.16
AP 18 0.33 0.18 0.35 0.15 0.25 0.18
SP -0.44 0.07 -0.45 0.06 -0.3 0.1
NAP 0.34 0.16 0.30 0.23 0.25 0.16

Table 14 correlation between corrosion rate and the variables, cell with red background
indicate that normality assumption doesn't hold, yellow rows indicate variables for which
the null hypothesis was rejected for significance level 0.2
Graphically, the correlations between the predictor variables and criterion variable can
be expressed in the form of radar graph. Each of the variables from the table
corresponds to a ray in the graph below. The variable with the highest correlation is
plotted furthest from the center, and the variable with the lowest respectively closest to

the center.
oxygen p-value against Pearson correlation coefficient
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0 . i ‘ i L.
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SRB2 absolute value of correlation with corrosion rate (Pearson)
Figure 5-4 radar graph- Pearson product moment Figure 5-5 correlations and associated p-values
correlation coefficient (ordering the variables)

The results are promising, for significance level « =0.2 eight of variables are significantly
correlated with corrosion rate, for a level 0.05 only two variables have significantly high
correlation. The most correlated with corrosion rate is pH (negative correlation) and as
second one is redox potential (positive correlation). If one looks only at two most
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correlated variables it is clear that the lowest corrosion rate is obtained for alkaline soil
samples with low redox potential. Interesting is that none of SRB has significant
correlation with the corrosion rate. If the significance level is changed to « =0.2, then
additional 6 variables indicate significant correlation with the rate. In four cases the
correlation is negative: TOC, water level, depth of cover and standard deviation of on
potential, and in two positive: pipeline with respect to NAP and average on-potential.

From the data one can observe that the best scenario for a low corrosion rate is
when: oxygen is detectable, redox potential is low, soil is alkaline, high level of
TOC, pipeline is dried (high values of W mean that water is deeper under the
cover), pipeline is deep under the ground level, pipeline is low wrt. NAP level, the
on-potential from rectifier is low (more negative) and the standard deviation of the
potential is relatively high. The suggested “best scenario” is based only on simple
correlation analysis; however, it doesn't give quantitative results, and it doesn't take into
account correlations amongst the predictor variables.

The key of the analysis is to find the predictor variables which are significant for the
multiple regression model.

5.5 Multiple regression analysis

This section is dedicated to the multiple regression model. Multiple regression is a
statistical technique which allows predicting variables of interest (sometimes called:
dependent or criterion variables) on basis of scores of several other variables (these
variables are customary called: independent or predictor variables). The main point in
the modeling is to explain the level of the variance on the basis of the level of one or
more other variances. The regression analysis should be based on the predictor
variables that might be (highly) correlated with the criterion variable, but not strongly
correlated which each other. In reality correlations amongst the predictor variables are
not unusual. Multicollinearity?® can cause problems when trying to find the relative
contribution of each predictor variable to the modeling. When there is a substantial
multicollinearity in a regression model, it is possible to have the full model account for a
substantial amount of the variability in the dependent variable without any tests of its
individual parameters being significant. One of the ways to avoid this problem is to
apply so called stepwise regression algorithms.

5.5.1 Analysis structure

The analysis is focused on finding a set of most influential predictor variables wrt
corrosion rate. Investigation has to deal with one very relevant issue, namely: missing
data (two variables have missing observations). Because of low number of the collected
measurements, the analysis has to be done in a way that the final result is based on
number of measurements as large as possible. When the proper model is defined then
included variables should be ordered with respect to importance for the corrosion rate.
Figure 5-6 below presents general idea of the regression modeling of the corrosion rate.

= Multicollinearity (collinearity)- the term is used to describe the situation when a high correlation is detected
between two or more predictor variables.
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Get data
SET K=0

A 4
1- remove
observations with
missing data

2- SET K=1

Apply regression analysis
and gel a sel of
significant parameters

- omit observations with missing data
- ask experts or
-use standard methods to reproduce
missing data (ex. Regression)

Remove variables where
missing data occurred and
add removed observations

SETR=0 SET K=0

F Y 'y

Does a set of significant
wvariables include variables with
missing data?

Apply sensitivity analysis to order
the variables according to
impartance for the modeling

Figure 5-6 regression modeling schema for the corrosion rate

5.5.2 Missing data

Two variables SRB-A and SRB-B have missing observations at the stationings 2225 [m]
and 2451 [m]. Due to these missing data, firstly the analysis has to verify if these two
variables are significant for the analysis. If they are not significant then the problem with
missing data for these two variables doesn’t exist anymore (i.e. then these two variables
can be easily removed and the study can be carried out for all the observations), if they
are significant, then missing observations have to be reproduced or removed (the
missing data for one of the variables would imply removing the corresponding values for
all the other input variables).
In order to check if SRB-A and SRB-B are significant, let’s
0 remove the missing observations for all the variables (total number of remaining
observations is now 14)
0 in order to get a number of the most relevant parameters apply stepwise
regression®.
Stepwise regression will be applied to the following variables (each of the variables has
14 observations):
0 Y- variable of interest- defect rate [mm/yr]

o X,-independent variables:

1 MCA 5 pH 9 S2 13 water 17 SP
2 oxygen 6 TOC 10 methane 14 depth 18 WD
3 redox 7 Fe 11 SRBA 15 PN 19 NAP
4 cond 8 S1 12 SRBB 16 AP

0 nis associated with the number of variables which is equal to 19
o X;X;- Vi,jeNwhere i # ] product of centered independent variables

The tables below describe following hypothesis testing:
0 t-statistics and p-value for t-test are associated with following hypothesis testing:

Ho : f; =0 against alternative H, : §; #0
0 F-statistics and p-value for F-test are associated with:

4 See chapter- Analysis methods and interpretation, appendix A
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Ho :,50 :5'1 =... :ﬁn =0 against alternative H; :3,3i #0

Two main models will be considered:

5.5.2.1 Model without interactions between variables

Model 1

Y =0 +B X+ AL, X, +€

Coefficients ]E)-value
Variables - t- statistics | Or t-test
:Bi Std. Error
(Constant) 2.03 0.41 4.98 e®
pH -0.21 0.62 -3.42 0.006
Depth of cover -0.27 0.09 -3.01 0.012

Table 15: parameters and associated statistics

And model statistics

Statistics
R? Adjusted R 2
MODEL F statistics | p-value for F test
0.66 0.59 10.5 0.003

Table 16: regression model standard description

5.5.2.2 Model with interactions between variables

Model 2

Bro XXy ot Br3 Xy Xy +...+ﬂi’inXj + BranXna X, +é&

Coefficients ]E)-Value
Variables ~ t- statistics | o t-test

B Std. Error
(Constant) 0.27 0.02 16.3 &
PN*water -0.07 0.01 -6.1 &
PN 0.09 0.007 12.88 &
Oxygen*pH 0.71 0.08 8.79 &
MCA*MCA -0.01 0.003 -4.34 &

Table 17: parameters and associated statistics

And the model statistics:

Statistics

MODEL R? Adjusted R?

F statistics

p-value for F test

0.97 0.96

78.7

&

Table 18: regression model standard description

% ¢ stands for number less than 0.0001
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Conclusions (based on 14 measurements):
From the applied stepwise regression to the set of 19 variables with 14 observations
we have that:
1. For the model without interactions:
o There is a negative correlation between pH and the corrosion rate
0 There is a negative correlation between depth of cover and corrosion rate
0 Both SRB-A and SRB-B are insignificant for the corrosion rate modeling,
hence can be easily removed

2. For the model with interactions:
0 Also in this case analysis did show that both SRB-A and SRB-B are
insignificant (even when interacting with other variables)
o Only one main effect is significantly affecting the corrosion rate- pipeline
wrt. NAP

For both models R? and adjusted R? indicate that the corrosion rate is quite well
described by the proposed models. Analysis showed that errors from the both models

are normally distributed and uncorrelated. High adjusted R? indicated well defined
model; however the number of the measurements is not high enough to make such
conclusion.

5.5.3 Stepwise regression for included variables

In the previous subsection it was shown that SRB-A and SRB-B can be removed from
the analysis since they are insignificant for the corrosion rate modeling.
Here, the analysis will be based on the remaining variables. The study will be based on
two models introduced before: model 1 (without interactions) model 2 (with interactions).
These two models are applied to the following dataset:

0 Y- variable of interest- defect rate [mm/yr]

o X;-independent variables i =1,..,17:

1 MCA 5 pH 9 S2 13 PN 17 NAP
2 oxygen 6 TOC 10 methane 14 AP
3 redox 7 Fe 11 water 15 SP
4 cond 8 S1 12 depth 16 WD

5.5.3.1 Model without interactions

Suppose that the corrosion rate is modeled only by main effects- according to the Model
1. Stepwise regression resulted that only one main effect may be an influential
parameter for the corrosion rate.

Coefficients
Variables = t- statistics fgrvte_lig;
B Std. Error
(Constant) 0.25 0.04 5.92 &
PN 0.06 0.02 2.66 0.02

Table 19: parameters and associated statistics (model without interactions)
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The determination coefficient- R% from the Table 20 shows model fit. This means that
Model 1 may be too simple to give reliable estimate of the parameters influencing the
corrosion rate.

Statistics

R? Adjusted R?
MODEL F statistics | p-value for F test

0.34 0.29 7.09 0.02
Table 20: regression model standard description (model without interactions)

5.5.3.2 Model with interactions

0 The model 2 presents much more complicated situation, where except main
effects (17 variables), all the possible combinations (136 variables). Stepwise
regression gave the following results.

Variables ACoefﬂ(:lents t- statistics fg;vte_tig;
B Std. Error
(Constant) 0.25 0.007 34.15 &
Redox*water -0.001 0.0001 -7.00 &
PN 0.10 0.003 35.51 &
Oxygen*pH 0.76 0.03 27.58 &
TOC*PN 0.001 0.0002 9.62 &
MCA*MCA -0.01 0.001 -6.96 &
Methane*SP 0.0001 & 4.50 0.001

Table 21: parameters and associated statistics (model with interactions)

Statistics

R? Adjusted R?
MODEL F statistics | p-value for F test

0.997 0.985 471.21 &
Table 22: regression model standard description (model with interactions)

Now, variables included in the model are different than for the case without interactions.
The final model (consisting only of significant variables) includes 6 variables (one main

effect and 5 interaction effects). High value of R? indicates very good fit. It can,
however indicate over-fit because of limited number of the measurements. As before
both models the errors are normally distributed and uncorrelated.

5.6 Sensitivity analysis of the parameters influencing the
corrosion rate

A sensitivity analysis is a process of investigating influences of model inputs on outputs.
If a small change in a parameter results in relatively larger changes in the outcomes,
then the outcomes are said to be sensitive to that parameter. This may mean that the
parameter has to be determined very accurately. Basically, a sensitivity analysis is a
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study of how the variation in the output of a model can be apportioned, qualitatively or
guantitatively, to different sources of variation of the input. One of the most popular and
easiest sensitivity methods is so called Correlation Ratio (CR)?® which detailed is
presented in the appendix Al.

polynomial of E(Y | X;) has to be assumed. If we calculate the CR for all variables,

then as before it is possible to order the variables according to the correlation ratio wrt
importance. The results of the applied technique are following:

According to this method certain the level of the

Order | Predicted variable Correlgtion Degre_e_ of ponnomia_I for
ratio conditional expectation
1 PN 0.3556 2
2 Redox * W 0.3522 2
3 TOC* PN 0.2024 2
4 Oxygen * PH 0.1857 2
5 Methane * SP 0.1645 2
6 MCA* MCA 0.0964 2

Table 23 sensitivity analysis of the significant parameters

All the variables in the Table 23 are ordered with respect to importance for the model.
Applied sensitivity analysis showed that the most influential/ important for the corrosion
rate modeling is variable- pipeline wrt nap level, then interacting redox potential with
groundwater step level etc.

% See appendix Al- Analysis methods and interpretation

Delft University of Technology



50

5.7 Conclusions and recommendations

The analysis showed that the most relevant (statistically significant) parameters for the
corrosion rate are:
e Pipeline with respect to NAP level (positive correlation)
e Interactions between:

0 Redox with water level (negative correlation)

o TOC with Pipeline wrt NAP level (positive correlation)

0 Oxygen with pH (positive correlation)

o Methane with standard deviation of on-potentials (positive correlation)

0 MCA with MCA (negative correlations)
The presented variables are ordered with respect to level of the correlation with the
corrosion rate (according to sensitivity analysis) i.e. pipeline wrt NAP level is the most
important, second is interaction between redox and water level etc.
The analysis showed that number of sulphate reducing bacteria of type A and B (SRB-A
and SRB-B) are insignificant for the analysis. The study proved that there is not only
one predominant factor influencing MIC and many different interacting parameters are
involved. It was shown that number of observations strongly influences the number of
statistically significant variables. Depending on the approach different sets of variables
are important for the model. First approach with only 14 observations resulted in two
models with and without interactions. First one consisted of two main effects: depth of
cover and pH level, and the second one with one main effect: pipeline wrt NAP level
and remaining interactions: pipeline wrt NAP interacting with water level, oxygen
with pH and MCA with MCA. Both models showed common three parameters as the
most important- pipeline wrt NAP level, oxygen interacting with pH and MCA square.
Because of high measurement error additional observations are required. The models
with interactions illustrate very good fit to the real measurements. Because of lack of the
measurements this perfect fit may indicate existing overfiting problem which can be
reduced by supporting the model with higher number of the environmental
measurements.

Recommendations

¢ In the study it was assumed that estimates of the corrosion rate from first section
are certain. This assumption is unlikely to be realistic. The future investigations
should be also aimed to take the estimate errors into account.

e Crucial in the modeling is to have large and accurate dataset.

The analysis was based on certain number of possible influencing parameters;
however those parameters do not exhaust all the possible influencing factors- ex.
lack of data about groundwater fluctuations etc.

e Some of the defects indicating decreasing corrosion rate, the corrosion rate
model imposed certain number of constrains, it is likely that this phenomenon
came out as a result of the clustering procedure. As a consequence association
defect with the environment parameters doesn’t guarantee good results. The
clustering/matching defects and associated errors should be deeper investigated.

e Poor dataset is strongly influenced by unusual of observations; since missing
data occur it is important to know reasons of that- perhaps the defects are in
unusual environment.

¢ Non-linear relationships should be investigated.
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Part I

Parameters influencing microbiologically
Induced defect rate
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Chapter 6

6 Pipeline characteristics

In this chapter three high-pressure pipelines: Al, A2 and A3 are under the analysis. The
investigations in the previous two sections concerned only the pipeline A3 for which the
set of 52 distinguishable defects was collected. Since this section is dedicated to defect
rate modeling, it is not required any more to be restricted to one pipeline (for which it
was possible to give an estimate of the corrosion). Two additional high pressure pipes
were chosen according to following features: the existence of MIC recorded during the
excavations, -the age of all three pipelines -the coating and applied technology.

6.1 Defect distribution

The pictures presented below show the pipelines profile, depth of cover and defects
distributed along the pipelines. In the cases of A1 and A2 number of defects is much
lower than for A3, although the pipelines were installed about the same time in the 60s.
In all three cases the installation customs and applied coating (bitumen) were generally
the same. This may indicate that the difference between the numbers of defects can be
caused by environmental factors. Also in the case of “parallel” pipelines A1 and A2, the
profiles are very similar; however number of the defects for A2 is significantly higher.

The analysis starts with verifying the hypothesis about defects random (uniform)
distribution along the pipeline. In all three cases there are statistical basis to reject the
hypothesis that the defects are uniformly distributed along the pipeline.
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depth of defects & MNAF of the pipeline against stationing

E QD T T T T T T T T
z
=
=
o
[ni]
=
=
=
E -
o
% 1 1
— 0 10 20 30 40 S0 B0 70 g0
< stationing [km]
. 1D T T T T T T T T
=
D
=
= S5 -
O =
o =
- — ] 1 | | 1 | 1 1 1
al 0 10 20 30 40 50 B0 70 20 o0
stationing [kim] —10
-
. -5
3 t . *
* * ¥
& - - - - -
* *’* i o‘ *i ”o hd * ';o * ; 1 :
L | 1 1 1 1 1 1 1 D
] 10 20 30 40 a0 B0 70 g0 S0
stationing [km]
Figure 6-1: Pipeline Al, profile, depth of cover, defect distribution
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Figure 6-2: pipeline A2, profile, depth of cover, defect distribution
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depth of defects (PIN & MAP of the pipeline against stationing
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Figure 6-3: pipeline A3, profile, depth of cover, defect distribution (PII)

6.2 Depth of cover

Figures presented above don't depict that there is any connection between the defects
existence and depth of cover. Moreover for the similar pipelines profiles of A1 and A2
the pattern of the defects distributions is similar wrt number of defects and their
stationings.

6.3 Pipeline elevation

For the pipeline A3 the profile indicates that the pipeline is laid in lowland (max elevation
is about 5-6 meters); whereas for A1 and A2 pipeline profiles changes about 20 meters
within few hundred meters. The distribution of the defects may be caused by the
groundwater levels (pipeline which is higher wrt NAP level is less likely to be in wet
environment than pipeline closer to the reference NAP level). Graphs below present
how the defects are distributed wrt pipeline circumference. In all the cases most of the
defects are concentrated in the bottom of the pipeline. It is not certain that three
pipelines under analysis are induced by MIC; however the number of excavations
showed that this is really the case. Moreover, most of excavated defects with MIC were
on the bottom of the pipeline.
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Chapter 7

7 Soil data analysis

7.1 Introduction

This chapter is focused on finding the relation between the soil composition and
corrosion defect rate for the high pressure underground gas pipelines. The soil data
analysis is performed on three pipelines where microbiologically influenced corrosion
was detected. In all three cases the soil data was collected from a geotechnical surveys
performed before pipelines construction.

7.2 Description of available dataset

During inspections, an intelligent pig reports defects and associated defects’ stationing.
Due to technological drawbacks the stationing of defects and defect feature type are not
accurate. The analysis in this chapter is aimed at statistically significant number of
environmental parameters influencing the defect rate. Hence the data about
environment has to be incorporated. The most reliable information about the pipeline
natural environment is one obtained from pipeline geotechnical surveys and presented
on route maps. The data about the pipeline soil type was collected before pipeline
installation. Each route map represents certain part of the pipeline route. Usually the
length of the route maps is about 1-1.5 km. These maps present ground elevation (ref.
NAP) where the pipeline is placed, but not the pipeline’s profile. A pipeline’s profile is
available on PiMS?’ so match can be easily done. Each map presents about 5-25 soil
samples spread within a route map. In most cases it is impossible to find exact
stationing of the soil samples within a map?. However the approximation can be done
based on the fact that each map is spited in few parts (usually 5-10) and the stationings
of the boundaries are given.

2 Pipeline Integrity Management System
% Exact stationing of the measurements was given only for the pipeline A1 and A3
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The stationings of the soil samples collected from the maps are not certain. The main
reasons of the uncertainty are following:
e re-routing of the pipeline i.e. in some places, because of the infrastructure,
some pipelines had to be rerouted
o the “starting point” for a pig and “zero meter” of the first route map are not the
same so the calibration is always required
Each of collected samples presented in the route maps is in the form where solil layers
can be distinguished. However, according to the installation customs of the 60s a soil
layer during backfill of the pipeline trench were mixed, hence there is no point of
analyzing influence of the soil layers on corrosion. There may still be an influence of soil
layers, but due to lack of exact data such analysis won't be carried out®.

7.3 Soil data collection

Essential in a defect rate modeling is to specify environments along the pipeline. As it
was mentioned, each of the route maps shows certain number of measurements. Since
the soil samples are distributed along the pipeline, certain assumptions about the
environments between the measurements have to be introduced.

Suppose that at a certain part of the pipeline two soil samples were collected. The
assumption that requires to be imposed is about the soil type in between the collected
measurements. If an intelligent pig reports a defect somewhere in between the collected
samples, then the problem is to decide in which environment defect is observed. Figure
7-1, Figure 7-2 and Figure 7-3 below present example of proposed procedure. Each of
pictures presents a route map, where the samples and some inner stationings (not of
soil sample) are reported.

Each route map is divided into sections for which she stationing is known. Along each
section soil samples are presented. The problem is that the stationing of the samples is

unknown.
Ts - Top of the ground: sand

S . Sand
P Peat
c . Clay
L

Loam
2 [m] + NAP.

e roule map

end (fvf the rojite mapi

beginnfing of t
]
|
]
|
]
|

1247.3 [m]

789.3 [m]
135.6 [m]
0[m]

Figure 7-1: route map, geotechnical data

Step 1

Since the stationing of the measurements is unknown within the sections, so let's
assume that the measurements are equal-distance distributed within each section. And
so, for the first section 0 [m]- 135.6 [m] the distance between the measurements is equal

2 soil layers from the route maps do not show today’s layers state.
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to “c”, and for example for the section two 135.6 [m]- 789.3 [m] the distance is equal to
“b”. Since now, each of the measurements will have specified stationing (before this

was unknown).
Ts - Top of the ground: sand

S . Sand
P Peat
Cc _ Clay
L

Loam

end (?f the ropte mapi

1247.3 [m]

789.3 [m]
135.6 [m]
0 [m]

Figure 7-2: route map, geotechnical data- STEP 1

Step 2

Second and the final step, defines the environments (also called soil clusters).
Since the stationings of the measurements are specified (at step 1) the sections have to
be combined. Sequentially, to get the environment map of the whole pipeline the
boundary measurements from each section have to be defined as well. In this
procedure, it is assumed that for each two neighboring sections the boundary between
the closest samples for these sections is in the middle of them. On the schema the
clusters are indicated by different colors.

Ts - Top of the ground: sand
8 . Sand
P Peat
€ . Clay
| B Loam |

2[m] +NAP.

I’Jle route map

end ?f the rojite map!

beginnfing of

1247.3 [m]

0[m]

Figure 7-3: route map, geotechnical data- STEP 2

Application of the presented procedure defines soil type for any given stationing.
Because of the lack of quantitative measurements it is impossible to avoid sharp
boundaries between the sections/clusters.

The number of measurements varies from one pipeline to another; small summary of
available data is presented in the Table 24 below.
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no. of Soil no. of length of average number of
pipeline ' route the 9 measurements
measurements L cluster length
maps pipeline per km
Al 298 50 86 [km] 280 [m] 3.5
A2 861 50 89 [km] 100 [m] 10
A3 287 47 69 [km] 240 [m] 4

Table 24: general pipelines description

First glance at the Table 24 shows that the

highest accuracy for soil samples is obtained

for the pipeline A2—average cluster length is 100 meters and it is more than two times
less than for other pipelines. The accuracy of the obtained results for a pipeline A2 is

much higher than for the others.

The data available, doesn't allow analyzing the soil samples quantitatively i.e. it is

impossible to say if in the soil sample is mo

Remark

re one component or another.

The route maps are connected by using the same methodology as for combining the
section within a route map. So for step 2 the route map boundaries are ignored.

Introduced procedure allows describing a soil composition for each of the pipelines using

the data presented by geotechnical data from the route maps.

results of applied algorithm.
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Figure 7-4: Soil composition for the pipeline Al
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Figure 7-5: Soil composition for the pipeline A2
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Soil type pipeline A3
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Figure 7-6: Soil composition for the pipeline A3

All three pictures Figure 7-4, Figure 7-5, and Figure 7-6 present both: defects distribution
and existence of the each soil component®. The top plot presents the stationing of the
defects reported by an intelligent pig and the depth of the defects. Each of the pictures
beneath is associated with the soil component. Red color indicates existence of peat,
blue of sand, light green of clay and light blue loam. Each of the vertical lines indicates a
sample cluster (defined before) where presence of peat, sand, loam or clay was pointed
out. The figures illustrate that almost whole the pipeline is laid in sand mixed with other
elements. It reasonable to conclude that for the pipelines A1 and A2 the most of the
defects are in the area where soil type is a mixture of sand and peat. For the pipeline A3
there is no clear pattern of relationships. Another outline is that in the middle of the
pipelines A2 and Al high concentration of clay and loam with sand is associated with
relatively low number of defects.

From the collected data it is clear that four presented soil types do not exhaust all the
possibilities. All the possible types of the soil which can be observed solely from the
geotechnical data are: peat, sand, clay, loam, peat-sand, peat-clay, peat-loam, sand-
clay, sand-loam, clay-loam, peat-sand-clay, peat-sand-loam, peat-clay-loam, sand-clay-
loam and the last one peat-sand-clay-loam. Each of the soil types has to be analyzed
wrt influence on the defect rate.

Remarks
o Pipeline A2: missing soil data for stationing 2112m- 6723 m
e Pipeline A3: missing soil data for the first 3135 m- this missing data is recovered
from the A1 which is parallel to A3

7.4 Soil type influence on defect rate

The main point of the study in this subchapter is to check what the defect rate for whole
the pipeline is and to verify if the defect rate depends on the soil type. The plan is to

30 . . . . .
Main components are: sand, peat, clay and loam. The soil samples consists either from main
components or components combinations.

M.Sc. Thesis Lech A. Grzelak



63 A statistical approach to determine the MIC rate of underground gas pipelines

count the number of the defect associated with each possible environment (soil type)
and divide this by the total length where each specific soil type was observed. The
overall defect rate for the pipelines is presented beneath in the Table 25.

Overall defect

pipeline | no. of defects length of the pipeline [km] rate [def/km]

Al 92 86 11
A2 267 89 3
A3 657 69 9.5

Table 25 Overall defect rate for the pipelines

Two different approaches on defects rate wrt soil type are presented beneath. Each of
the approaches presents different point of view on modeling.

7.4.1 Defect rate- Approach 1

The first approach associates the defect rate with each possible soil type. The
assumption which is going to be imposed on the analysis is of following form:

Assumption
Assume that quality of a coating of any pipeline is deteriorated at the same level i.e.
condition of it is uniform along the whole pipeline length.
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Table 26 shows the results for all three pipelines.

Length of Percentage of
pipeline pipeline Number Defect
Soil type exposed to the | exposed to the of RATE
soil type soil type defects
[no. of defects
[km] [%] per km]
Peat 0.09 0.11 0 0
Sand 38.10 45.42 50 1.31
Clay 0.30 0.35 0 0
— Loam 0.27 0.32 0 0
< Peat- Sand 19.70 23.48 26 1.32
Peat- Clay 0.12 0.14 0 0
D Peat- Loam 0 0 0 0
(e Sand- Clay 4.21 5.02 7 1.66
—_— Sand- Loam 16.78 20 6 0.36
(¢h) Clay- Loam 0 0 0 0
o Peat- Clay- Loam 0.26 0.3 0 0
E Peat- Sand- Clay 2.67 3.18 2 0.75
Peat- Sand- Loam 0.96 1.14 0 0
Sand- Clay- Loam 0.19 0.22 0 0
Peat- Sand- Clay- Loam 0.27 0.32 1 3.75
TOTAL 83.9 [km] 100% 92 defects -
Peat 0.56 0.66 0 0
Sand 35.80 42.36 72 2.01
Clay 0 0 0 0
o Loam 0 0 0 0
< Peat- Sand 19.87 23.51 104 5.23
Peat- Clay 0 0 0 0
Q Peat- Loam 0 0 0 0
cC Sand- Clay 0 0 0 0
— Sand- Loam 13.94 16.5 15 1.08
- Clay- Loam 0 0 0 0
G) Peat- Clay- Loam 0 0 0 0
9— Peat- Sand- Clay 0 0 0 0
D. Peat- Sand- Loam 4.49 5.31 38 8.46
Sand- Clay- Loam 7.51 8.88 6 0.80
Peat- Sand- Clay- Loam 2.35 2.77 2 0.85
237
TOTAL 84.5 [km] 100% defects™ -
Peat 1.45 2.11 15 10.33
Sand 25.5 37.18 228 8.92
Clay 0.54 0.79 5 9.26
130 Loam 0.23 0.33 1 4.35
Peat- Sand 19.27 28.05 168 8.72
< Peat- Clay 2.15 3.13 7 3.25
(b} Peat- Loam 0 0 0 0
c Sand- Clay 0.65 0.94 23 35.52
— Sand- Loam 10.84 15.78 131 12.08
—_— Clay- Loam 0 0 0 0
&) Peat- Clay- Loam 0 0 0 0
Q Peat- Sand- Clay 3.20 4.65 35 10.95
D. Peat- Sand- Loam 3.50 5.1 27 7.71
Sand- Clay- Loam 0.70 1.01 12 17.27
Peat- Sand- Clay- Loam 0.63 0.92 4 6.35
656
0, -
TOTAL 68.6 [km] 100% defects

Table 26 defect rate for each specific soil type

31 Number of defects in the environment where soil data is missing is 30.
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defect rate for specific soil type
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Figure 7-7: Defect rate associated for each possible soil composition

Figure 7-7 presents the results from the Table 26. Due to high number of the defects
distributed along the pipeline A3 the defect rate for each of the soil types is much higher
than for the remaining pipelines. In four cases: sand, peat-sand, sand-clay, and peat-
sand-clay- loam both pipelines A1 and A2 have positive defect rate. The highest defect
rate is obtained: Al for peat-sand-clay-loam, A2 for peat-sand-loam, A3 for sand-clay.
In classify and check if the estimated defects rates are reliable or not, it is required is to
test how the soil type is distributed in potentially defective and no-defective environment.

Suppose that the soil type A occurs in two different parts of the pipeline, but defects are
only observable in one of them (the second has none of defects). Then the defect rate
won't be a reliable tool to say which soil type is more likely to be more defective. The
additional information that has to be delivered is the information about changes of
percentage content of the soil type A where the defects are observable and where they
are not. To check how much of each soil type is in potentially defective environment and
how much is not, the assumption about a potentially defective environment has to be
impressed.

Suppose that defect j was registered at a certain stationing Sj [km]. The environment

for this defect is defined as the area surrounding the defects within predefined radius r
[km] and thus the environment for defect is L; :TSJ- -5+ rJ. The radius surrounding
the defects is chosen to be equal to 250 [m]. This length is motivated by average length
of the cluster for all the pipelines. The total length of the environments where all the
defects were registered is then defined in following way:

» If defects’ clusters L; are not disjoint then total length of potentially defective

environment is:
ITHEL [+L [+ + L | =Lk [- L =~ 4L, [ LLg [—— [ LLy [ ==
_..._l Ln_an |+| L1L2L3 |+...+...i| L1L2...Ln |
+ next to the last terms means: “-" if n is even, and “+” if n is odd.

Table 27 shows length of “potentially defective and not defective environments”
according to introduced method.

L total length of the Potentially defective Potent|al!y not
pipeline ipeline [km] environment [km] detective
PP environment [km]
Al 86 20.5 65.5
A2 89 20 64
A3 69 63.5 5.5

Table 27: description of the potentially defective and not defective environments
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Figure 7-9: pipeline A2, potentially defective clusters, or clusters with “bad”

coating
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Figure 7-10: pipeline A3, potentially defective clusters, or clusters with “bad”

coating

In order to compare the difference in soil composition between potentially defective and
not defective environment, let's define:

is a set of intervals indicated by red bars)

D° - area defined as area complementary to D

D - potentially defective area (on the Figure 7-8, Figure 7-9 and Figure 7-10 D it
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e A -soil type A, then:
|AnD| |AnD®|
D] |D°
Table 28 below shows percentage content of these two environments:

Difference =

DEFECTIVE- NOT DEFECTIVE- .
Soil type . . Difference
yp Environment Environment
% [km] % [km] %
Peat 0 0 0.14 0.09 -0.14
Sand 40.45 8.31 47.7 30.17 -7.25
Clay 0 0 0.47 0.3 -0.47
i Loam 0 0 0.43 0.27 -0.43
< Peat- Sand 27.61 5.67 21.57 13.64 6.04
. Peat- Clay 0.58 0.12 0 0 0.58
() Peat- Loam 0 0 0 0 0
cC Sand- Clay 9.41 1.93 4.02 2.54 5.39
" — Sand- Loam 14.7 3.02 21.76 13.76 -7.06
(d}) Clay- Loam 0 0 0 0 0
o Peat- Clay- Loam 0.64 0.13 0.2 0.12 0.44
me— Peat- Sand- Clay 411 0.84 2.3 1.45 1.81
al Peat- Sand- Loam 1.2 0.25 112 0.71 0.08
Sand- Clay- Loam 0 0 0.29 0.19 -0.29
Peat- Sand- Clay- Loam 1.3 0.27 0 0 1.3
TOTAL 100 20.4 100 63.5 -
Peat 0.8 0.16 0.62 0.4 0.18
Sand 33.98 6.83 44.59 28.49 -10.61
Clay 0 0 0 0 0
QN | Loam 0 0 0 0 0
<C Peat- Sand 38.25 7.68 19 12.14 19.25
’ Peat- Clay 0 0 0 0 0
(d)) Peat- Loam 0 0 0 0 0
cC Sand- Clay 0 0 0 0 0
— Sand- Loam 13.52 2.72 17.57 11.23 -4.05
E Clay- Loam 0 0 0 0 0
o Peat- Clay- Loam 0 0 0 0 0
— Peat- Sand- Clay 0 0 0 0 0
D_ Peat- Sand- Loam 8.32 1.67 4.41 2.82 3.91
Sand- Clay- Loam 1.49 0.3 11.28 7.21 -9.79
Peat- Sand- Clay- Loam 3.64 0.73 2.53 1.61 1.11
TOTAL 100 20.1 100 63.9 -
Peat 2.28 1.45 0 0 2.28
Sand 37.71 23.98 24.91 141 12.8
Clay 0.85 0.54 0 0 0.85
™ Loam 0.36 0.23 0 0 0.36
<C Peat- Sand 26.89 17.1 34.62 1.96 -7.73
1 Peat- Clay 2.46 1.56 21.08 1.19 -18.62
(d)) Peat- Loam 0 0 0 0 0
(- Sand- Clay 0.93 0.59 6.5 0.37 -5.57
— Sand- Loam 16.39 10.42 7.43 0.42 8.96
E Clay- Loam 0 0 0 0 0
o Peat- Clay- Loam 0 0 0 0 0
— Peat- Sand- Clay 5.03 3.2 0 0 5.03
D_ Peat- Sand- Loam 5.02 3.19 5.47 0.31 -0.45
Sand- Clay- Loam 1.09 0.69 0 0 1.09
Peat- Sand- Clay- Loam 0.99 0.63 0 0 0.99
TOTAL 100 63.6 100 5.7 -

Table 28: comparison of potentially “defective” and “not defective” environments
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Figure 7-13: percentage difference between soil composition vs. defect rate (pipeline A3)

The Figures Figure 7-11, Figure 7-12 and Figure 7-13 show the relation between
differences in soil composition for potentially defective and not defective environments.
“Other soil types” indicates all the remaining soil types. According to the established
technique, the general conclusion is that it is difficult to find clear pattern combining data
from all the pipelines. However, certain matches are visible: for both A1 and A2 there is
much more peat-sand in potentially defective environments and much more sand and
sand-loam in potentially not-defective environment. There is no clear match between A3
and the others.
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7.4.2 Defect rate- Approach 2

Before it was assumed that environment without defects is potentially not corrosive
environment. This might be not the case. Many of excavations showed that existence
of microbial corrosion was associated with coating damage. Here, different way of
looking at the defect rate estimation is presented. In the previous section uniform
coating along the pipeline was assumed. Now, the assumption is following:

Assumption

Assume that the pipeline consists of two different qualities of the coating “good”
(without defects) and “bad” (with defects). Bad coating of the pipeline is defined
in the same way as for “potentially defective environment” from previous section.

The second approach tries analyzing the pipelines defect rate only in the sections where
bad coating was applied.

Below in the Table 29, summary of the results is presented.

Pipeline Al Pipeline A2 Pipeline A3
Exposure of Def. rate Exposure of Def. rate Exposure
Soil type “bad” for “bad” “bad” for ‘bad” | of “bad” Eae;r?é:ufl?];
coating coating coating coating coating
[km] [def/km] [km] [def/km] [km] [def/km]
Peat 0 0 0.16 0 1.45 10.34
Sand 8.31 6.02 6.83 10.54 23.98 9.51
Clay 0 0 0 0 0.54 9.26
Loam 0 0 0 0 0.23 4.35
Peat- Sand 5.67 4.59 7.68 13.54 17.1 9.82
Peat- Clay 0.12 0 0 0 1.56 4.49
Peat- Loam 0 0 0 0 0 0
Sand- Clay 1.93 3.63 0 0 0.59 38.98
Sand- Loam 3.02 1.99 2.72 5.51 10.42 12.57
Clay- Loam 0 0 0 0 0 0
Peat- Clay- Loam 0.13 0 0 0 0 0
Peat- Sand- Clay 0.84 2.38 0 0 3.2 10.94
Peat- Sand- Loam 0.25 0 1.67 22.75 3.19 8.46
Sand- Clay- Loam 0 0 0.3 20 0.69 17.39
Peat- Sand- Clay-
L Y 0.27 3.7 0.73 2.74 0.63 6.35
TOTAL 20.4 - 20.1 63.6

Table 29: defect rate for sections where bad coating was applied

defect rate for sections where "bad" coating was assumed vs. coil type
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Figure 7-14 defect rate for sections where “bad” coating was applied vs. soil types
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The highest defect rate for pipeline Al is obtained for sand, A2 sand-clay-loam and A3
for sand-clay.

7.4.3 Correlation analysis

Techniques introduced before allow checking what the correlations between all the
pipelines wrt soil types and corrosion defects are.

7.4.3.1 Correlation between soil exposures
Let's define:
o X, Xap, Xaz-percentage of the pipeline exposed to every soil type for the
pipelines Al, A2 and A3, (i'th coordinate of the vector X , describes percentage
of the pipeline exposed to i'th soil type, number of i’'s is 13%)

Pipeline Pp (Pearson cor)®  p-value  pg (Spearman corr)  p-value
Al-A2 0.96 0.001 0.47 0.1
Al-A3 0.97 0.001 0.58 0.03
A2-A3 0.96 0.001 0.73 0.005

Table 30: correlation between soil compositions of the pipelines

p-value in the table is associated with following null hypothesis
Ho 1 p(X;, X;) =0 against H; : p(X;,X;) =0

7.4.3.2 Correlation between defect rates wrt soil types
Let’s define:

o X, Xap, X,3--defect rate vectors for the pipelines Al, A2 and A3 (i'th
coordinate of the vector X , describes defect rate for i'th soil type, number of i's

is 13%9)
Pipeline Pp (Pearson corr)®  p-value  pg (Spearman corr)  p-value
Al-A2 0.004 0.98 0.32 0.28
Al1-A3 0.21 0.50 0.27 0.37
A2-A3 -0.11 0.72 0.01 0.95

Table 31: correlation between defect rates of the soil types for pipelines

7.4.3.3 Correlation between defect rates wrt soil types where bad coating was
assumed
o X, Xap, X,3--defect rate vectors for the pipelines Al, A2 and A3 for the
areas of the pipelines where “bad” coating was assumed (i'th coordinate of the
vector X, describes defect rate for i'th soil type within the pipeline where bad
coating was used, number of i's is 13%?)

Pipeline Pp (Pearson corr)33 p-value Ps (Spearman corr)  p-value
Al-A2 0.08 0.79 0.27 0.38
Al-A3 0.3 0.31 0.32 0.28
A2-A3 0.04 0.90 0.22 0.47

Table 32: correlation between defect rates of the soil types for pipelines, in the clusters
where bad coating was applied

%2 The number of all possible component combinations is 15; however peat-loam and clay-loam are not
registered at all.

s Normality condition for Pearson correlation coefficient is satisfied
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7.5 Conclusions and recommendations

The analysis in this chapter was based on three high pressure pipelines for which
excavations showed existence of MIC.

Conclusions
Overall conclusions from presented approaches are following.

¢ there is no significant correlation between defect rates and soil types

o there is no significant correlation between defect rates and soil types in the
places where “bad” coating was assumed

e the highest defect rates are

o all the pipeline
= pipeline Al: in mixture of peat-sand-clay-loam (3.75 [def/km] it is
about 41% of all the corrosion defect rates)
= pipeline A2: in mixture of peat-sand-loam (8.46 [def/km] -46% of
total corrosion defect rates)
= pipeline A3: in mixture of sand-clay (35.52 [def/km]- 26%)
0 pipeline in the area with “bad” coating was assumed
= pipeline Al: in sand (6.02 [def/km]- 27%)
= pipeline A2: in mixture of peat-sand-loam (22.75 [def/km]- 30%)
= pipeline A3: in mixture of sand-clay ( 38.98 [def/km]- 27%)

e For both the pipelines A1 and A2 there is much more peat-sand, and peat-sand-
clay-loam and much less sand and sand-loam in the areas where “bad” coating
was assumed

e Pipeline A3 doesn't show any pattern wrt the other pipelines

An explanation for lack of correlations (high uncertainty) may be due to
¢ high uncertainty of the soil measurements
e Jlack of data on coating quality- certain assumptions about “good” and “bad”
coating had to be imposed
o lack of data about quantitative amount of soil components in the soil samples

Recommendations:
e The analysis was based on three pipelines, if this is the case, all the pipelines
where MIC was reported should be analyzed in order to get better pattern.
o Deeper investigation of assumption about “good” and “bad” coating is required.
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Chapter 8

8 Water table analysis

8.1 Introduction

This chapter is dedicated to groundwater table (level) analysis. The data on water levels
were collected from the “soil map of the Netherlands”. The maps show the “average min
and max ground water levels”. Unfortunately, the data are not accurate, mainly because
of following features: only rough estimate is presented (groundwater level step
classification data), maps do not present exact water level for a specified stationing. The
data were not delivered in a digital form but were collected directly from the water table
map by the author.

The legend in the maps is following:

Groundwater level step classification data

Groundwater step I Il Il v V VI Vil

Average of the highest

groundwater level in cm below | - - <40 >40 <40 40-80 | >80
the ground

Average of the lowest

groundwater level in cm below | <50 | 50-80 | 80-120 | 80-120 | >120 | >120 | >120
the ground

Table 33: ground water step levels (legend)

The data was collected simply by projecting the pipeline profile on the groundwater level
map and the values of groundwater step levels were collected. The data shows that it is
quite difficult to indicate precisely what the groundwater level for a given stationing is.
This is mostly due to pipeline shape (it is difficult to calculate pipeline’s length using only
the map), and the map itself (maps are constructed based on contour plots).
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For simplification the pipelines were divided into 2.5 [km] long sections. For each of the
section average groundwater class was calculated. The analysis is aimed to check the
relationship between the number of defects and the water level for the associated
sections.

8.2 Approach 1

The figures below: Figure 8-1, Figure 8-2 and Figure 8-3 consist of two parts. The plot
on the top shows the number of defects per each segment of length 2.5 [km], and the
bottom plot presents the groundwater step level for the corresponding section. From the
available maps it was difficult to associate groundwater step levels for narrower sections.

number of defects per each 2.5 [km]
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Figure 8-2 A2- no. of defects vs. water level per 2.5 km long sections
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Figure 8-3: A3- no. of defects vs. water level per 2.5 km long sections

Table 34 shows summary of available groundwater level data.

Pipeline Number of Minimum Maximum Average
samples
Al 35 3 6 5
A2 36 3 6 5
A3 28 1 6 4

Table 34: groundwater step level summary per each section of 2.5 km

Pipeline Nsuan;]bpei;gf Minimum Maximum Mean De\?it;}on
X 0 5.6 1.1 1.4
A2 0 39.6 2.88 7.2
A3 2 22 9.37 5.1

Table 35 defect rate summary- per each section of 2.5 km

Figure 8-1 and Figure 8-2 show that in the places where groundwater level is high (it is
indicated by low step number) the number of the defects is also high. In order to verify
this pattern for all the pipelines let’s define:

o X- defect rate per each section of 2.5 [km]

e Y- average groundwater step level for each 2.5 [km] long section
The hypothesis that has to be tested is of the following form:

Hy:p(X,Y) =0 against H, : p(X,Y)#0
Table 36 below shows the results for correlations: pp - Pearson correlation, pg -

Spearman correlation and py - Kendall correlation, and also associated p-values for all

the pipelines.
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Pipeline Pp 34 p-value Ps p-value Pk p-value
Al -0.1 0.7 -0.12 0.55 -0.09 0.5
A2 -0.32 0.05 -0.24 0.15 -0.19 0.17
A3 0.30 0.12 0.31 0.1 0.22 0.13

Table 36 correlation between defect rate and water level for sections of 2.5 km

The results presented in the table confirm the suspicion. The groundwater step level for
the pipelines A1l and A2 is negatively correlated with the defect rate. However this
correlation is not statistically significant. For A3 there is no significant relationship
between the defect rate and groundwater step level.

Overall conclusion is following: according to the introduced methodology there is weak
correlation between defect rate and groundwater step level.

8.3 Approach 2

For the pipelines A1 and A2 it seems that there are many areas where zero or only one
defect was reported. So the pipeline will be analyzed with respect to these sections.
The first feature will be indicated as presence of the defects, and the second by defects
absence. Let’s define:
o X- groundwater step level vector for area where only 0 or 1 defect was observed
e Y- groundwater step level vector for area where more than 1 defects were
observed
The task is to check if the difference between averages of groundwater levels for defined
variables is statistically significant. So define the hypothesis as:

Hy: X -Y =0 X =Y against the alternative H, : X #Y

L . ) L p-value fort-  Lower 95% bound  Upper 95% bound
pipeline | Variables df tstatistic test (for difference) (for difference)
Al X-Y 32 0.18 0.85 -0.59 0.71
A2 X-Y 34 1.55 0.13 -0.16 1.17

Table 37: statistics and confidence bounds for estimate (pipeline A1 and A2)

The results show that for a significance level « =0.05 the null hypothesis cannot be
rejected. It means that averages of groundwater step levels of the environments with
and without defects are not statistically different.

Beneath in the Table 38 small description of the groundwater levels for “defective” and
“no defective” environments is presented.

ipeline Descriptive Number of rou'\r/llldr:/;/ater rou’\:llécii)\(/\}ater Mean
PP Statistic samples 9 step 9 step groundwater step
AL X 17 3 6 5
Y 17 3 6 5
A2 X 21 3 6 5
Y 15 3 6 4

Table 38: descriptive statistics (pipelines Al and A2)

* The analysis showed that the normality assumption for the variable “number of defects per cluster” is not
satisfied.
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The results from the presented idea did show insignificant relationships.

8.4 Approach 3

Next approach which can be applied to the water table analysis is carried out by coding
the groundwater steps levels. The Table 33 shows that first five steps (I, II, Ill, IV, V) can
be associated with high groundwater level (and coded as 0) and other two (VI and VII)
with low groundwater level (and coded as 1). The Figure 8-4, Figure 8-5, and Figure 8-6
below present how coded average groundwater step levels are associated with the
number of defects for each 2.5 km long clusters.
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Figure 8-5: number of defects vs. coded groundwater level (pipeline A2)
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Figure 8-6: number of defects vs. coded groundwater level (pipeline A3)
The hypothesis which has to be verified is following: the average number of defects for
average groundwater step level coded by 0 and 1 is significantly different against
alternative that it is not. Necessary definitions are following:
e X- number of defects where average groundwater step level is coded as 0
e Y- number of defects where average groundwater step level is coded as 1
A mathematical formulation of hypothesis is following:

Hy: X -Y =0« X =Y against the alternative H, : X #Y

o

pipeline | Variables  df  t-statistic p-vaItLéztfor t Lc()fv; ?rdﬁ?‘;/feac::ue?d Uz‘gfrd?f?:{?ebn%f)]d
Al X&Y 32 1.07 0.29 -1.45 4.67
A2 X&Y 34 0.76 0.45 -9.97 21.96
A3 X&Y 26 -1.05 0.30 -16.0 5.16

Table 39: statistics and confidence bounds for estimate (pipelines A1, A2 and A3)

iveline Descriptive Number of Min. no. of Max. no. of Average no. of
pIp Statistic samples defects defects defects
X 27 0 14 3.04
Al
Y 7 1 3 142
X 28 0 99 8.42
A2
Y 7 0 6 2.42
X 19 5 55 21.68
A3
Y 9 12 50 27.11

Table 40: descriptive statistics (pipelines Al, A2 and A3)

The Table 39 and Table 40 show that for A1 and A2 the average number of defects
where groundwater step level is O (groundwater level is high) is higher than for the area
where groundwater step level is 1 (groundwater is relatively lower); however this
difference is not statistically significant®™. In the case of A3 the there is no evidence to
distinguish between the numbers of defects for coded groundwater levels.

Also this approach showed weak correlation between groundwater level and defect rate.

* This is due to high variability of the number of defects for groundwater step level coded as 0.
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8.5 Conclusions and recommendations

The analysis didn't show that the groundwater levels in a statistically significant way
influence the number of defects. The results may be not accurate since the pipelines
were divided in sections of 2.5 [km]. However, the pipeline division in smaller segments
is a challenging task since the data is not available in an electronic form, but available
only directly from the maps. Analysis showed that for pipelines Al and A2 higher
groundwater level is positively correlated with the number of defects (more water - more
defects); however these results according to statistical evidence are not strong enough.
The Table 41 below shows small overall summary of the results.

average groundwater step

Pipeline Total number of defects level

Al 93 5
A2 267 5
A3 657 4

Table 41: defects and average groundwater level

All three pipelines were installed in the 60s however the number of defects for each of
them is very different. Comparison of the number of defects and the average
groundwater step level shows that the highest number of defects for the A3 is associated
with the highest groundwater level (lowest groundwater step level).

Recommendations

Deeper investigation of the groundwater levels is required. Because of the pipeline
profile it was too difficult to collect the groundwater level for any given pipeline stationing.
Precise approximate of the groundwater level for any given stationing would significantly
increase the accuracy of the results.
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Chapter 9

9 Factors influencing defect rate

9.1 Introduction

This chapter proposes the way of the defect rate modeling given all available
measurements. Factors which are available are:

e groundwater level,
soil types,
NAP level of the ground,
NAP level of the pipeline and
depth of cover
The methodology used in this chapter is based on the regression analysis where the
dependent variable is defect rate and independent variables are all the factors which
may influence the defect rate. The regression analysis is based on a number of
observations which describe the variable of interest. In order to define such
observations a pipeline discretization is required. The question which has to be
answered is in how long segments the pipeline should be divided. Here, the same as in
the previous chapter — water table analysis -- the pipeline will be divided in 2.5 [km] long
sections (according to the groundwater level measurements). In this study two general
approaches will be presented.
First, let's define two models.

¢ model without interactions

Model 3
Y =0+ B X+ 4+ B, X, +eE

o model with interactions up to second degree
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Model 4

Y = By + BXy ot Lo Xy + B XL ot Bon XE+ LroX Xy + .
PinXi X+t BosXo Xy +ot Bi j Xi X+ Bran Xna Xg +€

where:
0 Y- variable of interest- defect rate [no. of defects per km] calculated for
each section of 2.5 [km]

o X,;-independent variables:

* peat, sand, clay, loam, peat-sand, peat-clay, peat-loam, sand-clay,
sand-loam, clay-loam, peat-clay-loam, peat-sand-clay, peat-sand-
loam, sand-clay-loam, peat-sand-clay-loam which are described
as percentage content of each section for each 2.5 [km] (each
value says —“percentage of each soil type is in each section”)

= groundwater step level (calculated as average for each section of
2.5 [km])

= NAP level of the ground (average for each section)

= NAP level of the pipeline (average for each section)

= depth of cover (average for each section)

0 nis associated with the number of variables which is equal to 19
(according to number of available variables)

9.2 Model without interactions

For the defined Model 3, in order to get the best possible combination of parameters
which describe defect rate a stepwise regression® is applied.

The Model 3 is concerns each of the pipelines to check which parameters for each
pipeline are significantly influencing the defect rate. Moreover, the model also is used to
the pipelines combinations. The idea behind such combinations is to find the common
parameters influencing the defect rate for all the pipelines. Table 42 and Table 43 below
show standard statistics of the estimated coefficients. Stepwise regression output is a
set of statistically significant variables influencing criterion variable which is defect rate.
All the variables not included in the tables are insignificant in the modeling.

For the pipeline Al there are no significant parameters describing the defect rate. For
the A2 the most relevant variables are percentage amount of peat-sand and peat, and
for A3, sand-clay and sand-loam. For A1 combined with A2 the most relevant is peat-
sand (it means that peat-sand is a common factor influencing the defect rate for these
two pipelines). And for combination of three pipelines Al, A2 and A3 the most relevant
variables are percentage amount of sand-loam and NAP level of the ground (these
variables are common variables for all the three pipelines).

% See chapter: analysis methods and interpretation- appendix A
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_ o 95% Confidence

e gunetes, wnet | Cosiiens | e | monl o

defect rate modeling B‘ Std. " L. u.
! Error Bound Bound

A1 None of parameters is included

(Constant) -0.16 0.76 -0.21 0.84 -1.71 1.4
A2%® Peat-sand 0.11 003 | 423 £ 0.06 0.16
peat -0.67 028 | -2.34 0.03 -1.25 -0.08
(Constant) 7.846 0.97 8.03 & 5.83 9.86
A3% Sand-clay 0.55 0.16 | 3.39 0.002 0.21 0.88
Sand-loam 0.08 0.03 2.35 0.03 0.01 0.15
A1-A2% (Constant) 0.45 0.46 0.98 0.33 -0.46 1.36
Peat-Sand 0.044 0.01 3.21 0.002 0.02 0.07
(Constant) 6.93 0.76 9.1 & 5.4 8.4
A1-A2-A3*" | NAP level of the ground -0.60 009 | -6.36 £ -0.79 -0.41
Sand-loam 0.08 0.03 3.15 0.002 0.03 0.13

Table 42 Stepwise regression estimates (model without interactions)

The Table 43 below associates the estimated models and the multiple correlation

coefficient (RZ), which describes level at which the variance of dependent variable is
described.

In all the cases R?is relatively low- it doesn't exceed the level of 40%. This can be
caused by uncertainty about the measurements or by the variables which are relevant
but were not included in the model.

PIPELINE Number of obs. R2 Adjusted R2 _ Statistics
F statistics | p-value for F test
Al 34 - - - -
A2 32 0.38 0.34 9.01 0.001
A3 27 0.39 0.33 7.54 0.003
A1-A2 66 0.14 0.13 10.3 0.002
A1-A2-A3 93 0.31 0.30 20.26 &®

Table 43: standard model statistics (model without interactions)

3 Al: The following variables are constants or have missing correlations, so will be deleted from the
analysis: peat-loam, clay-loam

% A2: The following variables are constants or have missing correlations, so will be deleted from the
analysis: Clay, Loam, peat-clay, peat-loam, sand-clay, clay-loam, peat-clay-loam, and peat-sand-clay.
%9 A3: The following variables are constants or have missing correlations, so will be deleted from the
analysis: peat-loam, clay-loam, peat-clay-loam

9 A1-A2: The following variables are constants or have missing correlations, so will be deleted from the
analysis: peat-loam, clay-loam

“1 A1-A2-A3: The following variables are constants or have missing correlations, so will be deleted from the
analysis: peat-loam and clay-loam

% & stands for number smaller than 0.0001
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9.3 Model with interactions

Second model is a model with interactions; it means that except all main effects, also
interactions between effects are taken into account. This is idea is motivated by a well
known fact that MIC corrosion is not only influenced by closed number of main effects.

95% Confidence
The parameters which are | Coefficients val Interval for f3;
significant for the defect rate tstat. | P i
modeling P Std. '
ﬂi Error L. Bound | U.Bound
(Constant) 0.76 0.27 2.82 0.01 0.21 1.31
AL Depth of cover * depth of cover 38.525 7.79 4.94 & 22.6 54.5
(sand-clay-loam) * depth of cover -3.74 0.92 -0.76 & -5.61 -1.90
Sand * Sand -0.001 & -2.22 0.03 -0.001 -&
(Constant) 1.56 0.06 2.48 0.02 0.27 2.86
Peat*(NAP level of the pipeline) 0.18 0.05 3.82 0.001 0.08 0.28
A2
Peat-sand 0.07 0.03 2.39 0.024 0.01 0.121
(peat-sand) * (NAP level of the 001 0.01 254 0.02 0.02 -0.003
ground)
(Constant) 11.56 0.92 12.5 & 9.65 135
(sand-clay) * (sand-clay-loam) -0.43 0.12 -3.59 0.002 -0.67 -0.18
A3
Sand * sand -0.002 0.001 -3.38 0.003 -0.004 -0.001
(peat-clay-sand-loam) * (peat-clay- ) ) } )
sand-loam) 0.08 0.03 2.39 0.03 0.14 0.01
(Constant) 1.35 0.29 4.66 & 0.77 1.9
AL-A2 l(Pealt)'sand) " (groundwater step | o061 | 0002 | 4.64 & 0.006 0.015
eve ' ) ) )
Peat-sand 0.05 0.01 3.87 & 0.02 0.07
(Constant) 5.02 0.59 8.45 & 3.84 6.20
NAP level of the ground -0.61 0.09 -6.89 & -0.79 -0.43
Sand-loam 0.08 0.02 3.27 0.02 0.03 0.13
Al1-A2-A3 R *
(Sand-loam) * (NAP level of the | = 509 | 0004 | 224 | 003 -0.02 -0.001
pipeline)
I(:\f’;t)'sa”d ) * (groundwater step {5008 | 0003 | 278 | 0.007 0.002 0.01
Sand * sand -0.001 0.001 -2.30 0.024 -0.002 -&

Table 44 Stepwise regression estimates (model with interactions)

The Table 44 above shows which of the variables from the Model 4 are significant in the
defect rate modeling. Interesting is that for the most of the cases (the pipelines and
pipeline combinations) the most relevant variables included in the model are interactions.
Only in two cases main effects were included in the model.

The Table 45 below shows that now R? is higher than before for model with only main
effects. However, the R? still is very low- what indicates poor correlation.
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PIPELINE | Numberofobs.| R? | adjusted R? Statistics
F statistics | p-value for F test
A2 32 0.55 0.50 11.28 &
Al 34 0.47 0.42 9.82 &
A3 27 0.60 0.55 11.4 &
Al-A2 66 0.36 0.34 17.56 &
Al1-A2-A3 93 0.43 0.39 13.0 &

Table 45: standard model statistics (model with interactions)

9.4 Conclusions and recommendations

The analysis showed that much more relevant for the modeling the defect rate is looking
at interactions than on main effects.

According to the introduced methodology the significant parameters (with strong
correlation) which describe the defect rate are:

For the pipeline Al:
0 sand (insignificant negative correlation)
0 interactions between
» sand-clay-loam with depth of cover (insignificant negative
correlation)
= depth of cover with depth of cover ( mid. positive correlation
with the defect rate)
For the pipeline A2:
0 Interactions between:
= peat and NAP level of the pipeline ( insignificant positive
correlation)
» peat-sand and NAP level of the ground (mid. negative
correlation)
0 Peat-sand (mid. positive correlation)
For the pipeline A3:
0 Interactions between:
= Sand-clay with sand-clay-loam (mid. negative correlation)
» Sand with sand (mid. negative correlation)
= Peat-clay-sand-loam with peat-clay-sand-loam (insignificant
negative correlation)
Common factors for A1 and A2
0 Peat- sand (mid. positive correlation)
0 Interaction between
= Peat-sand with peat-sand-loam (mid. positive correlation)
Common factors for A1, A2 and A3
0 NAP level of the ground (mid. negative correlation)
0 Sand-loam (insignificant correlation)
0 Interactions between:
» Sand-loam with NAP level of the pipeline (weak negative
correlation)
= Peat-sand with groundwater step level (weak positive
correlation)
= Sand with sand (insignificant negative correlation)
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Recommendations

The analysis showed that the parameters included into regression model do not fully
describe defect rate - this is indicated by low R%. Two main reasons which have to be
deeper investigated are:

0 measurement error- there is a lot of uncertainty in the data, the uncertainty can
be reduced by analyzing other pipelines where MIC was reported in order to get
more general common factors influencing MIC defect rate

o other influencing factors which were not taken into account (this should be
verified as well)

o0 pipelines were divided in 2.5 km long sections according to groundwater data,
further investigation should be aiming at getting more narrower sections
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Chapter 10

10Conclusions

The thesis conducts an analysis on corrosion modeling for underground gas pipelines in
the Netherlands. Each of the divisions incorporates certain knowledge about corrosion.
Furthermore all the parts combined together deliver information about the whole process
of corrosion rate/defect modeling.

First part showed the procedure of the corrosion rate modeling when low number of
inspections is available. Implemented model shows that in order to determine reliable
uncertainty and bias about MFL-pigs it is very important to have multiple reference
defects in the pipeline, defects for which the real dimensions are well known (ex. from
excavations). Because of the measurement uncertainty of the MFL-tool it dominant
compared to the corrosion growth in the time period between the pigruns, it is very
difficult to determine a reliable corrosion rate per defect. Model proposed in first section
showed the way to calibrate all the inspecting pigs and how to derive physically
acceptable functional description of corrosion growth. Assuming constant corrosion rate
the model estimated average corrosion rate of level 0.24 [mm/yr] with upper bound value
of 0.62 [mm/yr].

The assumption that the corrosion process is linear was underpinned by the analyses of
two subsets: deep and shallow defects. For both subsets a similar average corrosion
rate was calculated: 0.23 mm/yr and 0.25 mm/yr. The difference is not significant.

Since the corrosion rates have been determined, Gasunie will have to decide how to use
these values for the calculation of a re-inspection interval for this line. The calculation
will probably be done in a deterministic way for every defect, taking into account
measurement uncertainties and the uncertainty of the corrosion rate.

Second section of the thesis incorporated results from the previous one in order to find
factors influencing the corrosion rate. The analysis was performed based partially on
bio-assessed measurements and partially using pipeline integrity management system.
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The study based on regression analysis showed importance of having additional
measurements. It has been shown that much more influencing for the corrosion rate are
interactions between the variables than main effects. For incorporated set of 19
variables, two of them (SRB-A and SRB-B) were insignificant and due to missing data
were removed from further analysis. According to applied sensitivity measures the most
influential for the corrosion rate is variable describing pipeline wrt NAP level (positive
correlation), then accordingly to importance: interactions between redox and water level
(negative correlation), TOC and pipeline wrt NAP level (positive correlation), oxygen and
pH (positive correlation), methane and SP (positive correlation) and final one MCA
squared (negative correlation). The number of available observations plays crucial role
in the modeling. Most analysts recommend that one should have at least 10 to 20 times
as many observations as one has variables, otherwise the estimates of the regression
are probably very unstable and unlikely to replicate if one were to do the study over. In
the study number of included variables was 5 and 16 was a number observations. So,
clearly final results cannot be used as reliable predictive tool.

Third and the last section demonstrated the ideas of defect rate modeling for a MIC
influenced pipelines. Three pipelines affected by MIC were analyzed. Firstly, the soil
type analysis was performed. Two of the pipelines Al and A2 showed that in the areas
where “bad” coating was assumed is much more peat-sand, and peat-sand-clay-loam
and much less sand and sand-loam. Third pipeline A3 didn't show any significant
pattern since the a whole pipeline is affected by corrosion. Applied correlation analysis
didn't show significant correlations between soil types and defect rates for all the
pipelines. Because of lack reliable measurements also groundwater analysis didn't
show any significant correlations, between groundwater levels and number of defects.
However, all the data combined together and applied to regression analysis showed
certain patterns. Similarly like for the corrosion rate, the defect rate is much stronger
influenced by interactions than by main effects. The defect rate modeled in this chapter
showed that common factors influencing all three pipelines, A1, A2 and A3 are: NAP
level of the ground (negative correlation), and sand mixed with loam (positive correlation)
then interactions between: mixture of sand-loam and NAP level of the ground (negative
correlation), mixture of peat-sand and groundwater step level (positive correlation) and
sand squared (negative correlation). It was showed that pipeline A3 is much more
different from the others. The parameters influencing the defect rate for both remaining
pipelines Al and A2 are: peat mixed with sand (positive correlation) and interaction
between mixture peat-sand and groundwater step level (positive correlation).
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Appendix A

A: Analysis methods and interpretation

Definition 1 (Random Variable)
Let F be a o —algebra and Q) the probability space.

A function X :(Q,F) — Ris a random variable if for every subset A, = {a): X(w) < k}
wherek € R, the condition A, € F satisfies.

Definition 2 (The Likelihood Function)

Let X =(X,,..., X, ) be arandom vector (random variable on n components) and

{fx (x]6):6¢ G)} a statistical model parameterized by € = (6,,...,6,), the parameter
vector on the parameter space O .

The likelihood function is a map L:® —[0,1]e R given L(8| X)= f, (x|8) . The
likelihood function is functionally the same in form as a probability density function (the
emphasis is changed from X to the 8).

Definition 3 (A maximal Likelihood estimate)

The parameter 6 for such L(é| X)>L(@|X) VOeO is called a maximal likelihood
estimate (MLE) of 6.

Remark 1
Many of density functions are smooth functions (exponential), hence it is very
comfortable to transform them to the log-likelihood function (any strictly
monotonic transformation preserves function’s extremes).

Definition 4 (The Normal distribution)
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We say that X is normally distributed random variable with mean x and standard

deviation o if its distribution function is following:
1 t(x=p)?
F(t; 1,0) = fe 2 dx

\ 2710 %
The density curve is symmetrical, centered about its mean, with its spread determined
by its standard deviation.

o Maximal Likelihood estimation of parameters
Suppose that X :(Xl,..., Xn) is random vector and X,,...,X, are i.id.
(independently and identically distributed), normally distributed random variables
with the expectation x and variance o . In order to find estimators of unknown

parameter 6 = (y,az) we apply the maximal likelihood estimate method.

3 (Xi-)?
1 (X ,U) 1 _im .
|_49 X —f X 9 f X 9 252 [ 20
O1X) = 1, (X 6)= H (X, 10)= HI—W {Gn(zﬂ)m]e

The log-likelihood function is:

161 X) = log(L(8| X)) =—2(1;2 (X, 1) ~2In(o®) - 2 In(27)

In order to find extremes we compute gradient 1(8 | X) |, what gives:

A@IX) 1 (X, - LA01X) _ 1 Z n

2

ou o ) i oo’ ) 202

Setting 1(@| X)|,=0 (first order condition) we get:

n

z X, and o? i > (X, — )" hence we get that:

i=1 i=1

=(,6") = (02X, 03 (X, =)

Finally, to know whether 6 is indeed the MLE we need to check that second
order derivatives are negative.

Estimated parameter 6 = (11,6°) is indeed the MLE estimator.

Definition 5 (The Beta distribution)

We say that X is standard beta distributed a random variable with parameters « and
L if its distribution function is following:
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X)ﬂ—l a-1 dX

-
«F)= j B(a, §)

where:

Beta function: B(«, f) = H@)(h) and where I'(«) = Ie"‘x“‘ldx is @ gamma function.

I'a+ p)

o Maximal Likelihood estimation of parameters
Usmg the same procedure as before we can easily derive MLE estimator

=(a, ,B) for the standard Beta distribution, the results are shown below:

a=X X(1-X) ~1|and f=01-X X(-X)

1/ny (X, - X 1Y (X, - X

i=1 i=1

where X -customary means mean.

Definition 6 (The Gamma distribution)

We say that X is gamma distributed a random variable with parameters « and £ if their
distributions function is following:

F(t,a, f) = J.Wx’“ e dx

where I'(«) is a gamma function introduced in previous definition.

e Maximal Likelihood estimation of parameters
Also in a case of a Gamma distribution we can easily derive MLE estimator of

unknown parameteré =(a, ,3) , the results is following:
2

a= - X and f3 = X

1/nY (X, = X)? 1/nZn‘,(><i—>7)2

Definition 7 (Expected value)
If X is a random variable defined on a probability space (Q2,F,P) then the expected

value of X (denoted as EX) is defined in following way:
EX = [ XdP

where integral is in the meaning of Lebesgue.
In case when random variable X admits a probability density function f(Xx) then the

expected value is:

EX = j xf (x)dx
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When X is a discrete random variable with values X;,...X, and corresponding
probabilities p,,..., p, then:

EX =Y x,p

i=1

Definition 8 (P-value)

The p-value is the probability that sample could have been drawn from the population(s)
being tested given the assumption that the null hypothesis is true. A p-value of 0.2, for
example, indicates that we would have a 20% chance of drawing the sample being
tested if the null hypothesis was actually true.

Definition 9 (Kolmogorov- Smirnov — two samples test)

The Kolmogorov-Smirnov two-sample test is a test of the null hypothesis that two
independent samples have been drawn from the same population (or from populations
with the same distribution). The test uses the maximal difference between cumulative
frequency distributions of two samples as the test statistic. The main idea behind the
test is to compare the proportion of the values less than certain level x between two
sample sets. The test checks what the maximal difference between proportions is. The
test doesn't require that samples are the same size. According to Kolmogorov- Smirnov

. . n,n
the test is reasonably accurate for sample sizes n, and n, when ——*—>4,
n,+n
1 2

The procedure is following: for random vectors X, and X, with respectively number of
samples n; and n,
vx D =max{F, (x)-Fy, (x)If

The usual way of carrying out the two-sample test is to compute the p-value directly from
the test statistic, with no need to compare it to a critical value. This is an example
presented in “Nonparametric Statistical Methods” by Hollander & Wolfe. So, the idea is
to Compute the asymptotic p-value approximation and accept or reject the null
hypothesis on the basis of the p-value. The direct formula for a two sided test p-value is
expressed in the following way:

p-value =23 (-1)"'e**  where  2=max((¥nh+0.12+0.11//n)D,0)  and
k=1

_ nan
(nl + n2)

Definition 10 (Kolmogorov- Smirnov - goodness of fit test)

The Kolmogorov- Smirnov test (K-S test) can be used to decide whether a sample
comes from a population with specified distribution. An attractive feature of this test is
that the distribution of the K-S test statistic itself does not depend on the underlying
cumulative distribution function being tested. Another advantage is that it is an exact
test (the chi-square goodness-of-fit test depends on an adequate sample size for the
approximations to be valid). Despite these advantages, the K-S test has several
important limitations:

1. It only applies to continuous distributions.
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2. It tends to be more sensitive near the center of the distribution than at the tails.

The K-S test procedure of testing is following:

1. Specify distribution F; - associated with theoretical distribution function
2. Order samples in non-decreasing manner
[ i—1
3. Calculate D = max[m_ax[—— FO(Xi)j, max( FO(Xi)——j]
Ki<n\ n I<i<n n
4. Calculate critical and p-value

a) for small samples (less than 20), we use the direct values from tables
b) for sample size larger than 20 Miller's formula is applied:
C=4-05In(x)/n

c) the direct formula for p-value is given by the same formula as in
definition no. 9

Definition 11.1 (Product moment correlation)
The correlation p, , between two random variables X and Y with expected values u,

and u, respectively, and standard deviations o, and o, is defined as:
_oov(X,Y) | E((X — )Y — 1))

OxOy OxOy
The correlation is the measure which takes values from [-1,1] and is associated with the
strength of the relationship between two variables. If correlation coefficient p takes
value 1- then it means that there is a perfect linear relationship, in case when p =-1 the
perfect linear relationship is negative, but when p =0- then there is no relationship

between variables.

e Test of Pearson's correlation
Let suppose that we have already computed a correlation coefficient p. Now, we
would like to verify the hypothesis that:
H,:p=0against H, : p<>0
First, we need to calculate the probability of obtaining a statistic as different from
or more different from the parameter specified in the null hypothesis as the
statistic obtained in the experiment. The probability value is computed assuming
the null hypothesis is true. If the probability value is below the significance level
then the null hypothesis is rejected. To get a p-value we have to calculate:

n-2 .
t=p >~ Where n is number of samples, now the analyst has to check In t-

1-p
Table the probability value for a t, and to compare to significance level « . If the
p-value is less than significance level, then the correlation is significant.

XY

Definition 11.2 (Spearman’s rho correlation coefficient)
General idea of rho correlation coefficient can be expressed in following way: instead of

quantitative measures on each of n pairs of variables, we assign ranks a, on the first
variable (population characteristic) and a set of rankings b, on the second one. Each of
sets {a,,...,a,} and {b,,...,b,} is some perturbation of the integers 1,2,....,n. The
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Spearman correlation coefficient can be expressed as correlation between ranks instead
of observations X and Y in following way:

n n

2% =X)(Y; =Y) > (2 ~a)(b, ~b)

pP= p=
\/Z(Xi —X)ZZ(Y -Y,)? \/Z(ai —a)ZZ(b—E)2

A basic algebra calculus will show that above formula can be reduced to:

7D 26 1)Zdi2 whered, =a, —b,
nn" -1)5

p=1-

Definition 11.3 (Kendall’s tau correlation coefficient)

Let's define variables: “P” and “-Q”, which corresponds to number of positive scores
(concordant), and negatives (discordant) respectively. A linear relationship of variables
is defined in following way:

r=(P+Q)/S

where S is maximal available positive score.

If we consider two rankings of exactly n components, then basic calculus gives that,
number of possible pairs is n(n-1)/2. Hence Kendall’s 7 coefficient has the following
form:

S 2S ) 4P
T=—=—-—but P+Q=C_ hence 7 = -
n(n—-1) n(n-1)

C2

n

Definition 12 (Quantiles)
Let’s take random variable X. A p quantile is such an g that P(X <q,)=p

Definition 13 (correlation ratio)
Correlation ratio in statistics is a measure of the relationship between the statistical
variability within individual categories and the dispersion of whole population or sample.

The aim is to order the variables Xi,..., X, (included in the model) according to
influence on the criterion variable. The quantity of interest is E(\/ar(\? | X;))*. Since the
equation:

E(var(Y | X;))+Var(E(Y | X;))=Var(Y)
is well known if follows that E(Var(Y | X;)) — O indicates higher importance of the
variable X;. As a consequence the correlation ratio for the variable i'th is defined as:
var(E(Y | X,))

CR, =
! Var(Y)

* The quantity that should be considered is var(y | X =x) (change of predictor variable if one quantity is

said to be constant), however since xi* is unknown, the idea is to calculate change of the variance overall
the values of X
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Intuitively: higher value of the CR follows higher the share of the variance decomposition
of the variable X;.

Method 1 Linear Regression

The important task in statistics is concerned with determining functional relationships
between a given set of variables. Linear least squares error technique is very important
and applicable modeling method. Basically, the method gives the estimators for
predefined function in order to get a function, which is best, fitted to the data in the
meaning of least squares errors.

Standard assumptions of the multiple regressions are:

1. The model is defined as Y = X + &, where Y is the vector of outputs and X
is a matrix of covariates

2. The number of observations is grater than number of parameters to be
estimated

3. Ee, =0 Var(g)=0" Cov(e;,&;)=0 for i |

The idea to get the best estimator of # we need to solve optimization problem:
mﬂinllY—XﬂIF:mﬁin lell.

Simple calculations show that the optimal estimator of /£ is expressed in following way:

B=(X"X)TXTY
e Significance of estimated coefficients
Important fact in linear regression is that, we are allowed to check whether
estimated parameter vector ,8 can be neglected or not. To test it we need to
verify the null hypothesis:
H, :,3 =0 against alternative: H, : 34, such that 3, #0

To verify hypothesis above we need to calculate p-value for given significance
level o . The p-value associated with introduced hypothesis is:

ATy Ty _v?2

p—value = -— @ i( Y-y ~F(p-Ln-p)

Y7Y A TY kp-1)/(n- p)

For introduced p-value we have basis to reject null hypothesis when
p—value > F(p-1n-11-«) otherwise we do not have such a basis. (The n

is a number of samples; p is a number of columns in covariate matrix X; and F is
F- distribution®*).

e Calculation of confidence interval estimates for individual coefficients
The (1- ) confidence interval for estimated parameter £, is given by:

[/3: —t(n—p,l—%) (XTX);'s2, 3 +t(n—p,1—%) (XTX)i}sﬂ

where s? = (1/(n—p))> (Y, ~Y))?; Y, = X,5,; where (X" X);}is i'th value from
i=1

t45

diagonal of matrix (X X)™; and where t- is t-student*® distribution function

** E_distribution- Fisher-Snedecor Distribution
% t-student distribution- Gosset's distribution

M.Sc. Thesis Lech A. Grzelak



97 A statistical approach to determine the MIC rate of underground gas pipelines

e Goodness of fit measure
To check whether created model is well fitted to data we introduce fit measure:

R? _ (Y -V)'(Y-Y)
(Y =Y) (Y =Y)Y =Y)(Y-Y)

1 if the model is perfect, and

0 when model is badly fitted

which takes values from [0,1]:

Method 2 (stepwise regression)
Stepwise regression is a model-building procedure that attempts to maximize the
amount of variance possible to explain in dependent variable while simultaneously
minimizing the number of independent variables in the statistical model. The stepwise
regression is typically used when a large number of predictor variables are available
while the best combination of variables to predict the value of the criterion is wanted. It
is designed to give a model that predicts as much variability as possible with the
smallest number of parameters. The stepwise regression should be interpreted
cautiously or avoided entirely when trying to understand theoretical relation. It makes its
selection based purely on the amount of variance that variables can explain without any
consideration of causal or logical priority. As the consequence independent variables
chosen through a stepwise regression are not guaranteed to be the most important
factors affecting the criterion variable. A theoretically meaningful variable that explains a
larger amount of variability in the criterion variable could be excluded if it also happens
to cause changes in other independent variables, because it would be collinear with
those variables. Additionally, stepwise regression attempts to maximize the predictive
ability for the predictor variables in the one specific sample that was collected. Its
selections will therefore be affected by any relations that happen to appear due to
chance alone. |If it is impossible to come up with a theoretical explanation for an
observed relation between predictor and criterion variables it may just be an artifact only
found the particular collected sample. There is one circumstance under which stepwise
regression should be used at most: when the most important aim is to determine the
best predictive model, without interesting in drawing inferences about the relations in the
data.
Stepwise regression consists of the two steps: first start with a simple model and
gradually add independent variables to it until any significant improvement is not made
i.e. minimize probability that all the factors are equal to zero, but drop variables which
become no longer "significant" after introduction of new variables. In other words check
the “old” set of independent variables each time a new one is added to the model to
make sure that they are still significant. Secondly if it turns out that a predictor variable
included in an earlier step is no longer making a significant contribution to the prediction
of the dependent variable, then the variable is dropped from the model.

The algorithm of the stepwise regression can be presented in the following way.

Suppose that and one criterion variable Y. Notation used in the procedure is

following:

Notation
-n is number of independent variables
-Y is criterion variable, ex. corrosion rate [mm/yr] or defect rate [def/km]
- X; indicates the i'th variable where i =1,...,n

- Rf".n - R square coefficient for the model: Y = Sy + B X, +...+ B, X, + ¢
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Step wise algorithm

Step 1
-m=1
- define n models of the form: Y = B, + B, X; + ¢
Step 2
- take the variable (model) k for which: mliix sz and p-value for the

hypothesis: H,: f, =0 against H, :B, #0 is less than significance
level o

Step 3
-for the remaining n-m variables define n-m models of the form:

Y = By + BiXy + B X, +¢&, wherel =1,k =1,k +1,.n, and calculate R},

and check the value for difference between R squares: R = RKZ’j ~R¢

Step 4
-define a new regression model for which R takes maximum value and is
statistically significant*®

Step 5
-recalculate the p-values for the t-test for all the variables in the
model and check if all are significant, if any of them is insignificant then
should be removed and step 3 should be applied one more time to the
model consisting only of significant variable.

Steps 3,4 and 5 have to be repeated sequentially, the new model adding/dropping the
variables has to be finished when adding or dropping the variables wont improve the
determination coefficient (R square) significantly and all the variables in final model will
be significant.

“ In order to check if difference between R squares for two models is significant hypothesis testing based on
F statistics has to be applied- see appendix
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Appendix B

B: Tutorial file for CoroGas

Author: Lech A. Grzelak, program created for N. V. Netherlandse Gasunie

The program does all the theory introduced in part one of the thesis. This tutorial
consists of following parts:

a) Data calibration

b) Corrosion rate modeling

C) How to transfer the files into *.dat type?
d) Files construction

e) Examples

f) Available datasets descriptions

a) Data Calibration

The first step of using the program “A statistical approach to determine the corrosion rate
modeling of the underground gas pipelines” is to open the program in the Matlab
environment.

In order to initiate the program the user has to open the matlab file: file/open/start.m as
it is shown on the screenshot below.
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A statistical approach to determine the MIC rate of underground gas pipelines

):MATLAB

File Edit Debug Desktop ‘Window Help

O

Y

] | “ ﬂ? | @ | Current Directory: IC:lDocumems and Settings\grrelak'DesktopProgram_Gasunie -

Open

[ 7]x]

Laoak irn: IE} Program_Gasunie 2

Y] «BcE-

M OPTMEASYIEW .M

# ] SIMULATION] . m

) OPTUNBIASOMEASUREMENT Sview.m 44 SIMULATION test

Recent M) OPTWALLVIEW1. I # 3 skasowac.m
) plokfromINTERYAL m
paointer.mat t.rnat
4 PROGRESS1.m #testmain.m
Erate.mat @thesamepopulation.m
HUIRED, mat £IVIEWL.m
EREPORTsave.m @xl.mat
) cavefoF ILE_GENERATOR.m 47 mat
BRI 0 svefoFILE_GENERATORexcelm 4 )yl.mat
) S AYERESLILTS.m #7y mat

) SAWETABLE m
@ saveTOexcel.m
@ saveTOfile.m

= K |+

o

ty Computer

-
File name: Istart.m j Open I
Filez of type: IM,QTLAB filez j Cancel |

S (A1) -min(&kl)

S (AZ) —min (A2)

S (A3) —min (A3)
corrcoef (A2, A3)
All=hist (A11,30):
All=hist (A1,30);

When the file start.m is opened then the initiation of the program can be done in two
ways.

The first way is easy - press the run button on the top of the new opened window as it is
shown below.

Desktop  Window  Help

- & Editor - C:\Documents and Settings'grzelak',Desktop',Program_Gasunie 2',start.m

File Edit Text Cell Tools Debug Desktop Window Help
#to Acid
D HE| Rl | S| M F |@>@|@%E‘(f_i@\|9tacklsasevl
| 1 function []=start():

& = clear =211;
&= cle;
4 - close all;
5 - clf: RUN
5= glokbal matrix next £1 runbutton titlel title2 =12 21l calibrationDd
-
g - fl=figure(1l):
9 - sget(fl,'colox',[0.8 0.8 0.8]);
10 - set(£f1, 'nawme', 'Corrosion Rate Determination'):;
11 - set(fl,'Position',[4 80 1020 &50]):;
12 3zet (f1, 'DoubleBuffer','on');
13 tplot=
14 %% plot of regular regression line
ig L& mwnd AF wlar AfF rarmilar ramrassian Tine

The second way to start the program is to tape the command “start.m” in the command
window.

If the initiation process is successful then the user should see the graphical user
interface window.
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2
TUDelft GaSUTHE

A statistical approach to determine the
corrosion rate of
underground gas pipelines

LG

LOAD | MNEWY SET | MODEL | Exit |

On the bottom of the screen are presented available options. The first one is “LOAD”
which allows loading previously prepared excavation dataset, and is supposed to
consists of calibration data. The detailed description of the file will be presented later on
in the text. The Second option “NEW SET” gives the opportunity to create user’s
calibration dataset (option under construction), the third is “MODEL” which goes directly
to “corrosion rate modeling” part without calibrating the data, the forth and the last option
is “EXIT” which terminates the program

Suppose that user wants to LOAD previously prepared dataset. First a proper path to
the calibration data has to be indicated in the load window. The program recognizes the
“*.dat” file (later in text it is shown how to create this type of files).
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A statistical approach to determine the MIC rate of underground gas pipelines

Please choose file with data

A

Look in: | 3 08_03_2006 Gasunie program

-~ ®mckE-

2 1distributionFORaIFINAL. dat
3)| 1pig 1distributionCLUSTER..dat
J)| 1pig1distributionsFINAL .dat
J)| 1pig2distributionsCLUSTER. dat

)| 1pigDIFFERENTfinal dat

J)| 6inspekcji.dat

)| 28_02dusters.dat

)| 28_02onePIGtwodusters.dz

| 1pig2distributionsFINAL . dat )| 500.dat

J)| 1pigDIFFERENTCLUSTER . dat 3| AlLdat
el | =
File: name: | Open I
Fles of type: [ dat | Cancel

A statistical approach to determine the
corrosion rate of
underground gas pipelines

LOAD | MNEW SET |

MODEL Exit |

When the proper calibration dataset is chosen then the program immediately analyzes
the dataset and proceeds to the second stage.

N

Inspections (

Calibration Data |

data view |

o

T [ NgP_ 5 (ml=== WS E =3
2CmNsP2z 7 [C--- ?or-- %4 E
Irnses P - 6o 8 g
4 gPa 0 - o 53 2
LI LU . L z 5 E

@ =1

3, =

o
=

0 1 2 3 4 < 3 0 0.2 04 0.6 08 1
pig measurements [mm] pig measurements [mm]

Clustering procedure

choose INSP =
~
gaSuHe  TUDelft
RESET NEWSETl LOAD & UPDATE | MODEL | Exit |

The new window consists of a few parts - the block on the left called “INSPECTIONS”,
“CLUSTERING PROCEDURE?”, “figures of results”, and “TOOLBOX” on the bottom of
the window.
o “INSPECTIONS"- allows user to have a view on the loaded dataset and also
gives the opportunity to look at the graphical representation of the dataset (in the
figures on the right). A click on the button “data view”, initiates data view.
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Calibration Dafa
inspections dataview | \ N B
; s B S O O R SO PO S
2 [ INSP_1 5 -) Figure 3: measurement error Histogram
™ iNSP_2 File Edit View Insert Tools Deskbop ‘Window Help
3 NsPz @
4 9 ACTUAL LOS! IHSP 1 INSP 2 INSP 3 INSP 4
LI 1 2.82 2.06 2.08 244 247
2 . 7 2 154 231 193
kY 334 EET] 1 40 By 347
4 2.02 412
) N 437
£ £
Z 437 429
) 291 2.80
a ENE] EL) 314 241 B : : : : 1
0 219 347 0
1 373 £.37 0 02 04 06 08 1
iz N 76
12 5.02 8.27 2.70 66 617 pig measurements [mm]
14 266 .66 B.04 2.92
3 B iz 35 ia 257 3o
C'rus{er,ng 17 214 2.80 2.28 190 225
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The new window presents dataset loaded for calibration. The first column
corresponds to the defects measured at the excavation by an inspector. The
other columns are associated with the measurements reported by “intelligent
pigs”. The empty slots indicate missing data caused either by defect reparation
(in current case the defects were repaired after tuboscope inspection) or by
clustering procedure. All the measurements are presented in millimeters.

The second available option in this part is to show the calibration graphically.
When user chooses any of the check-boxes corresponding to pigs-inspectors,
then the program updates two graphics. The first one shows relation between the
“pig measurements” and the excavation data, and the second relation between
the pig measurements and the measurement errors (i.e. all data are treated as
exactly one cluster).

Calibration Data

Inspections cataview |

o

2 [7 INSP_2
3 [ INSP_3
1 [ NEF &
S

I

13
k2

CUCICICE]

ra

actual metal loss [mm]
w
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o

=
'
ra

pig measurements [mm] pig measurements [mm]

o “CLUSTERING PROCEDURE”- This part gives an opportunity to calibrate
dataset according to a given data (clusters). Firstly user has to use the so called
popup-menu and choose a pig for calibration.
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Calibration Data
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When a certain pig is chosen, then immediately the following results appear:

o
o

(0]

“Number of clusters”- number of predefined clusters

“Clusters”- bounds of the interval where pig measurements were
reported (interval’'s boundaries are extended by 0.1 [mm])

“No.”- number of defects registered during excavation and associated
with pig measurements (within the cluster)

“Bias”- corresponds to the mean of the difference between the pig
measurements and measurements from the excavation (see the “A
statistical approach to determine the corrosion rate of underground gas
pipelines” report for details)

“Std” - standard deviation of the measurement error

“N-p-V” —is the p-value associated with the following hypothesis:

H, :Measurement errors are from normal distribution

H, : Measurement errors are not from normal distribution
“Rho-p-V”- is the p-value associated with the following hypothesis:

H, : The Spearman’s correlation between measurement errors

and pig measurement is O

H, : The Spearman’s correlation between measurement errors

and pig measurement is not O
“ERR. DISTR”- gives the p-value, standard deviation and mean for the
measurement error. In the case where the user does not generate
additional clusters then the p-value corresponding to Kolmogorov
Smirnov test should be the same as given in the column * N-p-V”

Delft University of Technology



106

Clustering procedure

- | rumberof
usp 1 o] rember (4 gensrats
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[ ;|

)

L I

When user defines the number of clusters ex. according to the techniques
introduced in the report “A statistical approach to determine the corrosion rate of
underground gas pipelines™’ then, he is also obligated to define boundaries of
these intervals. In order to generate these intervals (clusters) user has to fill in
the “number of clusters” and press the button “GENERATE".

The maximal number of intervals is 6 i.e. the program analyzes up to 6 clusters
per one pig. When all the boundaries for clusters are well defined (cover the
entire domain, and are not intersecting), then in order to perform the analysis the
“ANALYZE” button has to be pressed. After few seconds a computer should
give the answer in the form presented on the picture below. Each row and
calculated values correspond to a predefined cluster.

If for the “Rho-p-V” the background color becomes red- then user should have a
look closer at the cluster. Red background indicates that p-value for the
Spearman’s (rank) correlation hypothesis that measurement error is uncorrelated
with the measurements is less than significance level 0.05.

Information available on the screen (yellow rectangle) is the verification of the
null hypothesis that errors which come from clusters come from the same
population (distribution). The “HISTOGRAM” produces the histogram of the
unbiased errors (if the hypothesis about the errors coming from the same
distribution is not rejected).

*" Report done by Lech A. Grzelak, for Gasunie Research Department
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Calibration Data
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Another option available in the clustering procedure is to have a view on the
errors associated with the predefined clusters. As it is presented on the picture
below; if user clicks on the check box associated with the analyzed cluster, then
the error from the cluster is presented like on the picture on the right — the errors
without imposed clusters are as a background.
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MODEL | Exit |
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When user is satisfied with the clusters, then such decision has to be indicated
by pressing the button “ACCEPT” on the bottom of the window. The button
“ACCEPT"” saves chosen clusters into the memory and initiates the “REPORT” in
the middle of the window and gives access to the button “VIEW RESULTS”. The
columns in the new opened window are:

“No”- index of the inspection

“name”- name of the inspecting pig

“clust.”- number of predefined clusters

“K-S’- takes values YES/NO, which indicate whether measurement errors

come from the same population according to Kolmogorov- Smirnov test

“std”- measurement error standard deviation (if the “K-S” is “YES")

0 “Corr.”- takes values B/OK- indicates whether measurement errors are
correlated with pig measurements, the B indicates “BAD”- correlation and
“OK”- no correlation. The correlation used in the software is the
Spearman’s rank correlation

O O0OO0O0o
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The button “VIEW RESULTS” allows to see how the accepted clustered are
defined. The first column corresponds to the name of the intelligent pig, the
second indicates number of predefined clusters. Column number three shows
current cluster, and then respectively are: cluster’'s boundaries, bias associated
with this cluster and the standard deviation of the errors. This information is
collected and later on will be applied in the second stage of the analysis done by
the program - namely in the corrosion rate modeling. When the clustering
procedure is performed for all the pigs, then in order to save the results user has
to press the “SAVE TO FILE” button.
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<) Figure 3: measurement error Histogram [_ O]
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To leave the view window of the defined cluster press the button “Close
window”.

It is also possible to load the clusters and calibration data from previous session
and update them. The option which allows this is the button “LOAD & UPDATE".

b) Corrosion Rate modeling

When the calibration procedure is carried out successfully, then the
button "MODEL" gives access to the second part of the program.

The options/buttons available at this stage are:

0 “LOAD MEASUREMENTS"- user is required to give the path to the file
with the measurements collected by intelligent pigs

0 “LOAD CALIBRATION"- when after the calibration procedure the clusters
are defined and saved to the file then user has to indicate according to
which file the calibration of the measurements has to be performed

0 “WALL THICKNESS" loads the column vector of the nominal wall
thicknesses, each row of the vector has to correspond to nominal wall
thickness where defects were observed — at this stage program doesn't
take into account the uncertainty about wall thickness

0 “DATES OF INSPECTIONS"- according to the data each inspection was
performed at certain time, this option loads the dates of performed
inspections- the rows of this vector correspond to the columns of the
‘measurements”

0 “CALIBRATION"- when all required data are loaded then this button
performs the calibration procedure and gives access to the
“SIMULATION”
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CORROSION RATE STATISTICS
95% upper bound: max rate :

corrosion rate:
95% lower bound: min rate :
CORROSION INITIATION

mean initial time :
mean initial time >0

init. at t=0 :

CALIBRATION

N7

Cloze window

e 2
| | TUDelft Gasume

When the data is loaded then by pressing the button “VIEW” user can have a
look on the loaded datasets. The button “CALIBRATION” calibrates the data and
gives some results of the calibration

(0]

o
o

“# ERR DISTRIB”- the number of the distributions (sum of distributions
associated with all clusters for all pigruns)

“INSPECTIONS”- number of inspections

“MISSING DATA”- number of missing data in the whole measurement
dataset

‘NUMBER OF DEFECTS”- number of defects observed during
inspections

“PREDEFINE STD FOR ALL MEASUREMENTS”- when user types any
positive value in the “STD” box, then the weights for the inspections are
equal (all pigs have the same weight)

“LOAD RESULTS"- gives the possibility to load previously saved
Corrosion modeling session
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CORROSION RATE STATISTICS
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When the datasets are loaded, then the button “SIMULATION” initiates the
simulation. The simulation produces the optimal solution. Tests show that
estimation for one single defect observed at four inspections requires about 15
seconds to obtain the optimal function.

CORROSION RATE STATISTICS

LOAD MEASUREMENTS | e | 95% upper hound: max rate :
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Dates of i | VIEW | AoE]
il - mean initial time =0
1

save calibrated measruement)

e DISTRD. 4 IN PROGRESS...

migsing data 23
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SIMULATION ] _
predefing sk for 8% Compl'e“-'d break simulation |
all measurements STD

. &2
Cloze wincaw | T U D e I ft g-a—s-u-rl-l-e

When the simulation is complete, after a few seconds a new screen should
appear.
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On the top of the screen is so called “CORROSION RATE STATISTICS”, which
consists of basic statistic measures like
0 corrosion rate (mean corrosion rate from all rates),

95% upper bound of the corrosion rate
95% lower bound of the corrosion rate

mean initial time of corrosion initiation
“init. At t=0"- indicates how many defects start at time 0 (at pipeline

o
o
0 Max corrosion rate
o Min corrosion rate
o
o
installation time)
o

installation

“mean initial time>0"- mean initial time of defects initiating after pipeline

On the right side, the plot presents the metal loss as a linear function of time for
all defects together with the measurements (blue stars). The middle part presents
two histograms. First of them corresponds to the distribution of the corrosion rate,
and the second one to the initiation time of corrosion per defect. There is a small
summary of fitted distributions beneath the histograms -- on the left hand side all
available distributions with associated p-values, and on the right distributions with
estimated likelihood parameters for which the p-value is the highest.

After the simulation three new options become available. The first of them is
“SAVE RESULTS” - which allows exporting the results to a *.dat file. The next is
“DEFECTS & ESTIMATE", which allows to have a closer look at the estimated
rates. This option allows to check what is the corrosion rate for each defect and
to compare estimated curve with the Least Squares approach.
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defect- specific corrosion rate
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The third option is “"EXPORT RESULTS TO EXCEL” - exports the results to an
Excel file *.xIs. If the user decides to export results to Excel, then the exported
file consists of eight columns where each row corresponds to one defect.

Delft University of Technology



114

Microsoft Excel - data.xls
IEJ File Edit ‘“iew Insert Format Tools [Data  Window  Help

NEHRSSRIVE $RR-(9-/8 -2 M6 #: - 10 - | B
M30 - e
A |8 | e | m | E | F | & | H [ 0 1T J9 1 kK
1| 1| 2.537908| 0.057231| -0.28615) 0.398178] -14.608] 36.68712| 3.011374
|2 | 2| 2346509 0.06235| -0.6235) 0.305338| -10.6293| 35.46654| 2.681925
| 3 | 3| 2.378853 0.082708) -1.65417 0.131376 -3.65737 27.83904 2.156003
| 4 | 4 2308127 0124284 -3.10711) 0.049166 ] 0 2.175586
| 5 | 5| 2.177877| 0.077242| -1.54483| 0.122858| -3.44622| 26.05994| 1.389557
B | 6| 3.896347| 0.090566| -0.45283 0.446392| -15.1992| 34.049| 4553644
| 7 | 7| 2166732 0.044572) -0.22436 0109537 -2.97332 27.14453 1.87367
8 | 8 3.847687 0104708 0/ 0.104708 ] 0 4633326
ER 9| 3.367622| 0.081312| -0.81312| 0.337466| -11.5876| 34.36651| 3.335238
10 | 10) 8954191 0.115094 0/ 0.115094 0 0 5.092911
11| 11 3397614 0.096765 0 0.385789) -11.3522 31.90718 4.331442
12 | 12| 371096 0.053932 0/ 0.053932 ] 0 2.828979
13| 13| 3.915773| 0.101966| -1.01966| 0.233713| -6.63173] 28.37504| 3.710273
| 14 | 14| 3553355 0.09465 -0.9468| 05254238 -19.1455 36.23162 4.23713%
| 15 | 15| 2243877 0.052418 -0.26209) 0.355759 -13.1959 36.67982 272344
| 16 | 16| 480167 0.087521 0| 0.087521 ] 0| 3.872797
17 | 17| 2.83733| 0.05569 0/ 0.05563 0 0 2.464262
| 18 | 18| 2220138 0.049676 -0.24838| 0.417017 -157175 37.6904 2735464
| 19 | 19| 2139398 0.050072 -0.30036| 0.205461 -6.46595 31.31809 266993
| 20 | 20| 2.947506  0.07584 0/ 0.07584 ] 0 3.355942
| 21| 21| 3.379725| 0.23227| -6.12946 0.036958| -0.2E-19| 25E-17| 1635382
| 22 | 22| 3.796521 0.063005 0 0.081314) -0.58764 7.173836 3.037062
| 23 | 23| 385205 0062361 -0.3118 0.042143 -21E25 4.31E-24) 2174877
| 24 | 24| 3400154 0065353 -0.32691 0.330511 -11.4586 3466945 3.16E477
| 25 | 25| 3.064237| 0.057173 0| 0.053316| -8.4E-18) 1.57E-16] 2.385797
| 26 | 26| 3.851681 0223993 -6.71993 0.059416 ] 0 2629152
| 27 | 27| 3060196 0060715 -0.30358 0.312636 -11.1836 35.77194 2640545
| 28 | 28| 4.422502| 0.070649| -0.35325| 0.613637| -23.3087| 57.98443| 3.844783
| 29| 29| 4.055818] 0.273145| -5.19436 0.427141| -14.7538| 34.54052 4.147191
| 30| 30| 3671296 0179606 -4.49014) 0.385854 -13.1314 34.03193 3.242685

The first column in the exported Excel file is the number of analyzed defects.
The second and third column correspond to the initial guess given to the
optimizer, the fourth column gives the optimal value of the function “—logL "

where the L is the Likelihood function presented in the report. Column indicated
as E corresponds to the corrosion rate of estimated defect, the next is the
intercept of the linear function. Column G gives the time when the corrosion
process has initiated. The last column corresponds to the depth of the defect at
the last inspection.

c) How to transform a data to the *.dat file type?

As it was presented previously in the tutorial, the type of files which the program
works with is the type with extension *.dat. In order to make such a file, user has
to apply file converter.

The procedure is following:
1. Define the dataset in matlab and save it as *.mat file- for example create
a variable called “FILE” and save it using command
“save FILE.mat FILE”

Remark: Missing data should be indicated as “0” (zero)
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Command Window A X
»» FILE=[1,2,3,4,5:;7,6,5,4,5:9,8,7,6,5:1,4,6,43,9] =
FILE =

1 2 3 4 =]
7 ] 5 4 3
=] g 7 =] =]
1 4 [ 4 9
»> gave FILE.mat FILE
2. open the file “savetoFILE_ GENERATOR.m”, and in the 5 and 6 line write
“load FILE.mat” and “WT=FILE"

a Editor - C:Documents and Settings'.grzelak'Desktop',Program_Gasunie 2% savefoFILE_ GENERATOR.m - |E||5|
File Edit Text Cell Tools Debug Desktop Window Help o | A X
Dﬁqn| - == §|Mf,|aﬁ|@%@1@@|8tack:|8asevl EE‘D]EEIE

load FILE.mwat
WT=FILE

uiputfile|'data.dat', 'Save Data as'):;

1z - [ul,ué] =si=ze (WT)

13 - x1ll=[u2,=zeros(1,u2-1)]
14 -  D=[x11;WT]

15 - [ul,u2]=si=ze (D)

17 - fid = fopen(filename, 'wt']:

il = for i=1l:ul
20 - for j=1:uZ
21 - fprintfifid, '$2.4f ',Dii,31):

& = end

24 - fprintf (fid, '"n'};
&= end

26 — folose (£id) ;2

27 - return

3. run the program and choose the name of *.dat file, since now the FILE
will be transformed to the *.dat file
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Editos Documents and X1 Deskibon' Prooral -I_Il:I L‘
20| P
Save in: I (= Program_Gasunie 2 j o & BB h] 38 |Stac:k: Biea ..I HOH & ID
] 1distributionFORAIFIMAL. dat )] 1pigDIFFERENTFinal, dat test1.d
)| 1pigldistributionCLUSTER dat )] éinspekei.dat Ji|test.da
i tpigidistributionsFINAL.dat )| dateOFinspections, dat Ultest_1.
)| 1pigzdistributionsCLUSTER dat )| excavationDATASET. dat )| waLLEE
A : 1pigzdistributionsFINAL . dat 1 : LECH.dat
)| 1pigDIFFERENTCLUSTER dat )| measurements. dat
4 | >l
File name: iFILE.dat Save I
ave Data as'):
Save az type; I"_dat j Cancel |
T o TS
aks] | x1ll=[uz,zero=s{l,uz-1)]
14 - D=[x11;UT]
15l = [ul,uz]=size (D)
16
Tl fid = fopen(filename, 'wt']:
15
A9 = for i=1l:ul

d) Files construction

Each file in the program has his own construction, and so:

“excavation measurements” consists of n+1 columns (where n is the
number of inspections), the first column corresponds to data recorded
from the excavation, all the rest correspond to inspections, units are
millimeters

“measurement set”- has exactly n columns and m rows, m is the number
of observed defects and n is the number of inspections, units are
millimeters

“dates of inspections”- is the column vector consisting of dates of the
inspections, all the dates are counted since pipeline installation (pipeline
installation is at time t=0) units are years

“wall thickness”- is the column vector, where each row corresponds to
each defect, values are presented as nominal wall thickness in
millimeters

5 Examples

Suppose that

we have carried out 5 inspections, the excavation was done after first

pigrun. The calibrating dataset is following:

Excavation Insp 1 Insp 2 Insp 3 Insp 4 Insp 5
5 4 6 55 5 7
4 5 4 7 3 5
3 2 4 2 4 1
2.4 1 2 4 3 2
5 3 5 7 8 6
4 2 5 4 3 1

Table 46: excavation dataset [mm]

When the dataset is prepared we need to convert it into *.dat file, in the manner
explained before.

And so:
1.

We type the data in matlab and save it as E.mat
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Command Window

»> E

E:
5.00o0 4.,0000 &.0000 5.5000 5.00o0o0 7.0000
4.0000 5.0000 4,0000 7.0000 3.0000 S.00o0
3.0000 Z.0000 4,0000 Z.0000 4.0000 1.0000
2 .4000 1.0000 Z.0000 4 .0000 3.0000 Z.0000
L.00oo 3.0000 E.000o 7.0000 S.0000 &.0000
4.0000 Z.0000 5.0000 4 .0000 3.0000 1.0000

>> gave E.mat E

i

2. Second step is to convert the dataset to the E.dat file; hence we change
the code in the file “savetoFILE_GENERATOR.mat” and turn the
program on.

B Editor - C:\Documents and Settings'.grzelak',Desktop'Program_Gasunie 2% savefoFILE GENERATOR
File Edit Text Cell Tools Debug Desktop Window Help

O

B H| YRR |3 M5 8R|EDE DB | sexsee ]

1 function []=saveT0file()

Z

3

4 i L L L LR
5 - load E.mat

6 — WT=E

7 i i e e L L L L
g

9

10 - [filensmne, pathhname] = uiputfile('data.dst', 'Save Data az'):
11

12 - [ul,uZ] ==size (UT)

13 - ®x1ll=[uZ,zerosi(l,u2-11]

14 — Ti=Twd1d «TTT1

The hypothetical measurements reported by the pigs during inspections are following:

Defect no. Insp 1 |Insp2 Insp 3 Insp 4 Insp 5
1999 2000 2001 2004 2005
1 4 6 5.5 5 7
2 5 4 7 3 5
3 2 4 2 4 1
4 1 2 4 3 2
5 3 5 7 8 6
6 2 5 4 3 1

Table 47: example of the measurements

The theoretical pipeline was constructed in 1970. So the dates of inspections are
following:
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Command Window
>» pilipelineINITALLATICON=1970;
s> D=[1999,2000,2001,2004,2005] -pipeline INSTALLATICN;
> D
D =
29 a0 31 a4 35
el |

Now, let’'s save the variable D (dates of inspection) as D.dat and the measurements M

as M.dat,.
For the nominal wall thickness we assume:

defect no. Nominal wall thickness
12.7
12.5
12.5
13
16
18

Table 48: The nominal wall thickness

oOUhh WNE

In this case the wall thickness vector we denote as W and perform the same

transformation procedure as for the others.

Command Window

> W
W=

1z .7000 1z .5000 1z .5000 13 .0000 16.0000 15.0000

E

Now, when all necessary data are collected, typed, and transformed into *.dat type file,

so the analysis can be carried out.

1. First: run the program and load the excavation data (here E.dat file)
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Please choose file with data

d

Lock in: I Iy 08_03_2006 Gasunie program

-]« &k B

)|D.dat

) dateOFinspections.dat

)| deepDEFECTS. dat

J)| deepDEFECTSpolowa.dat

)| excavationDATASET dat
) lech1.dat

)| M.dat

J)| measurements.dat

3| NEWEXCAVATION, dat

3| excavation03_03_06.dat 2)| NEWEXCAVATIONresultsON
g 1l 0|
File name: |E_da1 COpen I
Files of type: I'dat j Cancel |

A statistical approach to determine the
corrosion rate of
underground gas pipelines

LG

LOAD | MNEW SET | MODEL | Exit |

2. When excavation data is loaded then program immediately goes to the
calibration stage, for simplicity define only one cluster for each inspection (one
cluster contains all the measurements). So for each inspection generate exactly
one cluster and confirm by pressing GENERATE, ANALYZE and ACCEPT
buttons.

a. Chooseinspection

~— Clustering procedure
I 1 denerate |

std

number of
clisters

choose INSP

no. bias H-p-v  Rho-p-v
IMNSP 2
IMNSP 3
IMNSP 4
IMNSP &
IMNSP &
IMNSP ¥
IMNSP &
IMNSP 3
IMSP 10
ISP 11
ISP 12
ISP 13
ISP 14

INSF 14

L]

] 6 -1.067 1108 053 012

LOAD |
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b. Generate one cluster

c. Analyze the clusters

Clustering procedure

IINSF'1 _I hurber of I 1
clusters

clusters no. hias std \I'tp-\f Rho-p-\f

'5'[ 080 : 510 ] f -1.067 1108 053 042

[[oss ;510 ]

Clustering procedure

IINSF‘ 1 ,I number of
clusters

K-5 test (normal)

pvalue: 05300
I 1 generate | sigma; 1075

mean: -0.0000
clusters no. hias std  N-pV RhopV K-5-two sample test
errors are from the
same distribution
C'[ 0.0 : 510 ] 6 -1.067 1108 053 042

f[lu_gg ;|5_1|:| ] g -1.067 1.11 0a3 012 4

K-5 test (normal)
prvalue: 0.5300
sigma: 1.1075
mean: -0.0000

HISTOGR.AM |

RESET | LOAD | < ANALYZE ) ACCEPT | S.IWETOFILEl

d. Accept theresults
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Clustering procedure Report
o — K;ﬁ,;ﬁg (308[3??" no. name size clust. K-S std corr.
INSF & - dusters 1 generate sigma 1.9405 1 INSP1 6 1 YES 1108 OK
rmear:_ 00000 z NSP2 B 1 VES 053 OK
clusters no. bias  std  M-pV Rhopv K-S-twosampletest | = NsP3 & 1 YES 1457 B
errors are from the 4 INSP4 6 1 YES 1493 B
same distribution
o1 nao 710 ] & 0233 1841 084 [000 : INSPS & 1 ¥ES 1841 B
- | 7= e e
1[[ae0 ;[7i0 ] & 0233 184 08¢ [000] ’
a

K-S test (normal)
pralue: 08356
sigma; 1.9408
mean: 0.0000

HISTOGRARM

10
11
1z
1%
14
15

RESET | LOAD | AMALYEE

AE'C'E'E?""""| SAVE TO FILE |

MNEW SET | LOAD & LIPDATE |

e. Save to file (red button) as CAL.dat — in this case no file
transformation is required. Matlab immediately saves the results as

the *.dat file.

20

Savein: | L7 Program_Gasurie 2 x| = &k E- Calibration Data
)| 1distributionFOREIFINAL  dat )| 1pigDIFFEREMTFinal dat _MFILE.d& 3
)| 1pigidistributionCLUSTER .dat )] Ginspekeji. dat ALECH.d 5
)| 1pig1distributionsFINAL, dat |D.dat | M.dat 2
)| 1pigzdistributionsCLUSTER. dat 2| dateFinspections. dat Jlmeasur |4 £
)| 1pig2distributionsFINAL , dat JE.dat | skasujl £
) 1pigDIFFERENTCLUSTER, dat JexcavationDATASET dat Mtestld |3 2 1
E
=
4] | g 20
©
File name:  [CaL dat Save I =
] 5 4
Save as type: I‘.dal j Canesl E %
0 i i i 2 i i i
0 2 4 B 0 2 4 B
pig measurernents [mrm) pig measurerments [mrn)
Clustering procedure Report
E=Sitsstiharmal) no. name size clust, K-5 std corr
[ s s g reorers I 1 generate | s e 1ONSP1 B 1 YES 1108 OK
clisters sigma: 1 9408
mean;._0.0000 2 INSP2 B ¥ES 0638 OK
clusters no. bias std  NpV Rho-pyv K-S-twosampletest | 3 NsP3 B 1 YES 1457 B
errorsarefromthe | 4 yspy 5 4 YES 1439 B
same distribution
o[ oo 710 ] & 0233 1941 084 [000 e U 1 el b
o R T e e
f[ T I 710 ] § 0233 1.94 084 000 4 = T
K-S test (normal) 9 - - - - -
pvalue: 08356 0 o .
sigma:  1.9408
mean; 0.0000 l I
B = = = == = =
S ~
HISTOGRAM e
== | - - - | TUDelft
RESET | LOAD | ANALYZE | ACCEPT | SAVE TOFILE | MNEWY SET | LOAD & UPDATE | MODEL | Exit |

3. When the calibration procedure is performed, then go to the second stage-

namely to the “MODEL".
thickness (W),

measurements (M),

Firstly, all measurements should be loaded (wall
calibration data (CAL),

dates of

inspections (D)) and the “CALIBRATION” button should be pressed.
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LOAD MEASUREMENTS | - VIEW |

CORROSION RATE STATISTICS

95% upper bound: max rate :
LD CALIERATION e corrosion rate:
95% lower bound: min rate :
e CRTLICHIESS | . Y | CORROSION INITIATION
mean initial time : init. at t=0 :
Dates of ) VIEW
el | - | mean initial time >0
T CRLERATIGN o v |
# ERR DISTRIB. :5
inspections 5
missing data 0
number of defects :6
load resutts
SIMULATICN
predefing st for
&l megsurements STD
Close window | T U D
elft
RESET | LOAD | AMALYZE | ACCEPT | SAVE TO FILE | MEW SET | LOAD & LUPDATE | MODEL | Exit | ‘

A small summary shows that from the calibration procedure we have exactly 5
distributions (one distribution per inspection), the number of defects is 6, the number

of missing data is zero.

Now we can proceed and press button “SIMULATION". After a few second the

results should appear.

LOAD MEASUREMENTS | - VIEW |

LOMD CALIERATION | | foaded ﬂl
| o vev |
| o vev |

save calibrated measruements (excel) |

WALL THICKMESS

Dates of inspe

# ERR DISTRIB. :5
inspections 4
missing data :0
number of defects :6

CORROSION RATE STATISTICS

95% upper bound  :0.552 max rate :0.552

corrosion rate :0.204

95% lower bound :0.099 min rate :0.099
CORROSION INITIATION

mean initial time 6,380  init. at t=0 4

mean initial time =0 :12.760

load resufts |
SIMULATION
=ave results |
predefine sha for
all measurameants STD

export resuts to excel |

defects & estimate |

Cloze wincaw |

corrosion rate histogram

no. of observations

rate [mm/year]

P-value Corrosion rate
gamma____0.369 LogNorm

Bel___[Age mean= 02026
Iug-!'mrm_ﬂ 538:> sto= 01388
o pari=-1.785
par2=06130

tayleigh_0.104

e 7
TUDelft

depth [mm]

no. of observations

detect- specmc corrosion rate

time [year]
initiation time histogram

0 0 5 10 15 20 25
time [year]
P-value Corrosion Initiation

gatnma___ 0923 LogNorm

heta_ 0926 mean=0.55¢2
Ing-norm_0 885 :> sta= 0.0984
e;’;e'b“"—g glg parf=-0611
parz=01772

rayleigh_0.459

GasuTHe
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All the files are attached to the delivered program, hence the files conversion is not

required.

e) Available DATABASES/ EXAMPLES

1. The database based on the real data collected by Gasunie,
Inspections done by 4 pigs, one excavation done after the first inspection

Files:
[ ]

“excavationDATASET.dat"- consists of excavated metal loss
depths and data necessary for calibration

“measurements.dat”- measurements done during 4 inspections-
52 reported defects

“dateOFinspections.dat”- consists of data concerning information
about carried out dates of inspection

“WALLthickness.dat”- vector of wall thickness for where 52
defects were reported

“lpigldistributionCLUSTER.dat"- result of calibration procedure-
each pig has exactly one cluster- measurement error distribution-
can be applied in the MODEL
“lpig2distributionsCLUSTER.dat”- idem, but now each pig has 2
clusters- distributions

2. Example presented in the tutorial

“M.dat”- measurements

“D.dat” - dates of inspections

“E.dat” - calibrating dataset- excavation dataset

“W.dat” -wall thickness file

“CAL.dat” — result of calibration procedure- each pig exactly one
distribution
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