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Aggregation is a key feature of traditional risk management strategies. Financial 

institutions securitize assets and property insurers hold bundles of policies across many lines of 
business.  With independent assets and risks with thin tails, the law of large numbers (LLN) and 
the central limit theorem (CLT) assure risk benefits from aggregation: the standard deviation of 
the sum increases slower than the mean of the sum and the tails of the aggregation become 
normal, that is, thin-tailed.  These benefits are the foundation of much of the banking and 
insurance industry.  Recent events, from Hurricane Katrina in 2005 to the financial crisis of 
2008, however, demonstrate that assumptions of independence and thin tails are no longer 
warranted in a world that is, in the words of Thomas Friedman, “hot, flat, and crowded.”  Both 
globalization and climate change are linking previously independent systems and are altering the 
frequency and/or the magnitude of extreme events.   

 
 The twin influences of globalization and climate change have introduced an “unholy 
trinity” (Kousky and Cooke 2009) of pitfalls for risk managers relying on aggregation: micro-
correlations, fat tails, and tail dependence.  The LLN requires independent aggregands.  Very 
small global correlations, micro-correlations, are enough to undo the benefits from aggregating 
independent assets.  The CLT also requires that the aggregands have a finite variance.  Just one 
aggregand having a very fat tail, such that the variance is infinite, is enough to make the 
distribution of the sum fat-tailed, as well.  In these cases, aggregation does not ease the risk of 
catastrophes.  The sample mean, the statistic we often use to predict future impacts, also will 
have infinite variance, no matter the size of the sample.  Our prognosticator is infinitely wiggly; 
importing George Burns’ analogy, predicting the future is like shooting pool with a rope.  Even 
though any sample will be finite, suggesting that infinite variance could simply be a theoretical 
artifact, thick-tailed behavior in finite samples is observable and troubling for risk managers.  
Finally, tail dependence is perhaps best described by Shakespeare: “When sorrows come, they 
come … in battalions.”3

                                                 
1 Resources for the Future, kousky@rff.org 
2 Resources for the Future and Dept. Mathematics, Delft University of Technology, cooke@rff.org 
3 King Claudius, Hamlet Prince of Denmark, Act 4 Scene 5 

  Failure to consider potential tail dependence by using the normal 
copulae, has been blamed for Wall Street’s woes (Salmon 2009).  The normal copula’s 
popularity derives from the ubiquity of the normal distribution.  This model is “tail independent” 
(McNiel et al 2005). That is, extremes of variables joined by a normal copula are independent. 
This fact has spawned a growth industry of exotic copulae to model tail dependence.  A very 
recent discovery, however, shows that tail dependence is anything but exotic; indeed it emerges 
when events are aggregated with the simplest of dependence models using the normal copula 
(Cooke et al 2010). Tail dependence may be rather the rule than the exception as risky assets are 
aggregated. 
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This chapter illustrates this unholy trinity  with two loss datasets: flood insurance claims 

data from the United States National Flood Insurance Program (NFIP) and crop insurance 
indemnities paid data from the United States Department of Agriculture’s Risk Management 
Agency.4  Both datasets are aggregated by county and year for the years 1980 to 2008.  The data 
are in constant year 2000 dollars.  Over this time period there has been substantial growth in 
exposure to flood risk, particularly in coastal counties. To remove the effect of growing 
exposure, we divide the claims per county per year by personal income per county per year 
available from the Bureau of Economic Accounts (BEA)5. Thus we study yearly flood claims per 
dollar income, per year per county. The crop loss claims are not exposure adjusted, as an obvious 
proxy for exposure is not at hand, and exposure growth was less of a concern.  While the unholy 
trinity may become a greater problem due to globalization and climate change, we do not attempt 
to extract any temporal trends in these phenomena here, but simply illustrate methods for 
measuring and detecting our trinity in finite datasets.6

ρ(ΣXi, ΣYi) =   .                                                                                         (1) 
                         Nσ2 + N(N-1)C 
 

 When data is not available we must turn to 
experts. A final section offers a perspective on the role of experts in dealing with these new 
problems. 

 
Micro-correlations 

Micro-correlations are correlations between variables at or beneath the detection limit. 
These tiny correlations are amplified by aggregation, limiting common diversification strategies. 
The ballooning under aggregation is illustrated by a very simple formula that should be on the 
first page of every insurance text book, but isn’t. Let X1,...XN and Y1, …YN be two sets of random 
variables with the same average variance σ2 and average covariance C, both among and between 
these sets. The correlation of the sums of the X’s and the sum of the Y’s is easily found to be: 

 
                                N2C 

                                                 
4 We would like to thank Ed Pasterick, Tim Scoville, and Barbara Carter for providing us with this data. 
5 This data goes from 1980 to 2006, so the last two years are dropped from the flood claims data. Income data was 
not avilable for Guam, Puerto Rico, or St. Croix, so these are dropped from our dataset.  Further, the income data for 
some counties in Virigina was for aggregations of counties.  These are also dropped as they cannot match cleanly 
with our flood claims data. 
6 Previous research has tried to examine changes in loss distributions over time and determine whether such changes 
can be attributable to climate change. While a time series analysis might seem to be a natural approach to examining 
our insurance data, the number of years of data in combination with the extreme variability renders this unworkable. 
For example, if we consider the flood claims data for the entire US, then the correlation with year over the 
observation period (0.31) is not statistically significant, and is strongly driven by the year 2005 where hundredfold 
higher claims were registered as a result of Katrina (without exposure adjustment the correlation with year would be 
significant). More importantly, our goal is not to show that climate is changing and is influencing crop and flood 
damages.  Rather, the goal is to show how this may impact our risk management strategies. 
7 The empirical correlation’s limiting distribution is normal with mean ρ and variance (1-ρ2)2/N, where ρ is the 
bivariate correlation. 
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This evidently goes to 1 as N grows, if C is non-zero and σ2 is finite. If all variables are 
independent, then C = 0, and the correlation in (1) is zero. The variance of ΣXi is always non-
negative; if the σ2 and C are constant for sufficiently large N, it is easy to see that C ≥ 0.  

Filling in a few representative numbers, if N = 1000, σ2 = 1 and C = .01, then ρ(ΣXi, ΣYi) 
= 0.91. If each variance were actually one, then C is the average correlation of any two variables. 
Based on the sampling distribution of the normal correlation coefficient, a sample size of 27,000 
would be required to distinguish a sample correlation of 0.01 statistically from zero at the 5% 
level7

 
Figure 1: Histogram of 500 correlations of US flood claims of random pairs of counties 

 

. A very small global correlation can make a very big difference when we aggregate, and 
this small correlation is effectively undetectable at the level of individual variables. This 
phenomenon was first observed in modeling auto NOx emissions in The Netherlands (van 
Oorschot et al 2003). 

The amplification of correlation can be seen in the flood insurance claim data. Suppose 
we randomly draw pairs of counties in the US and compute the correlation in  their flood claims. 
Figure 1 shows the histogram of 500 such correlations.  The average correlation is 0.04. A few 
counties have quite high correlations, but the bulk is around zero.  Indeed, based on the sampling 
distribution for the normal correlation coefficient, correlations less than 0.37 in absolute value 
would not be statistically distinguishable from zero at the 5% significance level. 91% of the 
correlations fall into that category.  

 

Instead of looking at the correlations between two randomly chosen counties, consider 
summing 100 randomly chosen counties, and correlating this with the sum of 100 distinct 
randomly chosen counties. If we repeat this 500 times, the leftmost histogram in Figure 2 results; 
the average of 500 such correlations-of-100 is 0.23. The rightmost histogram depicts 500 
correlations-of-500, their average value is 0.71.  This dramatic increase in correlation is a result 
of the micro-correlations between the individual variables.  Compare Figure 2 with Figure 3, in 
which each county is assigned an independent  (i.e. micro correlations are switched off) uniform 

                                                 
7 The empirical correlation’s limiting distribution is normal with mean ρ and variance (1-ρ2)2/N, where ρ is the 
bivariate correlation. 
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variable, for each of 29 years. The correlations-of-1 and correlations-of-500 are effectively the 
same. 

 

 
Figure 2: US Flood claims, correlations-of-1 (light) and correlations-of-500 (dark). 

 
 

 
Figure 3: Correlations-of-1 and correlations-of-500, for 30 realizations of independent uniform variables 
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The difficulty with micro-correlations is that they could so easily go undetected. One 
might not readily assume that fires in Australia and floods in California are correlated, but El 
Nino events induce exactly this coupling.  Bankers may not have assumed that mortgage default 
rates around the country were correlated, but the correlation of default rates to general economic 
conditions creates this micro-correlation. 

 
Banks, insurance companies, mutual funds are all risk dissipaters. Suppose you buy a 

bond for $1,000 that pays $1,100 in one year, unless it defaults, in which case you get nothing. If 
the probability of default is 0.01, your expectation is μ= $89, but the standard deviation of your 
return is σ = $109.4 . Your “comfort ratio” μ/σ tells you how by many standard units your mean 
exceeds zero.  $89/$109.4 = 0.81 is not a good comfort ratio. The CLT shows us that if you buy 
N identical independent bonds, your comfort ratio becomes √Nμ/σ.  The more bonds you buy, 
the more comfortable you become. After 100 purchases, your mean is already 8 standard units 
from zero. Now suppose that all these bonds have a statistically insignificant, but positive 
correlation ρ; then your comfort ratio does not keep going up but levels off to μ/(σ√ρ)8

                                                 
8 For N independent bonds, the comfort ratio is Nµ/(√Nσ) = √Nµ/σ.  With constant micro correlation ρ the variance 
of the sum is √(Nσ2+N(N-1)ρσ2), and the comfort ratio is √Nµ/(σ√(1+(N-1)ρ))  ~ µ/(σ√ρ). 

.  That 
may not be so bad, if you know it…but if you overestimate your comfort, then you might just do 
something foolish, like leveraging yourself at 30 to 1. 

 
Fat Tails 

 Fat tails were introduced in mathematical finance in 1963 by Benoit Mandelbrot to 
describe cotton price changes (Mandelbrot 2004).  Outisde of finance, there is evidence that 
damages from many disasters follow distributions with fat tails (e.g., Malamud and Turcotte 
2006). Climate change may be further fattening the tails of the distributions of many extreme 
events (e.g., U.S. Climate Change Science Program 2008). The uncertainty surrounding climate 
change may also generate fat tails, as in Weitzman’s (2008) analysis, where updating a non-
informative prior yields a fat-tailed posterior damage distribution.  

The precise mathematical definition of tail obesity is rather subtle (Resnick 2007), but a 
working notion is that damage variable X has a fat tail if, for sufficiently large values x, the 
probability that X exceeds x is kx−α, for some constants a,k  > 0.   It is easy to see that the m-th 
moment is infinite if m ≥ α. If α ≤ 1, the tail is “Super Fat” and the mean or first moment is 
infinite. Of course, on N samples from such a distribution, the average of the N sample values 
will be finite, but it increases with N. “Really fat” tails have infinite variance. The sample mean 
also has infinite variance, no matter how many samples we draw. This is of particular importance 
for operational risk, see L. Dalla Valle (2010) in Chapter ???  in this volume. 

A good way to gauge tail obesity is by “mean excess” plots (McNiel, et al. 2005). At each 
damage level x, we consider all damages greater than x, and plot the average by which these 
exceed x. For fat tailed distributions, the mean excess plot is increasing. If the tail is Really fat, 
than the slope is greater than one, the tail is Meso Fat if the slope is less than one, but greater 
than zero. We do not have enough data to study tail behavior within each county. We therefore 
pool all counties and consider each county-year as a realization of a single loss variable, yielding 
about 75,000 loss events for crop losses and for flood claims. Figure 4 shows mean excess plots 
for crop (left) and exposure adjusted flood insurance (right) claims. The unit slope line has been 
added for reference.  



Resources for the Future Kousky and Cooke 
Updated version appearing in Klaus Boecker (ed) Re-Thinking Risk Measurement and Reporting, Uncertainty, Bayesian Analysis and 
Expert Judgement, Risk Books 

6 

 

 

 
Figure 4: Mean excess plots for US crop loss (left) and exposure corrected US flood claims (right). 

The vertical axis gives mean excess loss, given loss at least as large as the horizontal axis.  
 
The mean excess plot for crop losses shows a slope less than 1, whereas the mean excess 

plot for exposure-adjusted flood claims has a slope greater than one, indicative of  an infinite 
variance.  Whether the data has infinite variance is critical for risk managers considering 
aggregation.  If the variance is finite, the aggregate distribution will have thinner tails; if the 
variance is infinite, the tail of the aggregation stays fat, which is simply a consequence of the 
general CLT.  This difference can be seen in the crop and flood data.  Suppose we form packages 
of crop losses by randomly grouping the county-years ten at a time. Since the variance exists, the 
sum will approach a normal (thin-tailed) distribution. This is reflected in the flattened mean 
excess plot of a random aggregation-by-ten counties of crop losses in Figure 5 (left). Compare 
this to Figure 5 (right) showing the mean excess of a random aggregation-by-fifty of exposure 
adjusted flood losses. It has the same shape as the right hand picture in Figure 4. Aggregation 
does not thin the tail significantly.  Fat tailed loss data with finite variance converges to a normal 
distributions as we form random aggregations, but  fat tailed distributions with an infinite 
variance do not.  Instead, they converge to stable laws with the same tail behavior as the original 
aggregands, see e.g. Embrechts, Klüppelberg & Mikosch (1997), Theorem 2.2.15, for more 
details. When insurance companies hold really fat tailed policies, the aggregated portfolio is also 
really fat, and is poorly estimated by historical averages. Clearly, the same holds true for 
operational risk.  

 

 
Figure 5: Mean excess crop loss aggregation by 10 (left) and mean excess flood claims aggregation by 50 
(right). 
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Since Mandelbrot’s 1963 study of cotton prices, we know that fat tails require different 
methods than thin tails; the sample mean from a Really Fat tailed loss distribution has infinite 
variance and aggregations of independent fat tailed risks do not become thin tailed.  Still, we 
continue to rely on historical averages, even when we should better.  For instance, we know 
flood claims are really fat tailed but the US National Flood Insurance Program (NFIP) still uses 
an “historical average loss year” in setting premiums, and, as if that weren’t enough, the program 
only gives a 1%  weight to 2005 (with hurricanes Katrina, Rita and Wilma) in “an attempt to 
reflect the events of 2005 without allowing them to overwhelm the pre-Katrina experience”9

                                                 
9 Hayes and Spafford 2008  p.6 

. 
NFIP is itself overwhelmed with the claims from 2005, and on its own admission is unlikely to 
be able to cover the interest on its debt to the treasury.   
 
Tail Dependence 

Tail dependence is the most worrisome and least well understood member of our unholy 
trinity. It  refers to the tendency of dependence between two random variables to concentrate in 
the extreme high values (known as upper tail dependence, UTD) or extreme low values (lower 
tail dependence, LTD). For loss distributions, we are interested in the UTD of non-negative 
variables. Technically, upper tail dependence of variables X and Y is defined as the limit (if it 
exists) of the probability that X exceeds its100 r-percentile, xr, given that Y exceeds its 100r-
percentile, yr, as r goes to 1: 

 
UTD(X, Y) = limr→1 P(X > xr | Y > yr).                                            (2) 

 
If X and Y are independent, their tail dependence is zero. If their tail dependence is positive, then 
when one variable takes on an extreme value, it is more likely the other variable will as well. 
Note that UTD does not depend on the distributions of X and Y; if we apply any monotone  
transformation to X, say X* = X1/N (which will thin X’s tail), then UTD(X*,Y) = UTD(X,Y). UTD 
has no simple relation to the standard Pearson correlation coefficient used in (1).  For example, 
normal variables with any correlation ρ strictly between -1 and 1, have zero tail dependence. 
(McNiel, et al. 2005).  
 

Tail dependence can be seen in loss data. Wind damage and water damage are insured 
separately in the United States. The former is covered under homeowners policies or state wind 
pools and the latter is covered by the federal National Flood Insurance Program (NFIP). Flood 
damage and wind damage are often independent; a rising river does not necessarily mean high  
winds and a storm with high winds may not have enough rain to cause flood damage. A severe 
hurricane, however, causes both. This suggests that wind and water insurance payments may be 
tail dependent in a hurricane-prone state such as Florida. Figure 6 shows this is indeed the case. 
Wind payments from the state insurer Citizens Property Insurance Corporation were grouped by 
county and month for the years 2002–2006, as were NFIP flood claims (all are in constant 2007 
dollars). Each damage dataset was ranked, with the highest rank standardized to 1, and the ranks 
plotted against each other. The abundance of points in the upper right quadrant of Figure 6 shows 
that high flood damages and high wind claims occur together, indicating tail dependence.  
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Figure 6 Percentile scatter plot for  Florida wind and flood damages, above the 70 
percentile  

 
Correlations between sums always grow with aggregation, if the average covariance is 

positive. Under certain conditions, tail dependence can also grow, further foiling diversification. 
We can see this in data. We examine monthly flood loss data from Florida (the state for which 
we have monthly observations), per county. If we consider two random groups of five different 
counties, and make a scatter plot of the percentiles of their monthly losses, the left plot of Figure 
7 emerges. The points along the axes correspond to months in which no losses were reported in 
these counties. We may discern a weak tendency for points to cluster in the upper right corner. 
This tendency grows appreciably stronger if we take two random groups of 30 different counties, 
as in the right plot. 

 

 
Figure 7: Percentile scatter plots of random aggregations of 5 (left) and 30 (right) Florida counties, 

monthly flood losses.    
 

Tail dependence is related to the correlation of extreme event occurrences. For any two 
events A and B, the indicator functions 1A, 1B, are functions which take the value 1 if A or B 
occurs respectively, and zero otherwise. The Pearson correlation of the indicator functions is: 
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   𝜌𝜌(1𝐴𝐴, 1𝐵𝐵) =  𝑃𝑃(𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎  𝐵𝐵)− 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)

�𝑃𝑃(𝐴𝐴)�1−𝑃𝑃(𝐴𝐴)�𝑃𝑃(𝐵𝐵)(1−𝑃𝑃(𝐵𝐵))�
1/2 .                                                 (3) 

   
Setting A = {X is above its 100r-percentile} and B = {Y is above its100r-percentile}, then P(A) = 
P(B) =  (1-r) and: 

 

     𝜌𝜌(1𝐴𝐴, 1𝐵𝐵) =  𝑃𝑃(𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎  𝐵𝐵)
𝑟𝑟(1−𝑟𝑟)

− 1−𝑟𝑟
𝑟𝑟
→ 𝑈𝑈𝑈𝑈𝑈𝑈(𝑋𝑋, 𝑌𝑌)𝑎𝑎𝑎𝑎 𝑟𝑟 → 1.                                       (4) 

 
 
Recently, some progress has been made in understanding conditions under which tail 

dependence is amplified by aggregation. The gamma density with shape υ and scale α is f(x) = 
αυ xυ-1 e-αx / Γ(υ), 𝑥𝑥 ≥ 0, with mean υ/α and variance υ/α2. (X1,..,Xn,…)  have an L1 symmetric 
distribution with gamma distributed rate if, for any n,  the n-dimensional marginal density is 
given by: 

 

     p(x1,…xn) = ∫ (Πi=1..n λe-λΣxi ) λυ-1aυ e-aλ (1/Γ(υ)) dλ.                                         (5) 
 
 

The tail dependence of two distinct sums of N L1 variables is found to be (Kousky and 
Cooke, 2009a):  

 

     
∑ �1

2�
υ+𝑗𝑗+𝑘𝑘

𝛤𝛤(𝜐𝜐+𝑘𝑘+𝑗𝑗 )/[𝛤𝛤(𝜐𝜐)𝑘𝑘!𝑗𝑗 !]𝑘𝑘,𝑗𝑗=0…𝑁𝑁−1

∑ 𝛤𝛤(𝜐𝜐+𝑘𝑘)/[𝑘𝑘!𝛤𝛤(𝜐𝜐)]𝑘𝑘=0…𝑁𝑁−1
 .                               (6) 

 
 
It has recently been proved that this converges to 1 as N → ∞ (Cooke et al 2010).  This 

result explains the emergence of tail dependence in terms of familiar random variables. The L1 
model has found extensive application in reservoir management and deterioration of civil 
engineered structures (van Noortwijk 1996, 2009).  The dependence model (5) has a simple 
graphical structure, and is known as a latent variable model (see Figure 8): There is one variable, 
in this case λ, which couples all variables (X1,,…) and conditional on the latent variable, all other 
variables are independent. This is perhaps the simplest of a wide class of complex dependence 
models. 
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Figure 8: Latent variable dependence model 

  
 
Another recent result explains how sums of events may become tail dependent. Suppose 

event Yi occurs when some physical variable Ui exceeds some threshold, r. We may take Ui to be 
uniformly distributed on the interval [0, 1]. For i = 1,…2N, the variables Ui may be dependent. 
The simple latent variable model posits a latent (uniform) variable V and assigns a bivariate 
copula to each (Ui, V). Consider two loss portfolios S1(N) = ∑i=1..NYi  and S2(N) = ∑i=N+1..2NYi 
(the dependence of Si(N) on r is suppressed in the notation). We are interested in conditions 
under which S1 and S2 become upper tail dependent as N→ ∞.  You may think of the Si as claim 
amounts of any insurance companies, total loss distributions for operational risk, or the total loss 
of two bank's credit risky portfolios.     

 
Assume that P(Ui ≤ u | V = v) is increasing in v, for all u; one says that the (U,V) copula 

is stochastically increasing. The following has recently been shown (Cooke et al 2010);  P(S1(N) 
> δN | S2(N) > δN) → 1 as N → ∞ for any 0 < r < 1, and any 0 < δ < 1, if and only if  

 
P(U ≤  u | V = 1) = 0 for all 0 < u < 1.                                             (7) 

 
This condition is strictly weaker than UTD(U,V) = 1. The familiar tail dependent 

copulae, such as the Gumbel and Galambos, satisfy (7). For Archimedean copulae, (7) is 
equivalent to ordinary upper tail dependence (Theorem 3.12 of Joe (1997)). Significantly, (7) 
also holds for the normal copula, which is not upper tail dependent. If indeed the normal copula 
is the most frequently occurring “in nature”, and if the simple latent variable is indicative of 
behavior in a wider class of dependence models, then we may expect tail dependence to be the 
rule. In this case, different banks' credit portfolios, insurance claim portfolios etc may be highly 
dependent on each other, although, the individual constituents of the portfolios (claims, loans) 
only moderately depend on the common latent factor. This analysis is a telling argument in 
favour of a banking supervisions that is not narrowly focused on single banks but rather takes  
interdependence between different financial players seriously into account. As the title of this 
chapter makes clear, the benefit of securitization is limited and economic value may turn into 
economic loss. 

 
Such asymptotic results do not tell the whole story. For finite sums, we can observe tail 

dependent-like behavior even if the copula in a latent variable model does not satisfy (7).  To 
illustrate, we use the latent variable with Ui and V joined by Frank’s copula (Ui,V), event  Yi = 

 Variable 1 

Latent Variable 

….  Variable N  Variable 2 
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Ui > 0.9, P(Yi) = 0.1, ρ(Ui,V) = 0.9, and ρ(Y1,Y2) = 0.36. Frank’s copula is an Archimedean 
copula, which does not satisfy (7), and thus has zero tail dependence.   Letting S1(N) = Σi=1...N Yi 
and S2(N) = Σi=N+1...2N Yi, we find that  ρ(S1(100), S2(100)) = 0.98.  (All calculations are in done 
in Maple). Since Si(N) has a discrete distribution, the standard definition of tail dependence is 
not useful. The following graphs show two types of tail dependent behavior. Figure 9 (left) looks 
at P{S1(N) > 0.7N | S2(N) > 0.7N} as N = 5….500, and compares this with  P{S1(N) > 0.7N}.  
We see that while the probability of exceeding 70% of N decreases in N, in this range, the 
conditional probability of such exceedence stays constant. This means that although the 
diversification within each portfolio increases with growing number of atoms, the conditional 
loss probability remains constant and diversification goes awry. Even though this is an artificial 
example, the conclusions drawn have great similarities with what happens in the financial 
industry during 2007/2008. Put another way, similar mechanisms as described above may create 
the notorious systemic risk that may lead to a collapse of the entire financial system . The saw-
tooth aspect of these curves is caused by the discretness of Si(N).   Figure 9 (right) compares 
P{S1(N) > i} and  P{S1(N) > i | S2(N) > i }, as function of i, for  N = 100. The curious non-
monotonic feature of the conditional probability is observed in many simulations. There are two 
forces at work; as i increases   P{S1(N) > i} decreases, and as i increases, conditioning on S2(N) 
> i pushes the conditional distribution of V given S2(N) > i toward one, which raises the 
probability of S1(N) > i. The conclusion is that tail dependent-like behavior may arise for finite 
sums even in situations not covered by (7). 
 Figure 9 Tail dependent –like behavior for  latent variable with Frank’s copula, conditional and 
unconditional fractional occurrence rates (left); conditional and unconditional exceedence rates (right). 

          
 
Tail dependence is not just theoretical.  After Hurricane Katrina, heretofore independent 

lines of insurance saw many large claims; among them property, cargo, inland marine and 
recreational watercraft, floating casinos, onshore energy, automobile, worker’s compensation, 
health, and life insurance (RMS 2005), pointing to  tail dependence across these lines of 
business.  Similar tail dependence, specifically between property and motor vehicle claims, was 
also observed in France (Lescourret and Robert 2006).  Such tail dependence has the potential to 
wipe out insurance companies if not properly considered and addressed.  
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The Role of Experts 
 
It is evident that dependence is important in modeling risks. Whenever possible, models 

should be based on dependence observed in the actual data. If we know how to look, we can 
uncover these relationships.  The preceding sections suggest that random aggregations provide a 
useful tool in detecting and measuring our unholy trinity.  There are many cases, however, when 
data can be difficult to come by and yet we still must make risk management decisions.  In these 
cases, we may have  no alternative but to plumb the opinions of experts.  

 
Structured expert judgment has been used for uncertainty analysis for more than 35 years 

(US Nuclear Regulatory Commission,Wash-1400, 1975) and quantitative  dependence elicitation 
for at least 20 (Cooke and Goossens, 2000). These efforts usually assume a given copula type, 
usually normal or maximum entropy, and use experts to obtain bivariate rank correlations, 
something much simpler than trying to obtain estimates on our unholy trinity.  

 
Extensive experience with bivariate dependence elicitation was obtained in the Joint 

USNRC-EU uncertainty analysis of accidents with nuclear power plants10

The use of structured expert judgment to quantify the persons of the unholy trinity poses 
special problems. The processes we are examining, such as globalization and climate change, are 
influenced by both natural and socio-economic processes, raising a key question for expert 
judgment: who are the experts? An early expert elicitation study by Nordhaus (1994) undertaken 
to understand the probability of various levels of damage from climate change, found that natural 
scientists were distinctly more pessimistic about the tail of the climate change damage 
distribution than economists.  For a doubling of CO2 by the mid twenty-first century, natural 
scientists estimated the probability ranging from 0.2 to 0.95 that global incomes would fall by 
more than 25%.  Economists estimated the same probability to be between 0.003 to 0.09. With 

. Prior to this study, the 
question of probabilistic dependence was largely ignored, as if all important dependences were 
captured in functional relationships. Since this study, however, the technique for bivariate 
dependence elicitation has been deployed many times and returns usable results with expert buy-
in.  

 
The joint study had to break new ground in dependence modeling and dependence 

elicitation, and these subjects are treated extensively in the reports. The format for eliciting 
dependence was to ask about joint exceedence probabilities: “Suppose the effectiveness of 
supportive treatment for radiation exposure in people over 40 was observed to be below the 
median value, what is your probability that also the effectiveness of supportive treatment in 
people under 40 would be below its median value?”  Experts became quickly familiar with this 
format. Dependent bivariate distributions were found by taking the minimally informative copula 
which reproduced these exceedence probabilities, and linking these together in a Markov tree 
structure. Further developments, generalizing both the choice of copula and the tree dependence 
structure are found in Kurowicka and Cooke (2006). Recently, Morales et al. (2007) extended 
these techniques to more complex dependence structures.   

 

                                                 
10 Reports may be obtained from 
http://dutiosc.twi.tudelft.nl/~risk/index.php?option=com_docman&task=cat_view&gid=89&&Itemid=13 
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such a striking difference, the question of who the experts are in considering complex processes 
becomes central.  Averaging across experts is unsatisfying when the estimates are so bi-modal. 
Use of performance based expert combination algorithms can help in such situations (Aspinall 
2010). 

 
Using expert judgment to quantify dependence requires that analysts and experts know 

where to look for dependence relations.  The difficulty with micro-correlations is that they are 
often overlooked and tail dependence may not be observed until a very extreme event occurs, by 
which point it is a bit late for risk managers who would have liked to been able to reduce the 
threat. Many did not think to explore how tail dependent mortgages were until it was too late.  
Similarly, risk modelers over looked tail dependence related to hurricane damages until Katrina 
had hit.   

 
Still, there will be many cases where we will have some idea about the catastrophic or 

dependent nature of a risk and will need to rely on expert judgment to quantify the dependence.  
This can be done by sticking to the cardinal rule of expert elicitation: Elicit only about 
observable phenomena with which the experts are familiar. This has two implications: First 
experts should only be asked questions which we could in principle ask of nature:  Describe the 
controlled experiment or measurement which you would do to determine the quantity of interest 
and ask the expert to quantify his/her uncertainty on the outcome of this experiment or 
measurement. Second, the experiments or measurements must be similar to those which have 
been performed in the past, to ensure the experts are familiar with the question.  

 
This suggests that experts will be able to play a role in countering the unholy trinity as 

more experience is gained in recognizing and measuring these phenomena.  The first order of 
business is to gather more relevant data and find more ways detecting micro correlations, fat tails 
and tail dependence. Mathematical modeling will be needed to explore features of complex 
dependence models, define plausible model types and generate elicitation questions to quantify 
these models which experts can answer.  The latent variable model presented above is simple, 
but suitable in many cases. Assuming the copula coupling the latent variable to each physical 
variable is the same for all physical variables, we could quantify such models by asking experts 
to quantify one typical copula. If tail dependence for the copula is excluded, it may be sufficient 
to quantify the correlation in one copula. This can be leveraged by quantifying the rank 
correlation between any two physical variables, and using a minimal information copula between 
the latent and the physical variables which induces the elicited correlation between observable 
variables. This technique was used extensively in the USNRC-EU joint uncertainty analysis.  
  

The state of play is currently moving beyond such simple models. A recent example uses 
complex relationships between bivariate and conditional bivariate distributions to model 
dependence in four financial time series (Aas and Berg 2010), namely Norwegian stock index 
(T), the MSCI world stock index (M), the Norwegian bond index (B) and the SSBWG hedged 
bond (S). The structure of bivariate and conditional bivariate distributions is called a D-Vine 
(Figure 10), and is the simplest of a wide class of dependence structures which represent high 
dimensional distributions in terms of conditional bivariate distributions (Kurowicka and Cooke 
2006). 
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Figure 10 D-Vine dependence structure for Norwegian stock index (T), the MSCI world stock index (M), the 
Norwegian bond index (B) and the SSBWG hedged bond (S) (Aas and Berg, 2010).  
 

 
In Figure 10, dependence in the joint distribution is represented as bivariate distributions 

(S,M),  (M,T), and (T,B), and conditional bivariate distributions (ST | M), (M,B | T), and (S,B | 
M,T). A nested maximal likelihood procedure was used to quantify the (conditional) copulae, 
based on historical data. Tail dependent bivariate copulae in combination with this dependence 
structure gave demonstrably better results than more simple models. In particular, it 
outperformed the multivariate Student T copula, which is the current favorite in some circles.  

 
Such examples are illuminating and challenging; illuminating in that they show that 

capturing tail dependence in combination with complex dependence structures can pay off, and 
challenging in that they make it more difficult to ignore these features just because multivariate 
historical data is not available. Developing protocols for using structured expert judgment to 
shore up data shortfalls will place greater demands on the mathematical sophistication of 
analysts, experts, and problem owners.  
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