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1 Introduction

In the field of reservoir engineering new methods of assimilating the data

are needed because of specific types of observations. They can be obtained

from several sources and differ from the measurements in other types of

applications. The secondary recovery is considered where water flooding is

performed. The typical is five point observation network when the wells are

drilled in the corners of the field and its middle. This small data set can

be enriched with large scale data, for instance, from the seismic or satellite

observations. This very noisy data is expensive in assimilation if one uses

ensemble Kalman filtering (EnKF).

The aim of the data assimilation in reservoir engineering is to predict

subsurface characteristics which give an idea about the flow of the fluids

through the reservoir (permeability). The four wells that are in the corners

of the field are the producers, the middle one is an injector. The water is

pumped through the injector to push the oil up the producers. During that

process measurements are taken. It is not possible to observe permeability,

therefore, the measurements are flow rates (differences in pressure). Those

values, using the dependencies in the model simulator, are translated into

the permeability.

Given the observations, one tries to predict the ability of the fluid flow

in the reservoir (permeability). A new algorithm - ensemble multiscale filter

(EnMSF) - was proposed. This work points out some problems met so far
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in reservoir engineering area and checks how well they can be solved by

applying EnMSF. Its roots come from image processing and it is expected

to overcome EnKF’s disadvantages. The ensemble Kalman filter tends to

preserve the correlations between physically independent points and takes a

lot of time assimilating large scale data. It is expected to be worked out by

the new algorithm.

It became important to focus on the properties of ensemble multiscale

filter and test it. Since the algorithm is new, it is also important to assess its

performance, check the properties and learn how to use it efficiently. There

are several parameters in the algorithm which so far depend on the choice of

a user. This flexibility of the method can be seen as an advantage but also as

a disadvantage. It can help in adjusting the algorithm to various applications

but, on the other hand, it might be hard to control all the parameters.

The thesis is organized in the following way. Section 2 introduces the

information about the ensemble multiscale algorithm, the equations and as-

sumptions. The next two sections, 3 and 4, contain some examples. The first

one is more theoretical where the measurements are permeability values and

can be constructed in an arbitrary way. It shows how the filter deals with

different kind of data. The second one comes from the real-life application

and shows how changing some parameters in the algorithm can influence

its performance, given the measurements and the ensemble. Therefore, the

theoretical example focuses more on the choice of the measurements, the

practical one more on the tree topology. Both examples are going to stress
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and test some of the features of the ensemble multiscale filter. Everything is

followed by conclusions in Section 5.

2 Short introduction to multiscale ensemble

Kalman filter

To introduce the multiscale filter some basics of Kalman filtering ([5]) have

to be shown. Some information about the Kalman filter will help to get ac-

quainted with ensemble version of the algorithm what is the prior knowledge

to EnMSF.

Both, Kalman filter and EnKF, provide a way to perform a forecast and

update of the states. In the forecast step the state is propagated in time. So,

having the state at time t it predicts its value at time t + 1. In the update

step, model predictions obtained in the forecast step are combined with the

data from the measurements to get an optimal estimate.

Kalman filter begins with the initial value of the states and their ini-

tial covariance matrix. It propagates the covariance and trough a Kalman

gain (weighting factor) updates the states with measurements (see Appendix

C for equations). In ensemble Kalman filter this initial knowledge of the

state is expressed via an ensemble which represents the distribution of the

truth. There the update is performed on each ensemble member again with

a Kalman gain being a weighting factor (see Appendix D for equations).

Kalman filters are known for keeping the long distance correlations and
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computational problems if the matrices representing the states and measure-

ments are large. In reservoir engineering the fields of states are spanned over

a huge area and physically points which are far away in reality should not be

correlated. EnMSF gets rid of long distance correlation by prioritizing high

dependencies. Also, working with those small covariances allows to make

faster the computations with large scale data.

NOTATION

s Nodes on the tree.

sαi Child i of node s.

sγ Parent of node s.

χ(s) State vector at node s.

χM(s) The vector of finest-scale states descended from s.

m(s) Scale of node s.

n(s) Dimension of the state vector χ(s).

zi(s) Vector of states at node sαi; χ(sαi).

zic(s) Vector of the states on all nodes at scale m(s) + 1 except node sαi.

y(s) Measurement vector in node s.

h(s) Measurement matrix in node s.

e(s) Local measurement error vector with 0 mean and covariance r(s).

χ(s|s) State update at node s.

χ(s|S) Smoothed state at node s.

χ(sγ|s) Projected state at node sγ.

j Superscript indicating an ensemble.
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In general, Kalman filter methods consist of two main steps: the forecast

and the update but the multiscale ensemble Kalman filter1 provides a way

to perform the update step only. Like in EnKF the computations are done

on the ensemble.

It consists of three basic steps:

1. assigning grid cells (pixels) to the finest scale nodes and describing

the tree parameters from sample propagation through the tree (tree

construction);

2. upward sweep (update);

3. downward sweep (smoothing).

Given the ensemble, the Multiscale algorithm constructs a proper tree,

places the ensemble members on the finest scale and propagates them up and

down the tree. Then the output is a set of updated and smoothed replicates.

The most complex is step 1., containing crucial assumptions but also

many flexible variables. Identifying appropriate tree parameters is easier

assuming locally internal model. It means that the state at each non-fine-

1Section based on [1]
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scale node is a linear combination of the states at its children:

χ(s) = V (s)




χ(sα1)

...

χ(sαq)




.

Given matrices V (s) one can perform the upward and downward recursion

with:

Downward recursion equation

χ(s) = A(s)χ(sγ) + w(s),

Upward recursion equation

χ(sγ) = F (s)χ(s) + w′(s),

where w(s) and w′(s) are zero-mean random scale perturbation with co-

variances Q(s), Q′(s), respectively. Specifying matrices V (s) is equivalent

to specifying A(s), F (s), Q(s) and Q′(s) (Appendix A) from upward and

downward recursion equations.

We search for a set of V (s)’s that provides the scale-recursive Markov

property on the tree, i. e. decorrelates q +1 following sets: first q sets are all

the children of the node s, and the set q + 1 contains all the nodes of scale

m(s) + 1 that are not children of s.
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The tree that will approximate the forecast covariance matrix well should

be based on the scale-recursive Markov property. The set of V (s)’s providing

the scale-recursive Markov property perfectly would have a very high dimen-

sion since it would keep the total dependence between the finest states on the

upper scale. Therefore, for practical purpose the state dimensions in coarser

scales will be constrained. This is easier if V (s)’s are block diagonal ; each

block corresponds to a different and only one child of s.

The way V (s)’s are built

V (s) has the form:

V (s) = diag[V1(s), ..., Vq(s)],

where Vi(s) is a matrix corresponding to the ith child of s, sαi, for i = 1, ..., q.

There are two constraints hidden here. The first one limits the number

of rows in matrices Vi(s) to di(s) < n(sαi). The second one, if necessary,

coarsens the number of rows in V (s) to d(s). In both cases, the appropriate

choice of the rows is based on an eigenvalue decomposition.

Constructing matrices Vi(s)

To obtain Vi(s)’s, q conditional covariances would have to be minimized,

for each non-fine-scale node s. Those would be the conditional cross-covariances

between child i (i = 1, ..., q) and the rest of the nodes in the same scale, given
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the parent. Since direct minimization is inconvenient, the algorithm uses a

predictive efficiency method.

Predictive efficiency method

The method is more efficient to compute than all the conditional cross-

covariances. It picks Vi(s)’s which minimize the departure from optimality

of the estimate:

ẑic(s) = E[zic(s)|Vi(s)zi(s)],

where zi(s) is a vector of states at node sαi (= χ(s)) and zic(s) is a vector

of states on all nodes at scale m(s) + 1 except node sαi. It was proved that

they are given by the first di(s) rows of:

V ′
i (s) = UT

i (s)Cov[zi(s)]
−1/2,

where Ui(s) contains the column eigenvectors of:

Cov−1/2[zi(s)]Cov[zi(s), zic(s)]CovT [zi(s), zic(s)]Cov−T/2[zi(s)]. (1)

Here it should be noted that di(s) are chosen by the user. The picked rows

have the highest corresponding eigenvalues. The reason is that we assume

that the column eigenvectors of Ui(s) are lined in a decreasing (corresponding

eigenvalue) order.

It is important to notice that while coding the algorithm, sample co-
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variances Ĉov in (1) are used. Computing those cross-covariances might be

demanding since zic(s) can be large. Here the notion of neighborhood is in-

troduced. It chooses only states on the nodes in the range of given radius

from the node sαi. Those states only are included in the complementary

vector zic(s). At this point it becomes visible how important it is to wisely

define the grid-node transformation.

Grid-node transformation

It is all about assigning the ’real life’ grid cells to the finest-scale nodes

of the tree. Again, all depends on the user. The important thing is to

preserve the ’real life’ physical dependence between cells in the tree. Then

the neighborhood contains the closest, most influential points.

Additional task is to pick the structure of the tree, i. e. the number of

children in every node which may vary from parent to parent.

After building the tree and getting all the needed parameters using the

method described above, it is possible to perform the update of the ensem-

ble with all the given measurements. Multiscale algorithm allows to put

measurements in the higher scales as well as in the finest one.

It is important to notice that any measurement depends only on the

finest-scale states:

y(s) = h(s)χM(s) + e(s),
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where e(s) is zero-mean with covariance r(s). It is assumed that h(s) and

covariance matrix r(s) are known for each node with a measurement.

Going up the tree the algorithm updates the states on the nodes. Then

each node s gets the value χj(s|s). χj(s|s) is the state vector updated with

all the measurements in the subtree rooted at s.

At the top of the tree the value for the root node is obtained, χj(0|0).

This is the basis to perform the downward sweep of the algorithm. χj(0|0) is

the initial point, namely χj(0|S), for the smoothing. Going down the tree the

value χj(s|S) is assigned to each node s. That is the smoothed state value

containing the knowledge from all given measurements. This way at the end

of the sweep we get smoothed updated states at the finest scale which can

be used to perform the next forecast step.

Additional general equations leading the update and the smoothing2

The upward sweep equation

χj(s|s) = χj(s) + K(s)[Y j(s)− Ŷ j(s)]

is very similar to the traditional Kalman filter equation. The states χj(s) on

each node are updated with perturbed measurements Y j(s) using weighting

factor K(s) and predicted measurements Ŷ j(s) (see Appendix B).

2All details can be found in [1] and some equations in Appendix B
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The downward sweep equation

χj(s|S) = χj(s|s) + J(s)[χj(sγ|S)− χj(sγ|s)]

for m(s) > 0 is based on the RTS smoother equation, where J(s) is the

smoothing gain and χj(sγ|S) is initially known from the upward sweep (for

s = 0). It is important to mention that to compute projected replicates

χj(sγ|s) upward recursion equation is used in the form:

χj(sγ|s) = F (s)χj(s|s) + w′j(s).

2.1 Theoretical assumptions

The algorithm is based on two important assumptions3: local internality and

Markovianity. The model is internal when each state at coarser scale is a

linear combination of its children. It makes model construction easier and

allows using multiresolution measurements by putting them higher in the tree

structure which is believed to make the algorithm computationally attractive

and overcomes computational burdens of previous approaches. Additionally,

assuming internality, the Markov property and scale-recursive Markov prop-

erty are equivalent. The latter one is of interest for this algorithm. It stands

that the following q+1 sets are independent, given node s: each of q children

3This subsection is greatly based on [3] where the meaning and importance of Marko-
vianity and internality is described in details.
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of s, and the set containing all other nodes from the same scale as the chil-

dren. Scale-recursive Markov property provides more efficient computation

of the statistics (covariances). The Markov property says that sets of nodes

in q + 1 trees created by removing node s are conditionally uncorrelated,

given node s.

There are several less strict assumptions used in the multiscale algorithm.

Mostly, they introduce practical and computational simplifications. Their

short specification is given below.

Constraining the dimensions of matrices V(s) (It chooses only the most

influential grid points. Therefore, it chooses the essence needed to per-

form the computations correctly. This way it cuts off the long distance

or weakly correlated points.)

Block diagonal structure of V(s) (Each block corresponds to a different

and only one child of s.)

Predictive efficiency method (It is used since the computation of all

cross-covariances would be expensive to perform.)

The features of the algorithm which entirely depend on the user are:

• number of pixels per finest-scale node,

• number of children per parent,

• numbering of the grid cells,
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• the neighborhood radius,

• dimension constraints on matrices V (s) and Vi(s).

Their influence is tested in further sections.

The multiscale algorithm has a potential to be a good assimilation tool for

reservoir engineering applications. It keeps small dimensions of covariances

on the higher scales what makes it not expensive computationally. The

measurement inclusion is introduced in a new efficient way for large scale

data. It is believed that, thanks to many user-dependent parameters, it can

be adjusted properly to the problem using all available data.

3 Theoretical example

First the algorithm is run with a theoretical example which allows to test

more features than the practical example shown further.

Given the training image (Figure 1) the ensemble of 1001 members was

generated using SGeMS (The Stanford Geostatistical Modeling Software).

All samples are 2D permeability fields of size 64× 64. The first replicate was

assumed to be the ’truth’ (Figure 2) and removed from the ensemble.

This example allows for testing various kinds of measurements on the

finest as well as on the coarser scales. The behavior of the filter given different

types of data is tested.
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Figure 1: Training image
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Figure 2: Truth for the theoretical
example

The values of the observations are the perturbed values of the ’truth’.

It means that the permeability field is updated with permeability measure-

ments. In practice these values cannot be measured. Therefore, the theo-

retical example is not realistic but allows to test a wide variety of cases and

possibilities.

Throughout the tests the tree is a quadtree, there are 16 pixels assigned to

each finest-scale node, 16 states preserved at coarser scales and no restriction

on the neighborhood radius. Only one numbering scheme is used:

1 2 5 6 17 18 · · ·
3 4 7 8 19 20

9 10 13 14

11 12 15 16

...

.

The task in this section is to analyze the usefulness of different large scale

measurement fields. This kind of data might be obtained from a satellite or
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seismic tests.

The table below contains the root-mean-square errors between the truth

and the prior computed from the ensemble of given size. The mean of the

ensemble should be the best estimate that can be got if there are no mea-

surements. Given the error of the prior it can be checked if the filter, using

the measurements, improved the estimation.

Ens. size RMSE
10 1.4719
20 1.3883
30 1.4053
40 1.3540
50 1.3789
60 1.3820
70 1.3894
80 1.3956
90 1.3966
100 1.4002

3.1 Measurements taken per pixel

Two measurement areas are assumed: Figure 3 and Figure 4, both with

standard deviation of the error equal to 0.001. The fields are of size 16× 16,

the first one contains a channel but the second one does not. For each case

the performance of the filter is assessed when the measurements are put on

the finest (fourth) or the second scale of the tree. It will be shown if EnKF

or EnMSF can track the channels and how well they perform.
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Figure 3: Measurement over a
large area with a channel
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Figure 4: Measurement over a
large area without a channel

The observations are done in every pixel. Therefore, assisting matrices

are large and can be computationally demanding. It is tested if the same

data placed higher in the tree has any impact on the filter’s performance.

The tables with measurements placed on the finest scale are organized as

follows. The first column is the number of ensemble members. Usually the

experiment is done for ensembles with at most 50 members. The results for

greater ensembles are shown if they are significant. The second column is

the time which EnMSF takes to construct the tree. The next two columns

are the times of update in EnMSF and EnKF, respectively. All times are

shown in seconds. The next-to-last and last columns contain the root-mean-

square errors of EnKF and EnMSF, respectively. When the measurements

are placed higher in the tree only EnMSF’s results are available.

The first thing to notice in the tables is the long time needed for the

tree identification which grows with the size of the ensemble. The results

shown here were obtained by running the algorithm with no restrictions on

the neighborhood radius. Reducing the radius does not influence the RMS
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Ens. size Tree id.[s] EnMSF time[s] EnKF time[s] RMSE EnMSF RMSE EnKF
10 2.6094 0.4375 10.6719 1.5847 2.0654
20 4.5156 0.39063 10.8281 1.4356 1.9298
30 6.7969 0.59375 11.9375 1.3916 1.706
40 8.1719 0.46875 11.25 1.4619 1.5878
50 11.5469 0.59375 11.5 1.2704 1.6769
60 13.9375 0.60938 11.5156 1.3104 1.8355
70 15.7188 0.625 11.7969 1.4603 2.0175

Table 1: Observation with a channel placed on the finest scale

Ens. size Tree id.[s] EnMSF time[s] RMSE EnMSF
10 2.5156 0.95313 3.012
20 4.5938 1 1.7456
30 6.2656 1.1875 1.8174
40 8.0938 1.0156 1.7347
50 11.2188 1.1875 2.0515
60 13.6406 1 1.686
70 15.5 1.0156 1.8271
80 17.6094 1 1.5365
90 19.3906 1.1875 1.4627
100 21 1.0625 1.4787

Table 2: Observation with a channel placed on the upper scale

error and decreases the tree identification time (this issue is further discussed

in Section 4). Additionally, in comparison to the computational time of any

forward simulator, this range of values is very small.

The time of update in EnMSF, given the tree parameters, is around twice

as large when the measurements are put up the tree than on the finest scale.

This happens due to the character of the observation. Since its value is

known in every pixel, the matrices on the higher scale covering the whole
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Ens. size Tree id.[s] EnMSF time[s] EnKF time[s] RMSE EnMSF RMSE EnKF
10 2.3906 0.35938 10.8125 1.4105 1.7019
20 4.7813 0.5 10.8438 1.3287 1.4334
30 6.1719 0.42188 11.1563 1.3756 1.3704
40 8.3281 0.57813 11.3125 1.3197 1.3142
50 11.2188 0.48438 11.3281 1.3256 1.3293
60 13.625 0.5 11.5156 1.3366 1.3351
70 15.5313 0.625 11.6406 1.3604 1.3453

Table 3: Observation without a channel placed on the finest scale

Ens. size Tree id.[s] EnMSF time[s] RMSE EnMSF
10 2.7188 1.1563 1.5541
20 4.5469 0.98438 1.4071
30 6.4688 1.1875 1.3915
40 8.2813 1.0469 1.3588
50 12.1563 1.0469 1.357
60 13.7188 1.0469 1.3771

Table 4: Observation without a channel placed on the upper scale

area are larger what causes the increase of computational time. The time

of EnKF update is quite large and increases slowly with the ensemble size.

Since the measurement size is large and heavy for EnKF, the number of

ensemble members becomes a minor problem.

From the information on RMS error it can be concluded that the obser-

vation without a channel is in general not very informative. It gives similar

results for all options but in the same time in comparison to prior estimation

it is better in every case.

An interesting observation is that for the measurement with a channel
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EnKF tends to diverge. Its RMSE becomes gradually worse with the number

of ensemble members what is already visible for ensemble size equal to 70

(Figure 5). The top plot is the prior of the ensemble. In the lower row:

EnKF update on the left and EnMSF update on the right. In this case the

best estimate is obtained for 50 ensemble members where the measurement

is placed on the finest scale (Figure 6). This estimation is also better than

the prior.
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Figure 5: Theoretical example. The results of assimilating large scale data
(in upper left corner). Top: prior. Lower left: EnKF. Lower right: EnMSF

In general, placing the observations of this type on the coarser or finer

scales of EnMSF does not show significant difference. The purpose of this

subsection was to introduce various possibilities of looking at the same ob-

servations. Putting them on the coarser scales allows to use measurements
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Figure 6: Theoretical example. The best result for assimilating the data with
a channel using 50 replicates. The data is given for every pixel and placed
on the finest scale

from different sources in one run.

3.2 Measurements as a perturbed mean

A different set of observations is constructed. Here it is assumed that the

perturbed mean of the values over some area is available. As before the upper

left square of size 16× 16 is measured but three scales are investigated. The

data is placed on sixteen nodes from the finest scale (Figure 7), four nodes

one scale higher (Figure 8) or one node two scales higher than the finest

scales (Figure 9). All three options span the same measurement area. It

is checked how beneficial is placing this type of observations on the coarser
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scales and how well they can be used.
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Figure 7: Theoretical example.
Measurement of the mean placed
on 16 finest scale nodes
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Figure 8: Theoretical example.
Measurement of the mean placed
on 4 coarser scale nodes
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Figure 9: Theoretical example.
Measurement of the mean placed
on one node covering the area

The tables are organized as before. Each one refers to a different place-

ment of the measurement on the tree and reaches up to 50 ensemble members.

The time of building the tree is comparable for all three experiments and,

as before, could be reduced. The time of update reduces with scale coars-

ening. This is due to the number of updates that need to be done. For the

measurements placed on the coarser scales less nodes span the same measure-

ment area. It does not make the filter work worse. In this example it might

be insignificant but for large scale examples it will have an importance espe-

cially with a large number of data. Additionally, the results seem to improve
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Figure 10: Theoretical example.
The assimilation of the mean mea-
surement for 40 ensemble mem-
bers, placed on the finest scale
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Figure 11: Theoretical example.
The assimilation of the mean mea-
surement for 40 ensemble mem-
bers, placed on the scale one up
from the finest
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Figure 12: Theoretical example.
The assimilation of the mean mea-
surement for 40 ensemble mem-
bers, placed on the scale two up
from the finest

with higher tree scales. For an example the plots for 40 ensemble members

are shown. Figure 10 shows the result for the finest scale. Figures 11 and 12

show the results for one and two scales higher, respectively. The second scale

result appears very similar to the prior, therefore the finest scale estimation

seems to be more informative with its sharper results. Measurement placed

on the third scale give the result in between the other two capturing the

features in the upper left corner. The two higher scales measurements give
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Ens. size Tree id.[s] EnMSF time[s] RMSE EnMSF
10 2.875 0.5 2.1354
20 5.3281 0.5 2.5813
30 6.8125 0.67188 1.9983
40 9.0313 0.67188 1.3352
50 12.3438 0.73438 1.4341

Table 5: Observation of the mean placed on the finest scale (fourth)

Ens. size Tree id.[s] EnMSF time[s] RMSE EnMSF
10 2.9219 0.46875 1.4806
20 5.375 0.46875 1.342
30 6.7969 0.625 1.3347
40 9.0469 0.65625 1.3471
50 12.1406 0.67188 1.3322

Table 6: Observation of the mean placed on the third scale

better estimations than the prior, whereas the finest scale is worse. Never-

theless, the last two plots more and more resemble the prior. It cannot be

avoided if only the assimilation is performed without any forward model to

perform long run predictions.
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Ens. size Tree id.[s] EnMSF time[s] RMSE EnMSF
10 3.3438 0.48438 1.3633
20 5.2656 0.5625 1.294
30 6.7813 0.60938 1.3168
40 9.0156 0.65625 1.303
50 12.0938 0.65625 1.3094

Table 7: Observation of the mean placed on the second scale

3.3 Measurement of the whole field

Very often it might be possible to obtain the measurement in every pixel

of the field. This kind of data is very noisy and obviously very large. It is

known that EnKF is not an efficient tool to assimilate observations of this

size.

Here, the observation is the true field perturbed by noise with standard

deviation equal to 9 (Figure 13).

meas
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0

10

20

30

40

Figure 13: Very noisy measurement of the whole field

From the table it can be seen how time consuming EnKF is in compar-

ison to EnMSF. As in previous example, the time of EnKF does not grow

rapidly with ensemble size. The size of the measurement puts much heavier

computational load on the filter than the ensemble size. Its RMS error does
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Ens. size Tree id.[s] EnMSF time[s] EnKF time[s] RMSE EnMSF RMSE EnKF
10 2.8438 1.2188 582.875 1.273 1.4075
20 5.1719 1.4844 582.4531 1.158 1.2978
30 6.3906 1.5625 584.9844 1.1868 1.3629
40 8.8438 1.6719 585.6875 1.1297 1.174
50 11.75 1.7656 586.0625 1.0745 1.1912
60 14.0156 1.9219 587.1406 1.0685 1.186
70 15.8125 1.9375 587.7813 1.0959 1.1831

Table 8: Observation of the whole field

not give good results neither. Whereas, EnMSF can already give informative

results for ensemble as small as 20. Just for the example the plots for 50

replicates are shown (Figure 14).

truth EnKF

5

6

7

8

9

10
EnMSF

Figure 14: The truth and results for assimilating the observation of the whole
field using 50 replicates. The middle: EnKF. The right hand side: EnMSF

On the left hand side there is the truth, in the middle EnKF, and EnMSF
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on the right hand side. Although the EnMSF shows the square pattern, it is

locally better than EnKF catching the important features.

This Section shows that EnMSF can deal well with large scale measure-

ments and it is not that sensitive on the size of the ensemble. It gives good

results in a reasonable time.

4 Practical example

Previous trials were done with replicates of permeability fields generated

using SGeMS. They were fields of the size 64x64 pixels (cells). The code of

the algorithm is not yet universal. Generally speaking, it was written for

fields with size equal to a power of two and trees with the same number of

children for each coarser-scale node.

It has become possible to use 94 replicates4 of size 48×48 generated using

Mejia’s algorithm which were later forecasted with MoRes simulator. The

replicates are the possible permeability field realizations in 2D which mean

is shown in Figure 17. The measurements of flow rates were taken in five

points: each corner of the field and the middle (Figure 15). The set of five

forecasted measurement points is given per each ensemble member. The true

permeability field is also available (Figure 16). In [4] the ensemble was used

to perform EnKF which results will be used for comparison (Figure 18).

Since the size of the replicates is 48x48 it was necessary to work more

4This section is based on [4].
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Figure 15: The five point measure-
ment for the practical example
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Figure 16: The truth in the prac-
tical example
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Figure 17: The mean of the ensem-
ble for the practical example
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Figure 18: The result of EnKF for
the practical example

with the details of the code like numbering the pixels and tree topology. To

be consistent, all obtained results are shown as a log10 of permeability values

in [meters per day] unit.
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4.1 The role of numbering and tree structure

The size of 48 × 48 (48 = 3 × 24) encourages to focus more on the tree

construction. This is due to the characteristics of the tree since we want to

place equal number of pixels on each finest-scale node and have the same

number of children on the nodes in one scale. There were two possibilities

tested. One puts 9 pixels per each finest-scale node of a quad-tree (’9 pixels’);

the other places 16 pixels per finest-scale node, the root has nine children

and all other nodes have four (’9 children’). Figures 19 and 20 show a simple

piece of a scheme of both construction methods.

Figure 19: A scheme of a part of a
tree structure ’9 pixels’

Figure 20: A scheme of a part of a
tree structure ’9 children’

Various ways of numbering the grid has been tested. Namely, rowwise

(’row’), columnwise (’col’), diagonal numbering starting from the main di-

agonal (’diag’) or starting from the other diagonal (’oppd’). One additional

way which takes into account the topology of the tree was added to each of

the two proposed algorithms (’sqr’): for ’9 pixels’ and ’9 children’ a square
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template of size 9× 9 or 16× 16, respectively, is ordered on the grid. Since

there can be many ideas (probably quite equivalent) to do that, it will not

be described in unnecessary details.

Figures from 21 to 30 picture several different results of the EnMSF. In all

cases the algorithm is run with the full neighborhood radius. The left column

plots are obtained when the ’9 children’ tree structure is applied, the right

column when ’9 pixels’. Each pair of pictures in one row is generated with

the same numbering type: rowwise, columnwise, diagonal, opposite diagonal

and square-like. Some conclusion are given after introducing the following

numerical data.

The tables below show the results of assimilation for EnMSF. They are

organized similarly as before. The first column indicates the types of num-

bering used in the assimilation which are described above. Next, there is

data of EnMSF: tree identification time, the time of update and the root-

mean-square error. The EnKF root-mean-square error is 0.45404 and the

error between the truth and the prior is 0.4953. The tables are divided with

respect to the tree structure, and the size of the neighborhood: full one and

extreme one equal to 1.

Pictures 21-30 might suggest that the second column of results, for ’9

pixels’, shows more accurate results since they look more smooth and real-

istic. On the contrary, the RMS error is in general worse for this type of a

tree. This might be due to the fact that none of the simulations (except the

one with square-like numbering) catches the features in the lower left corner.
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Numb. Tree id. EnMSF time RMSE EnMSF
’row’ 5.5313 0.29688 0.49621
’col’ 5.4375 0.35938 0.49932
’diag’ 5.6406 0.25 0.52149
’oppd’ 5.6406 0.26563 0.55402
’sqr’ 5.7656 0.3125 0.47938

Table 9: Tree structure: ’9 children’; Neighborhood: full

Numb. Tree id. EnMSF time RMSE EnMSF
’row’ 0.76563 0.32813 0.49794
’col’ 0.70313 0.34375 0.49805
’diag’ 0.76563 0.32813 0.51629
’oppd’ 0.75 0.32813 0.5466
’sqr’ 0.78125 0.40625 0.47813

Table 10: Tree structure: ’9 children’; Neighborhood: 1

It might be caused by a small number of pixels on the finest scale of the

tree where the measurements are placed. The algorithm might not be able

to catch dependence on a sufficiently large area. It is different for assimila-

tion with square-like numbering since it keeps the points, which are nearby

(dependent) in the reality, close on the dependence tree. This observation

might help while designing the numbering scheme for the model where there

is some preliminary knowledge of the field.

For the first four rows of plots (21-28) it is visible how the left column

with ’9 children’ tree structure preserves the dependence ’around’ the mea-

surements with respect to the numbering scheme.

The tree identification time also depends on the tree structure since all

34



Numb. Tree id. EnMSF time RMSE EnMSF
’row’ 11.0469 0.48438 0.57599
’col’ 11 0.5 0.60899
’diag’ 11.1719 0.48438 0.56244
’oppd’ 11.375 0.625 0.65588
’sqr’ 11.2656 0.60938 0.46337

Table 11: Tree structure: ’9 pixels’; Neighborhood: full

Numb. Tree id. EnMSF time RMSE EnMSF
’row’ 1.0781 0.64063 0.5405
’col’ 1.0938 0.65625 0.5219
’diag’ 1.0781 0.60938 0.53467
’oppd’ 1.0781 0.625 0.6056
’sqr’ 1.1875 0.76563 0.45755

Table 12: Tree structure: ’9 pixels’; Neighborhood: 1

other parameters are similar. The ’9 pixels’ method has almost twice as

many nodes in the tree (341) as the ’9 children’ method (190). Then more

complex method takes more time. The same rule can be seen for the update

time.

Two of the tables above contain the results of the algorithm for a minimal

neighborhood equal to 1. Certainly, the time of computing tree parameters

decreases significantly. Theoretically though, RMSE results should be worse

than the ones with a full neighborhood radius. Paradoxically, the best result

so far is obtained for this minimal neighborhood with square-like number-

ing for ’9 pixels’ tree (Figure 31). It might suggest that new methods for

measuring filter’s performance should be found.
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Figure 21: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 children’;
full neighborhood radius; rowwise
numbering
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Figure 22: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 pixels’;
full neighborhood radius; rowwise
numbering

EnMSF

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Figure 23: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 children’; full
neighborhood radius; columnwise
numbering
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Figure 24: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 pixels’; full
neighborhood radius; columnwise
numbering

For ’9 children’ structure the RMSE results for two different neighborhood

radiuses are almost the same. This might be due to the fact that 16 pixels on

each finest scale node keep the most important correlations and a ’smaller’

tree can preserve them better. That would be an explanation of why the

’9 pixels’ tree structure performs better for minimal neighborhood. Since

there are so many finest scale nodes (256, where in the other one - 146) with

only 9 pixels, when Markov property is weakened, more dependencies can

be captured. Some of correlation plots and measures in the next subsection
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Figure 25: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 children’;
full neighborhood radius; diagonal
numbering
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Figure 26: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 pixels’;
full neighborhood radius; diagonal
numbering
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Figure 27: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 children’; full
neighborhood radius; opposite di-
agonal numbering
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Figure 28: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 pixels’; full
neighborhood radius; opposite di-
agonal numbering

might help to judge the results.

Moreover, this Section gives a feeling on how important the tree-construction

part is. More research and new ideas should be investigated to build a guide

to most efficient EnMSF usage.
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Figure 29: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 children’;
full neighborhood radius; square-
like numbering
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Figure 30: Practical example. The
EnMSF estimation obtained for:
the tree structure - ’9 pixels’; full
neighborhood radius; square-like
numbering
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Figure 31: The best result of the practical problem assimilation with the
neighborhood 1, square-like numbering, ’9 pixels’ tree structure

4.2 Correlation

This subsection is going to show a different way of assessing the performance

of the multiscale filter which is done on the practical example. Product-

moment correlations are computed for each pair of cells x and y:

ρ(x, y) =
Cov[x, y]

σxσy

,

where σx is a standard deviation in pixel x. There are three correlation

matrices available:
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Initial The correlation of the initial ensemble.

After update The correlation of the updated ensemble (EnMSF).

Tree correlation The correlation that EnMSF represents ([1]).

The first two correlations are the standard ones that can be obtained for

any filter. The first one is the correlation of the ensemble before update.

The second one is the correlation of the ensemble when it is already updated

with the measurements. The last one is typical for ensemble multiscale filter

and describes how well the tree in the filter represents the initial correlation.

To compute it, first, 94 samples need to be drawn on the root of the tree

from normal distribution with zero mean and covariance assign to that node.

The number of samples is the same as in the initial ensemble. Given the tree

parameters for downward recursion equation, the ensemble is propagated to

the finest scale and its correlation matrix is computed.

The four tables show comparison results for four different runs of the

algorithm with respect to the tree construction and the neighborhood radius.

First column is the type of the numbering, second is the comparison between

initial and updated correlation, third one is the comparison between initial

and tree correlation. The numbers are the percentages of the significantly

different values in two matrices. The values are considered different when

they have opposite signs and the difference between them is higher or equal

to 0.1.
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The plots of the absolute value of the correlations, because of technical

reasons, show only the last 600 × 600 square of the matrix. For clarity of

the plot only elements with correlation higher than 0.5 are depicted since it

makes them easier to compare, and shows the strongest dependencies.

The percentage of difference between initial and updated correlations (sec-

ond column) assesses the performance of the filter; between initial and tree

correlations (third column) shows how well the tree can represent the true

dependencies.

Numb. init.-upd. init.-tree
’row’ 4.4285 15.2684
’col’ 3.9417 16.4382
’diag’ 3.8208 15.4148
’oppd’ 5.0071 15.3390
’sqr’ 6.1413 15.0425

Table 13: Correlation[Tree struc-
ture: ’9 children’; Neighborhood:
full]

Numb. init.-upd. init.-tree
’row’ 3.9536 20.7060
’col’ 3.7693 20.7222
’diag’ 3.6467 19.7564
’oppd’ 5.0126 20.1389
’sqr’ 5.4146 24.4686

Table 14: Correlation[Tree struc-
ture: ’9 children’; Neighborhood:
1]

At last the influence of the neighborhood reduction is visible. For ’9 chil-

dren’ tree construction, obviously, it does not influence the predictions. It

seems that, although the tree correlation for neighborhood 1 gives a worse

representation of the covariance, the tree structure is strong enough to repro-

duce the correct dependencies, as it was expected from the RMSE in previous

section.

For ’9 pixels’ tree structure the performance of the filter really improves

for a smaller neighborhood even though the representation of the correlation
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Numb. init.-upd. init.-tree
’row’ 17.0343 15.5387
’col’ 18.1600 13.0535
’diag’ 17.7480 17.2672
’oppd’ 17.6013 15.0094
’sqr’ 17.3072 16.8881

Table 15: Correlation[Tree struc-
ture: ’9 pixels’; Neighborhood:
full]

Numb. init.-upd. init.-tree
’row’ 14.3689 19.3521
’col’ 12.2644 22.5556
’diag’ 12.4927 23.6793
’oppd’ 13.0133 21.5787
’sqr’ 12.8247 22.4282

Table 16: Correlation[Tree struc-
ture: ’9 pixels’; Neighborhood: 1]

is worse. Evidently the results are still worse than for ’9 children’. They

confirm some of the RMSE results except for the best one obtained. Before

the square-like numbering for ’9 pixels’ and neighborhood 1 was the most

correct.

Just for an example Figure 32 shows the three correlation matrices: initial

on the top left, updated on the top right and tree correlation on the bottom.

The updated correlation captures the initial structure very well although

given tree matrix has lost some dependencies.
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Figure 32: The best result of assimilation for ’9 children’, diagonal numbering
and neighborhood 1

5 Conclusions

The two examples included in the thesis give a better insight into the en-

semble multiscale filter’s properties. Presented results help to give directions

to any further research. Probably, more efficient would be to put more than

9 cells per finest-scale node but the upper bound is not yet known. Pixels

should be numbered with respect to a dependence on the field. Then even

vague prior knowledge of the field’s fluid flow can be included; close numbers

could be cumulated in the areas of high dependence or strong flow. Moreover,

the filter does not depend very strongly on the number of ensemble members.

It occurred very easy and practical to use whole field measurement. Al-
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though very noisy and heavy for EnKF, EnMSF does a good job with those

measurements. It is fast and informative since it does not have to work with

the full covariance matrix but only its representation. Therefore, the update

is done on a set of matrices with low dimension. When the channel is ob-

served the assimilation seems to be more sensitive on the data with respect

to the ensemble size. On the other hand, the observation without a channel

is almost equally informative for different ensemble size. The possibility of

placing the measurement of the mean on the higher scales gave a better result

than the finest scale. The possibility of placing any large scale measurements

higher in the tree allows to use more than one type of available measurements

in one update step.

More information on the measurements’ usefulness will also be obtained

when the filter is run together with the model simulator. Then the root-mean-

square error should be a better indicator of the performance than it is now for

one time update step only. That was the reason to additionally look into the

correlation matrices what gave a better understanding and more knowledge

of the algorithm. Since EnMSF only represents the true covariance matrix,

it is important to look into the dependence structure (correlations) as it has

been done for the second example.

Definitely, more research needs to be done to design a guide to proper

tree construction (the choice of number of pixels or children per node, the

best numbering). It will be beneficial to run the algorithm with a model

simulator or allow the nodes to overlap. Additionally, a 3D version could be
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written.

A Appendix

A(s) = Ĉov[χ(s), χ(sγ)]Ĉov
−1

[χ(sγ)]

F (s) = Ĉov[χ(sγ)]A(s)T Ĉov
−1

[χ(s)]

Q(s) = Ĉov[χ(s)]− A(s)Ĉov[χ(s), χ(sγ)]T

Q′(s) = Ĉov[χ(sγ)]− F (s)A(s)Ĉov[χ(sγ)]

B Appendix

K(s) = Ĉov[χ(s), Ŷ (s)][Ĉov[Ŷ (s)] + R(s)]−1





R(s) = r(s), m(s)=M;

R(s) = diag[K(sα1)R(sα1)K
T (sα1), ..., K(sαq)R(sαq)K

T (sαq)], m(s)<M.
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Y j(s) = y(s) + ej(s), m(s)=M;

Y (s) =




K(sα1)Y
j(sα1)

...

K(sαq)Y
j(sαq)

y(s) + ej(s)




, m(s)<M.





Ŷ (s) = h(s)χj
M(s), m(s)=M;

Ŷ (s) =




K(sα1)Ŷ
j(sα1)

...

K(sαq)Ŷ
j(sαq)

h(s)χj
M(s)




, m(s)<M.

J(s) = Ĉov[χ(s|s)]F T (s)Ĉov
−1

[χ(sγ|s)]

C Appendix

Model and measurement equations:

x(tk+1) = M(tk)x(tk) + w(tk),
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y(tk) = H(tk)x(tk) + v(tk),

w(tk) - zero-mean normally distributed with covariance Q(tk); v(tk) - zero-

mean normally distributed with covariance R(tk).

Kalman filter equations:

model

xf (tk) = M(tk)x
a(tk−1),

covariance propagation

P f (tk) = M(tk)P
a(tk−1)M(tk)

T + QT (tk−1),

Kalman gain

K(tk) = P f (tk)H(tk)
T (R(tk) + H(tk)P

f (tk)H(tk)
T )−1,

analysis

xa(tk) = xf (tk) + K(tk)(y(tk)−H(tk)x
f (tk)),

analyzed covariance

P a(tk) = [I−K(tk)H(tk)]P
f (tk)[I−K(tk)H(tk)]

T +K(tk)R(tk)K(tk)
T ,

given xa(t0) (the initial state) and P (t0) (covariance of the initial state).
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D Appendix

Ensemble Kalman filter equations:

model

ξf
i (tk) = M(tk)ξ

a
i (tk−1) + wi(tk),

mean

xf (tk) =
1

N

N∑

i=1

ξf
i (tk),

error

Ef (tk) = [ξf
1 (tk)− xf (tk), ..., ξ

f
N(tk)− xf (tk)],

covariance

P f (tk) =
1

N − 1
Ef (tk)E

f (tk)
T ,

Kalman gain

K(tk) = P f (tk)H(tk)
T (R(tk) + H(tk)P

f (tk)H(tk)
T )−1,

analyzed ensemble

ξa
i (tk) = ξf

i (tk) + K(tk)(y(tk)−H(tk)ξ
f
i (tk) + vi(tk)),
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given ξa
i (t0), i = 1, ..., N (an ensemble).
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