Parameter Estimation in Reservoir Engineering Models via Data Assimilation Techniques

Mariya V. Krymskaya

TU Delft

July 16, 2007

Outline

Introduction to Reservoir Engineering Two-Phase Water-Oil Fluid Flow Model Kalman Filtering Techniques Case Study Results Conclusion Questions

Introduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow Model

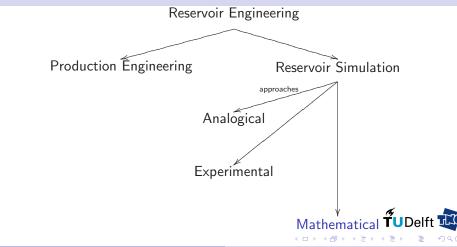
Kalman Filtering Techniques

Ensemble Kalman Filter (EnKF) Iterative Ensemble Kalman Filter (IEnKF)

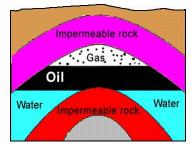
Case Study

State Vector Feasibility Re-scaling state vector Experimental Setup

Results

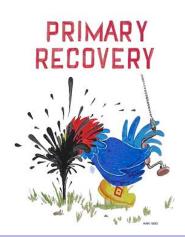

EnKF IEnKF

Conclusion



Structure of Reservoir Engineering

A Reservoir



General information

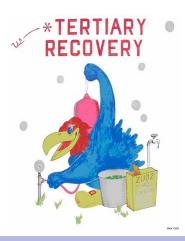
> 40,000 oil fields in the world 300 *m* to 10 *km* below the surface 2 - 500 *million years* old Ghawar oil field

the biggest among discovered Location: Saudi Arabia Recovery: since 1951 Size: $280 \times 30 \ km$ Age: $320 \ million \ years$ old Production: $5 \ million \ barrels$ ($800,000 \ m^3$) of oil per day

Oil Recovery

 Primary 20% extracted

Oil Recovery


SECONDARY RECOVERY

- Primary 20% extracted
- Secondary (water flooding) 25% to 35% extracted

Oil Recovery

- Primary 20% extracted
- Secondary (water flooding) 25% to 35% extracted
- Tertiary 50% left

Oil Recovery

SECONDARY RECOVERY

- Primary 20% extracted
- Secondary (water flooding) 25% to 35% extracted

TUDelft

 Tertiary 50% left

Reservoir Properties

Rock properties

- Porosity
- (Absolute) permeability
- Rock compressibility

- Rock properties
 - Porosity
 - (Absolute) permeability
 - Rock compressibility
- Fluid properties
 - Fluid compressibility
 - Fluid density
 - Fluid viscosity

- Rock properties
 - Porosity
 - (Absolute) permeability
 - Rock compressibility
- Fluid properties
 - Fluid compressibility
 - Fluid density
 - Fluid viscosity
- Fluid-rock properties
 - Fluid saturation
 - Capillary pressure
 - Relative permeability (Corey-type model)

- Rock properties
 - Porosity
 - (Absolute) permeability
 - Rock compressibility
- Fluid properties
 - Fluid compressibility
 - Fluid density
 - Fluid viscosity
- Fluid-rock properties
 - Fluid saturation
 - Capillary pressure
 - Relative permeability (Corey-type model)

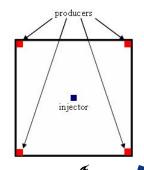
- Rock properties
 - Porosity
 - (Absolute) permeability
 - Rock compressibility
- Fluid properties
 - Fluid compressibility
 - Fluid density
 - Fluid viscosity
- Fluid-rock properties
 - Fluid saturation
 - Capillary pressure
 - Relative permeability (Corey-type model)

- Rock properties
 - Porosity
 - (Absolute) permeability
 - Rock compressibility
- Fluid properties
 - Fluid compressibility
 - Fluid density
 - Fluid viscosity
- Fluid-rock properties
 - Fluid saturation
 - Capillary pressure
 - Relative permeability (Corey-type model)

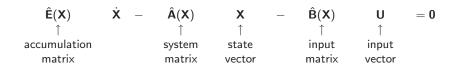
- Rock properties
 - Porosity
 - (Absolute) permeability
 - Rock compressibility
- Fluid properties
 - Fluid compressibility
 - Fluid density
 - Fluid viscosity
- Fluid-rock properties
 - Fluid saturation
 - Capillary pressure
 - Relative permeability (Corey-type model)

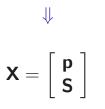
Two-Phase Water-Oil Fluid Flow Model

- Mass balance equation for each phase
- Darcy's law for each phase
- Capillary pressure equation
- Relative permeability equations (Corey-type model)
- Equations of state

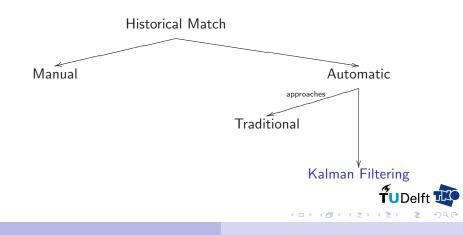

Two-Phase Water-Oil Fluid Flow Model

- Mass balance equation for each phase
- Darcy's law for each phase
- Capillary pressure equation
- Relative permeability equations (Corey-type model)
- Equations of state
- Initial / boundary conditions


Two-Phase Water-Oil Fluid Flow Model


- Mass balance equation for each phase
- Darcy's law for each phase
- Capillary pressure equation
- Relative permeability equations (Corey-type model)
- Equations of state
- Initial / boundary conditions
- Well model

・ 同 ト ・ ヨ ト ・ ヨ


Model Discretization

History Matching Process

Data Assimilation Problem Statement Ensemble Kalman Filter (EnKF) Iterative Ensemble Kalman Filter (IEnKF)

Data Assimilation Problem Statement

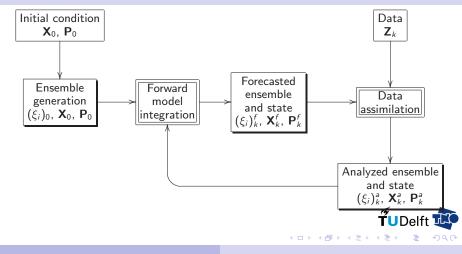
System

$$\begin{split} \mathbf{X}_{k+1} &= \mathbf{F}\left(\mathbf{X}_k, \mathbf{U}_k, \mathbf{m}\right) + \mathbf{W}_k, \\ \mathbf{Z}_{k+1} &= \mathbf{M}\mathbf{X}_k + \mathbf{V}_k \end{split}$$

Uncertainties

$$\begin{split} \mathbf{X}_0 &\sim \mathcal{N}(\mathbf{X}_0, \mathbf{P}_0) \ - \ \text{uncertain initial state}, \\ \mathbf{W}_k &\sim \mathcal{N}(\mathbf{0}, \mathbf{Q}) \ - \ \text{model noise}, \\ \mathbf{V}_k &\sim \mathcal{N}(\mathbf{0}, \mathbf{R}) \ - \ \text{measurement noise}, \end{split}$$

Independency assumption


$$\mathbf{X}_0 \perp \mathbf{W}_k \perp \mathbf{V}_k$$

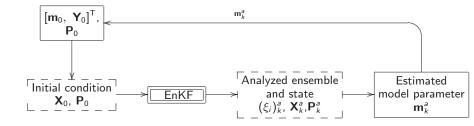
State conditional pdf

Data Assimilation Problem Statement Ensemble Kalman Filter (EnKF) Iterative Ensemble Kalman Filter (IEnKF)

Ensemble Kalman Filter (EnKF)

Data Assimilation Problem Statement Ensemble Kalman Filter (EnKF) Iterative Ensemble Kalman Filter (IEnKF)

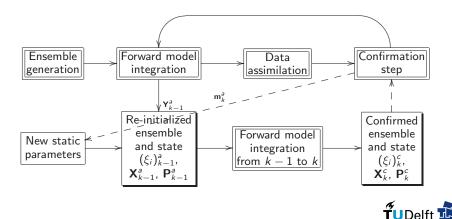
Parameter Estimation via EnKF


Augmented state vector

$$\mathbf{X} = \begin{bmatrix} \mathbf{p} \\ \mathbf{S} \end{bmatrix} \Rightarrow \mathbf{X} = \begin{bmatrix} \log \mathbf{k} \} = \mathbf{m} \\ \mathbf{p} \\ \mathbf{S} \\ \mathbf{d} \end{bmatrix} = \mathbf{Y}$$

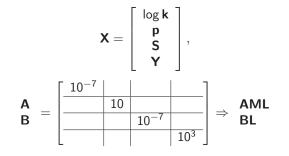
Data Assimilation Problem Statement Ensemble Kalman Filter (EnKF) Iterative Ensemble Kalman Filter (IEnKF)

Iterative Ensemble Kalman Filter (IEnKF)



Outline Introduction to Reservoir Engineering wo-Phase Water-Oil Fluid Flow Model Kalman Filtering Techniques Kalman Filtering Techniques Case Study Results Conclusion

State Vector Feasibility Re-scaling state vector Experimental Setup


イロト イポト イヨト イヨ

State Vector Feasibility

State Vector Feasibility Re-scaling state vector Experimental Setup

Re-scaling state vector

State Vector Feasibility Re-scaling state vector Experimental Setup

Re-scaling state vector

Kalman gain

$$\mathbf{K} = \frac{1}{N-1} \qquad \qquad \mathbf{L}\mathbf{L}^{\mathsf{T}}\mathbf{M}^{\mathsf{T}} \qquad \qquad \left(\frac{1}{N-1}\mathbf{M}\mathbf{L}\mathbf{L}^{\mathsf{T}}\mathbf{M}^{\mathsf{T}} + \mathbf{R}\right)^{-1}$$

State Vector Feasibility Re-scaling state vector Experimental Setup

Re-scaling state vector

Kalman gain

$$\mathbf{K} = \frac{1}{N-1} \left(\mathbf{B}^{-1} \mathbf{B} \right) \mathbf{L} \mathbf{L}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{-1} \right) \left(\frac{1}{N-1} \mathbf{M} \mathbf{L} \mathbf{L}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} + \mathbf{R} \right)^{-1} \left(\mathbf{A}^{-1} \mathbf{A} \right)$$

State Vector Feasibility Re-scaling state vector Experimental Setup

Re-scaling state vector

Kalman gain

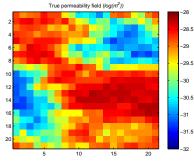
$$\mathbf{K} = \frac{1}{N-1} \left(\mathbf{B}^{-1} \mathbf{B} \right) \mathbf{L} \mathbf{L}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{-1} \right) \left(\frac{1}{N-1} \mathbf{M} \mathbf{L} \mathbf{L}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} + \mathbf{R} \right)^{-1} \left(\mathbf{A}^{-1} \mathbf{A} \right)$$
$$= \mathbf{B}^{-1} \underbrace{\frac{1}{N-1} \left(\mathbf{B} \mathbf{L} \right) \left(\mathbf{A} \mathbf{M} \mathbf{L} \right)^{\mathsf{T}} \left(\frac{1}{N-1} \mathbf{A} \mathbf{M} \mathbf{L} \left(\mathbf{A} \mathbf{M} \mathbf{L} \right)^{\mathsf{T}} + \mathbf{A} \mathbf{R} \mathbf{A} \right)^{-1}}_{\mathbf{K}_{1}} \mathbf{A}$$

State Vector Feasibility Re-scaling state vector Experimental Setup

Re-scaling state vector

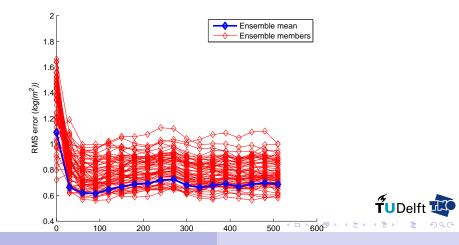
Kalman gain

$$\mathbf{K} = \frac{1}{N-1} \left(\mathbf{B}^{-1} \mathbf{B} \right) \mathbf{L} \mathbf{L}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \left(\mathbf{A} \mathbf{A}^{-1} \right) \left(\frac{1}{N-1} \mathbf{M} \mathbf{L} \mathbf{L}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} + \mathbf{R} \right)^{-1} \left(\mathbf{A}^{-1} \mathbf{A} \right)$$
$$= \mathbf{B}^{-1} \underbrace{\frac{1}{N-1} \left(\mathbf{B} \mathbf{L} \right) \left(\mathbf{A} \mathbf{M} \mathbf{L} \right)^{\mathsf{T}} \left(\frac{1}{N-1} \mathbf{A} \mathbf{M} \mathbf{L} \left(\mathbf{A} \mathbf{M} \mathbf{L} \right)^{\mathsf{T}} + \mathbf{A} \mathbf{R} \mathbf{A} \right)^{-1}}_{\mathbf{K}_{1}} \mathbf{A}$$


Ensemble update

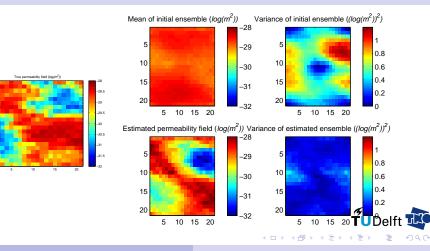
$$\begin{aligned} & (\xi_i)_k^a = (\xi_i)_k^f + \mathbf{K} \left(\mathbf{Z} - \mathbf{M}(\xi_i)_k^f + \mathbf{V}^i \right) \\ &= (\xi_i)_k^f + \mathbf{B}^{-1} \mathbf{K}_1 \mathbf{A} \left(\mathbf{Z} - \mathbf{M}(\xi_i)_k^f + \mathbf{V}^i \right) \\ &= (\xi_i)_k^f + \mathbf{B}^{-1} \left(\mathbf{K}_1 \left(\mathbf{A} \mathbf{Z} - \mathbf{A} \mathbf{M}(\xi_i)_k^f + \mathbf{A} \mathbf{V}^i \right) \right) \end{aligned}$$

State Vector Feasibility Re-scaling state vector Experimental Setup

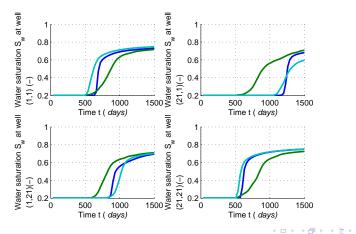

Experimental setup

Twin experiment Initialization

Mean of permeability fields ensemble (log(m²)) -28.5 -28.6 -28.7 10 12 -28.8 14 -28.916 18 -29 20 ¹⁵ **TU**Delft 10 5 <ロト <問 > < 注 > < 注 >

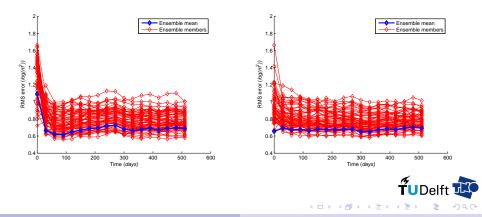

RMS Error in Model Parameter

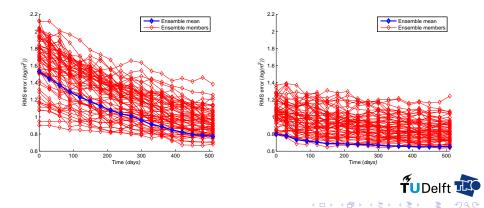
EnKF IEnKF


EnKF IEnKF

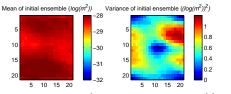
Estimated Permeability Field

EnKF IEnKF


Forecasted Reservoir Performance

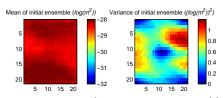

EnKF IEnKF

RMS Error in Model Parameter

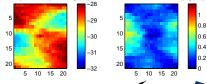

EnKF IEnKF

RMS Error in Model Parameter




EnKF IEnKF

Estimated Permeability Field



Estimated permeability field $(log(m^2))$ Variance of estimated ensemble $((log(m^2))^2)$

Estimated permeability field $(log(m^2))$ Variance of estimated ensemble $((log(m^2))^2)$

Del

Conclusion

- Model calibration is essential
- ► EnKF provides reasonable parameter estimation
- There are cases at which IEnKF is superior to EnKF
- Further investigations on IEnKF sensitivities are required

Questions

