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ABSTRACT: Statistics of occupational accidents motivated a large project commissioned by The Ministry of
Social Affairs and Employment in The Netherlands to reduce risks for workers. The model of an accident is
represented by a so-called ”bowtie” diagram. To quantify bowties different sources of data were used. Quan-
tification was mostly data driven, however as it is often the case the data are incomplete and then the expert
judgment is employed. The first bowtie model has just been completed and this paper reports results of expert
judgment study for this model.

1 INTRODUCTION
Despite efforts, according to the European Statistics
on Accidents at Work (ESAW), every year in the
15 Member States of the EU about 5 million work-
ers are victims of accidents at work leading to more
than three days of absence from work; furthermore,
about 5000 workers die. These statistics motivate a
large project commissioned by The Ministry of So-
cial Affairs and Employment in The Netherlands to
reduce risks for workers. The model of an accident
can be represented by a so-called ”bowtie” diagram.
The term bowtie is used to refer to a structured model
of the causes and effects of events. The bowtie model
is found to be quite convenient in modelling the rele-
vant accident scenarios. This project aims to establish
bowties for (the most important) occupational acci-
dents in the Netherlands and then combine them ac-
cording to the exposure of the working population
to specific hazards. 25 bowties has been identified.
Bowties are selected according to importance and size
of the problem. Falls are the leading cause of occupa-
tional fatality, as well as a major source of mortality
(see Figure 1 Health and Safety Executive ”Statistics
of Fatal Injuries 2003/04”]). Hence the first bowtie
considered was the Placement Ladder Bowtie.

2 PLACEMEN LADDER BOWTIE
Figure 2 shows the graphical representation of the
Placement Ladder bowtie. The center event fall from
placement ladder (F) is defined as a fall which re-
sults in death or serious physical and/or mental injury
that has led to hospitalization or observation within 24
hours, as well as the suspicion of permanent physical
or mental injury. Fall can be caused by failure of one

Figure 1: Number of fatal injuries to workers by kinds
of accident 1996/97 to 2003/04 in the Great Britain.

of the primary safety barriers (PSBs): Ladder Strength
(SR), Ladder Stability (SL) and User Stability (SU).
Failure of one PSB is assumed to be sufficient for the
fall. PSBs are influenced by support safety barriers
(SSBs): Placement and Protection (PP), Right Ladder
(RL) and Ability (AB). The SSBs in Figure 2 are in-
fluenced by Management but this problem will not be
treated in this paper. On the right (consequence) side
of the Placement Ladder bowtie we see four barriers
that can influence Consequences (C) of the fall, that
is, Ground (G), Height (H), Medical attention (M) and
Age of the victim (A). In order to quantify this model
with data, or if the data is not available by expert judg-
ment, one must define precisely all barriers and events
similarly to the definition of the fall. SR is defined as
the provision of adequate strength to the ladder in or-
der to carry the weight of the user and any additional
loads; SL - provision of adequate stability to the lad-
der in order to provide a support to the user; SU - pro-
vision of adequate stability of the user on an otherwise
strong and stable ladder. Each of these three PSBs can
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Figure 2: Placement Ladder bowtie model.

be in one of two possible states: success denoted by
”+” and Failure ”-”. The support safety barriers are
all assumed to have two states ”+” and ”-”. Precise
definitions follow:

1. Placement and Protection (PP) - a ladder is well
Placed and Protected if all the following condi-
tions are satisfied:

• It is placed on the surface that is even and
firm;

• If placed at steep angle it is secured on the
top;

• If placed at too wide angle the measures are
taken to prevent sliding;

• If the ladder is long (7 or more meters) it is
secured at the top and at the ground;

• The measures are taken to prevent the lad-
der being hit by any object, an opening door
and/or moving vehicles.

2. Right Ladder (RL) - a ladder is called the Right
Ladder for the job if it satisfies all following con-
ditions:

• It is an industrial product for professional
use;

• It extends at least one meter above the
standing step or the exit height;

• It is tested and maintained;

• It has the proper accessories for the use on
slippery surface (as in the Arbobesluit) ;

• Its steps and rungs are checked to be free
from grease, oil, wet paint, mud, snow, ice,
paper and other slippery materials.

3. Ability (AB) - includes all characteristics and
conditions concerning the fitness and ability of
the user on a strong and stable ladder. A person
climbing a ladder is Able to do the job if he/she:

• Climbs the ladder while facing it and keep-
ing feet in the center of a ladder;

• Does not climb it from the side or from
above the top from another ladder;

• Does not slide down the ladder;

• Does not overreach or stand on the top
rungs;

• Does not move the ladder while standing on
it;

• Is well prepared to use the ladder that is has
clean shoes from debris and slipper materi-
als;

• Is not under influence of alcohol, drugs,
medication;

• Does not feel sick, dizzy.

On the right hand side of this model we have Height
of fall (H) with two possible outcomes:

H1 : h < 5m; H2 : h > 5m;

Type of Surface (G) with two possible states

G1 : Soft ground;G2 : Hard ground;

Medical Attention (M) with two states:

M1 : Prompt; M2 : Delayed;

Age of Fallen Person (A): with two states:

A1 : Age < 50 years; A2 : Age > 50.

And finally three levels of consequences will be used:
Consequences (C) with three states:

C3 : Death;C2 : Permanent Disability;

C1 : Recoverable Injury.

We want to calculate probability of fall given fail-
ure of one of SSBs that in principle can be influenced
by management actions. This can lead to discovering
ways to reduce risk and consequences of a fall.

Using elementary probability rules, one can ex-
press probability of fall given different outcomes of
support safety barriers in terms of:

• probability of support safety barriers given one
of the primary safety barrier lost and fall;

• probability of one of the primary safety barrier
loss given fall;

• probability of fall;

• unconditional probability of different combina-
tions of support safety barriers;



The first two, as well as the number of accidents nec-
essary to find probability of fall can be obtained from
data. One must however deal with missing data. This
will be treated in Section 4. The exposure that is re-
quired to calculate the probability of fall and uncon-
ditional probability of support barrier’s failure have
to be gathered from e.g. expert judgment (see Section
3). The right hand side of the bowtie can be quanti-
fied from data and this way one could incorporate the
consequence part of the model (Section 6). Sections 5
and 7 show results for the Placement Ladder Bowtie.
Finally the last section contains some conclusions.

3 EXPERT JUDGMENT ANALYSIS FOR
PLACEMENT LADDER BOWTIE

The performance-based structured expert judgment
methodology has been applied in many risk and relia-
bility studies (Cooke 1991). Experts are treated as an-
other source of data. The model for combining expert
judgments is called ”classical” because it resembles
in many ways classical statistical hypothesis testing.
We first present briefly the classical model and then
apply this technique to obtain variables of interest for
Placement Ladder bowtie.

3.1 The classical performance based model for con-
tinuous variables

Experts state quantiles for their subjective distribu-
tion for each of the several uncertain quantities, say,
5%, 50%, 95%. The classical model constructs a
weighted combination of expert probability assess-
ments. These weights are based on two key perfor-
mance measures, calibration and information, which
are assessed on variables whose true values are known
post hoc (though not known to the experts at the time
of assessment). Calibration corresponds to statistical
likelihood. In the language of statistics, this is the
”p-value” at which we would reject the hypothesis
that a given experts’ probabilistic statements are true.
Thus, low values for the calibration score (near zero)
indicate low support for the hypothesis that the ex-
perts’ probability statements are accurate; high values
(near one) indicate high support for this hypothesis.
Information or informativeness measures the degree
to which the experts’ distributions are concentrated.
The weight obtained by expert is proportional to the
product of his/her calibration and information scores,
if the calibration scores exceed a ”significance level”
cutoff, which may be found by optimization.

The classical model computes ”performance
based” weighted combinations, but also uses the per-
formance measures to assess the quality of other com-
binations. In particular, the performance of the equal
weight combination is assessed. Generally, the com-
bination exhibiting the best calibration and informa-
tiveness is recommended (Cooke 1991).

Id Calibr. Mean relat Mean relat Numb UnNormaliz Normalized

Total realizatii real weight weight

1 0.001102 1.671 1.895 10 0.002089 0.4175

2 5.60E-05 1.888 1.794 10 0 0

3 9.87E-05 2.518 1.089 10 0 0

4 1.07E-06 2.017 1.978 10 0 0

5 0.000599 1.253 0.9288 10 0.000556 0.1111

6 0.00131 2.351 1.801 10 0.002359 0.4714

7 4.08E-06 1.577 1.479 10 0 0

Global 0.2441 0.8732 0.8507 10 0.2077

Item 0.2441 1.208 0.9751 10 0.238

Equal 0.3006 0.4729 0.4591 10 0.138

Table 1: Calibration and information scores for ex-
perts.

3.2 Expert Judgment for Placement Ladder bowtie
First the identification and selection of experts was
done in consultation with project oversight. Seven
experts were selected; they are people with different
professions ranging from manager of window clean-
ing company, through researcher in the institute for
the construction company, to Labor Inspector. The
elicitation questionnaire was designed to obtain the
data required for the quantification of the Placement
ladder. The elicitation format document contained
basic definitions, 12 questions to assess the target
variables and 10 questions to evaluate performance
(obtained form different data banks containing
information about fall accidents as well as published
journal articles). One example of such a question is
given below.

Question 1
In a hospital in a Western country about 150 patients
were given emergency treatment in the 1990’s after
falling from a ladder. What percentage of the cases
was the result of instability of the ladder (the ladder
slid or tipped sideways)?

Experts first participated in a training session and
then were elicited individually. A typical elicitation
took 2 hours. Each expert gave5%, 50% and 95%
quantiles for 22 uncertain quantities. Table 2 shows
the calibration and information scores for the seven
experts in this study. All computations are determined
using Excalibur. Tables and figures presented in this
report are also the output generated by this software.
The first column gives the expert number; the second
column gives the calibration score.

The information scores for all variables and for
the seed variables are shown in columns 3 and 4 re-
spectively. The last column gives the ”unnormalized
weight”; this is the product of columns 2 and 4. If this
column were normalized and used to form weighted
combinations, experts 1 and 6 would be most influen-
tial. The numbers in Table 2 show that our experts are



poorly calibrated. The worst calibrated expert is ex-
pert #7, the calibration scores for experts #1, #6 are
the best. Experts can be combined in few different
ways. The equal weight decision maker (DM) is ob-
tained by assigning equal weight to expert’s densities.
Performance based decision makers are formed by
weighted combinations of experts, where the weights
are based on the experts’ performance. Two perfor-
mance based decision makers are supported in the
software Excalibur.

• The ”Global weight” decision maker using aver-
age information over all calibration variables and
one set of weights for all items.

• The ”item weight” decision maker constructs
weights for each item separately, using the ex-
perts’ information scores for the given item,
rather than the average information score.

In this study the items weights perform better than
global so we present calculation only for item weight
decision maker. In this case, all experts with a calibra-
tion score less than the significance level found by the
optimization procedure are unweighted as reflected
by the zero’s in column 7. We see that the item weight
decision maker is slightly less well calibrated than the
equal weight DM (calibration score equal to 0.3006),
but this is more than offset by the gain in informa-
tion (information for equal weight DM was equal to
0.4638). We see that item weight DM has lower infor-
mation than each expert individually but the loss of
information is much smaller than in the case of equal
weights. Robustness analysis addresses the question,
to what extent the results of the study would be af-
fected by loss of a single expert or calibration vari-
able. We compare the ”perturbed decision maker” to
the original by computing the relative information of
the perturbed to the original decision maker. It was
discovered that the robustness of the item weight de-
cision maker is quite satisfactory.

3.3 Elicited results
For Placement Ladder Bowtie there were 13 ques-
tions of interest. We present below 12 questions and
the results calculated based on item weight decision
maker by taking median value from its distribution.
The question 13 was concerned the right hand side of
the Placement ladder bowtie. It will be discussed in
Section 6

1. Given 100 people chosen randomly from the
Dutch working population, who use a placement
ladder regularly solely as a means of transport
for their work, how many ladder missions will
they perform in a random week?
Median: 990.4

2. Given a randomly chosen mission what is its du-
ration, provided the ladder is used solely as a
means of transport?
Median: 21.41in seconds.

3. Given 100 people chosen randomly from the
Dutch working population, who use a placement
ladder regularly as a work place too for their
work, how many ladder missions will they per-
form in a random week?
Median: 4739

4. Given a randomly chosen mission what is its du-
ration provided the ladder is used also as a work
place?
Median: 467.7in seconds.

5. What is the percentage of ladder missions in
which the ladder used was not the Right Ladder?
Median: 16.64

6. What is the percentage of ladder missions in
which the ladder was not correctly Placed and
Protected?
Median: 16.71

7. What is the percentage of ladder missions in
which the user was not Able to do the job?
Median: 7.025

8. What is the percentage of ladder missions with
not Right Ladder in which the ladder was not
correctly Placed and Protected?
Median: 10.05

9. What is the percentage of ladder missions in with
wrong Placement and Protection in which the
user was not Able to do the job?
Median: 4.103

10. What is the percentage of ladder missions with
not Right Ladder in which the user was not Able
to do the job?
Median: 6.926

11. What is the percentage of ladder missions that
resulted in a Fall provided the (placement) ladder
is used solely as a means of transport?
Median: 0.0002071

12. What is the percentage of ladder missions that
resulted in a Fall provided the (placement) ladder
is used also as a work place?
Median: 0.0001051



4 MISSING DATA
Developments of bowtie models as well as their quan-
tification were to be data driven. However the data
are often incomplete; necessary data fields are often
simply not filled in. We first investigate the follow-
ing problem and then generalize this to the multidi-
mensional case: Consider two uncertain eventsA and
B. The outcome of these events will be denoted as 1
and 2 . The outcome of these events may also be not
recorded; we will treat these as unknowns. We would
like to find a joint distribution over eventsA andB
given the information in Table 2. To find this distri-
bution we must ”re-distribute” the unknowns over the
available cells.

A \ B 1 2 UnknownB
1 n11 n12 u1+

2 n21 n22 u2+

UnknownA u+1 u+2 u++

Table 2: Information about eventsA andB. nij - num-
ber of observations ofA = i andB = j, i, j = 1,2. ui+

- number of observations in whichA = i and outcome
of eventB was not noted etc.

Different methods can be suggested as a solution
for this problem. We present here only two that proved
to be the best.

4.1 Maximum likelihood method
The standard statistical method that can be applied
in this setting is the method of maximum likelihood
(ML). The data in Table 2 can be seen as multinomial
samples with general patterns of missing data. Denot-
ing θ = (p11, p12, p21, p22), corresponding to the prob-
abilities for the four cells, one can write the likelihood
function ofθ given information in the Table 2.

L(θ|X) = P (X|θ) =
=

∏2
i,j=1 p

nij

ij ·∏2
i=1(p1+ + p2+)ui+

·∏2
j=1(p+1 + p+2)

u+j

(1)

where X = {n11, n12, n21, n22, u1+, u2+, u+1,
u+2, u++} and pi+ and p+j denote marginal
distributions of θ. Notice that the term
(p11 + p12 + p21 + p22)

u++ plays no role as evi-
dentlyp11 + p12 + p21 + p22 = 1. Thus, observations
for which neither theA nor theB value are known do
not influence the likelihood. For special cases when
there is no missing data or there is missing data only
for one variable the maximum likelihood estimators
are simple and analytic solutions are available (see
e.g (Little and Rubin 1987)). For the general case an
iterative procedure for ML estimation is required.
The EM algorithm is used for this purpose. The E
step of the EM algorithm is defined as follows: let

p
(t)
ij denotes current estimate ofpij then:

n
(t)
ij = nij + ui+

p
(t)
ij

p
(t)
i1 + p

(t)
i2

+ u+j

p
(t)
ij

p
(t)
1j + p

(t)
2j

.

The M step calculates new parameter estimates as

p
(t+1)
ij = n

(t)
ij /

2∑

i,j=1

n
(t)
ij .

This method is very simple, easy to implement. The
version of this algorithm is implemented in S-Plus.

4.2 Bayesian method
Bayes’ Rule indicates how observations change be-
liefs. Suppose that we are interested in some parame-
ter, sayθ. First we associate a probability distribution
with θ representing our prior beliefs (the prior prob-
ability). We perform observations and calculate the
updated probability ofθ using Bayes’ rule (so-called
posterior probability). This can be expressed as:

p(θ|X) =
p(X|θ)p(θ)

p(X)
=

p(X|θ)p(θ)∫
p(X|θ)p(θ)dθ

(2)

where:

• θ is the parameter of interest;

• X is the observed data;

• p(X|θ) is the likelihood function ofθ, (L(θ|X));

• p(θ) is the probability of the parameters valueθ
given only the prior beliefs. It is called the prior
probability;

• p(θ|X) is the probability of the parameter value
θ given the prior beliefs and the observations. It
is called the posterior probability of the parame-
ters;

• p(X) is the unconditional probability of the data.

This rule says how the prior probability is replaced
by the posterior after getting the observed data.

Suppose X has four possible outcomes,
{(1,1), (1,2), (2,1), (2,2)}. In other words, the
outcomes ofX correspond to the cells in Table 2. We
let θ = (p11, p12, p21, p22), correspond to the proba-
bilities for the four cells. We take a prior distribution
over θ as the uninformative Dirichlet (1,1,1,1). It
follows that the likelihood of the data represented in
Table 2 is given by (1). The posterior distribution is
proportional to the likelihood times the priorp(θ). If
we now take the expectation of, sayp11 with respect



(-,-) (-,+) (+,-) (+,+)
0.6131099 0.386456 0.000374 0.00007

Table 3: Distribution(PP,RL|SL−, F−).

(-,-) (-,+) (+,-) (+,+)
0.317714 0.672807 0.004739 0.004739

Table 4: Distribution(AB,RL|SU−, F−).

to this posterior, we obtain the updated probability
for the cell(1,1).

p̂11 = E(p11) =
∫

p11L(θ|X)p(θ)dθ (3)

We note that the Bayes method with incomplete data
becomes intractable if the distributions are large. The
likelihood (1) has 8 factors. If there aren possible
values ofA, then there are2n − 1 possible states of
knowledge aboutA. If there arek variables, with vari-
ablej takingnj possible values, then the number of
factors in the corresponding likelihood (1) is equal to∏k

j=1(2
nj − 1)− 1.

In our implementation we have sampled 50,000
samples from four independent gamma distributed
random variables with parameters (1,1). Each sample
was divided by its sum to obtain sample from Dirich-
let distribution. Then the likelihood function was cal-
culated and expected values corresponding to (3) were
obtained from samples.

4.3 Redistribution for Placement Ladder Bowtie

Figure 3: GISAI data for LHS of Placement Ladder
Bowtie.

Using GISAI data presented in Figure 3 and infor-
mation that Ladder Strength was lost in 26 scenarios
and in all of these cases Right ladder was not chosen
we are able to find distributions of(RL|SR−, F−),
(PP,RL|SL−, F−) and (AB,RL|SU−, F−). We
use Bayesian redistribution and obtain results shown
in Tables 3, 4 and 5.

The distribution of(AB,RL|SU−, F−) may be
surprising at first as it means that the probability of
ability lost and wrong ladder given user stability fail-
ure and fall is significantly smaller than when abil-
ity is bad but ladder is right. Even if this feels coun-
terintuitive we must follow data analysis results that

(-) (+)
0.9642857 0.0357142

Table 5: Distribution(RL|SR−, F−).

found 35 accidents with(AB−,RL+) and only 16
accidents with(AB−,RL−).

5 RESULTS FOR LHS OF THE PLACEMENT
LADDER BOWTIE

The expert judgment results are used to calculate
probabilities on the left hand side of the Placement
Ladder bowtie and for the center event. We show now
how they were combined with information obtained
from data to calculate the probability of fall given dif-
ferent outcomes of support safety barriers. We start
with the probability of fall denoted as P(F-) . It can
be estimated as the number of falls divided by the
number of missions (where a ”mission” is defined as
complete event on a ladder hence climbing on it, per-
forming the required job and getting down on it). The
number of falls is known form the data (GISAI data)
and it is equal to 715.

The ladder might be used as means of transport
(only ascent and descent) as well as work place (as-
cent, working while standing on the ladder, and de-
scent). Let us introduce the following notations:

• MT - number of missions per person per week
(ladder as transport),

• MWP - number of missions per person per week
(ladder as work place),

• T - number of people using ladder as transport,

• WP - number of people using ladder as work
place.

The number of missions (MT and MWP) was esti-
mated via expert judgment (Question 1 and 3 in sub-
section 3.3). The number of people using ladders (T
and WP) was estimated based on questionnaires sent
to employs working with ladders [WoRM]. The num-
ber of missions over the period from which GISAI
data was collected (6 years and three months) is:

#missions ={ MT*T+MWP*WP}*#weeks*#years

= {9.904 ∗ 183751 + 47.39 ∗ 77373} ∗ 42 ∗ 6.25

= 1.44E + 9.

Hence the probability of fall was estimated as

P (F−) = 715/(1.44E + 9) = 4.96E − 7.



Now we calculate probability of primary safety bar-
rier loss given fall denoted asP (SL−|F−), P (SR−
|F−), P (SU − |F−). They can be estimated from
data as number of scenarios leading to fall due to
PSB- divided by number of scenarios. Hence

P (SL− |F−) =
482

715
; P (SR− |F−) =

26

715
;

P (SU − |F−) =
207

715
.

To find distributions

P1 = P (AB,PP,RL|SU−,F−),

P2 = P (AB,PP,RL|SR−,F−),

P3 = P (AB,PP,RL|SL−, F−)

we notice that in the bowtie model presented in Fig-
ure 2 we have

• Ladder Strength is only influenced by Right Lad-
der,

• Ladder Stability is influenced by Placement and
Protection and Right Ladder,

• User Stability is influenced by Right Ladder and
Ability.

From above information we obtain thatAB and
PP are independent ofRL given SR− and F−
which we denote as:{AB,PP} ⊥ RL|{SR−, F−}.
We also have thatAB ⊥ {SR−, F−} and PP ⊥
{SR−, F−}. Thus, given that ladder strength has
failed, the failure of user ability is no more likely than
it is in the general population of ladder missions, and
similarly for PP . From this information we have that:

P1 = P (RL|SR−, F−)P (AB)P (PP ).

Similarly one can obtain that:

P2 = P (PP,RL|SL−,F−)P (AB),

P3 = P (AB,RL|SU−,F−)P (PP ).

The probabilitiesP (AB) and P (PP ) were as-
sessed by experts (Questions 6 and 7 in sub-
section 3.3). The distributionsP (RL|SR−, F−),
P (PP,RL|SL−, F−) and P (AB,RL|SU−, F−)
are given in Tables 3, 4 and 5.

The joint probability(AB,PP,RL) had to be es-
timated with expert judgment. To create this distri-
bution in principle eight questions would have to be
asked to experts. To reduce number of these ques-
tions it is reasonable to make an assumption that
PP andRL are conditionally independent givenAB.

(-,-,-) (-,-,+) (-,+,-) (-,+,+)
0.04045 0.00058 0.02881 0.00041
(+,-,-) (+,-,+) (+,+,-) (+,+,+)

0.01317 0.11290 0.08397 0.71970

Table 6: Distribution(AB,PP,RL).

Then the number of questions can be reduced to six.
This assumption can be motivated as follows: the user
chooses the ladder and the way that it is placed; hence
knowing AB,RL and PP don’t contain any addi-
tional information about each other. Any dependence
betweenRL andPP is caused by the ability of the
user. Using the above assumption the joint distribu-
tion of (AB,PP,RL) was constructed:

P (AB,PP,RL) =
P (RL,AB)P (PP,AB)

P (AB)

whereP (RL), P (PP ), P (RL,PP ), P (PP,AB) and
P (RL,AB) are calculated from the information in
Questions 10-15 in subsection 3.3.

The distributions presented above are sufficient to
quantify the left hand side of the Placement ladder
bowtie.

6 RIGHT HAND SIDE OF THE PLACEMENT
LADDER BOWTIE

Figure 4 shows the collected data for the RHS of
the Placement Ladder Bowtie. Since the quality of
the data forC3 (consequence ’Death’) was very poor
we have combinedC2 and C3 and denoted this
as C1′. The required distribution is a joint distri-
bution of (C,H,A,M) given Fall (denoted simply
as (C,H,A,M)). The maximum likelihood method
(EM algorithm) in S-Plus was used to obtain distribu-
tion of (C,H,A,M) (see column 4 in Table 7).

We have used the Bayes redistribution method and
obtained the following one dimensional marginal dis-
tributions

C1 = 0.843, H1 = 0.893,

A1 = 0.711, M1 = 0.658.

The vine-copula method ( see e.g. (Kurowicka and
Cooke 2006)) requires information about one dimen-
sional margins and additional information about the
dependence structure in form of (conditional) rank
correlations. The marginal distributions can be taken
from data. Correlations can be calculated from ex-
perts’ assessment or form data.

To construct the distribution(C,H,A,M) the vine
in Figure 5 is used. Correlations and conditional cor-
relations were assessed by experts, and from data with
Bayes redistribution.



Figure 4: GISAI data for RHS of Placement Ladder
Bowtie.

rCM|HA

rHM|A

rAMrCH rHM

rCA|H

C H A M

Figure 5: A D-vine on variables: consequence, height,
age and medical attention.

Correlations from experts We incorporate the as-
sumption thatH,A,M are independent given fall,
hence all correlations involving only these variables
are zero (see Figure 6).

rCM|HA

0

0rCH 0

rCA|H

C H A M

Figure 6: A D-vine on variables C,H,A,M where
H,A,M are independent.

To construct the distribution(C,H,M,A) we must
ask experts questions that allow us to infer values
of the following rank correlations:rCH , rCA|H and

rCM |HA. In the last question (question 13) the experts
were asked to state the factor by which the probabil-
ity of Death would change as the information(H2),
(H2A2) and (H2,A2,M2) became known. These
factors could be combined with either equal or per-
formance based weights (Cooke 1991), and multi-
plied by the marginal probability of Death to pro-
duce conditional probabilities. From these we could
recover the rank correlations to be used when the
joint occurrence of events is modelled with the di-
agonal band copula (details can be found in (Kurow-
icka et al. 2006)). Some of the experts gave factors
so large, that the resulting conditional probabilities
of death exceeded 1. These experts did not influence
the performance based decision maker, but the oc-
currence of unrealistic assessments points to a weak-
ness in the elicitation strategy. Another point is that
the correlation method at present uses variables with
two possible states. The variable Consequence takes
three possible states. At the moment there is no cor-
responding theory that would give similar results for
discrete variables with more then two states. Hence
the queries to the experts were based on the binary
variableC with states Death and Not Death and then
use this correlation for the original distribution of con-
sequences. This partition was chosen because Death
seems ”more clear”. Recoverable injury, on the other
hand, needs to be defined and assessing how specific
factors may influence probability of this state could be
more confusing. However, there are only 13 instances
of Death in the GISAI data. For assessing correla-
tions from data, we used the partition Recoverable C1
/ Non-Recoverable injury (including Death) C2. The
correlations obtained from the expert elicitation are
given below.

rCH = 0.048, rCA|H = 0.202, rCM |HA = 0.065.

Notice that in this case we have assumed that the
conditional correlations are constant. We see that the
experts do not think that the consequence Death is
strongly influenced by Age, Height and Medical at-
tention.

Correlations from data We have only thirteen
cases for the consequence ”Death” and almost all of
them with some unknowns. For consequence ”Recov-
erable injury”, on the other hand, the situation seems
to be much better (see Figure 4). We have a large num-
ber of unknowns, but 603 scenarios gives a more rep-
resentative sample. We can assume in the vine-copula
that conditional correlations do not depend on the val-
ues of the conditioning variables (later on we will also
use non constant rank correlations). We can there-
fore conditionalize on the variables with the highest
counts in the data, and estimate the correlations to
be used in the diagonal band for simulation with a



vine from the data. However before we find correla-
tion and conditional correlations the two dimensional
and conditional two dimensional distributions must be
obtained. We use Bayes redistribution method for this
purpose. The results are shown below.

Distr (1,1) (1′,1) (1,2) (1′,2)
(C,H) 0.7615 0.1322 0.0805 0.0257

Distr (1,1) (1′,1) (1,2) (1′,2)
(C,A|H1) 0.6686 0.0825 0.2439 0.0049
(C,A|H2) 0.3905 0.5143 0.0571 0.0381

Distr (1,1) (1′,1) (1,2) (1′,2)
(C,M |H1A1) 0.6305 0.0893 0.2266 0.0535
(C,M |H2A1) 0.3744 0.0795 0.3901 0.1560
(C,M |H1A2) 0.6443 0.0235 0.3149 0.0174
(C,M |H2A2) 0.1886 0.2159 0.3787 0.2168

Conditionalizing onH1 andA1 and assuming that
conditional correlations are constant we get

rCH = 0.39, rCA|H = −0.24, rCM |HA = 0.30.

The negative correlation between consequence and
age, given height, is counterintuitive at first sight.
However, we may reflect that older workers are more
experienced, perhaps less susceptible to pressure and
less willing to take chances.

The assumption about constant conditional corre-
lations can be weakened to allow changes of correla-
tions depending on states of conditioning variables. In
this case the following correlations were found.

rCH = 0.39,

rCA|H1 = −0.24, rCA|H2 = −0.3,

rCM |H1A1 = 0.30, rCM |H2A1 = 0.20,

rCM |H1A2 = 0.21, rCM |H2A2 = −0.22.

Notice that correlations didn’t change dramatically.
Only correlationrCM |H2A2 = −0.22 is surprising at
first but examining counts ofC andM givenH2A2
(see (4)) one can see that this distribution was not well
represented by the data.

C1 C1′ UnC
M1 0 0 0
M2 1 0 0

UnM 5 4

(4)

The results obtained with vine method with con-
stant and non constant rank correlations as well as
redistribution obtained in S-Plus with the maximum
likelihood method are shown in Table7.

(C,H,A,M) v ncon v con S-Plus Exp
p(1’,1,1,1) 0.06288 0.07578 0.0584 0.0656
p(1’,2,1,1) 0.01194 0.0139 0.0002 0.0079
p(1’,1,2,1) 0.00994 0.0079 0.0225 0.0267
p(1’,2,2,1) 0.00224 0.00166 0.0004 0.0032
p(1’,1,1,2) 0.05236 0.0438 0.0310 0.0341
p(1’,2,1,2) 0.00942 0.00832 0.0181 0.0041
p(1’,1,2,2) 0.00726 0.00484 0.0200 0.0139
p(1’,2,2,2) 0.00046 0.00086 0.0060 0.0017
p(1,1,1,1) 0.35446 0.40616 0.4260 0.3522
p(1,2,1,1) 0.03706 0.04206 0.0358 0.0422
p(1,1,2,1) 0.15814 0.15218 0.1317 0.1431
p(1,2,2,1) 0.01866 0.0176 0.0000 0.0171
p(1,1,1,2) 0.1666 0.146 0.1380 0.1830
p(1,2,1,2) 0.01724 0.0139 0.0327 0.0219
p(1,1,2,2) 0.08066 0.05834 0.0692 0.0744
p(1,2,2,2) 0.01068 0.0067 0.0099 0.0089

Table 7: Distribution of (C,H,A,M) obtained with vine
method with constant rank correlations (col 3), vine
method with non constant rank correlations (col 2)
and with maximum likelihood method using EM al-
gorithm in S-Plus (col 4) and vines with expert’s cor-
relations (col 5).

7 CALCULATIONS WITH PLACEMENT LAD-
DER BOWTIE

We can calculate probability of fall give different
combinations of support safety barriers.

One maybe interested to see how the probability
of fall changes when the information about bad abil-
ity, wrong and not well placed and protected ladder
becomes available. This corresponds to the following
probability

P (F − |AB−, PP−,RL−) =

=
P (AB−, PP−,RL− |F−) ∗ P (F−)

P (AB−, PP−,RL−)

The probability of support safety barriers given fall
can be calculated as

P (AB−, PP−,RL− |F−) =

= P (AB−, PP−,RL− |SU−,F−)P (SU − |F−)

+P (AB−, PP−,RL− |SL−, F−)P (SL− |F−)

+P (AB−, PP−,RL− |SR−,F−)P (SR− |F−)

Accommodating assumptions about distributions of
support safety barriers given primary safety barrier
lost and fall we get

P (AB−, PP−,RL− |F−) =



= P (AB−,RL− |SU−,F−)P (PP−)P (SU − |F−)

+P (PP−,RL− |SL−, F−)P (AB−)P (SL− |F−)

+P (RL− |SR−,F−)P (AB−)P (PP−)P (SR− |F−)

From the above we get

P (F − |AB−, PP−,RL−) = 5.50047E − 07

which is not very different from unconditional prob-
ability of fall. However if we calculate probability
of fall given that all support safety barriers were in
state ”+”, henceP (F − |AB+, PP+,RL+) we get
1.51225E-09 which is two fold smaller than uncondi-
tional probability of fall.

To check which support safety barrier is the most
influential given fall we can calculate

P (AB − |F−) = 0.3367, P (PP − |F−) = 0.7283

and
P (RL− |F−) = 0.5420.

The left hand side of the bowtie can be combined
with the right hand side/consequence side to see how
many deaths one can expect given different combina-
tions of support safety barriers and fall.

8 CONCLUSIONS
Expert judgement methods are recognized as addi-
tional source of data in situations where other types of
data are not available. This is in general not a ”cheap”
source of data. It requires the choice of good ex-
perts, representing diverse points of view, preparation
of good seed questions as well as questions of inter-
est. Moreover the experts usually participate in train-
ing session during which they learn about procedures
used in an elicitation and about techniques to combine
their opinions. Experts are interviewed separately by
team of two people. Average interview time in elici-
tation for Placement ladder bowtie was 2 hours.

The Placement ladder bowtie was only one of the
models concerned with falls. 25 categories of acci-
dents were recognized in the WORM project. Quan-
tification of so many models with expert judgment
will be cumbersome. Of course accidents can be
grouped such that the same experts can be used to
quantify related models. However it was recognized
that few panels of experts will be necessary.

As Placement Ladder bowtie was a pilot model to
test techniques that will be use in other bowties later
in the project, the question was posed whether it is
possible to choose the best experts during training
session and use their weighted combinations on ques-
tions of interest. This would significantly reduce time
spent on the expert judgment exercise.

It turned out the the policy of choosing the best ex-
pert from the training and using only this expert for
the elicitation would have resulted in unacceptably
poor performance. Suffices to say that the best expert
in the training followed a new heuristic in the elicita-
tion which had been developed by him after the train-
ing. He found data from the UK for construction, and
applied this to answer the seed questions, with very
high confidence. The elicitor recognized the danger
in this heuristic but was unable to dissuade this ex-
pert without violating the independence of the expert.
This heuristic was not successful, and this expert re-
ceived a low score in the elicitation. This underscores
the reasons for using multiple experts.

Even if expert judgment methods are expensive
they allow defendable quantification of models that
otherwise would be have to be fed with numbers that
seem reasonable.
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