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Introduction

The original goal of my research at DNV was to perform a technical analysis
of the ORBIT 1 methodology and to have the methodology accepted by a
Dutch committee as a valid model to estimate the remaining life of a com-
ponent or pipeline. The analysis was necessary to get a clear understanding
of the method itself, as well as its behavior. The latter has been covered
by an uncertainty and sensitivity analysis, which included the use of the
UNICORN package which is developed by the decision theory group at the
faculty of Information Technology and Systems at the Technical University
in Delft. The second chapter contains a summary of all modules in ORBIT
followed by the results of the uncertainty and sensitivity analysis.

The analysis of ORBIT has resulted in a number of suggestions which
have been presented to DNV’s software development group in London. The
specific details of these suggestions are not included in this thesis as they
are for internal use only.

A historical overview of Risk Based Inspection (RBI) techniques and
their development is given in the first chapter. Also in this chapter is a sum-
mary of the requirements which have been laid out by a technical commit-
tee in the Netherlands for the approval of risk-based methods for inspection
planning. The third chapter deals with the most commonly used methods to
approximate the probability of failure in the process and refining industries,
namely MVFOSM and FORM. ORBIT uses the MVFOSM method, which
works well for the degradation mechanisms under consideration. FORM is
accepted as a more accurate method, but it is far less efficient. This chap-
ter considers a number of different approaches to implementing the FORM
approximation, including the most common Rackwitz–Fiessler method, and
compares their performance on the ORBIT modules.

The fourth and last chapter came about in the second half of the project,
when it came to our attention that the use of a stochastic process to model
the material degradation seemed very fitting. The most challenging aspect
of this model was to incorporate the possibility to deal with results from
imperfect inspection in the continuous Bayesian updating model. Together
with this approach, the chapter also includes a case study where the cost-

1ORBIT is a trademark owned by Det Norske Veritas.
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10 Introduction

criterium of expected average costs per unit time is applied to a hydrogen
dryer. Finally, in the conclusions, we take a look back at the stochastic pro-
cess model and discuss its applicability in the process industry. The method
is not new, but it has never been applied to this industry in particular.

In order to keep the thesis legible for engineers with a non-mathematical
background, all mathematical details have been placed in appendix A. The
implementation of the case study was done in MATLAB (version 6.1) from
The Mathworks, Inc. and the code listing supplemented with various com-
ments can be found in appendix B.



Chapter 1

Risk Based Inspection

This chapter gives a short overview of the historical framework in which
the risk based inspection (RBI) methodology in the process industry has
developed to its current status.

Besides the historical aspect of the methodology, there is also the aspect
of national regulations which govern the safety of the production and use
of pressurized equipment. The main objective of my research for DNV was
to have DNV’s risk based inspection methodology accepted by the Dutch
authorities as a valid tool to determine safe inspection intervals for pressur-
ized components. The second part of this chapter gives an outline of these
regulations and the requirements for validation of the methodology.

1.1 Historical development

What is risk based inspection? DNV puts it as follows: “Risk Based In-
spection is a combination of technologies providing industries with a risk
based method for evaluating and developing inspection plans. RBI works
by calculating both the consequences of possible failures and the likelihood
of those failures. The combination of consequences and likelihood identifies
which equipment warrants the most attention for managing risk.” RBI is
therefore a tool to first select which items require attention and then plan
when and how to inspect the component or system. As a rule of thumb, 80%
of the risk is caused by only 20% of the equipment. It is therefore essential
that these high risk components are identified beforehand.

The origin of the RBI methodology for the process industry lies in the
cooperation between DNV and the American Petroleum Institute (API) in
the early 90’s. This cooperation was initiated by DNV and also involved
a large industry sponsor group consisting of some of the largest process
companies in the United States and abroad. The research led to a large
publication which is commonly known as the Base Resource Document,
but was later published as the API581 [1]. There was a great need for this

11



12 Chapter 1: Risk Based Inspection

methodology since most of the plants (especially those build in the post–2nd
World War Europe) were reaching a critical age which required some form
of inspection or maintenance planning. These plants were quickly built in
order to get the European industry back on track, but they had a design life
of only 15 years. Because the plants were still functional and profitable at
this age, it was decided that they would not be closed or dismantled. Most
countries have had regulations in some form or another which prescribed
fixed intervals for the inspection of certain types of pressurized equipment.
However, large parts of the plants did not fall under these regulations and the
owners of the plants were eventually left with hundreds or even thousands
of uninspected components with which they did not know what to do.

After laying the ground work for the implementation of RBI, DNV even-
tually parted with the research group and the API to work on their own
implementation called ORBIT which stands for Onshore Risk Based In-
spection Technology. Compared to the API methodology, ORBIT is a
more fine tuned package which further exploits the extensive knowledge and
experience within the DNV organization. Features were added which are
not covered by the API program.

The software is easy to use due to the availability of several levels of
detail for the calculations and the presence of ORBIT Launcher. The lat-
ter tool provides the user with the option to perform an initial screening of
all items such that the detailed analysis can be concentrated on the high
risk items only. A project like the one DNV Benelux performed for one of
its largest customers, Dow Benelux B.V. (part of the Dow Chemical Com-
pany), shows the benefit of such a screening tool. The project involved the
analysis of around 4500 items at their Terneuzen location (see figure 1.1)
in the Netherlands. This location is Europe’s largest ethylene production

Figure 1.1: The Terneuzen plant operated by Dow Benelux B.V. (Courtesy of Siebe
Swart Fotografie Amsterdam).

site. By 1995, this plant was 30 years old and the maintenance cost formed a
substantial part of the operating budget. This is due to the periodical inspec-
tions prescribed by the regulations. The DOW Chemical Company adopted



1.2 Dutch and European regulations 13

DNV’s RBI methodology for its inspection planning worldwide, which re-
sults in addressing the maintenance spending to the equipment where we
get the most benefit in terms of increased safety and reliability (up time of
the plants). The risk methodology as used by DOW includes the aspects
of safety, environment and business interruption. In the longer run, DOW
is convinced that savings are created by switching from the old periodic
inspections to a full risk based approach. Concentrating on the high risk
components increases the level of safety, environmental care and reliability.

In Europe there is currently a large effort to develop a industry inde-
pendent risk based maintenance and inspection methodology. It is known
as the RIMAP project1 (Risk Based Maintenance Procedures for Euro-
pean Industry), which is funded by the European Commission and joins 16
organizations from 8 countries in the effort. The goal is to create a method-
ology for maintenance and inspection planning for all types of equipment
(not only pressurized equipment), which accounts for both the technical and
managerial aspects. The application of this methodology will not apply to
the nuclear power industry and will be limited to the in–service phase of the
equipment.

There are a number of other industries which have already or are in
the process of applying similar methodologies. See [24] for an overview and
examples of the application of risk based inspection in the nuclear power
industry.

1.2 Dutch and European regulations

As mentioned before, most countries have (limited) regulations regarding
the maximum intervals between inspections for different types of equipment
(e.g. drums, pipelines, columns etc.). The Netherlands is the first European
country to extend these regulations to allow for so-called flexible inspection
periods or risk based inspection periods. These changes followed the in-
troduction of new European regulations regarding the production phase of
pressurized equipment. These have been accepted by the European Union
in 1997 as the Pressurized Equipment Directive (PED: [6]) and were imple-
mented in the Netherlands as of November 1999.

The PED only regulates the certification of new equipment built inside
or imported from outside the EU for use under a pressure of more than 0.5
bar. All equipment produced under this directive will receive a CE marking,
which allows them to be freely traded throughout the member states of the
European Union. Another aspect of the PED is the fact that the certifica-
tion is no longer in the hands of a single (governmental) body. Any body
which is appointed by the government will be able to perform the certifica-
tion. This means that national institutes which had a monopoly over these

1see http://www.mpa-lifetech.de/rimap for more information.



14 Chapter 1: Risk Based Inspection

certifications until now (this was Stoomwezen B.V. in the Netherlands), will
receive competition from other companies like DNV and AIB–Vinçotte.

One of the remaining aspects of the rules for pressurized equipment,
is the regulation of periodical inspections during the operational phase of
the equipment. A team of people representing governmental institutes and
companies in the process industry have worked to update the Rules for
Pressure Vessels [21] in The Netherlands to include the regulation of flexible
inspection periods. Other aspects which will be included in the near future
are regulations concerning taking the component into service and periodic
repair and maintenance.

A key element of these regulations is that a production facility can apply
for extended or flexible inspection periods if the time until the next inspec-
tion is obtained using an accepted risk based inspection planning methodol-
ogy. Any company will therefore need to use their own method or that of a
third party, which has been accepted by a committee and listed in the Rules
for Pressure Vessels. A summary2 of the requirements for the application is
given by the following list:

1. The component for which the application is done, is categorized ac-
cording to sheet G0402 and has already undergone one or two (de-
pending on the category) inspections. There are some categories for
which no flexible periodical inspections can be applied for.

2. The operater/owner of the equipment must comply with a number of
organizational requirements according to sheet G0205. These include
requirements concerning certification of the safety management system
in place at the facility, the presence of a qualified inspection engineer
etc.

3. The methodology used to determine the inspection period has to be
listed in the rules as a valid method for risk based inspection planning.

In order to have the methodology accepted by the technical committee, the
applicant has to submit a model description in order to demonstrate the
compliance with the model specifications. This description should include
the following aspects (as described in sheet T0260 appendix 1):

1. Concerning how the remaining life is determined, the following con-
siderations have to be included:

• an inventory of the most sensitive locations on the component
together with the reasoning which supports the choice of these
locations

2this summary is an unofficial translation and interpretation of the rules for pressure
vessels and it should therefore not be considered as anything but such.
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• determination of the possible interactions between degradation
mechanisms

• determination of the course of degradation under the given op-
erational conditions and an extrapolation/trend analysis if the
degradation can be modelled or approximated

2. The following aspects should be treated to determine the quality and
the reliability of the calculated (expected) remaining life for the com-
ponent:

• indication of the applicability of the trend analysis or degradation
model or in other words: is the chosen model a good choice to
predict the active degradation mechanism?

• the number of inspection measurements which are available and
the time period over which this data is taken

• the quality and applicability of the chosen inspection methods for
the active degradation mechanism

• how representative the locations at which the inspection results
were obtained are for the overall condition of the component

• the stability of the process of which the component is a part. Are
the operating conditions stable or variable?

3. the requirements for the calculations of the consequence of failure are
quite limited. The rules only prescribe that at least the following
parameters should be considered in the analysis:

• flammability

• toxicity

• physical explosiveness

• hazard probability with regard to the surrounding residential area

4. the determination of the inspection interval should include the in-
formation of all three previous points. The maximum length of the
interval is 4 times the regular fixed inspection period.

Together with the above model specification, the applicant has to supply the
results of at least three test cases and compare them to the result obtained
using the reference model which is specified in appendix 2 of sheet T0260.
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Chapter 2

ORBIT Onshore

This chapter is a short description of some of the main components in the
ORBIT methodology. In essence, it is a resumé of the ORBIT Technical
Manual [16]. This chapter forms the basis for the topics discussed in later
chapters. Although a software program is not a methodology in itself, it
embodies DNV’s methodology for risk based inspection planning. To explain
how the methodology works, I’ve taken the outline of ORBIT as a basis.

The last section of this chapter includes the results from an uncertainty
and sensitivity analysis, which includes the use of the UNICORN software
package. The behavior of the corrosion and cracking models have been an-
alyzed using cobweb plots and the sensitivity of the models to their input
variables has been studied with the use of numerous sensitivity measures.
This helps the user of the ORBIT methodology and software to better
understand the influence which the input exercises on the result. A bet-
ter understanding of the mathematical model behavior also helps DNV to
clearly explain to its customers what ORBIT does with their data.

2.1 ORBIT overview

The methodology is built up around the concept of risk . Risk is defined as
the product of the failure probability of an item with the consequence value
due to failure of the item. The ORBIT software package therefore consists
of two distinctive parts:

1. calculation of the failure probability based on the active degradation
mechanism(s), material properties and operating conditions.

2. calculation of the possible consequence when failure occurs based on
the type of failure, inventory characteristics and mass and information
concerning the surrounding equipment and personnel.

Each part has two calculation levels: a simple qualitative method and a
detailed quantitative analysis. The qualitative method is mainly used to

17



18 Chapter 2: ORBIT Onshore

get an indication of which items have the highest risk associated with them.
With this information the user can reduce the amount of work needed for
the detailed analysis by filtering out the unimportant or low-risk items.

The calculation of the failure probability for a component is done in a
number of steps. First the program uses the information on the type of
inspection and the measurement obtained from it, to calculate a posterior
density over the degradation rate using Bayesian updating. If no inspection
data is available the program assumes a (conservative) default density for
the degradation rate. Next the program approximates the failure probability
using a reliability index method which is commonly used in structural relia-
bility. This part of the program is performed by so-called technical modules,
where each module corresponds to a degradation mechanism. The following
degradation mechanisms are currently coded into ORBIT :

• internal thinning

• stress corrosion cracking (SCC)

• external thinning due to corrosion

• brittle fracture

• fatigue due to vibration

The two main modules are the thinning and SCC modules. They are also
used by the external thinning module and the brittle fracture module is very
similar to the cracking module. In the following text I will treat each module
separately.

Since the concept of probability is not always easy to grasp for (inspec-
tion) engineers, the program uses so-called Technical Module SubFactors
(TMSF ). This factor is obtained by dividing the calculated failure proba-
bility with a generic cumulative failure probability. This generic value is
an industry average value for a specific type of component, which is taken
from a source like the OREDA database [17]. The TMSF therefore repre-
sents how much more or less likely the component is to fail compared to
the industry average. Also, the program outputs a failure frequency (events
per year) which it names the likelihood of failure (LoF). This name is some-
what confusing, especially since the industry cannot agree on the difference
between PoF (probability of failure) and LoF, but we will not go into this
discussion here.

ORBIT will add each individual TMSF obtained from the active tech-
nical modules and multiply this overall TMSF with the component specific
generic failure probability to obtain an overall failure probability.

The second part of the ORBIT methodology is the calculation of the
consequence of failure. Since this aspect of RBI is not heavily regulated (see
section 1.2) and because the methodologies used for the calculations are
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widely accepted as some of the best available, I will only briefly discuss this
matter. The detailed consequence of failure is calculated using lookup tables
generated by PHAST . This program uses the information on the release type
(instantaneous or continuous) and the fluid properties, which are given by
the user, to calculate the area equation coefficients for a number of weather
scenarios. The area equations are based on the power law and are in the
following form:

A = axb,

where A is the affected area, x is the release size and a and b are coefficients.
ORBIT uses these scenario tables to calculate the size of the affected area.
Combined with data on equipment costs and the amount of possible employ-
ees in this affected area, ORBIT calculates the consequence of failure.

This is however by far not a complete picture of the consequence mod-
elling side. Besides calculating the affected area, the program also deter-
mines the toxicity and the flammability of the released fluid. All these
aspects are incorporated using event trees and probability calculations in
order to obtain the results. For a more complete description of the conse-
quence calculations, I refer the reader to the ORBIT Technical Manual
[16].

2.1.1 Thinning module

Thinning is the most common damage mechanism causing leaks in process
piping and equipment. Thinning may take form of general wall loss or
localized wall loss such as pitting. Carbon steel or copper are usually more
susceptible to general thinning (although localized corrosion and pitting
cannot be excluded), while stainless steels and higher alloy materials are
usually more prone to localized thinning and pitting.

In ORBIT the user inputs either an estimated value for the corrosion
rate obtained using expert opinion or he inputs the measured rate which
is calculated from thickness measurements and the component’s age. The
program then uses a state function based on the material resistance (R)
minus the applied stress (S):

g = S

(
1− C ×∆t

th

)

︸ ︷︷ ︸
R

−
(

P × d

2th

)

︸ ︷︷ ︸
S

, (2.1)

where the variables and parameters with their description and dimensions
are listed in table 2.1. The dimensions given in table 2.1 are used throughout
this report. The tensile and yield strengths are determined by the material
grade. The most common system for the classification of material grades is
one developed by the American Society of Mechanical Engineers (ASME)
and ASTM International (formerly known as the American Society for Test-
ing and Materials). If you know the material grade, you can look up all the
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variable dimension description
S [MPa] Flow stress = min {1.1(Y S + TS)/2, TS}

TS [MPa] Material tensile strength
Y S [MPa] Material yield strength
C [mm/yr] Corrosion rate
∆t [yr] Time since service start
th [mm] Material thickness
P [bar] (Maximum) Operating pressure
d [mm] Component (internal) diameter

1 MPa = 106 Pa and 1 MPa = 10 bar.

Table 2.1: Description of the variables for the thinning module.

material properties, including the tensile and yield strength, in the ASME
Materials Handbook. ORBIT has a database with the full material cat-
alogue from which it obtains the necessary values relating to the material
properties.

The state function is a commonly used concept in structural reliability.
It determines when the system, structure or component is functional and
when it is considered to have failed. As long as the resistance is larger than
the applied stress, the item is considered to function safely. In this case
g > 0. As soon as the stress becomes larger than the resistance the state
function becomes negative: g < 0. The point at which g = 0 is called the
limit state and represents the level at which the item will fail.

In the state function g in (2.1), there are three variables with some
variability/uncertainty, namely S, C and P . The user’s input is used as the
mean value for each variable and the standard deviation is then determined
using the following coefficients of variation:

σS = 0.20µS ,

σC = 0.10µC ,

σP = 0.05µP .

These coefficients have been determined using expert judgment and are fixed
in the methodology.

2.1.2 Stress corrosion cracking module

Stress corrosion cracking (SCC) is environmentally induced crack propaga-
tion, resulting from a combination of mechanical stress and corrosion reac-
tions. It is a delayed failure process where cracks initiate and propagate
until failure occurs. There are many specific material/environmental combi-
nations which can result in a SCC problem. Some common chemicals associ-
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ated with this are chlorides, sulfides and hydrogen. However, there are many
other material/environmental combinations within which SCC can occur.

ORBIT assesses the failure probability for different types of SCC mech-
anisms for both carbon steels and stainless steels. It includes models for
caustic cracking, amine cracking, carbonate cracking, sulfide stress crack-
ing, hydrogen induced cracking, stress oriented hydrogen induced cracking
for carbon steels and polythionic acid cracking, and chloride cracking for
stainless steels.

As with the thinning module, the SCC module uses a resistance minus
stress model based on Paris’ crack growth law used in Linear Elastic Fracture
Mechanics (LEFM):

g = KIC︸︷︷︸
R

−Y

(
P × d

2th
+ S

)√
Aπ

︸ ︷︷ ︸
S

, (2.2)

where the variables are described in table 2.2. The crack depth is calculated

variable dimension description
KIC [MPa

√
mm] Material fracture toughness

Y n/a Geometrical factor
P [bar] (Maximum) Operating pressure
d [mm] Component (internal) diameter
S [MPa] Residual stress
th [mm] Material thickness
A [mm] Crack depth

Table 2.2: Description of the variables for the SCC module.

using information on the type of cracking, the susceptibility of the material
to the type of cracking and whether or not the component has been post
weld heat treated (PWHT). PWHT is performed on a component to relieve
it of stresses which were created during welding on a part of the component.
The residual stress depends heavily on this information. If there has been
no PWHT, then S = 0.2 × Y S, whereas a PWHT’d component will have
S = 0.75 × Y S. This treatment is therefore able to retain 75% of the
material’s original yield stress, compared to only 20% which is left after
welding has been done on the material. The crack growth rate is determined
by

C =
lchar

tngrow

,

where the characteristic crack length lchar and the growth time tgrow are
taken from a database included in the ORBIT program. The values in this
database have been determined by expert opinion, as is the crack growth
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exponent n. For PWHT’d components n = 0.25 and for non PWHT’d
components n = 0.50. The crack depth is then obtained by dividing the
crack length l with the crack length-to-depth ratio Rl/a = 6, which is based
on API579 and is commonly used in LEFM. The crack length is given by
l = C ×∆tn, where ∆t is the time since the service start of the component.

For stainless steels KIC = 300 ksi
√

in 1 and for carbon and low alloy
steel

KIC = min{33.2 + 2.806e(0.02(T+100)), 200} ksi
√

in,

where T is the operating temperature. For these types of steel the fracture
toughness increases as the temperature increases until it levels off at about
110◦F, therefore the failure probability decreases with increasing tempera-
ture.

In the state function g in (2.2), there are five variables with some vari-
ability/uncertainty, namely KIC , Y , P , S and A. The input given by the
user is used as a mean value for these variables and the standard deviation
is determined using the following coefficients of variation:

σK = 0.20µK ,

σY = 0.50µY ,

σP = 0.05µP ,

σS = 0.25µS ,

σA = 0.10µA.

These coefficients are based on expert opinion and cannot be changed by
the user.

2.1.3 External corrosion

External corrosion can occur on materials with unprotected or insulated
surfaces. The most likely form of external corrosion on carbon steels is gen-
eral or localized thinning, while the most likely form on stainless steels is
localized thinning or stress corrosion. ORBIT assesses whether a material
is susceptible to external stress corrosion cracking (ESCC) based on infor-
mation regarding material of construction, operating conditions, coating,
insulation and climatic conditions. A combination of relatively high tem-
peratures, austenitic stainless steels and poor quality insulation and coating
usually leads to high susceptibility. If the material is susceptible to ESCC,
ORBIT passes derived information to the stress corrosion cracking mod-
ule discussed in the previous section. If the material is susceptible to exter-
nal thinning, it passes an estimated external corrosion rate to the thinning
module described in section 2.1.1. This corrosion rate is dependent on the
operating temperature and the amount of rainfall in the area. There are
three possible weather conditions: marine, temperate and arid.

11 ksi
√

in = 6.895
√

25.4 MPa
√

mm
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2.1.4 Brittle fracture

At low temperatures carbon steels may suffer brittle fracture at loads signifi-
cantly below the intended design loads. This is because carbon steels change
from a ductile behaviour to a brittle behaviour at low temperatures. The
temperature where this change occurs is known as the transition tempera-
ture. While most materials are designed to operate well above the transition
temperature, some materials in low temperature service at older plants may
operate near or below the transition temperature and as a result, be suscep-
tible to brittle fracture. ORBIT directly estimates the TMSF based on
information on the lowest possible temperature exposure, the material spec-
ification and grade, whether the material was impact tested and whether
the component has been stress relieved.

2.1.5 Fatigue

Vibration may cause process equipment and piping to fail prematurely. In
particular, improperly supported piping near vibration sources is prone to
fatigue. In contrast to the other degradation modules that use quantitative
methods to calculate a TMSF, the fatigue module is based on a simple
indexing methodology to determine the TMSF.

2.2 Inspection updating

ORBIT uses Bayes’ theorem to update the prior knowledge of the degra-
dation rate with the information gained from an inspection. There are a
number of different types of inspections ranging from simple visual inspec-
tion to ultrasonic thickness measurements. All inspections are of course
non-destructive inspections and in ORBIT they are categorized in 5 lev-
els of efficiency: highly effective, usually effective, fairly effective, poorly
effective and ineffective.

Since it can be very difficult to find a representative continuous prior
density for the degradation rate such that the posterior is easily calculated,
ORBIT uses a discrete version of Bayes’ theorem:

P (Ai|Bk) =
P (Bk|Ai)P (Ai)∑

j∈S P (Bk|Aj)P (Aj)
, (2.3)

where P (Bk|Ai) is called the likelihood and A and B are events. The initial
belief about the event A is given by the prior P (Ai). The division by the
sum over all states (S is the set of all states and in our case S = {1, 2, 3})
normalises the result. If we interpret event Ai as the corrosion rate being in
state i and Bk as the inspection measuring a rate in state k, then P (Ai|Bk)
can be interpreted as the probability that the corrosion rate is in state i
given that our inspection told us it’s in state k. The likelihood is therefore
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interpreted as the probability of an inspection giving us state k given that
it’s state i. This conditional probability represents the effectiveness of the
inspection in determining the true state of the corrosion rate.

Currently ORBIT uses only three so-called degradation states for the
corrosion rate in the thinning module and the cracking rate in the SCC
module. Table 2.3 gives the discrete prior density for both modules, which is
assigned to the degradation rate in the case when there is no inspection data
available. These prior densities therefore put a default uncertainty towards

state prob. thinning cracking
1 50% less or equal to the estimated rate
2 30% up to 2 times up to 5 times the estimated rate
3 20% up to 4 times up to 10 times the estimated rate

Table 2.3: Discrete prior densities for the thinning and SCC modules.

higher degradation rates on the rate which has been given by the user. This
is done to ensure enough conservatism and to save the user the tedious
process of giving his own uncertainty distribution over the degradation rate
for each item. On average, a well trained user will be able to enter the data
of approximately 50 components into ORBIT in one day. For large plants
with hundreds of items, this process can therefore take up a large amount
of time. The program avoids complicated data entry, because otherwise the
time required for the data entry becomes too long.

The likelihood for the inspection is given by a table similar to table 2.4.
The likelihood of a highly effective inspection correctly identifying a rate
in state 1 is therefore 90%, leaving only a 10% probability of an incorrect
measurement. The ORBIT documentation includes a detailed list of in-
spection types and measurement conditions from which the user determines
the correct classification of the inspection based on the above system.

Consider corrosion under insulation, which occurs when the heat insula-
tion is damaged and water penetrates the insulation material down to the
wall of the component. In this case a highly effective inspection is one where
there is first a total visual inspection of the whole component, followed by the
removal of the insulation at almost all suspect areas and an ultrasonic wall
thickness measurement at these locations. These areas are usually around
the support anchors which hold the component in its place. Vibrations cause
the outer insulation to tear enabling water or other types of fluid to enter the
insulation and corrode the construction material. An ineffective inspection
would be a total visual inspection followed by the removal of less than 5% of
the insulation at sensitive areas and no ultrasonic testing. The intermediate
levels of inspection depend on the amount of sensitive locations which are
uncovered and whether or not a ultrasonic thickness measurement has been
performed.
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Highly effective inspection: k = 1 k = 2 k = 3
i = 1 0.90 0.05 0.01
i = 2 0.09 0.90 0.09
i = 3 0.01 0.05 0.90

Usually effective inspection: k = 1 k = 2 k = 3
i = 1 0.70 0.15 0.10
i = 2 0.20 0.70 0.20
i = 3 0.10 0.15 0.70

Fairly effective inspection: k = 1 k = 2 k = 3
i = 1 0.50 0.25 0.20
i = 2 0.30 0.50 0.30
i = 3 0.20 0.25 0.50

Poorly effective inspection: k = 1 k = 2 k = 3
i = 1 0.40 0.30 0.27
i = 2 0.33 0.40 0.33
i = 3 0.27 0.30 0.40

Ineffective inspection: k = 1 k = 2 k = 3
i = 1 0.33 0.33 0.33
i = 2 0.33 0.33 0.33
i = 3 0.33 0.33 0.33

Table 2.4: Likelihood of measured state (k) given actual state (i).

2.3 Inspection planning

The ORBIT methodology determines the optimal inspection period with
safety as its only objective. The program evaluates the risk at a future
evaluation date which is entered by the user. It uses risk targets which
have been defined by the user to determine the optimal type of inspection.
Starting with no inspection at the evaluation date, the program will calculate
the ratio of expected risk over the risk target. If this ratio is larger than
1, then it will recalculate this ratio using a fairly effective inspection at
the evaluation date. It will keep trying better inspections until the ratio is
smaller than one or the highly effective inspection can not reduce the risk
adequately.

This methodology will recommend the cheapest type of inspection at a
fixed time in the future, but it will not optimize for both economics and
time simultaneously. There is also the option of using the semi-quantitative
screening method which will place the item in a 5×5 risk matrix as is shown
in figure 2.1.
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Figure 2.1: ORBIT risk matrix example.

2.4 Sensitivity and uncertainty analysis

One of the goals of this research is to obtain a better understanding of the
sensitivities and uncertainties that play a role in the ORBIT methodology.
The consultants who work at DNV are mostly inspection engineers with a
background in mechanical, civil or chemical engineering. They have excellent
knowledge of material properties, the matter inside the component and the
damage mechanisms which affect the safe operation of the item. During the
input of the plant data into the ORBIT software, the consultants discuss
each item and its properties with the client before the data is accepted.
Usually the client will supply a process engineer who is highly familiar with
the components under analysis to do this job. This engineer might ask a
question like for example: “Suppose the pressure becomes greater than the
value we are currently using for the analysis. Would this influence the result
in such a way that the state of the component is considerably more or less
critical than our assumption?” A question like this will be given a physical
explanation by the consultant. He might tell the engineer that increasing the
pressure will not substantially influence the state of the component unless
the temperature is higher, which is due to the properties of the construction
material. The consultant will not be able to exactly explain to the engineer
how ORBIT models this effect or how sensitive the model output is to the
pressure. This is because the consultant is not familiar with the detailed
technical functioning of the methodology. It is therefore very interesting to
look at the model sensitivities from a mathematical point of view. Also, I
will apply the UNICORN uncertainty analysis program, developed by the
decision theory group at the TUDelft, to this model. This will enable us
to get a better insight into the dependencies and the uncertainties of the
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model.
The sensitivity and uncertainty analysis is preceded by the introduc-

tion of the data for the calculations and a short overview of the sensitivity
measures which will be applied to the ORBIT models.

2.4.1 Example data

For all calulations in the rest of this document I will use the data in table 2.5.
The strength of the material can be obtained from ASME part 2 (see [2]),

Component type: 4in. pipe
Material type: austenitic stainless steel
Material grade: TP312-316L
Min. tensile strength: 482.63 MPa
Min. Yield strength: 172.37 MPa
Operating pressure: 4.1 bar
Operating temperature: 93◦ C
Internal diameter: 102 mm
Initial wall thickness: 6 mm
Corrosion rate: 0.13 mm/yr
Cracking cause: chloride
Cracking susceptibility: medium
PWHT: no
Insulation: no
Coating: no
Service start: Dec. 1st, 1997
Inspection: none

Table 2.5: Example data.

which prescribes the necessary properties for specific grades of construction
materials. ORBIT has these properties included in its database and they
can be consulted by the user at any time.

2.4.2 Sensitivity measures

In the next section we will use three different sensitivity measures: the
product moment correlation, the correlation ratio and the FORM sensitivity
index.

The most common and well known measure of concordance is the prod-
uct moment correlation, also referred to as simply the correlation (see for
example Ross [20]). For two variables X and Y , the correlation is defined
as

ρ(X, Y ) =
E(XY )−E(X)E(Y )

σXσY
,
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where σX is the standard deviation of X and σ2
X = Var(X) is the variance of

X. The correlation ρ is a directional sensitivity measure for which −1 ≤ ρ ≤
1 holds. If X and Y are independent, then ρ = 0, but this is not necessarily
true the other way around. For our analysis we will be interested in the
correlation between each input variable and the model output: ρ(g(X), Xi).

The correlation ratio is a non–directional global sensitivity measure
which is defined as

CR(g(X), Xi) =
σ2

E(G|X)

σ2
G

.

This measure can be taken as the general sensitivity of the model output
g(X) to the input variable Xi. It is clear that the correlation ratio is always
positive, therefore it does not give any information about the direction of
the influence. As can be seen from the definition, the correlation ratio is a
measure of how much variance (relative to the total variance) is caused by
the variable X in the model output G.

The third and last sensitivity measure which will be used is the FORM
sensitivity measure. For each variable Xi this measure is given by the cor-
responding element of the unit directional vector:

αi =
∂g

∂xi
(x) ‖ ∇g(x) ‖−1,

where the partial derivative and the vector norm are defined in the list start-
ing on page 105. This measure is a direct result of applying the Rackwitz–
Fiessler method for the FORM reliability index method as will be discussed
in section 3.2.1. The point x at which this measure should be evaluated is
called the design point and αi is the slope of the tangent line on the failure
surface in this point. This FORM sensitivity measure is therefore a measure
of the contribution of each variable to this slope.

2.4.3 Corrosion model

We assume that all variables in the model (2.1) are independent. The thin-
ning module is sensitive to the time at which we consider the output sensitiv-
ity. At first, the failure probability due to corrosion is low. In this stage the
model is fully determined by the material strength S. As time progresses,
the wall loss will start increasing the failure probability considerably. Be-
tween this point and 100% probability of failure, the model is most sensitive
to the corrosion rate C. For the example defined in section 2.4.1, I will
determine the value of the sensitivity measures at t = 9 years and t = 24
years. The failure probability is approximately 0 and 50% (obtained using
Monte Carlo simulation) respectively. Table 2.6 summarizes the result of
the analysis2. It is clear from these results that the pressure has hardly

2with many thanks to Daniel Lewandowski for his spreadsheet implementation of the
correlation ratio calculations.
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for t = 9: for t = 24:
S C P S C P

ρ(g(X), Xi) 0.96 −0.29 −0.04 0 −0.98 −0.04
CR(g(X), Xi) 0.902 0.086 0.004 0.003 0.947 0.007
αXi 0.99 −0.002 −0.003 0.04 −0.99 −0.009

Table 2.6: Sensitivity analysis results for the thinning model at t = 9 years and
t = 24 years.

any influence on the model output. This is of course due to the (very) low
pressure of 4.1bar which is used. Otherwise the three sensitivity measures
confirm one another. For t = 9 the material strength is highly positively
correlated with the model output g. At t = 24, when the component has an
increasing probability of failure, higher values for the corrosion rate result
in lower values for the model output. There is almost perfect negative cor-
relation. The fact that this correlation is negative is no surprise when we
look at the model formulation 2.1, because this variable has a minus sign in
front of it. This is also why the pressure is (slightly) negatively correlated
with g.

To be able to find more complex interactions, we use so-called cobwebs.
These plots are generated by the program UNIGRAPH, which comes with
the UNICORN package. They are a representation of the multidimensional
model output. The model output is generated by sampling the input vari-
ables and calculating the value of g for each set of samples. Besides the
graphical benefit of the cobweb plots, UNICORN has the option of pre-
defining a correlation structure between the input variables such that the
dependencies are incorporated in the Monte Carlo simulation. Figure 2.2
shows the cobweb for the thinning model. The vertical lines represent the
percentiles of the input and output variables of the model. This scaling is
most useful, but UNIGRAPH also allows you to use the actual sample value
on a natural or logarithmic scale. The distributions in the figure are (from
left to right) the corrosion rate cr, model output g, material strength s and
operating pressure p. The horizontal lines represent the sample path, i.e.
each sample set is connected with the corresponding output samples. In this
case there is only one output sample for g; the rest are input samples.

To interpret the cobweb plot we have to look at the shape of the web
which is formed by the sample paths. Since we assumed that the input vari-
ables are independent, we can look only at the interaction between these
input variables and the model output. The pattern of horizontal lines be-
tween s and g suggest a positive correlation: higher values of s are connected
with higher values of g and visa versa. This confirms the almost perfect pos-
itive correlation ρ(g, s) = 0.96 in table 2.6. A crossed pattern like the one
between cr and g suggest a negative correlation: high values of cr tend to
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Figure 2.2: Cobweb plot for the thinning model at t = 9 years.

result in low values in the output g. This is not a perfect ‘X’-shaped cross
due to the not so strong correlation of ρ(g, cr) = −0.29. Figure 2.3 shows the
same result for t = 24 years. Here the strong negative correlation between
cr and the output g results in a perfect ‘X’. We also see that now s is no
longer correlated with the output g. Things get really interesting when we
make use of the option to set conditions into the variables. Figure 2.4 has
the pressure p conditionalized on the top 10% and the corrosion rate cr is
conditionalized on the top and bottom 10%. Also, there is an extra output
called g high which is the same model as g, but using a very large diameter
d = 1m. Using the indications given by the consultants, I expect to find
an interesting combined relationship between p and g for a large and small
diameter. Physically, a high operating pressure will be of more concern for
items with a large diameter. This means that a high pressure together with
a small diameter should result in higher values of g compared to when the
diameter is large. We can see this clearly in figure 2.4: the condition on the
top 10% of p puts the samples in the top 20% of g (small diameter) and
top 50% of g high (large diameter). A large diameter in combination with
a high operating pressure will therefore result in a higher failure probability
(i.e. lower value for the state function g). The conditioning on the top 10%
of cr and p show that the model output for both diameters is extremely low.

Overall, the influence of the variables is largely proportional to the vari-
ance which is associated with them (see section 2.1.1). The choice for the
coefficients of variation should therefore be done with great care. Based on
the sensitivity and uncertainty analysis, we can conclude that the corrosion
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Figure 2.3: Cobweb plot for the thinning model at t = 24 years.

rate is by far the most important variable in this corrosion model. The more
we can reduce the uncertainty over this rate, the better our results will be.

2.4.4 Cracking model

The example which we are using is not very likely to fail due to cracking.
This is because it is a stainless steel, which has the property of having
a high toughness coefficient and a high residual strength even if it hasn’t
been PWHT’d. The results are therefore much less dependent on the time
at which we evaluate the model. Only in the very first years is there a
significant difference in the sensitivity of the model to the input variables.
As table 2.7 shows, the toughness coefficient K plays a leading role in the first
year(s), with the geometry factor Y as runner-up. Later on, the influence
of the material toughness reduces a little and the geometry factor becomes
more important. All three sensitivity measures result in similar conclusions,
except that the correlation ratio seems small for Y and S at t = 1 and for S
at t = 31. Otherwise there are no special interactions which can be found in
the model. Once again the influence of the variables is proportional to the
variance which they have been given (see section 2.1.2). The pressure is of
little influence to the output, therefore a change in pressure will not result
in dramatically different results.

Unlike in the analysis of the thinning module, a larger diameter does
not have the same effect in the SCC module. Conditioned on the top 10%
of the operating pressure, the density over the model output g is essentially
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Figure 2.4: Cobweb plot for the thinning model at t = 24 years conditionalized on
cr and p.

the same for both d = 102mm and d = 1m. The equivalent of figure 2.4
for the cracking model is given in figure 2.5. In this figure, the following
variables are depicted from left to right: at31, k, y, s, gt31, p and gt31h.
Here a t31 represents the crack depth at t = 31 years. This is the damage
specific parameter equivalent to the corrosion rate in the thinning model.
In the figure p is conditioned on the top 20% and a t31 is conditioned on
the top 10% and the lower 10%. We can see that the crack depth has no
correlation with the output g, but more importantly: the conditionalization
on the operating pressure results in a equal distribution of the sample paths
along g t31 (small diameter) and g t31 h (large diameter).
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for t = 1:
K Y P S A

ρ(g(X), Xi) 0.94 −0.28 −0.01 −0.14 −0.01
CR(g(X), Xi) 0.897 0.089 0.002 0.022 0.004
αXi 0.903 −0.353 −0.001 −0.239 −0.059

for t = 31:
ρ(g(X), Xi) 0.77 −0.55 −0.01 −0.28 −0.07
CR(g(X), Xi) 0.585 0.306 0.002 0.076 0.010
αXi 0.655 −0.617 −0.002 −0.424 −0.107

Table 2.7: Sensitivity analysis results for the SCC model at t = 1 years and t = 31
years.

Figure 2.5: Cobweb plot for the scc model at t = 31 years conditionalized on a and
p.
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Chapter 3

Reliability index methods

In this chapter I will discuss a number of different methods to approximate
the failure probability using a state function like the thinning and SCC state
functions. The most common method to approximate the failure probability
in structural and civil engineering is the First Order Reliability Method
(FORM). It is a relatively simple technique to approximate the solution of
what is essentially a high-dimensional integral. Besides FORM there is also
the more simple, but in most cases not correct, Mean Value First Order
Second Moment (MVFOSM) method. Also, we can approximate the failure
probability using simulation (e.g. Monte Carlo simulation, importance and
directional sampling). I will consider all of these methods and also a number
of different approaches to implementing the common FORM method.

3.1 Reliability index concept

The state functions (2.1) and (2.2) for the thinning and SCC models respec-
tively are functions of time t, i.e. g = g(t). However, we will evaluate the
state of the material or structure at a fixed point in time, therefore the state
function will be a function of the random variables in the model. These
are the input variables which have uncertainty associated with them and
this uncertainty/variability is represented by a suitable probability distribu-
tion. The most commonly used distribution in structural engineering is the
normal distribution.

In the general case we consider the limit state function g(X1, . . . , Xn),
where the Xi’s are n independent normally distributed random variables.
The probability of failure P (g(X) < 0) is the total mass of the joint density
for g which is in the failure region Ω = {x| g(x) < 0}. This mass is given
by the n-dimensional integral:

P (g(X) < 0) =
∫

x∈Ω
fg(x1, . . . , xn)dx1 . . . dxn, (3.1)

35
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where fg(x) is the joint density for g. This integral can usually not be
solved analytically, therefore we would like to approximate the probability
of failure. This is done using the concept of the reliability index , which is
usually denoted by β. The FORM and MVFOSM are two different meth-
ods of determining the reliability index. When we know the value of β, the
probability is found by calculating the value of the standard normal distri-
bution at −β: Pr{g < 0} = Φ(−β). The following discussion on the FORM
method will clarify the geometrical interpretation of the reliability index.
For more on this subject, I suggest the well known book by Madsen et al.
[10] or the slightly older but equally useful book from Thoft–Cristensen and
Baker [23]. A good overview of the following reliability index methods is
given in the article of Haldar and Mahadevan [7].

3.2 FORM

The FORM method is a relatively simple method which approximates the
limit state g in the so-called design point by a linear function (this is why
it’s called a first order method). In the case where g is a linear function
of the Xi’s, the implementation is very straightforward, but in general the
function g is non-linear. This requires us to pay good attention to what we
are doing.

To be able to visualize how the method works, I will consider the two
dimensional case: g = g(X1, X2). Both X1 and X2 are normally distributed
with mean µX1 , variance σ2

X1
and mean µX2 , variance σ2

X2
respectively. We

can plot the contours of the 2-dimensional joint normal distribution together
with the line g(X1, X2) = 0 as is done on the left in figure 3.1. Next we
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Figure 3.1: Graphical representation of the First Order Reliability Method.

perform a transformation T , which transforms the variables to standard
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normal (mean is 0 and variance is 1) variables:

T : Yi =
Xi − µXi

σXi

. (3.2)

The contours are therefore moved to the origin of the X1X2-plane and the
limit state g = 0 is also moved accordingly. Now we define the reliabil-
ity index β as the shortest distance to the limit state g(Y1, Y2) = 0. This
index is also known as the Hasofer–Lind ([8]) reliability index. It can be
interpreted as being the distance to the worst combination of variables re-
sulting in failure of the system. Since the variables are standard normally
distributed, the density along the dotted line in the right plot of the figure
is also standard normal. We can therefore approximate the probability of
failure by determining P (g(y) < 0) = Φ(−β), where Φ(x) is the cumulative
standard normal distribution.

The limit state function g(y) is linearized in the design point y∗. This
is done by expanding the function using Taylor series about (Y1, . . . , Yn) =
(y∗1, . . . , y

∗
n) as follows:

g(y) ≈ g(y∗1, . . . , y
∗
n) +

n∑

i=1

∂g

∂Yi
(Yi − y∗i ) + H.O.T. (3.3)

We disregard the higher order terms (H.O.T.) under the assumption that
these are small compared to the first order terms.

The main part of this method is how to find the design point y∗. The
problem can be formulated as a nonlinear equality constrained optimization
problem:

minimize d =‖ y ‖=
√

yTy (3.4)
such that g(y) = 0

In almost every textbook you will see a β in the place of the distance d
in the above model. Unfortunately this is incorrect, because this distance
measure is always positive (due to the norm) whereas the β index can also
be negative. This is the case when the origin is in the failure region of the
state function. Therefore the reliability index should be given by

β =
{

d if g(0) ≥ 0,
−d if g(0) < 0.

This is very important, because otherwise the failure probability never in-
creases above Φ(0) = 0.5! Either the authors of these textbooks know this,
but do not find it interesting enough to mention or they’ve never imple-
mented this method themselves and simply copied the text from previous
textbooks or papers.
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Next, I will describe and compare the performance of three different
methods to find the design point. Essential in these methods is that the
state function g(y) is in the standard normal space:

g(yi) ≡ g(σiyi + µi). (3.5)

3.2.1 Rackwitz–Fiessler

Almost any text you will find today uses the Rackwitz–Fiessler method
([19]), which is a sequencial search for the design point. The design point
y∗ is the limit of a sequence y(1),y(2), . . . ,y(i), . . . which is calculated by
iteratively solving

y(i+1) =

[(
y(i) ·α(i)

)
+

g(y(i))
‖ ∇g(y(i)) ‖

]

︸ ︷︷ ︸
β(i)

α(i), (3.6)

where ∇g(y) is the gradient vector given by

∇g(y) =
(

∂g

∂y1
(y), . . . ,

∂g

∂yn
(y)

)

and α(i) is a unit normal vector directed towards the failure set:

α(i) = − ∇g(y(i))
‖ ∇g(y(i)) ‖ . (3.7)

The norm of a vector x is defined as ‖ x ‖=
√

x2
1 + x2

2 + . . . + x2
n and y ·α

is the inner product of the vectors y and α (see also the list on page 105).
The vector α is a unit normal vector , which means that ‖ α ‖= 1.

The above definition for the algorithm is taken from Madsen, Krenk
& Lind [10]. The algorithm for the Rackwitz–Fiessler method is to first
assume a starting point y(0) and to iteratively solve equation (3.6) until the
difference ‖ y(i+1) − y(i) ‖< ε, where ε is very small. When convergence is
reached, the design point is given by

y∗ = βα∗, g(y∗) = 0.

There is of course a possibility that the algorithm diverges in which case
a different starting vector should be chosen. Since the state functions are
rarely linear, there will be more than one local optimum. It is advised to
run the procedure a number of times with different starting points and to
take the smallest β from these runs as the solution to the problem. In this
way there is a bigger chance of finding the global optimum.

The elements of the unit vector (3.7) are often considered as sensitivity
measures. For example, α∗1 would be a measure of how sensitive the model
is to a change in the first variable Y1. This sensitivity measure has already
been introduced in section 2.4.2 for the sensitivity analysis of the ORBIT
corrosion and cracking models.
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3.2.2 Lagrange multipliers

People familiar with mathematical optimization techniques will immediately
think of using Lagrange multipliers when they see a problem of the form in
(3.4). The general form of a nonlinear equality constrained optimization
problem is given by

minimize f(x)
such that gi(x) = bi for i = 1, 2, . . . , n

where either f and g or both are nonlinear. The definition of the Lagrangean
function L(x,λ) is as follows

L(x,λ) = f(x) +
n∑

i=1

λi (gi(x)− bi) . (3.8)

The λi’s are the Lagrange multipliers. Now it is easy to prove that the
problem can be reduced to

minimize L(x,λ).

The solution (x∗, λ∗) will give us the solution x∗ to the original problem. By
setting the derivatives to each variable of the Lagrangean function equal to
zero and solving the resulting system of equations, we can find the optimal
solution. In vector form we may write this as

∇xL(x,λ) = ∇f(x) +
n∑

i=1

λi∇gi(x) = 0, (3.9)

∇λL(x,λ) = g(x)− b = 0. (3.10)

If we apply this theory to our reliability index optimization problem (3.4),
then we get

L(y, λ) =‖ y ‖ +λg(y)

and therefore we need to solve the following set of equations:

∂L

∂y1
=

∂

∂y1
‖ y ‖ +λ

∂g

∂y1
= 0,

...
∂L

∂yn
=

∂

∂yn
‖ y ‖ +λ

∂g

∂yn
= 0,

∂L

∂λ
= g(y) = 0.

This works fine, but we can simplify this problem even further. Since we are
trying to find the closest point on the limit state function g to the origin, we
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can also minimize f =‖ y ‖2= yTy, because the optimal point will be the
same. To find the distance, we have to take the square root of the resulting
value of the objective function f . In the example in the next section we will
see that this makes solving the problem much more efficient. It’s easy to see
why this is when you compare the derivatives of the norm and the squared
norm:

regular:
∂

∂yi
‖ y ‖= 1

‖ y ‖yi,

simplified:
∂

∂yi

(
yTy

)
= 2yi.

Doing things the regular way will result in a much more nonlinear equation
compared to the simplified form. When the state function g(y) is linear
and we use the simplified objective function, the solution can be found by
solving a simple set of linear equations. Unfortunately, this is usually not
the case, but the simplified objective function will significantly reduce the
required number of iterations to solve the system of nonlinear equations. I
will refer to this method as the simplified Lagrange multipliers1 method.

3.2.3 FORM performance comparison

Using the thinning model introduced in section 2.1.1 and the data from the
example introduced in table 2.5, we apply the three methods (i.e. Rackwitz–
Fiessler, regular Lagrange multipliers method and the simplified Lagrange
multipliers method) which I’ve described in the previous section and com-
pare their performance and results.

For the calculations and the implementation of the FORM methods for
the thinning model, I refer to appendix A.1. Using a spreadsheet we can
calculate the β and the failure probability Φ(−β) at increasing points in
time. Also, to compare the performance of the methods, we keep track
of the number of iterations n which are required for convergence and we
evaluate the state function at the resulting design point (i.e. g(y∗)) to
check how close this is to the limit state). All three methods continue
iterating until ‖ y(i+1) − y(i) ‖ ≤ 0.0001. The Rackwitz–Fiessler method is
limited to 10000 iterations, whereas the Lagrange methods are limited to
100 iterations. Table 3.1 summarizes these results at three year intervals.

It is clear that the Rackwitz–Fiessler search method does not perform
very well: it requires a very large amount of iterations before convergence is
reached. The Lagrange multipliers method with the regular objective func-
tion requires far less iterations, but the resulting failure probability jumps
from 0 to 1 after 24 years. This can be seen in figure 3.2. The calcula-
tions performed by these two methods are of a very different type. The

1I suggest to use the acronym “SLAM” as a reference to this method.
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Rackwitz–Fiessler Regular Lagrange mult. Simplified Lagrange mult.
t β PoF n g(y) β PoF n g(y) β PoF n g(y)
3 46.94 0 786 0.060 136,24 0 19 8,39E-14 4,94 3,81E-07 5 3,35E-13
6 53.97 0 1032 0.060 61,52 0 23 9,02E-16 4,93 4,00E-07 6 -8,88E-15
9 63.42 0 1414 0.060 38,32 0 33 4,59E-13 4,92 4,26E-07 6 5,38E-12
12 76.71 0 2055 0.060 28,36 0 30 -1,05E-15 4,90 4,69E-07 6 5,46E-10
15 96.64 0 3292 0.060 11,44 0 11 -3,50E-14 4,87 5,50E-07 7 -2,17E-14
18 129.27 0 7046 0.061 6,78 0 8 -2,63E-12 4,81 7,52E-07 6 -6,70E-12
21 76.05 0 7335 0.061 20,83 0 39 1,48E-16 5,01 2,63E-07 100 -3,73
24 1.036 0.15 2138 0.061 20,61 0 8 7,24E-10 0,04 0,482 6 -1,67E-11
27 -49.04 1 4418 -0.061 -20,70 1 12 -3,64E-16 -2,07 0,980 7 3,67E-12
30 -86.72 1 3852 -0.060 -20,92 1 12 -1,14E-15 -3,76 0,999 8 6,75E-12
33 -118.47 1 4055 0.040 -21,21 1 11 -3,71E-16 -5,14 1 8 5,25E-10
36 -85.97 1 1567 -0.059 -21,51 1 16 -3,17E-16 -5,09 1 12 -2,27E-09
39 -68.85 1 1135 -0.060 -21,82 1 15 -4,71E-16 -7,27 1 11 2,87E-09
42 -57.58 1 854 -0.059 -22,11 1 11 -5,97E-16 -8,11 1 17 1,37E-14
45 -49.52 1 665 -0.059 -22,39 1 10 -1,10E-14 -22,39 1 21 -1,69E-13
48 -43.45 1 532 -0.059 -22,64 1 11 2,78E-16 -5,04 1 9 -3,91E-11
51 -38.73 1 435 -0.059 -22,88 1 13 5,68E-17 -5,04 1 9 3,28E-14
54 -34.94 1 363 -0.059 -23,11 1 15 -3,88E-15 -5,03 1 8 1,09E-10
57 -31.84 1 308 -0.058 -23,31 1 17 -6,84E-17 -5,03 1 9 -6,66E-15
60 -29.26 1 264 -0.058 -23,51 1 12 -1,35E-11 -5,03 1 9 4,88E-15
63 -27.08 1 230 -0.056 -23,68 1 11 3,33E-17 -5,03 1 9 -1,73E-14
66 -25.22 1 201 -0.058 -23,85 1 12 -5,54E-11 -5,02 1 9 -3,99E-14
69 -23.60 1 178 -0.057 -24,00 1 15 -6,56E-16 -5,02 1 9 8,74E-14
72 -22.20 1 159 -0.056 -24,15 1 24 1,78E-16 -5,02 1 8 7,49E-11
75 -20.96 1 143 -0.055 -24,28 1 21 -8,10E-17 -5,02 1 8 2,86E-11
78 -19.86 1 129 -0.055 -24,41 1 20 -2,91E-16 -5,02 1 8 8,71E-09
81 -18.88 1 117 -0.055 -24,53 1 13 -3,45E-13 -5,02 1 9 -6,66E-14
84 -18.00 1 107 -0.054 -24,64 1 14 -1,03E-11 -5,01 1 9 -3,15E-14
87 -17.21 1 98 -0.054 -24,74 1 14 3,10E-16 -5,01 1 9 1,29E-12
90 -16.49 1 90 -0.055 -24,84 1 21 -1,21E-16 -5,01 1 9 1,07E-10

Table 3.1: Results for three FORM implementations including failure probability
and number of iterations used (PoF = Φ(−β)).

Rackwitz–Fiessler method is a simple search method, therefore each itera-
tion represents a step in the direction of the optimal point (this is a geomet-
rical interpretation of the unit vector α). The iterations in the Lagrange
multiplier method are those used by the Newton-Raphson iteration method
to solve a system of nonlinear equations. This iteration scheme is generally
the fastest method available, whereas the search method is very slow. The
literature never mentions that the Rackwitz–Fiessler algorithm requires as
many iterations as we see in table 3.1. Why does it perform so poorly in
this case? Well, later on in this thesis we’ll see that the shape of the failure
region is almost linear in the area of the design point. This means that
the tangent hyperplane used by this algorithm will ‘jump’ around between
points on either side of the design point. A more slanted plane will result in
the approximation points to ‘move’ closer to the design point much faster.

The actual computing time required by both methods depends on the
program which is used. The Newton-Raphson scheme requires a matrix
inversion at every iteration and the speed at which this is done depends on
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Figure 3.2: Comparison of different FORM implementations and Monte Carlo sim-
ulation for the thinning model.

the implementation in the program that is used. The method becomes less
efficient as the matrix becomes larger.

The Lagrange multiplier method with the simplified objective function
requires even less iterations than the regular Lagrange multiplier method.
Also, this simplified version seems to follow the true solution much better.
This conclusion is based on the fact that the result overlaps (more than the
other two methods) the result obtained using simple Monte Carlo simulation.
The accuracy of the simulation only depends on the number of samples which
are used to evaluate the state of the component.

The last remark that can be made is that the two Lagrange multiplier
methods result in design points which are closer to the limit state g(y) =
0, than the Rackwitz–Fiessler method. The conclusion must be that the
commonly used Rackwitz–Fiessler method is outperformed by the Lagrange
multiplier method with the simplified objective function. This is a very
useful result for anyone interested in applying an efficient method to perform
a FORM.

3.3 MVFOSM

Before the FORM methodology was developed, there was the Mean Value
First Order Second Moment (MVFOSM , also known as FOSM ) method. It
derives its name from the fact that it is based on a first-order Taylor series
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approximation of the state function and uses only second-moment statistics
(means and covariances) of the random variables. The original formulation
by Cornell in 1969 [3] uses a simple two-variable approach. Assuming that R
and S are independent normally distributed variables, a limit state function
is defined as

g = R− S. (3.11)

The mean of this function is then given by µg = µR − µS and variance is
determined by σ2

g = σ2
R + σ2

S . The probability of failure is then calculated
as

F (0) = Pr{g < 0} = Φ
(
−µg

σg

)
.

This is based on the fact that the model output is normally distributed with
mean µg and standard deviation σg:

Pr{g < 0} = Pr
{

g − µg

σg
<

0− µg

σg

}
= Φ

(
−µg

σg

)

Thus the probability of failure depends on the ratio of the mean value of
g to its standard deviation. Cornell named this ratio the safety index and
denoted it as β = µg/σg.

In practice, the model will never be the simple linear model given by
(3.11). Therefore the limit state function is linearized in the mean point
(µy1 , µy2 , . . . , µyn) using Taylor series expansion as in (3.3). The mean of g
is then approximated by

Eg(Y) ≈ g(µy1 , . . . , µyn) +
n∑

i=1

(EYi − µyi)︸ ︷︷ ︸
=0

+H.O.T. ≈ g(µy1 , . . . , µyn)

Again we assume that the variables Yi are independent normally distributed
random variables. The variance of g is approximated by

σ2
g =

n∑

i=1

(
∂g

∂Yi

)
Var(Yi)

There are a number of arguments against using FOSM:

• the assumption that the model output is normally distributed with
mean µg and standard deviation σg does not hold if the model is
(highly) nonlinear.

• a nonlinear state function can also result in the approximation of the
mean and variance by a Taylor series expansion having a high error
associated with it.
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Figure 3.3: Results using MVFOSM for the thinning (a) and SCC (b) modules.

• the result of the FOSM method is not independent of the mathematical
formulation of the problem (e.g. R/S < 1 is a different formulation of
the same problem as R−S < 0, but the FOSM results can be different,
see [22] for an example of this)

On the other hand, in the situation where the FOSM does give good results,
no other method will be able to compete with the efficiency of the FOSM
methodology. The evaluation of two simple equations is all that is needed
to determine the reliability index β.

ORBIT uses MVFOSM to determine the reliability index. For the
models (2.1) and (2.2) this works perfect, because the model output is nor-
mally distributed and the approximation of the mean and variance are very
good. Figure 3.3 shows the results using MVFOSM for both models. The
method works exceptionally well for the thinning module. For the SCC mod-
ule the result is only slightly more progressive (i.e. lower failure probability)
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than the simplified Lagrange multiplier method. The Monte Carlo simula-
tion lacks enough samples to adequately approximate the failure probability.
I’ve used 5000 samples per variable for both models, but the low probabil-
ity of cracking for this type of steel means that the simulation will not be
accurate enough. A different way of showing this would be to use the same
sample set for each year in the figure, which would make the plot smooth.
Unfortunately, the mean (and therefore also the standard deviation) of the
crack depth variable A is a function of time, therefore this variable has to
be sampled again every time. One advantage of this is that the amount of
non-smoothness in the plot, reflects the lack of samples.

Another way of checking why the FOSM technique works well for these
models is to overlay the simulation histogram with the normal density fX(x),
where X ∼ N (µg, σg). This is shown in figure 3.4. As we look further into
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Figure 3.4: Monte Carlo simulation histogram (10000 samples) overlayed with the
normal density determined using the MVFOSM technique for thinning and SCC at
t = 25yr: (a) and (b) and the same for t = 250yr: (c) and (D) resp.
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the future, the normal density seems to shift slightly to the left as can be
seen in (c) and (d) of the figure. These are for t = 250yr, which is not
realistic, but it helps us understand the behavior of the models. Taking
this into account, we would expect the MVFOSM result in figure 3.3b to
be more conservative than the simulation or FORM results. However, this
figure suggests the opposite: the density should be shifting to the right.
The explanation for this is the lower tail of the histogram compared to the
lower tail of the MVFOSM density. There is clearly more mass in the lower
tail of the histogram in figure 3.4c and 3.4d than in the equivalent tail of
the MVFOSM density. This has a significant effect in the SCC module
due to the low probabilities that we encounter here. This holds much less
for the thinning model, but these conclusions are of course dependent on
the example which we use. A different type of steel might be much more
susceptible for cracking than the material used in this example.

3.4 Directional sampling

Simulation is technically not a reliability index method, but a sampling tech-
nique to approximate the failure probability. A regular Monte Carlo simula-
tion will consist of taking many sets of samples from the input variables and
to count the number of times this results in a failure (i.e. #{i : g(xi) < 0}).
If we take N samples of each variable, then the failure probability will be
approximately the number of failures divided by N . This technique has the
advantage that the quality of the approximation depends only on the size of
N , therefore we can make the approximation as good as we like by taking
N −→ ∞. Unfortunately, this is also the disadvantage of the technique,
because it makes it highly inefficient. For large N , the calculation is compu-
tationally very expensive. Especially for low probability events, a very large
number of simulations is required to ensure that enough samples are located
in the failure region. A nice example which shows this effect is figure 3.3b,
where we can clearly see that there is a lack of samples.

Nonetheless, the use of simulation is still a very attractive method to
approximate the failure probability. This is due to the fact that any distri-
bution can be used for the input variables, which is not possible when using
a regular FORM or MVFOSM technique. These methods require the user
to transform the input variables to normally distributed variables. Also,
the time which is required to perform a simulation has been dramatically
reduced with the current processor speeds in personal computers.

A relatively new simulation technique which has gained much popularity
over the last few years is called directional simulation. It’s based on the idea
of transforming the Cartesian space in which we usually look at the state
function g, to polar coordinates. In short the technique involves sampling
a direction on the unit hypersphere and integrating over the failure region
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along this direction. When repeating this procedure many times, the failure
probability will be approximated by taking the average of these probabilities.

6
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Figure 3.5: Graphical representation of the directional sampling technique.

A single direction is shown in figure 3.5, where the directional integration
starts at the point given by r∗(θ). This is the radius along the angle θ for
which g = 0. In this case the variables in the state function have been
transformed to standard normal variables Y1, . . . , Yn as in equation (3.2).
Based on the chapter 9 of Monte Carlo Methods in Ditlevsen & Madsen [4],
we can determine the failure probability along a direction by first sampling
a unit direction vector A, where

Ai =
Zi√∑n
i=1 Z2

i

with Zi ∼ N (0, 1) for i = 1, . . . , n. (3.12)

From this random unit vector, we sample a direction a and calculate the
radius for which g(r,a) = 0. The probability that the directional radius R
is larger than r∗(a) is given by

Pr{R > r∗(a)|A = a} =
Γ

(
n
2 , [r∗(a)]2

2

)

Γ
(

n
2

) , (3.13)

where the gamma function and incomplete gamma function are defined as

Γ(a) =
∫ ∞

0
ta−1e−tdt (3.14)

and
Γ(a, x) =

∫ ∞

x
ta−1e−tdt (3.15)
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respectively. The actual failure probability is then approximated by tak-
ing the average of the directional probabilities obtained by repeating the
sampling and calculation procedure given by equations (3.12) and (3.13):

∑N
j=1 Pr{R > r∗(a(j))|A = a(j)}

N
−→ Pr{g < 0} as N −→∞

The directional sampling method is more efficient than the regular Monte
Carlo simulation method, because if there is a finite solution for the radius
(i.e. r∗(a) < ∞), then the integration will be done over all the mass in the
failure region. This ensures that the average failure probability will converge
to the actual probability much faster compared to the regular sampling
technique. Most literature will also claim that the technique is more efficient
due to the fact that we need to sample only n−1 angles instead of n variables.
This does not hold in our example because sampling the angles such that the
directions are uniformly distributed on the unit hypersphere is quite difficult
(see appendix A.2 for more on this). This is the reason why we are using
the unit vector defined by (3.12), which requires us to sample 3 standard
normal variables Zi. This increased efficiency therefore does not hold for
the multivariate normal distribution, but will hold for other multivariate
distributions.

Most authors underestimate the importance of determining the radius to
the limit state function: r∗(a). When considering complex models, this ra-
dius will usually have to be found numerically. This requires careful thought
in order to keep the method from becoming inefficient. Also, there will al-
ways be multiple radii for which g(r,a) = 0. For example, if we solve for r
in the thinning module, then the result is a quadratic equation which means
that there will (almost always) be 2 solutions for r. The question is now
which radius to use in (3.13): should we take the smallest radius and what do
we do with a negative radius? Melchers [12] acknowledges the problems that
arise with multiple solutions for r, but only advises the reader to “carefully
formulate the state function g.” Using the thinning model as an example,
I will formulate some rules which can be applied to obtain a correct result
for the radius. The implementation of the directional sampling technique
for the thinning module can be found in appendix A.2.

The most appealing property of the thinning model which was intro-
duced in (2.1) is that there are three input variables, which means that we
can visualize the result in a 3–dimensional space. A pretty rendering of
the directional sampling technique is given in figure 3.6. The dotted lines
represent the sampled directions and the points are the radii on the fail-
ure surface. The thick cross indicates the center of the standard normal
space. Unfortunately this figure does not help us any bit in determining
which radii we have to use for calculating the failure probability. Figure 3.7
is a top–down view onto the XY–plane. These are the material strength
(S) and corrosion rate (C) axes respectively, therefore we are looking down
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Figure 3.6: 3D rendering of the directional sampling technique.

along the pressure (P ) axis. The shape of the failure surface becomes very
clear in this figure and it is not immediately what would be expected. Given
the good results obtained using the MVFOSM technique, we concluded that
the failure surface (close to) the center point is practically linear. The cloud
formed by the sampled input variables is seperated in two parts by the failure
surface and it is indeed highly linear in this area. However, the directional
sampling reveals much more of the failure surface. The reason for this is
that this technique will also result in points (x, y, z) = (rA1, rA2, rA3) which
are infeasible. Transforming these points back to the original variable space
results in a negative value for one or more of the three input variables: ma-
terial strength, corrosion rate and pressure. This is physically not possible,
therefore these points should not be taken into account. These points are
marked as an ‘x’ in figure 3.7 and the feasible points are marked with a solid
dot. Also plotted are the feasibility bounds which are found by assuming

Xi ≥ 0 ⇔ σi(rAi) + µi ≥ 0 ⇔ rAi ≥ −µi/σi.

To be able to obtain the correct failure probability using directional sam-
pling, only the feasible radii should be used and if there are multiple feasible
radii, then only the shortest (in absolute value) one should be used. This
means that also the negative radii have to be used. The probability of fail-
ure (3.13) uses the square of the radius, therefore this probability does not
depend on the direction of the radius. Equally important is to determine
whether the center of the standard normal space is in the failure region or
not, because we need to make sure that we are integrating over the failure
region and not the safe region. The decision tree in figure 3.8 summarizes
the steps which determine the probability of failure Pj for a single sampled
direction j, where j = 1, . . . , N . In this figure P (R > r) is short for (3.13).
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Figure 3.7: Top–down view onto the plane defined by the material strength (S) and
the corrosion rate (C) including the rendering of the regular Monte Carlo simula-
tion.

This probability is divided by 2, because the probability in only one direction
is {R > 0|A = a} = 1. Using this decision tree, we can compare the con-
vergence of the directional sampling compared to the regular Monte Carlo
sampling technique. This is shown in figure 3.9. The plot of the directional
sampling failure probability stabilizes around the actual failure probability
(obtained using the MVFOSM) faster than the regular sampling method.
Also included are the 95% confidence bounds for both results, but these
do not give any additional information about the difference in effectiveness
of each method. We conclude that the directional sampling method indeed
requires much less samples to effectively approximate the failure probability.

A much more interesting application of the directional sampling tech-
nique is the stress corrosion cracking model. From figure 3.3b we concluded
that the MVFOSM underestimated the failure probability. Also, the regu-
lar Monte Carlo simulation requires a very large number of samples due to
the low probability of failure. We expect the directional sampling to have
better results. The model, which is given by (2.2), is interesting because we
now have to solve for r∗ numerically. This is mainly due to the crack depth
parameter A which is under a square root. Again the question arises how
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Figure 3.8: Decision tree for choosing the radius in the directional sampling tech-
nique and calculating the correct failure probability.

to choose the correct radius such that the result is also representative of the
model. The details are given in appendix A.2. Here we use the Newton-
Raphson iterative scheme to solve for the radius r∗ for which g(r∗,a) = 0.
Assuming that we always want the closest radius, we take a zero radius
(r0 = 0) to start the iteration. The scheme will then proceed in the positive
or negative direction until either the solution has been found or the scheme
does not result in a feasible radius. The last case occurs when the scheme
diverges or as soon as the radius becomes associated with an infeasible value
for one of the variables. Besides there being only one feasible radius or none,
the decision tree for this model is otherwise identical to the one in figure
3.8. Using 2000 samples for both simulation techniques, we get the result
in figure 3.10. Again the regular Monte Carlo simulation suffers from a lack
of samples, but the directional sampling technique performs slightly better.
It’s result is more stable and follows the FORM results more closely. Since
the FORM is considered to be a good approximation of the actual failure
probability, we conclude that the directional sampling still underestimates
the failure probability albeit much less than the MVFOSM. This may be
due to the fact that we reject an infeasible radius and subsequently assume
Pj = 0 (or Pj = 1 depending on the value of g(0)), whereas there might be
a feasible radius in the other direction. A smarter algorithm could result in
slightly better results, but the directional sampling performs satisfactory in
figure 3.10. Only the last point does not look good, but since this model
has 4 directions to be sampled, we will need more samples compared to
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Figure 3.9: Convergence of the directional sampling technique compared to the reg-
ular Monte Carlo technique for the thinning model at 22 years (a) and 26 years
(b).
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Figure 3.10: Comparison of the results for the cracking model failure probability
using both reliability index and simulation techniques.

the thinning model to achieve similar accuracy. The more samples that are
used, the smoother the plot will become. Also, the result is excellent until
about 50 years into the service life of the component (which certainly can
not be said about the regular sampling method). In the process and refining
industry, components rarely stay in operation longer than such a length of
time, therefore the performance during later years is less important.
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Chapter 4

A new Gamma process
inspection model

This chapter is entirely devoted to the development of a new decision model
for optimal inspection planning in the process industry. The fundamental
difference with the previous (deterministic) models is that the deterioration
will now be modelled by a stochastic process. The idea is to use a Bayesian
stochastic process, which is a more mathematically sound approach to the
planning of maintenance and inspections. Unlike the deterministic model,
we can not predict the exact behavior of the process in the future. With
the deterministic model we determine a posterior density for the degradation
rate and assume a linear degradation in time. This essentially fixes the point
at which the component is assumed to fail, albeit with some uncertainty in
the form of variance associated with it. A regression analysis, where a linear
degradation fitted to measurement data is extrapolated into the future, has
this characteristic as well. This statistical method has another problem:
due to the lack of sufficient data, the quality of the regression is not good.
Believe it or not, but a regression analysis methodology called KINT, has
already been accepted by the technical committee as a valid risk based
tool for inspection planning. This method is only valid for thinning due to
corrosion, whereas ORBIT also considers cracking and fatigue.

The methods in this chapter are based on the techniques which have been
developed and studied by J.M. van Noortwijk and have been successfully
applied to hydraulic structures [15] (e.g. maintenance of dikes, sea–bed
protection at a sea barrier, etc.). The principles on which the use of these
methods are based, are such that the methods can be translated to the
process industry.

First a concept is drawn up for the model, which includes some char-
acteristics which we would like to see in a new model. Next, the gamma
deterioration process is introduced, followed by a continuous Bayesian up-
dating model which can handle both perfect as well as imperfect inspections.

55
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In the last part of this chapter I will consider the expected average costs per
unit time as a cost-based criterium for deciding on an optimal inspection
and maintenance policy. The model as a whole will then be illustrated with
a case study of a hydrogen dryer.

4.1 Model concept

Before we start working on a new model, we need to think about which
characteristics this model should have such that it will be detailed, but
also easy to use at the same time. We start by summing up some of the
advantages of ORBIT which we certainly want to see again in the new
model:

• Easy and fast in use: this is most important for the input of the
model. The input should only consist of the standard operating condi-
tions (e.g. average corrosion, pressure, temperature etc.) and material
properties, since the model is used by practitioners in the process in-
dustry with a background in chemical engineering, civil engineering,
mining etc. We should not ask these people for distribution parameters
or uncertainty bounds, because this will make them feel uncomfortable
due to their limited experience with probability theory and statistics.
Also, this type of input requires a substantial amount of time in both
preparation and actually typing it into the program. This is not an
appealing prospect when dealing with thousands of components.

• Model the degradation and update with available measure-
ment data: the advantage of ORBIT is that it combines the mod-
elling of the degradation with measurements from inspections. It is
therefore not only a statistical model, which only uses the inspection
data to extrapolate the material condition into the future. The new
model should also use state functions to model the condition of the
construction material and update this model with the available in-
spection results using Bayesian updating. The use of Bayes’ theorem
is very common in structural reliability analysis and condition assess-
ment. Pandey [18] applies it to update the prior with a probability of
detection, Mahadevan & Zhang [11] incorporate the uncertainty over
the model itself and Zhao et al. [26] apply it to the inspection of steel
bridges.

• Use the thinning and cracking state functions: these models
have been studied and applied in real–life applications for a very long
time. They are accepted as valid models and they use typical oper-
ational conditions and material properties to model the degradation.
Practitioners like to see these variables in the model as it gives them
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confidence that all parameters which might influence the degradation
are incorporated in the calculations.

Besides these desirable characteristics, we would also like to see the following
aspects in the new model:

• Use a stochastic model instead of a deterministic model: we
would like to use a stochastic process to model the cumulative dam-
age to the material of the component. This in contrast to assuming
an average degradation which is extrapolated to find the moment of
failure supplemented with uncertainty bounds.

• Choose a proper prior for the average degradation: we would
like to step away from the normal distribution which is commonly
assigned to all variables in traditional structural reliability analysis.
The normal distribution entails a (very small) probability of a negative
value for the variable. Also, the normal density is symmetric, whereas
a density with a longer tail towards higher values for the degradation
rate would represent our intuition and uncertainty better. The goal is
therefore to use a non–negative density with a long tail.

• Incorporate the uncertainty created by imperfect inspections:
we define an imperfect inspection as an inspection technique which
results in a measurement with a small error. We therefore assume
that the measurement will give the actual state (e.g. wall thickness)
of the material plus or minus a small error. We can model this er-
ror by assuming that the error is normally distributed with mean
zero and a standard deviation which reflects the accuracy of the in-
spection method. The error does not account for other inaccuracies
like the choice of the measurement location on the component, the
(in)experience of the inspection engineer etc.

There has been much research done on the topic of inspections. In
the process industry we come across a number of so–called non–destructive
testing (NDT) techniques for evaluating the condition of the construction
material. None of these methods are capable of perfectly identifying and
measuring the damage or wall loss in the construction material of a com-
ponent. Each inspection result will have an error associated with it, which
represents the amount of uncertainty in the measurement. Following Elling-
wood & Zheng [5], there are two types of uncertainty which are of primary
concern for reliability based in–service inspection. These are the uncertainty
in the flaw detection and the uncertainty in the flaw sizing. In the case of
thinning, the probability of detection is of lesser concern, therefore we will
not consider this in our model.



58 Chapter 4: A new Gamma process inspection model

4.2 Gamma stochastic process

As Ross [20] puts it: “a (continuous–time) stochastic process {X(t), t ≥ 0}
is a collection of random variables. That is, for each t ≥ 0, X(t) is a random
variable.” Since t is interpreted as time, we refer to X(t) as the state of the
process at time t.

In our case we define X(t) as the amount of deterioration at time t.
In many cases a normal distribution will be assigned to the deterioration
process, but this entails a probability of a negative increment. This would be
interpreted as a sudden increase in the quality of the construction material.
It therefore makes more sense to use a non–negative distribution for the
deterioration process. Using the gamma distribution has proven to result in
relatively straightforward calculations and many aspects can be analytically
determined.

Another advantage of using a stochastic process is that it allows us to
use the classic resistance minus stress model. Remember that we defined
the corrosion state function g(t) in (2.1) as

m = R0 − S,

where m is the margin between the initial resistance R0 (e.g. wall thickness
at service start) and the applied stress S. A graphical representation of a
stochastic process (with non–negative increments) applied to this model is
given in figure 4.1. Here we see the quality of the construction material
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Figure 4.1: A graphical representation of the Gamma process deterioration process
in a resistance minus stress model.

deteriorate in steps as time increases. Assume we are considering the pro-
cess of corrosion, then this figure represents the thinning of the construction
material. The component is said to fail when the total wall loss reaches a
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margin m, which occurs at time t = T in figure 4.1. Later on, we will also
consider the possibility of replacing the component before failure occurs. For
this purpose we introduce ρ ∈ (0, 1), which represents the percentage of the
margin at which we decide to replace the component. Therefore we replace
the item if the amount of thinning has reached the level ρm (this level is
also known as the corrosion allowance). This is called a preventive replace-
ment , whereas a replacement due to failure is referred to as a corrective
replacement .

As is done in current practices, the deterioration is assumed to be linear
in time. Both the mean value of the gamma process X(t) as well as the
variance are linear in time:

E(X(t)) = µt and Var(X(t)) = σ2t. (4.1)

This entails that the probability density function for X(t) is given by

fX(t)(x) = Ga
(

x

∣∣∣∣
µ2t

σ2
,

µ

σ2

)
. (4.2)

A proof of the above properties, a more detailed definition of the gamma
process and the definition of the gamma density (A.4) can be found in section
A.3.1 of the appendix.

For the remainder of this chapter I will only consider the corrosion model.
For this I define the wall loss as the corrosion rate times the time since service
start of the component: X(t) ≡ C × t. The margin m is the level of X(t) at
which g = 0. By rewriting the state function (2.1) we find that

m ≡ m(p, s) = th− p× d

2s
. (4.3)

The margin therefore depends on the operating pressure p and the material
strength s. We can take these as constant variables, but later on we will
also assume that they can have some uncertainty or variability associated
with them. The margin can therefore be uncertain, which we will have to
incorporate into the model. In a plant, the operating pressure is usually
controlled and most of the uncertainty will be in the material strength.
This is because the material properties have been obtained under laboratory
conditions and these are not always representative of the surroundings and
conditions in which the component operates.

The deterioration process is determined by the average corrosion per
year µ and the standard deviation in the corrosion rate σ. Since we only
want to incorporate the uncertainty over the average corrosion rate, we
fix the standard deviation with a coefficient of variation. In the chapter
on ORBIT we’ve seen that the standard deviation is fixed in the model
by a coefficient of variation. For example, the standard deviation for the
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corrosion rate is 10% of the average corrosion rate per year: σC = 0.1µC .
This essentially fixes the ratio σ/µ and we define

ν ≡ σ

µ
,

which implicates that (4.2) becomes

fX(t)(x) = Ga
(

x

∣∣∣∣
t

ν2
,

1
µν2

)
. (4.4)

Since the coefficient of variation ν is fixed, the only uncertain variable left
in the model is µ (besides of course the pressure and material strength if we
choose to make these random as well). This greatly reduces the complexity
of the calculations and avoids the need for extra input compared to the
ORBIT input. The choice for ν should be reconsidered as its role in the
gamma deterioration process is quite different from its role in the MVFOSM
approximation. Expert judgment can be used to determine suitable choices
for this coefficient of variation. As different types of degradation mechanisms
have different uncertainty associated with the (some deterioration is more
predictable than others) it would make sense to agree on suitable ν’s for
each of these mechanisms.

4.3 Inspection updating

First we look at the case of perfect inspections. This means that we are
able to exactly determine the wall thickness with the inspection. As with
ORBIT we want to use a Bayesian updating model to incorporate the
inspection data into our distribution over the degradation rate µ, only now
we want to use a continuous version instead of the simple discrete variant of
Bayes’ theorem. The choice for a prior density is not easy, because we need
to make sure that the posterior is not too hard to determine. Following the
suggestion by van Noortwijk et al. [14], we will use the family of inverted
gamma distributions. The inverted gamma density is given by

Ig(x|α, β) =
βα

Γ(α)

(
1
x

)α+1

exp
{
−β

x

}
for x ≥ 0. (4.5)

Notice that a random variable X is inverted gamma distributed if Y =
X−1 ∼ Ga(α, β) with shape parameter α > 0 and scale parameter β > 0.
An inverted gamma density for the prior fits very well with the application
to the corrosion rate. The density is non–negative and has a longer tail,
which represents our uncertainty over higher corrosion rates very well. The
inverted gamma density can be fitted to the ORBIT prior as is done in
figure 4.2. This is not an accurate fit, but this is not really necessary either.
The inverted gamma density has been fitted to the discrete prior given in
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Figure 4.2: The inverted gamma density fitted to the ORBIT discrete prior.

table 2.3 through the use of simulation (see also the program code in section
B.3 of the appendix). The main purpose is to have a prior which is well
suited to our needs. At first you might think that an exponential density
would be a better fit, but this would entail a high probability of a corrosion
rate lower than the user’s estimate (unless of course µC is the mean of the
exponential distribution). The fact that most mass is concentrated around
1 time the estimated corrosion rate fits better with the real world. The
expectation of both the discrete prior and continuous prior is around 1.9
times the estimated rate (indicated by a cross in the figure).

Say we measure the wall thickness at time t, then we know the amount of
wall loss x which has occurred since the service start of the component. The
likelihood of X(t) given this measurement is given by the gamma density
(4.2). The continuous posterior is found by calculating

π(µ|x) =
l(x|µ)π(µ)∫∞

µ=0 l(x|µ)π(µ)dµ
, (4.6)

where π(µ) is the prior density for µ and l(x|µ) is the likelihood of x given
µ. The advantage of using the inverted gamma prior now comes in the fact
that the posterior is given by

π(µ|x) = Ig
(

µ

∣∣∣∣
t

ν2
+ α,

x

ν2
+ β

)
.

The proof of this can be found in appendix A.3.2.
As an example, I will show the effect of performing a perfect inspection

after 5 years which reveals a wall loss of 5mm when the initial estimate for
µ was 1mm/yr. This is therefore a confirming result for which the posterior
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Figure 4.3: Comparison between the posterior of a confirming perfect inspection
and a perfect inspection resulting in a corrosion 3 times faster than the estimate.

is shown in figure 4.3a. This inspection has clearly increased our confidence
and decreased the uncertainty over the corrosion rate by concentrating all
mass around the value of 1mm/yr. If, on the other hand, the inspection
would have told us that the material has corroded three times faster than
we had anticipated, the posterior would move towards this value. Also,
because this is a contradicting result, the mass is more spread out like we
can observe in figure 4.3b.

We can easily extend this model to incorporate the data from multiple
perfect inspections. Say we measure the wall loss at n points in time, then
we have a measurement x1 at time t1, x2 at t2 etc. As the proof in section
A.3.2 shows, the posterior for the degradation rate given n measurements is
given by (A.10):

π(µ|x1, . . . , xn) = Ig
(

µ

∣∣∣∣
∑n

i=1 ti − ti−1

ν2
+ α ,

∑n
i=1 xi − xi−1

ν2
+ β

)
.

Again we have a simple analytical solution for the posterior density, but
when we look closely at the above equation we see that the posterior actually
only depends on the last inspection:

π(µ|x1, . . . , xn) = π(µ|xn) = Ig
(

µ

∣∣∣∣
tn
ν2

+ α ,
xn

ν2
+ β

)
,

if we assume that x0 = 0 at t0 = 0. This rather surprising result is a direct
consequence of our choice to fix the ratio σ/µ. Besides the fact that perfect
inspections do not exist, it will not be possible to convince a plant operator
or safety technician that all but the last of his inspections are irrelevant in
determining the failure probability of the component.
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It is clear that for any model to be valuable in the process industry,
it will have to include the possibility of modelling imperfect inspections.
The first model which comes to mind is the stochastic process Y (t) which
encompasses the original gamma process X(t) together with an extra factor
which represents the error in the inspection measurement(s). This approach
is also used by Newby & Dagg [13] and has the following form:

Y (t) = X(t) + ε with ε ∼ N (0, σε),

therefore we assume that an inspection will measure a wall loss y at time
t, which is the actual wall loss x plus or minus a measurement error which
is embodied by a standard deviation σε. We assume that the mean error
is zero, because any other choice would assume that the inspection is more
likely to over- or underestimate the actual wall thickness.

The article from Newby & Dagg [13] is the only known attempt at imple-
menting imperfect inspections together with a gamma deterioration process.
Unfortunately, the paper only results in a complicated numerical integra-
tion and the output is presented in a non–intuitive manner. Sticking to our
Bayesian model and avoiding complicated numerical integration schemes by
applying a discretization, we can simplify and expand the model proposed
in the previously mentioned article. The discretization is necessary, because
(with the current model) we can not solve the problem analytically. Since
the mathematical details and the required notation is relatively complex,
I’ve put these in section A.3.3 in the appendix. I have successfully deter-
mined a (discrete) posterior density for one or more imperfect inspections,
which are given by equations (A.14) and (A.17) respectively.

Figure 4.4 shows a comparison of the posterior densities for 1 imperfect
inspection at 5 years and the posterior of two imperfect inspections at 5
and 15 years against the posterior for one perfect inspection at 5 years. All
imperfect inspections have a standard deviation of 50% of the measured
wall loss, therefore σε = 0.5y, where y is the measured wall loss. The error
of an inspection technique is usually given as a percentage of the measured
wall thickness, but if we use this in our implementation, then there is a large
probability that the measurement error is (much) larger than the actual wall
loss. It is therefore better to define the error as a percentage of the wall loss
itself. An error of 50% of the measured wall loss seems very large and the
choice for this value is purely demonstrational. As in the case of choosing
a sensible value for ν, this standard deviation should be determined using
some kind of expert opinion.

The figure confirms our expectations of the model. The imperfect inspec-
tion is much less effective at decreasing the uncertainty over the corrosion
rate compared to the perfect inspection. An extra imperfect inspection ten
years after the first one increases the confidence a little bit and shifts the
expectation slightly towards the estimated rate of 1mm/yr.
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Figure 4.4: Posterior densities for 1 imperfect inspection at 5 years and for 2
imperfect inspections at 5 and 15 years, each confirming a corrosion rate of 1mm/yr
and σε = 0.5µC .

4.4 Optimal inspection and maintenance planning

DNV’s ORBIT methodology suggests a type and a time of inspection such
that a certain amount of risk is not surpassed. Theoretically this means that
we could inspect the component at infinitely small time intervals, because
this would minimize the risk of unexpected failure. This plan is however
extremely expensive, certainly when the inspections are relatively expensive
due to plant outage and other similar extra costs. We would therefore like
to use a decision model which will give us an optimal inspection period such
that safety is ensured and the costs are minimized.

The proper model for this purpose is the concept of the expected average
costs per unit time. This is one of three cost-based criteria suggested by
Wagner [25] and applied to a number of examples in the maintenance of
hydraulic structures by van Noortwijk [15]. The expected average costs per
unit time are obtained by simply averaging the costs over an unbounded
horizon. This means that we will add all costs related to an inspection
interval ∆k and divide these costs by the expected duration of the life-cycle
of the component. From a renewal theory point of view, the cycle of a
component is the time until it is either preventively replaced or correctively
replaced. The first is done when the condition of the construction material
has degraded beyond an accepted level. In the process industry this level is
commonly referred to as the corrosion allowance. A corrective replacement
is performed when the component has failed.
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As is also discussed in section A.4 in the appendix, the corrosion al-
lowance is an amount of deterioration which is lower than the safety margin
given by equation (4.3). In our model we will use a percentage ρ which
represents the ratio cmax/m, where cmax is the corrosion allowance. We
therefore have a corrosion allowance ρm, which is a percentage of the level
m at which the component is assumed to fail. If the degradation is more
than the corrosion allowance, then we replace the component, therefore we
also call ρm the replacement level.

The expected average costs per unit time are given by the ratio of the
expected costs per cycle over the expected cycle length:

C(ρ, ∆k) =
∑∞

i=1 ci(ρ, ∆k)pi(ρ,∆k)∑∞
i=1 ipi(ρ,∆k)

, (4.7)

where ci are all costs incurred during cycle i and pi is the probability of
incurring these costs during cycle i. This equation is a result of renewal
theory, where a cycle is defined as the in-service time of a component. One
cycle is therefore the duration between the service start and the time of
replacement or failure, whichever occurs first. The use of this theory requires
the assumption that the component will be renewed, i.e. it will be replaced
by an identical component. For components with a short design life, this
will be mostly the case and for the other components this assumption will
not result in incorrect results.

The expected average costs per unit time is a function of the interval
length ∆k and the percentage ρ, which is determined by the corrosion al-
lowance. For this model we will assume that the corrosion allowance is
always given and that we will not use any other preventive replacement
level, therefore the percentage ρ is fixed. In other cases we can consider
ρ as another variable over which we can optimize the inspection plan. A
certain choice for ρ might entail substantially lower inspection and mainte-
nance costs. This option is interesting for the user who would also like to
determine the optimal amount of degradation after which the component
should be replaced.

The costs per cycle ci include costs for inspections, preventive replace-
ment and for failure (including corrective replacement). The probability of
failure per cycle pi depends on the degradation process, therefore it not only
depends on the cycle length ∆k, but also on the operating pressure, material
strength and the corrosion rate.

To find the optimal inspection interval we simply compute (4.7) for dif-
ferent values of ∆k. For example, if we use a time unit of one year, we can
start with ∆k = 1yr and continue until the interval length is such that the
component is sure to have failed during the interval. Besides the uncertainty
over the corrosion rate, for which we determined the posterior density in the
previous section, we would also like to consider the operating pressure and
the material strength as uncertain variables. Since the calculations require
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quite a bit of attention, they have been placed in section A.4 of the ap-
pendix. For the rest of this chapter I will restrict myself to the case study
in the following section to illustrate the concept.

4.5 Case study: inspecting a hydrogen dryer

For this case study we use the data of a vertical drum which is used as a
hydrogen dryer by one of the customers of DNV in the Netherlands. All
required data1 is given in table 4.1. From the inspection history, one can

Component type: vertical drum
Material type: carbon steel
Service start: 1977
Tensile strength: 413.69 MPa
Yield strength: 206.84 MPa
Operating pressure: 32 bar(g)
Drum diameter: 1180 mm
Material thickness: 15 mm
Corrosion rate (est.): 0.1 mm/yr
Corrosion allowance: 4.5 mm
Ultrasonic wall thickness measurements:
1982: 15.0 mm
1986: 15.6 mm
1990: 14.6 mm
1994: 14.2 mm
1998: 13.8 mm
Costs for different actions:
Inspection: 10,000 $
Preventive replacement: 50,000 $
Failure + replacement: 1,000,000 $

Table 4.1: Operational, material and inspection data for a hydrogen dryer.

clearly observe that the drum has been inspected every 4 years according to
the fixed regime prescribed by the Dutch Rules for Pressure Vessels [21].

The second observation concerning the inspection history is that the
measurements are not consistent. In 1986, they measured a material thick-
ness larger than the specified thickness given by the constructor of the com-
ponent. It is actually very common that a thickness inspection results in a
measurement which is larger than the previous measurement. This is jok-
ingly referred to as ‘material growth’ by the inspection engineers. This phe-
nomenon is due to the fast increase in accuracy of the inspection techniques

1the costs in this table are fictive; all other data is actual plant data.
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during the last decades. Usually, inspection results which were obtained
more than 12 years ago are disregarded as being too old and unreliable.
Also, the nominal material thickness supplied with the product by the con-
structor is not the exact thickness of the material. The actual thickness at
service start can be up to 12% larger than specified. DNV currently advises
all its customer to perform a null-measurement at service start to determine
how much thicker the material is than the specification indicates. This helps
avoid confusion about the corrosion rate later on in the life of the compo-
nent. With all this in mind, we will disregard the measurement done in 1982
and assume that the initial wall thickness was 15× 1.12 = 16.8mm. This is
of course a very subjective choice, but it is also very conservative, which is
key in this business. It might not seem to be a conservative choice when you
assume a much higher material thickness, but it directly results in a very
high corrosion rate. Since we take the last measurement as the actual wall
thickness (including a small error), the initial thickness is irrelevant.

4.5.1 Without uncertainty

Before the final result is presented, we first take a look at the case where there
is no uncertainty. This means that we assume that the pressure, material
strength and the corrosion rate are exactly as given in table 4.1. The only
variability is that of the gamma process itself, which is determined by the
coefficient of variation ν. Table 4.2 summarizes some of the key values for
this problem. The individual elements of the result are depicted in figure

time unit: 1 yr
coefficient of variation ν: 0.25 -
safety margin m: 11.268 mm
replacement percentage ρ: 0.3994 %
expected time to replacement: 45.5 yr
expected time to failure: 113.2 yr
optimal inspection interval ∆k: 104 yr
cost per year for ∆k = 104: 581 $

Table 4.2: Results for the expected average costs per year in the case of no uncer-
tainty.

4.5. The expected average costs per year are given by figure 4.5c and this is
the ratio of the expected costs per cycle (figure 4.5b) over the expected cycle
length (figure 4.5a). From the figure in (c) we obtain the optimal inspection
interval ∆k = 104 years, which results in a cost of $581 per year. This
represents a total cost of 104×$581 = $60, 424, which can be split up in one
inspection of $10,000 and one preventive replacement of $50,000. Since the
drum is currently 25 years old, we would have to plan the next inspection
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Figure 4.5: The expected cycle length (a), the expected costs per cycle (b) and the
expected average costs per year (c) for the case with no uncertainty.

in the year 2081. Nothing is more unrealistic than this, but this is of course
due to the fact that we have assumed all variables to be known. This enables
us to plan the inspection right before the expected time of failure, when we
know that we’ll have to replace it. The expected replacement time and the
expected time of failure are represented by vertical lines in figure 4.5c.

The interpretation of the expected costs per cycle in figure 4.5b is very
simple: inspecting the component too often results in a very high cost ,
which is also the case when we plan the inspection too late. The first figure
4.5a requires a little more explanation. It is obvious that the expected cycle
length should in the end converge to the expected time of failure for the
component. The oscillating behavior of the graph is due to the fact that
certain inspection intervals will ‘land’ right after the replacement time (low
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dips) and some will end up closer to the failure time (high peaks). For
example, if we choose ∆k = 40 years, then we will replace the component
at the second inspection, therefore the cycle length will be 80 years. On the
other hand, if we choose ∆k = 50 years, then we will replace the component
at the first inspection, which makes the cycle length 50 years, because the
material has passed the replacement level at 45.5 years. The last remark
concerning the expected cycle length is that when we choose ∆k = 1 year,
then the expected cycle length will be (about) the same as the expected time
of preventive replacement. The shorter we choose the inspection interval,
the higher the chance that we will replace the component exactly at the
moment when the material has degraded up to the corrosion allowance.

4.5.2 With uncertainty

Now we consider the variables p and s to be uncertain. To include these
together with the posterior of µ determined by the inspection results, we use
Monte Carlo simulation. This means that we sample each variable N times.
For the pressure p and material strength s we use a normal distribution with
the means given by the input in table 4.1 and standard deviations deter-
mined with the coefficients of variation, which were introduced in section
2.1.1.

In contrast to when we have data obtained using perfect inspections, we
do not have a continuous posterior density for the corrosion rate µ. Section
A.4 includes a short explanation on how we can sample from a discrete
distribution. With the inspection data from table 4.1, we calculate the
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Figure 4.6: The prior and posterior density for µ given the inspection data of the
hydrogen dryer.
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posterior density for µ with equation (A.17). The result is given in figure 4.6.
There are now two ways of calculating the expected average costs per year
given by equations (A.24) and (A.25) in section A.4 of the appendix. The
difference between the two is that for the first one we calculate the average
for the expected costs per cycle and the average for the expected cycle length,
after which we take the ratio equivalent to (4.7). These are shown in figures
4.7a and 4.7b respectively. These results were obtained using N = 200,
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Figure 4.7: Expected costs per cycle (a) and the expected cycle length (b) calculated
using 199 simulations.

but one calculation turned out to be incorrect, therefore we are left with
N = 199 samples for each variable. This is usually not an adequate number
of simulations and this is confirmed by the small ‘vibrations’ in the plots.
Unfortunately these simulations take a very long time to perform, therefore
these results should be considered as purely demonstrational. The final
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decision will not change considerably, but the result will become smoother.
The second way of calculating the expected average costs per year is to

calculate the ratio (4.7) N times and then take the average of these results.
Mathematically, these two approaches can be interpreted as: 1) the ratio
of the expectation of the expected cycle costs over the expectation of the
expected cycle length, and 2) the expectation of the expected average costs
per year respectively. Due to the fact that the data of a component is not
used for a new component which took its place, we should use the first
approach (ratio of averages) and not the second (average of ratios). Both
results for the expected average costs per year are shown in figure 4.8 and
we can conclude that they do not differ very much.
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Figure 4.8: The expected average costs for the hydrogen dryer using two approaches
with N = 199 simulations.

The optimal inspection interval is ∆k = 37 years, which is associated
with an expected average cost of about $1500 per year when using (A.24).
This amount is obtained when we divide the expected cycle costs of $82,781
by the expected cycle length of 55.078 years. Since the hydrogen dryer is
already 25 years old, the next inspection should be performed 12 years from
now, i.e. in the year 2014. This is a very acceptable result, because it is
less than the absolute maximum of 50 years and no more than 4 times the
regular prescribed inspection interval of 4 years for this type of component.
If this next inspection increases the confidence in the corrosion rate, then
this model can be used again to determine the optimal inspection interval
starting from the service start. On the other hand, if the inspection results
in a contradicting measurement, then there is a big chance that the result



72 Chapter 4: A new Gamma process inspection model

of this model will give an optimal interval which ended before the current
date. When this happens, the item should be inspected as soon as possible
or immediately replaced.

4.5.3 Influence of the replacement level

As a last remark in this chapter, I would like to explain the influence of
the replacement level on the overall result. Since we assumed ρ to be fixed
by the ratio of the corrosion allowance over the safety margin, this remark
is not too important to make. However, if we would also be interested in
optimizing the replacement level, then the influence of this parameter is very
important to understand.

Most of the individual results for the expected cycle costs will look like
the plot in figure 4.5b. Table 4.2 shows that ρ ≈ 40%. This means that
the amount of corrosion, which can take place before the item is ready to
be replaced, is less than half the amount of corrosion needed to result in
failure of the component. Some of the results in the simulation have a
ρ > 50%, as is the case with simulation 36 for which the expected cycle
costs are shown in figure 4.9. In this figure ρ ≈ 60% and we see a large
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Figure 4.9: Expected cycle costs for simulation 36, where ρ = 0.6078.

peak at ∆k = 35 years. The reason why this peak is there, can be found
by looking at the expected time of replacement and the expected time of
failure. These are approximately at 40 and 65 years respectively. If we
would use ∆k = 35 years, then the first inspection would be performed
right before the corrosion allowance has been reached and by the time the
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second inspection is performed at 70 years, the component has failed already.
With a ρ > 50% there is a probability that the inspection interval is chosen
such that the whole interval between the replacement level and the failure
level is skipped. The component will in this case fail before we had the
chance to inspect it a second time.

4.6 Model discussion

Overall, we can say that the gamma deterioration process and the expected
average costs per unit time cost-criterium work very well for the problem at
hand. The optimal inspection interval given by the model is not too short,
because this would be too expensive, nor is it too long as it avoids the risk of
failure becoming too large. A confirming inspection will enable us to inspect
the component again in the future, whereas contradicting measurements
could result in the necessity to replace the component immediately. The
model even enables an expansion to include the possibility of modelling
non-linear degradation. This means that we could model a corrosion rate
which is not constant, but variable in time. Cases where this might arise are
components, which have a coating applied or carry insulation to protect the
surrounding equipment and personnel from the heat. These extra layers will
corrode slower (coating) or faster (insulation) than the construction material
itself. Therefore, a component with faulty coating will start corroding faster
than before. The only downside of the model is that it is computationally
very expensive. The simulation with 200 samples took about 3 hours to
calculate on a Microsoft Windows XP computer with an AMD Athlon 1.7+
processor (clocks at 1.47GHz) and 256MB internal memory. This is therefore
the only aspect in which the model fails to live up to its specifications which
we defined at the beginning of this chapter. However, if one decides to
actually implement the model into a software package in order to use in
practice, then the following considerations will considerably increase the
efficiency of the model:

• my implementation is in Matlab, which is a higher order programming
language specifically geared towards mathematical calculations. It is
convenient for this purpose due to the many available statistical and
probabilistic functions. However, this program is notoriously slow with
loops, which means that an implementation using a lower level pro-
gramming language like Visual Basic (or C/C++, Pascal, Java etc.)
will perform much faster.

• consider only constant corrosion and not non-linear degradation. This
will enable us to go over to a so-called l1-isotropic grid by choosing
∆t = 1/a = ν2. This will reduce the gamma density to an exponential
density, which in turn results in a Poisson distribution for the proba-
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bility of failure. These characteristics significantly simplify the calcu-
lations. More information on this topic can be found in van Noortwijk
[15].

The model will however never come close to the speed with which ORBIT
can perform calculations on hundreds of components. A small anecdote
illustrates that ORBIT has also been in this position: the large project
involving around 4000 components2 that DNV Rotterdam did in 1998 for
the Terneuzen plant owned by Dow Chemical, took a week to do all the
calculations on what was their best computer at the time! As computers
become more powerful, the gamma deterioration model will become more
and more appealing.

2not all components were considered in the detailed calculations; only those that were
considered to be high-risk items during an initial screening.



Final conclusions

There are roughly two parts to this thesis: one concerning the ORBIT
inspection planning tool and a second part in which we consider a totally
different approach to the inspection and maintenance planning problem.
The ORBIT package has proven to be a very useful tool to get an indica-
tion of when certain components should be inspected such that the risk of
a failure and its consequences is controlled. A sensitivity and uncertainty
analysis using the new UNICORN software package has illustrated some of
the dependencies in the corrosion and cracking models. The most interest-
ing of these is that the pressure does not have any influence in the corrosion
model, unless the component has a very large diameter. A change in oper-
ating pressure in pipelines will therefore not influence the result noticeably.

One of the most intensely investigated aspects of the methodology is
how the probability of failure is approximated. In ORBIT , this is done
using the well known MVFOSM technique and works very well for the cor-
rosion model which is described by a state function. The technique slightly
underestimates the probability of failure in case of the cracking model, but
not so much that it can be considered incorrect. A number of alternative
techniques have been discussed, namely: FORM and directional sampling.
FORM is a common reliability index method, whereas directional sampling
belongs to the family of simulation methods. I have implemented the FORM
technique to compare its performance to a crude Monte Carlo simulation
method. This implementation has been done using the most common iter-
ation scheme known as the Rackwitz–Fiessler algorithm. Surprisingly, this
algorithm performed exceptionally bad for the corrosion model. This is
mostly likely due to the almost linearity of the failure plane at the design
point, which makes the algorithm ‘jump’ around while moving slowly to-
wards this critical point. As an alternative, the problem is considered as
a standard non-linear equality-constrained optimization problem. The the-
ory of linear programming prescribes the use of Lagrange multipliers to find
the optimal solution to this problem. This approach reduces the problem to
finding a solution of a system of non-linear equations. One of the fastest and
easiest schemes to solve this problem is the Newton–Raphson scheme. The
number of iterations which are required in this case to achieve convergence,
is astonishingly small compared to the Rackwitz–Fiessler algorithm. This
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is especially true when the objective function of the optimization problem
is slightly rewritten, which makes the resulting system of equations almost
fully linear. This approach is expected to always outperform the Rackwitz–
Fiessler algorithm and if not, then it will certainly be equally fast. Consid-
ering this, it is advised to always use the (simplified) Lagrange multiplier
approach.

The implementation of the directional sampling technique to approxi-
mate the probability of failure has resulted in the conclusion that it is not
an attractive alternative to the FORM technique for the corrosion model.
However, more clarity has been brought to the much underestimated aspect
of choosing the right radius to use in the equations for the failure probability.
This only holds for the model with only normally distributed variables. The
fact that it was necessary to create a decision tree for this purpose, shows
that the technique has not yet grown past its initial phase. Better perfor-
mance is expected from the model with exponential or Rayleigh densities,
but the use of these densities would make the results incomparable to the
FORM results.

Last but not least, a new approach (for the process industry) to the
optimal inspection decision problem has been considered. Inspired by the
successful application of the gamma stochastic deterioration process to the
maintenance problem of hydraulic structures in the Netherlands, the very
same model has been applied to model the deterioration of pressurized com-
ponents in the process and refining industry. The applicability of the gamma
process is remarkable, certainly considering the fact that the model has been
expanded to also incorporate measurement data obtained using imperfect
inspections. Since any kind of inspection will never be able to exactly mea-
sure the wall thickness of a component, it was critical to build this uncer-
tainty into the Bayesian updating model. Finally the cost-based criterium
of expected average costs per unit time has been used to find an optimal
inspection interval. This criterium ensures that we maximize the safety
while simultaneously minimizing the cost of inspecting the component. Al-
together this approach fits extremely well with the problem at hand due to
the mathematically elegant model for the degradation, but also due to the
fact that the model does not require any more (complicated) input from the
user. Besides the cost of a preventive replacement, the input from ORBIT
only has to be supplemented by the cost of an inspection and the standard
deviation of its measurement. The latter is known by the inspection engi-
neer or can be found in numerous sources on non-destructive testing (NDT)
techniques.

Currently, the time required for a decent amount of simulations is too
long to cover hundreds of components. However, its efficiency can be greatly
improved and its application does not have to be limited to the process
industry. There are many more situations where uncertain inspections are
present, which promises a bright future for this model or any derived models.



Appendix A

Mathematical details

A.1 FORM

The following calculations are the implementation of three approaches to
FORM for the thinning model. The calculations for the stress corrosion
cracking model are essentially the same, but are a little more elaborate due
to the fact that there are two more variables in this model compared to the
thinning model.

For all three methods we need to write the state function (2.1) in the
standard normal space as given by the definition (3.5):

g(σy + µ) = (σSY1 + µS)
[
1− (σCY2 + µC)

t

th

]
− (σP Y3 + µP )

d

2th
. (A.1)

Rackwitz–Fiessler

First we need to calculate the partial derivatives of the transformed state
function (A.1):

∂g
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∂Y3
= −σP
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Using these derivatives, it’s easy to implement the unit vector α as in (3.7)
and to determine y(i+1) using equation (3.6).

Lagrange multipliers
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Regular objective function The Lagrangean function is given by

L(y, λ) =‖ y ‖ +λg(y)

and the partial derivatives of this function are:

Fi =
∂L

∂yi
=

yi

‖ y ‖ + λ
∂g

∂yi
, for i = 1, 2, 3

F4 =
∂L

∂λ
= g(y)

where the partial derivatives of g are given by (A.2). We have to set these
derivatives equal to zero and solve for (y, λ). Due to the norm and the
nonlinearity of g, this is a system of nonlinear equations. We solve this
problem using the iterative Newton-Raphson scheme:

y(i+1) = y(i) − J−1(y(i)) · F(y(i)),

where F(y(i)) and J−1(y(i)) are the system of nonlinear equations and the
inverse Jacobian matrix respectively evaluated at y(i). The i–th row of the
Jacobian matrix is defined as

J(x)i =
(
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, . . . ,

∂Fn
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)
.

For the thinning model the Jacobian is as follows:
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We see that in this case the starting point y0 should not be the zero vector,
because this will result in a division by zero.

Simplified objective function Now the Lagrangean function is given by

L(y, λ) = yTy + λg(y),

which results in the following partial derivatives:
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All the elements in this symmetric matrix are linear and overall the matrix is
much more simple compared to the previous Jacobian matrix for the regular
objective function. Also, we can now choose any initial vector as a starting
point. It therefore really pays off to use the squared norm for the objective
function.

A.2 Directional sampling

Thinning model. Finding the solution r∗ such that g(r∗,a) = 0 is not
too difficult for this model. Transforming the original variables to polar
coordinates is done as follows:

Y1 = r cos(θ) cos(φ)
Y2 = r cos(θ) sin(φ)
Y3 = r sin(θ)

It is not possible to simply sample θ and φ uniformly on (0, 2π), because
this will not result in a uniform distribution on the 3D–sphere. Sampling
these angles such that the directions are uniformly distributed on this sphere
is not straightforward (see chapter 7 in [9] for details) and therefore this
approach is rarely used. A more convenient simulation method is to sample
the independent standard normal variables Z1, Z2, Z3 and to use the unit
directional vector A defined in (3.12). Then the variables can be rewritten
as:

Y1 = rA1

Y2 = rA2 (A.3)
Y3 = rA3

Substituting these into the state function g(Y), where Yi is the transfroma-
tion given by (3.2), gives
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≡ ar2 + br + c.

This is a quadratic equation with unknown radius r, which we can solve
by first calculating the discriminant d = b2 − 4ac. If d > 0, then there
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are two solutions for the radius: r = (b2 ±
√

d)/2a. If d = 0, then there
is one radius: r = b2/2a and if d < 0 there are two complex solutions for
the radius, which we immediately disregard and assume there is no feasible
radius for which g = 0. The next step is to choose the correct radius and
calculate the corresponding failure probability according to the decision tree
in figure 3.8.

For the thinning example, the situation where d = 0 never occurs and
d < 0 only occurs when g(0) < 0. When the center of the multidimensional
standard normal distribution is located in the failure region, some sampled
directions will pass exactly through the narrow opening between the two
L–shaped surfaces which can clearly be observed in figure 3.7. This is the
only time when there will be no radius for which g = 0, because there is no
intersection with the failure surface. The complex radii should therefore be
rejected and Pj set to 1.

SCC model. A more difficult problem is given by the stress corrosion
cracking model, because now we are dealing with a state function for which
we will not be able to determine the zero analytically. This is interesting to
look at since most applications of directional sampling will involve models
which require a numerical solution.

Equivalent to (A.3), we transform the variables to the polar coordinate
space: (Y1, . . . , Y5) = (rA1, . . . , rA5). Then we substitute these again in
g(Y):

g(rA) = (σ1rA1 + µ1)− . . .

+(σ2rA2 + µ2)
[
(σ3rA3 + µ3) d

2th
+ (σ4rA4 + µ4)

]√
π (σ5rA5 + µ5).

This is a nonlinear equation, which we need solve using a numerical scheme.
The fastest iterative scheme is the Newton–Raphson scheme which, for a
single equation, is defined as

r(k+1) = r(k) − g(r(k))
g′(r(k))

,

where k = 0, 1, 2, . . . is the iteration step and g′(r(k)) is the partial derivative
of g(rA) to the radius r. The iteration is repeated until |r(k+1) − r(k)| < ε,
where ε is small (e.g. I’ve used ε = 0.01) or until a maximum number of
iterations has been reached (e.g. 300 iterations).

There are more than one solution for r such that g(r,A) = 0, but the
iteration scheme will only find one of them. Which one it finds depends on
the starting value r(0). Since we want to find the closest (feasible) radius, it
makes sense to take r0 = 0 or, if this not possible (e.g. due to division by
zero or a negative value under the square root), r0 << 1.

This particular model requires the evaluation of Y(k) = r(k)A at each
step. As soon as one of the Y

(k)
i ’s become smaller than −µi/σi the iteration
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should be stopped. The radius in this case is considered to be infeasible.
The condition can be relaxed to only the crack depth parameter (i = 5): if
σ5r

kA5 +µ5 < 0, then the square root will result in a complex radius. More
general, if the model under consideration does not have this problem, then
the radius can be rejected after the scheme has converged.

A smarter implementation of this scheme would include a number of
different startvalues for the radius, which is followed by choosing the smallest
feasible radius out of all the results. This will substantially increase the
calculation effort, but it will result in a more dependable solution. While
ensuring high accuracy, smart programming will enable the practitioner to
avoid the directional sampling technique becoming less efficient than the
regular sampling technique.

A.3 Gamma process inspection model

A.3.1 Gamma process

In this text I will use the following definition for the gamma density with
shape parameter α > 0 and scale parameter β > 0:

Ga (x|α, β) =
βα

Γ(α)
xα−1exp {−βx} for x ≥ 0 (A.4)

A gamma process with stationary increments is defined as follows. The
gamma process with shape function at > 0, t ≥ 0 and scale parameter b > 0
is a continuous–time process {X(t) : t ≥ 0} with the following properties:

1. X(0) = 0 with probability one,

2. X(τ)−X(t) ∼ Ga (a(τ − t), b) for all τ > t ≥ 0,

3. X(t) has independent increments.

Let X(t) denote the amount of deterioration at time t, then the probability
density function of X(t) is given by

fX(T )(x) = Ga (x|at, b)

The following is a proof for equations (4.1) and (4.2). In order to find
the first (expectation) and second (variance) moments of X(t), we use the
moment generating function:

MX(t)(τ) = EeτX(t)

=
∫ ∞

0
eτxfX(t)(x)dx

=
∫ ∞

0

bat

Γ(at)
xat−1 exp {(τ − b)x} dx
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Now we can use the substitution −y = (τ − b)x ⇒ dx = dy
b−τ to solve the

above integral:

MX(t)(τ) =
∫ ∞

0

bat

Γ(at)

(
y

b− τ

)at−1

exp{−y} dy

b− τ

=
bat

(b− τ)atΓ(at)

∫ ∞

0
yat−1exp{−y} dy

︸ ︷︷ ︸
=Γ(at)

=
1

(1− τ/b)at

We can use the first and second order derivatives of the so–called cumulant
generating function

RX(t)(τ) = ln
(
MX(t)(τ)

)
= −at ln(1− τ/b)

with
∂R

∂τ
=

at/b

1− τ/b
and

∂2R

∂τ2
=

at/b2

(1− τ/b)2

to determine the mean and variance of X(t). These are now given by

E (X(t)) = R′(0) =
a

b
t and Var (X(t)) = R′′(0) =

a

b2
t (A.5)

Let X(t) be the cumulative deterioration at time t with E (X(t)) = µt and
Var (X(t)) = σ2t, then

a

b
= µ and

a

b2
= σ2,

or

a =
µ2

σ2
and b =

µ

σ2
, (A.6)

therefore X(t) ∼ Ga
(
x

∣∣∣µ2

σ2 t , µ
σ2

)
.

A.3.2 Perfect inspection(s)

In sections 2.1.1 and 2.1.2 the coefficients of variation were introduced for
the variables of the thinning and SCC models respectively. For example, in
the thinning model, ORBIT assumes σC = 0.1µC . The ratio σ/µ is therefore
fixed for all model variables. Let ν2 = (σ/µ)2, then

a =
1
ν2

and b =
1

µν2
,
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where ν is the coefficient of variation. Since this coefficient is fixed, the only
uncertain variable left in this model is the mean deterioration µ, therefore
the likelihood of a measurement x given µ is

l(x|µ) = Ga
(

x

∣∣∣∣
t

ν2
,

1
µν2

)
.

Although the use of this coefficient can be disputed, fixing the standard
deviation of a variable relative to the user input for the mean is common
practice in industrial applications. For us it is very handy, because we are
only left with the uncertainty over the degradation rate µ, which is exactly
the variable of interest. The user or the software program can express the
uncertainty over µ by using a representative prior which is denoted with
π(µ). Based on the discussion in chapter 4 we use the inverted gamma
density (4.5) for the prior: π(µ) = Ig (µ|α, β).

If we have one perfect inspection which supplies us with a measurement
x, then

l(x|µ)π(µ) =

[
1

µν2

]t/ν2

Γ
(

t
ν2

) x

�
t

ν2−1
�
exp

{−x

µν2

}
× βα

Γ(α)

(
1
µ

)1+α

exp
{−β

µ

}

=
βα

[
1
ν2

]t/ν2

Γ
(

t
ν2

)
Γ(α)

x

�
t

ν2−1
�
µ
−
�

t
ν2 +α

�
−1exp

{
− 1

µ

( x

ν2
+ β

)}

≡ C × µ−A−1 × exp
{
− 1

µ
B

}
(A.7)

Now we take the integral over this result:

∫ ∞

0
l(x|µ)π(µ)dµ = C

∫ ∞

0

(
1
µ

)A+1

exp
{
− 1

µ
B

}
dµ (A.8)

With the following substition:

y = B/µ ⇒ dµ = −y−2Bdy,

(A.8) transforms to

∫ ∞

0
l(x|µ)π(µ)dµ = C

∫ 0

∞

( y

B

)A+1
exp{−y} (−y−2

)
Bdy

=
C

BA

∫ ∞

0
yA−1exp{−y}dy

=
C

BA
Γ(A).
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Using these two results, we can calculate the posterior density:

π(µ|x) =
l(x|µ)π(µ)∫∞

0 l(x|µ)π(µ)dµ

=
BA

Γ(A)

(
1
µ

)A+1

exp
{
− 1

µ
B

}

= Ig (µ|A, B)

= Ig
(

µ

∣∣∣∣
t

ν2
+ α,

x

ν2
+ β

)
. (A.9)

To extend the model to allow for multiple inspection measurements xi (i =
1, . . . , n), we need to multiply the likelihoods for the individual independent
increments:

l(x1, . . . , xn|µ) =
n∏

i=1

lX(ti)−X(ti−1)(xi − xi−1|µ).

If we have only one measurement available, then this likelihood becomes

l(x|µ) = lX(t)−X(0)(x− 0|µ) = lX(t)(x|µ),

where we used the property X(0) = 0. This is of course the same as the like-
lihood we used previously to calculate the posterior with only one inspection
measurement. Identical to how we determined (A.7), we can perform the
same calculations for multiple inspections:

l(x1, . . . , xn|µ)π(µ)

=
n∏

i=1

lX(ti)−X(ti−1)(xi − xi−1|µ)× π(µ)

=
βα

Γ(α)

[
1
ν2

]Pn
i=1 ti−ti−1

ν2
n∏

i=1





(xi − xi−1)
(ti−ti−1)

ν2 −1

Γ
(

ti−ti−1

ν2

)


× . . .

×
[

1
µ

]�Pn
i=1 ti−ti−1

ν2 +α

�
+1

exp
{
− 1

µ

(∑n
i=1 xi − xi−1

ν2
+ β

)}

≡ C × µ−A−1 × exp
{
− 1

µ
B

}

We now have exactly the same result as (A.7), only now C is a different
factor and

A =
∑n

i=1 ti − ti−1

ν2
+ α and B =

∑n
i=1 xi − xi−1

ν2
+ β.

The posterior density is now given by:

π(µ|x1, . . . , xn) = Ig
(

µ

∣∣∣∣
∑n

i=1 ti − ti−1

ν2
+ α ,

∑n
i=1 xi − xi−1

ν2
+ β

)
.

(A.10)
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The rest of the proof is identical to the proof for one inspection starting at
(A.8).

A.3.3 Imperfect inspection(s)

Assuming that Y (t) = X(t) + ε, where ε ∼ N (0, σε), the likelihood of the
measurement y given the degradation rate µ is given by the convolution:

l(y|µ) = fY (t)(y) = fX(t)+ε(y) =
∫ ∞

−∞
fX(T )(y − ε)fε(ε)dε, (A.11)

Here fX(t)(y− ε) = Ga(y− ε|at, b) is the likelihood of the gamma increment
X(t) with the parameters a and b as given by (A.6). Remember that the
parameter b depends on the uncertain degradation rate µ. Unfortunately,
it is not possible to solve the above integral analytically. We can discretize
this integral to obtain an easier to evaluate sum of densities:

fY (t)(y) ≈
m∑

j=1

Ga(y − εj |at, b)p(εj), (A.12)

which is the discrete equivalent of E [h(ε)], where h(ε) = Ga(y − ε|a, b) and∑m
j=1 p(εj) = 1. Discretization means that we approximate the Riemann

integral by a sum of ‘discrete’ parts:

∫

x
f(x)dx ≈

m∑

j=1

f(xj)∆x =
m∑

j=1

p(xj),

which is demonstrated in figure A.1. Again, we want to determine the
posterior density for the degradation factor µ. In this case it is given by

π(µ|y) =
l(y|µ)π(µ)∫∞

µ=0 l(y|µ)π(µ)dµ
. (A.13)

If we now substitute the parameters of the gamma density such that the
dependence on µ becomes clear, then the denominator is given by
∫ ∞

µ=0
l(y|µ)π(µ)dµ =

∫ ∞

µ=0

{∫ ∞

ε=−∞
Ga

(
y − ε

∣∣∣∣
1
ν2

t ,
1

µν2

)
fε(ε)dε

}
π(µ)dµ.

These integrals can also be approximated by discretization:

∫ ∞

µ=0
l(y|µ)π(µ)dµ ≈

n∑

i=1





m∑

j=1

Ga
(

y − εj

∣∣∣∣
1
ν2

t ,
1

µiν2

)
p(εj)



 p(µi),

where p(µi) = Pr{µ = µi} is the discrete density of µ. Using Fubini’s the-
orem we can interchange the integrals in the above equations and integrate
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Figure A.1: A comparison between a continuous density function and its discrete
equivalent for the purpose of numerical integration.

out the µ. This is only possible when we consider only one inspection.
With these results, the posterior (A.13) is approximated by

p(µi|y) ≈
p(µi)

{∑m
j=1 Ga

(
y − εj

∣∣t/ν2 , 1/[µiν
2]

)
p(εj)

}

∑n
i=1 p(µi)

{∑m
j=1 Ga (y − εj |t/ν2 , 1/[µiν2]) p(εj)

} , (A.14)

for i = 1, . . . , n. Special care should be taken to ensure that the posterior is
indeed a density, i.e.

∑n
i=1 p(µi|y) = 1. Depending on how these results are

implemented, it might be necessary to normalize the approximated density
given by (A.12) such that the total mass equals one.

To extend the model to multiple imperfect inspections, we again need
the product of individual likelihoods for the measurement increments:

l(y1, . . . , yk|µ) =
∏

k

lY (tk)−Y (tk−1)(yk − yk−1|µ).

Using the integral convolution like in (A.11), the above likelihood can be
rewritten as

l(y1, . . . , yk|µ) =

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

∏

k

fX(tk)−X(tk−1)(yk − yk−1 − δk)f(δ1, . . . , δk)dδ1 · · · dδk,

where δk = εk − εk−1
1. The δ’s are not independent, therefore we are left

1Note the change of notation here: εk is the error term associated with the k-th inspec-
tion, whereas p(εj) in equation (A.14) refers to the j-th element of the discrete probability
density function for ε.
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with two options: we calculate the covariances between the δ’s and ana-
lytically solve the likelihood using the joint distribution of the δ’s or we
simulate the εk’s and approximate the likelihood. Since the first option will
complicate matters considerably, we will use the simulation approach. The
above likelihood can be written as

l(y1, . . . , yk|µ) = E

[∏

k

fDk
(dk − δk)

]

≈ 1
N

N∑

j=1

∏

k

fDk

(
dk − δj

k

)
as N −→∞ (A.15)

where Dk = X(tk)−X(tk−1) and dk = yk−yk−1. In the last step we used the
strong law of large numbers (see for example Ross [20] or any other textbook
on probability theory) to approximate the expectation of a function by use
of simulation.

For each k we sample εj
k (j = 1, . . . , N) and calculate δj

k = εj
k − εj

k−1.
Since the gamma distributed fDk

(x) = Ga(x|a[tk − tk−1], b) is not defined
for x < 0, we need to make sure that dk − δj

k ≥ 0. In my implementation I
have solved this by using

l(y1, . . . , yk|µ) ≈ 1
N

N∑

j=1

∏

k

Ga
(

dk −min
{

δj
k, dk

} ∣∣∣∣
tk − tk−1

ν2
,

1
µν2

)

(A.16)
The equivalent of the posterior in (A.14) for multiple imperfect inspections
is now given by

p(µi|y) =
p(µi) 1

N

∑N
j=1

∏
k Ga

(
dk −min

{
δj
k, dk

} ∣∣∣∆tk
ν2 , 1

µν2

)

∑n
i=1 p(µi) 1

N

∑N
j=1

∏
k Ga

(
dk −min

{
δj
k, dk

} ∣∣∣∆tk
ν2 , 1

µν2

)

(A.17)
for i = 1, . . . , n and ∆tk = tk − tk−1.

We now have a Bayesian updating model which accepts the results of
multiple imperfect inspections. These imperfect inspections have a mea-
surement error which is given by a standard deviation σε. The advantage
of using the simulation technique to calculate the posterior density over the
degradation rate is that we can use different errors for each inspection. This
allows us to insert the data from inspections which are different in precision
and accuracy. During its operational life, a component might have been in-
spected using X–ray techniques and have undergone ultrasonic or magnetic
flux leakage (MFL) testing as well. The results from all these measure-
ments can be used and the (in)accuracy of each individual method can be
accounted for.
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A.4 Expected inspection and maintenance costs

Identical to (4.3), we define the safety margin m as

m ≡ m(p, s) = th− p× d

2s

This safety margin is derived from the state function for corrosion (2.1). It’s
easiest to assume that the pressure p and material strength s are given. If
we want to incorporate uncertainty over these variables, then this can be
done by use of simulation. Given the cost of an inspection cI , the cost of
a preventive replacement cP and the cost of failure cF , we can write the
expected cycle costs as (see chapter 7 in Noortwijk [15]):

∞∑

i=1

ci(ρ, ∆k|p, s)pi(ρ, ∆k, µ|p, s) =

=
∞∑

j=1

[jcI + cP ]Pr {X ((j − 1)∆k) ≤ ρm, ρm < X (j∆k) ≤ m}+

∞∑

j=1

[(j − 1)cI + cF ]Pr {X ((j − 1)∆k) ≤ ρm,X(j∆k) > m}

The first part of this equation can be interpreted as the cost incurred at time
j∆k where an inspection was followed by a replacement of the component.
The second part corresponds to the costs due to inspections up until time
(j−1)∆k and a failure during the time period ((j−1)∆k, j∆k]. This means
that no inspection is required to determine if the item has failed, which is the
case in the process industry. The replacement level is given by a percentage
ρ (0 < ρ < 1) of the actual safety margin. For example, we can choose to
replace the component when the wall loss has reached 70% of its critical
level m. If desired, the model can be solved for multiple replacement levels
such that the practitioner can also decide on the optimal replacement level.

In the process industry, each component has a maximal amount of corro-
sion assigned to it, up to which it is assumed to operate safely. This amount
is called the corrosion allowance and it should always be less than the safety
margin m. If the corrosion allowance cmax is known, then the safety level ρ
is fixed by the ratio ρ = cmax/m.

To be able to implement the expected cycle costs, we need to expand
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the previous equation as follows:
∞∑

i=1

ci(ρ, ∆k|p, s)pi(ρ, ∆k, µ|p, s) =

[cI + cP ]Pr {ρm < X (∆k) ≤ m}+ cF Pr {X(∆k) > m} (A.18)

+
∞∑

j=2

[jcI + cP ]Pr {X ((j − 1)∆k) ≤ ρm, ρm < X (j∆k) ≤ m} (A.19)

+
∞∑

j=2

[(j − 1)cI + cF ]Pr {X ((j − 1)∆k) ≤ ρm,X(j∆k) > m} (A.20)

Here we’ve taken the term with j = 1 outside the summation, which results
in the equation (A.18) on the first line. This line can be further simplified
as

[cI + cP ]Pr {ρm < X (∆k) ≤ m}+ cF Pr {X(∆k) > m} =
= [cI + cP ] (Pr {X(∆k) ≤ m} − Pr {X(∆k) ≤ ρm})
+ cF (1− Pr {X(∆k) ≤ m}) =
= [cI + cP ]

(
FX(∆k)(m)− FX(∆k)(ρm)

)

+ cF

(
1− FX(∆k)(m)

)
,

where FX(∆k)(x) = Pr{X(∆k) ≤ x} is the cumulative distribution function
of the increment X(∆k) ∼ Ga(x|a∆k, b) with parameters a and b defined
by (A.3.2) . The last line given by (A.20) in the equation for the expected
cost is calculated as

Pr {X ((j − 1)∆k) ≤ ρm,X(j∆k) > m} =
= Pr {X ((j − 1)∆k) ≤ ρm, [X(j∆k)−X ((j − 1)∆k)] > m−X ((j − 1)∆k)} =

=
∫ ρm

δ=0

∫ ∞

θ=m−δ

fX(j∆k)−X((j−1)∆k)(θ)fX((j−1)∆k)(δ)dθdδ =

=
∫ ρm

δ=0

∫ ∞

θ=m−δ

Ga(θ|a∆k, b)Ga(δ|a(j − 1)∆k, b)dθdδ =

=
∫ ρm

δ=0

Γ(a∆k, b[m− δ])
Γ(a∆k)

Ga(δ|a(j − 1)∆k, b)dδ (A.21)

The gamma function Γ(a) and the incomplete gamma function Γ(a, x) where
introduced in equations (3.14) and (3.15) respectively. The second part of
the expected costs, given by (A.19), can be written as a substraction of two
probabilities of which the second half can be solved in the same fashion as
(A.21):

Pr {X ((j − 1)∆k) ≤ ρm, ρm < X (j∆k) ≤ m} =
= Pr {X ((j − 1)∆k) ≤ ρm,X(j∆k) > ρm}

− Pr {X ((j − 1)∆k) ≤ ρm,X(j∆k) > m} .
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The first half of this result can be considered as the probability of the gamma
process surpassing the corrosion allowance ρm between the times (j− 1)∆k
and j∆k:

Pr {X ((j − 1)∆k) ≤ ρm,X(j∆k) > ρm} = FX((j−1)∆k)(ρm)−FX(j∆k)(ρm)

It is therefore better and easier to solve any probabilities of this form as
above and not like (A.21). Next we look at the expected cycle length:

∞∑

i=1

ipi(ρ,∆k, µ|p, s) =

=
∞∑

j=1

j∆kPr {X ((j − 1)∆k) ≤ ρm, ρm < X (j∆k) ≤ m}

+
∞∑

j=1

j∆k∑

n=(j−1)∆k+1

nPr {X ((j − 1)∆k) ≤ ρm,X(n− 1) ≤ m,X(n) > m} ,

from which we can again take the part for j = 1 out of the summation:

∞∑

i=1

ipi(ρ,∆k, µ|p, s) =

= ∆k [Pr {X(∆k) ≤ m} − Pr {X(∆k) ≤ ρm}] +

+ Pr {X(1) > m}+
∆k∑

n=2

nPr {X(n− 1) ≤ m,X(n) > m}+

+
∞∑

j=2

[
j∆kPr {X ((j − 1)∆k) ≤ ρm, ρm < X(j∆k) ≤ m}+

+ [(j − 1)∆k + 1]Pr {X ((j − 1)∆k) ≤ ρm,X ((j − 1)∆k + 1) > m}+

+
j∆k∑

n=(j−1)∆k+2

nPr {X ((j − 1)∆k) ≤ ρm,X(n− 1) ≤ m,X(n) > m}
]

(A.22)

All the probabilities, except for the last one, in the above equation can
be determined as with the expected cycle costs. The last probability can
be simplified substantially by splitting it into parts. The interpretation of
this probability is: the probability that the corrosion has not surpassed the
corrosion allowance ρm at time (j − 1)∆k and failed during the interval
(n− 1, n). Therefore the probability is split up as

Pr {X ((j − 1)∆k) ≤ ρm,X(n− 1) ≤ m,X(n) > m} =
= Pr {X ((j − 1)∆k) ≤ ρm,X(n) > m}+

− Pr {X ((j − 1)∆k) ≤ ρm,X(n− 1) > m} .
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Both parts can be calculated using (A.21). The average cost per year is now
found by calculating

C(ρ, ∆k|p, s) =

∫∞
µ=0

∑∞
i=1 ci(ρ, ∆k)pi(ρ, ∆k, µ|p, s)π(µ|y)dµ∫∞

µ=0

∑∞
i=1 ipi(ρ, ∆k, µ|p, s)π(µ|y)dµ

≈
∑n

l=1 {
∑∞

i=1 ci(ρ,∆k)pi(ρ, ∆k, µ|p, s)} p(µl|y)∑n
l=1 {

∑∞
i=1 ipi(ρ, ∆k, µ|p, s)} p(µl|y)

, (A.23)

where π(µ|y) is the posterior density (p(µl|y) is the discrete version of the
posterior density) over µ given the inspection measurements y = y1, . . . , yk,
which is given by equation (A.17). The choice of integrating out the degra-
dation rate µ individually over the numerator and denominator as opposed
to integration over the full fraction, is supported by the fact that we are only
interested in one single cycle. After a component has been replaced it has
to be inspected at least twice at intervals which are prescribed by the Dutch
Rules for Pressure Vessels [21]. Also, the component will very often have
undergone a wall thickness measurement at service start, therefore there will
be around three sets of measurement data available. These results will be
used to calculate the optimal time to the next inspection. The fundamental
issue is that we do not use the data from the previous cycle/component to
update the information of the current component.

If we also want to include the uncertainty over the pressure p and the
material strength s, then we can sample these variables from their respective
probability distribution functions fP and fS . The best approach is to also
include the uncertainty over the degradation rate in the simulation, instead
of using the discrete solution (A.23). In the case of perfect inspections, we
can do this very simply by sampling from the inverted gamma distribution
which we obtained in (A.10). Unfortunately we only have the posterior
(A.17) in discrete form, when we consider multiple imperfect inspections.
Therefore we need to know how to sample from this discrete (cumulative)
distribution F . We start by sampling a uniformly distributed number u
between 0 and 1 after which we can find the sample as follows:

F−1(u) =





x1 if u ≤ p1

x2 if p1 < u ≤ p1 + p2
...

xn−1 if
∑n−2

i=1 pi < u ≤ ∑n−1
i=1 pi

xn if
∑n−1

i=1 pi < u ≤ ∑n
i=1 pi

, u ∈ (0, 1)

The advantage of using the simulation technique is that the degradation
rate µ can be sampled before we go into the loops to calculate the expected
average costs per year. Also, there will be no extra loop needed if we assumed
that the pressure p and material strength s are also uncertain. The solution
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will in this case be given by

EC(ρ,∆k) ≈
1
N

∑N
j=1

{∑∞
i=1 ci(ρ, ∆k)pi

(
ρ, ∆k

∣∣µ(j) , p(j), s(j)
)}

1
N

∑N
j=1

{∑∞
i=1 ipi

(
ρ, ∆k

∣∣µ(j) , p(j), s(j)
)} , (A.24)

or

EC(ρ,∆k) ≈ 1
N

∞∑

j=1

∑∞
i=1 ci(ρ, ∆k)pi

(
ρ, ∆k

∣∣µ(j) , p(j), s(j)
)

∑∞
i=1 ipi

(
ρ, ∆k

∣∣µ(j) , p(j), s(j)
) (A.25)

=
1
N

n∑

j=1

C
(
ρ, ∆k

∣∣∣µ(j) , p(j), s(j)
)

,

as N −→∞. The first result (A.24) corresponds to (A.23), where we assume
that the data is used for only 1 cycle. If we would use the data from a
replaced component to estimate the corrosion rate of the new component,
then we would use (A.25), where the expectation is calculated over the full
fraction. In the first case we first average the expected cycle costs and the
expected cycle length independently before we calculate the ratio, whereas
in the second case we calculate the average of N ratios representing the
expected average costs per unit time. As we discussed on the previous page,
we will not use (A.25) due to the fact that old data can not be used for
a new component. Nonetheless, the comparison between the two results is
interesting and can be found in figure 4.8.



Appendix B

Gamma process model
implementation

This appendix contains all the Matlab code, which forms the implementation
of the gamma process inspection decision model. Comments are included
in the code itself, as well as throughout this appendix in order to make the
procedures clear.

Matlab is a command line driven program, where a series of commands
can be put into separate files, which can in turn be run from the command
line. There is also the possibility of having calculations performed by sep-
arate functions, which return the results to the main programs. Comment
lines are preceded by a % and . . . splits long lines onto the next line.

B.1 modelinput: input data

The following code prepares all the input data for the model. The data
which you can see here is for the case study of the hydrogen dryer.

1 dm = 1180; % component diameter [mm]

th = 15*1.12; % thickness at service start [mm]

TS = 413.69; % tensile strength [MPa]

YS = 206.84; % yield strength [MPa]

5
mu_sf = min(1.1*(TS+YS)/2,TS); % mean strength of material [MPa]

mu_cr = 0.1; % estimated corrosion rate [mm/yr]

mu_pr = 3.2; % mean operating pressure [MPa]

pressure_cov = 0.05; % coefficient of variation = 5%

10 flowstress_cov = 0.20; % coefficient of variation = 20%

si_sf = flowstress_cov*mu_sf; % standard deviation strength

si_pr = pressure_cov*mu_pr; % standard deviation pressure

cov = 0.25; % cov for corrosion rate = 25%

CorrAllowance = 4.5; % replacement level [mm]

15
c_fail = 1000000; % cost of failure + corrective repl.

93
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c_insp = 10000; % cost of a single inspection

c_prev = 50000; % cost of preventive replacement

20 t = [86-77 90-86 94-90 98-94]; % times between past inspections

D = [(th-15.6) (15.6-14.6) ... % amount of corrosion during these times

(14.6-14.2) (14.2-13.8)];

K = length(t); % total number of inspections

25 InspCOV = [0.5; 0.5; 0.5; 0.5]; % cov for each inspection

SigmaEpsilon = InspCOV.*D’; % standard deviation for each inspection

% define the grid for the normal density of the measurement error:

NormalLimit = round(max(SigmaEpsilon)*1000*4)/1000;

30 eps = [-NormalLimit:0.001:NormalLimit];

B.2 corrgamma: main program

The main program first runs the modelinput program to define the input
data. It then calls the function invgamfit to find the shape parameter α and
the scale parameter β for the prior. It does this by sampling the ORBIT
discrete prior n = 10, 000 times and fitting the inverted gamma density to
this data. See the code listing of this function later on in this appendix for
more details. The next step is to create a grid x at which points the prior
and posterior are calculated.

1 clear % clear the memory

modelinput; % load the input data

% fit a continuous inverted gamma density to the discrete ORBIT prior:

5 n = 10000;

par = invgamfit(mu_cr);

a = par(1);

b = 1/par(2);

10 % define the grid over which the densities are calculated:

GridDist = mu_cr/20;

x = GridDist:GridDist:7*mu_cr;

N = length(x);

15 % the inverted gamma distributed prior is given by:

Prior = exp(a*log(b)-gammaln(a)+(-a-1)*log(x)-b./x);

% inverted gamma posterior for 1 perfect inspection:

A = a + t(K)/cov^2;

20 B = b + D(K)/cov^2;

PostPerfInsp = exp(A*log(B)-gammaln(A)+(-A-1)*log(x)-B./x);

At this stage, the prior and the posterior for K perfect inspections have
been defined using the definition of the inverted gamma density and equation
(A.10). A trick has been used here to avoid numbers which are too large
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for Matlab to handle. Especially when the mass of the densities is very
concentrated, there is a probability that the program will result in ‘NaN’,
which means Not-A-Number. We therefore first take the natural logarithm
of the densities, followed by taking the exponential of this: x = exp(ln(x)).
The Matlab function gammaln(a) is a special implementation of ln(Γ(a)).
For the inverted gamma density this results in

ba

Γ(a)

(
1
x

)(a+1)

exp
{
− b

x

}
= exp

{
aln(b)− ln (Γ(a))− (a + 1)ln(x)− b

x

}

for x > 0. Notice that the grid x does not include x = 0, because this would
result in division by zero. The commands ./, .^ and .* are element-wise
versions of division, raising to the power and multiplication respectively.
These are used with vectors when the operations have to be performed for
each element of these vectors or matrices independently. In the next stage of
the main program, the posterior for K imperfect inspections is calculated.
This is done using simulation in which we use n = 2000 samples for normally
distributed measurement error:

% posterior is found by simulation over the measurement error:

n = 2000;

25 E = zeros(n,K); % matrix with sampled errors

d = zeros(n,K); % d_k = e_k - e_(k-1) with e_0 = 0

for k=1:K

% each column holds the samples of an inspection:

E(:,k) = normrnd(0,SigmaEpsilon(k),n,1);

30 if k==1

d(:,k) = E(:,k);

else

d(:,k) = E(:,k) - E(:,k-1);

end

35 end

likelihood = zeros(N,K);

LikeliProd = zeros(N,1);

40 for j=1:N % loop over grid for degradation rate

for k=1:K % loop over inspection number

likelihood(j,k) = (1/n)*sum( ...

exp(-(t(k)/cov^2)*log(x(j)*cov^2) - ...

gammaln(t(k)/cov^2) + (t(k)/cov^2 - 1)*log(D(k) - ...

45 min(D(k)-0.001,d(:,k))) - ...

(D(k) - min(D(k),d(:,k)))/(x(j)*cov^2)));

end

end

% take the product of the individual likelihoods:

50 LikeliProd = prod(likelihood,2);

PostImpInsp = Prior’.*LikeliProd/(Prior*LikeliProd*GridDist);

% make the cumulative distribution for the sampling procedure:

PostImpInspCDF = cumsum(PostImpInsp)*GridDist;
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55 % open a new figure and plot the prior + posteriors:

figure

plot(x,Prior,’g-’,x,PostPerfInsp,’m-’,x,PostImpInsp,’r-’,’LineWidth’,2);

grid

legend(’prior density’,’posterior 1 perf. insp.’,...

60 [’posterior ’,num2str(K),’ imp. insp.’],0);

title([’Prior and posterior results (\sigma_\epsilon = ’,...

num2str(mean(SigmaEpsilon)),’; n = ’,num2str(n),’)’]);

xlabel(’Corrosion rate [mm/yr]’);

ylabel(’density’);

65
test = input(’Ready to start simulation. Press ENTER to continue.’);

The last part of this stage has opened a figure window and plotted the
prior, the posterior for K perfect inspections and the posterior for K imper-
fect inspections. The likelihood inside the FOR-loops is the likelihood given
by equation (A.16).

Now that we have the discrete posterior for K imperfect inspections, we
can start calculating the expected average costs per time unit. As explained
in section A.4, we can best do this by sampling the pressure p, the material
strength s and the posterior for the corrosion rate c. The posterior is sampled
using the technique described in the section A.4.

% sample N times the variables p, s and c + perform simulations:

N = input(’Please input the number of simulations desired: ’);

p = normrnd(mu_pr,si_pr,N,1); % normal distributed samples for pressure

70 s = normrnd(mu_sf,si_sf,N,1); % normal distributed samples for strength

m = th - p*dm./(2*s); % vector of safety margins

c = zeros(N,1); % initialize the samples vector for c

for i=1:N

u = unifrnd(0,1); % sample a uniformly distributed in (0,1)

75 c(i) = x(min(find(PostImpInspCDF > u)));

end

MaxTime = max(m./c);

% the replacement percentage rho is given by the following ratio:

Rho = CorrAllowance./m;

80
TimeUnit = input(’Please input the desired time unit: ’);

PrepData = zeros(N,3);

for i=1:N

PrepData(i,:) = simulprep(cov,m(i),Rho(i),c(i),TimeUnit,MaxTime);

85 end

% determine maximum TimeHorizon:

TimeHorizon = max(PrepData(:,3))

ExpAveCost = zeros(length(TimeUnit:TimeUnit:TimeHorizon),2,N);

90 LoopTimer = zeros(N,1);

StartTime = clock; % save current date and time

% display the start time and date to the user:

disp([’Calculations started at ’,num2str(round(StartTime(4))),’h’, ...

num2str(round(StartTime(5))),’m on ’, ...
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95 num2str(round(StartTime(3))), ’/’, ...

num2str(round(StartTime(2))),’/’, ...

num2str(round(StartTime(1))),’.’]);

for i=1:N % loop over number of sample sets

100 disp([’Currently calculating exp. average cost for simulation ’, ...

num2str(i),’ out of ’,num2str(N),’ ...’]);

% plot individual results for the last simulation:

if i == N

tic % start timer

105 ExpAveCost(:,:,i) = eacptu(cov,m(i),Rho(i),c(i),...

TimeUnit,TimeHorizon,c_insp,c_prev,c_fail,1);

else

tic % start timer

ExpAveCost(:,:,i) = eacptu(cov,m(i),Rho(i),c(i),...

110 TimeUnit,TimeHorizon,c_insp,c_prev,c_fail,0);

end

LoopTimer(i) = round(toc); % stop timer

% average time per loop is:

CalcDuration = N*sum(LoopTimer)/i;

115 % determine when the calculations will be done + output to the user:

FinishTime = calcfinish(N,StartTime,CalcDuration);

disp([’Estimated end time: around ’,num2str(FinishTime(2)),’h’, ...

num2str(FinishTime(3)),’m, ’,num2str(FinishTime(1)),...

’ days later.’]);

120 end

This part of the program uses a number of functions: simulprep, calc-
finish and eacptu. The first one calculates the expected time of replace-
ment, the expected failure time and the so-called time horizon for each
sample set. The time horizon is the expected failure time plus 20% and
is used as the limit up to which the inspection intervals are summed up.
This horizon replaces the infinity in the sum of equation (4.7) and is chosen
such that the summation is performed far enough in order to ensure that all
failure probabilities are fully accounted for. This is done for each sample set
and then the largest is used for the calculation of the expected average costs
per time unit. The most important function is eacptu, which calculates the
expected cycle costs and the expected cycle length for each sample set. The
third function calcfinish is a simple function which estimates the time
and day at which the calculations will be done.

The result of this program is a matrix containing the vectors with the
expected cycle costs and the expected cycle length for each sample set. The
calculations for the hydrogen dryer case study contained one faulty result,
therefore the data has to be checked before it is further used to find the
expected average costs per time unit.
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B.3 invgamfit: fitted inverted gamma prior

This function is used by the main program to estimate the parameters of
the inverted gamma density when fitted to the ORBIT prior. For the
case study of the hydrogen dryer α = 3.58 and β = 0.51. The parameters
are estimated using the Matlab function gamfit(x), which estimates the
gamma density parameters1 given the data x. We use the fact that 1/x ∼
Ga(α, β). This is not the best way of fitting the inverted gamma density to
the ORBIT prior, but since this prior is highly subjective and has the sole
purpose of adding conservatism, extreme precision is not necessary.

1 function y = invgamfit(c)

% INVGAMFIT parameter estimation for the Inverted Gamma density

% using 50% for 1*c, 30% for 2*c and 20% for 4*c. This is the

% prior (discrete) density which is used in DNV’s ORBIT package.

5 %

% [a b] = invgamfit(c), where c is the degradation rate (e.g. mm/yr)

% a and b are the parameter used by MATLAB for the Gamma distribution

% NOTE: check the help file for the Gamma density to see how these

% parameters are defined!

10
n = 100;

U = unifrnd(0,1,n,1);

G = zeros(n,1);

15 for i=1:n

if U(i)<=0.5

G(i)=1*c;

elseif U(i)>0.5 & U(i)<=0.8

G(i)=2*c;

20 else

G(i)=4*c;

end

end

25 GInv = 1./G;

y = gamfit(GInv);

Once the parameters have been found, they can be hard coded into the
model, because only the scale parameter β depends on the estimated cor-
rosion rate. For example, β ≈ 0.5 if µC = 0.1mm/yr and β ≈ 5 when
µC = 1mm/yr.

B.4 simulprep: simulation data preparation

This function determines the expected time of replacement, the expected
time of failure and the necessary time horizon over which the inspection

1Note that the gamma density is defined differently in Matlab, than we have in (A.4).
The scale parameter is the inverse of our β.
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intervals have to be summed. For the replacement time and the failure time
it uses the probability pi of replacement/failure in unit time i:

pi = FX(i−1)(ρm)− FX(i)(ρm) (replacement)
pi = FX(i−1)(m)− FX(i)(m) (failure)

The expectations are then calculated using
∑m

i=1 ipi:

1 function y = simulprep(cov,m,rho,mu,dT,MaxT)

% y = simulprep(cov,m,rho,mu,dT,MaxT)

%

% This function calculates the expected time of preventive

5 % replacement, the expected tima of failure and the time

% horizon over which the calculations are performed

% given the coefficient of variation, the margin m,

% the preventive replacement percentage rho, the sampled

% average deterioration rate mu and the time unit dT.

10
a = 1/cov^2; % shape parameter

b = 1/(mu*cov^2); % scale parameter

ExpFailTime = 1 - gammainc(b*m,a*dT);

15 ExpReplTime = 1 - gammainc(b*rho*m,a*dT);

for i=2*dT:dT:round(1.5*MaxT)

ExpFailTime = ExpFailTime + ...

i*(gammainc(b*m,a*(i-1*dT)) - gammainc(b*m,a*i));

ExpReplTime = ExpReplTime + ...

20 i*(gammainc(b*rho*m,a*(i-1*dT)) - gammainc(b*rho*m,a*i));

end

% horizon over which calculations are done:

TimeHorizon = round(1.2*ExpFailTime);

25 y = [ExpReplTime ExpFailTime TimeHorizon];

B.5 eacptu: exp. ave. costs per time unit

The key function in this program is the following, which calculates the ex-
pected cycle costs and the expected cycle length for each sample set. The
last part of this function is only active when the last parameter Fig is set to
one. This tells the function to plot the expected cycle costs, the expected
cycle length and their ratio: the expected average costs per time unit. The
calculations for the expected cycle costs and length are split up in two parts:
j = 1 and j > 1. This is equivalent to equations (A.18)-(A.20) and (A.22).

1 function y = eacptu(cov,m,rho,mu,TimeUnit,TimeHorizon,Ci,Cp,Cf,Fig)

% y = eacptu(cov,m,rho,TimeUnit,TimeHorizon,Ci,Cp,Cf,Fig)

%

% Given the corrosion safety margin m and the replacement

5 % percentage rho + a sample of the margin m, this function

% determines the expected average costs per time unit.
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% The cost of an inspection, a preventive replacement and

% of failure are given by Ci, Cp and Cf respectively.

% If seperate figures are desired, set Fig = 1, otherwise

10 % set Fig = 0.

a = 1/cov^2; % shape parameter

b = 1/(mu*cov^2); % scale parameter

15 ExpCost = zeros(TimeHorizon/TimeUnit,1);

ExpCycle = zeros(TimeHorizon/TimeUnit,1);

D = 50; % number of discretization points

M = m*[0:D-1]’/(D-1); % range (0,m) split in D-1 parts

20 dM = m/(D-1); % distance between grid points

Pdf = zeros(D,1); % initialize array for discrete density

index = 0;

for dk=TimeUnit:TimeUnit:TimeHorizon

25 index = index + 1;

% expected cost for j=1: ---------------------------------------

ExpCost(index) = (Ci + Cp)*(gammainc(m*b,a*dk) - ...

gammainc(rho*m*b,a*dk)) + Cf*(1-gammainc(m*b,a*dk));

% expected cycle length for j=1: -------------------------------

30 ExpCycle(index) = dk*(gammainc(m*b,a*dk) - ...

gammainc(rho*m*b,a*dk)) + 1 - gammainc(m*b,a*TimeUnit);

n = [2*TimeUnit:TimeUnit:dk]’;

ExpCycle(index) = ExpCycle(index) + ...

n’*(gammainc(m*b,a*(n-1*TimeUnit)) - gammainc(m*b,a*n));

35
for j=2:round(TimeHorizon/dk)

% expected cost for j>1: -----------------------------------

Pdf(2:D) = rho*dM*exp(a*(j-1)*dk*log(b) - ...

gammaln(a*(j-1)*dk) + (a*(j-1)*dk-1)*log(rho*M(2:D)) - ...

40 b*rho*M(2:D));

ExpCost(index) = ExpCost(index) + ...

(j*Ci + Cp)*(gammainc(rho*m*b,a*(j-1)*dk) - ...

gammainc(rho*m*b,a*j*dk) - sum((1 - ...

gammainc(b*(m-rho*M),a*dk)).*Pdf)) + ...

45 ((j-1)*Ci + Cf)*sum((1-gammainc(b*(m-rho*M),a*dk)).*Pdf);

% expected cycle length for j>1: ---------------------------

ExpCycle(index) = ExpCycle(index) + ...

j*dk*(gammainc(rho*m*b,a*(j-1)*dk) - ...

gammainc(rho*m*b,a*j*dk) - sum((1 - ...

50 gammainc(b*(m-rho*M),a*dk)).*Pdf)) + ...

((j-1)*dk+1*TimeUnit)*sum((1 - ...

gammainc(b*(m-rho*M),a*TimeUnit)).*Pdf);

n = [(j-1)*dk+2*TimeUnit:TimeUnit:j*dk]’;

ExpCycle(index) = ExpCycle(index) + ...

55 n’*((1-gammainc(b*(m-rho*repmat(M’,[length(n) 1])), ...

a*(repmat(n,[1 length(M)])-(j-1)*dk)))*Pdf - ...

(1-gammainc(b*(m-rho*repmat(M’,[length(n) 1])), ...

a*(repmat(n,[1 length(M)])-1*TimeUnit-(j-1)*dk)))*Pdf);

end

60 end
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if Fig == 1

% first calculate expected time to replacement and failure:

ExpFailTime = 1 - gammainc(b*m,a*TimeUnit);

65 ExpReplTime = 1 - gammainc(b*rho*m,a*TimeUnit);

for i=2*TimeUnit:TimeUnit:200

ExpFailTime = ExpFailTime + ...

i*(gammainc(b*m,a*(i-1*TimeUnit)) - gammainc(b*m,a*i));

ExpReplTime = ExpReplTime + ...

70 i*(gammainc(b*rho*m,a*(i-1*TimeUnit)) - ...

gammainc(b*rho*m,a*i));

end

figure

75 x = TimeUnit:TimeUnit:TimeHorizon;

plot(x,ExpCycle,’b.-’,x,ExpFailTime*ones(length(x)),’r:’);

legend(’Exp. cycle length’,’Exp. time of failure’,0);

title(’Expected cycle length’);

xlabel(’\Delta k [yr]’);

80 ylabel(’Cycle length [yr]’);

figure

plot(x,ExpCost,’r.-’);

title(’Expected costs per cycle length’);

85 xlabel(’\Delta k [yr]’);

ylabel(’Euros’);

figure

plot(x,ExpCost./ExpCycle,’go-’,’LineWidth’,2);

90 hold

plot([ExpFailTime ExpFailTime],[0 max(ExpCost./ExpCycle)],’r:’,...

[ExpReplTime ExpReplTime],[0 max(ExpCost./ExpCycle)],’b--’);

legend(’Exp. average costs’,’Exp. time of failure’, ...

’Exp. time of replacement’,0);

95 title([’Expected average costs per time unit (\Delta t = ’, ...

num2str(TimeUnit),’yr)’]);

xlabel(’\Delta k [yr]’);

end

100 y = [ExpCost ExpCycle];

B.6 calcfinish: simulation timer

The last function simply adds the expected total simulation duration to the
current date and outputs the expected time when the simulation is finished.
In case the calculations are spread over more than one day, it also outputs
the amount of days are required.

1 function y = calcfinish(N,StartTime,CalcDuration)

% y = calcfinish(N,StartTime,CalcDuration)

%

% this function calculates the time at which the simulation
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5 % is expected to be done. It also indicates how many days

% ahead from the current date this is in case the calculations

% are spread over multiple days.

CalcDays = floor(CalcDuration/86400);

10 leftover = mod(CalcDuration,86400);

CalcHours = floor(leftover/3600);

leftover = mod(leftover,3600);

CalcMinutes = floor(leftover/60);

15 FinishMin = mod((StartTime(5) + CalcMinutes),60);

FinishHour = mod((StartTime(4) + CalcHours + ...

floor((StartTime(5)+CalcMinutes)/60)),24);

CalcDays = CalcDays + floor((StartTime(4) + CalcHours + ...

floor((StartTime(5)+CalcMinutes)/60))/24);

20
y = [CalcDays FinishHour FinishMin];
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Symbols, notations and
definitions

α, β shape and scale parameter resp. of the gamma and
inverted gamma densities.

ε, σε, εk ε is a normally distributed variable with mean 0
and standard deviation σε representing the error in
a thickness measurement. εk is the error term associ-
ated with the k–th inspection.

δk difference between errors of two successive inspec-
tions: εk and εk−1.

λ,λ Lagrange multiplier and a vector of Lagrange multi-
pliers respectively, see section 3.2.2 for details.

µ, µX mean and mean of the random variable X respec-
tively. In the chapter on the gamma deterioration
process, µ is the uncertain mean of the gamma den-
sity.

σ, σX standard deviation and standard deviation of the ran-
dom variable X respectively. The variance of X is the
square of the standard deviation: Var(X) = σ2

X .
ν coefficient of variation which fixes the standard devia-

tion of the gamma process to the mean of this stochas-
tic process.

ρ replacement percentage representing the percentage
of the safety margin m at which the component should
be replaced. ρ is usually fixed by the corrosion al-
lowance: cmax = ρm.

Γ(a) gamma function, see definition (3.14).
Γ(a, x) incomplete gamma function, see definition (3.15).
Φ(x) standard normal distribution: X ∼ N (0, 1), which

means the distribution is symmetrically distributed
around mean 0 with a standard deviation of 1.

x vector, where xi represents the i–th element in the
vector of length n: x = (x1, x2, . . . , xn).

105



106 List of symbols

u · v inner product of vectors u and v; this notation is
referred to the vector notation and is equivalent to
the matrix notation uTv:

uTv = [u1 u2 · · · un]




v1

v2
...

vn


 = u1v1 + . . . + unvn,

where uT is the transpose of u.
‖ v ‖ norm of vector v, where

‖ v ‖= √
v · v =

√
v2
1 + v2

2 + . . . + v2
n.

cmax corrosion allowance; this value is the maximum cu-
mulative amount of thinning which may have occur
for the component to operate safely. The actual fail-
ure level m is much higher than the corrosion al-
lowance, therefore this value is used for the replace-
ment level.

ci(ρ, ∆k) costs incurred during unit time (i− 1, i] as a function
of the percentage ρ and the inspection interval length
∆k.

C(ρ,∆k) expected average costs per time unit as a function
of the replacement percentage ρ and the inspection
interval length ∆k. See definition (4.7).

dk, Dk dk is the measured increment between inspection k
and k− 1: dk = yk − yk−1; Dk is the increment of the
stochastic process X(t) between times tk and tk−1:
Dk = X(tk)−X(tk−1).

L(x,λ) Lagrangean function, see definition (3.8).
fX(x), FX(x) probability density function (PDF) and cumulative

distribution function (CDF) resp. of the random vari-
able X .

k,K, ∆k k = 1, 2, . . . , K is the inspection number and ∆k is the
length of the time interval between two inspections.

m safety margin determined by the limit state of the
state functions (2.1) and (2.2). This is amount of
degradation (corrosion or cracking) at which the com-
ponent is assumed to fail.

p operating pressure.
s material strength.
th material thickness.
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tk, ∆tk tk is the time since the service start of the component
at which the k–th inspection has been performed; ∆tk
is the interval between the k–th inspection and the
previous inspection: ∆tk = tk − tk−1.

E(X) expectation of the variable X, given by

E(X) =
∫ ∞

x=−∞
xfX(x)dx.

Pr{X ≤ x} probability of the variable X being less than or equal
to the value x. It holds that Pr{X ≤ x} = FX(x).

f ′(x) = ∂f
∂x the (partial) derivative of the function f to x. The

second derivative is f ′′(x).
∇xf(x) gradient of function f to the vector x:

∇x(x) =
(

∂f

∂x1
, . . . ,

∂f

∂xn

)
.

p(xi) the discrete probability of X: p(xi) = Pr{X = xi}.
pi probability of failure in unit time i: pi = F (ti) −

F (ti−1), where F (ti) is the probability of failure up
to time ti.

l(µ|x) likelihood of the variable µ given the measurement x.
π(µ) prior density for the variable µ.

π(µ|x) posterior density for the variable µ given x.
X, X(t) random variable X has a distribution assigned to it

(e.g. by a density fX(x)). X(t), t ≥ 0 is the notation
for the stochastic process.

Y (t) stochastic process consisting of an underlying stochas-
tic process X(t) and an error ε: Y (t) = X(t) + ε.

Ga(x|α, β) gamma density of X as a function of x with the shape
parameter α and the scale parameter β. See definition
(A.4).

Ig(x|α, β) same as above only for the inverted gamma density.
See definition (4.5).



Index

cobwebs, 29
corrective replacement, 59
correlation ratio, 28
corrosion allowance, 64, 88, 106
cumulant generating function, 82
cycle, 65

degradation states, 24
directional simulation, 46

FORM sensitivity measure, 28
FOSM, 42

gamma density, 81
gamma function, 47

imperfect inspection, 57
incomplete gamma function, 47
inner product, 38, 106

Jacobian matrix, 78

Lagrange multipliers, 39
Lagrangean function, 39
likelihood, 23
limit state, 20

moment generating function, 81
Monte Carlo simulation, 46
MVFOSM, 42

Newton-Raphson scheme, 78
norm, 38, 106

PHAST, 19
preventive replacement, 59
prior, 23
product moment correlation, 27

PWHT, 21

reliability index, 36
RIMAP project, 13
risk, 17

safety index, 43
simplified Lagrange multipliers, 40
state function, 20
stochastic process, 58
Stress corrosion cracking, 20

Taylor series, 37
technical modules, 18
Thinning, 19
TMSF, 18
transition temperature, 23

unit normal vector, 38
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