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Abstract

In the oil industry, corrosion is one of the important factors that can cause sys-

tem failure. This can cost a lot of money or can pose a danger to human lives.

Therefore, corrodible structures are subjected to inspections. Usually, it is not

possible to inspect 100% of the system. This means that methods for inference

about the state of corrosion on the not inspected area, on the basis of inspection

data, are needed. Since extreme defect depths influence the reliability of the

entire system, the extreme-value methods are sensible to apply.

The thesis covers two main issues. Firstly, the methods for statistical inference

about extreme defect depths are presented. They are the generalised extreme-

value and the generalised-Pareto distribution. For both models, techniques to

extrapolate the results to the not inspected part of the system are described.

The second issue is taking into account local dependence of the underlying ob-

servations while inferencing about extremes of corrosion. For this purpose, data

declustering is performed. In order to find a proper number of data clusters,

the extremal index method and agglomerative hierarchical clustering algorithm

are used. The methods are applied to simulated and real data sets.

The results show that data declustering improves the consistency of the results

given by the generalised extreme-value and the generalised-Pareto distributions.

Key words: extremal index method, data declustering, generalised-extreme

value distribution, generalised-Pareto distribution, extrapolation.
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Introduction

In the oil industry corrosion is one of the main factors influencing the reliabil-

ity of the systems. Therefore the information about the corrosion process is

an important issue in the maintenance of corrodible structures. If the extreme

wall loss becomes greater than the nominal wall thickness of some object (pipe,

tank) then we have a system failure. This can cost a lot of money or even hu-

man lives. To avoid such situations proper maintenance actions are performed.

However, to make right decisions about actions to be taken (e.g. replacement of

a component, repair of a component) the information about the deterioration

state of the system is needed. This can be obtained through inspection, which

covers usually only part of the system. The information about the condition of

the remaining, not inspected part of the system is unknown. Therefore methods

for inference about the state of these parts of the system are needed. One of

the solutions is fitting the statistical models that will allow for inference about

the corrosion process and extrapolation of the results. A family of such models

form the extreme-value distributions, which are suitable for statistical inference

about extremes of the given phenomenon. In their standard form they are ap-

plied under the assumptions that the underlying observations are independent.

However, in the corrosion context this assumptions is questionable since it is

very likely that defects on the surface are locally dependent (see Figure 1).
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Figure 1: Example of pitting (localised) corrosion

Therefore it is our aim to study how the extreme-value tools can be used

without the assumption about the defect depths independence.
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Objective of the Thesis

The objective of the thesis is to present the statistical tools to model the ex-

tremes of corrosion data taking into account local defect dependence. For

this purpose we use two extreme-value distributions, namely the generalised

extreme-value and the generalised-Pareto distribution. We show how these

models can be applied while not assuming independence of the underlying ob-

servations. Through theoretical arguments and examples of application we show

that they are very consistent and that both allow for statistical inference about

extremes of corrosion.

Outline of the Thesis

The thesis is organised as follows. In Chapter 1, methods for statistical infer-

ence about extreme defects caused by corrosion are introduced. They are the

generalised extreme-value and the generalised-Pareto distribution. In order to

inference about the extent of the corrosion on the not inspected part of the

system, methods for spatial results extrapolation are described.

In Chapter 2, it is shown how the above methods can be applied to corrosion

data, while not assuming independence of underlying observations. Moreover,

the framework for modelling extreme defects caused by corrosion with extreme-

value distributions is presented.

The conclusions and recommendations for future research are presented in Chap-

ter 3.





Chapter 1

Extreme-Value Analysis of
Corrosion Data

In this chapter we will introduce two probability distributions which we will use

to model statistical behaviour of extreme defects caused by corrosion. They are

the generalised extreme-value and the generalised-Pareto distribution.

1.1 Generalised Extreme-Value Distribution

This section we will start with a brief description of the generalised extreme-

value distribution which is applicable to block maxima data. We will introduce

methods for parameter estimation and assessment of goodness-of-fit of the model

to data. Because the extent of corrosion on the not inspected area is of primary

interest, the extrapolation methods will be described. At the end, an applica-

tion of the model to real life data will be presented.

The generalised-extreme value distribution is used to model statistical behaviour

of block maxima data (Coles 2001). If {X1, X2, X3, . . .} is a sequence of in-

dependent and identically distributed random variables then the block maxima

5
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are defined as:

Zi = max(X1, . . . , Xn), i = 1, . . . , m. (1.1)

It can be shown that for sufficiently large block size n the cumulative distribution

function (cdf) of Zi converges in distribution to the generalised extreme-value

distribution given in Definition 1.1.

Definition 1.1 A random variable Z is said to have a generalised extreme-

value distribution (GEV) with scale parameter σ > 0, location parameter µ

and shape parameter ξ, if its cumulative distribution function is given by:

G(z) =





exp

{
−

[
1 + ξ

(
z − µ

σ

)]− 1
ξ

+

}
, ξ 6= 0

exp
{
− exp

[
−

(
z − µ

σ

)]}
, ξ = 0,

(1.2)

where [z]+ = max(0, z). The corresponding probability density function is given

by:

g(z) =





1
σ

[
1 + ξ

(
z − µ

σ

)]− 1
ξ−1

+

exp

{
−

[
1 + ξ

(
z − µ

σ

)]− 1
ξ

+

}
, ξ 6= 0

1
σ

exp
{
−

(
z − µ

σ

)}
exp

{
− exp

[
−

(
z − µ

σ

)]}
, ξ = 0.

(1.3)

The support of the GEV distribution is bounded by η = µ − σ

ξ
, what is given

in (1.4):

−∞ < z < η when ξ < 0 (1.4)

η < z < ∞ when ξ > 0

−∞ < z < ∞ when ξ → 0
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This fact has a meaning for extrapolation purposes and will be mentioned in

the later sections.

The mean and the variance of the GEV distribution are given by (1.5) and (1.6),

respectively:

E(Z) =





µ− σ

ξ
(1− Γ(1− ξ)), ξ < 1, ξ 6= 0

µ + σγ, ξ = 0
(1.5)

V ar(Z) =





σ2

ξ2
(Γ(1− 2ξ)− Γ2(1− ξ)), ξ < 1/2, ξ 6= 0

π

6
σ2, ξ = 0

(1.6)

where γ is the Euler-Mascheroni constant, approximately equal to 0.57721 . . .

(for details see Appendix A) and Γ(a) =
∫∞
0

ta−1e−tdt is the gamma function.

The single family of the GEV distributions contains all three possible limit-

ing distributions for block maxima, i.e. the Gumbel, Fréchet and the Weibull

families (Coles 2001, Beirland, Teugels, Vynckier et al. 1996). Moreover, the

Gumbel distribution (for the definition of the Fréchet and Weibull distribution

see Appendix A) corresponds to the case when ξ = 0, the Fréchet when ξ > 0

and the Weibull when ξ < 0, respectively. This fact supports the usage of the

GEV distribution as a tool for statistical modelling of extreme values. One does

not have to make a subjective a priori assumptions about the most appropri-

ate type of distribution for data. Through inference on ξ, the data themselves

determine the most appropriate type of distribution.

In corrosion application, the suitable data for statistical modelling of extreme

defect depths using the GEV distribution can arise as the largest wall loss mea-

surement from distinct specimens, sometimes called coupons (Scarf & Laycock

1996).
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1.1.1 Parameter Estimation

One of the most commonly used method to estimate the unknown parameters of

the GEV distribution is the maximum likelihood method. Under the assump-

tion that Z1, ..., Zm are independent variables having the GEV distribution, the

log-likelihood of the unknown parameters is given by (1.7):

l(z1, . . . , zm|ξ, σ, µ) =





−m log(σ)− (1 + 1/ξ)
m∑

i=1

log
[
1 + ξ

(
zi − µ

σ

)]

−
m∑

i=1

[
1 + ξ

(
zi − µ

σ

)]−1/ξ

, ξ 6= 0

−m log(σ)−
m∑

i=1

(
zi − µ

σ

)

−
m∑

i=1

exp
{
−

(
zi − µ

σ

)}
, ξ = 0

(1.7)

provided 1 + ξ

(
zi − µ

σ

)
> 0 for i = 1, . . . , m; otherwise l(z1, . . . , zm|ξ, σ, µ) =

−∞. The estimates (ξ̂, σ̂, µ̂) of the unknown parameters can be found by max-

imising (1.7) with respect to parameter vector (ξ, σ, µ). The solution is found

by numerical methods.

1.1.2 Goodness-of-fit

In this section methods of goodness-of-fit assessment will be introduced. They

are the quantile plot, the Anderson-Darling test for the upper tail of distribution

and the Kolmogorov-Smirnov test for the entire distribution.
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Quantile plot

Quantile plot is a graphical method used to assess if the assumed probability

distribution is the appropriate model for the data.

Definition 1.2 Given an ordered sample of observations z1 ≤, . . . ,≤ zm from

a population with estimated cumulative distribution function Ĝ, the quantile

plot consists of the points:

{(
Ĝ−1

(
i

m + 1

)
, zi

)
: i = 1, . . . , m

}
(1.8)

If Ĝ is a reasonable estimate of G, then the quantile plot should consist of points

close to the diagonal. Moreover on the basis of the delta method the confidence

bounds to this plot can added (for details see Appendix A).

Anderson-Darling test for upper tail

Another approach to assess the goodness-of-fit is the Anderson-Darling goodness-

of-fit test for upper tail of the distribution (Chernobai, Rachev & F.Fabozzi

2005), which is based the test statistic given in (1.9):

AD2
up = 2

m∑

i=1

log(1− zi) +
1
n

m∑

i=1

(1 + 2(m− i))
1

1− zi
, (1.9)

where zi = F̂ (x(i)), F̂ is the cumulative distribution function of the fitted

distribution and x(1) ≤, . . . ,≤ x(n) is and ordered sample.

The test is formulated as:

H0 : The data follow the specified distribution F . (1.10)

Ha : The data do not follow the specified distribution F .
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The distribution of the AD2
up is approximated by simulation. If the p-value, i.e.

the probability of obtaining the value of the test statistic greater than actually

calculated, exceeds the assumed significance level α then H0 is rejected in favour

of Ha. Otherwise there are no reasons to reject H0.

This test puts more weight to the upper tail of the distribution, which is im-

portant for extrapolation accuracy.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test can be used to decide if a sample comes from a

population with a specified distribution. It is based on the empirical distribution

function given in Definition 1.3.

Definition 1.3 Let X1, . . . , Xn be random variables with realisations xi ∈ R,

i = 1, . . . , n ∈ N. The empirical distribution function Fn(x) based on the

sample x1, . . . , xn is a step function defined as:

Fn(x) =
number of elements in the sample ≤ x

n
=

1
n

n∑

i=1

1(xi≤x),

where 1(A) is an indicator function defined as:

1A(x) =





1 if x ∈ A,

0 if x /∈ A.

The Kolmogorov-Smirnov test statistic is given by (1.11):

Dn = sup
x
|Fn(x)− F (x)|, (1.11)
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where F is the hypothesised distribution. The test is formulated as:

H0 : The data follow the specified distribution F . (1.12)

Ha : The data do not follow the specified distribution F .

Under the hypothesis H0,
√

nDn converges in distribution to the Kolmogorov

distribution which does not depend on F, provided that F is continuous. There-

fore this test is based on the critical values of the Kolmogorov distribution (for

more details see Appendix A).

1.1.3 Extrapolation

To extrapolate the results over larger areas we can use two approaches. One

is based on the return-level method and the other is based on determining the

probability distribution (the GEV distribution) of the maximum corresponding

to the area of extrapolation.

The return-level method

For a given value of probability p, (0 < p < 1), we determine a value zp satisfying

(1.13):

G(zp) = 1− p, (1.13)

where G is a cumulative distribution function.

When G belongs to the family of the GEV distributions, solving equation (1.13)

by inverting equation (1.2) gives (1.14):

zp =





µ− σ

ξ

[
1− {− log(1− p)}−ξ

]
, ξ 6= 0

µ− σ log {− log(1− p)} , ξ = 0.

(1.14)
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Note that (1.13) is equivalent to Pr{X > zp} = p, where X has a cumu-

lative distribution function G. It means that any particular block maximum

exceeds the value zp with probability p. In common terminology zp is called the

return-level associated with return-period 1/p. The level zp is expected to

be exceeded on average once every 1/p blocks (Coles 2001).

In corrosion application the return-level method can be used in the following

way. If the GEV distribution was fitted to block maxima data z1, . . . , zm, where

the physical block size is k units, then if we want to extrapolate to the area

M × k we must set p =
1
M

. Then the determined level zp is expected to be

exceeded on average once every M × k units of the considered area.

Using the profile likelihood method (for details see Appendix A) we can deter-

mine the confidence interval for return-level zp, which is usually more accurate

than the one obtained by the delta method (Coles 2001).

Extrapolation of the GEV distribution

Another approach for extrapolation is based on the implied distribution of the

maximum over the area which is some multiple, say M of the sampled areas.

More precisely, suppose that block maxima data z1, . . . , zm come from blocks of

the size k units. If the GEV distribution fitted to observed maxima z1, . . . , zm

is assumed to be the distribution of the maximum corresponding to the area of

k units, then the cumulative distribution function of the random variable XM ,

i.e. of the maximum over the area M × k units, is given by (1.15):

GM (z) = G(z)M (1.15)
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where G is the GEV distribution given by (1.2). Then (1.15) is equal to (1.16):

GM (z) =





exp

{
−

[
1 + ξ

(
z − µ + σ(1−M ξ)/ξ

σM ξ

)]− 1
ξ

+

}
, ξ 6= 0

exp
{
− exp

[
−

(
z − (µ + σ log M)

σ

)]}
, ξ = 0

(1.16)

It is worth to mention that this distribution is within the GEV family of distri-

butions and its parameters are related to the original parameters by (1.17):





µM = µ− σ(1−M ξ)/ξ, σM = σM ξ, ξM = ξ if ξ 6= 0

µM = µ + σ log M, σM = σ if ξ = 0
(1.17)

This gives a direct way to determine the distribution of the maximum wall loss

on the extrapolated area.

1.1.4 Example of Application

This example shows the application of the GEV model to real life data. We will

start with the data set description. After parameter estimation the goodness-of-

fit of the GEV distribution to data will be assessed. At the end the extrapolation

results will be presented.

The data consists of corrosion wall loss measurements from a 36” diameter

buried pipe of 19 [mm] wall thickness, and of 300 [m] total length. The in-

spected area was about 13.51 [m] (for further analysis this region is denoted

as C1). On the excavated area, scans were made with the screening technique.

The automated scanner first takes the measurements each dy = 5 [mm] in cir-

cumferential direction, and then moves with step size dx = 58 [mm] to the next

axial position. Because corrosion is present mainly at the bottom of the pipe,

the measurements were made along the pipe around the ”6 o’clock” position

with width 0.8 [m]. This gave in total 37280 measurements which are stored
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in a 160 × 233 matrix. In each column of this matrix there is data gathered

in one step of the screening machine in axial direction. All measurements are

presented in Figures 1.1 and 1.2. The first step in our analysis is the block

Figure 1.1: Scan results on the excavated part of pipe-C1 in [mm]

Figure 1.2: Scan results on the excavated part of pipe-C1 in [mm]
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definition. We have to specify how we are going to read the maxima from the

presented data set. As can be seen on Figure 1.1, corrosion is present mainly on

the bottom of the pipe. This suggests that we can define one block as number

Bs of columns in the matrix where data is stored. Since it is hard to judge

which number to choose we will perform the goodness-of-fit tests for the GEV

distribution versus different values of Bs. The results are presented in Figure

1.3 from which we can see that Bs = 2 is a good choice.
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Figure 1.3: Goodness-of-fit test results for the GEV distribution for different
block sizes. Bs-number of columns corresponding to one block

Then the block maxima seems to be stationary, what indeed is confirmed by

Figure 1.4.

The histogram and the results of fitting the GEV distribution to block maxima

data are presented in Figure 1.5 and Table 1.1.
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Figure 1.4: Measured block maxima
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Figure 1.5: Histogram and the fitted probability density function of the GEV
dsitribution to block maxima data

ξ̂ σ̂ µ̂ AD2
up p− v. KS p− v.

-0.082 0.182 0.757 0.713 0.986
(-0.211; 0.046) (0.158; 0.210) (0.719; 0.794)

Table 1.1: GEV fit to block maxima data
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The fact that ξ̂ < 0 implies that the support of the GEV distribution is bounded

from above by η̂ = µ̂− σ̂

ξ̂
= 2.970 [mm]. This means that regardless of the size

of the area to which we want to extrapolate the results, the predicted wall loss

should never be greater than 2.970 [mm]. However, the 95% confidence bounds

for η̂, equal to (0; 6.312)1, are very wide. Figure 1.6 and the high p-value of

goodness-of-fit tests (see Table 1.1) both confirm that the GEV is well fitted to

data.
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Figure 1.6: Quantile plot for the GEV distribution

In order to extrapolate the results to the not inspected area the two introduced

methods in Section 1.1.3 will be used. The return level and the implied distri-

bution of the extreme wall loss on the not inspected part of the pipe will be

determined.

To calculate the return level, first we have to determine the so-called return pe-

riod M (see Section 1.1.3) which is just a size multiple of one block. Since data

was gathered from 13.51 [m] of the pipe of 300 [m] total length then by block

1in fact the exact interval is (−0.373; 6.312), the left point of the interval is negative due
to the delta method used
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definition M =
300 [m]− 13.51 [m]

2× dx
≈ 2470, where dx = 0.058 [m] (here we can

also interpret M as the number of not inspected blocks on the remaining part

of the pipe). Then p ≈ 0.0004 and the corresponding return level ẑp along with

95% confidence bounds based on the profile likelihood method are presented in

Table 1.2.

ẑp 95% confidence bounds
1.806 (1.553; 2.528)

Table 1.2: Estimated return level and profile likelihood based confidence interval
[mm]-GEV distribution

Hence, the wall loss that is expected to be exceeded on average once on the not

inspected part of the pipe is 1.806 [mm] (1.553; 2.528). It is worth to mention

that the observed maximum wall loss during inspection was 1.447 [mm].

The implied cumulative distribution function of the extreme pit depth on the

not inspected part of the pipe, together with the calculated return level and

95% confidence bounds, are presented in Figure 1.7.
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Figure 1.7: Extrapolated GEV distribution
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As we can see both methods gave very consistent results. The calculated return

level equal to 1.806 [mm] is very close to the mode (for definition see Appendix

A) of the implied (extrapolated) probability density function.

In the next section we will present another approach to statistical modelling

of extreme values, namely Peaks Over Threshold method and the generalised-

Pareto distribution.



20 Extreme V alue Analysis of Corrosion Data

1.2 Generalised Pareto Distribution

Another approach to modelling the statistical behaviour of extreme events is

based on the generalised-Pareto distribution. This model is applicable to ex-

cess over threshold data. Similarly as for the GEV distribution, we will

describe the methods for parameter estimation and extrapolation. However,

some additional and important topics will be mentioned as threshold selection

or the so-called Poisson frequency of threshold exceedances. We will end this

section showing the application of the described methods, to the data used in

Example 1.1.4.

When we use the generalised-Pareto distribution, as extreme we regard those

events Xi from a sequence {X1, X2, . . .} of independent and identically dis-

tributed random variables with common distribution function F , which exceed

some high threshold u (see Figure 1.8).
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Figure 1.8: Exceedances over threshold
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Let X denote an arbitrary term in a sequence {X1, X2, . . .}. Then we define the

excess over threshold u as X − u, for X > u. If the distribution function F of

X would be known, then the distribution of the excess over threshold u could

be easily calculated from:

Pr{X − u > y|X > u} =
1− F (u + y)

1− F (u)

However in practise, F is not known and approximation methods are needed. It

can be shown (Coles 2001) that under appropriate conditions, for large enough

value of u, the distribution function of X − u conditioned on X > u is ap-

proximately within the Generalised Pareto family of distributions, given in

Definition 1.4.

Definition 1.4 A random variable Y is said to have the generalised-Pareto

distribution (GP) with shape parameter ξ and scale parameter σ̄, if its cumu-

lative distribution function is given by:

H(y) =





1−
[
1 +

ξy

σ̄

]−1/ξ

+

, ξ 6= 0

1− exp
(
− y

σ̄

)
, ξ = 0

(1.18)

where [z]+ = max(0, z), and y > 0.

The corresponding probability density function is given by:

h(y) =





1
σ̄

[
1 +

ξy

σ̄

]−1/ξ−1

+

, ξ 6= 0

1
σ̄

exp
(
− y

σ̄

)
, ξ = 0

(1.19)

The support of the GP distribution is bounded by γ = −σ

ξ
, what is given in (1.20):
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0 < y < γ when ξ < 0 (1.20)

0 < y < ∞ when ξ ≥ 0

The mean and variance are given by:

E(Y ) =





σ̄

1− ξ
, ξ < 1, ξ 6= 0

σ̄, ξ = 0
(1.21)

V ar(Y ) =





σ̄2

(1− ξ)2(1− 2ξ)
, ξ < 1/2, ξ 6= 0

σ̄2, ξ = 0

(1.22)

To model the extreme events using the GP distribution we proceed as follows.

From the measurements x1, x2, . . . , xn, extreme events are identified as those ex-

ceeding a high threshold u, i.e. {xi : xi > u}, i = 1, . . . , nu. Next we label these

exceedances by x1, x2, . . . , xnu and define the threshold excess by yi = xi − u

for i = 1, . . . , nu, to which the GP distribution is fitted.

1.2.1 Poisson Frequency of Threshold Exceedances

The Poisson frequency of threshold exceedances leads to the so-called Poisson-

GP model (Smith 2003). This model is closely related to the block maxima data

and the GEV distribution. Indeed, if X1, . . . , Xn is a sequence of independent

and identically distributed random variables corresponding to one block then it

can be shown that:

• the number N of exceedances of the threshold u in any block has a Poisson

distribution with rate λGEV ;
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• conditionally on N ≥ 1, the excess values Yi = Xi − u, for i = 1, . . . , N ,

are independent and identically distributed random variables from the GP

distribution.

If M denotes a maximum of one block (M = max1≤i≤N (Yi) + u) then it can be

shown (for details see Appendix A) that for x > u

Pr{M ≤ x} = exp

{
−λGEV

(
1 + ξ

x− u

σ̄

)−1/ξ

+

}
(1.23)

where x+ = max(x, 0).

If we substitute (1.24):

σ̄ = σ + ξ(u− µ), λGEV =
(

1 + ξ
u− µ

σ

)−1/ξ

(1.24)

to (1.23) then it reduces to the GEV distribution given in (1.2). It is worth

to underline that σ̄ and λGEV in (1.24) are the scale parameter of the GP

distribution and the rate of exceedances above threshold u corresponding to

the area of one block, respectively. The parameters of the GP distribution are

uniquely determined by those of the GEV distribution. In particular, the shape

parameter in (1.18) is equal to that of the corresponding GEV

This relationship implies that once we fit the GEV distribution to block maxima

data and determine the threshold u, we get extra information about the rate of

threshold exceedances on the area of one block and about the parameters of the

GP distribution.

If for some reason the block maxima data is not available, but instead we have

excess over threshold data yi = xi−u for xi > u and i = 1, . . . , nu, gathered from

area of size |S|, then the maximum likelihood estimate of the rate of exceedances
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above threshold u is given by:

λ̂GP =
n

|S| (1.25)

It is worth to stress the difference between λGEV and λGP . The first one, i.e.

λGEV denotes the rate of exceedances above threshold u in the area correspond-

ing to one block (average number of exceedances per block), whereas λGP is the

rate of threshold exceedances per area unit of S, where S is the part of the

system that was inspected.

The Poisson frequency of the threshold exceedances can be determined by means

of different models depending on the data format. In case of block maxima data,

the GEV-based model is used, whereas for excess over threshold data, the GP-

based approach is preferred. It is worth to stress that the distribution of X − u

conditioned on X > u is approximately within the Generalised Pareto family

of distributions for a large enough value of threshold u. Therefore, methods of

threshold selection are needed, which we introduce in next section.

1.2.2 Threshold Selection Methods

The issue of the threshold selection implies a balance between a bias and vari-

ance. A too low threshold is likely to violate the asymptotic basis of the model,

leading to bias; a too high threshold will result in few excesses with which the

model could be estimated, leading to a high variance (Coles 2001). Thus we

want to determine a threshold as low as possible, preserving the asymptotic

properties of the model. To do so, we can use two approaches. The first is

based on threshold selection prior to model estimation and uses a mean resid-

ual life plot. The other one is an assessment of the parameter stability

based on the fitting of the model across the range of thresholds. It is worth to

stress that if the GP distribution is a valid approximation of the distribution of
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the excess over threshold u0, then it is valid also for all u > u0.

The first method of threshold selection is based on the mean of the GP distri-

bution (1.21). It can be shown (see Appendix A) that if the GP distribution

is valid for some threshold u0 then the estimate of the mean should change

approximately linearly with u for all u > u0. In other words if we plot the

points: {(
u,

1
nu

nu∑

i=1

xi − u

)
: u < max

1≤j≤n
(xj)

}
(1.26)

where x1, . . . , xnu consists of nu points from measurements x1, . . . , xn, that ex-

ceed the threshold u, the resulting plot, called the mean residual life plot should

be approximately linear above threshold u0 for which the GP is a valid approxi-

mation. The confidence intervals can be added to the plot based on approximate

normality of the sample mean (for details see Appendix A).

The second method is based on the estimation of the model at a range of thresh-

olds. Above the level u0 for which the asymptotic motivation for the GP dis-

tribution is valid, estimates of the shape parameter should be approximately

constant, while the estimates of σ̄ should be linear in u. If we denote σ̄u as a

scale parameter corresponding to threshold u, then by (1.24) for u > u0 we get:

σ̄u = σ̄u0 − ξu0 + ξu

Let us reparameterise σ̄ according to:

σ∗ = σ̄u − ξu (1.27)

Then σ∗ should be approximately constant for all u > u0. This makes the

threshold selection easier. We plot the estimated σ∗ and ξ as a function of

threshold u and look for such a threshold value u0 for which both estimated

parameters are approximately constant whenever u > u0. By the delta method
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the confidence bounds to the plot can be added (for details see Appendix A).

1.2.3 Parameter Estimation

Similarly as for the GEV distribution we introduce the maximum likelihood

method of parameter estimation.

If y1, . . . , yk are excesses over threshold u then the log-likelihood is given by:

l(ξ, σ̄) =





−k log(σ̄)− (1 + 1/ξ)
k∑

i=1

log(1 + ξyi/σ̄), ξ 6= 0

−k log(σ̄)− 1
σ̄

k∑

i=1

yi, ξ = 0

(1.28)

provided 1 + ξyi/σ̄ > 0 for i = 1, . . . , k; otherwise l(ξ, σ̄) = −∞.

To find the estimates of the unknown parameters we maximise (1.28) with re-

spect to the parameter vector (ξ, σ̄). The solution is found numerically.

The goodness-of-fit will be assessed using the same tools as for the GEV (see

Section 1.1.2).

1.2.4 Extrapolation

Like for the GEV distribution the two approaches for the results extrapolation

will be used.

Return-level method.

The return-level associated with the return period 1/p, for probability 0 < p ≤ 1,

is given by:

yp =





σ̄

ξ

[
p−ξ − 1

]
, ξ 6= 0

−σ̄ log(p), ξ = 0
(1.29)

The level yp is expected to be exceeded on average once every N = 1/p ex-

ceedances. It corresponds to some extreme excess and for the wall loss should
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be rewritten as yp + u.

In terms of the rate of threshold exceedances the return level (1.29) is given

in (1.30):

yp =





σ̄

ξ

[(
1

λGP × |E|
)−ξ

− 1

]
, ξ 6= 0,

−σ̄ log
(

1
λGP × |E|

)
, ξ = 0,

(1.30)

where |E| is the size of not inspected part of the system and λGP × |E| is the

expected number of threshold exceedances on the area E.

Analogously as for the GEV return-level extrapolation, the confidence bounds

for the determined return-level yp, can be determined using the profile likeli-

hood method (for more details see Appendix A).

Distribution function of the maximum corresponding to the not in-

spected area

Using the relation (1.23), the cumulative distribution function of the random

variable XM , i.e. of the maximum corresponding to the area which is M size

multiple of one inspected block is given by:

Pr{XM ≤ x} = exp

{
−λGEV

(
1 + ξ

x− u

σ̄

)−1/ξ

+

}M

(1.31)

= exp

{
−M × λGEV

(
1 + ξ

x− u

σ̄

)−1/ξ

+

}
,

where x > u.
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1.2.5 Example of Application

In this section, we will show the application of the GP distribution to data set

used in Example 1.1.4.

First, we will try to determine a proper value of threshold u. After the parame-

ter estimation, we will assess the goodness-of-fit of the GP distribution to excess

data. At the end, the extrapolation results will be presented.

To determine a proper value of threshold u, we apply the two methods intro-

duced in Section 1.2.2. The plots of the mean residual life and of the estimated

ξ and σ∗ for a range of thresholds are presented in Figures 1.9, 1.10 and 1.11, re-

spectively. Additionally, we will perform the goodness-of-fit test (Section 1.1.2)

for different threshold values.
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Figure 1.9: Mean residual life plot
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Figure 1.10: Estimate of ξ at a range of thresholds
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Figure 1.11: Estimate of σ∗ at a range of thresholds
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Figure 1.12: Goodness-of-fit test results for the GP distribution for different
threshold values u

Remind that if u0 is a proper threshold (i.e. is such a threshold that the cu-

mulative distribution function of the excesses Yi = Xi − u0 given Xi > u0 for

i = 1, . . . , k can be approximated by the GP distribution) then for all u > u0

the mean residual life plot should be linear in u and the estimates of ξ and

σ∗ should be approximately constant. From Figures 1.9, 1.10, 1.11 and 1.12,

it follows that the threshold equal to u0 = 0.8 [mm] is a reasonable choice.

Then, on the inspected part of the pipe there are 216 exceedances above u0.

The histogram and the results of fitting the GP distribution to excess above

u0 = 0.8 [mm] data are presented in Figure 1.13 and Table 1.3.

ξ̂ ˆ̄σ AD2
up p− v. KS p− v.

-0.037 0.1400 0.597 0.125
(-0.178; 0.104 ) (0.115; 0.170)

Table 1.3: GP fit to excess data

Figure 1.14 and high p-value of Anderson-Darling goodness-of-fit test (see Table 1.3),
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Figure 1.13: Histogram and the probability density function of the GP distri-
bution fitted to excess data
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Figure 1.14: Quantile plot for the GP distribution

both confirm that the GP is reasonably fitted to data.

To extrapolate to the not inspected part of the pipe, we have to determine the

corresponding expected number of threshold exceedances. If NS denotes the
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number of threshold exceedances on the surface S then the expected value of

NS is given by:

E(NS) = λ× |S|

where λ is the rate of exceedances per area unit of S and |S| is the size of S.

Using (1.25), we get:

λ̂GP =
216

13.51 [m]× 0.8 [m]
≈ 19.98/ m2

Then, the expected number of defects (wall loss) on the not inspected part of

the pipe whose depths exceed 0.8 [mm] is given by:

E(Nnot insp.) = 19.98× 0.8× (300− 13.51) ≈ 4579

Using (1.29) with p =
1

E(Nnot insp.)
= 0.00022, we get the estimate of the

return-level given in Table 1.4.

ẑp 95% confidence bounds
1.812 (1.549; 2.622)

Table 1.4: Estimated return level [mm]-GP distribution

This means that on the not inspected part of the pipe, the wall loss that is

expected to be exceeded on average once is 1.812 [mm](1.549; 2.622). Moreover

looking at Figure 1.15, we can see that the estimated return level is quite robust

against threshold selection.

Additionally, we compare the probability density function of the block maxima,

obtained through the GP distribution with the probability density function of

the block maxima corresponding to the GEV. From Figure 1.16 we can see
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Figure 1.15: Estimate of return level at a range of thresholds along with 95%
confidence bounds derived by means of the profile likelihood method

that they are slightly different. It is also worth to stress that the calculated
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Figure 1.16: Comparison of the probability density functions of the block max-
imum

return level is not very far from the one in Example 1.1.4. The difference in

the estimate of confidence bounds for the return level ẑp is caused by the wider

confidence bounds obtained for shape parameter ξ̂ in the GP distribution than

for the same parameter in the GEV distribution.
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1.2.6 Summary

In this chapter, we introduced and showed a real life application of two methods

for extreme-value analysis of corrosion data. Depending on the data format, it

is possible to use either the GEV distribution (block maxima data) or the GP

distribution (threshold exceedances data). These two distributions are closely

related and give consistent results. However, both models rely on the assump-

tion that the measurements are independent. In real life corrosion defects on the

surface seem to be locally dependent ( one pit/defect can influence the growth

of neighbouring pits/defects). Fortunately, these models can be applied also in

the case of local defect dependence. The extension of applicability of the GP

and GEV models to locally dependent data will be introduced in Chapter 2.



Chapter 2

Extreme-Value Analysis
of Corrosion Data with
Locally Dependent Defect
Depths

While applying the GEV or GP models to corrosion data we had to assume

that the underlying observations, i.e. defect depths, are independent. However,

this is not the case in practise because it is likely that growth of one defect

can influence growth of the others, the neighbouring defects. Thus, it is said

that the defects are locally dependent. It can be shown (Leadbetter, Lindgren

& Rootzen 1983, Coles 2001) that if the underlying observations are stationary

and locally dependent, then the statistical behaviour of extreme events can

be modelled by extreme-value distributions (for definition of stationarity see

Appendix B). The dependence condition (called D(un)1 condition, for definition

see Appendix B) requires that the extent of long-range dependence at extreme

levels is limited. It means that extreme events are approximately independent

when they are far enough apart. In application to corrosion this means that if

1For the purpose of illustration, we introduce the dependence condition for one dimensional
data. However, it can be extended to higher dimensions. For more details see Turkman (2006)

35
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two extreme depth defects are far away from each other they can be considered

as approximately independent. This is a reasonable assumption with respect to

corrosion. This motivates of the usage of extreme-value distributions to model

corrosion data.

The extent of local dependence at extreme levels is captured by the parameter

called extremal index. It measures the degree of clustering, i.e. the tendency

of extreme events to occur in groups. Therefore, the extremal index is often

interpreted as the propensity of the limiting mean cluster size.

We will start the chapter introducing the notion of extremal index. Then, we will

define the extremal index for stationary random fields. In the next section, the

approaches to model data extremes by means of the GEV and GP distributions

will be described. It will be shown that for locally dependent data prior to fitting

the GP distribution, the data declustering has to be done. For this purpose the

two methods will be introduced. One is based on the extremal index parameter

the other uses clustering algorithm with validation criteria with respect to the

number of determined data clusters. For completeness, we will introduce also

the clustering tendency test. At the end, some illustrative examples, based on

real and simulated data, will be presented. We will end the chapter with brief

a summary of the results.

2.1 The notion of extremal index

The extremal index, θ ∈ (0, 1], is a measure of the propensity of the stationary

process to cluster at extreme levels (see Figure 2.1). It is often written as

(Coles 2001):

θ :=
1

limiting mean cluster size
=

nc

ne
(2.1)

where nc is the number of clusters and ne is the number of exceedances above

some high threshold u.
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Figure 2.1: Example of stationary sequence {Xi} with tendency to cluster
at extreme levels. X0 = Y0, Xi = max{aYi−1, Yi} for i = 1, . . . , n, where
a=0.95, n=160 and Yi ∼ gamma(1.2, 0.8)

If {X1, X2, . . .} is a sequence of independent random variables then θ = 1, but

the converse is not true. For stationary sequences, the lower the value of θ,

the higher the local dependence, and the higher the tendency to clustering at

extreme levels.

The notion of extremal index can be extended to higher dimensions (Turkman

2006, Leadbetter & Rootzen 1998), For a two-dimensional stationary random

field X(i, j), i = 1, . . . , n1, j = 1, . . . , n2 (for definition see Appendix B) the

extremal index θ is defined as:

θ = θ1 × θ2 (2.2)
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where θ1, θ2 correspond to the x-coordinate and y-coordinate clustering propen-

sity, respectively. To be more precise, θ1 indicates how the largest values of the

y-columns, i.e.:

Vi = max
1≤j≤n2

{X(i, j)}, i = 1, . . . , n1

cluster along the x-direction. On the other hand, θ2 indicates how the large

values of the process

Wx0 = X(x0, 1), X(x0, 2), . . . , X(x0, n2)

cluster along the y-direction at a fixed x-coordinate.

Theoretically speaking, since the random field is assumed to be stationary the

value of θ2 should not depend upon the choice of x0. However, in real life

applications the variation in the estimate of θ2 due to the choice of x0 is possible.

Therefore we propose to calculate θ2 not for a chosen column process but for a

process composed of column processes. We define this process as:

W = X(1, n2), X(1, n2 − 1), . . . , X(1, 1), X(2, 1), X(2, 2), . . . , X(2, n2)

. . . X(3, n2), X(3, n2 − 1), . . . , X(3, 1), . . . , X(n1, 1), X(n1, 2), . . . , X(n1, n2)

(2.3)

The way we read the values of the random field on the lattice grid to define the

process W is schematically presented in Figure 2.2.

In order to estimate the extremal index for spatial corrosion data (in the format

as presented in Example 1.1.4) we use the following approach:

• store data in n×m matrix A = [aij ], i = 1, . . . , n, j = 1, . . . , m;
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Figure 2.2: Definition of column process W

• estimate the extremal index θ1 for the sequence of column maxima

vj = max
1≤i≤n

{aij}, j = 1, . . . , m

• estimate extremal index θ2 for the series composed from columns merged

in the following order:

a11, a21, . . . , an1, an2, an−12, . . . , a12, a13, a23 . . . , an3, an4, an−1,4, . . . , a14, . . . , anm

• the estimate of the extremal index for the whole data set is given by

θ̂ = θ̂1 × θ̂2

The method of extremal index estimation is the issue of next section.
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2.1.1 Extremal Index Estimation

There are many extremal index estimators (Galbraith & Zernovi 2006). Some of

them require an a priori choice of the parameters whose values can significantly

influence the estimated value of θ. In this section we will present the intervals

estimator that does not require secification of any parameters (Ferro 2002,

Ferro 2003).

Let x1, . . . , xn be a realisation from the stationary process and let u be a high

threshold and N be the number observations exceeding u. Let

1 ≤ S1 <, . . . , < SN ≤ n

be the exceedance times. Then inter-arrival times are defined as

Ti = Si+1 − Si, i = 1, . . . , N − 1

and the intervals estimator for the extremal index is given by:

θ̂ =





min





1,

2

(
N−1∑

i=1

Ti

)2

(N − 1)
N−1∑

i=1

T 2
i





if max{Ti : 1 ≤ i ≤ N − 1} ≤ 2

min





1,

2

(
N−1∑

i=1

(Ti − 1)

)2

(N − 1)
N−1∑

i=1

(Ti − 1)(Ti − 2)





if max{Ti : 1 ≤ i ≤ N − 1} > 2

(2.4)

To estimate the extremal index θ, we have to choose a high enough threshold

value u. By definition of θ for spatial data and by (2.3), we can base the choice

of u on the methods presented in Section 1.2.2. Thus, we can apply the methods

of mean residual life and parameter stability.
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It is worth to mention that the higher the threshold value, the higher the value

of θ and the lower the number of exceedances.

2.2 Modelling Extremes of Dependent Data

In this section, we will present two approaches to modelling extremes of sta-

tionary and locally dependent data.

2.2.1 Modelling block maxima data

Modelling block maxima of stationary and locally dependent data does not differ

from modelling block maxima of stationary but independent data (Coles 2001).

This follows from the fact that if the long-range dependence at extreme levels

is very weak (what is true if the D(un) condition holds; for more details, see

Appendix B), block maxima can be considered as approximately independent.

Therefore to estimate the unknown parameters of the GEV, we still can use the

maximum likelihood method introduced in Section 1.1.1. The estimated param-

eters will include information about data local dependence (for more details, see

Appendix B).

We can reasonably assume that corrosion data is characterised by a limited ex-

tent of long-range dependence. Therefore we can still apply the GEV method

introduced in Section 1.1.

2.2.2 Modelling excess over threshold data

For modelling the statistical behaviour of excesses over threshold of stationary

data satisfying assumptions about the long-range dependence, we can still use

the generalised-Pareto distribution (Coles 2001). However, since neighbouring

exceedances may be dependent we cannot use maximum likelihood estimation
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to this data directly. The most widely used method to solve this problem is

data declustering which is based on filtering out dependent observations such

that the remaining exceedances are approximately independent. This suggests

the following framework for modelling excesses over threshold of stationary data

with the generalised-Pareto distribution:

• identify clusters of exceedances;

• identify the maximum excess within each cluster;

• fit the generalised-Pareto distribution to cluster maxima.

The key issue of data declustering is cluster identification. There are many

algorithms that can be used to find a given number of clusters in data (Everitt,

Landau & Leese 2001). However, if we will wrongly specify this number, the

algorithms can group data into artificial clusters. This can create a different

data structure than the true one. Therefore, the estimation of the number of

clusters is of great importance. We propose to do it in two ways:

• Estimate the number of clusters prior to finding any clusters in data. Use

the fact that the extremal index θ (in the limit sense) can be interpreted

as the reciprocal of the mean cluster size. Hence, by (2.1):

nc = θ × ne (2.5)

where nc is the number of clusters and ne is the number of exceedances

above some high threshold u.

• Run cluster algorithms for a range of nc. As proper value of nc, choose

the one that optimises given validity criteria.

Thus, we have two approaches to answer the question about the proper number

of clusters in data. The first one uses the extremal index method and is applied
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prior to cluster identification; the other one is based on the clustering algorithm

used to find the given number of clusters in data. As proper value of nc we choose

the one that optimises given validity criteria. The above implies two important

remarks. Firstly, we can compare the results given by the two methods to see if

they are consistent. Secondly, if for some reason the estimation of the extremal

index θ is difficult or not possible (this will be shown later in Section 2.4.2), we

can still use the other method to find data clusters.

The clustering method that we want to use is the issue of next section.

2.3 Clustering method

There are many methods that can be used to find clusters in data. In this

section however, we are going to shortly present only one of them, namely ag-

glomerative hierarchical clustering method.

The agglomerative hierarchical clustering method produces a series of partitions

of data into clusters (Everitt et al. 2001). Starting with single points as indi-

vidual clusters, and at each step the closest pair of clusters is merged. The

last partition consists of the one cluster including all data points. In this way

we create multilevel hierarchy where clusters at one level are joined into new

clusters at the next higher level.

To decide which clusters to merge we need the definition of cluster proximity.

We have to define the rule that will tell us which clusters are close to each

other and which are far apart. There are many definitions of proximity between

objects. Some of the standard are single link, complete link and group average

(Tan, Steinbach & Kumar 2006). The single link rule defines proximity between

clusters as the proximity between the two closest points that are in different

clusters. For the complete link, we look at the proximity of the two furthest

points in different clusters. The group average rule defines cluster proximity as
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the average of pairwise proximities of all pairs of points from different clusters.

The above are illustrated in Figures 2.3, 2.4, 2.5.

Figure 2.3: Single link

Figure 2.4: Complete link

Figure 2.5: Average link

In later sections we will try the following proximity measures between objects:

single linkage - also called nearest neighbour, uses the smallest distance be-

tween objects in the two clusters

d(r, s) = min
i,j

(dist(xri, xsj)), i = 1, . . . , nr, j = 1, . . . , ns (2.6)

where r and s are clusters and xri ∈ r, xsj ∈ s
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complete linkage - also called furthest neighbour, uses the largest distance

between objects in the two clusters

d(r, s) = max
i,j

(dist(xri, xsj)), i = 1, . . . , nr, j = 1, . . . , ns (2.7)

average linkage - based on the average distance between all pairs of objects

in two clusters

d(r, s) =
1

nrns

nr∑

i=1

ns∑

j=1

dist(xri, xsj) (2.8)

centroid linkage - based on the Euclidean distance between centroids of the

two clusters

d(r, s) = dist(x̄r, x̄s) (2.9)

where x̄r =
1
nr

nr∑

i=1

xri

median linkage - uses the Euclidean distance between the weighted centroids

of the two clusters

d(r, s) = dist(x̃r, x̃s) (2.10)

where x̃r and x̃s are weighted centroids of clusters r and s. If the cluster r

was created by combining clusters p and q, then x̃r is defined recursively as

x̃r =
1
2
(x̃p + x̃q).

Note that some of the above proximity measures are defined in terms of the

Euclidean distance (centroid linkage and median linkage). Since we deal with

spatial data, we will use the Euclidean distance measure as dist.
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The choice of a particular linkage determines the hierarchical clustering algo-

rithm. Therefore, in we will test which one performs the best for the type of

data we have.

To better understand the idea of hierarchical clustering let us consider a sim-

ple example. Suppose there are given five points (objects) on the lattice grid

presented in Figure 2.6.
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Figure 2.6: Example of hierarchical grouping

The algorithm works as follows. At the first step, all five object are treated

as clusters. At this level, the objects number 2 and 3 form the closest pair of

clusters; thus, they will be merged into one cluster, creating object number 6.

In the second step, the objects 1 and 4 are merged creating object 7. At the

last step, objects 8 and 5 are joined what leads to one data cluster, denoted

in Figure 2.6 by number 9. The process of merging objects is visualised in the

diagram called dendrogram (Figure 2.7).

The numbers along the horizontal axis are labels of the original objects (data

points) and the vertical represents the distance between clusters. The links

between objects are represented as upside-down U-shaped lines. The agglomer-

ative hierarchical clustering method produces a tree with the top cluster con-

taining all the data points. Therefore, finding the right number of clusters means
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Figure 2.7: Example of dendrogram

cutting the tree at some level. This is directly connected with cluster validation

methods which will be described in the next section.

Summing up the cluster identification for spatial corrosion data by means of the

agglomerative hierarchical clustering method will be performed in the following

steps:

• calculate the distance between every pair of points with wall loss above

threshold u;

• use linkage rule (e.g. single link or group average) to build up the hierar-

chical tree;

• use cluster validation methods to cut the tree at the proper level.

To decide which proximity measure to choose for identifying clusters in data and

assess the overall goodness of clustering, we can use the so-called cophenetic

correlation coefficient (Tan et al. 2006). In a hierarchical cluster tree, any two
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objects in the original data are eventually linked together at some level. The

height of the link reflects the distance between the two clusters that contain

those two objects (see Figure 2.7). This height is called the cophenetic distance

between the two objects. The cophenetic correlation coefficient measures the

correlation between the entries of the distance matrix of the original data set

and the entries of the cophenetic distance matrix produced by the hierarchical

clustering algorithm. The entries of the distance matrix corresponding to the

original data set are pairwise distances between data points. If the clustering is

valid then there should be strong correlation between the cophenetic distances

and the distances corresponding to the original data points. Therefore the

closer the value of the cophenetic correlation coefficient to 1, the better the

found clusters reflect the natural clusters present in data.

In further examples we will use the group average link between clusters because

for this measure and data type the calculated cophenetic correlation coefficient

was the highest.

2.3.1 Cluster Validation Methods

There are many cluster validation methods that can be helpful to determine the

proper number of clusters in data. Two commonly used are the silhouette plot

and the Davies-Bouldin index. Our choice of these two particular methods

is motivated by the ease of calculations and good experimental results.

The silhouette plot shows the relation between the number of clusters and the

average silhouette coefficient. The silhouette coefficient for each point can be

computed in the following steps (Tan et al. 2006):

• For the ith point calculate the average distance to all the other points in

its clusters, call this value ai;

• For the ith point and any cluster not containing the point, calculate its
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average distance to all the points in the given cluster. Let bi be the

minimum of such values with respect to all clusters;

• For the ith point, the silhouette coefficient is given by:

si =
bi − ai

max(ai, bi)
(2.11)

The silhouette coefficient takes values between −1 and 1. The negative values

are undesirable because in this case ai > bi what corresponds to the situation

where the average distance to points in a cluster is greater to the minimum av-

erage distance to point in another cluster. We want ai to be as close to zero as

possible because the coefficient attains the value of 1 when ai = 0. The overall

measure of the goodness of clustering can be computed as the average silhouette

coefficient of all points. Then the best (according to this measure) number of

clusters for a given data set is the one that maximises this value.

Similarly as the average silhouette coefficient, the Davies-Bouldin index aims

at identifying the sets of clusters that are compact and well isolated. The value

of the index is calculated according to the formula (Bolshakova & Azuaje 2003):

DB(U) =
1
nc

nc∑

i=1

max
i 6=j

{4(Xi) +4(Xj)
δ(Xi, Xj)

}
(2.12)

where U is a partition of the data set into nc clusters X1, . . . , Xnc and4(Xi), δ(Xi, Xj)

are the measures of intracluster and intercluster distance, respectively.

For further analysis, as the intercluster distance measure, we take the centroid
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distance which is given by:

δ(Xi, Xj) = d(CXi
, CXj

) (2.13)

where CXi
=

1
|Xi|

∑

z∈Xi

z, CXj
=

1
|Xj |

∑

z∈Xj

z are the centroid locations of clus-

ters Xi and Xj respectively and d(· , · ) is the Euclidean distance measure.

As intracluster distance measure, we will use the so-called centroid diameter:

4(Xi) = 2




∑

z∈Xi

d(z, CXi)

|Xi|


 (2.14)

There are other possible intercluster and intracluster distance measures (Bolshakova

& Azuaje 2003). Our choice is supported by the computational ease and very

similar results (obtained for data we have) to the ones given by the other mea-

sures (e.g. average distance measure).

Small values of the Davies-Bouldin index correspond to the case when clusters

are compact and their centres are far from each other. Therefore, small values

of the DB(U) index are desired and the optimal number of clusters is the one

for which DB(U) attains its minimum.

2.3.2 Clustering Tendency Test

In the previous sections we introduced methods to estimate the number of clus-

ters in data. One method is based on the extremal index θ, the other one uses

cluster algorithms together with some validation criteria. If the corrosion data



Extreme V alue Analysis of Corrosion Data 51

is spatially stationary then we can use the two methods and compare their re-

sults. If the estimate of θ is less than 1, it means that there is a clustering

tendency in data. This motivates further cluster identification and data declus-

tering. However, when data is not spatially stationary (even if it is stationary

at extreme levels as in Figure 1.1) the estimation of the extremal index may

not be possible and the clustering algorithm with validation criteria are used.

The cluster algorithm we use will always find clusters given data. Of course

we can validate which number of clusters is the best but then still there is a

possibility to cluster data that does not possess the natural clustering tendency.

To solve this problem we can try to evaluate whether the data set has clusters,

without running clustering algorithm. The most common approach, especially

for data in Euclidean space, is to use the statistical test for spatial random-

ness (Tan et al. 2006). One of such a test, simple but powerful (Benerjee &

Davae 2004, Tan et al. 2006) is based on the Hopkins statistics. The test

is based on the idea of choosing at random M , so-called sampling origins (i.e.

points randomly distributed across the data space, where M << N and N is the

number of points in space). Then actual M data points, called marked points

are sampled. For both sets, the distance to the nearest neighbour in the original

data set is calculated. If ui is denoted as the nearest neighbour distance of the

sampling origins and wi as the nearest neighbour distance of the marked points

from original data set, the Hopkins statistic is defined as:

H =

M∑

i=1

u2
i

M∑

i=1

w2
i +

M∑

i=1

u2
i

(2.15)

It has been suggested (Benerjee & Davae 2004) that when M < 0.1 ×N , then

all the 2M nearest neighbour distances are statistically independent and H has
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a beta distribution with parameters (M, M). Values of H close to 1 indicate

that the data is highly clustered, values around 0.5 indicate randomness and

values close to 0 suggest regular data spacing.

2.4 Examples of Application

In this section, we are going to show the application of the above methods to

two kinds of data. First, we will apply the GEV and GP tools to dependent

simulated data. The next application will be based on a real data set, the same

as used in Example 1.1.4.

What we want to show is the comparison of the results given by the GEV and

GP applied to dependent data and declustered data. Remind, that if the data

is locally dependent then we can fit the GEV distribution directly and for the

GP distribution prior to model fitting the data declustering has to be done.

Then, theoretically speaking, the estimates of the shape parameters of the GEV

distribution fitted to the original data and the GP distribution fitted to the

declustered data should be the same. Moreover, we expect that fit of the GP

distribution to original data will give overestimated results with respect to ex-

trapolation.

2.4.1 Simulated Corroded Surface

In this example, we want to apply the introduced methods to a simulated cor-

roded surface. The data is a matrix (200 × 500) of locally dependent defect

depths. They were generated by the gamma-process model, described in detail

by Ostrowska (2006). The basic idea behind the model is to generate depen-

dent defect depths from the gamma distribution with prescribed dependence
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structure between them. The dependence is expressed in terms of the product

moment correlation coefficient defined as:

ρ(Xk, Xl) = exp



−d

(
2∑

i=1

|disti|p
)q/p



 (2.16)

where Xk = (xk, yk) and Xl = (xl, yl) are points on the Cartesian grid,

dist1 = |xk − xl|, dist2 = |yk − yl|, d is the parameter regulating the strength

of dependence and p and q are the parameters associated with the vector norm.

For the purpose of illustration, we used d = 0.3, p = 2, q = 1 (in this case

(2.16) is based on the Euclidean norm) and a gamma distribution with shape

parameter a = 0.1 and scale parameter b = 0.5. The corresponding strength of

correlation is presented in Figure 2.8. We can see that the defect dependence

will be local.
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Figure 2.8: Strength of correlation (in one direction) for d = 0.3, p = 2, q = 1

It is worth to mention that the data will be generated in one step and the
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simulated defect depths will correspond to a accumulated in time deterioration

process.

The simulation of the corroded surface with prescribed dependence structure is

computationally expensive and was restricted to the dimension 50 × 50 which

is not enough for the purpose of our example. To create a larger data set, we

merged 40 smaller matrices 50 × 50 where each matrix has the desired local

dependence structure. This is shown schematically in Figure 2.9.

Matrix 1

Matrix 10Matrix 9Matrix 8Matrix 7

Matrix 5Matrix 4Matrix 3Matrix 2

Matrix 6

Matrix 20Matrix 19Matrix 18Matrix 17Matrix 16

Matrix 15Matrix 14Matrix 13Matrix 12Matrix 11

Figure 2.9: Data set generation

One can easily notice that merging matrices in this way does not preserve the

dependence structure along the neighbouring matrix boundaries. This however

does not add any extra dependence that would violate the assumption that

defect depths are locally dependent (in fact defect depths along the neighbouring

boundaries are independent). The resulting data set is presented in Figures

2.102 and 2.11.
2surface generated by courtesy of Mr MSc Ir. Sebastian Kuniewski, Delft Institute of Tech-

nology, Faculty of Electrical Engineering, Mathematics and Computer Science, The Nether-
lands
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Figure 2.10: Generated corroded surface

Figure 2.11: Generated corroded surface

In order to fit the GEV distribution to the data shown in Figure 2.10 we have

to define blocks. Similarly as in Example 1.1.4, we can define one block as the

number Bs of columns from the data matrix. To choose the proper number

of columns per block, we perform the goodness-of-fit tests for different block
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sizes. In Figure 2.12, we can see that there is no significant difference between

p-values for block size 4 and 5, therefore for further analysis we will use Bs = 4

because then there are more observations to fit the GEV distribution.
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Figure 2.12: Goodness-of-fit test results for the GEV distribution for different
block sizes. Bs-number of columns corresponding to one block

The fit of the GEV distribution to 125 block maxima obtained in this way, is

presented in Table 2.1 and Figure 2.13.

ξ̂ σ̂ µ̂ AD2
up p− v. KS p− v.

-0.007 1.627 5.637 0.621 0.899
(-0.122; 0.107) ( 1.414; 1.872) (5.320; 5.955)

Table 2.1: GEV fit to block maxima data

To extrapolate the results in space, we proceed as data would result from the

screening technique as in Example 1.1.4 with dy = 5 [mm], dx = 58 [mm]. This

gives 1 [m] × 29 [m] of scanned area. Further, we assume that the total pipe

area is 1 [m] × 300 [m]. We want to extrapolate to the remaining part of the

pipe.

The estimated maximal defect depth that is expected to be exceeded on the not
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Figure 2.13: Quantile plot for the GEV distribution

inspected part of the system on average once, along with the 95% confidence

interval is presented in Table 2.2.

ẑp 95% confidence bounds
16.834 (14.140; 23.904)

Table 2.2: Estimated return level and profile likelihood based confidence
interval[mm]-GEV distribution

Further, we fit the GP distribution to original and declustered data. On the

basis of Figures 2.14, 2.15 and 2.16 we choose the threshold value to be 5.6 [mm].

This gives 197 exceedances which are presented in Figure 2.17.

From Figure 2.17 we can see that there are some data clusters. The clustering

tendency is indeed confirmed by statistical test, whose results are presented in

Figure 2.18. On the significance level α = 0.05, we reject the hypothesis that

there is no data clustering (the calculated p-value is smaller than significance

level α = 0.05).
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Figure 2.14: Goodness-of-fit test results for the GP distribution for different
threshold values u
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Figure 2.15: Estimate of ξ and σ∗ for the range of thresholds



Extreme V alue Analysis of Corrosion Data 59

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

u

M
ea

n 
re

si
du

al
 li

fe

Mean residual life plot

 

 
Mean residual life
95% confidence bounds

Figure 2.16: Mean residual life plot

Figure 2.17: Exceedances over threshold u = 5.6 mm
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Figure 2.18: Clustering tendency test results. P-value =0.006, H=0.697
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In the next step, we estimate the extremal index and the corresponding number

of clusters for the range of thresholds (see Figures 2.19 and 2.20). We can see

that in this example these results are quite robust against threshold choice.
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Figure 2.19: Estimate of the number of clusters and determined number of
exceedances for the range of thresholds

Further using the clustering algorithm and the introduced validation criteria

(see Section 2.3.1), we determine the number of data clusters. Diagnostic plots

and the results are presented in Figure 2.21 and Table 2.3.

θ̂ nc ncalg

0.544 107 121

Table 2.3: The estimate of extremal index and determined number of clus-
ters. nc-determined number of clusters using extremal index method, ncalg

-
determined number of clusters using clustering algorithm

Since the estimated number of clusters given by the two methods differs we

want to check which one is more correct. For this purpose, we decluster data

assuming 107 and 121 clusters and for both cases perform goodness-of-fit tests.
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Figure 2.20: Estimate of the extremal index for the range of threshold
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Figure 2.21: Number of cluster validation

The results are presented in Table 2.4.

Number of clusters AD2
up p− v. KS p− v.

107 0.376 0.204
121 0.549 0.493

Table 2.4: Goodness-of-fit test results for different number of clusters

We can see that working with 121 instead 107 data clusters gives better model
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fit results. Therefore for further analysis we assume that there are 121 data

clusters.

The fit results of the GP distribution to dependent and declustered data are

presented in Tables 2.5, 2.6 and Figure 2.22.
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Figure 2.22: Quantile plot for the GP distribution. Left dependent data, right
declustered data.

ξ̂ ˆ̄σ AD2
up p− v. KS p− v.

0.065 1.341 0.647 0.488
(-0.082; 0.213) (1.095; 1.643)

Table 2.5: GP fit to excess dependent data

ξ̂ ˆ̄σ AD2
up p− v. KS p− v.

-0.0137 1.6839 0.555 0.493
(-0.177; 0.146) (1.325; 2.139)

Table 2.6: GP fit to excess of declustered data

We can see that data declustering influenced the results. The p-value of the

goodness-of-fit test is slightly lower, but when we compare the estimate of the

shape parameter we can see that the one corresponding to declustered data

is very close (theoretically, they should be the same) to the estimate of the

shape parameter for the fitted GEV distribution (Table 2.1). The effect of
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data declustering is also visible in the extrapolation results (Table 2.7 and 2.8).

In the case of declustering, the results are closer the ones given by the GEV

model (Table 2.2). What is even more interesting is the fact that for the return

level based on the GP distribution and declusterd data, we obtained narrower

confidence bounds than for the return level determined on the basis of the

original data. Even if declustering caused a reduction of the number of data

points used to fit the model (what should imply wider confidence bounds),

the change of the sign of the fitted shape parameter resulted in more accurate

confidence bounds than the ones corresponding to original data.

ẑp 95% confidence bounds
18.623 (14.977; 30.865)

Table 2.7: Estimated return level and profile likelihood based confidence
interval[mm]-GP distribution, dependent data

ẑp 95% confidence bounds
16.886 (14.177; 27.043)

Table 2.8: Estimated return level and profile likelihood based confidence
interval[mm]-GP distribution, declustered data
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2.4.2 Real Data

In this section we will use the same data set as presented in Example 1.1.4. This

data is not spatially stationary (although it seems to be stationary a extreme

levels). This is visible when we analyse the plot (Figure 2.23) of the part of

column process W defined in equation (2.3). Therefore, in this case we cannot

apply the extremal index method and we will use the introduced clustering al-

gorithm to determine the number of clusters in data.
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Figure 2.23: One column of data matrix

In Example 1.1.4 we chose the threshold u0 = 0.8 [mm]. This choice was mainly

based on the goodness-of-fit test results. However, we have to remember that

while fitting the GP distribution for different threshold values we did not take

into account local data dependence and the results could be biased. Therefore,

in this step we treat u0 = 0.8 [mm] only as good threshold candidate. We are

going to check goodness-of-fit test results for different threshold values (close to

0.8 [mm]) for declustered data. The results are presented in Table 2.9.



66 Extreme V alue Analysis of Corrosion Data

Threshold KS p− value AD2
up p− value

0.78 0.803 0.628
0.79 0.654 0.717
0.8 0.767 0.681
0.81 0.692 0.646
0.82 0.625 0.618

Table 2.9: Goodness-of-fit test results for different threshold values and declus-
tered data

Because we put more importance to the goodness-of-fit of the tail of distribution

(which is more important for extrapolation) for further analysis as threshold

value we take u0 = 0.79 [mm]. However, before fitting the GP distribution, we

have to identify data clusters which are visible in Figure 2.24. The clustering

tendency is additionally confirmed by Figure 2.25. On the significance level

α = 0.05, we reject the hypothesis that there is no data clustering.

Figure 2.24: Exceedances above threshold u = 0.79 [mm]

Using the clustering algorithm and the validation criteria, we find (see Figure

2.26) that there are 105 data clusters.
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Figure 2.25: Clustering tendency test results. P-value =0, H=0.973
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Figure 2.26: Number of cluster validation

The fit results of the GEV to block maxima and GP to dependent and declus-

tered data are presented in Tables 2.10, 2.11 and 2.12, respectively.

ξ̂ σ̂ µ̂ AD2
up p− v. KS p− v.

-0.082 0.182 0.757 0.713 0.986
(-0.211; 0.046) (0.158; 0.210) (0.719; 0.794)

Table 2.10: GEV fit to block maxima data
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ξ̂ ˆ̄σ AD2
up p− v. KS p− v.

-0.008 0.133 0.616 0.074
(-0.150; 0.135) (0.110; 0.161)

Table 2.11: GP fit to excess of dependent data

ξ̂ ˆ̄σ AD2
up p− v. KS p− v.

-0.069 0.172 0.717 0.654
(-0.286; 0.148) (0.129; 0.229)

Table 2.12: GP fit to excess of declustered data
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Figure 2.27: Quantile plot for the GP distribution. Left dependent data, right
declustered data.

We can see that similarly to the previous example the data declustering im-

proved the model fit. The estimate of the shape parameter of the GP fitted to

declustered data is closer to the estimate of the shape parameter of the GEV

distribution. Moreover, for declustered data the estimate of return level for the

GEV and GP distribution are closer. However, data declustering reduces the

number of observations used to fit the model. This results in wider confidence

bounds for the return level determined (Table 2.15).

ẑp 95% confidence bounds
1.806 (1.553; 2.528)

Table 2.13: Estimated return level and profile likelihood based confidence inter-
val [mm]-GEV distribution
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ẑp 95% confidence bounds
1.889 (1.581; 2.856)

Table 2.14: Estimated return level and profile likelihood based confidence inter-
val [mm]-GP distribution, dependent data

ẑp 95% confidence bounds
1.816 (1.508; 3.253)

Table 2.15: Estimated return level and profile likelihood based confidence inter-
val [mm]-GP distribution, declustered data

In order to better understand the effect of data declustering, the probability

density functions of the block maximum obtained through the GP distribution

for dependent and declustered data, will be compared. Moreover we will plot

the implied distribution functions corresponding to the maximum wall loss on

the not inspected area. From Figures 2.28, 2.29, 2.30 and 2.31 we can see that

in the case of declustered data the results given by the GP model are closer to

the ones of the GEV.
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Figure 2.28: Comparison of the probability density functions of the block max-
imum. Left dependent data, right declustered data.
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Figure 2.29: Comparison of the probabilities of exceedance for the block maxi-
mum. Left dependent data, right declustered data.
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Figure 2.30: Comparison of the probability density functions of the maximum
on the not inspected area. Left dependent data, right declustered data.
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Figure 2.31: Comparison of the probabilties of exceedance for the maximum on
the not inspected area. Left dependent data, right declustered data.
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One of the questions we might have after going through the thesis is ”Why

should we bother about the GP distribution and data declustering, since we

can have proper results fitting the GEV ?”.

First of all, by applying the two methods to a given data set we can validate

results since theoretically they should be consistent. The other reason is that it

is not always possible or easy to apply the GEV distribution due to the need of

the block definition. This is illustrated in the following example.

To show that it is not always straightforward to apply the GEV distribution

we will present the data set resulting from a simulation of the Poisson cluster

process (Diggle 1983). In general settings, the simulation of such a process can

be summarised in steps as follows:

• sample the so-called parent events from a Poisson process with intensity

λP ;

• each parent produces a random number S of offspring, realised indepen-

dently and identically for each parent according to a probability distribu-

tion {ps : s = 0, 1, . . .};

• the positions of the offspring relative to their parents are independent and

identically distributed according to a bivariate distribution.

The described procedure is a one-step simulation. However, to simulate data

we performed the above simulation a number of times, i.e. 18. Moreover, we

slightly modified the above procedure. In each step we sample parents and the

corresponding offspring. Additionally sampled offspring in step ti−1 is treated

as parents in step ti and in this step can produce new offspring. The sampling

space is the two dimensional lattice grid.

The parameters used are:
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• λP = λtq, where λ = 150, q = .2, t = 1, 2, . . . , 18;

• the random number S of the offspring is generated according to

S = min(N, NC)

where N has a Poisson distribution with λe = 0.18×NC and NC is the

number of cells for possible extension. This is visualised in Figures 2.32,

2.33. Hence, for instance if some parent does not have any neighbours

then NC = 8 and S = min(N, 8). Otherwise, as shown in Figure 2.33,

NC is 8 diminished with the number of already existing neighbours (for

the parent, denoted as green square NC = 6);

Figure 2.32: Explanation of offspring generation

Figure 2.33: Explanation of offspring generation
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• offspring positions are chosen randomly from a possible set of positions

NC

The defect depths are sampled from a gamma distribution with shape parameter

a = 2 and scale parameter b = 3.33. The depths generated in each step of the

simulation are added. Moreover to obtain a non-homogeneous surface, we use

some spatial function that gives a set of possible locations for parents and their

offspring. The results are presented in Figure 2.343.

Figure 2.34: Example of spatially non-homogenous surface

For the data set as presented in Figure 2.34, it is difficult to define blocks such

that the number of observations per block does not vary significantly. Therefore

in this case it is easier to apply the GP distribution to declustered data.

3surface generated by courtesy of Mr MSc Ir. Sebastian Kuniewski, Delft Institute of Tech-
nology, Faculty of Electrical Engineering, Mathematics and Computer Science, The Nether-
lands



74 Extreme V alue Analysis of Corrosion Data

2.5 Proposed framework to model the extremes

of corrosion data

In this section, we want to summarise our findings and propose some kind of

framework that could lead to proper usage of extreme-value tools for corrosion

data. We restrict our attention to the kind of data as introduced in Examples

1.1.4 or 2.4.1, i.e. to the case when data results from the full scanning of the

system. We assume that the input data is stationary and locally dependent.

When we model extremes of stationary and locally dependent data with the

GEV distribution we proceed as for the independent data by the argument

given in Section 2.2. We put attention to the block definition because this can

influence the results. For the data type considered, we simply took a number

of matrix columns as one block. Clearly there are other choices possible. It is

important however, to check which choice gives a good model fit. Therefore the

approach applied can be summarised in Figure 2.35.

Figure 2.35: GEV framework to model corrosion data
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When we want to apply the GP distribution we have to determine the proper

threshold value. If there is clustering tendency confirmed then, theoretically

speaking, the best approach would be to calculate introduced goodness of thresh-

old choice measures (p-values of statistical tests, mean residual life plot, param-

eter stability) for declustered data. However, this is computationally expensive.

Therefore, we propose to compute the measures mentioned not for declustered

but for original data. This should give some estimate u0 of the good threshold

value. In the next step, we decluster excess over threshold u0 data and repeat

the same for a number of thresholds (say 5) close to u0. For each threshold we

check the goodness-of-fit and choose the best one. To determine the number of

data clusters, we can use if possible two methods, namely the extremal index

method and clustering algorithm together with validation criteria. If the de-

termined number of clusters is different then we decluster data for the number

of clusters given by the two methods, fit the GP distribution and compare the

goodness-of-fit by statistical tests. Next, as the proper number of data clusters

we chose the one for which the p-values are higher. Finally, when we find the

proper threshold value and decluster data, we fit the model and extrapolate the

results. This is schematically presented in Figure 2.36.
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Figure 2.36: GP framework to model corrosion data



2.6 Summary

In this chapter we showed the application of the extreme-value methods to sta-

tionary corrosion data when taking into account local defect dependence. When

we apply the GEV distribution we proceed as data would be independent. For

the GP distribution prior to model fitting data declustering has to be done. The

number of data clusters can be estimated by two methods: the extremal index

method and clustering algorithm with introduced validation criteria. When

possible, both methods can be used and the results compared and validated.

Moreover, a framework within which the results given by the GEV and GP

models should be consistent was presented. This helps to assess the general

validity of the results.





Chapter 3

Conclusions and

recommendations

The two approaches to model statistical behaviour of extreme defect depths in

corrosion were introduced in the thesis. For block maxima data, the generalised

extreme-value distribution is used, whereas for excess over threshold data the

generalised-Pareto is applied. These two distributions are closely related and

should lead to the same inference about extreme values.

We showed how the above methods can be applied when the underlying obser-

vations are stationary and locally dependent. When the GEV distribution is

used, we proceed as data was independent because the information about data

dependence will be incorporated into fitted parameters during the parameter

estimation process. However, for the GP distribution a change of practise is

needed. Prior to model fitting, the data declustering has to be done, which

is based on filtering out the dependent observations such that remaining ex-

ceedances are approximately independent.

The key issue in data declustering is cluster identification. This can be done
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by the clustering algorithm. To estimate the number of data clusters we can

use two methods. The first approach is based on the extremal index parameter,

which is the measure of the degree of clustering of the process at extreme levels.

The other approach is based on the clustering algorithm used together with val-

idation criteria. For this purpose, we introduced the agglomerative hierarchical

algorithm, silhouette plot and Davies-Bouldin index. The application of the

above methods was shown on the simulated and real data sets.

The benefit of data declustering is higher consistency of the results given by the

GEV and GP models.

In order to realise the goal of the thesis we had to touch several topics like

model fitting, results extrapolation or cluster analysis. Clearly there is still

much more that could be done. It is often the case that corrosion data, due to

changing environmental conditions or physical features of the equipment used

(like a pipe placed under a certain slope) is not spatially stationary. It means

that certain locations are influenced by more severe corrosion than the others.

Then in order to be able to analyse such data together or extrapolate the results

to the areas with space varying environmental conditions, covariate-dependent

extreme-value models with trends could be used.
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Appendix A

Definition 1 A random variable Z is said to have a Fréchet distribution

with scale parameter σ > 0, location parameter µ and shape parameter α > 0,

if its cumulative distribution function is given by:

G(z) =





0 z ≤ µ,

exp
{
− (

z−µ
σ

)−α
}

z > µ.

Definition 2 A random variable Z is said to have a Weibull distribution

with scale parameter σ > 0, location parameter µ and shape parameter α > 0,

if its cumulative distribution function is given by:

G(z) =





exp
{
−

(
−z − µ

σ

)α}
z < µ,

1 z ≥ µ.

Confidence intervals for quantile plot of the GEV - delta method

To calculate confidence intervals for the quantile plot of the GEV distribution

using the delta method, we have to first determine the gradient vector corre-

sponding to the quantile zp, i.e

∇zT
p =

[
∂zp

∂ξ
,

∂zp

∂σ
,

∂zp

∂µ

]
(3.1)

where

zp =





µ− σ

ξ

[
1− {− log(p)}−ξ

]
, ξ 6= 0

µ− σ log {− log(p)} , ξ = 0.

(3.2)

Then

V ar(zp) = ∇zT
p V∇zp
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where

V =




v11 v12 v13

v21 v22 v23

v31 v32 v33




is the variance-covariance matrix corresponding to the parameter vector (ξ, σ, µ).

The approximate confidence interval (1− α) for zp is given by:

zp ± xα/2

√
V ar(zp)

where xα/2 is (1− α/2) quantile of the standard normal distribution.

Definition 3 The Kolmogorov distribution is the distribution of the random

variable

Y = sup
x
|W (x)|,

where W (x) is the Wiener process. The cumulative distribution function of the

random variable Y is given by:

Pr{Y ≤ y} = 1− s

∞∑

i=1

(−1)i−1e−2i2y2
=
√

2π

x

∞∑

i=1

e−(2i−1)2)π2/(8y2)

It is known that Zn =
√

nDn, where Dn is the Kolmogorov-Smirnov test statis-

tic, converges in distribution to the Kolmogorov distribution. This means

that if F1, F2, ... is a sequence of cumulative distribution functions correspond-

ing to the random variables Z1, Z2, ..., and that F is a distribution function

corresponding to a random variable Y , then
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lim
n→∞

Fn(x) = F (x),

for every real number x at which F is continuous.

Confidence intervals based on profile likelihood

Construction of confidence intervals using profile likelihood is based on Theorem 1

given below (Coles 2001).

Theorem 1 Let x1, . . . , xm be independent retaliations from a distribution within

a parametric family z, and let θ̂0 denote the maximum likelihood estimator of the

d-dimensional model parameter θ0 = (θ(1), θ(2)), where θ(1) is a k-dimensional

subset of θ0. Then, under suitable regularity conditions, for large m

Dp

(
θ(1)

)
= 2

{
l
(
θ̂0

)
− lp

(
θ(1)

)}
∼ χ2

k, (3.3)

where χ2
k is a Chi-square distribution with k-degrees of freedom.

Then for a single component θi, Ci = {θi : Dp(θi) ≤ cα} is a (1− α) confidence

interval, where cα is a (1− α) quantile of the χ2
1 distribution.

Confidence interval for the GEV-return-level

To obtain confidence interval for the return-level zp we have to reparametrise

the GEV distribution. More precisely we want to incorporate zp to GEV as a

parameter. Using equation (1.14) we get:





µ = zp +
σ

ξ

[
1− {− log(1− p)}−ξ

]
, ξ 6= 0

µ = zp + σ log {− log(1− p)} , ξ = 0.

(3.4)
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Then replacement of µ in (1.2) with (3.4) gives desired effect of expressing the

GEV in terms of the parameters (ξ, σ, zp). To obtain the profile likelihood for

return-level zp we fix zp = zp0 and maximise the log-likelihood of the GEV with

respect to the remaining parameters. This is repeated for a range of values of

zp0. The corresponding maximised values of the log-likelihood constitute the

profile log-likelihood for zp, from which Theorem 1 leads to obtain approximate

intervals.

Confidence interval for the GP-return-level

For the GP distribution we proceed similarly as for the GEV. Using the relation

(following from equation (1.29)) we get:

σ̄ =





ypξ

(p−ξ − 1)
, ξ 6= 0

− yp

log(p)
, ξ = 0

(3.5)

Then replacement of σ̄ in (1.18) results in expressing the GP in terms of (ξ, yp).

To obtain the profile likelihood for return-level yp we proceed analogously as for

the GEV distribution.

Definition 4 The mode is the most frequent value assumed by a random vari-

able, or occurring in a sampling of a random variable. Hence, it is the value of

the random variable for which (if it exists ) the probability density function is

maximal.

Euler-Mascheroni constant

The Euler-Mascheroni constant is a mathematical constant defined as a limiting

difference between harmonic series and the natural logarithm:

γ = lim
n→∞

(
n∑

k=1

1
k
− log(n)

)
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Its approximate value is 0.577215664901532860606512090082402431042159335.

Mean residual life plot

We know that if Y has the GP distribution then:

E(Y ) =





σ̄

1− ξ
, ξ < 1, ξ 6= 0

σ̄, ξ = 0
(3.6)

Suppose that the GP distribution is a valid model for the excesses over a thresh-

old u generated by the series X1, . . . , Xn. If we denote an arbitrary term of this

series by X then:

E(X − u0|X > u0) =





σ̄u0

1− ξ
, ξ < 1, ξ 6= 0

σ̄u0 , ξ = 0
(3.7)

where σu0 is the scale parameter corresponding to threshold u0.

But if the GP model is valid for threshold u0, it must be valid for all u > u0.

By (1.24) it follows that:

σ̄u = σ̄u0 − ξu0 + ξu

Then we have:

E(X − u|X > u) =





σ̄u

1− ξ
=

σ̄u0 − ξu0 + ξu

1− ξ
, ξ < 1, ξ 6= 0

σ̄u = σ̄u0 − ξu0 + ξu, ξ = 0
(3.8)

Therefore for u > u0, the mean residual life plot should be linear in u.
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Confidence intervals for mean residual life plot

To calculate the confidence intervals for the mean residual life plot, we use the

fact (following from the Central Limit Theorem) that the distribution of the

sample mean can be approximated by the normal distribution. Let X1, . . . , Xn

be independent and identically distributed random variables and let Yi, . . . , Ynu

be defined as Yi = Xi − u for a threshold u and {Xi : Xi > u}, i = 1, . . . , nu.

Let us denote an arbitrary term in Yi, . . . , Ynu by Y . If both the expected value

µ and the standard deviation σ of Y exist and are finite, then for large nu the

approximate distribution of the random variable Ȳ =
1
nu

nu∑

i=1

Yi is N(µ,
σ2

nu
).

We estimate σ2 by
1

nu − 1

nu∑

i=1

(yi − ȳ)2 and the (1 − α) confidence interval for

mean residual life is calculated from:

1
nu

nu∑

i=1

yi ± σ̂√
nu

xα/2 (3.9)

where xα/2 is the (1 − α/2) quantile of the standard normal distribution and

yj = xj − u for j = 1, . . . , nu are realisations of the random variable Y .

Confidence intervals for parameters of GP distribution obtained through

delta Method - parameter-stability threshold selection

The confidence intervals for ξ̂ are immediately obtained from the variance-

covariance matrix V of (ξ̂, ˆ̄σ), where

V =




v11 v12

v21 v22




90



Then the approximate confidence interval (1− α) for ξ̂ is given by:

ξ̂ ± xα/2
√

v11

where xα/2 is (1−α/2) quantile of the standard normal distribution. For σ̂∗ we

use the delta method and get:

V ar(σ∗) = ∇σ∗T V∇σ∗

where

∇σ∗ =
[
∂σ∗

∂σ̄
,
∂σ∗

∂ξ

]

is a gradient vector. Using equation (1.27) we get ∇σ∗ = [1,−u]. Then the

approximate confidence interval (1− α) for σ̂∗ is given by:

σ̂∗ ± xα/2

√
V ar(σ̂∗)

GEV distribution and the Poisson frequency of threshold exceedances

Let M = maxi≤i≤N (Yi) + u, then

Pr{M ≤ x} = Pr{ max
i≤i≤N

(Yi) ≤ x− u}

= Pr{N = 0}+
∞∑

n=1

Pr{N = n, Y1 ≤ x− u, . . . , Yn ≤ x− u}

= e−λ +
∞∑

n=1

λne−λ

n!

{
1−

(
1 + ξ

x− u

σ̄

)−1/ξ

+

}n

=
∞∑

n=0

λne−λ

n!

{
1−

(
1 + ξ

x− u

σ̄

)−1/ξ

+

}n

= exp

{
−λ

(
1 + ξ

x− u

σ̄

)−1/ξ

+

}
(3.10)
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Appendix B

Definition 5 A sequence of random variables X1, X2, . . . is stationary if the

joint distribution of (Xi1 , . . . , Xin) is identical to the joint distribution of (Xi1+m, . . . , Xin+m)

for any choice of n, i1, . . . , in, m.

Definition 6 A stationary series X1, . . . , Xn is said to satisfy the D(un) con-

dition if, for all i1 < . . . < ip < j1 < . . . < jq with j1 − ip > l,

|Pr{Xi1 ≤ un, . . . , Xip
≤ un, Xj1 ≤ un, . . . , Xjq

≤ un} (3.11)

− Pr{Xi1 ≤ un, . . . , Xip
≤ un} × Pr{Xj1 ≤ un, . . . , Xjq

≤ un}| ≤ α(n, l),

where α(n, ln) → 0 for some sequence ln such that ln/n → 0 as n →∞.

D(un) condition ensures that (Coles 2001), for sets of variables that are far

enough apart, the difference of probabilities in (3.11) while not zero, is suffi-

ciently close to zero to have no effect on the limit lows for extremes. This is

stated more formally in the Theorem 2.

Theorem 2 Let X1, X2, . . . be a stationary process and define Mn = max(X1, . . . , Xn).

Then if {an > 0} and {bn} are sequences of constants such that

Pr{(Mn − bn)/an ≤ z} → G(z) (3.12)

where G is non-degenerate distribution function, and the D(un) condition is

satisfied with un = anz + bn for every real z, G is a member of the generalised

extreme-value family of distributions.

A degenerate distribution is the probability distribution of a discrete ran-

dom variable that assigns all of the probability, i.e. probability 1, to a single

number.
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Theorem 3 Let X1, X2, . . . be a stationary process and X∗
1 , X∗

2 , . . . be a se-

quence of independent variables with the same marginal distribution. Define

Mn = max(X1, . . . , Xn) and Mn = max(X∗
1 , . . . , X∗

n). Under suitable regularity

conditions,

Pr{(M∗
n − bn)/an ≤ z} → G1(z) (3.13)

as n → ∞ for normalising sequences {an > 0} and {bn}, where G1 is a non-

degenerate distribution function, if and only if

Pr{(Mn − bn)/an ≤ z} → G2(z) (3.14)

where

G2(z) = Gθ
1(z) (3.15)

for a constant θ such that 0 < θ ≤ 1.

Theorem 3 says that if the cumulative distribution function of maxima of sta-

tionary sequence can be approximated by the GEV distribution (what is valid

if the D(un) condition is satisfied , see Theorem 2) then this distribution is

related to the limiting distribution of maxima of independent sequence accord-

ing to equation (3). This means that the effect of short-range dependence in

a stationary sequence is captured by the parameter θ, called extremal index

(Coles 2001).

Note that if G1 is the limiting distribution of maxima of independent sequence,

that corresponds to the GEV distribution with parameters (ξ, σ, µ), then,

Gθ
1(z) =





exp

{
−

[
1 + ξ

(
z − µ + σ(1− θξ)/ξ

σθξ

)]− 1
ξ

+

}
, ξ 6= 0

exp
{
− exp

[
−

(
z − (µ + σ log θ)

σ

)]}
, ξ = 0

(3.16)
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where 



µθ = µ− σ(1− θξ)/ξ, σθ = σθξ, ξθ = ξ if ξ 6= 0

µθ = µ + σ log θ, σθ = σ if ξ = 0
(3.17)

This means that the parameters of the GEV distribution are affected by depen-

dence in the stationary series. Since the D(un) condition is assumed to hold, the

block maxima can be considered as approximately independent. This justifies

the usage of the maximum likelihood estimation of the unknown parameters

(equation (1.7)). The estimated parameters will be different than the ones that

would have been obtained if the series had been independent (it follows from

(3.17)). Thus the information about local dependence will be included in the

estimated parameters.

Random field

In the simplest language a random field is a set of random variables whose

values are mapped onto the n-dimensional space.

In the case of data we have, random values of corrosion wall loss, are mapped

onto the 2-dimensional space, namely Cartesian grid. Each coordinate has as-

signed random wall loss.
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