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N.V. Nederlandse Gasunie is the leading Dutch gas transportation company.  Its main 
aim to manage, maintain the gas transport system.  The grid of gas pipelines belonging 
to Gasunie consists of over 11.600 km steel pipelines (diameters from 4 to 48 inch) 
constructed in the 60s.   
 
Integrity management is based on the ability of the pipeline operator to predict the 
growth of defects detected in inspection programs.  The predictions of the corrosion and 
defect rates can be based on environmental input parameters.  Accurate predictions 
allow interventions/re-inspections to be scheduled in order to eliminate defects which 
pose a high potential risk.   
 
This thesis investigates three main issues.  Firstly, it shows an appropriate tool for the 
corrosion rate modeling when data from in-line inspections are available.  A low number 
of inspections contribute to high uncertainty about the corrosion rate estimation.  In 
many cases, a poor dataset combined with high uncertainty about the measurements 
cause corrosion estimates that are not agreeable with reality; for example corrosion is 
decreasing in time.  The outputs from the corrosion rate model are incorporated as input 
to the second section, where analysis is focused on investigating parameters influencing 
Microbiologically Induced Corrosion (MIC) rates.  The last part of the thesis presents the 
design and results of the defect rate.   
 
 
Keywords: Corrosion, Corrosion rate modeling, In-line inspection, MIC, factors 
influencing MIC, defect rate 
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Introduction 
N.V. Nederlandse Gasunie is the main gas-transportation company in the Netherlands. 
Its gas pipeline network consists of approximately 11.600 km of steel pipelines 
(diameters from 4 to 48 inch) that was largely constructed in the period of the mid sixties 
to early seventies. 
 
The network is split into a high pressure part (HTL) (5600 km, 66-80 bar) and a medium 
pressure part (RTL) (600 km, 40 bar).  The high pressure network is possible to inspect 
whereas the medium pressure part does not possess required inspection facilities. 
 
Until 1999 Gasunie had no indications whatsoever that there was a corrosion problem 
on one of its pipelines.  Both regular Cathodic Protection (CP) measurements as well as 
observations during excavations or reroutings indicated that no significant corrosion 
problem existed. 
 
Nevertheless Gasunie policy was to verify pipeline integrity periodically by inspecting 
one of its high pressure lines on average once every 5 years since 1979. The results of 
these inline inspections confirmed the existing opinion that no corrosion problem existed. 
 
In-line inspections have been part of the verification of pipeline integrity since the late 
seventies in N.V. Nederlandse Gasunie.  The discovery of external microbial corrosion 
(MIC1) in 1999 in one of the high pressure pipelines changed the inspection policy from 
inspection of a randomly selected pipeline once every 5 year to an inspection program 
for the whole high pressure grid (approximately 5.600 km) to be completed in 10-12 
years. 
 

  
Figure 0-1: deteriorating gas pipelines 

 
External Microbial Induced Corrosion is a type of corrosion where the corrosion rate is 
influenced by the activity of bacteria, especially Sulfate Reducing Bacteria (SRB).  It can 
be found in many environments.  Within Gasunie it is found as external corrosion on gas 
pipelines.  The chemical and microbial processes are complex and can therefore depend 
on many parameters.  Based on experience, Gasunie believed that MIC is found in 
certain areas more than in others and that therefore the occurrence of MIC is related to 
soil type or other soil parameters.   

                                                 
1 Microbiologically Influenced Corrosion  
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MIC is initiated at locations of disbonded coating (usually at field applied coating) when 
the bacteria and also the pipeline surface are shielded from the cathodic protection 
system.  Even well maintained cathodic protection systems cannot protect against 
deteriorated, disbonded coating. MIC is not only dangerous due to incapacity of 
protecting, but also because of relatively high corrosion rate, which is higher than for 
galvanic corrosion. 
 
TU Delft was commissioned by Gasunie to make a statistical analysis of the available 
data on three high pressure pipelines where MIC was recognized.  
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The goals of the research 
The main issue of the thesis is the analysis of the MIC based on the data delivered by 
N.V. Nederlandse Gasunie.  One of the MIC influenced lines was used to qualify MFL-
pig2 (Magnetic Flux Leakage) from different suppliers.  In the time period 1999-2004 four 
different MFL qualification runs have taken place, resulting in 18 excavations.  After the 
fourth pigrun (5 years after the first) Gasunie decided to determine the corrosion and 
defect rate and investigate influencing factors.   
 
The goal of this thesis is to discuss to Microbiologically Induced Corrosion and its effects 
on the safety and maintenance issues.   
 
The main objectives of Gasunie are: 

• Developing models describing the Microbial Induced Corrosion and Defect rates 
• Finding a number of factors influencing both estimated rates.   

These models and results can be used for prioritizations of pipelines for inspection and 
determination of inspection intervals.   
The structure of corrosion modeling is presented in the Figure 0-2 below.   

 
Figure 0-2: corrosion modeling schema 

 
First part of the schema indicated by blue color refers to the first section of the thesis 
where the corrosion rate model is presented.  The results from this study are the input 
for the part number two where the parameters influencing the microbiologically induced 
corrosion rate are investigated.  The final section shows the results of defect rate 
modeling of pipeline affected by MIC.  This constitutes a detailed statistical description of 
a connection between environment measurements and the reported corrosion events.  
The main research is directed to find factors (if there exist) that influence both: the 
corrosion rate and the defect rate.   
The main assumptions in the analysis are: 

- Coating condition is assumed uniform and is not governing defect rate. 
- Pigrun feature type and stationing indications are fully correct  
- Estimates of the corrosion rate (previous study) are certain 
- Nominal wall thickness is assumed to be real 

                                                 
2 Also called: “Intelligent Pig”, more detailed description is presented in Chapter no. 2 



 xvii  A statistical approach to determine the MIC rate of underground gas pipelines  
 

 
Delft University of Technology 

Outline of the thesis 
The thesis consists of three main parts.   
The first section aims to model the corrosion rate.  Firstly, Chapter 1 describes available 
corrosion data and gives a small overview on inspection procedures and associated 
inspection tools.  Later on, the data will be used as an input for corrosion rate model.  
The model for corrosion rate will be introduced and discussed in Chapter 2.  Chapter 3 
shows number of numerical approaches in order to get estimate of the corrosion rate.  
The analysis is carried out starting from the simplest to more sophisticated models.  The 
first and the second approach are simply based on the unconstrained regression 
analysis.  The third model is based on the unbiased measurements and pigs’ accuracies 
introduced previously in Chapter 2.   
Second part of the thesis begins with Chapter 4 investigating historical data about the 
potential from the test-posts.  Chapter no. 5 incorporates the results from Part 1, on-
potential analysis and bio-data in order to get number of parameters influencing the 
corrosion rate.  The last section is dedicated to defect rate analysis.  The section starts 
with pipeline characteristics (Chapter 6) where general information about gas pipelines is 
presented.  Chapter 7 shows procedures of collecting and analyzing the soil data from 
geotechnical surveys.  The purpose of this chapter is to associate the defect rate of the 
pipelines induced by MIC with soil compositions.  The parameter which is investigated in 
Chapter 8 is a groundwater step level data analysis.  Chapter no. 9 combines all the 
available soil data, pipelines features and groundwater levels, and treats them as inputs 
for the regression model describing the defect rate.   
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Corrosion Rate Modeling 
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Chapter 1 
 

1 Description of the corrosion data 
 

1.1 Introduction  
In 1999 a 70 kilometer long pipeline (36 inch) in the north of the Netherlands was 
inspected by MFL pig as part of the verification program. The results of the pigrun 
indicated, as an unpleasant surprise, 65 external corrosion features but no internal 
corrosion. After a thorough defect assessment by the safety department of Gasunie it 
was decided that 6 indications had to be excavated and repaired. The first excavation by 
the end of 1999 led to a second unpleasant surprise. At the excavation the appearance 
of the corrosion defect turned out to be totally different from the few corrosion defects 
that Gasunie had experienced in the past. Analysis of the corrosion products and the 
appearance of the defect led to the conclusion that the corrosion was influenced by 
sulphate reducing bacteria (SRB’s). Similar experience was obtained at three other 
excavations. At the end the conclusion was that at four out of the six excavations the 
corrosion was Microbially Influenced Corrosion (MIC). An additional excavation in 2000 
showed also MIC. 
 
From the results Gasunie concluded that it was no longer safe to assume that other lines 
were free of this corrosion problem. Therefore the inspection policy was revised. It was 
decided to start an in-line inspection program for all high pressure lines to be completed 
in a time frame of approximately ten years. It was also decided that pig suppliers had to 
qualify before they could inspect Gasunie pipelines. Because of gas-transport reasons 
and because of the fact that some defects on the line had been repaired by clock spring3 
or coating repair and thus can be used as reference points for MFL pigs, the inspected 
line was appointed as a qualification line. When starting up the inspection program 
Gasunie realized that a reliable corrosion rate is paramount to determine a re-inspection 
time interval for its pipelines.  
                                                 
3 Clock Spring is a composite sleeve used to repair external defects in high-pressure pipelines 
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1.2 Magnetic Flux Leakage (MFL)-pig 
In-line inspections are performed by so-called MFL-pigs also called “intelligent pigs” that 
locate and characterize mechanical damage in pipelines.  It is a common approach to 
the management of external corrosion in the pipeline industry.  Inspections followed by 
excavations of extreme deep defects minimize potential risk.   
 

 
Figure 1-1: small and large diameter MFL-pig 

1.3 Matching of the reported defects 
In order to compare reported defects from two pigruns the defects will have to be 
matched. This can be done by using the reported log-distances from the pig, pipeline 
lengths, clock position of the defect, and distances to reference points like welds, valves. 
Within Gasunie this process can be automatically done within the PIMS4 software.  
 
In this software the matching process visualization of the defects on a pipeline segment 
is possible.  Figure 1-2 shows a typical example of reported defects from two pigruns. 
 

 
Figure 1-2: visualization of matched defects  

(defects 1 to 6 are from run 1 and 7 to 12 from run 2) 
 
                                                 
4 Pipeline Integrity Management System 
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As can be seen from Figure 1-2 it is not always clear after the matching of defects by the 
program, which defects belong together (7 to 1 or 8 to 1?). In the program however the 
user has the possibility to define certain areas around a defect. If a defect falls within 
such an area then the two defects are considered to be the same defect. The advantage 
of the software is that when many defects are close together the user can optimize the 
area sizes to get the best possible matching of defects. 
 
Factors that complicate the matching of defects are differences in terminology of 
suppliers or differences in interpretation of defects: external corrosion defect, internal 
corrosion defect, mill defect etc. Suppose that the software has matched a defect from 
run 1 to a defect from run 2. Supplier 1 calls the defect “corrosion” whereas supplier 2 
identifies it as “mill defect”. The question is then if this matched defect should be taken 
for the determination of the corrosion rate. It was decided to work with two scenarios to 
find out whether it was critical for the determination of the corrosion rate if only the 
defects with the same identification were used (only indicated as “External Corrosion”) or 
also defects with different identification (“External Corrosion” and “External metal loss, 
possible mill defect”). It turned out that the corrosion rates that were calculated for both 
situations were almost the same. In order to keep the uncertainties in the process as 
small as possible it was decided to use only the matched defects with the identification 
of “External Corrosion” in all pigruns. 
 

1.3.1 Number of matched defects 
In the matching process different categories of matching defects originated: defects from 
run A that could not be matched or that could be matched only once (to B, C or D), twice 
(to B and C, C and D or B and D) or three times (to B, C and D). A similar result was 
obtained for the matching of defects from the other runs. 
 
For the final data set used for the calculation of corrosion rate it was decided to use only 
the defects that had been detected by three or more pigs.  This resulted in a data set of 
52 matched defects with a subdivision as indicated below. 
 

 A B C D 
A - 30 46 45
B - - 36 35
C - - - 51
D - - - - 

Table 1: number of matched defects per combination of pigruns 
 
As can be seen from the table, the number of matching defects within this subset was 
smallest for the comparison of run A and B: only 30 defects matched there. 
 
Altogether a number of 29 defects were reported by all and only four suppliers whereas 
23 defects were reported by three suppliers. 
 

1.4 Available data 
For the analysis of the data two data sets are available: 

1. reported defect dimensions from the pig supplier 
2. defect dimensions as determined at the excavation and repair of the defect 
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1.4.1 Reported defects 
Although the claimed performance of the different pigs is comparable (see Table 2) the 
number of reported external corrosion defects is different per supplier as can be seen in 
the table below. 
 

Supplier Sizing 
accuracy5 

Number of 
external 

corrosion 
Date of 

inspection 

A +/- 10% w.t. 65 October 1999 
B +/- 10% w.t 72 April 2001 
C +/- 10% w.t 17086 June 2002 
D +/- 10% w.t 441 March 2004 

Table 2: sizing accuracy of the pigs and number of reported defects 
 
As it is generally known the process of defect recognition consists of three steps: 
detection of the defect, sizing of the defect and identification of the defect. The 
experience of Gasunie is that most of the differences between suppliers arise from 
differences in identification. The distinction between a mill defect and a corrosion defect 
seems to be troublesome for the suppliers in quite a number of situations. This accounts 
for part of the differences in the reported number of defects. 
 
Another explanation for the difference in numbers is time related: in general the 
performance of pigs has improved over the last 5 years and corrosion defects that had a 
defect depth under the reporting threshold 5 years ago may have grown to a defect 
depth above the reporting threshold. 

1.4.2 Excavation data 
After the first pigrun 7 excavations have been performed, in which 17 separate defects 
have been repaired.  All of the defects that have been repaired were manually measured 
in the ditch by the usual gouges. The defects that have been repaired by welded sleeves 
could not be used as reference points for the pigruns B, C and D whereas the defects 
that were repaired by clock spring or coating could be used as reference points. 
Table 3 indicates the number of reference points that have been detected by the different 
suppliers.  
 

Supplier Number of available reference 
points from excavation 

A 17 
B 9 
C 11 
D 10 

Table 3: number of reference points per pigrun 
 
The fact that the number of reported reference defects varies between B, C and D is due 
to the fact that the applied POF- interaction rules [1] lead to clustering of defects. 
Differences in defect sizes or distances between defects will inevitably lead to different 
numbers of reported defects.  
                                                 
5 for defect depth of general corrosion with 80% confidence level (w.t. = wall thickness) 
6 of which 576 are below 10% of wall thickness 
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Figure 1-3: clock spring installation (left), gas pipeline excavation (right) 
 
Figure 1-4 shows reported defect depths compared to the real metal loss measured at 
the excavation (all pig measurements are oscillating around a dashed line- which 
indicates a linear relationship between real metal loss, and pigs’ measurements). 

 
Figure 1-4: reported vs. measured defect depth 

 
Because the excavations were performed in a relatively short time period after the pigrun, 
it is assumed that defect depth has not significantly changed between the time of the 
pigrun and the time of excavation. 

1.4.3 Measurement data from matched defects 
All the matched defects come from different segments with varying wall thickness. In 10 
cases the defects are from a segment with a wall thickness of 11.2 [mm], while the rest 
of the defects are from the pipe with a wall thickness of 12.86 [mm] (These values are 
nominal wall thicknesses).  The measurement dataset of matched defects is presented 
in Figure 1-5.   
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Figure 1-5: reported defect depth 

 
Since the inspections are chronologically ordered (A, B, C and D), it is clear from the 
above figure that some of the defects are improving in time (corrosion depth is 
decreasing), which is physically impossible. 
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Chapter 2 
 

2 Description of the corrosion rate model 
 

2.1 Introduction  
Since the corrosion is reported by intelligent pigs, it is very important to know what the 
accuracy of the pig is.  Such information can be obtained from the calibration data 
collected during pipeline excavations.  Given that all data gathered by pigs is not certain 
it is reasonable to combine the measurements with error distributions obtained from the 
calibrating procedure.  If the excavation indicates that for a certain pig the measurement 
error is significantly smaller than for the other pigs, then the model should also take this 
information into account.  Another demand which model has to satisfy is to deal with the 
missing data – if some of corrosion spots haven’t been registered in all inspections; so 
this information also needs to be taken into account and to give physically unreadable 
estimates.   
This chapter shows ways of dealing with uncertainty about measurements, estimating 
reasonable corrosion rate(s) (i.e. non- decreasing in time) and dealing with the missing 
corrosion data.   
 

2.2 Data calibration  
The data measured at each pigrun can be calibrated by removing the bias.  There can 
be different reasons for this bias in defect measurements.  Two of the most important 
reasons are: a measurement error associated with the measurement technique of a 
MFL-pig, and an effect caused by the clustering of defects.  The result of clustering of 
several individual defects can be caused by that only the deepest points are compared 
they may not be related to the same individual defect.   
The analysis starts with the measurements calibration for a possible bias.  This is one of 
the most important actions because the calibration influences all the collected 
measurements.   
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Due to the small number of excavations, it is difficult to investigate how well a given pig 
is calibrated for deeper or shallower defects.  However, it is possible to check the pigs’ 
accuracies, assuming homogeneity between defects for each pig.  By comparing the 
calibration results, a conclusion on which pig is the best, with respect to a bias spread of 
the measurement errors can be obtained.  The calibration algorithms are in the next 
paragraph.   

2.2.1 Data calibration procedures 

Algorithm 1 (Calibration data algorithm) 
In order to perform data calibration we need to follow the procedure: 

• take X as a vector of metal loss registered by an intelligent pig 
• define an actual metal loss vector Y  
• define the bias vector YXZ −=  
• calculate the bias by taking the expectation of Z ( EZ ) 

This procedure allows to measure (by means of the average value) how “far” is 
the registered by a pig metal loss from actual the metal.  The expectation is 
equivalent to the measure of bias, and indicates how pig measurements are 
consistent with actual data.  

Algorithm 2 (Measurement error distribution algorithm) 
This algorithm presents the procedure for estimating the distribution of 
measurement error.  

• Use the Calibration algorithm and find EZ  
• Define the corrected (unbiased) pig calibration measurements as: 

EZXX −='  
• Define the residual random variable YX −= 'ε  
• Find the distribution of ε  (using techniques introduced in the background 

chapter- appendix A1) 
 
From Algorithm 1 and 2: 

EYEYEXEXYXEEXEZEXEZXEEX =+−=−−=−=−= )()('  
So, the expectation of “unbiased pig” equals the expected value of actual metal loss.  

2.2.2 Data calibration results  
The calibration procedure showed that all of the pigs have a bias.  All the measurements 
require removing the bias.  The bias for all pigs did not exceed a value of 0.6 [mm], and 
on average had a level of 0.1 [mm].  Two MFL-pigs led to underestimation and two led to 
overestimation of defect depth.  Table 4 presents the results of the calibration procedure 
applied to the excavation dataset. 
 

insp. no. of calibr. samp. bias [mm] conclusion 
A 17 0.12 overestimated 
B 9 -0.55 underestimated 
C 11 -0.05 underestimated 
D 10 0.12 overestimated 

Table 4: calibration results 
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Removing the bias can be done by subtracting it from the measurements reported by the 
corresponding MFL pig.  When all the measurements are unbiased, the second stage of 
the pig calibration can be initiated, namely- the measurement error analysis.   
 
Since none of the MFL pigs reports measurements without error (see Figure 1-4), all the 
pigs have their own measurement error distributions. The example of the measurement 
error histogram for pig A with the corresponding theoretical curve is presented in Figure 
2-1.   

 
Figure 2-1: error distribution for pig A 

 
When the measurement error distributions for all the pigs are known, the conclusion 
about the pig’s accuracy can be drawn. It depends on two factors. Firstly: on the level of 
the bias and secondly: on the standard deviation of the measurement error.  The 
analysis showed that for all pigs, under the null hypothesis, the measurement errors are 
normally distributed cannot be rejected (a significance level is customarily chosen to be 
0.05).  The standard deviations of the measurement errors are tabulated and presented 
beneath in Table 5.  
 

inspection distribution7 
A N(0,0.93) 
B N(0,1.34) 
C N(0,0.77) 
D N(0,0.63) 

Table 5: standard deviations of the measurement errors 
 
The results from the table indicate that pig D (the last inspection) has the smallest 
spread of the measurement error.  The worst one is pig B, which has less than half the 
accuracy of D.  Since the uncertainty about the measurements reported by pigs is 
known, it is advisable to take this information into account for corrosion rate modeling. 
 

                                                 
7 N stands for a Normally distributed random variable with two parameters, mean and standard deviation 
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2.2.3 General model for data calibration  
Let’s assume that we have carried out n inspections- done by n different pigs.  Each pig 
is biased depending on the registered defects depth.  This kind of situation requires 
special treatment, which is the main part of this chapter.  Proposed procedure shows 
ways to avoid (reduce) the correlation between reported defect depth and measurement 
error.   
Suppose, we take a certain pig i for which, measurements and actual metal loss can be 
presented as follows:  

 
Figure 2-2: example of defects clustering 

 
Figure 2-2 shows that for three different defect populations three different biases can be 
specified, and three associated error deviations.  Of course, the decision about 
combining defects (clustering 8 ) into subpopulations generally can be subjective. 
However the choice of clustering also can be done in mathematical manner.  
Mathematical tools that work with this problem are so called “Clustering algorithms”.  
Literature available on the topic of the clustering is introduced in references [8], [9], [10] 
and [11].  Given that i’th pig measurements are presented in Figure 2-2 above, it is 
possible to recognize three different defects groups: small defects (black dots) where the 
bias is negative (pig gives lower values than actual loss) with small standard deviation, 
second- where observations oscillate around actual values but with high spread, and 
third subpopulation (blue dots) where the bias is positive.  This observation motivates to 
distinguish groups of shallow, middle, and deep defects.  Such groups should be 
calibrated separately.  Presented situation, might not the case of real measurement; but 
it is important to know that if such situation occurs then needs to be taken into account in 
the modeling.   
According to previous notation, we have n pigruns and each of them can be biased for 
different clusters of defects.  This leads to more general procedure of data calibration 
than the one introduced before.  
 
 

                                                 
8 “The process of organizing objects into groups whose members are similar in some defined way” 
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2.2.4 General calibration procedure: 
1. Take calibration data for pig i where ni ,,1K=  
2. Check whether pig’s measurements are homogenous, if not, then find 
number in  of defects clusters (i.e. subgroup of defects, where members are 
similar in some way) 

a. For each inj ,,1K= apply the algorithm 1 and get the bias for 
group j.  
b. Remove the bias from all measurements obtained by pig i. 
c. Apply the algorithm 2 and get the distributions for ji,ε where 

inj ,,1K=   
The effects of applied general procedure are: 

• All measurements done by pigs can be calibrated according 
to pig accuracy for different defects depth. 

• We have ∑
=

n

i
in

1
 distributions functions of measurement error, 

which will be applied in order to estimate the corrosion rate.   
 
In the previous part it was checked that the measurement error distributions for all 
pigruns are normally distributed.  In the general model, if both: the assumption about the 
same population for all the errors and normal distribution are satisfied then in order to 
estimate the corrosion rate a linear regression can be applied.  On the other hand the 
least squares errors approximation without imposed any constrains can produce best 
estimate which for ex. indicates decreasing corrosion rate.  
Next paragraph presents the general corrosion rate model and numerical results for 
describing corrosion growth as a functional dependence on time (inspections).  
 

2.3 General corrosion rate model  
Let’s assume that according to dataset n distinguishable defects in time were observed.  
Suppose that defect i  was observed in in inspections.  The task is to find the best 
function of time, which describes the corrosion growth for specific defect i .  The first 
idea is to apply linear regression to all observed values of defect i .  This is a reasonable 
guess, but has significant drawbacks: 

• From the collected data it is clear that in many cases inspections report the 
depths for which the best linear estimate is: 

o decreasing in time- what is unacceptable 
o the slope of a function is too high- it means that the corrosion according 

to the function grows too fast, and indicates leakage- but such leakage in 
pipeline was not observed   

o corrosion according to the best estimated function starts before pipeline 
installation or even pipeline production 

• The standard regression estimation can only be applied to the model if it is 
assumed that the errors are normal, come from the same distribution and are 
uncorrelated.  However, in the case when the calibration procedure is applied, it 
is clear that the normality might not be the case; furthermore, it can happen that 
measurements error don’t come from the same population (distribution).   
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The model that has none of introduced drawbacks and according to delivered data gives 
a functional description of the corrosion rate is presented beneath.   
The idea behind the model is to give an estimate which takes into account information 
about the measurement error distribution for each specific pig (if the case then also 
clusters for each pig).   
 
First, let’s define: 

• +→ RTf l
iiji ),,,(: 0 αα K - theoretical model function with l+1 parameters, 

associated with i’th defect,  
• jT  - time since pipeline installation at j’th inspection  

• jid -unbiased depth of defect i, measured at j’th inspection 

• iw  - nominal wall thickness where i’th defect is observed 
• m  - total number of inspections 
• jiP ,  - measurement error density function of defect i at j’th inspection  

The function if  associated with i’th defect needs to satisfy following optimization task: 

( )
( )

( )
decreasing non  is  f                                            

f                                        

wTf                   :to subject

dTfPL  :   maximize
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The first restriction imposed on function if  says that a value of the function at the last 
inspection cannot be higher than the pipeline wall thickness where defect i was observed.  
The second condition rejects situations where corrosion initiation according to data is 
before pipeline installation (if we want to find the corrosion initiation time, we need to find 
a t, for such 0),,,( 0 =l

iii tf αα K i.e. corrosion level at initiation time is exactly equal to 

zero, hence it is equivalent with tf l
iii =− ),,,0( 01 αα K  ).  The third and last constraint 

says that the function associated with defect’s growth cannot be decreasing in time.   

2.3.1 Example 
Suppose that: 

• In three inspections one defect i was observed.   
• Each time, the measurements were done using different pigs.   
• From calibration procedure it is known that all three pigs have nonhomogenous 

measurement error i.e. parameters (or distribution) are different for different pigs.   
Assuming linearity of defect’s growth, the model has to find such estimators of 0

iα  and 
1
iα  for which the Likelihood function iL is maximum.  The function: tf iii

10 ˆˆ αα +=  is a 
function that describes the corrosion growth in time for specific defect i.  The schema of 
this procedure is presented below in Figure 2-3.  
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Figure 2-3: corrosion rate determination- general model 

 
It is clear that iL  gets the higher value if the estimated line is closer to real 
measurements.  In the case when the line goes through all observed measurements, 
then this line is the best, and the likelihood is maximal, hence this approach agrees with 
natural expectation.   
 
Remark 
The optimization process can be performed by applying techniques introduced in a field 
of optimization as “multidimensional constrained non- linear programming”.  The results 
presented in the report are obtained by using Matlab9 optimization toolbox.  Furthermore 
because of the computational complexity of introduced non-linear task it is worth to 
transform the task by using logarithm transformation 10 . The implementation of the 
formulated problem is presented in the appendices. 

2.3.2 Dealing with missing data 
Many of defects were observed only in three inspections (while total number of 
inspections is four).  The model assumes that if depth of certain defect was not reported 
during inspection, then the measurement error density function for this defect is uniform 
on the interval bounded by the minimum and maximum observed defect’s depth.   
Suppose that defect i was not observed at third inspection, then in optimization problem 
the measurement density function for unmeasured depth is 

[ ]defectth i' ofdepth max ,defect th i' ofdepth min 3, 1=iP . This means that if a certain defect was not 
registered, then the function describing corrosion growth is derived by using only 
reported defects.  The draft of such situation is presented on the Figure 2-4. 

                                                 
9 Matlab 7.0.0.19920 (R14) 
10 Any monotonic transformation of a function doesn’t change its extremes (mA1, min).  
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Figure 2-4: corrosion rate modeling- dealing with missing data 

2.4 Conclusions 
The model presented in this section gives the corrosion rate estimate when low number 
of the defect measurements is available.  Very often standard regression model doesn’t 
give reliable and acceptable results; hence alternative is required.  For many defects the 
regression estimates are negative or indicate defect initiation before pipeline installation.  
The General corrosion rate model solves all these drawbacks, and also takes into 
account information on pigs’ accuracies.   

2.5 Implementation (CoroGas 1.0v) 
The theory introduced in this chapter has been implemented in CoroGas, software 
package developed by the author.  This program analyzes the excavation data, unbiases 
the measurements, assesses the weights for MFL-pigs and gives estimate of the 
corrosion rate.  The program has implemented algorithms for predefining the clusters for 
the calibration.   
 

  
Figure 2-5: calibration data & optimizer window of CoroGas 

 
Appendix B describes CoroGas and all available functions.   
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Chapter 3 
 

3 Numerical results  
 
 
This chapter is mostly based on the article “Determination of the corrosion rate of MIC 
influenced pipeline using 4 consecutive pigruns” by Lech A. Grzelak & Giorgio G.J. 
Achterbosch published in “International Pipeline Conference” (IPC06-10142) 
 

3.1 Introduction 
Three different approaches for corrosion rate modeling will be presented.  The analysis 
is carried out starting from the simplest to more sophisticated models.  The first and the 
second approach are simply based on the unconstrained regression analysis.  The third 
and the last model, is based on the unbiased measurements and pigs’ accuracy 
described in the Chapter 2.  

3.2 Approach 1 
In the first approach all the defects are pooled in 1 dataset and no corrosion rate is 
calculated for individual defects but only for the dataset as a whole. 
 
The first approach starts with verification if the hypothesis that the measurement errors 
for all MFL pigs are from the same population and are normally distributed can be 
accepted.  This was the case.  According to the maximum likelihood estimation for the 
measurement error the parameters are 0 (mean) and 0.91 (for a standard deviation).  If it 
is assumed that for all the errors, there is no correlation between them, then the task of 
finding a corrosion rate associated with all the measurements is equivalent to a Gauss 
Markov regression model.    
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Let’s define necessary matrixes X and Y in following way: 
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1)(  where iT is a time of i’th inspection  

If additionally, it is assumed that the corrosion rate is uniform over time (i.e. corrosion 
growth is linear), then an application of the Least Squares Error (LSE) method gives a 

linear description of the corrosion growth in the following form: ty 10 ˆˆ αα += and the 

remaining issue is to find the estimator [ ]T10 ˆˆˆ ααβ =  for the linear function.   
 
Standard calculations give that the estimators for unknown parameters are: 

42.2ˆ 0 −=α  and 12.0ˆ1 =α  
Coefficient 1α̂  is equivalent to the measure of the corrosion rate [mm/yr], so the LSE 
model estimated a corrosion rate for the calibrated measurements of 0.12 [mm/yr] with 
95% confidence interval [0.05, 0.20].   

 



  20  
 

 
  M.Sc. Thesis Lech A. Grzelak 

 
Figure 3-1: defect depth in time 

 
To check how well the model fits the data, a determination coefficient is calculated.  A 
goodness of fit measure resulted in 04.02 =R . This is poor because it indicates low 
relative predictive power of the model.  According to the model, the initiation time for 
corrosion is 20 years [yrs since pipeline installation].  
Even though the estimated parameters are in an acceptable range, this approach has 
significant drawbacks: 

• the model does not distinguish defects 
• it does not take into account that some of the defects are improving in time 

(decreasing defect’s depth which is physically impossible), or for some the 
defects initiation time is before pipeline installation 

• the model assumes that all the defects have one corrosion rate 

3.3 Approach 2 
As was pointed out in the previous section, the first approach has significant drawbacks.  
The second approach, proposes a way of dealing with some of the enumerated 
disadvantages.  Like before it is assumed that corrosion growth is linear in time.  
 
The second model checks what the corrosion rate is, if the defects are analyzed 
individually i.e. the model does not assume any more that there is only one corrosion 
rate for all the defects but it calculates a corrosion rate per defect.  A simple regression 
analysis applied to each unbiased defect gives the following graph. 
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Figure 3-2: corrosion rate distribution Figure 3-3: distribution of initiation time 
 
From the histogram presented in Figure 3-2 it is clear that in many cases, simple 
regression analysis applied to each defect results in negative corrosion rates.  The mean 
corrosion rate according to this model is 0.16 [mm/yr] which is close to the result 
obtained before, however the 95% confidence interval for the corrosion rate is quite 
different: [-0.31, 0.54].  The 95% confidence interval comprises negative values.  
The number of the defects indicating either negative corrosion rate or corrosion initiation 
time before the pipeline installation is 16.  One way of dealing with a negative corrosion 
rate is to remove all the outliers from the dataset.  However, such treatment is 
undesirable since the dataset consists of 30% bad defects.  Further investigation 
confirmed that the corrosion rate follows a normal distribution.  The initiation time of the 
corrosion is presented above, also in the form of a histogram.  The red bars in the 
picture indicate an initiation time outside the interval determined by the time of pipeline 
installation (t=0 [yr]) and the time of the last inspection (t=44.25 [yr]).  A summary of the 
results obtained from the second approach is presented in Table 6.   
 

results corrosion rate init. time 
mean 0.16 [mm/yr] 44.56 [yr] 

Lower bound -0.31 [mm/yr] -28.77 [yr] 95% conf. int. Upper bound 0.54 [mm/yr] 179.49 [yr] 
Table 6: corrosion rate and initiation time for approach 2 

 
Still the Least Squares Errors approach produces negative corrosion rates or initiation 
times before pipeline installation.  Therefore an alternative model for the presented 
models is presented: approach 311.   

3.4 Approach 3 
This approach is based on the General corrosion rate model introduced in previous 
chapter.   
The model takes into account information about the measurement error distributions for 
each specific pig and according to these distributions assigns weights to the 
measurements.  The weights are chosen in the following way: a pig which is accurate 
influences the final results stronger than a pig with a lower level of accuracy.  

                                                 
11 Approach 3 is simplified version of General corrosion rate model.  
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Assuming that the function associated with i’th defect is linear in time 

( tiiiitif
10)1,0,( αααα += ), let’s define simplified version of general corrosion rate model in 

following way: 

• 
+→RiijTif )1,0,(: αα - theoretical linear function, associated with i’th defect 

(number of defects is 52) 

• jT  - time since pipeline installation at j’th inspection  

• jid -unbiased depth of defect i, measured at j’th inspection 

• iw  - nominal wall thickness where i’th defect was observed (two cases: 11.2 for 
10 defects and 12.86 for 42 defects) 

• 4=m  - total number of inspections 

• jiP ,  - measurement error density function of defect i12 observed at j’th inspection 
The likelihood estimation is optimal when the following function is maximized: 
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The results of the corrosion rate obtained by the model are presented in the Figure 3-4.   

 
Figure 3-4: corrosion rate distribution 

for approach 3 
Figure 3-5: distribution of initiation 

time for approach 3 
 
Because of the constraints the model’s output is in harmony with the physical corrosion 
properties: none of the corrosion rates are negative.   
 

                                                 
12 A measurement error density function for each defect can depend on the cluster, from which the defect 
comes. I.e. defects from one pig can have a few distributions- one per individual cluster, however, here in 
the analysis because of low number of calibrating data each pig has one distribution 
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In the other two approaches the corrosion rate distribution was normally distributed, now 
it is quite different—there is no basis to reject the hypothesis that the corrosion rate is 
Beta distributed (with parameters 1.25 and 3.92).   
The histogram of the initiation time is presented in the Figure 3-5.  The model says that 
all the initiation times are in acceptable time intervals.  However, 14 of the defects initiate 
at the time of pipeline installation- this is indicated with a lighter blue color in the picture 
above.  The initiation time distribution is a composition of two distributions, discrete in 0 
and continuous elsewhere.  The continuous part is also Beta distributed (with 
parameters 1.60 and 0.50).  A small summary of the results of the corrosion rate and the 
corrosion initiation time is presented below. 
 

results corrosion rate initiation time 
mean 0.24 [mm/yr] 22.16 [yr] 

Lower bound 0.038 0 [yr] 95% conf. int. Upper bound 0.62 38.36 [yr] 
Table 7: corrosion rate and initiation time for approach 3 

 
As is shown in the Table 7, all the results obtained from the model are acceptable 
because they are physically possible.  The model even for a bad dataset gives 
reasonable and acceptable results.  The results from Table 7 show that the model gives 
a corrosion rate that is approximately 0.05 higher than the previous ones.  The reason 
for this is the following: in the previous cases, the result of corrosion rate was an 
outcome of all corrosion rates (including negative values), which resulted in a lower 
average value.   

3.5 Depth influence on the corrosion rate 
In order to investigate whether the defects’ depths have a significant influence on the 
corrosion rate, the dataset of 52 unbiased measurements is divided into two subsets.  
First, the weighted average for each defect was calculated.  The weights were 
associated with the measurement errors’ standard deviations i.e. an accurate pig has the 
highest weight etc.  Then, the dataset was divided into two subsets, namely “shallow” 
and “deep” defects, in such a way that the MFL pig with the lowest number of 
observations (pig B) has an equal number of measurements in both sets.  For both 
subsets, the General corrosion rate model was applied.  The mean corrosion rate for 
deep defects turned out to be 0.25 [mm/y], and for shallower ones the rate is 0.23 
[mm/yr].  However statistically, there is no basis to reject the null hypothesis that these 
mean values are the same.  Hence it follows that statistically the corrosion rates for deep 
and shallow defects are not significantly different.  The histograms of the rates for 
shallow and deep defects are presented beneath.   
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Figure 3-6: distribution of corrosion rates for 
shallow defect 

Figure 3-7: distribution of corrosion rates for 
deep defects 

 
In both cases (shallow and deep defects) there is no basis to reject the hypothesis that 
the corrosion rates are from a beta distribution.   
Although the number of measurements of pig B is equal in both subsets, the number of 
defects is not the same in these two sets.  The number of shallow defects, according to 
the presented criterion, is 34. The rest (18 defects) are deep defects.  Analysis showed 
that if the set of unbiased measurements is divided in such a way that the number of 
shallow and deep defects is equal in both subsets, it leads to the same conclusion that 
there is no significant difference in corrosion rates. 

3.6 Conclusions and recommendations  
In order to determine reliably the bias for a MFL-pig it is crucial to have multiple 
reference defects in the pipeline for which the dimensions are well known. These can 
then be used to calibrate the MFL reported values.  For the described pipeline the 
number of available reference points was limited but still made it possible to estimate the 
bias for every pig.  Because the measurement uncertainty of the MFL-tool is dominant 
compared to the corrosion growth in the time period between the pigruns, it is very 
difficult to determine a reliable corrosion rate per defect.  However, by assuming a 
similar corrosion process (MIC) for each defect, based on evaluation of the MFL signals, 
historical CP-measurements and results of excavations, in combination with the 
assumption of a linear corrosion growth, it was possible to calculate a realistic corrosion 
rate for this pipeline.  Depending on the approach that was used a value for the average 
corrosion rate of 0.12 mm/yr (approach 1), 0.16 mm/yr (approach 2) or 0.24 mm/yr 
(approach 3) was obtained. The numbers for the 95% upper bound values were 
respectively 0.20 mm/yr, 0.54 and 0.62 mm/yr.  The results from the first two models are 
clearly underestimating the corrosion rate since the final result is an average over 
positive and negative corrosion rates.  The idea of the third approach is quite different: 
the estimate of the corrosion rate is an outcome of all the defects’ growths.  Firstly, the 
model describes each defect separately as time dependent function.  A function that 
needs to satisfy imposed constrains derived from physical features (i.e. function cannot 
be decreasing in time etc.).  When all these functions are known, then the information 
about corrosion rate associated with defects’ population is a product of all functions 
derived for all defects.   
The estimates of the third approach are input data for the section 2 where influencing 
factors are investigated.   
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Part II 
 
 

Parameters influencing microbiologically 
induced corrosion rate 
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Chapter 4 
 

4 Potential analysis 
 

4.1 Introduction  
Cathodic protection (CP) systems are used to protect buried steel pipelines.  The 
exceptions might be instances the pipelines are installed in fairly non- corrosive soil and 
where regulations do not require such CP systems.  According to regulatory agency 
requirements, a pipe-to-soil potential is to be at least -0.85 millivolts with reference to a 
copper-copper sulfate reference electrode13.  More negative potential protects more 
against galvanic corrosion, but on the other hand too negative potentials may damage 
the coating protection14.  The idea behind cathodic protection is to ensure a current flow 
towards the pipeline opposed to a corroding current away from the pipeline.   
 
This chapter analyzes if there is any relationship between the potentials measured at 
test-posts and the corrosion rate.  Moreover, the results from this chapter will be applied 
in the regression analysis in Chapter 5 (Microbial data analysis).   
 
Available “potential” dataset delivered by Gasunie is not a set of potentials associated 
with real potentials at the coating defects but so called on-potentials measured at test 
posts.  On-potentials contain an IR-drop component. This is the potential drop in the soil 
between the location of the reference electrode (somewhere at ground level) and the 
steel/soil interface at coating defects. The IR-drop is caused by CP- and stray currents in 
the soil. These on-potentials are only an indication of the general status of the Cathodic 
Protection system.  Usually on-potentials were collected during a certain time (about 5, 
15, 60 minutes) - during this time maximum and minimum potential were recorded.   

                                                 
13 Criterion: NEN-EN 12954 
14 The criteria are set to prevent corrosion. This does not necessarily mean that corrosion will occur when 
the criteria are not met.  It is of course not the case that a pipeline corrodes at –849 mV and does not 
corrode at –851 mV.  The potentials are with reference to a Cu/CuSO4 reference electrode. 
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On-potentials can vary continuously due to e.g. interference from other currents in the 
soil.  These variations are superimposed upon the CP potential of the pipeline.  Because 
potentials are recorded over a certain time-interval (5 minutes, 60 minutes or 24 hours) 
and only min/max values were recorded the exact on-potential is not always known.  
It is also not clear if values indicated as max or min were measured only 1% time or a 
large part of time.  The assumption imposed on the measurements is that variation of the 
CP on- potentials in certain local time interval is limited.  To account for outliers in the 
measurements a smoothing procedure was applied.  

Figure 4-1 cathodic protection for a gas pipeline (left), voltage drops in a measuring circuit 
(right) 

 

 
Figure 4-2: Cu/CuSO4 reference electrode 

 
The data which will be analyzed in this chapter was collected for the pipeline for which 
the estimates of corrosion rates for 52 distinguishable defects are available.  Let’s call 
this pipeline A3.   

4.2 Measurements and smoothing method 
In analysis one of the smoothing methods called moving averages was applied.  The 
smoothing algorithm minimizes local variability of measurements, allowing to spot trends.  
The moving average is one of the simplest and oldest analytical tools around. Some 
patterns and indicators can be somewhat subjective, where analysts may disagree on if 
the pattern is truly forming or if there is a deviation that might be an illusion. The moving 
average is more of a cut-and-dry approach to analyzing potential changes and predicting 
performance.  The mathematical formulae for moving average are presented in appendix 
A.   
 
The on-potential measurements were collected at 67 test posts randomly distributed 
along the pipeline.  It was possible to distinguish 302 different dates when the 
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measurements were collected.  Picture below presents how measurements from the test 
posts were distributed over time along the pipeline.  

 
Figure 4-3: Test posts distribution over time 

 
From the Figure, it is clear that number of test posts increased over time from only 18 
test posts in the 60’s to 67 today.  Firstly, a grid which presents on-potentials variability 
wrt stationing and time has to be defined.  The idea is to reconstruct potentials given 
partial available data.  The grid will consist of 302x67 points, where each point will 
present the measured average potential (since only max and min are measured the 
analysis will be carried out wrt to average of these measurements).  The uncertainty of 
the measurements over time per test post is relatively high- it is indicated by high 
variation of the potentials over a small period of time.   
 
The Figure 4-4 below presents potentials at certain stationing before and after 
smoothing method applied (spam equal to 3 was applied).   

 
Figure 4-4: on-potentials measurements and results of applied smoothing method 
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Figure 4-5: on-potentials before smoothing Figure 4-6: on-potentials after smoothing 
 
Figure 4-5 and Figure 4-6 present how the applied smoothing procedure reduced the 
number of outliers in the dataset.  The pattern of potential change over time can be 
recognized.  
Through out the analysis it is assumed that the change of potential between the 
measurements is linear, it is sensible since there is no additional information available.   
 

4.3 On-potential Grid construction 
 
In order to define the potential grid of the pipeline, all the measurements from the test 
posts are used. 
Suppose that: 

• rSSSS ,...,,, 321 - stationing of the test posts, 
• for each test post it is possible to define a function jijii Vtg ,,: →  where jit , - 

indicates the time since pipeline installation at time j at stationing  iS   
• jiV , - is a average potential at test post iS  at time jit ,  

 
In order to formulate pipe-to-soil potential grid with respect to time and stationing, 
following procedure is defined: 
 

1. Apply smoothing procedure for each test post (smoothing with respect to time), 
span of smoothing procedure should be chosen in a such way that the average 
potential from data corresponds to physical potential phenomenon i.e. local 
change of average potential cannot change too sharply. 

 
2. Define T~ as ordered times of collected measurements (for all the test posts) 

{ }rmrrimi tttttT ,1,,2,11,1 ,...,,...,,...,,~ =  where lkji ,,,∀  lkji tt ,, ≠  and im - indicates 

the last measurement recorded at stationing iS .  T~  consists of ordered dates of 

all collected measurements.  Since none of test posts was observed for all T~ , 
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the interpolation for all the test posts is required.  Assuming linearity between 
measurements, interpolation can be done in following way:    

 
• Suppose that two different measurements for one test post were collected 

jiV ,  and kiV ,  where jk > , then convex combination for liV ,  (for Tt li
~

, ∈ ) 
can be presented in following way: kl <∀ jl >∀
 kijili VVV ,,, )1( αα +−=  where )/()( ,,,, jikijili tttt −−=α , but still, 

the interpolation can only be applied if jit ,  and kit , are defined15.  
3. Because of an increasing number of test posts over time, it is possible to 

generate the measurements for a given stationing (even between the test posts).  
This can be done by using a linear interpolation between test posts for each time 
from T~ .  If one takes one test post i then Tt j

~∈∀  jqjpji VVV ,,, )1( αα +−=  
where p and q indicate the closest monitored test post, where 

)/()( ,,,, jpjqjpji SSSS −−=α , as before jiV ,  can be calculated if jpV ,  and jqV ,  
are defined.   

 
4. In the case when interpolation cannot be carried out, because of missing 

boundaries, then the simplest way is to generate these data by using linear 
regression approach applied to each test post.  

 
Beneath, the results of the applied technique are presented.  In the smoothing technique, 
span 3 was chosen.  Investigation showed that changing the spam for moving average 
doesn't change significantly final results.   
Application of the introduced technique produced the following contour and 3D plot of 
the average potentials over the last 45 years along the pipeline.  

 
Figure 4-7: on-potential contour plot 

 
                                                 
15 It is possible to generate missing data- the procedure for that will be introduced later on in text.   
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Figure 4-8: on-potential grid  

 
The Figure 4-7 and Figure 4-8 show the average potentials registered at the test posts 
during last 45 years.  The contours present how potentials were changing over time.  
Plot indicates lack of the cathodic protection for the first pipeline kilometers for a first few 
years (the potential is significantly higher than the one registered after 20 years.  From 
these figures it looks like CP increased up to 30 years then stabilized more or less for 
about ten years and then started to decrease. The plots show that in the first 20 km 
section of the pipeline the potential has significantly decreased after first 20 years.  If 
one compares obtained potential with places where 52 defects are distributed, a blurry 
pattern can be recognized.   

 
Figure 4-9: 52 distinguished defects and estimated corrosion rates  

 
For the estimated on-potential grid a correlation between corrosion rates and average 
potentials has to be calculated.  For each of the 52 distinguished defects for the pipeline 
A3 the potentials can be easily obtained using techniques introduced before i.e. for each 
stationing it is easy to find neighboring test posts and interpolate the potentials over time.  
Since the estimated corrosion rate of the 52 defects is based on 4 inspection and 
measurements are carried out within 5 years the average level of on-potentials should 
be taken only from that period.  The results are presented below. 
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4.4 Correlation between the corrosion rate and average 
potentials recorded between first and last inspection.  

4.4.1 Approach 1 
First, let’s define: 

• [ ]T
xlmTiTii VVV

1,1, ,,~
K= , where 1T and mT indicates time of first and last inspection, 

jiV , - is on-potential at stationing i at time jit , , ni ,...1= ,  n- number of the defects 
and l indicates number of available measurements (real and interpolated 
between first and last inspection) 

• [ ]TxnnrrR 11 ,,K= - vector of corrosion rates for the corresponding defects  

• [ ]TxnnVVV 11 ,,K=  where ∑
=

=
l

k
ii kV

l
V

1
)(~1
 

The correlation between corrosion rate and average potential is defined as: ),( VRρ .  
Small summary of applied techniques is tabulated below.  The p-value16 presented in the 
last column corresponds to the hypothesis: 
 

0),(:0 =VRH ρ  against 0),(:1 ≠VRH ρ  
 

No. of samples type of correlation ρ  p-value for the hypothesis that 
correlation is insignificant 

Pearson 0.20 0.15 
Spearman 0.17 0.23 

52 defects, 
l =61 Kendall 0.12 0.22 

Table 8: correlation between the corrosion rate and average on-potential recorded 
between first and last inspection 

 
The normality condition for product moment correlation is satisfied, for a chosen 
significance level 05.0=α  the p-value suggests that there is no basis to reject the null 
hypothesis that the correlation is insignificant.  For a significance level 0.2 there are 
basis to reject the null hypothesis.  Overall conclusion is that there is a weak positive 
correlation between average potentials and the corrosion rate of defects.  

4.4.2 Approach 2 
Second approach presents another way of looking at the connection between corrosion 
rate for the defects and average soil-to-pipe potentials. Suppose that we observe n 
distinguishable defects, and each of the defects has given an estimated corrosion rate ir  

n1,...,i = .  For each defect it is easy to find (from the generated grid) the average 

potential vector [ ]T
xlmTiTii VVV

1,1, ,...,=  where 1T  and mT  indicate time of the first and last 

inspection (pigrun).  The total number of possible different pairs of defects is ∑
−

=

=
1

1

2
n

i
n iC .  

For each pair of defects (i,j) verify the hypothesis:  

                                                 
16 Definitions and interpretations are included into appendix A 
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( ) 01:
1

,,0 =−∑
=

l

k
kjki VV

l
H  against ( ) 01:

1
,,1 ≠−∑

=

l

k
kjki VV

l
H  

Under the assumption that ( ) ( )σμ ˆ,ˆ~ NVV ji − - parameter μ̂  is an unbiased maximum 
likelihood estimator.  The estimator for σ  is assumed to be unknown.  Under the 
normality condition the cases a) and b) are counted: 
a) ji VV >  & ji rr >  or ji VV <  & ji rr <  b) ji VV >  & ji rr <  or ji VV <  & ji rr >  
The first point a) is equivalent to concordance of corrosion rate and average potential, 
and the second one to their discordance.  In both cases there is a statistically 
defendable difference between averages of potentials.   
Results: 

1. total number of pairs for 52 defects is 1326 
2. in 1174 cases the null hypothesis was rejected  
3. in 564 the null hypothesis was rejected and normality condition was satisfied 

 
Figure 4-10: concordance and discordance  

 
In 57 % cases higher corrosion rate is accompanied by higher average potential (less 
negative) and in 43% cases is the other way around.  This approach also shows weak 
positive correlation between average on-potentials and the corrosion rate.   

4.5 Correlation between the corrosion rate and potentials 
standard deviation recorded between first and last 
inspection.  

First, let’s define: 
• [ ]T

xlmTiii VVV
1,1, ,,~

K= , where 1T and mT indicates time of first and last inspection, 

jiV , - is on-potential at stationing i at time jit , , ni ,...1= ,  n- number of the defects 
and l indicates number of available measurements (real and interpolated 
between first and last inspection) 

• ∑
=

=
l

k
ii kV

l
V

1
)(~1
 ni ,,1K=∀  and [ ]TxnnrrR 11 ,,K= - corrosion rates for n defects 

• [ ]Txn
S

n
SS VVV 11 ,,K=  where ( )∑

=

−
−

=
l

k
ii

S
i VkV

l
V

1

2
)(~

1
1

 

Concordance
Discordance
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Then the correlation between corrosion rate and calculated standard deviation of 
potential is defined as: ),( SVRρ . 
 

no. of 
samples 

Type of 
correlation 

ρ  p-value for the hypothesis that 
correlations are insignificant 

Pearson -0.15 0.29 
Spearman -0.13 0.37 52 defects, 

l=61 
Kendall -0.08 0.43 

Table 9: correlation between the corrosion rate and on-potential standard deviation 
recorded between first and last inspection  

 
Table 9 shows weak negative correlation between corrosion rate and standard deviation 
of the on-potential.   

4.6 Conclusions 
Corrosion processes take time and are therefore governed by a number of 
circumstances.  Unfortunately some information is missing: the measurements were 
made and only min/max were recorded.  The data used in this chapter is not accurate.  It 
is difficult to say precisely in how on-potentials describe real pipeline potential.  
Introduced methodology didn't give defendable results i.e. clear massage about the 
connection between corrosion rate and average on-potential.   
 
The analysis showed certain patterns of weak17 correlations between corrosion rate for 
the 52 registered defects along the A3 and level and on-potentials and their variability.  
The results from this chapter will be applied as an input into regression in the next 
section.  Further analysis of the on-potentials has to be carried out in order to check how 
on-potentials are interacting with other variables potentially influencing the corrosion rate.   
 

                                                 
17 read: statistically insignificant 
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Chapter 5 
 

5 Microbial Data analysis 
 

5.1 Introduction  
 
The dataset analyzed in this chapter is delivered and collected by one company 
specializing in bio-analysis, a company which collected soil samples at the stationing of 
certain group of defects from the pipeline A3.  The analysis of the collected soil samples 
was done in order to assess the circumstances which can influence the growth of 
bacteria involved in corrosion processes.  Here, the bio-analysis is used as an input for 
the corrosion rate regression model.   
 
The data collection and analysis was carried out with respect to qualitative and 
quantitative description of the environment where defects were reported.  The defects 
under analysis (18 defects) were chosen from the set of 52 defects recognized.  For 
each of these defects linear corrosion (constant corrosion rate) was assumed.  The 
corrosion rate for these defects was calculated using corrosion rate estimation model 
described in first part of this thesis.  The estimation was based on measurements from 
four consecutive inspections done by intelligent pigs.   
 
The analysis will be carried out in order to find the connection between the environment 
data and the corrosion rate estimated using the corrosion rate model presented in Part 1 
of the thesis.   

5.2 Microbiologically Influenced Corrosion  
According to chemists: abundant in natural environments Sulphate Reducing Bacteria 
(SRB) are the most influential in MIC processes.  SRB are anaerobic bacteria utilizing 
sulfate as a terminal electron acceptor and organic substances as carbon sources.  It is 
shown that although SRB are strictly anaerobic, some subpopulations tolerate oxygen 
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and are even able to grow at low oxygen concentrations.  SRB has ability to reduce 
sulfate produced carbonate which neutralizes acids and sulfide, which chemically 
stabilizes toxic metal ions as solid metal sulfides.  Experiments showed that ph levels 
supposed to increase in presence of SRB metabolism18.  The soil analysis from Texas to 
New Jersey has shown that number of bacteria is living in the soil at or near protective 
coatings.  In paper of Joseph L. Pikas [23], author suggests that if one compares two 
environments with the same soil type but one at or near to ditch and second undisturbed, 
then higher number of SRB is expected to be in the first environment.  J. O. Harris [24] in 
his notes says that since conditions of the soil do not remain static whether the soil is 
close to surface or near to a pipeline at the bottom of a ditch-mostly due to water 
fluctuations- bacterial populations in the soil consist of many types of different species.  
Moreover, the interrelationship between different types of bacteria of microorganisms 
contributes to changes that occur in the soil.   
 

  
Figure 5-1: microbiologically influenced corrosion on gas pipelines 

 
Microorganisms can be grouped into few types presented in the table below.   
 

Prerequisite Provider Kind of growth 
Light Phototropic Energy source Chemical substances Chemiotrophic 

2CO  Autotrophic Carbon source 
Organic substances Heterotrophic 

Inorganic substances Lithotrophic Electron donor (to be oxidized) Organic substances Organotrophic 
Oxygen Aerobic 
−
2NO , −

3NO  Anoxic Electron acceptor (to be reduced) 
−2

4SO , 2CO  Anaerobic 

Table 10: groups of microorganisms 
 
Interesting result is that a very good place to live for an anaerobic organism is below an 
active colony of aerobic organisms as these consume the oxygen and create anaerobic 
areas which serve as habitats for the anaerobics.  As a result, anaerobic organisms like 
SRB can be found next to aerobic organisms that protect anaerobic bacteria which can 
easily grow and multiply.  The oxidation of sulfide, which can be performed sulfur 
oxidizing bacteria results in decreasing pH value is typical example important for MIC.  
                                                 
18 P. Frank, UC Berkeley Department of Environmental Sciences 
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Decreasing pH value is equivalent with transformation of weak acid in a strong one.  
Chemical reaction of this transformation is shown as follows.   

−− →+ 2
42

2 2 SOOS  
Over last decades many different models have been proposed to explain the 
mechanisms by which SRB can influence the corrosion of the steel.  These models were 
concentrated on analysis based on cathodic depolarization by the enzyme hydrogenase, 
anodic depolarization, production of corrosive iron sulphides, release of exopolymers 
capable of binding Fe - ions, sulphide-induced stress- corrosion cracking, and hydrogen- 
induced cracking or blistering.  All the models showed that there is not only one 
predominant factor influencing MIC and many different factors are involved.   
 

Figure 5-2: image of a sulphate-reducing bacterial culture with a carbonate precipitate, the 
bacteria on the left are about 6-8 µm long and 2 µm in diameter 

 
In order to confirm MIC it is essential to check presence of microorganisms by obtaining 
samples of the natural environment surrounding the metal. 

5.3 Dataset description 
The dataset consists of two kinds of variables, independent which are used as an input 
to the model (the variables which may influence the corrosion rate) and dependent 
variable- often called variable of interest or criterion variable which is associated with the 
output which is the corrosion rate.     

5.3.1 Independent variables  
The main bio-analysis of the samples was performed in order to give Multi Criteria 
Analysis (MCA) for each specific environment.  The MCA basically gives score relative 
to chance of getting MIC corrosion for specific environment.  The formula for the score is 
based on five factors: redox, availability of a carbon, availability of nutrition, degree 
of acidity (pH) and conductivity.  The MCA formula is presented as follows: 
 

EC
i

pH
i

nutr
i

carbon
i

redox
ii SSSSSMCA ⋅+⋅+⋅+⋅+⋅= 11123  

where: i indicates i’th measurement (place where defect was registered) and scores j
iS  

are assigned according to the table below.  Scores are assigned by experts. 
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Factor Classification Score 
Aerobic 1 
Nitrate reducing 1 
Iron reducing 2 
Sulphate reducing 3 

redox
iS  

Lack of methane 2 
0-20 mg/l TOC19 1 
20-40 mg/l TOC 2 carbon

iS  
>40 mg/l TOC 3 
N-tot < 1 mg/l P-tot < 0.05 1 
N-tot > 1 mg/l P-tot < 0.05 2 
N-tot < 1 mg/l P-tot > 0.05 2 

nutr
iS  

N-tot > 1 mg/l P-tot > 0.05 3 
pH > 5.5 3 pH

iS  pH < 5.5 1 
0-500 Sμ  1 EC

iS  > Sμ  3 

Table 11: factors and weights for MCA score 
 
Other factors investigated and measured in the field by bio-company are: 

Variable Notation/units Description 

Oxygen oxygen ]/[ lmg  
Amount of oxygen can indicate existence of anaerobic/ aerobic 
bacteria in soil, delivered data in half cases are beyond the 
detection limit, so the oxygen variable will be treated as a 
“dummy” variable20.  

Redox 
redox potential 

][mV  
The redox potential is the reduction/ oxidation potential of a 
compound measured under standard conditions against a 
standard reference half- cell. 

cond. 
conductivity 

][ Sμ  
Conductivity is a measure of a material’s ability to conduct an 
electric current.  

pH ][ pH  pH is a measure of the activity of hydrogen ions in a solution 
and, therefore, its acidity or alkalinity 

TOC ]/[ lmg  The amount of carbon bound in organic compounds.   

Fe iron ]/[ lgμ  Iron is a chemical element with the symbol Fe (L.: Ferrum) and 
atomic number 26.  

S1 −2S ]/[ lmg  

S2 
sulfate 
−2

4SO ]/[ lmg  

In both cases, similarly to oxygen measurements, approximately 
half of the measurements are indicated as “beyond the detection 
limit”, so the dummy variable is applied21. 

Methane ]/[ lgμ  The simplest hydrocarbon, methane, is a (natural) gas with a 
chemical formula of CH4.  

SRBA SRB- A ][N  Sulphate reducing bacteria: type A 

SRBB SRB- B ][N  Sulphate reducing bacteria: type B 

In the measurements, 
boundaries of the 
possible interval of 
number of bacteria were 
given.  In the analysis 
use middle of this 
interval.   

water water level [m] Water levels with respect to the top of the ground- here the water 
(fluctuations are not taken described).  

D [m] depth of cover 

                                                 
19 TOC- Total organic concentration 
20 A dummy variable is a numerical variable used in regression analysis to represent subgroups of the 
sample in a study. In research design, a dummy variable is often used to distinguish different treatment 
groups, in the simplest case takes values  0 or 1 
21 Idem 
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PN [m] pipeline wrt NAP level 
NAP [m] NAP level of the ground 

AP22 [mV] average of pipe-to-soil potential measured at the test posts 
reported between first and last inspection 

SP [mV] standard deviation of the on potentials measured between first 
and the last inspection 

WD=D-W [m] amount of water wrt the top of the pipeline 
Table 12 Microbial data description 

5.3.2 Dependent variable  
The analysis will be based on the 16 defects for which it was possible to associate the 
corrosion rate- only for 16 defects the detailed environment data was delivered.  Small 
summary of corrosion rate data is presented below.  

 
Figure 5-3 Corrosion rate summary for 16 measurements indicated by bio-analysts 

 

No. meas. Mean 
corrosion rate: 

Std corrosion 
rate: 

Upper 95% 
conf. int. 

Lower 95% 
conf. int. 

16 0.26 0.20 0.62 0.06 
Table 13: corrosion rate summary for 16 measurements indicated by bio-analysts 

 

5.4 Correlation analysis 
Since all the measurements collected by bio-analysts were measured once, after the last 
pigrun, so it is impossible to check the connection between changes of defect’s depths 
and change of the soil measurements (wrt e.g. groundwater fluctuations, amount of 
oxygen etc.)  However it is possible to check the connection between estimated 
corrosion rate and reported bio measurements.  Firstly, the analysis will be investigating 
the correlation between the corrosion rate and all the variables.   
 
Due to low number of measurements the predictive model will not be very reliable. 
However it is enough to indicate patterns and relationships.  Table below presents 
correlations and p-values associated with following hypothesis testing: 

                                                 
22 The detailed analysis of the average pipe-to-soil potentials was introduced in “Potential analysis” chapter.  
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0),(:0 =YXH ρ  against 0),(:1 ≠YXH ρ  
where: X- predictor variable, Y- criterion variable (corrosion rate), Pρ - stands for 
Pearson, Sρ  for Spearman and  Kρ  for Kendall correlation coefficients.   

Name no. of samp. Pρ  p-value Sρ  p-value Kρ  p-value 

oxygen 9 -0.46 0.07 -0.37 0.16 -0.31 0.17 
MCA 18 -0.18 0.50 -0.13 0.62 -0.08 0.71 
redox 0.52 0.04 0.38 0.24 0.25 0.21 
cond. -0.20 0.46 -0.39 0.13 -0.31 0.10 

pH -0.56 0.02 -0.52 0.04 -0.38 0.05 
TOC -0.34 0.20 -0.30 0.31 -0.17 0.39 
Fe -0.20 0.48 -0.28 0.29 -0.20 0.30 

methane 

16 

-0.20 0.47 -0.17 0.53 -0.10 0.65 
SRBA 0.05 0.87 0 1 0 1 
SRBB 14 -0.24 0.40 0 1 0 1 
water 17 -0.34 0.18 -0.19 0.47 -0.12 0.53 

S1 0.15 0.58 0.22 0.41 0.19 0.43 
S2 18 0.13 0.64 0.18 0.51 0.15 0.53 
WD 15 -0.001 0.99 -0.13 0.64 -0.09 0.69 
D -0.40 0.10 -0.49 0.04 -0.35 0.04 

PN 0.34 0.16 0.30 0.23 0.25 0.16 
AP 0.33 0.18 0.35 0.15 0.25 0.18 
SP -0.44 0.07 -0.45 0.06 -0.3 0.1 

NAP 

18 

0.34 0.16 0.30 0.23 0.25 0.16 
Table 14 correlation between corrosion rate and the variables, cell with red background 

indicate that normality assumption doesn't hold, yellow rows indicate variables for which 
the null hypothesis was rejected for significance level 0.2 

Graphically, the correlations between the predictor variables and criterion variable can 
be expressed in the form of radar graph.  Each of the variables from the table 
corresponds to a ray in the graph below.  The variable with the highest correlation is 
plotted furthest from the center, and the variable with the lowest respectively closest to 
the center.  
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Figure 5-4 radar graph- Pearson product moment 
correlation coefficient 

Figure 5-5 correlations and associated p-values 
(ordering the variables) 

 
The results are promising, for significance level α =0.2 eight of variables are significantly 
correlated with corrosion rate, for a level 0.05 only two variables have significantly high 
correlation.  The most correlated with corrosion rate is pH (negative correlation) and as 
second one is redox potential (positive correlation).  If one looks only at two most 
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correlated variables it is clear that the lowest corrosion rate is obtained for alkaline soil 
samples with low redox potential.  Interesting is that none of SRB has significant 
correlation with the corrosion rate.  If the significance level is changed to α =0.2, then 
additional 6 variables indicate significant correlation with the rate.  In four cases the 
correlation is negative: TOC, water level, depth of cover and standard deviation of on 
potential, and in two positive: pipeline with respect to NAP and average on-potential.   
 
From the data one can observe that the best scenario for a low corrosion rate is 
when: oxygen is detectable, redox potential is low, soil is alkaline, high level of 
TOC, pipeline is dried (high values of W mean that water is deeper under the 
cover), pipeline is deep under the ground level, pipeline is low wrt. NAP level, the 
on-potential from rectifier is low (more negative) and the standard deviation of the 
potential is relatively high.  The suggested “best scenario” is based only on simple 
correlation analysis; however, it doesn't give quantitative results, and it doesn't take into 
account correlations amongst the predictor variables.   
 
The key of the analysis is to find the predictor variables which are significant for the 
multiple regression model.   
 

5.5 Multiple regression analysis 
This section is dedicated to the multiple regression model.  Multiple regression is a 
statistical technique which allows predicting variables of interest (sometimes called: 
dependent or criterion variables) on basis of scores of several other variables (these 
variables are customary called: independent or predictor variables).  The main point in 
the modeling is to explain the level of the variance on the basis of the level of one or 
more other variances.  The regression analysis should be based on the predictor 
variables that might be (highly) correlated with the criterion variable, but not strongly 
correlated which each other.  In reality correlations amongst the predictor variables are 
not unusual.  Multicollinearity23 can cause problems when trying to find the relative 
contribution of each predictor variable to the modeling.  When there is a substantial 
multicollinearity in a regression model, it is possible to have the full model account for a 
substantial amount of the variability in the dependent variable without any tests of its 
individual parameters being significant.  One of the ways to avoid this problem is to 
apply so called stepwise regression algorithms. 
 

5.5.1 Analysis structure 
The analysis is focused on finding a set of most influential predictor variables wrt 
corrosion rate.  Investigation has to deal with one very relevant issue, namely: missing 
data (two variables have missing observations).  Because of low number of the collected 
measurements, the analysis has to be done in a way that the final result is based on 
number of measurements as large as possible.  When the proper model is defined then 
included variables should be ordered with respect to importance for the corrosion rate.  
Figure 5-6 below presents general idea of the regression modeling of the corrosion rate.   

                                                 
23 Multicollinearity (collinearity)- the term is used to describe the situation when a high correlation is detected 
between two or more predictor variables.  
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Figure 5-6 regression modeling schema for the corrosion rate  

5.5.2 Missing data 
Two variables SRB-A and SRB-B have missing observations at the stationings 2225 [m] 
and 2451 [m].  Due to these missing data, firstly the analysis has to verify if these two 
variables are significant for the analysis.  If they are not significant then the problem with 
missing data for these two variables doesn’t exist anymore (i.e. then these two variables 
can be easily removed and the study can be carried out for all the observations), if they 
are significant, then missing observations have to be reproduced or removed (the 
missing data for one of the variables would imply removing the corresponding values for 
all the other input variables).  
In order to check if SRB-A and SRB-B are significant, let’s  

o remove the missing observations for all the variables (total number of remaining 
observations is now 14)  

o in order to get a number of the most relevant parameters apply stepwise 
regression24.  

Stepwise regression will be applied to the following variables (each of the variables has 
14 observations): 

o Y- variable of interest- defect rate [mm/yr] 
o iX - independent variables: 

1 MCA 5 pH 9 S2 13 water 17 SP 
2 oxygen 6 TOC 10 methane 14 depth 18 WD 
3 redox 7 Fe 11 SRBA 15 PN 19 NAP 
4 cond 8 S1 12 SRBB 16 AP   

o n is associated with the number of variables which is equal to 19 
o ji XX - Nji ∈∀ , where ji ≠  product of centered independent variables  

The tables below describe following hypothesis testing: 
o t-statistics and p-value for t-test are associated with following hypothesis testing: 

0ˆ:0 =iH β  against alternative 0ˆ:1 ≠iH β  
o F-statistics and p-value for F-test are associated with: 

                                                 
24 See chapter- Analysis methods and interpretation, appendix A 
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0ˆˆˆ: 100 ==== nH βββ K  against alternative 0ˆ:1 ≠∃ iH β  
Two main models will be considered: 

5.5.2.1 Model without interactions between variables 
Model 1 

εβββ ++++= nn XXY ...110  
 

Coefficients 
Variables 

iβ̂  Std. Error 
t- statistics 

p-value 
for t-test 

(Constant) 2.03 0.41 4.98 ε 25 
pH -0.21 0.62 -3.42 0.006 
Depth of cover -0.27 0.09 -3.01 0.012 

Table 15: parameters and associated statistics 
And model statistics 

Statistics 
2R  Adjusted 2R  

F statistics p-value for F test MODEL 

0.66 0.59 10.5 0.003 
Table 16: regression model standard description 

5.5.2.2 Model with interactions between variables 
Model 2 

εββββ
ββββββ

++++++
++++++++=

−−

+

nnnnjijinn

nnnnn
XXXXXXXX

XXXXXXY
1,1,323,21,1

212,1
2

2
2
11110

......
.........

 

Coefficients 
Variables 

iβ̂  Std. Error 
t- statistics 

p-value 
for t-test 

(Constant) 0.27 0.02 16.3 ε  
PN*water -0.07 0.01 -6.1 ε  
PN 0.09 0.007 12.88 ε  
Oxygen*pH 0.71 0.08 8.79 ε  
MCA*MCA -0.01 0.003 -4.34 ε  

Table 17: parameters and associated statistics 
And the model statistics: 

Statistics 
2R  Adjusted 2R  

F statistics p-value for F test MODEL 

0.97 0.96 78.7 ε  

Table 18: regression model standard description 

                                                 
25 ε  stands for number less than 0.0001 
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Conclusions (based on 14 measurements):  
From the applied stepwise regression to the set of 19 variables with 14 observations 
we have that: 

1. For the model without interactions: 
o There is a negative correlation between pH and the corrosion rate 
o There is a negative correlation between depth of cover and corrosion rate 
o Both SRB-A and SRB-B are insignificant for the corrosion rate modeling, 

hence can be easily removed 
 

2. For the model with interactions: 
o Also in this case analysis did show that both SRB-A and SRB-B are 

insignificant (even when interacting with other variables) 
o Only one main effect is significantly affecting the corrosion rate- pipeline 

wrt. NAP 
For both models 2R  and adjusted 2R  indicate that the corrosion rate is quite well 
described by the proposed models.  Analysis showed that errors from the both models 
are normally distributed and uncorrelated.  High adjusted 2R indicated well defined 
model; however the number of the measurements is not high enough to make such 
conclusion.    

5.5.3 Stepwise regression for included variables  
 
In the previous subsection it was shown that SRB-A and SRB-B can be removed from 
the analysis since they are insignificant for the corrosion rate modeling.   
Here, the analysis will be based on the remaining variables.  The study will be based on 
two models introduced before: model 1 (without interactions) model 2 (with interactions).  
These two models are applied to the following dataset: 

o Y- variable of interest- defect rate [mm/yr] 
o iX - independent variables 1,..,17i = : 

 
1 MCA 5 pH 9 S2 13 PN 17 NAP 
2 oxygen 6 TOC 10 methane 14 AP   
3 redox 7 Fe 11 water 15 SP   
4 cond 8 S1 12 depth 16 WD   

 

5.5.3.1 Model without interactions 
Suppose that the corrosion rate is modeled only by main effects- according to the Model 
1.  Stepwise regression resulted that only one main effect may be an influential 
parameter for the corrosion rate.   
 
 

Coefficients 
Variables 

iβ̂  Std. Error 
t- statistics p-value 

for t-test 

(Constant) 0.25 0.04 5.92 ε  
PN 0.06 0.02 2.66 0.02 

Table 19: parameters and associated statistics (model without interactions) 
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The determination coefficient- 2R from the Table 20 shows model fit.  This means that 
Model 1 may be too simple to give reliable estimate of the parameters influencing the 
corrosion rate.   
 

Statistics 
2R  Adjusted 2R  

F statistics p-value for F test MODEL 

0.34 0.29 7.09 0.02 
Table 20: regression model standard description (model without interactions) 

 

5.5.3.2 Model with interactions 
o The model 2 presents much more complicated situation, where except main 

effects (17 variables), all the possible combinations (136 variables). Stepwise 
regression gave the following results.   

 
Coefficients 

Variables 
iβ̂  Std. Error 

t- statistics p-value 
for t-test 

(Constant) 0.25 0.007 34.15 ε  

Redox*water -0.001 0.0001 -7.00 ε  

PN 0.10 0.003 35.51 ε  

Oxygen*pH 0.76 0.03 27.58 ε  

TOC*PN 0.001 0.0002 9.62 ε  

MCA*MCA -0.01 0.001 -6.96 ε  

Methane*SP 0.0001 ε  4.50 0.001 
Table 21: parameters and associated statistics (model with interactions) 

 

Statistics 
2R  Adjusted 2R  

F statistics p-value for F test MODEL 

0.997 0.985 471.21 ε  

Table 22: regression model standard description (model with interactions) 
 
Now, variables included in the model are different than for the case without interactions.  
The final model (consisting only of significant variables) includes 6 variables (one main 
effect and 5 interaction effects).  High value of 2R  indicates very good fit.  It can, 
however indicate over-fit because of limited number of the measurements.  As before 
both models the errors are normally distributed and uncorrelated.   

5.6 Sensitivity analysis of the parameters influencing the 
corrosion rate 
A sensitivity analysis is a process of investigating influences of model inputs on outputs.  
If a small change in a parameter results in relatively larger changes in the outcomes, 
then the outcomes are said to be sensitive to that parameter.  This may mean that the 
parameter has to be determined very accurately.  Basically, a sensitivity analysis is a 
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study of how the variation in the output of a model can be apportioned, qualitatively or 
quantitatively, to different sources of variation of the input.  One of the most popular and 
easiest sensitivity methods is so called Correlation Ratio (CR) 26  which detailed is 
presented in the appendix A1.  According to this method certain the level of the 
polynomial of  )|( iXYE  has to be assumed.  If we calculate the CR for all variables, 
then as before it is possible to order the variables according to the correlation ratio wrt 
importance.  The results of the applied technique are following: 
 

Order Predicted variable Correlation 
ratio 

Degree of polynomial for  
conditional expectation  

1 PN 0.3556 2 
2 Redox * W 0.3522 2 
3 TOC* PN 0.2024 2 
4 Oxygen * PH 0.1857 2 
5 Methane * SP 0.1645 2 
6 MCA* MCA 0.0964 2 

Table 23 sensitivity analysis of the significant parameters 
 
All the variables in the Table 23 are ordered with respect to importance for the model.   
Applied sensitivity analysis showed that the most influential/ important for the corrosion 
rate modeling is variable- pipeline wrt nap level, then interacting redox potential with 
groundwater step level etc.   

                                                 
26 See appendix A1- Analysis methods and interpretation 
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5.7 Conclusions and recommendations 
The analysis showed that the most relevant (statistically significant) parameters for the 
corrosion rate are:  

• Pipeline with respect to NAP level (positive correlation) 
• Interactions between: 

o Redox with water level (negative correlation) 
o TOC with Pipeline wrt NAP level (positive correlation) 
o Oxygen with pH (positive correlation) 
o Methane with standard deviation of on-potentials (positive correlation) 
o MCA with MCA (negative correlations) 

The presented variables are ordered with respect to level of the correlation with the 
corrosion rate (according to sensitivity analysis) i.e. pipeline wrt NAP level is the most 
important, second is interaction between redox and water level etc.  
The analysis showed that number of sulphate reducing bacteria of type A and B (SRB-A 
and SRB-B) are insignificant for the analysis.  The study proved that there is not only 
one predominant factor influencing MIC and many different interacting parameters are 
involved.  It was shown that number of observations strongly influences the number of 
statistically significant variables.  Depending on the approach different sets of variables 
are important for the model.  First approach with only 14 observations resulted in two 
models with and without interactions.  First one consisted of two main effects: depth of 
cover and pH level, and the second one with one main effect: pipeline wrt NAP level 
and remaining interactions: pipeline wrt NAP interacting with water level, oxygen 
with pH and MCA with MCA.  Both models showed common three parameters as the 
most important- pipeline wrt NAP level, oxygen interacting with pH and MCA square.  
Because of high measurement error additional observations are required.  The models 
with interactions illustrate very good fit to the real measurements. Because of lack of the 
measurements this perfect fit may indicate existing overfiting problem which can be 
reduced by supporting the model with higher number of the environmental 
measurements.   
 
Recommendations 

• In the study it was assumed that estimates of the corrosion rate from first section 
are certain.  This assumption is unlikely to be realistic.  The future investigations 
should be also aimed to take the estimate errors into account.  

• Crucial in the modeling is to have large and accurate dataset.   
• The analysis was based on certain number of possible influencing parameters; 

however those parameters do not exhaust all the possible influencing factors- ex. 
lack of data about groundwater fluctuations etc.  

• Some of the defects indicating decreasing corrosion rate, the corrosion rate 
model imposed certain number of constrains, it is likely that this phenomenon 
came out as a result of the clustering procedure. As a consequence association 
defect with the environment parameters doesn’t guarantee good results. The 
clustering/matching defects and associated errors should be deeper investigated.   

• Poor dataset is strongly influenced by unusual of observations; since missing 
data occur it is important to know reasons of that- perhaps the defects are in 
unusual environment.  

• Non-linear relationships should be investigated. 
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Chapter 6 
 

6 Pipeline characteristics 
In this chapter three high-pressure pipelines: A1, A2 and A3 are under the analysis.  The 
investigations in the previous two sections concerned only the pipeline A3 for which the 
set of 52 distinguishable defects was collected.  Since this section is dedicated to defect 
rate modeling, it is not required any more to be restricted to one pipeline (for which it 
was possible to give an estimate of the corrosion).  Two additional high pressure pipes 
were chosen according to following features: the existence of MIC recorded during the 
excavations, -the age of all three pipelines -the coating and applied technology.   

6.1 Defect distribution 
The pictures presented below show the pipelines profile, depth of cover and defects 
distributed along the pipelines.  In the cases of A1 and A2 number of defects is much 
lower than for A3, although the pipelines were installed about the same time in the 60s.  
In all three cases the installation customs and applied coating (bitumen) were generally 
the same.  This may indicate that the difference between the numbers of defects can be 
caused by environmental factors.  Also in the case of “parallel” pipelines A1 and A2, the 
profiles are very similar; however number of the defects for A2 is significantly higher.   
The analysis starts with verifying the hypothesis about defects random (uniform) 
distribution along the pipeline.  In all three cases there are statistical basis to reject the 
hypothesis that the defects are uniformly distributed along the pipeline.   
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Figure 6-1: Pipeline A1, profile, depth of cover, defect distribution 
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Figure 6-2: pipeline A2, profile, depth of cover, defect distribution 
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Figure 6-3: pipeline A3, profile, depth of cover, defect distribution (PII) 

6.2 Depth of cover 
Figures presented above don’t depict that there is any connection between the defects 
existence and depth of cover.  Moreover for the similar pipelines profiles of A1 and A2 
the pattern of the defects distributions is similar wrt number of defects and their 
stationings.   

6.3 Pipeline elevation 
For the pipeline A3 the profile indicates that the pipeline is laid in lowland (max elevation 
is about 5-6 meters); whereas for A1 and A2 pipeline profiles changes about 20 meters 
within few hundred meters.  The distribution of the defects may be caused by the 
groundwater levels (pipeline which is higher wrt NAP level is less likely to be in wet 
environment than pipeline closer to the reference NAP level).  Graphs below present 
how the defects are distributed wrt pipeline circumference.  In all the cases most of the 
defects are concentrated in the bottom of the pipeline.  It is not certain that three 
pipelines under analysis are induced by MIC; however the number of excavations 
showed that this is really the case.  Moreover, most of excavated defects with MIC were 
on the bottom of the pipeline.   
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Figure 6-4: pipeline A1 defect distribution wrt 

pipeline circumference 
Figure 6-5: pipeline A2 defect distribution wrt 

pipeline circumference 
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 Figure 6-6 pipeline A3 defect distribution 

wrt pipeline circumference 
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Chapter 7 
 

7 Soil data analysis 
 

7.1 Introduction  
This chapter is focused on finding the relation between the soil composition and 
corrosion defect rate for the high pressure underground gas pipelines.  The soil data 
analysis is performed on three pipelines where microbiologically influenced corrosion 
was detected.  In all three cases the soil data was collected from a geotechnical surveys 
performed before pipelines construction.   

7.2 Description of available dataset  
During inspections, an intelligent pig reports defects and associated defects’ stationing.  
Due to technological drawbacks the stationing of defects and defect feature type are not 
accurate.  The analysis in this chapter is aimed at statistically significant number of 
environmental parameters influencing the defect rate.  Hence the data about 
environment has to be incorporated.  The most reliable information about the pipeline 
natural environment is one obtained from pipeline geotechnical surveys and presented 
on route maps.  The data about the pipeline soil type was collected before pipeline 
installation.  Each route map represents certain part of the pipeline route.  Usually the 
length of the route maps is about 1-1.5 km.  These maps present ground elevation (ref. 
NAP) where the pipeline is placed, but not the pipeline’s profile.  A pipeline’s profile is 
available on PiMS27 so match can be easily done.  Each map presents about 5-25 soil 
samples spread within a route map.  In most cases it is impossible to find exact 
stationing of the soil samples within a map28.  However the approximation can be done 
based on the fact that each map is spited in few parts (usually 5-10) and the stationings 
of the boundaries are given.   
 

                                                 
27 Pipeline Integrity Management System 
28 Exact stationing of the measurements was given only for the pipeline A1 and A3 
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The stationings of the soil samples collected from the maps are not certain. The main 
reasons of the uncertainty are following: 

• re-routing of the pipeline i.e. in some places, because of the infrastructure, 
some pipelines had to be rerouted 

• the “starting point” for a pig and “zero meter” of the first route map are not the 
same so the calibration is always required  

Each of collected samples presented in the route maps is in the form where soil layers 
can be distinguished.  However, according to the installation customs of the 60s a soil 
layer during backfill of the pipeline trench were mixed, hence there is no point of 
analyzing influence of the soil layers on corrosion.  There may still be an influence of soil 
layers, but due to lack of exact data such analysis won’t be carried out29.   
 

7.3 Soil data collection 
Essential in a defect rate modeling is to specify environments along the pipeline.  As it 
was mentioned, each of the route maps shows certain number of measurements.  Since 
the soil samples are distributed along the pipeline, certain assumptions about the 
environments between the measurements have to be introduced.   
Suppose that at a certain part of the pipeline two soil samples were collected.  The 
assumption that requires to be imposed is about the soil type in between the collected 
measurements.  If an intelligent pig reports a defect somewhere in between the collected 
samples, then the problem is to decide in which environment defect is observed.  Figure 
7-1, Figure 7-2 and Figure 7-3 below present example of proposed procedure.  Each of 
pictures presents a route map, where the samples and some inner stationings (not of 
soil sample) are reported.   
Each route map is divided into sections for which she stationing is known.  Along each 
section soil samples are presented.  The problem is that the stationing of the samples is 
unknown.   

 
Figure 7-1: route map, geotechnical data 

 
Step 1 
 Since the stationing of the measurements is unknown within the sections, so let’s 
assume that the measurements are equal-distance distributed within each section.  And 
so, for the first section 0 [m]- 135.6 [m] the distance between the measurements is equal 

                                                 
29 Soil layers from the route maps do not show today’s layers state.   
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to “c”, and for example for the section two 135.6 [m]- 789.3 [m] the distance is equal to 
“b”.  Since now, each of the measurements will have specified stationing (before this 
was unknown).   

 
Figure 7-2: route map, geotechnical data- STEP 1 

 
Step 2 
 Second and the final step, defines the environments (also called soil clusters).  
Since the stationings of the measurements are specified (at step 1) the sections have to 
be combined.  Sequentially, to get the environment map of the whole pipeline the 
boundary measurements from each section have to be defined as well.  In this 
procedure, it is assumed that for each two neighboring sections the boundary between 
the closest samples for these sections is in the middle of them.  On the schema the 
clusters are indicated by different colors.    

 
Figure 7-3: route map, geotechnical data- STEP 2 

 
Application of the presented procedure defines soil type for any given stationing.  
Because of the lack of quantitative measurements it is impossible to avoid sharp 
boundaries between the sections/clusters.   
The number of measurements varies from one pipeline to another; small summary of 
available data is presented in the Table 24 below. 
 



 61  A statistical approach to determine the MIC rate of underground gas pipelines  
 

 
Delft University of Technology 

pipeline no. of soil 
measurements 

no. of 
route 
maps 

length of 
the 

pipeline 

average 
cluster length 

number of 
measurements 

per km 
A1 298 50 86 [km] 280 [m] 3.5 
A2 861 50 89 [km] 100 [m] 10 
A3 287 47 69 [km] 240 [m] 4 

Table 24: general pipelines description 
 
First glance at the Table 24 shows that the highest accuracy for soil samples is obtained 
for the pipeline A2—average cluster length is 100 meters and it is more than two times 
less than for other pipelines.  The accuracy of the obtained results for a pipeline A2 is 
much higher than for the others.   
The data available, doesn't allow analyzing the soil samples quantitatively i.e. it is 
impossible to say if in the soil sample is more one component or another.   
 
Remark 
The route maps are connected by using the same methodology as for combining the 
section within a route map. So for step 2 the route map boundaries are ignored. 
 
Introduced procedure allows describing a soil composition for each of the pipelines using 
the data presented by geotechnical data from the route maps.  Pictures below show 
results of applied algorithm.   
 

Soil type pipeline A1 Soil type pipeline A2 

Figure 7-4: Soil composition for the pipeline A1 
 

Figure 7-5: Soil composition for the pipeline A2 
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Soil type pipeline A3 

 
Figure 7-6: Soil composition for the pipeline A3 

 
All three pictures Figure 7-4, Figure 7-5, and Figure 7-6 present both: defects distribution 
and existence of the each soil component30.  The top plot presents the stationing of the 
defects reported by an intelligent pig and the depth of the defects.  Each of the pictures 
beneath is associated with the soil component.  Red color indicates existence of peat, 
blue of sand, light green of clay and light blue loam.  Each of the vertical lines indicates a 
sample cluster (defined before) where presence of peat, sand, loam or clay was pointed 
out.  The figures illustrate that almost whole the pipeline is laid in sand mixed with other 
elements.  It reasonable to conclude that for the pipelines A1 and A2 the most of the 
defects are in the area where soil type is a mixture of sand and peat.  For the pipeline A3 
there is no clear pattern of relationships.  Another outline is that in the middle of the 
pipelines A2 and A1 high concentration of clay and loam with sand is associated with 
relatively low number of defects.   
From the collected data it is clear that four presented soil types do not exhaust all the 
possibilities.  All the possible types of the soil which can be observed solely from the 
geotechnical data are: peat, sand, clay, loam, peat-sand, peat-clay, peat-loam, sand-
clay, sand-loam, clay-loam, peat-sand-clay, peat-sand-loam, peat-clay-loam, sand-clay-
loam and the last one peat-sand-clay-loam.  Each of the soil types has to be analyzed 
wrt influence on the defect rate.   
 
Remarks  

• Pipeline A2: missing soil data for stationing 2112m- 6723 m 
• Pipeline A3: missing soil data for the first 3135 m- this missing data is recovered 

from the A1 which is parallel to A3 

7.4 Soil type influence on defect rate 
The main point of the study in this subchapter is to check what the defect rate for whole 
the pipeline is and to verify if the defect rate depends on the soil type.  The plan is to 
                                                 
30 Main components are: sand, peat, clay and loam.  The soil samples consists either from main 
components or components combinations.   
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count the number of the defect associated with each possible environment (soil type) 
and divide this by the total length where each specific soil type was observed.  The 
overall defect rate for the pipelines is presented beneath in the Table 25.   
 

pipeline no. of defects length of the pipeline [km] Overall defect 
rate [def/km] 

A1 92 86  1.1  
A2 267 89  3  
A3 657 69  9.5 

Table 25 Overall defect rate for the pipelines 
 
Two different approaches on defects rate wrt soil type are presented beneath.  Each of 
the approaches presents different point of view on modeling.   

7.4.1 Defect rate- Approach 1 
The first approach associates the defect rate with each possible soil type.  The 
assumption which is going to be imposed on the analysis is of following form: 
 
Assumption  
Assume that quality of a coating of any pipeline is deteriorated at the same level i.e. 
condition of it is uniform along the whole pipeline length.   
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Table 26 shows the results for all three pipelines.   
Length of 
pipeline 

exposed to the 
soil type 

Percentage of 
pipeline 

exposed to the 
soil type 

Defect 
RATE  Soil type 

[km] [%] 

Number 
of 

defects 
[no. of defects 

per km] 
Peat 0.09 0.11 0 0 
Sand 38.10 45.42 50 1.31 
Clay 0.30 0.35 0 0 
Loam 0.27 0.32 0 0 

Peat- Sand 19.70 23.48 26 1.32 
Peat- Clay 0.12 0.14 0 0 
Peat- Loam 0 0 0 0 
Sand- Clay 4.21 5.02 7 1.66 

Sand- Loam 16.78 20 6 0.36 
Clay- Loam 0 0 0 0 

Peat- Clay- Loam 0.26 0.3 0 0 
Peat- Sand- Clay 2.67 3.18 2 0.75 
Peat- Sand- Loam 0.96 1.14 0 0 
Sand- Clay- Loam 0.19 0.22 0 0 

Peat- Sand- Clay- Loam 0.27 0.32 1 3.75 

Pi
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TOTAL 83.9 [km] 100% 92 defects - 
      

Peat 0.56 0.66 0 0 
Sand 35.80 42.36 72 2.01 
Clay 0 0 0 0 
Loam 0 0 0 0 

Peat- Sand 19.87 23.51 104 5.23 
Peat- Clay 0 0 0 0 
Peat- Loam 0 0 0 0 
Sand- Clay 0 0 0 0 

Sand- Loam 13.94 16.5 15 1.08 
Clay- Loam 0 0 0 0 

Peat- Clay- Loam 0 0 0 0 
Peat- Sand- Clay 0 0 0 0 

Peat- Sand- Loam 4.49 5.31 38 8.46 
Sand- Clay- Loam 7.51 8.88 6 0.80 

Peat- Sand- Clay- Loam 2.35 2.77 2 0.85 
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TOTAL 84.5 [km] 100% 237 
defects31 - 

      
Peat 1.45 2.11 15 10.33 
Sand 25.5 37.18 228 8.92 
Clay 0.54 0.79 5 9.26 

Loam 0.23 0.33 1 4.35 
Peat- Sand 19.27 28.05 168 8.72 
Peat- Clay 2.15 3.13 7 3.25 
Peat- Loam 0 0 0 0 
Sand- Clay 0.65 0.94 23 35.52 

Sand- Loam 10.84 15.78 131 12.08 
Clay- Loam 0 0 0 0 

Peat- Clay- Loam 0 0 0 0 
Peat- Sand- Clay 3.20 4.65 35 10.95 

Peat- Sand- Loam 3.50 5.1 27 7.71 
Sand- Clay- Loam 0.70 1.01 12 17.27 

Peat- Sand- Clay- Loam 0.63 0.92 4 6.35 
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3 

TOTAL 68.6 [km] 100% 656 
defects - 

Table 26 defect rate for each specific soil type 
 
                                                 
31 Number of defects in the environment where soil data is missing is 30.  
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Figure 7-7: Defect rate associated for each possible soil composition 

 
Figure 7-7 presents the results from the Table 26.  Due to high number of the defects 
distributed along the pipeline A3 the defect rate for each of the soil types is much higher 
than for the remaining pipelines.  In four cases: sand, peat-sand, sand-clay, and peat-
sand-clay- loam both pipelines A1 and A2 have positive defect rate.  The highest defect 
rate is obtained: A1 for peat-sand-clay-loam, A2 for peat-sand-loam, A3 for sand-clay.  
In classify and check if the estimated defects rates are reliable or not, it is required is to 
test how the soil type is distributed in potentially defective and no-defective environment.   
 
Suppose that the soil type A occurs in two different parts of the pipeline, but defects are 
only observable in one of them (the second has none of defects).  Then the defect rate 
won’t be a reliable tool to say which soil type is more likely to be more defective.  The 
additional information that has to be delivered is the information about changes of 
percentage content of the soil type A where the defects are observable and where they 
are not.  To check how much of each soil type is in potentially defective environment and 
how much is not, the assumption about a potentially defective environment has to be 
impressed.   
Suppose that defect j was registered at a certain stationing ][km S j .  The environment 
for this defect is defined as the area surrounding the defects within predefined radius r 
[km] and thus the environment for defect is [ ]rSrSL jjj +−= , .  The radius surrounding 
the defects is chosen to be equal to 250 [m].  This length is motivated by average length 
of the cluster for all the pipelines.  The total length of the environments where all the 
defects were registered is then defined in following way: 

• If defects’ clusters jL  are not disjoint then total length of potentially defective 
environment is: 

|...|......||||...
...||...||||...||||||...||||||

213211

2321312121

nnn

nnn
LLLLLLLL

LLLLLLLLLLLLLT
±+++−−

−−−−−−−−−+++=
−

 

 ± next to the last terms means: “-“ if n is even, and “+” if n is odd.  
 
Table 27 shows length of “potentially defective and not defective environments” 
according to introduced method.   

pipeline total length of the 
pipeline [km] 

Potentially defective 
environment [km] 

Potentially not 
detective 

environment [km] 
A1 86  20.5 65.5 
A2 89  20 64 
A3 69  63.5 5.5 

Table 27: description of the potentially defective and not defective environments 
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Figure 7-8: pipeline A1, potentially defective clusters, or clusters with “bad” 

coating  

 
Figure 7-9: pipeline A2, potentially defective clusters, or clusters with “bad” 

coating 
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Figure 7-10: pipeline A3, potentially defective clusters, or clusters with “bad” 

coating 
In order to compare the difference in soil composition between potentially defective and 
not defective environment, let’s define: 

• D - potentially defective area (on the Figure 7-8, Figure 7-9 and Figure 7-10 D it 
is a set of intervals indicated by red bars) 

• cD - area defined as area complementary to D  
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• A - soil type A, then: 

||
||

||
||

c

c

D
DA

D
DADifference ∩

−
∩

=  

Table 28 below shows percentage content of these two environments:  
 

DEFECTIVE-
Environment 

NOT DEFECTIVE- 
Environment Difference Soil type 

% [km] % [km] % 
Peat 0 0 0.14 0.09 -0.14 
Sand 40.45 8.31 47.7 30.17 -7.25 
Clay 0 0 0.47 0.3 -0.47 
Loam 0 0 0.43 0.27 -0.43 

Peat- Sand 27.61 5.67 21.57 13.64 6.04 
Peat- Clay 0.58 0.12 0 0 0.58 
Peat- Loam 0 0 0 0 0 
Sand- Clay 9.41 1.93 4.02 2.54 5.39 
Sand- Loam 14.7 3.02 21.76 13.76 -7.06 
Clay- Loam 0 0 0 0 0 

Peat- Clay- Loam 0.64 0.13 0.2 0.12 0.44 
Peat- Sand- Clay 4.11 0.84 2.3 1.45 1.81 
Peat- Sand- Loam 1.2 0.25 1.12 0.71 0.08 
Sand- Clay- Loam 0 0 0.29 0.19 -0.29 

Peat- Sand- Clay- Loam 1.3 0.27 0 0 1.3 
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TOTAL 100 20.4  100 63.5 - 
       

Peat 0.8 0.16 0.62 0.4 0.18 
Sand 33.98 6.83 44.59 28.49 -10.61 
Clay 0 0 0 0 0 
Loam 0 0 0 0 0 

Peat- Sand 38.25 7.68 19 12.14 19.25 
Peat- Clay 0 0 0 0 0 
Peat- Loam 0 0 0 0 0 
Sand- Clay 0 0 0 0 0 
Sand- Loam 13.52 2.72 17.57 11.23 -4.05 
Clay- Loam 0 0 0 0 0 

Peat- Clay- Loam 0 0 0 0 0 
Peat- Sand- Clay 0 0 0 0 0 
Peat- Sand- Loam 8.32 1.67 4.41 2.82 3.91 
Sand- Clay- Loam 1.49 0.3 11.28 7.21 -9.79 

Peat- Sand- Clay- Loam 3.64 0.73 2.53 1.61 1.11 
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TOTAL 100  20.1  100  63.9 - 
       

Peat 2.28 1.45 0 0 2.28 
Sand 37.71 23.98 24.91 1.41 12.8 
Clay 0.85 0.54 0 0 0.85 
Loam 0.36 0.23 0 0 0.36 

Peat- Sand 26.89 17.1 34.62 1.96 -7.73 
Peat- Clay 2.46 1.56 21.08 1.19 -18.62 
Peat- Loam 0 0 0 0 0 
Sand- Clay 0.93 0.59 6.5 0.37 -5.57 
Sand- Loam 16.39 10.42 7.43 0.42 8.96 
Clay- Loam 0 0 0 0 0 

Peat- Clay- Loam 0 0 0 0 0 
Peat- Sand- Clay 5.03 3.2 0 0 5.03 
Peat- Sand- Loam 5.02 3.19 5.47 0.31 -0.45 
Sand- Clay- Loam 1.09 0.69 0 0 1.09 

Peat- Sand- Clay- Loam 0.99 0.63 0 0 0.99 
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TOTAL 100 63.6  100 5.7 - 
Table 28: comparison of potentially “defective” and “not defective” environments 
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Figure 7-11: percentage difference between soil composition vs. defect rate (pipeline A1) 
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Figure 7-12: percentage difference between soil composition vs. defect rate (pipeline A2) 
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Figure 7-13: percentage difference between soil composition vs. defect rate (pipeline A3) 

 
The Figures Figure 7-11, Figure 7-12 and Figure 7-13 show the relation between 
differences in soil composition for potentially defective and not defective environments.  
“Other soil types” indicates all the remaining soil types.  According to the established 
technique, the general conclusion is that it is difficult to find clear pattern combining data 
from all the pipelines.  However, certain matches are visible: for both A1 and A2 there is 
much more peat-sand in potentially defective environments and much more sand and 
sand-loam in potentially not-defective environment.  There is no clear match between A3 
and the others. 
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7.4.2 Defect rate- Approach 2 
Before it was assumed that environment without defects is potentially not corrosive 
environment.  This might be not the case.  Many of excavations showed that existence 
of microbial corrosion was associated with coating damage.  Here, different way of 
looking at the defect rate estimation is presented.  In the previous section uniform 
coating along the pipeline was assumed.  Now, the assumption is following: 
 
Assumption 
Assume that the pipeline consists of two different qualities of the coating “good” 
(without defects) and “bad” (with defects).  Bad coating of the pipeline is defined 
in the same way as for “potentially defective environment” from previous section.    
 
The second approach tries analyzing the pipelines defect rate only in the sections where 
bad coating was applied.   
.   
Below in the Table 29, summary of the results is presented.   
 

 Pipeline A1 Pipeline A2 Pipeline A3 
Exposure of 

“bad” 
coating 

Def. rate 
for “bad” 
coating 

Exposure of 
“bad” 

coating 

Def. rate 
for “bad” 
coating 

Exposure 
of “bad” 
coating 

Def. rate for 
“bad” coating Soil type 

[km] [def/km] [km] [def/km] [km] [def/km] 
Peat 0 0 0.16 0 1.45 10.34 
Sand 8.31 6.02 6.83 10.54 23.98 9.51 
Clay 0 0 0 0 0.54 9.26 

Loam 0 0 0 0 0.23 4.35 
Peat- Sand 5.67 4.59 7.68 13.54 17.1 9.82 
Peat- Clay 0.12 0 0 0 1.56 4.49 

Peat- Loam 0 0 0 0 0 0 
Sand- Clay 1.93 3.63 0 0 0.59 38.98 

Sand- Loam 3.02 1.99 2.72 5.51 10.42 12.57 
Clay- Loam 0 0 0 0 0 0 

Peat- Clay- Loam 0.13 0 0 0 0 0 
Peat- Sand- Clay 0.84 2.38 0 0 3.2 10.94 
Peat- Sand- Loam 0.25 0 1.67 22.75 3.19 8.46 
Sand- Clay- Loam 0 0 0.3 20 0.69 17.39 
Peat- Sand- Clay- 

Loam 0.27 3.7 0.73 2.74 0.63 6.35 

TOTAL 20.4 - 20.1   63.6   
Table 29: defect rate for sections where bad coating was applied 

 
Figure 7-14 defect rate for sections where “bad” coating was applied vs. soil types 
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The highest defect rate for pipeline A1 is obtained for sand, A2 sand-clay-loam and A3 
for sand-clay.   

7.4.3 Correlation analysis 
Techniques introduced before allow checking what the correlations between all the 
pipelines wrt soil types and corrosion defects are.   

7.4.3.1 Correlation between soil exposures  
Let’s define:  

• 1AX , 2AX , 3AX - percentage of the pipeline exposed to every soil type for the 
pipelines A1, A2 and A3, (i’th coordinate of the vector ...AX  describes percentage 
of the pipeline exposed to i’th soil type, number of i’s is 1332) 

Pipeline Pρ  (Pearson corr)33 p-value Sρ  (Spearman corr) p-value 

A1-A2 0.96 0.001 0.47 0.1 
A1-A3 0.97 0.001 0.58 0.03 
A2-A3 0.96 0.001 0.73 0.005 
Table 30: correlation between soil compositions of the pipelines 

 
p-value in the table is associated with following null hypothesis 

0),(:0 =ji XXH ρ  against 0),(:1 ≠ji XXH ρ  

7.4.3.2 Correlation between defect rates wrt soil types 
Let’s define:  

• 1AX , 2AX , 3AX - -defect rate vectors for the pipelines A1, A2 and A3 (i’th 
coordinate of the vector ...AX  describes defect rate for i’th soil type, number of i’s 
is 1332) 

Pipeline Pρ  (Pearson corr)33 p-value Sρ  (Spearman corr) p-value 

A1-A2 0.004 0.98 0.32 0.28 
A1-A3 0.21 0.50 0.27 0.37 
A2-A3 -0.11 0.72 0.01 0.95 

Table 31: correlation between defect rates of the soil types for pipelines 

7.4.3.3 Correlation between defect rates wrt soil types where bad coating was 
assumed 

• 1AX , 2AX , 3AX - -defect rate vectors for the pipelines A1, A2 and A3 for the 
areas of the pipelines where “bad” coating was assumed (i’th coordinate of the 
vector ...AX  describes defect rate for i’th soil type within the pipeline where bad 
coating was used, number of i’s is 1332) 

Pipeline Pρ  (Pearson corr)33 p-value Sρ  (Spearman corr) p-value 

A1-A2 0.08 0.79 0.27 0.38 
A1-A3 0.3 0.31 0.32 0.28 
A2-A3 0.04 0.90 0.22 0.47 

Table 32: correlation between defect rates of the soil types for pipelines, in the clusters 
where bad coating was applied 

                                                 
32 The number of all possible component combinations is 15; however peat-loam and clay-loam are not 
registered at all.  
33 Normality condition for Pearson correlation coefficient is satisfied 
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7.5 Conclusions and recommendations 
The analysis in this chapter was based on three high pressure pipelines for which 
excavations showed existence of MIC.   
 
Conclusions  
Overall conclusions from presented approaches are following.   
 

• there is no significant correlation between defect rates and soil types 
• there is no significant correlation between defect rates and soil types in the 

places where “bad” coating was assumed 
• the highest defect rates are  

o all the pipeline  
 pipeline A1: in mixture of peat-sand-clay-loam (3.75 [def/km] it is 

about 41% of all the corrosion defect rates) 
 pipeline A2: in mixture of peat-sand-loam (8.46 [def/km] -46% of 

total corrosion defect rates) 
 pipeline A3: in mixture of sand-clay (35.52 [def/km]- 26%) 

o pipeline in the area with “bad” coating was assumed 
 pipeline A1: in sand (6.02 [def/km]- 27%) 
 pipeline A2: in mixture of peat-sand-loam (22.75 [def/km]- 30%) 
 pipeline A3: in mixture of sand-clay ( 38.98 [def/km]- 27%) 

• For both the pipelines A1 and A2 there is much more peat-sand, and peat-sand-
clay-loam and much less sand and sand-loam in the areas where “bad” coating 
was assumed 

• Pipeline A3 doesn't show any pattern wrt the other pipelines 
 
An explanation for lack of correlations (high uncertainty) may be due to 

• high uncertainty of the soil measurements 
• lack of data on coating quality- certain assumptions about “good” and “bad” 

coating had to be imposed 
• lack of data about quantitative amount of soil components in the soil samples 

 
Recommendations: 

• The analysis was based on three pipelines, if this is the case, all the pipelines 
where MIC was reported should be analyzed in order to get better pattern. 

• Deeper investigation of assumption about “good” and “bad” coating is required.   
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Chapter 8 
 

8 Water table analysis 
 

8.1 Introduction  
This chapter is dedicated to groundwater table (level) analysis.  The data on water levels 
were collected from the “soil map of the Netherlands”.  The maps show the “average min 
and max ground water levels”.  Unfortunately, the data are not accurate, mainly because 
of following features: only rough estimate is presented (groundwater level step 
classification data), maps do not present exact water level for a specified stationing.  The 
data were not delivered in a digital form but were collected directly from the water table 
map by the author.  
 
The legend in the maps is following: 
 

Groundwater level step classification data 
Groundwater step I II III IV V VI VII 
Average of the highest 
groundwater level in cm below 
the ground 

- - <40 >40 <40 40-80 >80 

Average of the lowest 
groundwater level in cm below 
the ground 

<50 50-80 80-120 80-120 >120 >120 >120

Table 33: ground water step levels (legend) 
 
The data was collected simply by projecting the pipeline profile on the groundwater level 
map and the values of groundwater step levels were collected.  The data shows that it is 
quite difficult to indicate precisely what the groundwater level for a given stationing is.  
This is mostly due to pipeline shape (it is difficult to calculate pipeline’s length using only 
the map), and the map itself (maps are constructed based on contour plots).   
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For simplification the pipelines were divided into 2.5 [km] long sections.  For each of the 
section average groundwater class was calculated.  The analysis is aimed to check the 
relationship between the number of defects and the water level for the associated 
sections.   

8.2 Approach 1 
The figures below: Figure 8-1, Figure 8-2 and Figure 8-3 consist of two parts.  The plot 
on the top shows the number of defects per each segment of length 2.5 [km], and the 
bottom plot presents the groundwater step level for the corresponding section.  From the 
available maps it was difficult to associate groundwater step levels for narrower sections.   
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Figure 8-1: A1- no. of defects vs. water level per 2.5 km long sections  
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Figure 8-2 A2- no. of defects vs. water level per 2.5 km long sections 
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Figure 8-3: A3- no. of defects vs. water level per 2.5 km long sections 
 
Table 34 shows summary of available groundwater level data.   

Pipeline Number of 
samples Minimum Maximum Average 

A1 35 3 6 5 
     

A2 36 3 6 5 
     

A3 28 1 6 4 
     

Table 34: groundwater step level summary per each section of 2.5 km 
 

Pipeline Number of 
samples Minimum Maximum Mean Std. 

Deviation 
A1 35 0 5.6 1.1 1.4 

      
A2 36 0 39.6 2.88 7.2 

      
A3 28 2 22 9.37 5.1 

      
Table 35 defect rate summary- per each section of 2.5 km 

 
Figure 8-1 and Figure 8-2 show that in the places where groundwater level is high (it is 
indicated by low step number) the number of the defects is also high.  In order to verify 
this pattern for all the pipelines let’s define: 

• X- defect rate per each section of 2.5 [km] 
• Y- average groundwater step level for each 2.5 [km] long section 

The hypothesis that has to be tested is of the following form: 
0),(:0 =YXH ρ  against 0),(:1 ≠YXH ρ  

Table 36 below shows the results for correlations: Pρ - Pearson correlation, Sρ - 
Spearman correlation and Kρ - Kendall correlation, and also associated p-values for all 
the pipelines.  
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Pipeline Pρ 34 p-value Sρ  p-value Kρ  p-value 

A1 -0.1 0.7 -0.12 0.55 -0.09 0.5 
       

A2 -0.32 0.05 -0.24 0.15 -0.19 0.17 
       

A3 0.30 0.12 0.31 0.1 0.22 0.13 
Table 36 correlation between defect rate and water level for sections of 2.5 km 

 
The results presented in the table confirm the suspicion.  The groundwater step level for 
the pipelines A1 and A2 is negatively correlated with the defect rate.  However this 
correlation is not statistically significant.  For A3 there is no significant relationship 
between the defect rate and groundwater step level.   
Overall conclusion is following: according to the introduced methodology there is weak 
correlation between defect rate and groundwater step level.   

8.3 Approach 2 
For the pipelines A1 and A2 it seems that there are many areas where zero or only one 
defect was reported.  So the pipeline will be analyzed with respect to these sections.  
The first feature will be indicated as presence of the defects, and the second by defects 
absence.  Let’s define: 

• X- groundwater step level vector for area where only 0 or 1 defect was observed 
• Y- groundwater step level vector for area where more than 1 defects were 

observed 
The task is to check if the difference between averages of groundwater levels for defined 
variables is statistically significant.  So define the hypothesis as: 

YXYXH =⇔=− 0:0  against the alternative YXH ≠:1  
 

pipeline Variables df t-statistic p-value for t-
test 

Lower 95% bound 
(for difference) 

Upper 95% bound 
(for difference) 

A1 X-Y 32 0.18 0.85 -0.59 0.71 

A2 X-Y 34 1.55 0.13 -0.16 1.17 

Table 37: statistics and confidence bounds for estimate (pipeline A1 and A2) 
 
The results show that for a significance level 05.0=α  the null hypothesis cannot be 
rejected.  It means that averages of groundwater step levels of the environments with 
and without defects are not statistically different.   
Beneath in the Table 38 small description of the groundwater levels for “defective” and 
“no defective” environments is presented.   
 

pipeline Descriptive 
Statistic 

Number of 
samples 

Min. 
groundwater 

step 

Max. 
groundwater 

step 
Mean 

groundwater step 

X 17 3 6 5 
A1 

Y 17 3 6 5 

X 21 3 6 5 
A2 

Y 15 3 6 4 

Table 38: descriptive statistics (pipelines A1 and A2) 

                                                 
34 The analysis showed that the normality assumption for the variable “number of defects per cluster” is not 
satisfied.  
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The results from the presented idea did show insignificant relationships.   

8.4 Approach 3 
Next approach which can be applied to the water table analysis is carried out by coding 
the groundwater steps levels.  The Table 33 shows that first five steps (I, II, III, IV, V) can 
be associated with high groundwater level (and coded as 0) and other two (VI and VII) 
with low groundwater level (and coded as 1).  The Figure 8-4, Figure 8-5, and Figure 8-6 
below present how coded average groundwater step levels are associated with the 
number of defects for each 2.5 km long clusters. 
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Figure 8-4: number of defects vs. coded groundwater level (pipeline A1) 
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Figure 8-5: number of defects vs. coded groundwater level (pipeline A2) 
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Figure 8-6: number of defects vs. coded groundwater level (pipeline A3) 

The hypothesis which has to be verified is following: the average number of defects for 
average groundwater step level coded by 0 and 1 is significantly different against 
alternative that it is not.  Necessary definitions are following: 

• X- number of defects where average groundwater step level is coded as 0 
• Y- number of defects where average groundwater step level is coded as 1 

A mathematical formulation of hypothesis is following: 
YXYXH =⇔=− 0:0  against the alternative YXH ≠:1  

 

pipeline Variables df t-statistic p-value for t-
test 

Lower 95% bound 
(for difference) 

Upper 95% bound 
(for difference) 

A1 X&Y 32 1.07 0.29 -1.45 4.67 

A2 X&Y 34 0.76 0.45 -9.97 21.96 

A3 X&Y 26 -1.05 0.30 -16.0 5.16 

Table 39: statistics and confidence bounds for estimate (pipelines A1, A2 and A3) 
 

pipeline Descriptive 
Statistic 

Number of 
samples 

Min. no. of 
defects 

Max. no. of 
defects  

Average no. of 
defects 

X 27 0 14 3.04 
A1 

Y 7 1 3 1.42 

X 28 0 99 8.42 
A2 

Y 7 0 6 2.42 

X 19 5 55 21.68 
A3 

Y 9 12 50 27.11 

Table 40: descriptive statistics (pipelines A1, A2 and A3) 
 
The Table 39 and Table 40 show that for A1 and A2 the average number of defects 
where groundwater step level is 0 (groundwater level is high) is higher than for the area 
where groundwater step level is 1 (groundwater is relatively lower); however this 
difference is not statistically significant35.  In the case of A3 the there is no evidence to 
distinguish between the numbers of defects for coded groundwater levels.   
Also this approach showed weak correlation between groundwater level and defect rate.   

                                                 
35 This is due to high variability of the number of defects for groundwater step level coded as 0. 
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8.5 Conclusions and recommendations 
The analysis didn't show that the groundwater levels in a statistically significant way 
influence the number of defects.  The results may be not accurate since the pipelines 
were divided in sections of 2.5 [km].  However, the pipeline division in smaller segments 
is a challenging task since the data is not available in an electronic form, but available 
only directly from the maps.  Analysis showed that for pipelines A1 and A2 higher 
groundwater level is positively correlated with the number of defects (more water - more 
defects); however these results according to statistical evidence are not strong enough. 
The Table 41 below shows small overall summary of the results. 
 

Pipeline Total number of defects average groundwater step 
level 

A1 93 5 
A2 267 5 
A3 657 4 

Table 41: defects and average groundwater level 
 
All three pipelines were installed in the 60s however the number of defects for each of 
them is very different.  Comparison of the number of defects and the average 
groundwater step level shows that the highest number of defects for the A3 is associated 
with the highest groundwater level (lowest groundwater step level).   
 
Recommendations 
Deeper investigation of the groundwater levels is required.  Because of the pipeline 
profile it was too difficult to collect the groundwater level for any given pipeline stationing.  
Precise approximate of the groundwater level for any given stationing would significantly 
increase the accuracy of the results.   
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Chapter 9 
 

9 Factors influencing defect rate 
 

9.1 Introduction  
This chapter proposes the way of the defect rate modeling given all available 
measurements.  Factors which are available are: 

• groundwater level,  
• soil types,  
• NAP level of the ground,  
• NAP level of the pipeline and  
• depth of cover  

The methodology used in this chapter is based on the regression analysis where the 
dependent variable is defect rate and independent variables are all the factors which 
may influence the defect rate.  The regression analysis is based on a number of 
observations which describe the variable of interest.  In order to define such 
observations a pipeline discretization is required.  The question which has to be 
answered is in how long segments the pipeline should be divided.  Here, the same as in 
the previous chapter – water table analysis -- the pipeline will be divided in 2.5 [km] long 
sections (according to the groundwater level measurements).  In this study two general 
approaches will be presented.   
First, let's define two models.  

• model without interactions 
 

Model 3 
εβββ ++++= nn XXY ...110  

 
• model with interactions up to second degree 
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Model 4 
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where: 
o Y- variable of interest- defect rate [no. of defects per km] calculated for 

each section of 2.5 [km] 
o iX - independent variables: 

 peat, sand, clay, loam, peat-sand, peat-clay, peat-loam, sand-clay, 
sand-loam, clay-loam, peat-clay-loam, peat-sand-clay, peat-sand-
loam, sand-clay-loam, peat-sand-clay-loam which are described 
as percentage content of each section for each 2.5 [km] (each 
value says –“percentage of each soil type is in each section”) 

 groundwater step level (calculated as average for each section of 
2.5 [km])  

 NAP level of the ground (average for each section)  
 NAP level of the pipeline (average for each section) 
 depth of cover (average for each section) 

o n is associated with the number of variables which is equal to 19 
(according to number of available variables) 

9.2 Model without interactions 
 
For the defined Model 3, in order to get the best possible combination of parameters 
which describe defect rate a stepwise regression36 is applied.   
The Model 3 is concerns each of the pipelines to check which parameters for each 
pipeline are significantly influencing the defect rate.  Moreover, the model also is used to 
the pipelines combinations.  The idea behind such combinations is to find the common 
parameters influencing the defect rate for all the pipelines.  Table 42 and Table 43 below 
show standard statistics of the estimated coefficients.  Stepwise regression output is a 
set of statistically significant variables influencing criterion variable which is defect rate.  
All the variables not included in the tables are insignificant in the modeling.   
For the pipeline A1 there are no significant parameters describing the defect rate.  For 
the A2 the most relevant variables are percentage amount of peat-sand and peat, and 
for A3, sand-clay and sand-loam.  For A1 combined with A2 the most relevant is peat-
sand (it means that peat-sand is a common factor influencing the defect rate for these 
two pipelines).  And for combination of three pipelines A1, A2 and A3 the most relevant 
variables are percentage amount of sand-loam and NAP level of the ground (these 
variables are common variables for all the three pipelines).   
 
 
 
 
 

                                                 
36 See chapter: analysis methods and interpretation- appendix A 
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Coefficients 
95% Confidence 
Interval for iβ  

 
The parameters which 
are significant for the 
defect rate modeling  

iβ̂  
Std. 
Error 

t- stat. p-value 
for t-stat. L. 

Bound 
U. 
Bound 

A137 None of parameters is included 

(Constant) -0.16 0.76 -0.21 0.84 -1.71 1.4 

Peat-sand 0.11 0.03 4.23 ε  0.06 0.16 A238 

peat -0.67 0.28 -2.34 0.03 -1.25 -0.08 

(Constant) 7.846 0.97 8.03 ε  5.83 9.86 

Sand-clay 0.55 0.16 3.39 0.002 0.21 0.88 A339 

Sand-loam 0.08 0.03 2.35 0.03 0.01 0.15 

(Constant) 0.45 0.46 0.98 0.33 -0.46 1.36 
A1-A240 

Peat-Sand 0.044 0.01 3.21 0.002 0.02 0.07 

(Constant) 6.93 0.76 9.1 ε  5.4 8.4 

NAP level of the ground -0.60 0.09 -6.36 ε  -0.79 -0.41 A1-A2-A341 

Sand-loam 0.08 0.03 3.15 0.002 0.03 0.13 

Table 42 Stepwise regression estimates (model without interactions) 
 
The Table 43 below associates the estimated models and the multiple correlation 
coefficient ( 2R ), which describes level at which the variance of dependent variable is 
described.   
In all the cases 2R is relatively low- it doesn't exceed the level of 40%.  This can be 
caused by uncertainty about the measurements or by the variables which are relevant 
but were not included in the model.    
 

Statistics PIPELINE Number of obs. 2R  Adjusted 2R  F statistics p-value for F test 
A1 34 - - - - 

A2 32 0.38 0.34 9.01 0.001 

A3 27 0.39 0.33 7.54 0.003 

A1-A2 66 0.14 0.13 10.3 0.002 
A1-A2-A3 93 0.31 0.30 20.26 ε 42 

Table 43: standard model statistics (model without interactions)  
 
 
 

                                                 
37 A1: The following variables are constants or have missing correlations, so will be deleted from the 
analysis: peat-loam, clay-loam 
38 A2: The following variables are constants or have missing correlations, so will be deleted from the 
analysis: Clay, Loam, peat-clay, peat-loam, sand-clay, clay-loam, peat-clay-loam, and peat-sand-clay.   
39 A3: The following variables are constants or have missing correlations, so will be deleted from the 
analysis: peat-loam, clay-loam, peat-clay-loam 
40 A1-A2: The following variables are constants or have missing correlations, so will be deleted from the 
analysis: peat-loam, clay-loam 
41 A1-A2-A3: The following variables are constants or have missing correlations, so will be deleted from the 
analysis: peat-loam and clay-loam 
42 ε  stands for number smaller than 0.0001 
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9.3 Model with interactions 
Second model is a model with interactions; it means that except all main effects, also 
interactions between effects are taken into account.  This is idea is motivated by a well 
known fact that MIC corrosion is not only influenced by closed number of main effects.   
 

Coefficients 
95% Confidence 

Interval for iβ  

 
The parameters which are 
significant for the defect rate 
modeling  

iβ̂  
Std. 
Error 

t- stat. p-value 
for t-stat. 

L. Bound U. Bound 

(Constant) 0.76 0.27 2.82 0.01 0.21 1.31 

Depth of cover * depth of cover 38.525 7.79 4.94 ε  22.6 54.5 

(sand-clay-loam) * depth of cover -3.74 0.92 -0.76 ε  -5.61 -1.90 
A1 

Sand * Sand -0.001 ε  -2.22 0.03 -0.001 -ε  

        

(Constant) 1.56 0.06 2.48 0.02 0.27 2.86 

Peat*(NAP level of the pipeline) 0.18 0.05 3.82 0.001 0.08 0.28 

Peat-sand 0.07 0.03 2.39 0.024 0.01 0.121 
A2 

(peat-sand) * (NAP level of the 
ground) -0.01 0.01 -2.54 0.02 -0.02 -0.003 

        

(Constant) 11.56 0.92 12.5 ε  9.65 13.5 

(sand-clay) * (sand-clay-loam) -0.43 0.12 -3.59 0.002 -0.67 -0.18 

Sand * sand -0.002 0.001 -3.38 0.003 -0.004 -0.001 
A3 

(peat-clay-sand-loam) * (peat-clay-
sand-loam) -0.08 0.03 -2.39 0.03 -0.14 -0.01 

        

(Constant) 1.35 0.29 4.66 ε  0.77 1.9 
(Peat-sand) * (groundwater step 
level) 0.01 0.002 4.64 ε  0.006 0.015 A1-A2 

Peat-sand 0.05 0.01 3.87 ε  0.02 0.07 

        

(Constant) 5.02 0.59 8.45 ε  3.84 6.20 

NAP level of the ground -0.61 0.09 -6.89 ε  -0.79 -0.43 

Sand-loam 0.08 0.02 3.27 0.02 0.03 0.13 
(Sand-loam) * (NAP level of the 
pipeline) -0.01 0.004 -2.24 0.03 -0.02 -0.001 

(Peat-sand ) * (groundwater step 
level) 0.008 0.003 2.78 0.007 0.002 0.01 

A1-A2-A3 

Sand * sand -0.001 0.001 -2.30 0.024 -0.002 -ε  

Table 44 Stepwise regression estimates (model with interactions) 
 
The Table 44 above shows which of the variables from the Model 4 are significant in the 
defect rate modeling.  Interesting is that for the most of the cases (the pipelines and 
pipeline combinations) the most relevant variables included in the model are interactions.  
Only in two cases main effects were included in the model.   
The Table 45 below shows that now 2R  is higher than before for model with only main 
effects.  However, the 2R  still is very low- what indicates poor correlation.   
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Statistics PIPELINE Number of obs. 2R  Adjusted 2R  
F statistics p-value for F test

A2 32 0.55 0.50 11.28 ε  

A1 34 0.47 0.42 9.82 ε  

A3 27 0.60 0.55 11.4 ε  

A1-A2 66 0.36 0.34 17.56 ε  

A1-A2-A3 93 0.43 0.39 13.0 ε  

Table 45: standard model statistics (model with interactions) 

9.4 Conclusions and recommendations  
The analysis showed that much more relevant for the modeling the defect rate is looking 
at interactions than on main effects.   
According to the introduced methodology the significant parameters (with strong 
correlation) which describe the defect rate are: 
 

• For the pipeline A1: 
o sand (insignificant negative correlation) 
o interactions between  

 sand-clay-loam with depth of cover (insignificant negative 
correlation) 

 depth of cover with depth of cover ( mid. positive correlation 
with the defect rate) 

• For the pipeline A2: 
o Interactions between: 

 peat and NAP level of the pipeline ( insignificant positive 
correlation) 

 peat-sand and NAP level of the ground (mid. negative 
correlation) 

o Peat-sand (mid. positive correlation)  
• For the pipeline A3: 

o Interactions between: 
 Sand-clay with sand-clay-loam (mid. negative correlation) 
 Sand with sand (mid. negative correlation) 
 Peat-clay-sand-loam with peat-clay-sand-loam (insignificant 

negative correlation) 
• Common factors for A1 and A2 

o Peat- sand (mid. positive correlation) 
o Interaction between 

 Peat-sand with peat-sand-loam (mid. positive correlation) 
• Common factors for A1, A2 and A3 

o NAP level of the ground (mid. negative correlation) 
o Sand-loam ( insignificant correlation) 
o Interactions between: 

 Sand-loam with NAP level of the pipeline (weak negative 
correlation) 

 Peat-sand with groundwater step level (weak positive 
correlation) 

 Sand with sand (insignificant negative correlation) 
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Recommendations 
The analysis showed that the parameters included into regression model do not fully 
describe defect rate - this is indicated by low R2.  Two main reasons which have to be 
deeper investigated are:  

o measurement error- there is a lot of uncertainty in the data, the uncertainty can 
be reduced by analyzing other pipelines where MIC was reported in order to get 
more general common factors influencing MIC defect rate  

o other influencing factors which were not taken into account (this should be 
verified as well) 

o pipelines were divided in 2.5 km long sections according to groundwater data, 
further investigation should be aiming at getting more narrower sections 
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Chapter 10 
 

10 Conclusions  
The thesis conducts an analysis on corrosion modeling for underground gas pipelines in 
the Netherlands.  Each of the divisions incorporates certain knowledge about corrosion.  
Furthermore all the parts combined together deliver information about the whole process 
of corrosion rate/defect modeling. 
 
First part showed the procedure of the corrosion rate modeling when low number of 
inspections is available.  Implemented model shows that in order to determine reliable 
uncertainty and bias about MFL-pigs it is very important to have multiple reference 
defects in the pipeline, defects for which the real dimensions are well known (ex. from 
excavations).  Because of the measurement uncertainty of the MFL-tool it dominant 
compared to the corrosion growth in the time period between the pigruns, it is very 
difficult to determine a reliable corrosion rate per defect.  Model proposed in first section 
showed the way to calibrate all the inspecting pigs and how to derive physically 
acceptable functional description of corrosion growth.  Assuming constant corrosion rate 
the model estimated average corrosion rate of level 0.24 [mm/yr] with upper bound value 
of 0.62 [mm/yr].   
 
The assumption that the corrosion process is linear was underpinned by the analyses of 
two subsets: deep and shallow defects. For both subsets a similar average corrosion 
rate was calculated: 0.23 mm/yr and 0.25 mm/yr.  The difference is not significant. 
 
Since the corrosion rates have been determined, Gasunie will have to decide how to use 
these values for the calculation of a re-inspection interval for this line.  The calculation 
will probably be done in a deterministic way for every defect, taking into account 
measurement uncertainties and the uncertainty of the corrosion rate.  
 
Second section of the thesis incorporated results from the previous one in order to find 
factors influencing the corrosion rate.  The analysis was performed based partially on 
bio-assessed measurements and partially using pipeline integrity management system.  
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The study based on regression analysis showed importance of having additional 
measurements.  It has been shown that much more influencing for the corrosion rate are 
interactions between the variables than main effects.  For incorporated set of 19 
variables, two of them (SRB-A and SRB-B) were insignificant and due to missing data 
were removed from further analysis.  According to applied sensitivity measures the most 
influential for the corrosion rate is variable describing pipeline wrt NAP level (positive 
correlation), then accordingly to importance: interactions between redox and water level 
(negative correlation), TOC and pipeline wrt NAP level (positive correlation), oxygen and 
pH (positive correlation), methane and SP (positive correlation) and final one MCA 
squared (negative correlation).  The number of available observations plays crucial role 
in the modeling.  Most analysts recommend that one should have at least 10 to 20 times 
as many observations as one has variables, otherwise the estimates of the regression 
are probably very unstable and unlikely to replicate if one were to do the study over.  In 
the study number of included variables was 5 and 16 was a number observations.  So, 
clearly final results cannot be used as reliable predictive tool.   
 
Third and the last section demonstrated the ideas of defect rate modeling for a MIC 
influenced pipelines.  Three pipelines affected by MIC were analyzed.  Firstly, the soil 
type analysis was performed.  Two of the pipelines A1 and A2 showed that in the areas 
where “bad” coating was assumed is much more peat-sand, and peat-sand-clay-loam 
and much less sand and sand-loam.  Third pipeline A3 didn't show any significant 
pattern since the a whole pipeline is affected by corrosion.  Applied correlation analysis 
didn't show significant correlations between soil types and defect rates for all the 
pipelines.  Because of lack reliable measurements also groundwater analysis didn't 
show any significant correlations, between groundwater levels and number of defects.  
However, all the data combined together and applied to regression analysis showed 
certain patterns.  Similarly like for the corrosion rate, the defect rate is much stronger 
influenced by interactions than by main effects.  The defect rate modeled in this chapter 
showed that common factors influencing all three pipelines, A1, A2 and A3 are: NAP 
level of the ground (negative correlation), and sand mixed with loam (positive correlation) 
then interactions between: mixture of sand-loam and NAP level of the ground (negative 
correlation), mixture of peat-sand and groundwater step level (positive correlation) and 
sand squared (negative correlation).  It was showed that pipeline A3 is much more 
different from the others.  The parameters influencing the defect rate for both remaining 
pipelines A1 and A2 are: peat mixed with sand (positive correlation) and interaction 
between mixture peat-sand and groundwater step level (positive correlation).   
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Appendix A 
 
A: Analysis methods and interpretation 
 
Definition 1 (Random Variable) 
Let F be a −σ algebra and Ω the probability space.   
A function RFX →Ω ),(: is a random variable if for every subset { }kXAk ≤= )(: ωω  
where Rk ∈ , the condition FAk ∈ satisfies. 
 
Definition 2 (The Likelihood Function) 
Let ),,( 1 nXXX K= be a random vector (random variable on n components) and  
{ }Θ∈θθ :)|(xf X  a statistical model parameterized by ),,( 1 kθθθ K= , the parameter 
vector on the parameter space Θ .   
The likelihood function is a map RL ∈→Θ ]1,0[:  given )|()|( θθ xfXL X= .  The 
likelihood function is functionally the same in form as a probability density function (the 
emphasis is changed from X to the θ ).  
 
Definition 3 (A maximal Likelihood estimate) 
The parameter θ̂  for such )|()|ˆ( XLXL θθ ≥  Θ∈∀θ  is called a maximal likelihood 
estimate (MLE) of .θ   
 
Remark 1 

Many of density functions are smooth functions (exponential), hence it is very 
comfortable to transform them to the log-likelihood function (any strictly 
monotonic transformation preserves function’s extremes).  

 
Definition 4 (The Normal distribution) 
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We say that X is normally distributed random variable with mean μ  and standard 
deviation σ  if its distribution function is following: 

dxetF
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The density curve is symmetrical, centered about its mean, with its spread determined 
by its standard deviation. 

• Maximal Likelihood estimation of parameters 
Suppose that ( )nXXX ,,1 K=  is random vector and nXX ,,1 K are i.i.d. 
(independently and identically distributed), normally distributed random variables 
with the expectation μ  and variance 2σ .  In order to find estimators of unknown 
parameter ),( 2σμθ =  we apply the maximal likelihood estimate method.   
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The log-likelihood function is: 
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In order to find extremes we compute gradient '|)|( θθ Xl what gives: 
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Setting 0|)|( ' =θθ Xl  (first order condition) we get: 
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Finally, to know whether θ̂  is indeed the MLE we need to check that second 
order derivatives are negative.   

Estimated parameter )ˆ,ˆ(ˆ 2σμθ =  is indeed the MLE estimator. 

 

Definition 5 (The Beta distribution) 
We say that X is standard beta distributed a random variable with parameters α  and 
β if its distribution function is following: 
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• Maximal Likelihood estimation of parameters 
Using the same procedure as before we can easily derive MLE estimator 

)ˆ,ˆ(ˆ βαθ =  for the standard Beta distribution, the results are shown below: 
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where X -customary means mean.  
 

Definition 6 (The Gamma distribution) 

We say that X is gamma distributed a random variable with parameters α  and β if their 
distributions function is following: 

∫ −−

Γ
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t
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where )(αΓ is a gamma function introduced in previous definition.  
• Maximal Likelihood estimation of parameters 

Also in a case of a Gamma distribution we can easily derive MLE estimator of 
unknown parameter )ˆ,ˆ(ˆ βαθ = , the results is following: 

∑
=

−
= n

i
i XXn

X

1

2)(/1
α̂  and 

2

1

2)(/1

ˆ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=

∑
=

n

i
i XXn

Xβ  

 
Definition 7 (Expected value) 
If X is a random variable defined on a probability space ),,( PFΩ  then the expected 
value of X (denoted as EX) is defined in following way: 

∫
Ω

= XdPEX  

where integral is in the meaning of Lebesgue.   
In case when random variable X admits a probability density function )(xf  then the 
expected value is: 

∫
+∞

∞−

= dxxxfEX )(  
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When X is a discrete random variable with values nxx K,1 and corresponding 
probabilities npp ,,1 K  then: 

∑
=

=
n

i
ii pxEX

1
 

 
Definition 8 (P-value) 
The p-value is the probability that sample could have been drawn from the population(s) 
being tested given the assumption that the null hypothesis is true. A p-value of 0.2, for 
example, indicates that we would have a 20% chance of drawing the sample being 
tested if the null hypothesis was actually true.   
 
Definition 9 (Kolmogorov- Smirnov – two samples test) 
The Kolmogorov-Smirnov two-sample test is a test of the null hypothesis that two 
independent samples have been drawn from the same population (or from populations 
with the same distribution).  The test uses the maximal difference between cumulative 
frequency distributions of two samples as the test statistic.  The main idea behind the 
test is to compare the proportion of the values less than certain level x between two 
sample sets.  The test checks what the maximal difference between proportions is.  The 
test doesn’t require that samples are the same size.  According to Kolmogorov- Smirnov 

the test is reasonably accurate for sample sizes 1n  and 2n  when 4
21

21 ≥
+ nn
nn

.   

The procedure is following: for random vectors 1X  and 2X  with respectively number of 
samples 1n  and 2n  

x∀  ( ) ( ){ }||max
21

xFxFD XX −=  
The usual way of carrying out the two-sample test is to compute the p-value directly from 
the test statistic, with no need to compare it to a critical value. This is an example 
presented in “Nonparametric Statistical Methods” by Hollander & Wolfe. So, the idea is 
to Compute the asymptotic p-value approximation and accept or reject the null 
hypothesis on the basis of the p-value. The direct formula for a two sided test p-value is 
expressed in the following way: 

∑
∞

=

−−−=−
1

21 22

)1(2
k

kk evaluep λ  where )0,)/11.012.0max(( Dnn ++=λ  and 

)( 21
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Definition 10 (Kolmogorov- Smirnov - goodness of fit test) 
The Kolmogorov- Smirnov test (K-S test) can be used to decide whether a sample 
comes from a population with specified distribution.  An attractive feature of this test is 
that the distribution of the K-S test statistic itself does not depend on the underlying 
cumulative distribution function being tested.  Another advantage is that it is an exact 
test (the chi-square goodness-of-fit test depends on an adequate sample size for the 
approximations to be valid).  Despite these advantages, the K-S test has several 
important limitations:  

1. It only applies to continuous distributions. 
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2. It tends to be more sensitive near the center of the distribution than at the tails.  

The K-S test procedure of testing is following: 
1. Specify distribution 0F - associated with theoretical distribution function 
2. Order samples in non-decreasing manner 

3. Calculate ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −=

≤≤≤≤ n
iXFXF

n
iD iniini

1)(max,)(maxmax 0101
  

4. Calculate critical and p-value  
a) for small samples (less than 20), we use the direct values from tables 
b) for sample size larger than 20 Miller’s formula is applied: 

nC /)ln(5.0 α−=  
c) the direct formula for p-value is given by the same formula as in 

definition no. 9 
 

Definition 11.1 (Product moment correlation) 
The correlation YX ,ρ between two random variables X and Y with expected values Xμ  

and Yμ   respectively, and standard deviations Xσ  and Yσ is defined as: 

YX

YX

YX
YX

YXEYX
σσ

μμ
σσ

ρ
)))(((),cov(

,
−−

== . 

The correlation is the measure which takes values from [-1,1] and is associated with the 
strength of the relationship between two variables.  If correlation coefficient ρ  takes 
value 1- then it means that there is a perfect linear relationship, in case when 1−=ρ  the 
perfect linear relationship is negative, but when 0=ρ - then there is no relationship 
between variables. 

• Test of Pearson's correlation 
Let suppose that we have already computed a correlation coefficient ρ .  Now, we 
would like to verify the hypothesis that: 

0:0 =ρH against 0:1 <>ρH  
First, we need to calculate the probability of obtaining a statistic as different from 
or more different from the parameter specified in the null hypothesis as the 
statistic obtained in the experiment.  The probability value is computed assuming 
the null hypothesis is true. If the probability value is below the significance level 
then the null hypothesis is rejected.  To get a p-value we have to calculate: 

21
2
ρ

ρ
−
−

=
nt  where n is number of samples, now the analyst has to check In t-

Table the probability value for a t, and to compare to significance level α .  If the 
p-value is less than significance level, then the correlation is significant.   
 

Definition 11.2 (Spearman’s rho correlation coefficient) 
General idea of rho correlation coefficient can be expressed in following way: instead of 
quantitative measures on each of n pairs of variables, we assign ranks ia  on the first 
variable (population characteristic) and a set of rankings ib  on the second one.  Each of 
sets },...,{ ni aa  and },...,{ ni bb  is some perturbation of the integers 1,2,…,n.  The 
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Spearman correlation coefficient can be expressed as correlation between ranks instead 
of observations X and Y in following way: 

∑ ∑
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A basic algebra calculus will show that above formula can be reduced to: 

∑
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Definition 11.3 (Kendall’s tau correlation coefficient) 
 
Let’s define variables: “P” and “-Q”, which corresponds to number of positive scores 
(concordant), and negatives (discordant) respectively.  A linear relationship of variables 
is defined in following way: 

SQP /)( +=τ  
where S is maximal available positive score.   
If we consider two rankings of exactly n components, then basic calculus gives that, 
number of possible pairs is n(n-1)/2.  Hence Kendall’s τ  coefficient has the following 
form: 
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2 −
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Definition 12 (Quantiles)  
Let’s take random variable X.  A p quantile is such an q that pqXP p =≤ )(  
 
 
Definition 13 (correlation ratio) 
Correlation ratio in statistics is a measure of the relationship between the statistical 
variability within individual categories and the dispersion of whole population or sample.  
The aim is to order the variables nXX ,,1 K  (included in the model) according to 

influence on the criterion variable.  The quantity of interest is ))|ˆ(( iXYVarE 43. Since the 
equation: 

( )( ) ( )( ) ( )YVarXYEVarXYVarE ii =+ ||  
is well known if follows that 0))|(( →iXYVarE indicates higher importance of the 
variable iX .  As a consequence the correlation ratio for the variable i’th is defined as: 

( )( )
( )YVar

XYEVar
CR i

i
|

=  

 

                                                 
43 The quantity that should be considered is )|ˆ( *

ii xXYVar =  (change of predictor variable if one quantity is 

said to be constant), however since *
ix  is unknown, the idea is to calculate change of the variance overall 

the values of iX  
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Intuitively: higher value of the CR follows higher the share of the variance decomposition 
of the variable iX .   
 
Method 1 Linear Regression  
The important task in statistics is concerned with determining functional relationships 
between a given set of variables.  Linear least squares error technique is very important 
and applicable modeling method.  Basically, the method gives the estimators for 
predefined function in order to get a function, which is best, fitted to the data in the 
meaning of least squares errors.   
Standard assumptions of the multiple regressions are: 

1. The model is defined as εβ += XY , where Y is the vector of outputs and X 
is a matrix of covariates 

2. The number of observations is grater than number of parameters to be 
estimated 

3. 0=iEε  2)( σε =iVar  0),( =jiCov εε  for ji ≠  
The idea to get the best estimator of β  we need to solve optimization problem: 

22 ||||min||||min εβ
ββ

=− XY . 

Simple calculations show that the optimal estimator of β  is expressed in following way: 

YXXX TT 1)(ˆ −=β  
• Significance of estimated coefficients 

Important fact in linear regression is that, we are allowed to check whether 
estimated parameter vector β̂  can be neglected or not.  To test it we need to 
verify the null hypothesis: 

0ˆ:0 =βH  against alternative: iH β∃:1  such that 0≠iβ  
To verify hypothesis above we need to calculate p-value for given significance 
level α .  The p-value associated with introduced hypothesis is: 

( )( ) ( )
),1(~

/1ˆ
ˆ 2
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TT

TT

−−
−−−

−
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β
β

 

For introduced p-value we have basis to reject null hypothesis when 
)1,1,1( α−−−>− npFvaluep  otherwise we do not have such a basis.  (The n 

is a number of samples; p is a number of columns in covariate matrix X; and F is 
F- distribution44). 

• Calculation of confidence interval estimates for individual coefficients 
The )1( α− confidence interval for estimated parameter iβ̂ is given by: 
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T XX is i’th value from 

diagonal of matrix 1)( −XX T ; and where t- is t-student45 distribution function 

                                                 
44 F-distribution- Fisher-Snedecor Distribution 
45 t-student distribution- Gosset’s distribution 
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• Goodness of fit measure 
To check whether created model is well fitted to data we introduce fit measure: 

)ˆ()ˆ)(()(
)ˆ()(2

YYYYYYYY
YYYYR

TT

T

−−−−
−−

=  which takes values from [0,1]: 

1 if the model is perfect, and  
0 when model is badly fitted 

 
Method 2 (stepwise regression) 
Stepwise regression is a model-building procedure that attempts to maximize the 
amount of variance possible to explain in dependent variable while simultaneously 
minimizing the number of independent variables in the statistical model. The stepwise 
regression is typically used when a large number of predictor variables are available 
while the best combination of variables to predict the value of the criterion is wanted.  It 
is designed to give a model that predicts as much variability as possible with the 
smallest number of parameters.  The stepwise regression should be interpreted 
cautiously or avoided entirely when trying to understand theoretical relation.  It makes its 
selection based purely on the amount of variance that variables can explain without any 
consideration of causal or logical priority.  As the consequence independent variables 
chosen through a stepwise regression are not guaranteed to be the most important 
factors affecting the criterion variable.  A theoretically meaningful variable that explains a 
larger amount of variability in the criterion variable could be excluded if it also happens 
to cause changes in other independent variables, because it would be collinear with 
those variables.  Additionally, stepwise regression attempts to maximize the predictive 
ability for the predictor variables in the one specific sample that was collected.  Its 
selections will therefore be affected by any relations that happen to appear due to 
chance alone.  If it is impossible to come up with a theoretical explanation for an 
observed relation between predictor and criterion variables it may just be an artifact only 
found the particular collected sample.  There is one circumstance under which stepwise 
regression should be used at most: when the most important aim is to determine the 
best predictive model, without interesting in drawing inferences about the relations in the 
data.   
Stepwise regression consists of the two steps: first start with a simple model and 
gradually add independent variables to it until any significant improvement is not made 
i.e. minimize probability that all the factors are equal to zero, but drop variables which 
become no longer "significant" after introduction of new variables. In other words check 
the “old” set of independent variables each time a new one is added to the model to 
make sure that they are still significant. Secondly if it turns out that a predictor variable 
included in an earlier step is no longer making a significant contribution to the prediction 
of the dependent variable, then the variable is dropped from the model.   

The algorithm of the stepwise regression can be presented in the following way.  
Suppose that and one criterion variable Y.  Notation used in the procedure is 
following:  

 
 
Notation  

-n is number of independent variables 
-Y is criterion variable, ex. corrosion rate [mm/yr] or defect rate [def/km] 
- iX  indicates the i’th variable where ni ,...,1=  

- 2
,...1 nR - R square coefficient for the model: εβββ ++++= nn XXY ...110  
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Step wise algorithm 
 
 Step 1 

- 1=m  
- define n models of the form: εββ ++= iXY 10   

 Step 2 
- take the variable (model) k for which: 2max kk

R  and p-value for the 

hypothesis: 0:0 =kH β  against 0:1 ≠kBH  is less than significance 
level α  

 Step 3 
-for the remaining n-m variables define n-m models of the form: 

εβββ +++= lk XXY 210 , where nkkl ,..1,1,..1 +−= , and calculate 2
,lkR  

and check the value for difference between R squares: 22
, kjk RRR −=  

 Step 4 
-define a new regression model for which R takes maximum value and is 
statistically significant46 

 Step 5 
-recalculate the p-values for the t-test for all the variables in the 
model and check if all are significant, if any of them is insignificant then 
should be removed and step 3 should be applied one more time to the 
model consisting only of significant variable.   
 

Steps 3,4 and 5 have to be repeated sequentially, the new model adding/dropping the 
variables has to be finished when adding or dropping the variables wont improve the 
determination coefficient (R square) significantly and all the variables in final model will 
be significant.   
 

                                                 
46 In order to check if difference between R squares for two models is significant hypothesis testing based on 
F statistics has to be applied- see appendix 
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Appendix B 
 
B: Tutorial file for CoroGas 
 
 
Author: Lech A. Grzelak, program created for N. V. Netherlandse Gasunie 
 
The program does all the theory introduced in part one of the thesis.  This tutorial 
consists of following parts: 

a) Data calibration 
b) Corrosion rate modeling 
c) How to transfer the files into *.dat type?  
d) Files construction  
e) Examples 
f) Available datasets descriptions 

 
a) Data Calibration 

 
The first step of using the program “A statistical approach to determine the corrosion rate 
modeling of the underground gas pipelines” is to open the program in the Matlab 
environment.  
In order to initiate the program the user has to open the matlab file: file/open/start.m as 
it is shown on the screenshot below. 
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When the file start.m is opened then the initiation of the program can be done in two 
ways.  
The first way is easy - press the run button on the top of the new opened window as it is 
shown below.  

 
 
The second way to start the program is to tape the command “start.m” in the command 
window.   
If the initiation process is successful then the user should see the graphical user 
interface window.   

RUN
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On the bottom of the screen are presented available options.  The first one is “LOAD” 
which allows loading previously prepared excavation dataset, and is supposed to 
consists of calibration data.  The detailed description of the file will be presented later on 
in the text. The Second option “NEW SET” gives the opportunity to create user’s 
calibration dataset (option under construction), the third is “MODEL” which goes directly 
to “corrosion rate modeling” part without calibrating the data, the forth and the last option 
is “EXIT” which terminates the program   
Suppose that user wants to LOAD previously prepared dataset. First a proper path to 
the calibration data has to be indicated in the load window.  The program recognizes the 
“*.dat” file (later in text it is shown how to create this type of files).   
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When the proper calibration dataset is chosen then the program immediately analyzes 
the dataset and proceeds to the second stage.   
 

 
The new window consists of a few parts - the block on the left called “INSPECTIONS”, 
“CLUSTERING PROCEDURE”, “figures of results”, and “TOOLBOX” on the bottom of 
the window.   

• “INSPECTIONS”- allows user to have a view on the loaded dataset and also 
gives the opportunity to look at the graphical representation of the dataset (in the 
figures on the right).  A click on the button “data view”, initiates data view. 
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The new window presents dataset loaded for calibration. The first column 
corresponds to the defects measured at the excavation by an inspector. The 
other columns are associated with the measurements reported by “intelligent 
pigs”. The empty slots indicate missing data caused either by defect reparation 
(in current case the defects were repaired after tuboscope inspection) or by 
clustering procedure. All the measurements are presented in millimeters.  
The second available option in this part is to show the calibration graphically.  
When user chooses any of the check-boxes corresponding to pigs-inspectors, 
then the program updates two graphics. The first one shows relation between the 
“pig measurements” and the excavation data, and the second relation between 
the pig measurements and the measurement errors (i.e. all data are treated as 
exactly one cluster).   
 

 
• “CLUSTERING PROCEDURE”- This part gives an opportunity to calibrate 

dataset according to a given data (clusters). Firstly user has to use the so called 
popup-menu and choose a pig for calibration.  
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When a certain pig is chosen, then immediately the following results appear: 

o “Number of clusters”- number of predefined clusters 
o “Clusters”- bounds of the interval where pig measurements were 

reported (interval’s boundaries are extended by 0.1 [mm]) 
o “No.”- number of defects registered during excavation and associated 

with pig measurements (within the cluster) 
o “Bias”- corresponds to the mean of the difference between the pig 

measurements and measurements from the excavation (see the “A 
statistical approach to determine the corrosion rate of underground gas 
pipelines” report for details) 

o “Std”- standard deviation of the measurement error 
o “N-p-V” – is the p-value associated with the following hypothesis: 

:0H Measurement errors are from normal distribution  
:1H  Measurement errors are not from normal distribution  

o “Rho-p-V”- is the p-value associated with the following hypothesis: 
:0H The Spearman’s correlation between measurement errors 

and pig measurement is 0  
:1H The Spearman’s correlation between measurement errors 

and pig measurement is not 0 
o “ERR. DISTR”- gives the p-value, standard deviation and mean for the 

measurement error. In the case where the user does not generate 
additional clusters then the p-value corresponding to Kolmogorov 
Smirnov test should be the same as given in the column “N-p-V” 
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When user defines the number of clusters ex. according to the techniques 
introduced in the report “A statistical approach to determine the corrosion rate of 
underground gas pipelines”47 then, he is also obligated to define boundaries of 
these intervals. In order to generate these intervals (clusters) user has to fill in 
the “number of clusters” and press the button “GENERATE”. 
The maximal number of intervals is 6 i.e. the program analyzes up to 6 clusters 
per one pig. When all the boundaries for clusters are well defined (cover the 
entire domain, and are not intersecting), then in order to perform the analysis the 
“ANALYZE” button has to be pressed. After few seconds a computer should 
give the answer in the form presented on the picture below. Each row and 
calculated values correspond to a predefined cluster.   
 
If for the “Rho-p-V” the background color becomes red- then user should have a 
look closer at the cluster. Red background indicates that p-value for the 
Spearman’s (rank) correlation hypothesis that measurement error is uncorrelated 
with the measurements is less than significance level 0.05.   
 
Information available on the screen (yellow rectangle) is the verification of the 
null hypothesis that errors which come from clusters come from the same 
population (distribution). The “HISTOGRAM” produces the histogram of the 
unbiased errors (if the hypothesis about the errors coming from the same 
distribution is not rejected).   
 

                                                 
47 Report done by Lech A. Grzelak, for Gasunie Research Department 
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Another option available in the clustering procedure is to have a view on the 
errors associated with the predefined clusters. As it is presented on the picture 
below; if user clicks on the check box associated with the analyzed cluster, then 
the error from the cluster is presented like on the picture on the right – the errors 
without imposed clusters are as a background.  
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When user is satisfied with the clusters, then such decision has to be indicated 
by pressing the button “ACCEPT” on the bottom of the window.  The button 
“ACCEPT” saves chosen clusters into the memory and initiates the “REPORT” in 
the middle of the window and gives access to the button “VIEW RESULTS”.  The 
columns in the new opened window are: 

o “No”- index of the inspection 
o “name”- name of the inspecting pig 
o “clust.”- number of predefined clusters 
o “K-S”- takes values YES/NO, which indicate whether measurement errors 

come from the same population according to Kolmogorov- Smirnov test 
o “std”- measurement error standard deviation (if the “K-S” is “YES”) 
o “Corr.”- takes values B/OK- indicates whether measurement errors are 

correlated with pig measurements, the B indicates “BAD”- correlation and 
“OK”- no correlation. The correlation used in the software is the 
Spearman’s rank correlation 

 

 
 

The button “VIEW RESULTS” allows to see how the accepted clustered are 
defined. The first column corresponds to the name of the intelligent pig, the 
second indicates number of predefined clusters. Column number three shows 
current cluster, and then respectively are: cluster’s boundaries, bias associated 
with this cluster and the standard deviation of the errors. This information is 
collected and later on will be applied in the second stage of the analysis done by 
the program - namely in the corrosion rate modeling. When the clustering 
procedure is performed for all the pigs, then in order to save the results user has 
to press the “SAVE TO FILE” button.   
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To leave the view window of the defined cluster press the button “Close 
window”.   
It is also possible to load the clusters and calibration data from previous session 
and update them. The option which allows this is the button “LOAD & UPDATE”.  
 
b) Corrosion Rate modeling 
 
When the calibration procedure is carried out successfully, then the 
button ”MODEL” gives access to the second part of the program.   
 
The options/buttons available at this stage are: 

o “LOAD MEASUREMENTS”- user is required to give the path to the file 
with the measurements collected by intelligent pigs 

o “LOAD CALIBRATION”- when after the calibration procedure the clusters 
are defined and saved to the file then user has to indicate according to 
which file the calibration of the measurements has to be performed 

o “WALL THICKNESS”- loads the column vector of the nominal wall 
thicknesses, each row of the vector has to correspond to nominal wall 
thickness where defects were observed – at this stage program doesn't 
take into account the uncertainty about wall thickness  

o “DATES OF INSPECTIONS”- according to the data each inspection was 
performed at certain time, this option loads the dates of performed 
inspections- the rows of this vector correspond to the columns of the 
“measurements” 

o “CALIBRATION”- when all required data are loaded then this button 
performs the calibration procedure and gives access to the 
“SIMULATION” 
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When the data is loaded then by pressing the button “VIEW” user can have a 
look on the loaded datasets. The button “CALIBRATION” calibrates the data and 
gives some results of the calibration 

o “# ERR DISTRIB”- the number of the distributions (sum of distributions 
associated with all clusters for all pigruns) 

o “INSPECTIONS”- number of inspections 
o “MISSING DATA”- number of missing data in the whole measurement 

dataset 
o “NUMBER OF DEFECTS”- number of defects observed during 

inspections 
o “PREDEFINE STD FOR ALL MEASUREMENTS”- when user types any 

positive value in the “STD” box, then the weights for the inspections are 
equal (all pigs have the same weight) 

o “LOAD RESULTS”- gives the possibility to load previously saved 
Corrosion modeling session 
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When the datasets are loaded, then the button “SIMULATION” initiates the 
simulation. The simulation produces the optimal solution. Tests show that 
estimation for one single defect observed at four inspections requires about 15 
seconds to obtain the optimal function. 
 

 
 
When the simulation is complete, after a few seconds a new screen should 
appear.   
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On the top of the screen is so called “CORROSION RATE STATISTICS”, which 
consists of basic statistic measures like  

o corrosion rate (mean corrosion rate from all rates),  
o 95% upper bound of the corrosion rate 
o 95% lower bound of the corrosion rate 
o Max corrosion rate 
o Min corrosion rate 
o mean initial time of corrosion initiation 
o “init. At t=0”- indicates how many defects start at time 0 (at pipeline 

installation time) 
o “mean initial time>0”- mean initial time of defects initiating after pipeline 

installation  
 
On the right side, the plot presents the metal loss as a linear function of time for 
all defects together with the measurements (blue stars). The middle part presents 
two histograms.  First of them corresponds to the distribution of the corrosion rate, 
and the second one to the initiation time of corrosion per defect. There is a small 
summary of fitted distributions beneath the histograms -- on the left hand side all 
available distributions with associated p-values, and on the right distributions with 
estimated likelihood parameters for which the p-value is the highest.    
 
After the simulation three new options become available. The first of them is 
“SAVE RESULTS” - which allows exporting the results to a *.dat file. The next is 
“DEFECTS & ESTIMATE”, which allows to have a closer look at the estimated 
rates. This option allows to check what is the corrosion rate for each defect and 
to compare estimated curve with the Least Squares approach.   
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The third option is “EXPORT RESULTS TO EXCEL” - exports the results to an 
Excel file *.xls.  If the user decides to export results to Excel, then the exported 
file consists of eight columns where each row corresponds to one defect. 
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The first column in the exported Excel file is the number of analyzed defects.  
The second and third column correspond to the initial guess given to the 
optimizer, the fourth column gives the optimal value of the function “ Llog− ” 
where the L is the Likelihood function presented in the report. Column indicated 
as E corresponds to the corrosion rate of estimated defect, the next is the 
intercept of the linear function.  Column G gives the time when the corrosion 
process has initiated. The last column corresponds to the depth of the defect at 
the last inspection.  
 
 
 c) How to transform a data to the *.dat file type? 
 
As it was presented previously in the tutorial, the type of files which the program 
works with is the type with extension *.dat.  In order to make such a file, user has 
to apply file converter.   
 
The procedure is following: 

1. Define the dataset in matlab and save it as *.mat file- for example create 
a variable called “FILE” and save it using command 
“save FILE.mat FILE” 

 
Remark: Missing data should be indicated as “0” (zero) 
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2. open the file “savetoFILE_GENERATOR.m”, and in the 5 and 6 line write 

“load FILE.mat” and “WT=FILE” 
 

 
3. run the program and choose the name of *.dat file, since now the FILE 

will be transformed to the *.dat file 
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d) Files construction 
 
Each file in the program has his own construction, and so: 

• “excavation measurements” consists of n+1 columns (where n is the 
number of inspections), the first column corresponds to data recorded 
from the excavation, all the rest correspond to inspections, units are 
millimeters 

• “measurement set”- has exactly n columns and m rows, m is the number 
of observed defects and n is the number of inspections, units are 
millimeters 

• “dates of inspections”- is the column vector consisting of dates of the 
inspections, all the dates are counted since pipeline installation (pipeline 
installation is at time t=0) units are years 

• “wall thickness”- is the column vector, where each row corresponds to 
each defect, values are presented as nominal wall thickness in 
millimeters 

5 Examples 
 
Suppose that we have carried out 5 inspections, the excavation was done after first 
pigrun.  The calibrating dataset is following: 
 

Excavation Insp 1 Insp 2 Insp 3 Insp 4 Insp 5 
5 4 6 5.5 5 7 
4 5 4 7 3 5 
3 2 4 2 4 1 

2.4 1 2 4 3 2 
5 3 5 7 8 6 
4 2 5 4 3 1 

Table 46: excavation dataset [mm] 
 
When the dataset is prepared we need to convert it into *.dat file, in the manner 
explained before.   
And so:  

1. We type the data in matlab and save it as E.mat 
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2. Second step is to convert the dataset to the E.dat file; hence we change 

the code in the file “savetoFILE_GENERATOR.mat” and turn the 
program on. 

 

 
 

The hypothetical measurements reported by the pigs during inspections are following: 
 

Defect no. Insp 1 
1999 

Insp 2 
2000 

Insp 3 
2001 

Insp 4 
2004 

Insp 5 
2005 

1 4 6 5.5 5 7 
2 5 4 7 3 5 
3 2 4 2 4 1 
4 1 2 4 3 2 
5 3 5 7 8 6 
6 2 5 4 3 1 

Table 47: example of the measurements 
 
The theoretical pipeline was constructed in 1970. So the dates of inspections are 
following:  
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Now, let’s save the variable D (dates of inspection) as D.dat and the measurements M 
as M.dat,.  
For the nominal wall thickness we assume: 
 

defect no. Nominal wall thickness 
1 12.7 
2 12.5 
3 12.5 
4 13 
5 16 
6 18 

Table 48: The nominal wall thickness 
 
In this case the wall thickness vector we denote as W and perform the same 
transformation procedure as for the others.   
 

 
 
Now, when all necessary data are collected, typed, and transformed into *.dat type file, 
so the analysis can be carried out. 
 

1. First: run the program and load the excavation data (here E.dat file)  
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2. When excavation data is loaded then program immediately goes to the 

calibration stage, for simplicity define only one cluster for each inspection (one 
cluster contains all the measurements).  So for each inspection generate exactly 
one cluster and confirm by pressing GENERATE, ANALYZE and ACCEPT 
buttons.  

 
a. Choose inspection 
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b. Generate one cluster 

 
 
 
 
 
 
 
c. Analyze the clusters 
 

 
 

d. Accept the results  
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e. Save to file (red button) as CAL.dat – in this case no file 

transformation is required.  Matlab immediately saves the results as 
the *.dat file.   

 
 

3. When the calibration procedure is performed, then go to the second stage- 
namely to the “MODEL”.  Firstly, all measurements should be loaded (wall 
thickness (W), measurements (M), calibration data (CAL), dates of 
inspections (D)) and the “CALIBRATION” button should be pressed. 
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A small summary shows that from the calibration procedure we have exactly 5 
distributions (one distribution per inspection), the number of defects is 6, the number 
of missing data is zero.   
Now we can proceed and press button “SIMULATION”. After a few second the 
results should appear.  
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All the files are attached to the delivered program, hence the files conversion is not 
required.  
 
e) Available DATABASES/ EXAMPLES 
 

1. The database based on the real data collected by Gasunie, 
Inspections done by 4 pigs, one excavation done after the first inspection 

Files: 
• “excavationDATASET.dat”- consists of excavated metal loss 

depths and data necessary for calibration 
• “measurements.dat”- measurements done during 4 inspections- 

52 reported defects 
• “dateOFinspections.dat”- consists of data concerning information 

about carried out dates of inspection 
• “WALLthickness.dat”- vector of wall thickness for where 52 

defects were reported 
• “1pig1distributionCLUSTER.dat”- result of calibration procedure- 

each pig has exactly one cluster- measurement error distribution- 
can be applied in the MODEL 

• “1pig2distributionsCLUSTER.dat”- idem, but now each pig has 2 
clusters- distributions 

 
2. Example presented in the tutorial 

• “M.dat”- measurements 
• “D.dat”- dates of inspections 
• “E.dat”- calibrating dataset- excavation dataset 
• “W.dat”-wall thickness file 
• “CAL.dat” – result of calibration procedure- each pig exactly one 

distribution 
 


