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Abstract

Title: Parameter Estimation in Reservoir Engineering Models via

Data Assimilation Techniques

by

Mariya Victorovna Krymskaya

The mathematical modelling approach to the analysis of reservoir per-

formance gains popularity throughout the years. However, the model can be

used to forecast reservoir behavior only if it has been calibrated beforehand.

The calibration stage, called ’history matching’ in reservoir engineering con-

text, aims at adjusting the parameters of reservoir simulation model in such

a way that the computed values of observable variables at individual wells

are consistent with available measurements of those quantities. As the mod-

els become more complicated and larger scaled, there increases a need of

automatic history matching techniques.

The ensemble Kalman filter (EnKF) is normally applied nowadays to

solving this problem. Meanwhile, EnKF has some shortcomings in reservoir

engineering framework, such as heavy workload and sampling error. This

fact is actually a reason to perform some further research in order to analyze

specific modification of the above approach, namely iterative EnKF scheme

(IEnKF).

The study has been focused on the analysis of the usage and applicability

of ensemble Kalman filtering techniques to the history matching problem.

There are found some practically valuable examples for which IEnKF algo-

rithm demonstrates superior behavior. The algorithms are compared while

estimating the permeability field on the basis of two-phase two-dimensional

fluid flow model.

Key words: reservoir engineering, history matching, permeability, en-

semble Kalman filter, iterative ensemble Kalman filter.
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Chapter 1

Introduction

Reservoir engineering is the science mostly focused on recovering the max-

imum amount of hydrocarbons from the field while minimizing expenses.

To achieve such a goal one in particular needs an accurate prediction of

the reservoir performance under different operation conditions which can

be obtained by reservoir simulation.

1.1 Reservoir simulation

The use of reservoir simulation as a predictive tool gained popularity be-

cause of the possibility to take into account the factors substantially con-

tributing to the economical risk which has to be minimized. These factors

include rock properties, regional variation of fluid properties and relative

permeability characteristics, and the most important physical processes tak-

ing place in reservoir system.

In turn reservoir simulation includes the following basic stages: objec-

tive definition, data analysis, deriving the model, model history matching,

prediction cases running and reporting.

The scope of traditional reservoir simulation consists of analogical, ex-

perimental and mathematical approaches [7].

Analogical methods are based on predicting the performance of target

reservoir involving the information on other (already developed) reservoirs

with similar properties. Such approach can be used even at the stage pre-

liminary to drilling when no measured data is available. However analogical

methods provide reasonable results only if the development strategies for

1



2 CHAPTER 1. INTRODUCTION

target reservoir and reservoirs considered as the samples are similar. More-

over, it is impossible to investigate any scenario which differs from the

scenarios known for the sample reservoir.

Experimental methods imply making direct measurements of flow prop-

erties. The experiments are run in laboratory environment and require

scaling up the results to the entire reservoir. Although the behavior of

experimental models reflects the performances of real reservoir, the weak

point of experimental methods lies in scaling up the definite model features

to the actual reservoir scale.

Nowadays, mathematical models are probably the most widely used

techniques in reservoir simulation. These models describe the reservoir

system via mathematical equations coupled with boundary and/or initial

conditions. Since the field description is quite complex, it is not possible

in general to solve the model analytically even using simplifying assump-

tions. This obstacle can be overcome by solving mathematical model via

numerical methods and obtaining approximate results. The popularity of

numerical methods is secured and supported by the progress of modern com-

puter industry. Moreover this approach allows investigating any production

scenario that crosses reservoir engineer’s mind. In the current study we just

concentrate our attention on the mathematical models which are solved

numerically.

Whatever technique or model is applied to investigate future reservoir

performance, the basic idea is to start by running the model within some

time period for which an analyst already has the outcomes available. If the

computed quantities match the actual data, the procedure can be accepted

as correct and used further to make predictions. However, if these quantities

do not match then some of the model parameters (e.g. permeability) have

to be modified and the model has to be run again. The process of adapting

the model parameters to match the computed reservoir outcome quantities

and the real observations is called history matching [5]. The problem of

history matching is of high magnitude and complexity.

1.2 History matching

History matching is an important part of any analysis related to reservoir

performances. It addresses adjusting the parameters of reservoir simula-

tion model (e.g. permeability) in such a way that the computed values of

observable variables (e.g. rates, or pressures, or saturations) at individual
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wells are consistent with available measurements of those quantities.

The following steps are usually performed during history matching pro-

cedure [7]:

1. set the objectives of the history matching process. The main objec-

tives of history matching are improvement and validation of reservoir

simulation model. Meanwhile if history matching is accomplished suc-

cessfully, it is also possible to get some beneficial secondary objectives

like better understanding of the processes occurring in reservoir;

2. determine the method to use in history match. The most commonly

used history matching approaches are manual and automatic history

matching;

3. settle the observable variables to be matched and the criteria to be

used for determining a successful match. In relation to the given

production schedule the observable variables are usually represented

by (a) gas-oil ratios (GORs) and water-oil ratios (WORs); (b) aver-

age pressures (shut-in pressures) or pressures at observation wells; (c)

flowing well pressures; (d) oil production rates [5];

4. determine the reservoir parameters that can be adjusted during the

history match and the confidence range for these parameters. The

typical parameter used for adjustment within history match is relative

permeability;

5. run the simulation model with the best available input data;

6. compare the results of the simulation run with the observable variables

chosen in step 3;

7. change the reservoir parameters selected in step 4 within the range of

the confidence;

8. continue with steps 5–7 until the criteria established in step 3 are met.

There are distinguished manual and automatic approaches to history

matching.

1.2.1 Manual history matching

Manual history matching can be considered in some sense as a kind of art. It

includes running the simulation model for the historical period, comparing
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the result to known field behavior and then manually adjusting the reservoir

parameters to improve the match. The last step is performed by engineer

and its success mostly depends on personal knowledge of the field under

study and general experience.

Although there are no well-defined rules how to perform manual history

matching in any case, the following tips are helpful [1]:

• change the parameters which have the largest uncertainty and also

the largest influence on the solution;

• the match of average pressure is affected by fluid volumes in-place, size

of the aquifer and the degree of communication between the reservoir

and the aquifer. Moreover a poor match of GORs and WORs will

result in poor average pressure matching;

• pressure draw-down depends on horizontal permeability and skin ef-

fects;

• GORs and WORs are primarily affected by draw-down, but also by

the position of fluid contacts and the thickness of the transition zone

(which in turn depends on capillary forces). The shapes of the GORs

and WORs curves after breakthrough depend on the relative perme-

ability curves but the breakthrough time depends mainly on the end

points of the latter curves;

• matching breakthrough times is one of the most difficult tasks which

is not often performed.

Manual history matching allows accumulating some knowledge during

the history match procedure, being very time consuming though. This

obstacle can be overcome by introducing an automatic approach.

1.2.2 Automatic history matching

Automatic history matching uses computer logics to adjust the reservoir

parameters. This excludes human factor from the history matching process

which may result in the loss of specific knowledge related to reservoir under

study.

The main problem that has to be solved via automatic history matching

is searching for the combination of reservoir parameters for which an error

function (objective function) attains its minimum. This function represents
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a difference between the observed reservoir performance and the results of

simulation during the historical period [7]:

fE =

npar∑
i=1

[
wi (Xio −Xis)

2] , (1.1)

where fE denotes error function, npar is the number of reservoir parameters,

wi - weighting coefficient, Xio and Xis correspondingly refer to observed and

simulated data that have to be matched.

There are several approaches to automatic history matching which differ

in the way they obtain parameter set that minimizes objective function. The

choice of minimization technique is mainly based on the fact whether the

error function has linear or nonlinear form.

1.2.3 Concluding remarks

Selection of history matching method depends on the study objectives, the

put up company resources and the time constraints. However, no specific

history matching method guarantees a successful history match. More-

over the term ’successful match’ is not well-defined itself. Its meaning

is up to company, particular project or individual performing the study.

For instance, in general it is sufficiently realistic to consider pressures be-

ing matched if the difference between observed and computed quantities is

within ±10% draw-down, while some specific study may require reducing

the tolerance to ±5% or less, but not less than one percent [8].

The quality of the match is concerned with the amount of historical data

available. With insufficient data the sets of reservoir parameters minimiz-

ing objective function significantly differ from those for the case of more

representative data array. Even if successful match has been achieved with

one bunch of historical data, there is no guarantee that further reservoir

parameters adjustment is not needed as additional historical data become

available.

History matching stage is considered to be extremely time consuming

and usually contributes with a high rate to general study costs, being es-

sential for practical needs of reservoir engineering though. The use of auto-

matic history matching algorithms may resolve some difficulties related to

the stage by reducing the time required for computations.
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1.3 Automatic history matching strategies

The automatic history matching problem can be considered in a certain

sense as a mathematical minimization problem. To solve it we need in gen-

eral the algorithms suitable for minimization of objective functional (1.1).

1.3.1 Traditional automatic history matching

The history matching process has been investigated by joint efforts of reser-

voir engineering and mathematical community for around 40 years and is

pioneered by [14]. The authors suggest dividing reservoir into a number of

homogeneous blocks and computing so-called sensitivity coefficient for each

resulting cell. These sensitivity coefficients are used to evaluate how the

cost function changes with respect to small perturbations in the properties

of particular block. The reservoir parameters are varied until a least-squares

fit is obtained for observed and calculated pressures. The other early devel-

oped approach involves application of adjoint technique from the optimal

control theory to the history matching problem and is presented in [4].

During the past decades a few automatic history matching techniques

appeared, including e.g. representer method described in [2, 19]. The au-

thors have assumed the model being perfect except for the errors in the

model parameters. The measurements are considered as imperfect and con-

taining some errors. All errors are assumed to be Gaussian. Then the

minimizer of the cost function is obtained as a linear combination of the

solution given by the model without measurements and so-called represen-

ters that depend on the measurements. For each measurement a representer

is computed via the two step procedure: (i) solving backwards the adjoint

equation forced by an ’impulse’ correspondingly to the form of measurement,

(ii) solving forward the above equation with involvement of the computed

adjoint solution.

Among the recent techniques we should mention the streamline simu-

lation approach [18]. The method exploits the fact that geometry of the

streamlines represents the flow path which results from the field hetero-

geneities. This feature of streamlines is used by modifying reservoir param-

eters along the blocks mapped by streamlines.

The investigation of production problem requires the analysis of reser-

voirs filled in with the fluid consisting of up to three phases: oil, gas and

water. Behavior of such a reservoir can be described by the multi-phase

model discussed in Section 2.2.
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Several researchers have analyzed history matching problem with re-

spect to this model. For instance, one of the authors [20] computes sen-

sitivity coefficients via adjoint method in such a way that the number of

matrix problems which have to be solved is independent of the number

of model parameters. Then minimization of the objective function can be

performed by e.g. Gauss-Newton method exhibiting the property of ap-

proximate quadratic convergence in the neighborhood of the minimum.

However, most of these traditional history matching approaches are ei-

ther limited to the small-scaled and simple reservoir models or inefficient in

terms of computational costs. In general, these methods also perform the

treatment of uncertainty via repeated history matching process for different

initial models which results in even greater computational efforts. Moreover,

traditional history matching also does not allow continuous model updat-

ing. Namely, as the new data become available for being included into the

match, the whole history matching process has to be repeated using all

observed data. At the same time, the amount of deployed sensors for per-

manent monitoring of pressure, temperature or flow rates increases. This

fact yields the increase of data output frequency and rises up a problem of

incorporating obtained data in the model as soon as it becomes available so

that the model is always up-to-date.

1.3.2 Kalman filter in automatic history matching

The Kalman filtering techniques are known as the most popular method-

ology for assimilating the new measurements to continuously update the

state of the system. Originally, the Kalman filter was developed for oper-

ating on the linear models, while non-linearity requires using some further

modifications, e.g. the extended Kalman filter. However, when the model

is highly non-linear or the scale of the space vector is too large, applica-

tion of extended Kalman filter also meets difficulties. These difficulties can

be overcome by applying the ensemble Kalman filtering (EnKF) algorithm

based on Monte-Carlo approach.

The great majority of the problems in reservoir engineering are highly

non-linear and characterized by a large number of variables, thus the idea

to use EnKF in reservoir simulation seems to be natural. In particular

it is presented in the publications [11, 25]. Other papers [10, 17] report

the results of using EnKF approach in history matching process. They

consider the application of EnKF to a PUNQ-S3 model. ’PUNQ’ stands

for Production forecasting with UNcertainty Quantification. The PUNQ-
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S3 is a small-scaled synthetic tree-dimensional reservoir engineering model

developed by a group of oil companies, research institutes and universities

to compare methods for quantifying uncertainty in history matching. The

model is based on a real field operated by Elf Exploration Production.

Although these studies clearly show that EnKF is successful in assimilating

production data to update initial reservoir model and its application allows

reducing computational costs for history matching, there is still enough

space for further investigation and improvement.

Specifically, the research described in [27] has shown that for some non-

linear models the EnKF does not provide completely acceptable characteri-

zations of the uncertainties. This leads to the idea of using improved EnKF

modifications, namely various iterative EnKF schemes.

1.4 Research objectives

The carried project was focused on investigating ensemble Kalman filtering

and in particular iterative ensemble Kalman filtering approaches to solving

history matching problem for reservoir engineering. It was found out that

the following intermediate objectives have to be gained in order to achieve

the major goal:

• analyzing the features of the physical phenomena which influence

reservoir performance;

• studying the physical origin of the mathematical model which reflects

performance of reservoir with multi-phase flow;

• in-depth considering the algorithms which implement the Kalman fil-

tering techniques in order to form a basis for their extended exploita-

tion;

• proposing iterative modification of ensemble Kalman filtering;

• implementing the ensemble Kalman filtering techniques under inves-

tigation as a Matlab code and coupling them with forward simple

reservoir simulator simsim provided by Prof. J.D. Jansen;

• setting up experimental framework and performing numerical experi-

ments which allow comparing behavior of considered algorithms.

The thesis presents the results of the work devoted to the above tasks.



1.5. THESIS OUTLINE 9

1.5 Thesis outline

The proposed objectives have naturally predetermined the structure of the

thesis. It is organized as follows.

Chapter 2 provides the background necessary to analyze the main effects

which influence reservoir performance and presents the mathematical model

reflecting multi-phase fluid flow behavior.

In Chapter 3 the ensemble Kalman filtering technique which recently

gained popularity as powerful tools for history matching is described, and

the iterative approach to ensemble Kalman filtering is proposed in the

framework of reservoir simulation.

Chapter 4 defines the experimental settings for the twin experiment,

while the accomplishment of the case study is described in Chapter 5.

Finally, Chapter 6 presents relevant conclusions and recommendations.





Chapter 2

Reservoir properties and flow

equations

Before performing any reservoir simulation an analyst has to specify the

main effects influencing reservoir performance and develop an appropriate

mathematical model of the system. The current chapter is devoted to con-

sideration of such effects and in particular it describes the two-phase water-

oil flow model. The subsequent theory is presented in a manner similar to

[1, 7]. The form of the model equations essentially depends on the nature

of reservoir, namely, the rock and fluids filling it.

A natural reservoir is usually heterogeneous meaning that its properties

change with the space location. Such a fact has to be incorporated into the

model. This causes appearance of additional problems with modelling.

In turn the nature of fluids filling the reservoir strongly depends on the

stage of recovery. The following production stages can be distinguished [5]:

• primary recovery is the very early stage at which reservoir contains a

single fluid (e.g. gas or oil) under the high pressure. The gas or oil

is produced by natural decompression without any pumping effort at

the wells. Usually around 70%–80% of hydrocarbons are left in the

reservoir by the end of this stage;

• secondary recovery (water flooding) is oriented towards recovering the

part of remaining oil (or gas). For that purpose a fluid (typically the

water) is injected into so-called injection wells maintaining high reser-

voir pressure and producing oil through so-called production wells.

11
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After this stage often 50% or more of hydrocarbons still remain in

the reservoir. The water flooding although suffers from the water

breakthrough event at which some injected water is produced back

via production wells. The time for which at first the breakthrough

occurs is known as the breakthrough time;

• tertiary recovery (enhanced recovery) is the stage at which complex

chemical and thermal effects are involved to produce more hydrocar-

bons. These effects could be achieved by e.g. injecting into reservoir

some materials which are not present there under normal conditions.

The water flooding stage is very common in practical recovery process

and in particular an object of the current research. Consideration of oil

and water features allows assuming fluids being immiscible, so there is no

mass transform between phases. The phase which wets the porous medium

stronger than the other one is said to be wetting phase and denoted by

subscript w. The other phase is called non-wetting and labelled by subscript

o. In the current case water and oil are wetting and non-wetting phases

respectively.

The reservoir rock properties, the nature of fluids filling reservoir and

the effects appearing within rock-fluid interaction strongly influence multi-

phase flow in porous medium. Let us present some considerable features of

these phenomena.

2.1 Reservoir properties

The current section gives an insight into the main physical properties of the

reservoir that have to be taken into account while developing an appropriate

fluid flow model.

2.1.1 Rock properties

This part introduces basic reservoir-rock notions such as porosity and per-

meability which are assumed to be independent of fluid filling in the reser-

voir.

Porosity. The fluid in reservoir is contained in the pore spaces of the rock.

Some of these pores are interconnected and some are not. The ratio of the

pore space in the rock volume sample to the total rock volume sample
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is called porosity. This quantity is usually denoted by φ. Depending on

whether isolated pores are included or not into the computation of pore

volume in the sample, one can distinguish total and effective porosity. Since

only interconnected pores produce fluids we shall focus later on the effective

porosity which for simplicity will be called ’porosity’.

Permeability is the capacity of a porous medium to transmit fluids through

its interconnected points. We talk about absolute permeability if the porous

medium is 100% saturated with a single phase. Permeability property de-

pends on the point in space and even the fluid direction. In many prac-

tical processes it is reasonable to represent permeability as a tensor k =

diag(kx, ky, kz), where x, y and z are three principle directions. However, it

is often possible to assume that horizontal permeability kH = kx = ky, while

being still different from vertical permeability kV = kz. If k = kx = ky = kz

then porous medium shows isotropic property.

Rock compressibility is defined as [5]

cR =
1

φ

∂φ

∂p
, (2.1)

where p denotes the pressure. After integration we obtain

φ = φ0ecR(p−p0),

where φ0 is the porosity at a reference pressure p0. The use of approximation

brings us to the expression

φ ≈ φ0(1 + cR(p− p0)).

Concluding remarks. Rock properties of the reservoir typically vary

with location in space (e.g. porosity). If the property is constant and

independent of location, then the porous medium is called homogeneous.

In reality it is necessary to deal with heterogeneous reservoirs in which

property varies in space.

Some other reservoir parameters (e.g. permeability) may suffer from

directional dependency. If the property does not depend on the direction

in which it is measured, the reservoir has isotropic property distribution.

In the opposite case reservoir is said to be anisotropic in relation to that

property.
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2.1.2 Fluid properties

The current subsection addresses fluid properties that are of interest for

reservoir modelers. The list of such properties includes fluid compressibil-

ity factors, fluid formation volume factors (FVF), fluid densities and fluid

viscosities.

Fluid compressibility is defined as the relative volumetric change of a

given mass to pressure change at constant temperature:

cα = − 1

Vα

∂Vα

∂pα

∣∣∣∣
T 0

,

where α is either w or o with respect to the phase, V represents the volume

and T 0 is a reference temperature. Equivalently fluid compressibility may

be expressed as

cα =
1

ρα

∂ρα

∂pα

∣∣∣∣
T 0

, (2.2)

where ρα is the density of the phase α. Note that under isothermal condi-

tions

cw =
1

ρw

∂ρw

∂pw

∣∣∣∣
T 0

≈ 1

ρw

∂ρw

∂po

∣∣∣∣
T 0

. (2.3)

FVF. A fixed mass of a fluid filling reservoir occupies different volumes

at different reservoir pressures. The FVF is introduced to convert volumes

at reservoir pressure and temperature to their equivalent volumes under

standard conditions. The phase FVF is the ratio of the volume occupied by

phase at reservoir pressure and temperature to the corresponding volume

under standard conditions. For a single phase FVF may be written in terms

of densities:

Bα =
ραsc

ρα

,

where ραsc denotes the density of phase α under standard conditions. In

reservoir engineering standard conditions are usually defined as psc = 100(kPa)

and Tsc = 15(◦C).

Fluid density is also pressure dependent in reservoirs. For a single-phase

flow the density can be obtained via

ρα =
ραsc

Bα

.
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Fluid viscosity measures how easy the fluid flows as pressure gradient is

applied. Fluid viscosity is labelled by µ. Dilute fluid demonstrates low re-

sistance to flow because fluid molecules are far from each other and perform

random motions. On the other hand, fluid molecules in a dense fluid are

close to each other and their random motion retards flow. Fluid viscosity

is influenced by both pressure and temperature. The behavior of fluid vis-

cosity and density are related, since the density represents the measure of

the mean free path of molecules, hence, the measure of random molecular

motions which affect viscosity.

2.1.3 Fluid-rock properties

This section presents conceptions of fluid saturations, capillary pressure,

relative permeability and Corey-type two-phase relative permeability model.

Fluid saturation is a fraction of the pore space that is occupied by the

above fluid. If fluid saturations of water and oil are denoted by Sw and So

respectively then the following equality holds for two-phase flow:

Sw + So = 1. (2.4)

Capillary pressure occurs across an interface between any two immis-

cible flows and is a consequence of the interfacial tension. In a two-phase

system capillary pressure is the difference between pressures of the non-

wetting and wetting phases:

pc = po − pw = pc(Sw). (2.5)

Capillary pressure is a function of saturation for the given reservoir rock

and fluids at a constant temperature.

Relative permeability. If two or more phases are saturating the porous

medium the reservoir capacity to transmit any particular phase α is called

the effective permeability to that phase and denoted by kα. This defini-

tion yields that components of the effective permeability vector kα are not

greater than those of the absolute permeability k of porous medium. Rela-

tive permeability krα to phase α indicates the tendency of phase α to wet

the porous medium:

kα = krαk.
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Typical relative permeability curves for an oil-water system with water

displacing oil are presented in Figure 2.1.
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Figure 2.1: Typical relative permeability curves

The value of Sw at which water starts to flow is termed as connate water

saturation Swc and the value at which oil starts to flow — as residual oil

saturation Sor. These notions are reversed for a drainage cycle.

Considering the relative permeability to phase α at critical saturation

of the other phase we end up with the notion of the end point permeability

k0
rα.

Corey-type two-phase relative permeability model. Although the

values of relative permeability for each particular porous medium are sub-

jects to the empirical or experimental determination, there exist mathe-

matical models appropriate for describing a relationship between relative

permeability and saturation of the wetting phase. We are going to discuss

the Corey-type model.

Define the normalized saturation value as

S =
Sw − Swc

1− Swc − Sor

,
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then Corey-type approximations of relative permeability for water and oil

are

krw = k0
rwSnw , kro = k0

ro (1− S)no , (2.6)

where nw and no are Corey exponents. In general these quantities can be

obtained from measured data, but simplification nw = no = 2 is found being

appropriate.

The above discussion gives us basic ideas of some phenomena which

influence reservoir performance and, hence, have to be incorporated into

fluid flow model.

2.2 Two-phase fluid flow model

Consider a two-phase water-oil fluid under isothermal conditions. The cur-

rent subsection is devoted to the derivation of governing partial differential

equations (PDE’s) for such a flow. This system of equations includes:

• mass balance equations;

• Darcy’s law;

• capillary pressure equation (given by (2.5));

• relative permeability equations (given by Corey-type model (2.6));

• equations of state (given by (2.2) and (2.3)).

Mass balance equation. If the flow process is isothermal and no chem-

ical reactions occur, then the basic idea of the equation representing con-

servation of mass per unit time for a unit control volume under standard

conditions is illustrated by the following diagram:

mass in - mass out - mass accumulated + source term =0

Figure 2.2: Mass balance per unit time for a unit control volume

In the case of two-phase flow the mass balance equations can be ex-

pressed for each phase as

∇ ·
(

A
ρα

Bα

vα

)
+ A

∂
(

ρα

Bα
φSα

)
∂t

− Aραq̄α = 0, (2.7)
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where A is geometrical factor, vα denotes flow rate of phase α per unit cross-

sectional area perpendicular to flow direction (superficial velocity), q̄w and

q̄o are the source terms for water and oil phase respectively. Source terms

are currently expressed as flow rates per unit volume, and their positive

values correspond to injection, while negative — to production.

Darcy’s law. In addition to the mass conservation equation we need a

relationship between the flow rate and pressure gradient for each phase. In

the case of single-phase flow such a relationship was discovered by Darcy.

Differential form of Darcy’s law for the simultaneous flow of more than

one phase is

vα = − krα

µαBα

k (∇pα − ραg∇d) , (2.8)

where g is acceleration of gravity and d = d(x, y, z) represents the depth.

We can rewrite equation (2.8) in the form of

vα = −λα (∇pα − ραg∇d) , (2.9)

where λα =
krα

µαBα

k is phase mobility tensor.

To complete the mathematical model we have to determine appropriate

boundary and initial conditions.

Initial conditions in reservoir models normally assign phase pressures

and saturations for every grid block at the beginning of simulation.

Boundary conditions. The reservoir can be treated as an open system

with external (i.e. defining reservoir limits) and internal (i.e. wells) bound-

aries. For such a system, flow in and out of it takes place only at the

boundaries. The flow at the boundaries may be described by the following

types of conditions [7]:

• no-flow — phase transmissibilities across the boundary are set to zero.

This condition appears when the external reservoir boundary is sealed

to flow;

• constant-pressure — there is no change of pressure while crossing the

boundary. This condition arises if the rate of fluids withdrawn on one

side of the boundary is equal to the rate of fluids being supplied or

injected on the other side of the same boundary;
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• specified-efflux — the boundary is replaced by a now-flow boundary

condition and a fake production well. This condition becomes neces-

sary when there exists a communication between target reservoir and

some another one trough the boundary;

• specified-influx — the boundary is replaced by a now-flow boundary

condition and a fake injection well. This condition pops up when

there exists a communication between target reservoir and an aquifer

supplying water influx through the boundary.

Finally, the presence of wells has to be incorporated into the model. For

multi-phase flow this can be done by including bottom hole pressure, oil

production/injection rate and/or water inhection/production rate.





Chapter 3

Kalman filtering

Kalman filtering is a powerful technique designed for solving data assimi-

lation problems. Being named after Rudolph E. Kalman, who formulated

this approach in his famous paper of 1960, it was taken further by a number

of scientists and resulted nowadays in various modifications. This section

of the report presents general idea of Kalman filtering in a manner similar

to [21]. Let us restrict ourselves to the case of linear system that can be

described by the following two equations:

Xk+1 = FkXk + BkUk + GkWk, (3.1)

Zk = MkXk + Vk, (3.2)

where Fk,Bk,Gk,Mk are matrices, k is the time index, Xk denotes the

state of the system, Uk is a system input, Zk is the vector of measurements,

Wk is Gaussian white system noise process with zero mean and covariance

matrix Qk, Vk is Gaussian white measurement noise process with zero mean

and covariance matrix Rk. Moreover processes Wk and Vk are assumed to

be independent.

Vector Xk which contains information on the current system state can-

not be directly observed. However it is possible to measure Zk which is

some function of Xk affected by noise process Vk. The idea is to use the

available measurements Zk to estimate the state of the system Xk. Natu-

rally, we would like to have an accurate estimator of the true state. This

desire leads to the requirements given below:

• expected value of the estimate has to be equal to the expected value

21
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of the state;

• estimator should have the smallest possible error variance.

As it has been proven, Kalman filter is just the estimator satisfying the

formulated criteria. We proceed by introducing the original Kalman filter

algorithm.

3.1 The Kalman filter

To solve filtering problem (3.1)–(3.2) we have to determine the probability

density of the state Xk conditioned on the history of available measurements

Z1, . . . ,Zl. It turns out that this conditional density function is Gaussian,

hence, it can be characterized by mean an covariance matrix. Moreover,

for Gaussian distribution the mean is an optimal estimate of the state in a

minimum variance (or least square) sense and also in maximum likelihood

sense. Equations to obtain the mean X(k|l) and covariance matrix P(k|l)
of probability density of state Xk at time k conditioned on the history of

the measurements Z1, . . . ,Zl can be formulated as follows [13]:

• Initial condition:

X(0|0) = X0, (3.3)

P(0|0) = P0. (3.4)

• Time update:

X(k|k − 1) = FkX(k − 1|k − 1) + BkUk, (3.5)

P(k|k − 1) = FkP(k − 1|k − 1)FT
k + GkQkG

T
k . (3.6)

• Measurement update:

X(k|k) = X(k|k − 1) + K(k)(Zk −MkX(k|k − 1)), (3.7)

P(k|k) = (I−K(k)Mk)P(k|k − 1), (3.8)

where I is identity matrix of the appropriate size, K(k) is the Kalman

gain having a form of K(k) = P(k|k−1)MT
k (MkP(k|k−1)MT

k +Rk)
−1.

The Kalman filter is in fact a sequential filter method, because the model

is integrated forward in time via expressions (3.5)–(3.6) and as soon as
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measurements are available they are used to re-initialize the model through

(3.7)–(3.8) before the next integration step. The algorithm flowchart is

presented below.

Initial condition
X0, P0

��
Initialization via (3.3)–(3.4)

X(0|0), P(0|0)

��
Forward model

integration
via (3.5)–(3.6)

��
Forecasted state

X(k|k − 1),
P(k|k − 1)

��

Data
Zk

oo

Data
assimilation

via (3.7)–(3.8)

��
Analyzed state

X(k|k),
P(k|k)

`ab

gfe
��

Figure 3.1: Kalman filter algorithm flowchart

Term Zk −MkX(k|k − 1) on the right hand side of expression (3.7) is

called innovation Ik of the filter and is used to determine whether or not the

filter is performing well. If system equations (3.3)–(3.8) are correct (which

happens only in ideal case of perfect stochastic description of the system)
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then statistics of innovations are

E[Ik] = 0,

E[IkI
T
k ] = MkP(k|k − 1)MT

k + Rk.

Since these theoretical statistics are known they can be compared with the

statistics of observed innovations. If the realizations of the innovations are

consistent with theoretical statistics the filter is considered to be performing

well, otherwise the filter is said to be divergent.

Let us note that

lim
Rk→0

K(k) = M−1
k (3.9)

and

lim
P(k|k−1)→0

K(k) = 0. (3.10)

It follows from the limit (3.9) that as the measurement covariance ap-

proaches zero (hence, measurements become more accurate) the Kalman

gain puts more weight on the innovation within measurement update (3.7).

Thus, actual measurements Zk become more reliable and predicted mea-

surements MkX(k|k − 1) are trusted less and less. In turn, as covariance

matrix P(k|k−1) approaches zero, the Kalman gain puts less weight on the

innovation, thus predicted estimate X(k|k − 1) is trusted more and more.

Unfortunately, applying the standard Kalman filter algorithm to large-

scale systems implies a big computational effort needed. The most time

consuming part is calculation of the term FkP(k−1|k−1)FT
k in covariance

matrix update expression (3.6). There are various methods which allow

avoiding this computation, in particular the ensemble Kalman filter.

3.1.1 Parameter estimation with Kalman filter

Originally the Kalman filter was developed to update only dynamic state

variables. However it turns out that parameter estimation via Kalman

filtering algorithms is also possible. This can be done by constructing the

following state vector:

X =

[
m

Y

]
,

where Y consists of dynamic variables changing with time and m is a vec-

tor of static model parameters which are constant in time and have to be

estimated.
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Now the Kalman filter analysis is performed on augmented state vector.

The forward step of the algorithm results in updating only the dynamic vari-

ables with time and conserving the values of static parameters. However,

at the assimilation step the variables of both types are simultaneously up-

dated providing corrected estimations of the state vector and, hence, model

parameters.

3.2 The ensemble Kalman filter

The EnKF has been examined and applied in a number of studies since

it was first introduced by Geir Evensen in 1994. This filtering approach

is relatively easy to implement. It does not require any tangent linear

operator in the case of non-linear model (in contrary to extended Kalman

filter technique which was derived especially for non-linear cases) and has

affordable computational cost.

The EnKF is based on a representation of the probability density of the

state estimate by a finite number N of randomly generated system states

ξi, i = 1, . . . , N . The ensemble Kalman filter algorithm [13] is presented

below:

• Initialization:

ξi(0|0) ∼ N (X0,P0), i = 1, . . . , N. (3.11)

• Time update:

ξi(k|k − 1) = Fkξi(k − 1|k − 1) + BkUk + GkW
i
k,

i = 1, . . . , N, (3.12)

X(k|k − 1) =
1

N

N∑
i=1

ξi(k|k − 1), (3.13)

L(k|k − 1) = [ξ1(k|k − 1)−X(k|k − 1), . . . ,

ξN(k|k − 1)−X(k|k − 1)]T , (3.14)

where L(k|k − 1) defines an approximation of the covariance matrix
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P(k|k − 1) with rank N :

P(k|k − 1) =
1

N − 1
L(k|k − 1)L(k|k − 1)T. (3.15)

• Measurement update:

K(k) =
1

N − 1
L(k|k − 1)L(k|k − 1)TMT

k

∗
(

1

N − 1
MkL(k|k − 1)L(k|k − 1)TMT

k + Rk

)−1

, (3.16)

ξi(k|k) = ξi(k|k − 1) + K(k)
(
Zk −Mkξi(k|k − 1) + Vi

k

)
,

i = 1, . . . , N, (3.17)

X(k|k) =
1

N

N∑
i=1

ξi(k|k). (3.18)

The algorithm (3.11)–(3.18) can be visualized by the flowchart presented

in Figure 3.2, where the shadowed blocks represent the ensemble at different

stages of the procedure.

Note that (3.17) involves generating additional noise Vi
k with the as-

sumed statistics of the observation errors while constructing the measure-

ment set corresponding to the ensemble. The perturbed measurements are

necessary due to the fact that the absence of perturbation leads to the up-

dated ensemble which has too low variance and causes the divergence of the

algorithm [3].

Actually, the forward model integration step within reservoir engineer-

ing framework can be performed by making a forward run of the reservoir

simulator. As only the outputs of the simulator are needed to proceed with

EnKF algorithm, the simulator itself can be developed by another scientific

group and used as a black box in EnKF analysis. This feature allows sepa-

rating tasks between the researchers participating in the project, therefore

optimizing the work organization.

The data assimilation procedure via EnKF technique is suitable for par-

allel programming, since time and measurement update can be performed

separately on each ensemble member and run on different processors. The

communication between the parallel processes is only needed while comput-

ing the state covariance matrix and Kalman gain.
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Figure 3.2: Ensemble Kalman filter algorithm flowchart

Despite EnKF has a lot of advantages which are already mentioned, it

also faces an important practical problem, namely, standard deviation of

the errors in the state estimate converges very slowly with the number of

ensembles [13]. This makes the ensemble Kalman filter quite sensitive to

the number of ensemble members used for simulation. The main workload

is provided by performing time update for each ensemble member at each



28 CHAPTER 3. KALMAN FILTERING

time step. Hence, the speed of the EnKF algorithm is highly dependent on

the model complexity and efficiency of reservoir simulator.

The model describing multi-phase fluid flow in reservoir is highly non-

linear and the number of variables included into state space vector is very

large, normally at least two per grid block. Although EnKF performs fairly

good for this kind of problems, it sometimes fails to provide appropriate

characterization of uncertainty. An example is given in [27] in relation to

the case when the conditional pdf for reservoir model is multi-modal. Such

phenomenon results from the fact that model non-linearity destroys the

normality of a prior and a posterior distributions within Kalman filtering

analysis.

We are going to consider the history matching via EnKF algorithm as

the starting point for further investigations. We continue with some intro-

duction into alternative EnKF techniques.

3.3 Iterative Kalman filtering

The current section presents the ideas of Kalman filtering algorithms that in

our opinion can be alternatively applied to solving history matching prob-

lem.

Iterative forms of the Kalman filter are not completely new within the

scope of reservoir engineering applications. These methods aim at obtain-

ing any ensemble which provides improving the representation of the state

distribution. There exist several approaches in petroleum engineering lit-

erature: the ad-hoc confirming EnKF method proposed by [25], iterative

EnKF method recently analyzed by [26] from optimization point of view

instead of Monte Carlo sampling methodology and ensemble randomized

maximum likelihood filter developed by [12].

We would like to exploit the idea of iterating the filter globally [16].

Although it was originally suggested to iterate the extended Kalman filter,

we modify the approach for the case of parameter estimation via EnKF

technique.

The algorithm looks as follows. Incorporating all available data via

EnKF starting with X(t0|t0) and P(t0|t0), we obtain the estimated values

of X(tend|tend) and P(tend|tend), where t0 and tend denote respectively the

starting and the end time point of data assimilation period. If the number

of available measurements is sufficiently large we can expect that the esti-

mated model parameter value m(tend|tend) is closer to the ’true’ one than
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initial m(t0|t0). The estimated model parameter m(tend|tend) replaces now

m(t0|t0) and becomes a new initial guess for the next global iteration, which

is done by rerunning the EnKF based on the same bunch of observations.

Afterwards, this procedure can be repeated until no sufficient change in esti-

mated model parameter is obtained. Note that when rerunning the filter we

change only the mean estimator of initial guess about the model parameter

and not the statistics Y(t0|t0) and P(t0|t0).
The flowchart of such an iterative EnKF (IEnKF) is presented in Figure

3.3, where the dashed blocks correspond to the steps which actually are the

parts of EnKF algorithm.
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Figure 3.3: Iterative ensemble Kalman filter algorithm flowchart

Although the more educated choice of initial guess naturally should re-

sult in better estimation, there is no guarantee that iteration will converge.

Thus, the plan is to investigate the features of the above IEnKF technique

and to check whether it indeed allows improving the state vector estimations

and the forecasts. The next chapter outlines the settings of the experiment

used to test EnKF and IEnKF performances.





Chapter 4

Experimental environment

This chapter defines the experimental settings and characteristics to be

used while approaching case study aimed at comparing the performance of

algorithms considered earlier (Chapter 3).

The study is accomplished on the basis of two-dimensional two-phase

fluid flow model described in detail in Appendix A. The model implemen-

tation is provided by the forward reservoir simulator ’simsim’ developed by

Prof. J.D. Jansen. The above simulator is used as a black box to perform

the time update in filtering algorithm.

4.1 Domain and process

The model is applied to a two-dimensional squared petroleum reservoir with

a size of 700(m)× 700(m) equipped with uniform cartesian grid consisting

of 21 grid cells in each direction. The reservoir is taken to be 2(m) height,

however, we assume that all quantities are vertically homogeneous, which

allows considering fluid flow processes only in two dimensions.

We consider the water flooding stage of recovery process which is per-

formed through the exploitation of the injection well located at the center

of reservoir and four production wells established at the corners of the field

(see Figure 4.1)

The injection well is constraint by prescribed injection rate of 0.002(m3/s)

and production wells — by bottom hole pressure of 2.5 × 107(Pa). These

parameters together with the others like connate water saturation, resid-

ual water saturation, etc. are taken the same as specified in the input file

31
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Figure 4.1: Wells locations

of simsim simulator corresponding to the case of heterogeneous reservoir

operated under described recovery strategy. The list of input parameters

required for simsim simulator is given in Appendix B.

4.2 State space representation

To analyze and compare filtering methods for history matching problem,

we use the model (A.21):

Ê(X)Ẋ− Â(X)X− B̂(X)U = 0, (4.1)

where Ê(X), Â(X) and B̂(X) are respectively accumulation, system and

input matrices in generalized state space form, U is an input vector con-

taining constraints at the wells, X is a state vector formed as a vertical

concatenation of vectors which consist of pressures p and water saturations

S corresponding to each of the grid blocks:

X =

[
p

S

]
.

In order to obtain the state vector at each time moment tk we have to

find a solution of the above equation. For that purpose we use in-house

reservoir simulator simsim which implements particular method of implicit
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Euler integration with Newton iteration for solving (4.1).

Denote the output of the forward simulator run from time moment tk−1

up to time tk by [pk, Sk]
T = f(pk−1,Sk−1).

While operating on a field, one can measure the following parameters

at the wells: bottom hole pressures, oil and water flow rates, pressures and

saturations. On the other hand, these quantities can be also estimated

via mathematical modelling. As soon as the output of the simulator run

is available, we may forecast the values of observable variables. The state

vector X already contains estimations of well pressures and saturations. Let

us consider the observable bottom hole pressures, oil and water flow rates

at the wells as the components of the vector

Y =

 pwell

qwell,o

qwell,w

 .

In fact predicted measurements Yk can be seen as some function of the

current field pressures and saturations Yk = g(pk,Sk), hence, a function

of the previous state Yk = g(f(pk−1,Sk−1)). This kind of information can

be also extracted from the forward simulator run which leads to the idea

of augmenting state vector with the vector of observable variables. Note

that we are interested only in bottom hole pressures and flow rates which

are not a priori determined by the given constraints, hence, in bottom hole

pressure at injection well and flow rates at production wells.

To perform parameter estimation we have to include the parameter of

interest into the space vector. The study is focused on estimating per-

meability field. It turns out that the normal logarithm of permeability is

normally distributed, hence, we would like to augment the state vector by

the log-permeability.

Finally, the mega state space vector takes the following form:

X =



log k

p

S

pwell

qwell,o

qwell,w


,

where log-permeability log k is a vector which consists of log-permeability

values corresponding to each of the grid cells. The model parameter is
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considered as static, i.e. time invariant. Meanwhile, the value of the static

parameter is corrected within the data assimilation step.

The state space representation of the model under study can be now

written in the following form

Xk = F(Xk−1), (4.2)

where F is the operator of reservoir simulator.

This equation has to be solved at the time update stage of EnKF al-

gorithm. In the current project solving (4.2) is accomplished by simsim

simulator. Note that the state vector consists of 441 permeability values,

441 pressure values, 441 water saturation values, 1 observed bottom hole

pressure at the injection well, 4 observed oil flow rates and 4 observed water

flow rates at the production wells or simply X ∈ R1332.

It is also important to add a relation between the model variables and

the measurements, which for our system reads as

Zk = MkXk, (4.3)

where the measurement matrix Mk actually does not depend on time and

is a block matrix M ∈ R19×1332:

M =

 0 M1 0 0

0 0 M1 0

0 0 0 M2


with blocks M1 ∈ R5×441 and M2 ∈ R9×9 of the following form:

• elements of matrix M1 corresponding to the observations at the well

grid blocks (i.e. elements indexed as (1, 1), (2, 21), (3, 221), (4, 421)

and (5, 421) are set to one, the rest of the matrix if filled in with

zeros);

• M2 is in fact an identity matrix.

Let us note that obtained system (4.2)–(4.3) is non-linear, although the

measurement equation (4.3) has a linear form. However, the actual relation

between the model state vector and observable variables is non-linear. The

derived notation only shifts the source of non-linearity and does not vanish

its effects.

We consider the model (4.2) as being perfect which might seem to be not

very realistic. However, such an assumption specifies better environment for
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investigating particular iterative EnKF method. We expect that in the case

when the ensemble spread is not influenced by model noise, the iterative

techniques have to demonstrate their specific features.

On the contrary, the values of observable variables are assumed to be

imprecise. The inaccuracy of the measurements can be reflected by inserting

into equation (4.3) a stochastic process Vk ∈ R19 which is Gaussian white

observation noise process with zero mean and time invariant covariance

matrix R. Hence relation (4.3) becomes

Zk = MXk + Vk. (4.4)

Finally, equations (4.2) – (4.4) represent the model in a state space form.

4.3 Synthetic measurements generation

To test the performance of EnKF algorithms we are going to do a so-called

’twin experiment’. It requires that the ’true’ values of observable variables

are generated synthetically by a preliminary run of the model itself and

the noisy observations are then created by permutating the ’true’ values

with the measurement error noise. This procedure ensures that the model

is indeed able to match the data. Thereafter the synthetic data is used in

the assimilation experiments.

The implementation of simsim simulator provides the ’true’ permeabil-

ity field which originates from the training image of meandering channels.

The training image was created with the snesim algorithm based on the

use of single normal equation [24] (see Figure 4.2).

Afterwards, the proper orthogonal decomposition was applied to the

training image which resulted in multiple realizations of the permeability

field with the identical statistics. Finally, one of the realizations was taken

as a ’true’ permeability field.

We were equipped with 1000 ensemble members and followed the given

choice of the ’true’ realization (see Figure 4.3).

Now it is possible to generate synthetic data initializing the simulator

with ’true’ permeability field, grid block pressures p = 3 ∗ 107(Pa) and

water saturations Sw = 0.2. Figure 4.4 illustrates generated reference data

consisting of pressures and water saturations at each grid cell, bottom hole

pressure at injection well and flow rates at production wells. The legends

establish a correspondence between the well which is located in (x, y) grid

block of the field and the line coloring representation of a quantity at this
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Figure 4.2: Training image of meandering channels
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Figure 4.3: ’True’ permeability field

well. The oil and the water flow rates plotted on the right-top subplot can

be distinguished by solid and dashed lines respectively.

The measurements are now obtained from the state vector through rela-

tion (4.4) with the covariance matrix of observation noise taken in a block

form

R =


R1 0 0 0

0 R2 0 0

0 0 R3 0

0 0 0 R4

 , (4.5)



4.3. SYNTHETIC MEASUREMENTS GENERATION 37

0 500 1000 1500
3.2

3.4

3.6

3.8
x 10

7

Time t ( days)

B
ot

to
m

 h
ol

e 
pr

es
su

re
 p

w
f (

 P
a)

 

 (11,11)

0 500 1000 1500
0

0.5

1

1.5

2
x 10

−3

Time t ( days)

W
el

l f
lo

w
 r

at
es

 |q
o|, 

|q
w

| (
 m

3 /s
)

 

 
(1,1)
(21,1)
(1,21)
(21,21)

0 500 1000 1500
2.4

2.6

2.8

3

3.2

3.4

x 10
7

Time t ( days)

W
el

l g
rid

 b
lo

ck
 p

re
ss

ur
e 

p 
( P

a)

 

 
(1,1)
(21,1)
(11,11)
(1,21)
(21,21)

0 500 1000 1500
0.2

0.4

0.6

0.8

1

Time t ( days)

W
el

l g
rid

 b
lo

ck
 w

at
er

 s
at

ur
at

io
n 

S w
 (

−
)

 

 

(1,1)
(21,1)
(11,11)
(1,21)
(21,21)

Figure 4.4: ’True’ data

where R1 = (0.05 ∗ 107)
2 · I ∈ R5×5, R2 = (0.05 ∗ 10−1)

2 · I ∈ R5×5,

R3 = (0.05 ∗ 107)
2 · I ∈ R1×1, R4 = (0.05 ∗ 10−3)

2 · I ∈ R8×8, i.e. the

error in each observable variable is taken to be 5% of its actual scale. The

same covariance matrix is then used to represent the measurements noise

within data assimilation analysis. The simulator is run from time t0 = 0

to tend = 1500(days) with a step of 30(days), providing the ’true’ observa-

tions after each time step. If the value of generated observation is out of

physically reasonable bounds for the process (e.g. S < 0.2 or S > 0.8), the

simple truncation to the nearest bound is applied. Figure 4.5 has the same

structure as Figure 4.4 and illustrates generated measurements.
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Figure 4.5: Generated measurements

Although at the moment we have a model and a set of observations,

EnKF analysis still is not possible, since it requires the decision on the

initial state for the filtering procedure.

4.4 Filter initialization

The filter has to be initialized by generating initial ensembles of only static

and dynamic variables, because there is no production data available at the

starting time.

Since the reservoir is typically in a state of equilibrium at the time

when production starts, the initial dynamic variables (i.e., initial pressures

and water saturations corresponding to each grid block) are assumed to be

perfectly known (without uncertainty). Therefore they are the same for

each ensemble member and equal to the initial condition of the ’true’ model

(i.e. p = 3 ∗ 107(Pa) and Sw = 0.2).
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Thus, at the initial moment the only permutations contained in the ini-

tial ensemble are caused by initial ensemble of permeability models. Within

the study we are going to use the initial permeability ensemble provided by

Prof. J.D. Jansen (the ensemble consists of 999 members). The ensemble

mean and variance are visualized in Figure 4.6, where the top picture cor-

responds to the ensemble mean and the bottom image — to the variance

respectively.

Mean of permeability fields ensemble (log(m2))
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Figure 4.6: Mean and variance of permeability fields ensemble

Now the state space representation (4.2)–(4.4) is derived, the set of

synthetic observations is generated and the decision about initial ensemble
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has been made, so we can start with the data assimilation procedure.

4.5 Measures of filter performance

While accomplishing EnKF analysis through different methods, one has to

determine the ways of evaluating the filter performance. The measures of

’filter quality’ that we are going to use for our purposes can be basically

subdivided in two groups, namely into indices measuring the quality of

either (i) history matching or (ii) forecast.

The measures in the first group aim at finding the difference between the

’true’ observational data or model parameter and those which are estimated

within the filter run.

We determine the quality of estimating a ’true’ permeability field by the

following root mean square (RMS) error:

RMS(k) =

√√√√ 1

T · dim(k)

T∑
k=1

‖kk − ktrue‖2, (4.6)

where T denotes the number of assimilation steps, dim(k) states for the size

of vector of estimated parameters (i.e., dim(k) = 441 in our study), kk is a

permeability vector at time moment tk and vector ktrue represents the ’true’

permeability field.

Similarly we define a history match measure for other particular types

of production data:

RMS(α) =

√√√√ 1

T ∗ n(α)

T∑
k=1

‖Xk(α)− Ztrue
k (α)‖2, (4.7)

where α states for the type of production data, namely, α corresponds to

pressures, saturations, bottom hole pressures or water and oil production

rates at the wells, n(α) denotes the number of measurements of appropriate

type, Xk(α) and Ztrue
k (α) are respectively the vector of estimated data and

’true’ measurements at time point tk consisting of such elements of Xk and

Ztrue
k that correspond to the data of type α.

On the other hand we may evaluate the filter performance on the basis

of the quality of predicting production data. For that purpose we continue

running the simulator forward in time starting the last data assimilation

step. The ensemble of state vectors obtained at this step is used as the
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initial condition for the forecast. Afterwards we determine the quality of the

forecast with the help of the measure (4.7), where X denotes the forecasted

state vector.

The next chapter examines performance of various EnKF techniques

embedded into the given experimental setup on the basis of above measures.





Chapter 5

Case study

This chapter addresses the analysis of some experience associated with ap-

plication of ensemble Kalman filter and iterative ensemble Kalman filter

techniques to history matching problem.

The study of each particular algorithm can be divided into two parts.

At first, the history matching problem is solved and the estimate of model

static parameter (i.e. permeability) is obtained. This step involves the

use of generated measurements and data assimilation procedure. The filter

analysis is done from time t0 = 0(days) till tstop = 510(days), which ensures

that the water breakthrough event occurs in none of the production wells

(see Figure 4.4). At the second stage of investigations the state vector

estimated at tstop is used as initial condition for making a forecast of reservoir

performance from time tstop up to time moment tend = 1500(days) when

breakthrough events at all production wells have been already observed.

The implementation of EnKF and, hence, IEnKF algorithms has dis-

closed some key problems that have to be solved before performing the

analysis of the filtering technique.

5.1 State vector feasibility

The use of classical ensemble Kalman filter in reservoir engineering frame-

work meets an important obstacle concerned with obtaining physically un-

reasonable values of the state variables. It originates from performing data

assimilation on the state vector without any constraint coming from the

43
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physical nature of the parameters. Hence the updated dynamic variables

may become unfeasible and inconsistent with estimated static variables.

After some reviewing the literature and thinking over we have discovered

the following approaches to overcome the infeasibility of state variables,

most of which are oriented towards improving the saturation entries into

the state vector:

simple truncation

the elements of the state vector, which become out of physically rea-

sonable bounds after the time update step of filtering analysis, are

simply truncated to the nearest bound. This method is used e.g. by

[27], although in our opinion it leads to some losses in characterization

of the a posterior distribution;

normal score transform

the state vector is composed of the normal score transform values [9]

of water saturations instead of saturations themselves. However, it

was shown in [11] that such a method provides reasonable values of

saturations, but do not reduce their spatial oscillations;

Reynolds’ transformation

the elements of state vectors which do not belong to the sets within

physical bounds are scaled back to the interval of reasonable values

through log transformation. The forward simulator run is then per-

formed with such a vector as initial condition and the outcome of a

run is scaled back with an appropriate inverse transform [26]. We

are not going to use this method, since in our case the operator of

transformation and the reservoir operator are not commutative;

saturation front location as a state variable

the state vector is composed of the variables describing the location

of the shock front instead instead of water saturations [11]. Unfortu-

nately this method is not very applicable for two- or three-dimensional

problems;

iterated update

whenever the updated saturation values are detected to be out of

bounds the simulator is rerun from the previous time step to recom-

pute the dynamic variables using the updated static variables. Then
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the state vector is updated again. The iteration is repeated until the

corrected values of saturations fall into physically reasonable interval

or the maximum number of iterations is exceeded [11];

confirming EnKF

the additional ’confirmation’ step is involved into classical EnKF al-

gorithm [25]. The details are given in the next subsection.

One may also think of modifying the approaches to constraint classi-

cal Kalman filtering [22, 23] and use of truncated Gaussian distribution in

filtering analysis [6]. The last methods were nor tested on reservoir engi-

neering problems neither they were developed for EnKF, although looking

promising for further investigations.

We are going to use the confirming EnKF approach, which is known as

producing reasonable results.

5.1.1 The confirming ensemble Kalman filter

The authors of [25] proposed to include one additional so-called ’confirming’

step into EnKF algorithm in order to ensure that updated state is plausible

and consistent with flow equations. The flowchart of confirmation step is

presented in Figure 5.1.

The idea of confirmation step is following. Starting at time moment k−1

we, at first, perform a forecast update up to time k and then a data assim-

ilation step. Then take only recently updated static model parameters and

run again the flow simulator from current time k to the next time moment

k. The dynamic variables obtained replace those got after measurement

update stage of EnKF and become an initial guess for the next time update

step. This procedure guarantees that the updated state is consistent with

the flow model.

This confirmation step then occupies an appropriate place in the classical

ensemble Kalman filter algorithm (see Figure 5.2).
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Figure 5.1: Confirmation step flowchart
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Figure 5.2: Confirming ensemble Kalman filter algorithm flowchart
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The inclusion of the confirmation step into the algorithm results in al-

most doubling the computational time due to additional forward model run

per ensemble member at each time step.

In fact we use the confirming EnKF technique instead of classical en-

semble Kalman filtering for our investigations. So, from now and on we

mean confirming EnKF technique under the abbreviation of EnKF.

5.2 Re-scaling state vector

The other problem related to implementation of the filter algorithms ap-

pears due to the different units and scales for measuring the variables,

which leads to the block structure of the state vector where the two ex-

tremes are represented by pressure values of order 107 and production rates

of order 10−3, although both are equally important for the study. This fact

becomes crucial when matrix-matrix and matrix-vector multiplications in

measurement update step have to be done. Within these operations the

small numbers tend to be lost because of computational error. Unfortu-

nately, the computer is not able to handle properly a summation of two

numbers if they essentially differ in the order of magnitude. To prevent

such a loss of information and even divergence of the filter, we have pro-

posed the following trick that is applied to data assimilation step of the

filtering procedure.

Consider arbitrary time step k. Let us define the scaling matrices Ak ∈
R19×1332 and Bk ∈ R1332×1332 such that multiplications AkMkL(k|k−1) and

BkL(k|k − 1) result in matrices which elements do not sufficiently differ in

order. We make the following choice for our study:

Ak =


A1

k 0 0 0

0 A2
k 0 0

0 0 A3
k 0

0 0 0 A4
k


and

Bk =


0 0 0 0 0

0 B1
k 0 0 0

0 0 B2
k 0 0

0 0 0 B3
k 0

0 0 0 0 B4
k

 ,

where A1
k = 10−7 · I ∈ R5×5, A2

k = 10 · I ∈ R5×5, A3
k = 10−7 · I ∈ R1×1,



5.2. RE-SCALING STATE VECTOR 49

A4
k = 103 · I ∈ R8×8 and B1

k = 10−7 · I ∈ R441×441, B2
k = 10 · I ∈ R441×441,

B3
k = 10−7 · I ∈ R1×1, B4

k = 103 · I ∈ R8×8.

Denoting scaled versions of matrices MkL(k|k − 1) and L(k|k − 1) as

C1
k = AkMkL(k|k − 1) and C2

k = BkL(k|k − 1) and accomplishing some

transformations, we obtain the following expression to compute the Kalman

gain (3.16):

K(k) =
1

N − 1
L(k|k − 1)LT(k|k − 1)MT

k

∗
(

1

N − 1
MkL(k|k − 1)LT(k|k − 1)MT

k + Rk

)−1

=
1

N − 1

(
B−1

k Bk

)
L(k|k − 1)LT(k|k − 1)MT

k

(
AkA

−1
k

)
∗
(

1

N − 1
MkL(k|k − 1)LT(k|k − 1)MT

k + Rk

)−1 (
A−1

k Ak

)
=

1

N − 1
B−1

k (BkL(k|k − 1)) (AkMkL(k|k − 1))T

∗
(

1

N − 1
AkMkL(k|k − 1) (AkMkL(k|k − 1))T + AkRkAk

)−1

Ak

=
1

N − 1
B−1

k C2
k (C1

k)
T

(
1

N − 1
C1

k (C1
k)

T
+ AkRkAk

)−1

Ak

or

K(k) = B−1
k K1

kAk, (5.1)

where K1
k =

1

N − 1
C2

k (C1
k)

T

(
1

N − 1
C1

k (C1
k)

T
+ AkRkAk

)−1

.

Note that we have used the property of diagonal matrices Ak and Bk to be

equal to their transposed versions AT
k and BT

k respectively. The Kalman

gain factorization (5.1) involves matrix K1
k which is computed via operations

only on the scaled matrices. The ensemble update (3.17) is now performed

as

ξi(k|k) = ξi(k|k − 1) + K(k) (Zk −Mkξi(k|k − 1) + Vi
k)

= ξi(k|k − 1) + B−1
k K1

kAk (Zk −Mkξi(k|k − 1) + Vi
k)

= ξi(k|k − 1) + B−1
k (K1

k (AkZk −AkMkξi(k|k − 1) + AkV
i
k)) .

(5.2)

The expression (5.2) also involves operations on the scaled matrices except

multiplication with B−1
k , which is not dramatic since Bk is a diagonal ma-

trix.

We are now fully equipped to perform data assimilation analysis.
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5.3 Results and discussion

A sequence of simulations has been accomplished to test the performance

of EnKF and IEnKF assimilation algorithms in the framework of estimat-

ing the model parameters for two-phase two-dimensional fluid flow model.

We proceed by describing particular instances and discussing the obtained

results.

5.3.1 Sensitivity of EnKF to the number of ensemble

members

It has been already notified that performance of EnKF method is quite sen-

sitive to the size of the ensemble used. Thus, it seems reasonable to start

by investigating how filter performance depends on a number of ensemble

members and find some optimum ensemble size. Within the measurements

update step the whole bunch of available data, namely, pressures and sat-

urations at the well grid blocks, bottom hole pressures and water and oil

flow rates, is assimilated every time period of 30(days). Data assimilation

is performed from time t0 = 0(days) to time moment tstop = 510(days).

We examine time averaged RMS difference (4.6) between the elements of

ensemble mean and true state vectors, which correspond to the values of

model parameter (i.e. permeability), for 10, 20, . . . , 90 ensemble members.

The filter is initialized with the values of X0 and P0 fixed as in Section 4.4

and measurement covariance matrix R taken as (4.5). Despite this we also

analyze CPU time needed to run EnKF for each ensemble.

Figure 5.3 confirms the fact stated in several publications e.g. [13]: as a

number of members in ensemble increases RMS error slowly decreases. This

leads to the natural idea of using for computations an ensemble of larger

size. However, the CPU time required for performing simulation increases

linearly with the number of ensemble members. Thus, it becomes necessary

to decide which ensemble size to select keeping in mind two conditions: (i)

we have to chose ensemble size which being increased further does not cause

sufficient improvement of an accuracy of computations; (ii) simulation using

ensemble with the chosen size should not require too much CPU time. Pre-

liminary analysis shows that in our case it seems optimal to perform further

EnKF runs on N = 60 ensemble members. Since iterative modification of

EnKF actually has the same origin, we find it being appropriate to use the

same ensemble size as being optimal also for IEnKF runs.
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Figure 5.3: EnKF: RMS error and CPU time analysis subject to ensemble
size

5.3.2 History matching via EnKF

Let us now present the outcome of data assimilation procedure accomplished

via the EnKF algorithm with respect to the optimal number of ensemble

members.

At first we consider the quality of estimating the model parameter. For

that purpose space averaged RMS errors are plotted in time (see Figure

5.4). This quantities are related to the part of ensemble mean and ensem-

ble members values corresponding to evaluated permeability. The graph

demonstrates improvement of the parameter estimation in the first few data

assimilation steps followed by stabilization of the error, and reduction of

the uncertainty in estimated value (since the ensemble spread becomes nar-

rower). This means that at the later times assimilated data carries less

useful information on reservoir structure than at the early times. Indeed,

we obtain a permeability field resembling the true one, although some un-

derestimating the values in the upper right and overestimating the values

in the bottom left corner area of the field (compare Figure 5.5(a) and left

bottom chart on Figure 5.5(b)). The variance field is actually obtained

as the diagonal terms of covariance matrix computed from the statistical
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Figure 5.4: EnKF: RMS error in estimated permeability vs time

properties of the ensemble. The difference between the top right and the

bottom right subplots in Figure 5.5(b) indicates reduction of the variance

and therefore uncertainty in the estimation.

The next point of evaluating the EnKF algorithm performance is con-

cerned with the quality of matching the actual data which comes from the

true model. The outcome of data assimilation together with the reference

model are visualized by Figures 5.6–5.9.

It can be seen that in general the results obtained from EnKF method

match the reference model. The only serious problem appears while match-

ing water saturation data at (21, 21) grid block, which is connected with

injection well grid block through a high permeability layer. In this case

the time of water breakthrough event is underestimated. The same kind

of problem occurs when matching water saturation data at (1, 1) grid cell,

since some of the ensemble members are already indicating the water break-

through. Note that this upper left corner of reservoir is also connected to

the injector via the high permeability area.
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Figure 5.5: EnKF: True, initial and estimated permeability fields and cor-
responding variances
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Figure 5.6: Historical match of pressure data at production well grid blocks
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Figure 5.7: Historical match of water saturation data at production well
grid blocks
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Figure 5.8: Historical match of water and oil flow rates data at production
well grid blocks
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Figure 5.9: Historical match of pressure, water saturation and bottom hole
pressure data at injection well grid block
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Well RMS error
grid block type p (Pa) S (−) qo (m3/s) qw (m3/s) pwf (Pa)

(1, 1) production 16501 0.001846 0.000029 0 -
(21, 1) production 13163 0.000005 0.000023 0 -
(11, 11) injection 158024 0.000044 - - 157713
(1, 21) production 12548 0.000005 0.000022 0 -
(21, 21) production 14713 0.009995 0.000025 0.000002 -

Table 5.1: EnKF: History match measure for various types of assimilated
data

The results presented in Figures 5.6–5.9 are supported by computing

history match error (4.7) for each type of assimilated data. The values of

the error are summarized in the Table 5.1.

It follows from the Table 5.1 that value corresponding to time averaged

RMS error in water saturation at well grid block (21, 21) and the scale of

saturation variable have nearly the same order of magnitude. This indicates

the problems in matching water saturation data at the bottom right corner

of the reservoir.

However, the complete analysis of the numerical information presented

in the Table 5.1 confirms that the algorithm performs reasonably well. Thus,

we may consider a history matching stage as being passed successfully and

perform a forecast based on the estimated permeability field.

5.3.3 Forecasting reservoir performance

Consider the predictive stage of reservoir simulation. With the estimated

model parameter in hand and the ensemble used for data assimilation we

perform the following forecasting experiments:

• forecast from time t0 up to time moment tend = 1500(days) with

initial ensemble taken to be the same as the initial ensemble for data

assimilation;

• forecast from time tstop up to time moment tend = 1500(days) where

initial condition at tstop is taken to be the ensemble of state vectors

estimated at tstop = 510(days);

• forecast from time t0 up to time moment tend = 1500(days) where en-

semble of initial model parameters is taken to be the same as ensemble

of estimated parameters at tstop = 510(days), and initial pressures and

saturations have the typical values of 3∗107(Pa) and 0.2 respectively.
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The numerical results of the experiments are presented in Tables 5.2–

5.4 and visualized in Figures 5.10–5.13; the curves drawn there actually

correspond to the mean of the ensemble of state vectors at each moment of

time. Note that the results are plotted starting time t1 = 30(days) and that

for the second experiment the parts of the curves corresponding to times t1
up to tstop are appropriate outcomes of data assimilation procedure.

Well RMS error
grid block type p (Pa) S (−) qo (m3/s) qw (m3/s) pwf (Pa)

(1, 1) production 261284 0.093006 0.000115 0.000124 -
(21, 1) production 404078 0.191811 0.000154 0.000190 -
(11, 11) injection 1447839 0.000358 - - 1447107
(1, 21) production 313572 0.100296 0.000123 0.000171 -
(21, 21) production 392179 0.124873 0.000175 0.000208 -

Table 5.2: Forecast measure for various types of data obtained within fore-
cast from t0 = 0(days) to tend = 1500(days) (without parameter estimation)

Well RMS error
grid block type p (Pa) S (−) qo (m3/s) qw (m3/s) pwf (Pa)

(1, 1) production 139145 0.093061 0.000104 0.000069 -
(21, 1) production 57054 0.062875 0.000049 0.000037 -
(11, 11) injection 634638 0.000416 - - 634401
(1, 21) production 104269 0.072727 0.000065 0.000027 -
(21, 21) production 135055 0.070946 0.000075 0.000057 -

Table 5.3: Forecast measure for various types of data obtained within fore-
cast from t0 = 510(days) to tend = 1500(days) (with parameter estimation)

Well RMS error
grid block type p (Pa) S (−) qo (m3/s) qw (m3/s) pwf (Pa)

(1, 1) production 121140 0.081353 0.000092 0.000060 -
(21, 1) production 40444 0.049285 0.000042 0.000031 -
(11, 11) injection 518001 0.000339 - - 517795
(1, 21) production 79003 0.053132 0.000048 0.000019 -
(21, 21) production 105763 0.053564 0.000056 0.000044 -

Table 5.4: Forecast measure for various types of data obtained within fore-
cast from t0 = 0(days) to tend = 1500(days) (with parameter estimation)
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Figure 5.10: Various forecasts of pressure data at production well grid blocks
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Figure 5.11: Various forecasts of water saturation data at production well
grid blocks
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Figure 5.12: Various forecasts of water and oil flow rates data at production
well grid blocks
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Figure 5.13: Various forecasts of pressure, water saturation and bottom hole
pressure data at injection well grid block
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Studying the results of the first experiment we find out especially serious

problems with forecasting proper values of water saturations at grid blocks

hosting production wells, pressure at injector grid block and bottom hole

pressure at the injection well. Note that in general at wells located at

the top right and bottom left corners of the reservoir the pressures and oil

and water production rates are overestimated, whereas the time of water

breakthrough event is underestimated. This phenomenon can be explained

by the fact that reservoir simulation is performed based on the ensemble of

permeability fields which mean is much higher than the true values in the

top right and bottom left areas of the field. In turn, the values of the mean

permeability field at the layer connecting top left, bottom right production

wells and injector, which are lower than the true ones, cause underestimation

of the pressures, water and oil production rates, and bottom hole pressure

at injection well.

Since from the practical point of view it is very important to provide

an accurate prediction of the water breakthrough event at production wells,

the results of undertaken experiment clearly indicate the necessity of history

matching stage of simulation and, hence, the need of parameter estimation

to improve the subsequent forecast of reservoir behavior.

The second and third tests that we have run give the results shown in

Table 5.3 and Table 5.4 respectively. Note that although do not indicating

any critical obstacles within the forecast, the entries of the Table 5.3 are

not directly comparable with corresponding cells from the Table 5.2 and

Table 5.4, since the averaged RMS error was computed for a different time

intervals.

It turns out that simulations based on calibrated model (i.e. involving

estimated values of permeability) represent the matter better, which meets

our expectations. The prediction curves obtained for various type of data

within experiments 2 and 3 are similar. This can be explained by the fol-

lowing reasoning: (i) starting time tstop we actually use the same values of

model parameter for forecast in both cases; (ii) at time tstop the elements

of state vectors that do not represent permeability values are not equal.

However, the vector used in second experiment comes from data assimila-

tion which ensures a consistency with the true state vector coming from the

reference model. In turn the state vector at time tstop in the third experi-

ment is obtained as an outcome of model run based on the estimated value

of model parameter, which was computed via history matching procedure

in such a way that it makes simulated values of observable variables to be

consistent with true values of those quantities; (iii) the model used in ex-



5.3. RESULTS AND DISCUSSION 61

periments is deterministic. So, one can save some computational time by

performing a forecast only running the model from the end of data assim-

ilation period and further based on the state vector and model parameter

finally estimated within data assimilation.

Although history matching on the basis of EnKF technique has demon-

strated its efficiency for proper estimating model parameter and further

predictions, there is still space for improvement. We may aim at obtaining

better representation of reservoir heterogeneous structure, which in turn

will result in increasing the quality of forecasts.

5.3.4 Motivation for parameter estimation via IEnKF:

global carbon-dioxide model

Let us provide some heuristical justification of IEnKF technique applica-

bility to parameter estimation problems. To investigate the performance

of IEnKF algorithm we would like to perform a trial experiment with rel-

atively ’transparent’ small-scaled model. Consider for that purpose the

global carbon-dioxide (CO2) model.

The global CO2 model describes concentration of carbon-dioxide at sev-

eral ocean layers and in simple case has the following approximate discrete

representation [13]:

Xk+1 = exp(A∆t)Xk + B∆t, (5.3)

where

A =


−k12 − k13 k21 k13 0

k12 −k21 0 0

k13 0 −k31 − k34 k43

0 0 k34 −k43

 , B(t) = [0.06(t− 1890) 0 0 0]T ,

k12 = 1/33, k21 = 1/40, k13 = 1/5, k31 = 1/6, k34 = 1/6.2 and k43 = 1/300

are model parameters, ∆t is 10(years). We assume the measurements of

CO2 in the top layer of the ocean being available and present measurement

relation (3.2) in a form of

Zk = MXk + Vk, (5.4)

where M = [0 0 1 0] is the measurement matrix and Vk is the measurement

noise with zero mean an covariance R = 0.01. Then the data set is generated
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according to the above model with the initial condition at t0 = 1890(years)

being taken as X0 = [51 62.2 61.7 2986.4]T.

Suppose now that model parameter k31 is unknown and has to be esti-

mated. This can be done by considering a parameter as additional sys-

tem state variable. Let us perform parameter estimation via ensemble

Kalman filtering starting with a wrong guess k31 = 0.5 and error covari-

ance R = 0.01. The initial vector X0 is assumed to be perfect and the

covariance of the initial model parameter guess is taken as 0.09. The esti-

mated parameter value at the end of the run is equal to 0.1666. The change

of parameter estimation value in time is shown in the Figure 5.14.
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Figure 5.14: CO2 model: EnKF parameter estimation with initial guess
normally distributed with parameters (0.5, 0.09) and covariance of mea-
surement noise R = 0.01

In this example the sufficient accuracy of the estimation was achieved by

one global EnKF run. However if we start with initial guess for the param-

eter being much far from the true one, e.g. 1.5 and repeat the experiment,

then after all available data is assimilated we end up with the estimation

being equal to −3.7305. Hence, the idea of IEnKF described in Section 3.3

can be applied. Note that at the second iteration of EnKF algorithm we

assume the model parameter coming from N (−3.7305, 0.09), i.e. the mean

is equal to the obtained estimation and the variance stays the same as in
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the very beginning of the experiment. The second global EnKF iteration

provides us with an estimated value of the parameter equal to −3.4180,

which is closer to the true one, but still needs to be improved. It turns

out that 14 global iterations have to be performed in such a case to obtain

reasonable estimation of value 0.1669. The first few global EnKF iterations

are presented in Figure 5.15.

Although the IEnKF algorithm has demonstrated its efficiency in such

a test, we can get faster convergence by taking larger value of measurement

noise covariance, e.g. R = 10.0. the increase of measurement error co-

variance implies keeping the spread of the ensemble sufficient as more data

is assimilated. Then only two global iterations are needed to obtain an

accurate parameter estimation which equals 0.1680 (see Figure 5.16).

The other issue is concerned with evaluating our believes in the quality of

initial guess related to the model parameter. We consider initial guess of the

model parameter to be N (2.0, 0.01) or N (2.0, 4), and use typical measure-

ment noise ofR = 0.01. Therefore in the first case we are quite certain about

the guessed parameter value, whereas in the second one our uncertainty is

much higher. It turns out that within the first experimental framework an

IEnKF algorithm provides an accurate estimation of the model parameter

by means of 16 iterations. In the second test filter demonstrates divergent

behavior (see Figure 5.17 for the first few global iterations). The divergence

of the filter in such a case should not be surprising, since initially linear

problem (5.3)–(5.4) becomes non-linear due to involvement of the model

parameter into state vector. In general, for the case of non-linear filtering

problem, there is no guarantee that the filter performance is satisfactory

and the filter does not diverge.

Thus, IEnKF technique is applicable to solving parameter estimation

problems and does demonstrate some features superior to classical EnKF

algorithm in the case of various experiments with the global carbon-dioxide

model.
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Figure 5.15: CO2 model: First iterations of IEnKF parameter estimation
with initial guess normally distributed with parameters (2.0, 0.09) and co-
variance of measurement noise R = 0.01
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Figure 5.16: CO2 model: IEnKF parameter estimation with initial guess
normally distributed with parameters (2.0, 0.09) and covariance of measure-
ment noise R = 10.0
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Figure 5.17: CO2 model: First iterations of IEnKF parameter estimation
with initial guess normally distributed with parameters (2.0, 4.0) and co-
variance of measurement noise R = 0.01
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5.3.5 History matching via IEnKF

Let us come back to estimating parameters of the two-phase two-dimensional

fluid model. We proceed by running IEnKF algorithm for the trial example

which is discussed throughout Section 5. In fact we accomplish the second

global iteration of EnKF method. Space averaged RMS errors are plotted

in time (see Figure 5.18) to evaluate the quality of estimating the model

parameter. The graph demonstrates improvement for neither parameter es-
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Figure 5.18: IEnKF: RMS error in estimated permeability vs time

timation nor uncertainty characterization, which can be expected since the

first EnKF iteration does not provide reducing the parameter estimation er-

ror in later times and actually gives us relatively accurate estimate. Indeed,

there is almost no visual difference between permeability fields obtained

with EnKF and IEnKF algorithms (compare Figures 5.19(a) and 5.19(b)).
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Figure 5.19: IEnKF: RMS error for estimated permeability vs time
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Consider now situation when a priori information on the values of model

parameters is far from real. For that purpose we take the initial ensemble

of log-permeability fields and shift each member of it by adding a vector

5 ∗ Ishift, where shifting vector Ishift consists of ones and Ishift ∈ R1×441.

Note that such a shift does not affect the variance statistics, hence, the

structure of initial ensemble is kept. The data assimilation is performed

from time t0 = 0(days) up to time moment tstop = 300(days) for these

initial parameters within usual experimental environment. It turns out that

EnKF method allows obtaining some improved, although not yet enough

accurate, estimation of the parameters, whereas IEnKF algorithm diverges.

At this point we try to benefit from the analysis of the trial CO2 model

and check whether a choice of larger measurement error can provide better

estimations. We now upscale the measurement noise covariance matrix R

with a factor 104. Such parameters for data assimilation indeed allow the

IEnKF algorithm to demonstrate its features by some reducing the error in

estimation (see Figure 5.20).

The same observation can be made based on visual comparison of Fig-

ures 5.21(a) and 5.21(b). Note that although regularly providing overesti-

mated values, the filter tends to capture the structure of true permeabil-

ity field. This happens because the ensemble of permeability fields, used

for the current test, is only shifted version of the one previously used for

investigations. Such an ensemble contains some information on the field

structure which simple shifting does not affect, since a shift changes the en-

semble mean and not the covariance. The given initial statistics cannot be

changed, because it comes from the statistics of ensemble population. Thus

the possibilities of improving parameter estimation by varying statistics of

initially guessed values of model parameter are in certain sense restricted.

We proceed by the more representative example of IEnKF usage within

reservoir engineering framework. Consider now the initial ensemble of log-

permeability fields being shifted by vector 0.5∗Ishift. The data assimilation

is performed from time t0 = 0(days) up to time moment tstop = 510(days)

and the covariance of measurement error is scaled by the factor of 102 to

prevent filter divergence. Such parameters for data assimilation allow some

reducing the error in estimation of permeability values performed via (see

Figure 5.22). Indeed, we obtain a permeability field with a structure resem-

bling the true one, although some overestimating the values corresponding

to low permeability areas of the field (see Figure 5.23). The parameter

values corresponding to these areas are in particular improved after global

iteration (compare Figures 5.23(a) and 5.23(b)). The difference between
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the bottom right charts in Figures 5.23(a) and 5.23(b) indicates reduction

of the variance and therefore uncertainty in the estimation.

Although demonstrating a usage of IEnKF approach to estimating per-

meability values, the performed tests rise up additional problems to be

solved. The list of such problems includes finding criteria to evaluate

whether global filter iteration is needed in real case, when no true per-

meability values are available. We suppose that one may consider the RMS

differences between the parameter values obtained at two sequential data

assimilation steps. Another issue is concerned with determining appropriate

error statistics that can have a great impact on improvement of the estima-

tions and the number of global EnKF iterations needed for that purpose.

Summarizing, we may assert that history matching on the basis of

IEnKF technique has demonstrated its efficiency for improving model pa-

rameter estimation.
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Figure 5.20: IEnKF: RMS error for estimated permeability vs time (shifted
initial ensemble with 5 ∗ Ishift and measurement error covariance matrix
104 ∗R are used in experiment)
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Figure 5.21: IEnKF: Initial and estimated permeability fields and corre-
sponding variances (shifted initial ensemble with 5∗Ishift and measurement
error covariance matrix 104 ∗R are used in experiment)
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Figure 5.22: IEnKF: RMS error for estimated permeability vs time (shifted
initial ensemble with 0.5 ∗ Ishift and measurement error covariance matrix
102 ∗R are used in experiment)
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Figure 5.23: IEnKF: Initial and estimated permeability fields and corre-
sponding variances (shifted initial ensemble with 5∗Ishift and measurement
error covariance matrix 102 ∗R are used in experiment)



Chapter 6

Conclusion

The study has been focused on the analysis of the usage and applicability

of ensemble Kalman filtering techniques with respect to history matching

stage of reservoir simulation process. In turn history matching is known to

be very important for the whole reservoir investigation as it results in the

calibrated model which can be later used to predict reservoir performance.

Summarizing the results obtained within the current research we can

formulate some general conclusions.

First, the success in creating a basis for reservoir simulation methodol-

ogy depends on deriving an appropriate model which reflects the knowledge

of reservoir and fluid physical properties. Then the above model has to

be discretized. With the model in hand one can perform a history match-

ing process, which aims at adapting the model parameters to match the

computed reservoir outcome quantities and the real observations.

There are two basic approaches to history matching: manual and au-

tomatic. In the latest years great research effort has been devoted to au-

tomatic history match, which demonstrates a potential to decrease time

expenses and provide more accurate estimates of the model parameters.

However, traditional automatic history matching approaches are either lim-

ited to the small-scaled and simple reservoir models or inefficient in terms

of computational costs. Moreover, there rises up a problem of continuous

real-time model updating.

The mentioned obstacles are tried to be overcome by the use of Kalman

filtering techniques and especially ensemble Kalman filter method which is

easy for implementation and computationally efficient. Meanwhile it turns

out that application of EnKF to the problem of estimating parameters re-
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lated to reservoir engineering model is not straightforward.

As the model describes a real physical process, the state vector obtained

at each time step via data assimilation procedure has to be feasible. Noth-

ing in Kalman filtering methodology guarantees that such a requirement is

satisfied. Hence, one needs to make sure that he/she gets physically reason-

able estimates. The confirming EnKF algorithm used in the current study

just allows taking this circumstance into account by introducing additional

’confirmation’ step into the body of each data assimilation routine [25].

However, this is not very efficient, since inclusion of additional step results

in doubling computational costs.

Another issue is concerned with performing the data assimilation step,

since the results of operations on matrices which elements significantly differ

in scale are very sensitive to the accuracy of initial data. This feature may

cause the critical errors in the estimation of the state vector and final diver-

gence of the filter. We make use of specially introduced ’scaling’ matrices

to solve the problem.

Following the idea presented in [16], there is proposed an iterative mod-

ification of ensemble Kalman filter. Tested on trial global carbon-dioxide

model, such an algorithm demonstrates superior features comparing to clas-

sical EnKF approach for some particular instances, when a priori knowledge

of the possible parameter values is far from reality.

To investigate the perspectives opened by these ensemble Kalman fil-

tering algorithms we have performed the investigations based on the use of

in-house reservoir simulator, which provides a forward integration of two-

phase (water-oil) two-dimensional fluid flow model. The accomplished case

study has confirmed the usefulness of EnKF technique for solving the history

matching problem and estimating reservoir model parameter. The experi-

ments clearly indicate the necessity to find a proper model parameter value

for performing further forecast of reservoir behavior. There might occur

problems at which EnKF algorithm does not provide results of sufficient

accuracy. An appropriate use of IEnKF method in such a case can improve

the estimations.

Finally we conclude that EnKF methodology and its special modification

(iterative EnKF algorithm) have a promising future as the powerful tools

for solving the important problems related to reservoir engineering. The

progress in this area can be definitely expected.
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Appendix A

Two-Phase Two-Dimensional

Fluid Flow Model

This section addresses deriving the governing PDEs for two-phase (water-

oil) two-dimensional fluid flow model and presenting the above equations in

a discrete form. Such a goal is achieved with the help of the the guidelines

given in [15].

A.1 Governing equations

Consider a two-phase water-oil fluid under isothermal conditions. This

means that FVFs are not required for deriving the governing PDEs. We

formulate the equations in terms of in-situ volumes.

In the case of two-phase flow the mass balance equations (2.7) can be

expressed for each phase as

∇ · (Aρwvw) + A
∂ (ρwφSw)

∂t
− Aρwq̄w = 0, (A.1)

∇ · (Aρovo) + A
∂ (ρoφSo)

∂t
− Aρoq̄o = 0 (A.2)

and differential representation of Darcy’s law for the simultaneous flow of
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more than one phase is (2.8), which in our situation takes the form

vw = −krw

µw

k (∇pw − ρwg∇d) , (A.3)

vo = −krw

µo

k (∇po − ρog∇d) . (A.4)

Substituting expressions (2.4), (2.5), (A.3) and (A.4) into (A.1) and

(A.2) we obtain

−∇ ·
(

Aρw
krw

µw

k

[(
∇po −

∂pc

∂Sw

∇Sw

)
− ρwg∇d

])
+ A

∂ (ρwφSw)

∂t
− Aρwq̄w = 0, (A.5)

−∇ ·
(

Aρo
kro

µo

k [∇po − ρog∇d]

)
+ A

∂ (ρoφ(1− Sw))

∂t
− Aρoq̄o = 0. (A.6)

The term ∇·
(

Aρw
krw

µw

k
∂pc

∂Sw

∇Sw

)
in equation (A.5) reflects the nonlinear

diffusion effect caused by the capillary pressure.

Let us investigate the accumulation term in equations (A.5) and (A.6)

on the basis of expressions (2.1), (2.2) and (2.3):

∂ (ρwφSw)

∂t
=

∂ρw

∂t
φSw + ρw

∂φ

∂t
Sw + ρwφ

∂Sw

∂t

=
∂ρw

∂po

∂po

∂t
φSw + ρw

∂φ

∂po

∂po

∂t
Sw + ρwφ

∂Sw

∂t

= ρwφ

(
Sw(cw + cR)

∂po

∂t
+

∂Sw

∂t

)
, (A.7)

∂ (ρoφ(1− Sw))

∂t
=

∂ρo

∂t
φ (1− Sw) + ρo

∂φ

∂t
(1− Sw)− ρoφ

∂Sw

∂t

=
∂ρo

∂po

∂po

∂t
φ (1− Sw) + ρo

∂φ

∂po

∂po

∂t
(1− Sw)− ρoφ

∂Sw

∂t

= ρoφ

(
(1− Sw) (co + cR)

∂po

∂t
− ∂Sw

∂t

)
. (A.8)
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During water flooding on reservoir scale the dispersion caused by geo-

logical heterogeneities is usually much stronger than the diffusion caused by

capillary pressures. Moreover, solving the discretized equations numerically

often results in the presence of numerical dispersion. This numerical dis-

persion is of the same order or even larger than the dispersion and diffusion

caused by physical phenomena. With respect to the above discussion and

following the idea described in [15] we neglect capillary forces and disper-

sion.

This assumption and the use of expressions (A.7) and (A.8) allow sim-

plifying the equations (A.5) and (A.6) to the form

−∇ ·
(

Aρw
krw

µw

k [∇p− ρwg∇d]

)
+ Aρwφ

[
Sw(cw + cR)

∂p

∂t
+

∂Sw

∂t

]
− Aρwq̄w = 0, (A.9)

−∇ ·
(

Aρo
kro

µo

k [∇p− ρog∇d]

)
+ Aρoφ

[
(1− Sw) (co + cR)

∂p

∂t
− ∂Sw

∂t

]
− Aρoq̄o = 0, (A.10)

where the subscript ’o’ for the pressure is omitted, since the absence of

capillary pressure and (2.5) imply po = pw.

Assuming isotropic permeability, pressure independence of the parame-

ters and absence of gravitational forces, we can rewrite equations (A.9) and

(A.10) in scalar two-dimensional form

− A

µw

[
∂

∂x

(
kkrw

∂p

∂x

)
+

∂

∂y

(
kkrw

∂p

∂y

)]
+ A

[
φSw(cw + cR)

∂p

∂t
+

∂Sw

∂t

]
− Aq̄w = 0, (A.11)

− A

µo

[
∂

∂x

(
kkro

∂p

∂x

)
+

∂

∂y

(
kkro

∂p

∂y

)]
+ A

[
φ (1− Sw) (co + cR)

∂p

∂t
− ∂Sw

∂t

]
− Aq̄o = 0. (A.12)

The model (A.11)–(A.12) describes the two-phase water-oil fluid flow. Now



86 APPENDIX A. TWO-PHASE 2D FLUID FLOW MODEL

the numerical solution of the model can be obtained by the finite difference

approach.

A.2 Model discretization

In the current study we follow the most natural approach to dealing with

(A.11)–(A.12) by solving equations simultaneously. This is the so-called

simultaneous solution method as described originally in [1]. However, we

mainly use the guidelines sketched in [15].

Let us start by discretizing the first term in equation (A.11) as

A

µw

∂

∂x

(
kkrw

∂p

∂x

)
≈ A

µw

(kkrw)i+ 1
2
,j (pi+1,j − pi,j)− (kkrw)i− 1

2
,j (pi,j − pi−1,j)

(∆x)2 , (A.13)

where absolute permeability k is computed through harmonic averages

ki− 1
2
,j =

2
1

ki−1,j
+ 1

ki,j

and relative permeability krw is obtained with the help of upstream weight-

ing [1]:

(krw)i+ 1
2
,j =

{
(krw)i,j , if pi,j ≥ pi+1,j;

(krw)i+1,j , if pi,j < pi+1,j.

The second term in equation (A.11) can be rewritten in a similar manner

as

A

µw

∂

∂y

(
kkrw

∂p

∂y

)
≈ A

µw

(kkrw)i,j+ 1
2
(pi,j+1 − pi,j)− (kkrw)i,j− 1

2
(pi,j − pi,j−1)

(∆y)2 . (A.14)

Combining terms (A.13) and (A.14) results in the following discretization
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of (A.11):

V

[
φSw(cw + cR)

∂p

∂t
+

∂Sw

∂t

]
i,j

− (Tw)i− 1
2
,j pi−1,j − (Tw)i,j− 1

2
pi,j−1

+
[
(Tw)i− 1

2
,j + (Tw)i,j− 1

2
+ (Tw)i,j+ 1

2
+ (Tw)i+ 1

2
,j

]
pi,j

− (Tw)i,j+ 1
2
pi,j+1 − (Tw)i+ 1

2
,j pi+1,j = V (q̄w)i,j , (A.15)

where transmissibility (Tw)i− 1
2
,j denotes the following term

(Tw)i− 1
2
,j =

∆y

∆x

A

µw

(kkrw)i− 1
2
,j

and (Tw)i,j− 1
2

stays for

(Tw)i,j− 1
2

=
∆x

∆y

A

µw

(kkrw)i,j− 1
2
.

Analogously to the (A.15) we obtain a discretized version of equation

(A.12):

V

[
φ(1− Sw)(co + cR)

∂p

∂t
− ∂Sw

∂t

]
i,j

− (To)i− 1
2
,j pi−1,j − (To)i,j− 1

2
pi,j−1

+
[
(To)i− 1

2
,j + (To)i,j− 1

2
+ (To)i,j+ 1

2
+ (To)i+ 1

2
,j

]
pi,j

− (To)i,j+ 1
2
pi,j+1 − (To)i+ 1

2
,j pi+1,j = V (q̄o)i,j . (A.16)

Now let us combine equations (A.15) and (A.16) in a matrix form:[
Vwp Vws

Vop Vos

][
ṗ

Ṡ

]
+

[
Tw 0

To 0

] [
p

S

]
=

[
qw

qo

]
, (A.17)

where vector p contains pressures

pT = [pi−1,j . . . pi,j−1 pi,j pi,j+1 . . . pi+1,j],

vector S includes water saturations

ST = [(Sw)i−1,j . . . (Sw)i,j−1 (Sw)i,j (Sw)i,j+1 . . . (Sw)i+1,j],
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sub-matrices Vwp, Vws, Vop, Vos consist of accumulation terms

Vwp = V φ(cw + cR)[0 . . . 0 (Sw)i,j 0 . . . 0], Vws = V φ[0 . . . 0 1 0 . . . 0],

Vop = V φ(co + cR)[0 . . . 0 (1− Sw)i,j 0 . . . 0], Vos = −V φ[0 . . . 0 1 0 . . . 0],

sub-matrices Tw and To are made of transmissibility terms

Tw =
[
− (Tw)i− 1

2
,j · · · − (Tw)i,j− 1

2

(
(Tw)i− 1

2
,j + (Tw)i,j− 1

2
+ (Tw)i,j+ 1

2
+ (Tw)i+ 1

2
,j

)
− (Tw)i,j+ 1

2
· · · − (Tw)i+ 1

2
,j

]
,

To =
[
− (To)i− 1

2
,j · · · − (To)i,j− 1

2

(
(To)i− 1

2
,j + (To)i,j− 1

2
+ (To)i,j+ 1

2
+ (To)i+ 1

2
,j

)
− (To)i,j+ 1

2
· · · − (To)i+ 1

2
,j

]
,

and vectors qw and qo contain the flow rates (source terms)

qT
w = V [(q̄w)i−1,j . . . (q̄w)i,j−1 (q̄w)i,j (q̄w)i,j+1 . . . (q̄w)i+1,j],

qT
o = V [(q̄o)i−1,j . . . (q̄o)i,j−1 (q̄o)i,j (q̄o)i,j+1 . . . (q̄o)i+1,j].

Actually the terms qo = V q̄o and qw = V q̄w cannot be always prescribed

directly. Normally it is possible to determine a total flow rate qt and obtain

oil and water rates through the fractional flows fo =
λo

λo + λw

and fw =

λw

λo + λw

as

qo = foqt, qw = fwqt.

Hence the vector of source terms has the following form[
qw

qo

]
=

[
Fw

Fo

]
qt,

where qt is the vector of total rates

qT
t = [(qt)i−1,j . . . (qt)i,j−1 (qt)i,j (qt)i,j+1 . . . (qt)i+1,j],

sub-matrices Fw and Fo are diagonal with non-zero entries containing frac-
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tional flows, namely,

Fw = [0 . . . 0 (fw)i,j 0 . . . 0],

Fo = [0 . . . 0 (fo)i,j 0 . . . 0].

Now (A.17) can be written as[
Vwp Vws

Vop Vos

][
ṗ

Ṡ

]
+

[
Tw 0

To 0

] [
p

S

]
=

[
Fw

Fo

]
qt

or

Ê(X)Ẋ− Â(X)X− B̂(X)U = 0, (A.18)

where

Ê =

[
Vwp Vws

Vop Vos

]
, Â = −

[
Tw 0

To 0

]
, B̂ =

[
Fw

Fo

]
Lqu,

X =

[
p

S

]
, U = Luqqt,

vector U represents non-zero elements of the total flow rate vector qt, then

Luq is a location matrix consisting of zeros and ones at appropriate places

and Lqu = LT
uq.

The system of equations (A.18) is the discretized version of model (A.11)–

(A.12) which can be taken as the subject to future simulation.

A.3 Well model

In general reservoir simulation aims at providing an accurate forecast for the

well production data and pressure and saturation distributions. For that

purpose a model has to reflect the presence of wells in the field. The well

treatment is considered to be a separate task with specific theory behind.

To describe a well performance one has to know the average grid block

pressure p, the so-called flowing sandface pressure pwf and the total produc-

tion rate qt. Since the well grid block has an additional unknown variable

(either flowing sandface pressure or production rate), it is necessary to relate

it to the known quantities. The basic assumption requires consideration of a

flow of incompressible fluid as being steady-state cylindrical radial towards

a well in the center of a grid block. Under such conditions the following
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pressure distribution is obtained [7]:

p = pwf −
µq

2πkHh
log

(
re

rwell

)
, (A.19)

where h is the grid block hight, re denotes external radius at which the

analytical solution for pressure and numerical solution on a fine grid are

equal, rwell states for the well-bore radius. Following the idea in [15] the

external radius can be expressed in the form of

re = 0.14
√

∆x2 + ∆y2. (A.20)

Combining (A.19) and (A.20) we end up with

p = pwf −
µq

2πkHh
log

(
0.14

√
∆x2 + ∆y2

rwell

)
or

p = pwf −
q

Jwell

,

where Jp =
µ

2πkHh
log

(
0.14

√
∆x2 + ∆y2

rwell

)
is a well index.

Now this concept has to be incorporated into equation (A.18).

A.4 Simple simulator simsim

The in-house simple simulator simsim used in the project solves the system

of equations describing the two-phase two-dimensional fluid flow model in

the reservoir with five-spot injection-production configuration. The system

has generalized state space form and reads as follows [15]:

Ê(X)Ẋ− Â(X)X− B̂(X)U = 0, (A.21)

where

Ê =

[
Vwp Vws

Vop Vos

]
, Â = −

[
Tw + FwJp 0

To + FoJp 0

]
, B̂ =

[
Fw

Fo

]
[Iq + Jp]Lqu,

X =

[
p

S

]
, U =

[
p̆well

q̆well

]
,
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p̆well denotes prescribed bottom hole pressures and q̆well — prescribed total

flow rates at the wells respectively, Jp is a diagonal matrix with non-zero

well-indices Jp on the diagonal at the rows corresponding to the grid blocks

with prescribed bottom hole pressures, Iq states for a diagonal matrix with

ones on the diagonal at the rows corresponding to the grid blocks with

prescribed total flow rates and other elements being zeros.

Reservoir simulator simsim implements particular method of implicit

Euler integration with Newton iteration for solving (A.21). After initializing

the simulator, the user can obtain the state vector X at each time point of

interest.





Appendix B

Simsim input parameters

This chapter lists input data needed to initialize simulator simsim. The

required parameters are:

• number of grid blocks in each direction: 21;

• field length and width: 700(m) each;

• grid block height: h = 2(m);

• rock compressibility: cR = 1.0× 10−8 (Pa−1);

• oil compressibility: co = 1.0× 10−8 (Pa−1);

• water compressibility: cw = 1.0× 10−8 (Pa−1);

• oil viscosity: µo = 5.0× 10−4(Pa · s);

• water viscosity: µw = 1.0× 10−3(Pa · s);

• porosity: φ = 0.3;

• end point relative permeability for oil: k0
ro = 1.0;

• end point relative permeability for water: k0
rw = 0.5;

• Corey exponent for oil: no = 2;

• Corey exponent for water: nw = 2;

• residual oil saturation: Sor = 0.2;

93
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• connate water saturation: Swc = 0.2;

• grid block number of injection well: 221;

• prescribed total flow rate for injector: qt = 0.002 (m3/s);

• grid block numbers of production wells: 1, 21, 421 and 441;

• prescribed bottom hole (flowing sandface) pressures for producers:

pwf = 2.5× 107(Pa);

• well-bore radius: rwell = 0.1143(m).

The parameters given above correspond to a square five-spot injection-

production situation which is considered in the project.

One needs to complete the input data with the time interval at which

integration has to be performed, and also with appropriate initial pressures

and water saturations at each grid cell.



List of Symbols

and Abbreviations

Abbreviation Description

EnKF ensemble Kalman filter
FVF formation volume factor
GOR gas-oil ratio
PDE partial differential equation
pdf probability density function
PUNQ-S3 Production forecasting with UNcertainty

Quantification (model)
RMS root mean square (error)
simsim simple simulator (our in-house reservoir sim-

ulator)
WOR water-oil ratio

Symbol Description SI units

A geometrical factor −, m, m2

A scaling matrix -
Â system matrix in generalized state space form -
Bα FVF of phase α -
B matrix controlling model input -
B scaling matrix -
B̂ matrix controlling model input in generalized

state space form
-

cR rock compressibility 1/Pa

cα compressibility of phase α 1/Pa
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Symbol Description SI units

C matrix -
d depth m

Ê accumulation matrix in generalized state
space form

-

fE error function -
fα fractional flow for phase α -
f non-linear vector-function -
F system matrix -
F operator of reservoir simulator -
Fα fractional flow matrix for phase α -
g acceleration of gravity m/s2

g non-linear vector-function -
G matrix controlling model noise -
h grid block height m

I identity matrix -
I innovation of the filter -
Jp well index m3/Pa · s
Jp well index matrix m3/Pa · s
k discrete time index
k permeability m2

k permeability tensor m2

kα effective permeability to phase α m2

krα relative permeability to phase -
krα

0 end point permeability to phase α -
K Kalman gain matrix -
l discrete time index
L approximation of covariance matrix P -
Luq location matrix -
Lqu inverse of location matrix Luq -
m vector of static model parameters -
M linear measurement operator -
npar the number of reservoir parameters -
nα Corey exponent for phase α -
n(α) number of measurements corresponding to the

production data of type α

-

N ensemble size -
p pressure Pa

p0 reference pressure Pa

pc capillary pressure Pa
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Symbol Description SI units

pwf bottom hole (sandface) pressure Pa

p vector of grid block pressures Pa

p̆well vector of prescribed bottom hole pressures at
the wells

Pa

pwell vector of non-prescribed bottom hole pres-
sures at the wells

Pa

P system state covariance matrix -
q̄α source term for phase α s−1

qt total flow rate m3/s

qα vector of flow rates for phase α m3/s

qt vector of total flow rates m3/s

q̆well vector of prescribed total flow rates at the
wells

m3/s

qwell,α vector of non-prescribed flow rates of phase α

at the wells
m3/s

Q model noise covariance matrix -
r normalized RMS ratio -
re external radius m

rwell well bore radius m

R observational noise covariance matrix -
Ra RMS ratio -
S fluid saturation -
S normalized saturation -
Sor residual oil saturation -
Swc critical water saturation -
S vector of grid block water saturations -
t time s

T temperature ◦C

T number of data assimilation steps -
T 0 reference temperature ◦C

Tα transmissibility of phase α m3/Pa · s
Tα matrix of transmissibility terms correspond-

ing to phase α

m3/Pa · s

U model input vector -
vα superficial velocity for phase α m/s

V volume m3

V Gaussian white measurement noise vector
process

-

Vwp sub-matrix of matrix of accumulation terms -
Vws sub-matrix of matrix of accumulation terms -
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Symbol Description SI units

Vop sub-matrix of matrix of accumulation terms -
Vos sub-matrix of matrix of accumulation terms -
w weighting coefficient -
W Gaussian white model noise vector process -
x x-direction in Cartesian coordinate system m

X state space vector -
Xio vector of observed data -
Xis vector of simulated data -
y y-direction in Cartesian coordinate system m

Y vector of dynamic variables -
Y vector of bottom hole pressures, oil and water

flow rates at the wells
-

z z-direction in Cartesian coordinate system m

Z measurement vector -
α type of production data -
∆x step for spatial grid discretization in x-

direction
m

∆y step for spatial grid discretization in y-
direction

m

λα mobility tensor for phase α m2/Pa · s
µα fluid viscosity of phase α Pa · s
ξ system state vector (member of ensemble) -
ρα density of phase α kg/m3

φ porosity -
φ0 porosity at the reference pressure p0 -

Subscript Description

0 initial
α phase
H horizontal
i discrete counter
j discrete counter
k discrete time index
l discrete time index
o oil (non-wetting phase)
sc standard conditions
V vertical
w water (wetting phase)
x x-direction in Cartesian coordinate system
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Subscript Description

y y-direction in Cartesian coordinate system
z z-direction in Cartesian coordinate system

Superscript Description

c confirmed
i discrete counter
true true value
T transpose

Operator Description

∇ gradient
∂ partial derivative
‖ · ‖ 2-norm
dim dimension
E expectation
N normal distribution
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