Extreme-Value Analysis of Corrosion Data

Marcin Glegola

July 16, 2007

Supervisors:

Prof. Dr. Ir. Jan M. van Noortwijk MSc Ir. Sebastian Kuniewski Dr. Marco Giannitrapani

Outline

Motivation

Objective of the Thesis

Methods used

Data declustering

Examples of application

Framework for modelling extremes of corrosion

Conclusions and recommendations

Motivation

- in the oil industry, hundreds of kilometres of pipes and other equipment can be affected by corrosion
- ▶ it is extreme defect depth/wall loss that influences the system reliability ⇒ extreme-value methods are sensible for application
- ▶ only part of the system can be subjected to inspection ⇒ results extrapolation is needed

Motivation

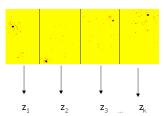
▶ defects/wall losses caused by corrosion are likely to be locally dependent ⇒ independence assumption questionable

Objective of the Thesis

- present statistical methods to model extremes of corrosion data, taking into account local defect dependence
- spatial extrapolation of the results
- examples of application
- framework/guideline for modelling extreme-values of corrosion

Methods used

The Generalised Extreme-Value (GEV) distribution (block maxima data)

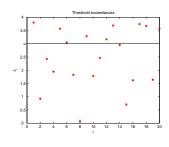


$$G(z) = egin{cases} \exp\left\{-\left[1+\xi\left(rac{z-\mu}{\sigma}
ight)
ight]_+^{-rac{1}{\xi}}
ight\}, & \xi
eq 0 \ \exp\left\{-\exp\left[-\left(rac{z-\mu}{\sigma}
ight)
ight]
ight\}, & \xi = 0, & aguruputus \ \end{bmatrix}$$

Methods used

The Generalised-Pareto (GP) distribution (excess over threshold data)

$$Y_i = X_i - u$$
, for $X > u$, $i = 1, \ldots, n_u$

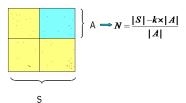


$$H(y) = \begin{cases} 1 - \left[1 + \frac{\xi y}{\bar{\sigma}}\right]_{+}^{-1/\xi}, & \xi \neq 0 \\ 1 - \exp\left(-\frac{y}{\bar{\sigma}}\right), & \xi = 0 \end{cases}$$

Methods used (extrapolation-GEV)

return-level method

$$G(z_p) = 1 - p \Leftrightarrow Pr\{M > z_p\} = p = \frac{1}{N}$$



implied distribution of the maximum corresponding to the not inspected area

$$Pr\{X_N \le z\} = G_N(z) = G(z)^N$$

Methods used (extrapolation-GP)

based on Poisson frequency of threshold exceedances (Poisson-GP model)

return-level method

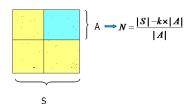
$$H(y_p) = 1 - p \Leftrightarrow Pr\{Y > y_p\} = p = \frac{1}{N_F}$$

 $N_E = \lambda_{GEV} \times (|S| - k \times |A|)$ - expected number of exceedances on the not inspected area

Methods used (extrapolation-GP)

implied distribution of the maximum corresponding to the not inspected area

$$Pr\{X_N \le x\} = \exp\left\{-\lambda_{GEV} \left(1 + \xi \frac{x - u}{\bar{\sigma}}\right)_+^{-1/\xi}\right\}^N$$



Methods used-summary

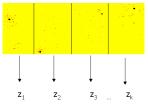
- two methods for statistical inference about extreme-values of corrosion
 - the GEV distribution (block maxima)
 - the GP distribution (excess over threshold data)
- two methods for spatial results extrapolation
 - return-level
 - distribution of the maximum corresponding to the not inspected area
- ▶ the GEV and GP distributions are closely related and theoretically, should give the same results

Modelling extremes of dependent data

- ▶ for the stationary data characterised by the limited extend of long-range dependence at extreme levels, the extreme-value methods can be still applied
- ▶ in corrosion application it is reasonable to assume that pit depths are locally dependent ⇒ extreme-value methods are applicable

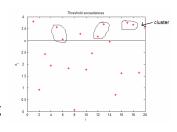
Modelling extremes of dependent data with the **GEV** distribution

- assuming local data dependence, block maxima of stationary data (for sufficiently large block sizes) can be considered as approximately independent
- the GEV distribution is used in its standard form



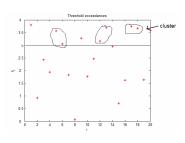
Modelling extremes of dependent data with the **GP** distribution

- neighbouring exceedances may be dependent, therefore the change of practise is needed
- one of the most widely adopted method is data declustering filtering out dependent observations such that remaining exceedances can be considered as approximately independent

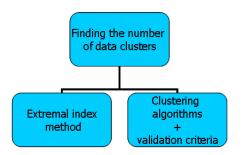


Modelling extremes of dependent data with the **GP** distribution-approach

- define clusters of exceedances
- identify maximum excess within each cluster
- assuming that cluster maxima are independent fit the GP distribution



Estimation of the number of data clusters



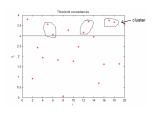
Extremal index method:

 the extent of short-range dependence of extreme events is captured by the parameter θ, called extremal index

$$heta = rac{1}{ ext{limiting mean cluster size}}$$

 extremal index measures the degree of clustering of the process at extreme levels

Extremal index method



$$\theta = \frac{1}{\text{limiting mean cluster size}} \Rightarrow N_c = \theta \times N_e$$

where N_c - number of clusters, $N_{\rm e}$ - number of exceedances above threshold u

 θ is estimated by the intervals estimator

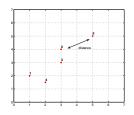
Finding number of clusters using clustering algorithm

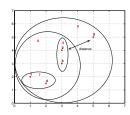
- define a validity criteria for the number N_c of found clusters
- \triangleright run the clustering algorithm for a range of N_c
- as proper number of clusters choose the one for which the validity criteria are optimised

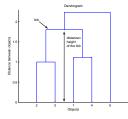
Agglomerative hierarchical clustering algorithm

- starts with single points as clusters
- at each step the two closest clusters are merged
- stops when only one cluster remains

Agglomerative hierarchical clustering algorithm







Validation criteria, that we used, aim at identifying clusters that are compact and well isolated:

- silhouette plot maximum value indicates optimum
- Davies-Bouldin index minimum indicates optimum

Data declustering-summary

- two methods to estimate the number of data clusters
 - the extremal index method
 - clustering algorithm + validation criteria (Davies-Bouldin index, silhouette plot)
- prior to data declustering perform clustering tendency test

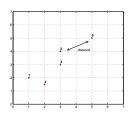
Simulated corroded surface

- application of the gamma-process model
- dependence in terms of the product moment correlation

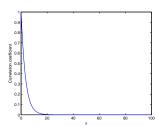
$$\rho(X_k, X_l) = \exp\left\{-d\left(\sum_{i=1}^2 |dist_i|^p\right)^{q/p}\right\}$$

$$X_k = (x_k, y_k), X_l = (x_l, y_l),$$

 $dist_1 = |x_k - x_l|, dist_2 = |y_k - y_l|,$
 $d = 0.3, p = 2, q = 1$

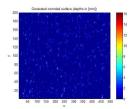


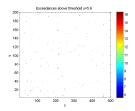
Simulated corroded surface

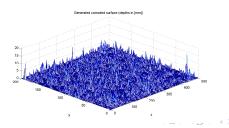


Matrix 1	Matrix 2	Matrix 3	Matrix 4	Matrix 5
Matrix 6	Matrix 7	Matrix 8	Matrix 9	Matrix 10
Matrix 11	Matrix 12	Matrix 13	Matrix 14	Matrix 15
Matrix 16	Matrix 17	Matrix 18	Matrix 19	Matrix 20

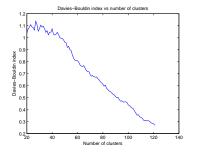
Simulated corroded surface

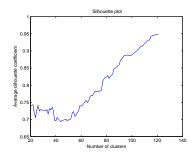






Simulated corroded surface - clustering algorithm





Simulated corroded surface - results

$\hat{ heta}$	nc	$n_{c_{alg}}$
0.544	107	121

Table: The estimate of extremal index and determined number of clusters

Number of clusters	$AD_{up}^2 p - v$.	KS p - v.
107	0.376	0.204
121	0.549	0.493

Table: Goodness-of-fit test results for different number of clusters

ξ	$\hat{\overline{\sigma}}$	$AD_{up}^2 p - v$.	KS p - v.
0.065	1.341	0.647	0.488

Table: GP fit to excess of dependent data

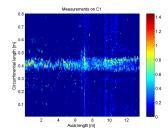
ξ̂	$\hat{ar{\sigma}}$	$AD_{up}^2 p - v$.	KS p - v.
-0.0137	1.6839	0.555	0.493

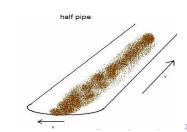
Table: GP fit to excess of declustered data

	$\hat{\xi}$	ô	$\hat{\mu}$	$AD_{up}^2 p - v$.	KS p - v.
I	-0.007	1.627	5.637	0.621	0.899

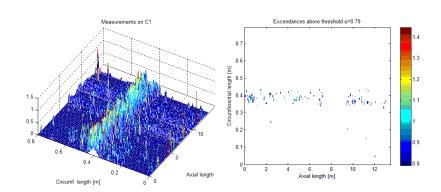
Table: GEV fit to block maxima data

Real data example

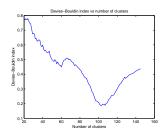


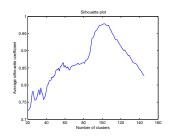


Real data example



Real data example





ξ	$\hat{\sigma}$	$\hat{\mu}$	$AD_{up}^2 p - v$.	KS p - v.
-0.082	0.182	0.757	0.713	0.986

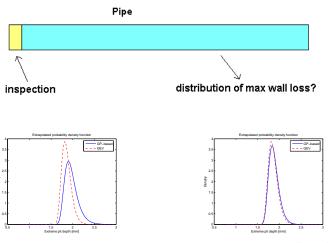
Table: GEV fit to block maxima data

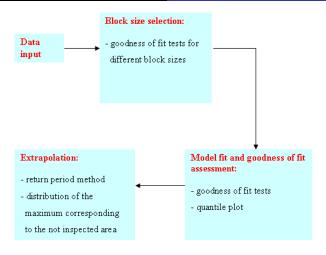
ξ	$\hat{ar{\sigma}}$	$AD_{up}^2 p - v$.	KS p - v.
-0.008	0.133	0.616	0.074

Table: GP fit to excess of dependent data

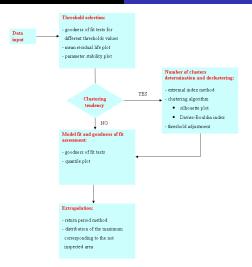
ξ	$\hat{\sigma}$	$AD_{up}^2 p - v$.	KS p - v.
-0.069	0.172	0.717	0.654

Table: GP fit to excess of declustered data





Framework for modelling extremes of corrosion with the GEV distribution



Conclusions and recommendations

- ▶ the two applied distributions are closely related and lead to the consistent inference about extreme-values of corrosion
- data declustering improves the results given by the GP distribution
- the performance of other clustering algorithms could be checked
- in order to take into account corrosion nonstationarity due to space-varying environmental conditions, covariate-dependent extreme-value models with trends could be considered

Motivation
Objective of the Thesis
Methods used
Data declustering
Examples of application
Framework for modelling extremes of corrosion
Conclusions and recommendations

THANK YOU FOR ATTENTION

Questions???

