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Chapter 1 

Introduction 

In the early days of oil and gas recovery, reservoir engineering 

was simple: one would simply drill a hole, and at some pressure, there 

will be oil coming out. The depths of the wells were really modest and so 

the cost of drilling such holes was low.  But, in this way, just a small 

fraction of oil can be recovered (5-15%). This is called “primary 

recovery” [25].  

Nowadays much of the oil is offshore and the holes are drilled to 

some extreme depths. Of course that in these conditions the costs of 

drilling a well are much higher. It becomes of primary interest to produce 

as much as possible from the surface oil. Water or gas can be injected to 

increase the pressure and to push the oil out. In this way around 30-60% 

of the oil can be recovered [25]. Even more sophisticated techniques are 

used for attaining an ultimate recovery of 70-80%. For recovering very 

heavy oil, one can inject chemicals that make the oil less viscous so that it 

flows more easily. Another quite advanced recovery technique uses air 

injection.  

Given the above, it is very important to be able to predict the flow 

of fluids like oil, water and gas in a reservoir. Reservoir simulation is an 

area of reservoir engineering that uses computer models to predict the 

flow of fluids (i.e. oil, water and gas) through a porous media. Reservoir 

simulation models are used by oil and gas companies in the development 

of new fields. Also, models are used in developed fields where production 

forecasts are needed to help make investment decisions. 
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When simulating a reservoir, one must account for the physical 

and chemical processes taking place in the subsurface. Rocks and fluids 

properties are very important when describing the flow in porous media. 

We are interested in the volume of oil present in the reservoir and its ease 

of flow. The emphasis will be on estimating the rock’s property called 

permeability. Permeability is a measure of the ease of flow of a fluid 

through porous media. The problem of estimating models’ parameters 

like permeability is often referred to as the history matching problem in 

reservoir engineering.  

History matching matches the history of observable variables at 

wells with predictions of these variables from a numerical model by 

adjusting parameters like permeability. There are two main ways of 

correcting the parameters of the model when history matching is 

performed. The traditional way is to run the reservoir model for some 

time and then modify the parameters such that the measured and the 

predicted data match. This is called manual history matching. On the 

other hand, one can use computers to adjust the parameters. Therefore, 

computer assisted history matching is an alternative to the traditional 

history matching approach. In this thesis, the focus will be on the latter 

approach.  

One methodology that addresses the computer assisted history 

matching is data assimilation. Data assimilation combines a mathematical 

physical model with available measurements in order to estimate and 

predict different environmental processes. There are two classes of 

methods in data assimilation: the variational approach and the 

sequentional approach.  

In the variational approach an objective function defined as the 

distance between the measured data and the forecasts from a model, is 

minimized by adjusting parameters. The variational data assimilation is a 

constraint minimization problem, which is solved iteratively with a 

gradient based optimization method. The gradients are obtained using a 
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so called adjoint method. The technique has been used when approaching 

a history matching problem in reservoir simulation, e.g. [26], [27]. 

The sequential approach includes Kalman filtering [5], a powerful 

tool for solving linear systems. The recently developed adaptation of the 

Kalman filter for handling non linear systems is called the ensemble 

Kalman filter (EnKF) and was introduced in [6].  

EnKF is one of the currently most used data assimilation methods 

for approaching a computer assisted history matching problem in 

reservoir simulation, e.g. [13, 14, 15]. It is a Monte Carlo approach in 

which the probability distribution of the estimate is represented by an 

ensemble of possible realizations. The size of the ensembles used in 

EnKF is of great importance for the algorithm. The computational effort 

associated with the EnKF algorithm is proportional to the number of 

ensembles used. Therefore, one should use as few ensembles as possible. 

Moreover, the choice of the ensemble size is essential for the performance 

of the algorithm. When the size of the ensembles used is too small the 

algorithm becomes inaccurate. In this context, the main disadvantage of 

the EnKF appears when the number of variables to be estimated is much 

larger than the ensembles size. Typically for ‘real’ reservoir applications 

the size of the state vector can be as large as 63 10 . In general between 

50 and 100 ensembles are used in reservoir engineering applications [e.g. 

26, 27]. This leads to sampling errors which make the approximated 

covariance matrix to be underestimated. Unfortunately this is often the 

case because ensemble Kalman filter is a Monte Carlo method and for 

being affordable a relatively small number of ensembles has to be used. 

In this situation we notice the presence of unrealistic (often called 

spurious) correlations between large distance grid points. Therefore, 

observations have high influence over large distances, which is not 

physically true. The process of eliminating these unrealistic correlations is 

called localization [8, 9, 10, 11, 12]. In this thesis we are using ensemble 

Kalman filter with localization. However, sometimes localization 
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introduces inconsistencies in the system, i.e. while trying to eliminate 

unrealistic correlations one might end up eliminating real correlations 

also.  

Given the above limitations we shall focus on a method that uses 

graphical models to approach a history matching problem in reservoir 

engineering.  

High dimensional probabilistic modeling using graphical models 

has been used in several scientific fields like: statistics, biology, physics 

and engineering. Because of their flexibility, the use of graphical models 

has increased over time; hence the theory behind them has been 

constantly developed and extended. They combine probabilistic theory 

and graph theory to provide a general setting for models in which a 

number of variables interact. The graphical structure is represented by a 

collection of nodes and links. Each node in the graph represents a random 

variable. The links represent the qualitative dependencies between the 

variables.  

There are two main types of graphical models: directed and 

undirected. The focus will be on the directed acyclic graphs called 

Bayesian belief nets (BBNs).  

The novelty from this thesis consists in applying a BBN based 

approach to estimate the permeability of a reservoir’s field.  

A BBN model describes the probability density function of a set 

of variables by specifying a number of conditional independence 

statements represented by a graph, and a set of probability density 

functions. BBNs are often chosen to model high dimensional probabilistic 

distributions because of their capacity of representing cause effect 

relationships between variables through the directionality of the arcs. The 

nodes of a BBN can be discrete and/or continuous random variables. The 

approach from this thesis models non-parametric continuous variables. 

This approach was already used in several applications. One project that 

uses non parametric Bayesian belief nets (NPBBNs) is CATS, which 
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stands for Causal Model for Air Transport Safety. This is a large scale 

application that models the risks from the aviation industry.  

Another project that uses NPBBNs is Beneris, which stands 

Benefit and Risk and it focuses on the analysis of health risks and benefits 

associated with food consumption. 

To our knowledge this is the first attempt to apply NPBBNs to 

approach a history matching problem in reservoir simulation. We shall 

use static and dynamic NPBBNs. A static NPBBN is suitable for a static 

(non time dependent) data set. One can interpret a dynamic NPBBN as 

instances of a static NPBBN connected in discrete slices of time. The data 

provided by the simulator at a given time will be represented as a static 

NPBBN. Production data will be used to update the joint distribution of 

the variables of interest. Data will be assimilated at every time step by 

conditioning the joint distribution on the values of the measurements. The 

new joint distribution will be modified further in time using the reservoir 

model. In this way the connection between discrete slices of time will be 

provided by the reservoir model.  

Moreover, a method for learning the structure and the parameters 

of a static NPBBN model from a data set will be used. This method was 

introduced in [6]. By using it, one can eliminate from the graph small 

correlations that might be representing just sampling fluctuations. In this 

way a dynamic NPBBN with changed structure over time will be 

obtained. Note the similarity between using a method for mining a 

database when applying a NPBBN based approach and using localization 

techniques when applying the EnKF. Given the above, the NPBBN based 

approach will be presented in a comparative way with the ensemble 

Kalman filter with localization.  

 

 

This thesis is organized as follows. Chapter 2 presents the 

chemical and physical processes taking place in a reservoir. The most 
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important rocks and fluids properties are introduced along with a two 

phase flow mathematical physical model. A short review of the history 

matching techniques and the Kalman filter methods is presented. The 

drawbacks of the Kalman filter methods are discussed and this provides 

the motivation of introducing the Bayesian belief net based approach. 

Chapter 3 describes the Bayesian belief nets. Both static and 

dynamic BBNs are illustrated. A review of the existing Bayesian belief 

nets methods for discrete and continuous variables is presented. The focus 

is on NPBBN. The data mining procedure introduced in [6] will be 

presented. The connection between Kalman filter methods and the 

dynamic BBN will be made.   

Chapter 4 shows the experimental setup necessary to perform the 

case study from chapter 5.  The thesis uses a twin experiment; i.e. we 

assume the truth is known. Of course this kind of situation is not 

encountered in real life but is often used in synthetic applications for 

testing the performance of the method(s) used. We shall present the 

choice of our initial ensembles, the way we generate synthetic 

measurements, and the measures of performance. Moreover, one of the 

methods uses NPBBN. Since NPBBN are directed acyclic graphs, they 

represent influences between variables as arcs. Therefore, the 

directionality of the arcs is an important feature of the graph. In chapter 4 

we shall also illustrate the choice of the arcs directionality in the non 

parametric Bayesian belief nets.  

Chapter 5 presents the results of estimating the permeability field 

using the ensemble Kalman filter with localization and the continuous 

non parametric Bayesian belief net approach.  

Finally, Chapter 6 formulates conclusions and recommendations. 
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Chapter 2 

Reservoir simulation 

Reservoir simulation describes the important physical and 

chemical processes taking place in a reservoir in order to make realistic 

predictions of a reservoir behavior. As described in [2] the construction of 

a reservoir model requires four major steps. First, a physical model of the 

flow process is developed incorporating the necessary physics to describe 

the phenomena. Second, a mathematical formulation of the physical 

model is obtained, usually involving systems of nonlinear partial 

differential equations. Third, a discretized numerical model of the 

mathematical model is produced. Finally a computer program capable of 

efficiently performing the necessary computations for the numerical 

model is used. Generally, the modeling process is not complete with one 

pass through these four steps. Once a computer program is developed, the 

output is compared with the measured observations of the physical 

process. If the results do not compare, one should go back and iterate 

through the complete modeling process, changing some intermediate 

steps for obtaining a better correlation between the physical observations 

and the computational results.  

This chapter is organized as follows: section 1 gives an overview 

of the most important physical and chemical processes taking place in a 

reservoir, section 2 presents the physical equations of the two phase flow 

model as illustrated in [1], sections 3 and 4 introduce history matching 

techniques. 
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2.1 Reservoir properties 

In order to understand the development of a physical model in the 

context of reservoir simulation, a brief description of the reservoir rocks 

and fluids flow in porous media is needed.  

In general, the hydrocarbon is trapped in the microscopic pores of 

a rock, like sandstone, and will flow through the rock only under the 

influence of large pressure. The pores are formed as spaces between the 

sandstone. A large percentage of the pores are connected and the fluids 

can flow through these paths. The ratio of the volume of these pore paths 

available to flow to the total volume of the rock is called porosity    and 

is quite small (typically 1-20%). Permeability  k  is another rock 

property as important as porosity because not only the actual volume of 

oil in reservoir is important, but also the rate at which the hydrocarbon 

will flow through the reservoir.  Permeability is a measure of the ease of 

flow of a fluid through a porous medium. Viscosity (  ) is a fluid’s 

characteristic that also contributes to the ease of fluid’s movement. The 

less viscous the fluid, the greater the ease of flow is. The type of rock 

present in a reservoir influences greatly the ability of the hydrocarbon to 

flow through a reservoir. Since the geology of the reservoir changes, we 

distinguish areas of low flows and areas of high flows in a reservoir. 

Normally, we have more than one fluid present in oil reservoirs. 

From the history of the formation of the petroleum reservoirs, it is 

thought that most of the reservoir is of marine origin, the pores of the 

rock were initially field with water. Then, the oil and/or gas moved into 

the reservoir displacing water.  Hence a reservoir can contain water, oil 

and gas. The extent of occupancy of the pore spaces by a particular fluid 

is called saturation  S . Fluid saturation is defined as the fraction, or 

percent, of the total pore space occupied by a particular fluid.  
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The oil will flow out from the reservoir only when the pressure 

( p )  is high. Wells are drilled into the surface of the reservoir in order to 

push the oil out. In order to keep the pressure high in the reservoir, a fluid 

(generally water) is injected into so-called injector wells. As a result the 

oil is pumped out through other wells, called producers.  

 2.2 The two phase flow model 

Fluids flows in porous media are governed by the same 

fundamental laws that govern their flow in rivers or pipelines. These laws 

are based on the conservation of momentum and mass.  

We shall assume that we have two phases of oil and water flowing 

simultaneously, that the fluids are immiscible, i.e. the fluids do not mix 

and that there is no mass transfer between the fluids. Water will wet the 

porous medium more than oil and will be called the wetting phase fluid. 

The subscript convention will be w  for water and o  for oil. Since both 

phases are flowing we have: 

1w oS S                                                                                   (2.1) 

For each phase we have different pressures, we denote water 

pressure by wp  and oil pressure by op . The difference between these 

pressures is the capillary pressure cp . We shall assume that the capillary 

pressure is a function of water saturation: 

 o w c wp p p S                                                                        (2.2) 

A reservoir has isothermal conditions if capillary pressure is zero, 

i.e.   0c wp S  , then the pressures for each fluid phase are equal: 

o wp p .  

Conservation of momentum in flow through porous media is 

usually expressed with Darcy’s law. The French engineer, Henry Darcy, 

developed a fluid flow equation which has become one of the standard 
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mathematical tools in petroleum engineering. The law for one fluid flow 

is defined as: 

,k pv
x


 


                                                                               (2.3) 

where v  / secm  is the apparent fluid velocity; k 2m    is the absolute 

permeability  (generally permeability is measured in darcies but we use 1 

darcy 12 210 m  as in [1]);   Pa s is the viscosity of the flowing fluid; 

p
x



  /atmospheres cm describes the pressure drop in x-direction. The 

absolute permeability represents the ability to transmit fluids through rock 

when a single fluid is present in the rock. When simultaneously two or 

three fluids flow the concept of relative permeability associated with each 

phase is introduced. A more detailed description of relative permeability 

will be given later in this chapter. The velocity, v , is not the actual 

velocity of the flowing fluid, but the apparent velocity also called Darcy’s 

velocity determined by dividing the flow rate q  to the cross sectional area 

denoted by A . Substituting v  with the relationship /q A , equation (2.3) 

becomes: 

kA pq
x


 


                                                                               (2.4) 

Darcy’s law states that the volumetric flow rate of a fluid through 

a porous medium is proportional to the pressure or hydraulic gradient and 

to the cross-sectional area and inverse proportional to the viscosity of the 

fluid.  

For two fluids flow we can write the same equation in vector form 

as1: 

                                                
1 We use ~ above a vector or matrix to indicate that its components are representing 

quantities in physical space, e.g. v  is a velocity vector with one, two or three 
components, depending on whether we use a one, two or three dimensional reservoir 
simulation.  
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    , ,ri
i i i

i

kv k p g d i w o


                              (2.5) 

where   is the gradient operator for one two or three dimensions, rik  is 

the relative permeability corresponding to each phase flow, 2/g m s    is 

the magnitude of the acceleration due to gravity, the depth  d m  is a 

vector function of  , ,x y z  pointing out in the direction of gravity. In 

most cases of Darcy’s law in reservoir simulation,  k  is assumed a special 

diagonal tensor. For the 1-D, 2-D, 3-D cases the diagonal tensor is 

defined as: 

  
00

0
1 : 2 : 3 : ,00

0
0 0

x
x

y
y

z

k
k

D k k D k D k k
k

k

 
               

   (2.6) 

where xk , yk , zk  are interpreted as permeabilities in the x, y and z 

directions. If xk = yk = zk  the permeability equals in all directions at a 

specified point and the medium is called isotropic; otherwise it is called 

anisotropic.  

In the two phase flow each fluid interferes with the flow of the other 

and the relative permeability for each phase is less than or equal to the 

absolute permeability of the porous medium. Relative permeability for 

each phase is defined as follows: 

  , ,i
ri

kk i w o
k

                                                       (2.7) 

where rik  denotes the relative permeability for water, oil respectively. 

Relative permeability shows how much the permeability of a 

particular phase has been influenced by the presence of another phase. 

For example for the two phase flow,  a relative permeability to oil of 70 

percent shows that the oil permeability has been reduced 30 percent as the 

results of the presence of the wet phase. The lower limit of relative 

permeability is zero when the saturation of the phase is zero, and the 
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upper limit of relative permeability is 100  percent when the saturation is 

100 percent and w ok k k  . We say that fluids are miscible when they 

flow as one phase. In this situation there is no impact between phases, 

hence w ok k k  .  

In experiments, relative permeability is often represented as a 

function of water saturation. Corey model gives the relation between 

relative permeability and water saturation. Let us define the following 

equations: 
0 wn

rw rwk k S                                                                              (2.8) 

 0 1 ,on
ro rok k S                                                                      (2.9) 

where 0
rwk , 0

rok  are the end points relative permeability for water, 

respectively oil, ,wn  on  are the Corey exponents for water and oil and S  

is scaled saturation defined as: 

1
w wc

or wc

S SS
S S



 

           0 1,S                        (2.10) 

where wcS  is the connate water saturation and orS  is the residual oil 

saturation. 

For defining the equations that govern the two phase flow of a 

fluid through porous media we also need to describe the law of 

conservation of mass. The conservation of mass per unit time says that 

the difference between mass in and mass out of a system 

  3/ii v kg m s    
  must be equal to the mass accumulated within the 

system   3/i iS
kg m s

t



 

  
 minus the mass added or extracted 

through an external source (well) ''' 3[ / ]iq Kg m s  . For the two phases 

fluid model the mass balance equations for each phase can be expressed 

as: 

     ''' 0, ,i i
ii i

S
v q i w o

t


  
 

    


      (2.11) 
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where   is the divergence operator (gradient operator), '''
iq  is the source 

term expressed as flow rate per unit volume, t  is time,   is a geometric 

factor that changes with the dimension of the flow. In 1-D flow, i.e. the 

movement is considered only in one direction,   is equal to the cross 

space sectional area of the reservoir. In 2-D flow when the movement is 

considered in two directions: horizontal and vertical,   is equal to the 

reservoir height. For the 3-D case, the movement is considered in all 

directions, therefore   is equal to 1.  

Combining the equations from Darcy’s law for each phase, i.e. 

equations (2.5), with the equations from the conservation of mass (2.11) 

yields: 

 

      ''' 0, ,i ii ri
i i i i

i

Sk k p g d q i w o
t


  


  

          
 (2.12) 

 

Equations (2.12) contain four unknowns: , ,w o wp p S and oS . We 

assume the absence of capillary pressures then w op p  and by using 

relation (2.1) two unknowns can be eliminated. We can express pressure 

as a function of density or vice versa. This is accomplished by the use of 

an equation that describes the relationships between fluid’s pressure and 

density in the reservoir. We shall use fluid compressibility c : 

1 ,
T

Vc
V p


 


                                                                         (2.13) 

where V  denotes the fluid’s volume, p  is the pressure and T  is a fixed 

temperature. Since density is defined as mass divided by volume then 

compressibility can be defined also as: 

1

T

c
p





 


          (2.14) 

Hence for each phase we have:  
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 1 , ,i
i

i i T

c i w o
p





 


                            (2.15)                        

    

where ic  is compressibility for water, oil respectively.  

Rock compressibility describes the relationship between rock’s porosity 

and oil pressure at the constant temperature T : 

1
R

o T

c
p



 

                                                                           (2.16) 

Combining equations (2.12) together with (2.15), (2.16) we obtain: 

 

  

  ''' 0

w rw
w

w

w
w w w r w w

k k p g d

SpS c c q
t t






 

 
     

 
         

    (2.17)      

  

   '''
01 0

o ro
o

o

w
o w r o o

k k p g d

SpS c c q
t t






 

 
     

 
          

                                (2.18)           

 

Equations (2.17), (2.18) are discretized and then implemented to 

create the reservoir simulator used in this project. When applying these 

equations to build the reservoir simulator some assumptions and 

simplifications were made.  

For the two phases flow gravity forces and capillary pressures are 

ignored. Reservoir permeability is assumed isotropic, i.e. it is equal in all 

directions at a specified point x yk k k  . This changes the problem into 

a closed reservoir, where fluid can flow only through the drilled wells. 

The injection and extraction of fluids through the drilled wells is usually 

modeled with a so called well model. We use in this project the well 

model described in [1]. At the wells the flow is specified by bottom hole 

pressures and flow rates. Either bottom hole pressures or fluid flow rates 
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must be prescribed. These constraints are imposed by the well model. It is 

important to mention that while one of these values is prescribed at 

injector wells, the other one is prescribed at producer wells. For instance 

if we prescribe bottom hole pressure at injectors then flow rate is 

prescribed at producers. While, for example bottom hole pressure is 

prescribed at some wells, the flow rates can change freely at those wells. 

The implementation of the model described in this section 

together with the well model illustrated in [1] is provided by the reservoir 

simulator ‘simsim’ developed at TU Delft. A more complete description 

of the simulator is given in Chapter 4 of this project. We can use the 

simulator to predict future reservoir behavior and production. 

Generally, no matter what technique is applied to investigate 

future reservoir performance, one starts by running the model for some 

time period for which outcomes (e.g. pressures, flow rates, saturations) 

are available. If the computed quantities match the available data, the 

procedure is correct and can be used for predictions. When quantities do 

not match, some of the model parameters (e.g. permeability, porosity) 

must be changed and the model has to be run again. This process of 

adapting the model parameters such that observed data matches the 

computed outcome quantities is called history matching. The problem of 

history matching is also addressed as parameter estimation because one 

needs to estimate some parameters in order to improve the match.  

2.3 History matching techniques 

As mentioned above, history matching matches the history of 

observable variables, e.g. flow rates, pressures, saturations from existing 

wells with predictions of these quantities from a numerical model by 

adjusting parameters like permeability, porosity. There are different ways 

of doing history matching. Traditional history matching consists in 

running the simulator for some period, then comparing the results with 
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the known field results and manually adjusting the reservoir parameters to 

improve the match. Because the match is performed manually by an 

engineer this is also called manual history matching. The success of the 

manual history matching depends mostly on the engineer’s experience 

and knowledge about the field. The method has serious drawbacks as 

presented in [1]: 

 

 It is usually performed after periods of years, on a 

campaign basis because the approach is time consuming. 

 The obtained history-matched models often violate 

essential geological constraints. 

 The updated model may reproduce the production data 

almost perfectly but has no predictive capacity because it 

has been over-fitted by adjusting a large number of 

unknown parameters using a much smaller number of 

measurements. 

 

To overcome these limitations, a considerable amount of research 

has been performed to develop different history matching methods known 

also as computer assisted history matching. These techniques use 

computer logics to give estimates of the reservoir’s parameters (e.g. 

permeability, porosity) for which an objective function (error function) is 

minimized: 

 

 2

1

,
parn

E i io is
i

f w d d


                                                               (2.19) 

 

where Ef  denotes an error function, parn  is the number of reservoir 

parameters, iw  is the weighting coefficient and ,io isd d  correspond to the 

observed and the simulated data that has to be matched. 
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One of the highest limitations of the traditional methods is the 

time issue. As new data becomes available for being included into the 

match the whole history matching process has to be repeated using all 

available measurements. The computer assisted history matching solves 

this problem.  

The accuracy of a history matching process depends on the quality 

of the reservoir’s model and the quality and quantity of measured data, 

typically production data (bottom hole pressures and flow rates at well 

locations). 

2.4 Kalman filtering and localization  methods 

 
There are several approaches to computer assisted history 

matching which differ in the way they obtain the parameter set that 

minimizes the objective function defined in the previous section. One 

methodology that addresses the history matching problem is data 

assimilation. 

Data assimilation combines a mathematical physical model with 

available measurements in order to estimate and predict different 

environmental processes.  

One of the most known data assimilation methods is the KF 

method, published by R.E.Kalman in 1960. The author is describing a 

recursive solution to the discrete data linear filtering problem. The 

Kalman Filter is a set of mathematical equations that are used to estimate 

the state of a process in a way that minimizes the distance between 

measurements and model predictions.  

The KF addresses the general problem of trying to estimate the 

state nx  of a process that is governed by the linear stochastic 

difference equation: 
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             1X k A k X k B k u k G k W k                     (2.20) 

 

with measurements:  

 

        ,Z k H k X k V k                                                     (2.21)  

 

where k  represents the time;  A k  is a n n  matrix that relates the state 

at the previous time step 1k   to the current step k ;  the matrix B  relates 

the input vector ku  to the state vector; G is the noise input matrix; the 

matrix  H  in eq. (2.21) relates the state to the measurements  Z k  . 

          The random variables  W k  and   V k  represent the model and 

measurement noises. They are assumed to be independent of each other 

and white Gaussian:     ~ 0,W k N Q k ,     ~ 0,V k N R k .                              

To solve the filtering problem we have to determine the 

probability density of the state  X k  conditioned on the history of 

available measurements  Z k . This conditional density function is 

assumed to be Gaussian; hence, it can be fully characterized by the mean 

and covariance matrix. The KF will recursively calculate the state vector 

 X k  along with its covariance matrix P , conditioned on the available 

measurements up to some time k , under the criterion that the estimated 

error covariance is minimum. A complete description of the KF algorithm 

is presented in Appendix (see section A.2). 

 The KF method becomes computationally expensive for large 

scale systems and is not suitable for non linear systems. To overcome 

these limitations of the method, a large number of new algorithms were 

developed. An example of such an algorithm is ensemble Kalman filter 

(EnKF) [30, 31]. EnKF represents the probability density of the estimate 

by an ensemble of possible realizations. EnKF became a popular 
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approach for solving the history matching problem in reservoir simulation 

[13, 14, 15].  

The main advantage of EnKF is that it approximates the 

covariance matrix from the finite number of ensembles used, thus it 

becomes suitable for large non linear problems. The main disadvantage of 

EnKF appears when the number of variables to be estimated is much 

larger than the number of ensembles used.  This leads to sampling errors 

which make the approximated covariance error to be underestimated.  

Unfortunately this is very often the case, since EnKF is a Monte Carlo 

method and for being affordable a relatively small number of ensembles 

are used (generally between 50 and 100 ensembles). The presence of 

unreal correlations, also called spurious correlations between large 

distance grid points is noticed in this case. Hence observations have high 

influence over too large distances, which is not physically true. The 

process of eliminating these unreal, large distance correlations is called 

localization [8, 9, 10, 11, 12]. The two most common localization 

methods are: Covariance Localization (CL) and Local Analysis (LA). A 

detailed description of Kalman filter, ensemble Kalman filter and both 

localization methods is given in the Appendix. Sometimes localization 

introduces inconsistencies, i.e. while trying to eliminate spurious 

correlations one might end up eliminating ‘good’ correlations also.  In 

this project we shall use EnKF with local analysis to solve the history 

matching problem. Because of the above limitations we shall consider 

also a different approach to the history matching problem.  

Graphical models merge graph theory and probability theory to 

provide a general setting in which a number of variables interact. Because 

of their flexibility their use has increased substantially over time. We 

shall use the acyclic directed graphs called Bayesian belief nets. A 

Bayesian belief net is one of the probabilistic graphical models, which 

describes the probability density function of a set of variables by 

specifying a number of conditional independence statements in a form of 
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an acyclic directed graph and a set of probability functions. A description 

of: the Bayesian belief nets, the relationship between Kalman filter 

methods and Bayesian belief nets and a data mining algorithm is given in 

the next chapter.   
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Chapter 3 

Bayesian belief nets (BBNs) 

Human beings gather information from the environment in order 

to comprehend the world around them and to take proper actions. In 

probabilistic reasoning the events and objects in the world are represented 

by random variables. By assigning values to these random variables we 

can model the current state of the world. Many different probabilistic 

models have been proposed for this purpose. Graphical models are very 

useful tools for large scale models in which a large number of variables 

are connected in complex ways. Since they proved to be very flexible, 

their use has increased substantially, thus the theory behind them has been 

extended and developed over time. Graphical models are used in several 

scientific fields including: statistics, physics, biology and engineering. A 

graphical structure is a collection of nodes and links. Each node in the 

graph represents a random variable. The links represent the influences 

(dependencies) between nodes. The absence of a link between two nodes 

means that any dependence between these two random variables is 

represented via some other variables.  

There are two main types of graphical models: directed and 

undirected. We shall refer in this Chapter to the directed acyclic graphs 

called Bayesian belief nets also named belief networks, Bayesian 

networks, probabilistic networks, casual networks, and knowledge maps.   

Bayesian belief nets are often chosen to model high dimensional 

probabilistic distribution because of their capacity of displaying 

relationships between variables in an intuitive way and of representing 

cause effect relationships through the directionality of the arcs. One of the 
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most important characteristics of a Bayesian belief net is that it can be 

used for inference. Given the values of the observed nodes, one can 

calculate the distribution of unobserved nodes. Considering the 

directionality of the arcs, if the reasoning is done bottom-up the Bayesian 

belief net is used for diagnosis, whereas if the reasoning is done top-down 

the Bayesian belief net is used for prediction.  

This Chapter is organized as follows: section 1 introduces static 

Bayesian belief nets, section 2 presents dynamic Bayesian belief nets and 

the connection with the Kalman filter methods, and section 3 describes an 

algorithm of learning the structure and parameters of a continuous non 

parametric Bayesian belief net from data. 

3.1 Static Bayesian belief nets  

Bayesian belief nets are directed acyclic graphs. The nodes of the 

graph represent univariate random variables which can be continuous or 

discrete. The arcs of a Bayesian belief net represent direct influences. The 

absence of arcs can be interpreted as conditional independence statements 

between the nodes of the graph. A static Bayesian belief net models the 

dependence structure between a number of variables at a fixed time. We 

shall denote the static Bayesian belief net by BBN.  

Let us consider a set of random variables  1 2, ,..., nX X X , then 

from basic probabilities we know that the joint density/mass function can 

be written as follows: 

 

     1,..., 1 2 1 1 1 11,..., 1
2

, ,..., ,..., ,
n

n n i ii i
i

f x x x f x f x x x 


                  (3.1) 
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where if  is the marginal densities of variable iX  and 1,...,nf  denote the 

joint density for  1 2, ,..., nX X X , 1,..., 1i if   is the conditional density of 

variable iX .  

We notice that for specifying the joint distribution of these 

variables we must specify values of an n-dimensional function. BBNs 

provide a more intuitive way of describing high dimensional distributions. 

The graph imposes that each variable is conditionally independent of all 

its predecessors in an ordering, given its direct predecessors. The direct 

predecessors of a node i  corresponding to variable iX   are called 

parents. We shall denote the set of all parents of node  i  by  Pa i .   

Another way of checking a (conditional) independence directly 

from the BBN is through graphical criterion 2  which we shall explain 

using an example. Let us consider four nodes , , ,A B C D as follows: 

 

 A  represents the variable “eating junk food” 

 B  represents  the variable “overweight” 

 C  represents the variable “heart disease” 

 D  represents the variable “stress” 

 

Figure 3.1 describes the possible conditional independence 

relations induced by a BBN: (a) causal chain, (b) common cause, (c) 

common effect.  

A causal chain of three nodes is when A  causes B  which in turn 

causes C . In Figure 3.1 (a) we read the causal chain as “eating junk food 

causes overweight which causes heart disease.” A causal chain represents 

a conditional independence relation. In Figure 3.1 (a) the probability of 

C  given B  is exactly the same as the probability of C  given both A  and 

B . Knowing that A  has occurred does not make any difference to our 

                                                
2 This is called the d-separation criterion.  
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beliefs about C  if we already know that B  has occurred, e.g. knowing 

that a person eats junk food does not tell us anything new about his heart 

condition if we already know that the subject is overweighed. Therefore, 

heart disease is conditionally independent of eating junk food given that 

the subject is overweight.  

 

A

A

A

B

B

B

C

C

D

Figure 3.1 

 

The variables A  and B  having a common cause B  are 

represented in Figure 3.1 (b). In our example overweight is a common 

cause for two effects: eating junk food and heart disease 3 . Common 

causes represent the same conditional independence statements as chains. 

Hence, the graph from Figure 3.1 (b) tells us that eating junk food is 

conditionally independent of heart disease if we already have evidence of 

a person being overweight.  

A common effect is represented by a BBN in a v-structure. This 

illustrates the situation when a node (the effect) has two causes. Thus, in 

Figure 3.1 (c) both eating junk food and stress are causes of getting a 

heart disease. Common effects produce the opposite independence 

structure to that of chains and common causes. In this case the parents are 

independent when there is no information about the common effect, but 

become dependent given information about the common effect, i.e. they 

are conditionally dependent. Therefore if we observe the effect (e.g. 

overweight), and then we find out that one of the causes is absent (e.g. 
                                                
3 The influence from B  to A  might not be so evident in the example used, but we shall 
consider it for the theoretical purpose. 
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junk food) this rises the probability of the other cause (e.g. stress). Hence, 

eating junk food and stress are conditionally dependent given evidence 

about a person being overweighed.  

Next, we shall illustrate an example where both common causes 

and common effects relations are present. Figure 3.2 shows a simple 

static Bayesian belief net with four nodes corresponding to four random 

variables: 1 2 3 4, , ,X X X X , where 1X  and 2X  form the sets of parents 

 3Pa  and  4Pa ; 3X  and 4X  are called children of variables 1X  and 

2X .  

1X 2X

3X 4X
 

Figure 3.2. A simple BBN on 4 variables 

 

Notice that we have the following common causes: 1X  is a 

common cause for 3X  and 4X , also 2X  is a common cause for 3X  and 

4X . Therefore the graph tells us that 3X  and 4X  are a conditionally 

independent given 1X  and 2X .  

Given evidence about 3X  and 4X , 1X  and 2X become 

conditionally dependent because: 3X  is a common effect for 1X  and 2X , 

also 4X  is a common effect for 1X  and 2X . However, when no evidence 

about 3X  and 4X  is available, 1X  and 2X  are independent.  

 

Each variable is associated with a conditional probability function 

of that variable given its parents in the graph,      ,i Pa ii Pa if x x 1,...,i n . 

As shown, when using a Bayesian belief net the representation, the joint 
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distribution is significantly simplified by the (conditional) independence 

relations imposed by the graph. Hence instead of specifying values of an 

n-dimensional function we shall only have to specify values of a p n  

dimensional function (where p  is the maximum number of parents of 

any node in the graph). The joint probability function from (3.1) 

becomes:  

 

       1,..., 1 2
1

, ,...,
n

n n i Pa ii Pa i
i

f x x x f x x


                                     (3.2) 

 

In a BBN we distinguish a qualitative and a quantitative 

component. The graph itself and the conditional independence relations 

entailed by it form the qualitative part of a BBN. The quantitative part of 

a BBN consists in conditional probability functions associated with each 

variable in the graph. After these functions are quantified the BBN can be 

used for inference (prediction or diagnosis). 

3.1.1 “Classical” BBNs  

  As mentioned in the previous section the nodes of a BBN can be 

discrete or continuous univariate random variables.  We shall use the term 

“classical” for the discrete BBNs and the Gaussian BBNs.  

  The BBNs for which the nodes have discrete random variables are 

called discrete BBNs. These models specify marginal distribution for 

source nodes and conditional probability tables for child nodes.  

Let us consider the BBN from Figure 3.2 with discrete nodes, 

each node taking m values, denoted mjix j
i ,...,1;4,...,1,  . The 

marginal distribution of 1X  and 2X  and the conditional probability table 

of 3X and 4X  have to be specified. Table 3.1 shows the conditional 
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probability table for variable 3X . A similar conditional probability table 

can be obtained for variable 4X . 

 
 

1X  

 

2X  

 

 1
3 3 1 2,P X x X X  

 

 2
3 3 1 2,P X x X X  

  

 3 3 1 2,mP X x X X  

1
1x  1

2x  ? ? … ? 

… 

… 

… 

… 

 

? 

 

? 

… 

… 

 

? 

1
mx  2

mx  ? ? … ? 

Table 3.1 Conditional probability table for 3X  

 

Table 3.1 contains 3m  entries. In the case of binary variables, 8 

values have to be specified. Imagine that the variables take 10  possible 

values each, and then just for three variables we must specify 310  entries, 

i.e. 1000  conditional probabilities. Such an assessment burden can only 

be reduced by a drastic discretization of the nodes, or simplification of the 

model. Both solutions can be viewed as disadvantages of the discrete 

models [16].   

Another limitation of the discrete BBNs is with respect to their 

flexibility to changes in modeling; i.e. if one parent node is added, then 

conditional probability table of the child has to be re-quantified.  

Some real world models can only be described in a continuous 

framework, therefore methods for continuous BBNs were developed. 

Typically there are two common ways to deal with continuous BBNs. 

One is to discretize the continuous variables and work with the 

corresponding discrete model. Another one is to assume that variables 

corresponding to the nodes of the graph have joint normal distribution. 

The first attempt to work with continuous BBNs was actually for joint 

normal variables. These are called Gaussian BBNs (or normal BBNs). 

Continuous BBNs developed for joint normal variables interpret the 
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influences from parents to children as partial regression coefficients when 

the children are regressed on to the set of parents. The partial regression 

coefficient gives the amount by which a dependent variable increases 

when one independent variable is increased by one unit and all other 

independent variables are held constant. Each arc corresponds to a partial 

regression coefficient. In absence of data, these coefficients should be 

assessed by experts.  

Let  nXXXX ,..., 21  have a multivariate normal distribution. 

For Gaussian BBNs the conditional probability functions associated with 

the variables are of the form: 

 

   
 

~ ; ,i ij j i ii Pa i
j Pa i

X b X v 


 
    
 

                                    (3.3) 

 

where  n ,...,1  is the mean vector,  nvvv ,...,1  is a vector of 

conditional variances and ijb ’s are linear coefficients that can be thought 

as partial regression coefficients.  

 Gaussian BBNs are easy to build and quantify if the assumption of 

joint normal distribution holds. If the normality assumption does not hold 

then the individual variables must be transformed to normals. The 

conditional variance in normal units must be constant. Notice that the 

partial regression coefficients that have to be assessed to the arcs apply to 

the normal units of the transformed variables, not to the original units 

[16]. Hence regressors coefficients depend on the set of regressors. These 

conditions induce a heavy burden on experts, when expert judgment is 

used to quantify these models. Moreover if a parent node is added or 

removed, after quantification, the previously assessed partial regression 

coefficients must be re-assessed.   
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Often the normality assumption does not hold, hence all of the above 

requirements make the Gaussian BBNs unappealing for modeling high 

dimensional probabilistic models.  

3.1.2 Continuous non parametric Bayesian belief nets  

The previous section illustrated the two most common methods 

that deal with static BBNs: the discrete BBNs and the Gaussian BBNs. 

Some of the limitations of both these approaches were discussed in the 

previous section. To overcome these limitations when dealing with 

arbitrary continuous variables a new method is proposed in [22]. In this 

method no joint distribution is assumed for the variables, this makes the 

BBN non parametric. We shall use the notation NPBBNs for static 

continuous non-parametric Bayesian belief nets. 

We shall first present the basic theoretical concepts, definitions 

and notations used in this section, [e.g. 1,2].  

 

Definition 1: The product moment correlation   of two random 

variables X  and Y  with finite expectations  E X  and  E Y  and finite 

variances 2
X  and 2

Y , is: 

 

       
,

X Y

E XY E X E Y
X Y

 


         (3.4) 

 

Definition 2: The rank correlation r  of two random variables X  

and Y  with cumulative distribution functions XF  and YF  is: 

 

      , ,X Yr X Y F X F Y                           (3.5) 

 



 30

The rank correlation is the product moment correlation of the 

ranks of variables X  and Y .  

 

Definition 3: The conditional correlation of X  and Y given Z  is 

the product moment correlation of X  and Y given Z : 

       
,XY Z

X Z Y Z

E XY Z E X Z E Y Z
X Z Y Z 

 


             (3.6) 

 

Definition 4: The conditional rank correlation of X  and Y given Z is: 

 

,** ,, YXZYX rr                           (3.7) 

 

where  ** ,YX  has the distribution of  YX ,  given zZ  .  

The (conditional) rank correlation is a property of copulas. Hence they 

can be realized by copulas. 

 

Definition 4: The copula of two continuous random variables X  

and Y  is the joint distribution of  XF X  and  YF Y , where XF  and YF  

are the cumulative distribution functions of X , Y  respectively. The 

copula of  ,X Y  is a distribution on  2 20,1 I  with uniform marginal 

distributions.  

 

Definition 5:  If   is the bivariate normal cumulative distribution 

function with product moment correlation   and 1   the inverse of the 

standard univariate normal distribution function then: 

 

        1 1 2, , , ,C u v u v u v I                      (3.8) 
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is called the normal copula. Note that   is a parameter of the normal 

copula.  

Some copulas have the property of representing independence as 

zero correlation. Such copula is said to have the zero independence 

property. Normal copula has this property. 

Another useful concept is partial correlation. The partial 

correlations 12;3,...,n  can be interpreted as the correlation between the 

orthogonal projection of 1X  and 2X  on the plane orthogonal to the space 

spanned by 3,..., nX X . Partial correlations can be computed from 

correlations with the following recursive formula: 

 

12;3,...,n-1 1n;3,...,n-1 2n;3,...,n-1
12;3,...,n

2 2
1n;3,...,n-1 2n;3,...,n-11- 1

  


 





                            (3.9) 

 

In general the partial correlation is not equal to the conditional 

correlation. However, for the joint normal distribution the partial and 

conditional correlations are equal.  

Another property specific for normal variables that gives a 

relationship between the rank correlation and the product moment 

correlation was developed by Pearson (1907).  

 Proposition 1: Let  ,X Y  be a random vector with the joint 

normal distribution, then: 

 

   , 2sin ,
6

X Y r X Y
    

 
                            (3.10) 

 
 We shall now move on, to present in more detail the continuous 

non-parametric BBNs [1, 2].  

In the procedure proposed in [17] nodes are associated with 

continuous invertible distribution and arcs with (conditional) rank 
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correlations. Figure 3.3 presents the BBN from the previous sections as a 

NPBBN. The nodes 1 2 3, ,X X X  and 4X  reprezent continuous variables 

and arcs are associated with the (conditional) rank correlations 

   r,r,r,r 1241231413 . We specify parent-child rank correlations. If a variable 

has only one parent then we shall assess an unconditional rank correlation 

between them. For a variable with more than one parent we first deicide 

upon an ordering of the parents. The rank correlation between the child 

and its first parent is an unconditional rank correlation. The rank 

correlation between the child and its next parent is conditional on the 

values of the previous parent, etc. These (conditional) rank correlations 

are realized by a copula with the zero independence property. The 

property is necessary because the absence of an arc in the NPBBN 

translates into (conditional) independence between the corresponding 

variables in the graph and is specified by a zero (conditional) rank 

correlation.  

 

  
Figure 3.3 A NPBBN with four nodes 

 

As mentioned, no joint distribution is assumed, which makes the 

BBN non-parametric. In order to quantify the BBNs using this approach, 

one needs to specify all one dimensional marginal distribution and a 

number of (conditional) rank correlations equal to the number of arcs in 

the NPBBN. One advantage of the NPBBNs over the “classical” BBNs is 

the flexibility of such a model. If a parent node is added or removed, then 
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the previously assessed (conditional) rank correlations need not be re-

assessed. We consider constant (conditional) rank correlations; however 

this needs not be always the case [16]. 

It has been shown in [16] that the marginal distribution together 

with the (conditional) rank correlations which are realized by the chosen 

copula uniquely determine the joint distribution. The (conditional) rank 

correlations and the marginal distribution needed to specify the joint 

distribution represented by the NPBBN can be obtained from data, if 

available, or elicited from experts [18]. For instance in order to elicit the 

rank correlations 13r  and 231r  for the NPBBN from Figure 3.3 we ask the 

experts the following questions: 

 Suppose that variable 1X  was observed above its thq  

quantile, what is the probability that variable 3X  will also 

be observed above its thq  quantile? 

 Suppose that both 3X  and 1X  were observed to be above 

their medians. What is the probability that also 2X  will be 

observed above its median? 

 

To stipulate the joint distribution it is sufficient to sample it. 

Further in this thesis we shall use a sampling protocol based on the 

normal copula [16]. However, other sampling methods using different 

copulas are available in [1,2]. These methods are based on the sampling 

methods for other graphical models called vines. For further details 

regarding the sampling procedure of a NPBBN using vines we refer the 

reader to [1,2]. Suffice to say here that sometimes these sampling 

procedure have serious drawback mostly in terms of computational time 

[16]. To overcome this limitation we are using the joint normal copula 

assumption. To our knowledge normal copula is the only copula that 

allows rapid updating while preserving the zero independence property. 
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Let us illustrate the sampling procedure using normal copula 

assumption introduced in [16], in a particular case. We consider the 

NPBBN from Figure 3.4. 

1X 2X

4X3X

5X

1 3r

1 2r

2 4 3r

3 4r

3 5r
4 5 3r

 
Figure 3.4 

 

1. Let  51 ,..., XX  be a random vector and let iF  denote the 

cumulative distribution function of iX , 5,...,1i  . We 

transform the margins iX  to standard normal random 

variables via the transformation 

 

  1 , 1,...,5i i iY F X i        (3.11) 

 

where   is the cumulative distribution function of the 

standard normal distribution. 

2. We build the NPBBN from Figure 3.4 for the transformed 

variables. Given the monotonicity of the transformation 

3.11 we can asssign the same (conditional) rank 

correlations to the new NPBBN. We shall realize this 

specification using the normal copula. Hence we can use 

the properties of the joint normal distribution. 

3. To each arc of the NPBBN we assign a partial correlation 

calculated as follows. We start with a (conditional) rank 
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correlation and use Pearson’s  transformation (3.10) to 

calculate the corresponding (conditional) product moment 

correlation. We know that conditional and partial 

correlations are equal for the normal variables. Finally we 

compute the correlation matrix C  using the recursive 

formula 3.9. 

4. We sample the joint normal distribution 51,...,YY  with the 

correlation matrix C  

5. For each sample we transform the normal margins back to 

the original marginal distribution by calculating 

      jj yFyF 5
1

51
1

1 ,...,   , where     jj yy 51 ,...,  is the thj  

sample from the previous step.  

In this way we obtain a sample of the joint distribution of the 

initial variables  51 ,..., XX  together with the dependence structure 

realized by the normal copula.   

One of the most important characteristics of probabilistic 

graphical models is that they can be used for inference. One can calculate 

the distribution of unobserved nodes, given the values of the observed 

ones.  When the normal copula is being used by transforming the 

marginals to standard normals we are basically transforming the 

distribution to a joint normal distribution. In this setting any conditional 

distribution will also be normal.  Hence the conditioning can be 

performed analytically [23]. 

If we have the conditional distribution of the transformed 

variables we can find the conditional distribution of the original variables 

by transforming back.  

Proposition 2: Let  21 ,YY  have a bivariate normal distribution, 

with standard normal marginals. Let 1F  and 2F  be two continuous, 

invertible distribution functions and   iii YFX 1 , 2,1i . Then the 
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conditional distribution of 21 XX can be calculated as   21
1

1 YYF  . A 

proof of this proposition is given in [16].  

  

This section presents the NPBBNs method as introduced in [16]. 

Our goal is to model a reservoir simulation problem, i.e. to solve the 

history matching problem as illustrated in Chapter 2 of this thesis.  

Kalman filter methods are popular techniques that deal with this issue 

(see Appendix). We shall consider, as an alternative a NPBBNs based 

approach to solve the history matching problem in reservoir simulation. 

The system is observed at different discrete times, therefore a static 

NPBBNs can be built at each time. In order to model the process we have 

to connect these static NPBBNs over time. This is possible with the help 

of a dynamic Bayesian belief net. In the next section we present the 

dynamic Bayesian belief nets and their relationship with the Kalman filter 

methods.  

3.2 Dynamic Bayesian belief nets and Kalman 
Filter methods 

Most of the events we meet in everyday life are not represented 

just on a particular point in time, but they can be described as evolving in 

time through multiple states. The field that deals with methods for 

reasoning about temporal relationships is generally known as time-series 

analysis. According to [19] a time series is a sample realization of a 

stochastic process, consisting of a set of observations made sequentially 

in time.  A dynamic Bayesian belief net is one of the tools to model time 

series  and is a special case of the static BBN.  

 We can say that the dynamic BBN consists of a sequence of sub- 

-models (static BBNs) each representing the system at a particular point 

or interval in time (time slice). The relationships between variables in a 
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time slice are represented by intra-slice arcs. Generally the structure of a 

time slice does not change over time. Note that this is not a theoretical 

constraint [21] but merely one made for the simplification of the 

calculations. Therefore we can model dynamic BBNs with the same or 

with different structures over time. The connections between different 

time slices are realized by inter-slice arcs. The arcs between slices are 

drawn from left to right reflecting a casual flow of time.  

Figure 3.5 shows a dynamic BBN which contains slices of a static 

BBN at different discrete times. Let the variables corresponding to the 

nodes of the static BBN 1 2 3 4, , ,X X X X  be considered at different times 

1,...,t T . We define the state vector of a system as the vector that 

contains all the nodes in a static BBN at some time t . Therefore the state 

vector of the dynamic BBN from Figure 3.5 is: 

 

 

 
 
 
 

1

2

3

4

, 1,...,

X t
X t

X t t T
X t
X t

 
 
   
  
 

               (3.11) 

 

The states of any system described as a dynamic BBN satisfy the 

first order Markov property [19] which says that the state of a system at 

time t depends only on its immediate past, i.e. the state of the system at 

time t-1. A Markov process is a process that has the first order Markov 

property.  

 1 1X  1 2X  1X T 2 1X  2 2X  2X T

 3 1X  3 2X  3X T 4 1X  4 2X  4X T

 
Figure 3.5: A dynamic Bayesian belief net 
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We shall recall the Kalman filter methods presented in Appendix. 

Kalman filter models give a recursive procedure for estimating the state 

space of a system governed by the equations: 

  1 , ~ 0,t t t t t tX A X w w N Q                                           (3.12) 

 , ~ 0, ,t t t t t tY H X v v N R                                              (3.13) 

 

Where t  is the time, tX  is a state vector, tY 4 is an observation vector, A 

and H are matrices and  tw , tv  are model and measurements errors 

normally distributed with mean zero and standard deviation  tQ , tR  

respectively. The Kalman filter method is a special case of a dynamic 

BBN with conditional linear Gaussian distribution [20]. 

Figure 3.6 presents the Kalman filter methods as dynamic BBNs. 

Note that the first order Markov property holds i.e. 1 1t t tX X X  . Also 

'
',t ttY Y X t t   , which shows that the measurements are conditionally 

independent given the model state. As illustrated in Appendix, the 

Kalman filter methods assume that the dynamic system is jointly 

Gaussian. The main advantage of using dynamic BBNs over Kalman 

filter is that the dynamic BNNs can use arbitrary marginal probability 

distributions. 

 

 1X  2X  X T

 1Y  2Y  Y T

 1X t   X t

 1Y t   Y t

 0X

 
Figure 3.6: Kalman filter methods as dynamic BBNs 

                                                
4 There is no connection between the notation Y from this section and the notation Y  
used in section 3.1.2 of this Chapter.  
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As illustrated in this section a dynamic BBN contains slices of 

static BBNs at discrete times. The slices of static BBNs may or may not 

have the same structure over time [21]. We shall recall that our goal is to 

solve the history matching problem at different discrete times. For 

complex applications dependencies and relations between variables tend 

to change over time. Next section will present a data mining procedure 

for learning the structure of a static BBN together with its corresponding 

parameters from a given data set at each time. The connections between 

different time slices will be functional relationships. They will be given 

by the simulator ‘simsim’. In this way a dynamic BBN with changed 

structure over time can be obtained. Figure 3.7 shows an example of the 

dynamic BBN presented in Figure 3.5 with changed structure over time.  

 1 1X  1 2X  1X T 2 1X  2 2X  2X T

 3 1X  3 2X  3X T 4 1X  4 2X  4X T

 
Figure 3.7: A dynamic BBN with changed structure over time  

3.3 Data mining with NPBBN 

Generally, there are two possible situations regarding the 

availability of the data for which we want to define a graphical structure 

and assess the required parameters. The data is given, or the data does not 

exist or is very limited. In the latter case expert judgment must be used. 

However, if we have data, we would like to extract a model that fits these 

data. In the process of learning a model from data two aspects can be of 

interest: learning the parameters of the model given the structure, and 
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learning the structure itself together with the parameters. Our goal is to 

learn the structure of a NPBBN together with the corresponding 

parameters.  

  We shall consider the static NPBBN as a tool for data mining. 

Data mining is the process of extracting and analyzing information from 

large data sets. The method is designed for ordinal data. An ordinal 

multivariate data set is one in which the numerical ordering of values for 

each variable is meaningful. A database of student names is not ordinal, 

but a database of permeability values for a reservoir is ordinal; higher 

permeability allows an easier flow in the reservoir. A NPBBN induced 

from data can be used to investigate relationships between variables, as 

well as to make predictions, by computing conditional probability 

distribution of a variable given the values of some others variables (see 

section 3.1.2). 

When learning a NPBBN from a database the one dimensional 

marginal distribution are taken directly from data, and the model assumes 

only that the joint distribution has a normal copula. We can say that the 

rank dependence structure of the variables is that of a joint normal 

distribution. The assumption of joint normal copula allows for rapid 

conditionalization (see section 3.1.2).   

The purpose is to build and validate a NPBBN model that captures 

most of the dependencies present in a database. While learning a NPBBN 

from data we must also define ways to validate it. Validation of the model 

requires two steps as showed in Figure 3.8: 

 

(a) Firstly, we assume that our data comes from the joint 

normal copula. In most cases if this condition is not 

satisfied we shall stop because the method is not 

suitable for the data set. However, given some special 

conditions or specifications in the modeled system one 
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could consider modeling a data set that does not satisfy 

this condition.  

(b) A saturated graph represents all possible dependencies 

present in a data set. We are interested in learning the 

structure of a NPBBN that approximates the saturated 

graph by introducing conditional independence 

relations. We validate a learned NPBBN which is an 

adequate model for the saturated graph. 

 

 
Figure 3.8: The model’s validation steps 

 

Validation of the two steps described above requires an overall 

measure of dependence on which statistical tests can be based. The 

method uses the determinant of the correlation matrix. For understanding 

the choice of the determinant as a measure of dependence for this method 

we shall present the following theorem [16]. 

Theorem 1: Let D  be the determinant of an n-dimensional 

correlation matrix  0D   . For any BBN with partial correlation 

specified in the arcs:   
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 2
;1 ,

ijij DD                                             (3.15)                                     

 

where, ; ijij D  is the partial correlation associated with the arc between 

node i and node j, ijD is the conditioning set for the arc between node i 

and node j, and the product is taken over all arcs in the NPBBN. A proof 

of this theorem is given in [16]. Hence the determinant factorizes on the 

arcs of the NPBBN. 

The determinant attains the maximum value of 1 if all variables 

are uncorrelated and a minimum value of 0  if there is linear dependence 

between variables. Since we are working with copulas models it is more 

natural to work with the rank correlations instead of product moment 

correlations. Therefore we use the fact that partial correlation is 

approximately equal to the (conditional) rank correlation. The 

approximation is reasonable given the following arguments: we use the 

normal copula to realize the (conditional) rank correlations associated 

with the arcs of the NPBBN; for the normal variables the (conditional) 

product moment correlations are equal to the partial correlations. Because 

we have normal variables we can use Pearson’s transformation (equation 

3.10) to compute (conditional) rank correlations from (conditional) 

product moment correlations.  

In this context we define the following determinants of the rank 

correlation matrices: DER is the determinant of the empirical rank 

correlation matrix; DNR is the determinant of the empirical normal rank 

correlation matrix; DBBN is the determinant of the empirical Bayesian 

belief net rank correlation matrix. Figure 3.9 describes the ordinal data 

mining procedure presented in this section.  
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Figure 3.9: Ordinal data mining  

 

If we transform the original data to ranks we can calculate DER for 

the empirical rank correlation matrix.  

DNR is obtained by transforming the marginals to standard normals, 

and then transforming the product moment correlations to rank 

correlations using Pearson’s transformation (equation 3.10). DNR is not 

in general equal to DER because DNR assumes the normal copula, which 

generally differs from the empirical copula.  A statistical test for the 

suitability of DNR for representing DER is to obtain the sampling 

distribution of DNR and check whether DER is within 90% confidence 

band of DNR.  If DNR is not rejected on the basis of this test, we shall 

build a NPBBN which represents the data. Since the method assumes the 

normal copula we can only recover the dependence structure represented 

by the DNR. Therefore, we add arcs between variables only if the rank 

correlations from the empirical normal rank correlation matrix are among 

the largest.  

DNR corresponds to the determinant of the saturated NPBBN, 

therefore this determinant has values close to 0 . Moreover for the 

saturated graph we have DNR DBBN . Generally, many of the 

connections represented by the saturated graph are small and do not 

reflect the truth. Our purpose is to build a model that eliminates these 
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noisy influences while maintaining most of the important dependencies in 

the database. As we eliminate arcs from the NPBBN, we introduce 

(conditional) independencies; hence DBBN gets further from 0. Thus for 

the non-saturated graph the relationship DBBN DNR  holds. The second 

validation step is based on a similar statistical test as the first one. The 

sampling distribution of DBBN is computed and we check whether DNR 

is within 90% confidence band of DBBN.  If DBBN is not rejected on 

basis of this test we validate the NPBBN model. The procedure of 

building a NPBBN from a dataset is not automated. Therefore, there is 

more than one model that can be validated to represent the same database. 

Once the NPBBN is learned from data, we can further use it for 

prediction (see section 3.2.1).  

The method presented in this section is implemented in Uninet, a 

software developed at TU Delft.  
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Chapter 4 

Experimental setup 

 
The purpose of this Chapter is to introduce the experimental setup 

necessary to perform the case study from Chapter 5 of this project. We 

shall recall that our goal is to solve the history matching problem, i.e. to 

estimate the permeability field. The case study will compare results of 

estimating the permeability field by using the EnKF method (with local 

analysis) with the results obtained by using the continuous NPBBN 

approach. This Chapter is organized as follows: section 1 gives a detailed 

description of the problem, section 2 presents the twin experiment, and 

section 3 illustrates the measures of performance used for comparing the 

two methods.     

4.1 Problem description 

We shall consider a synthetic two dimensional squared petroleum 

reservoir with a size of    700 700m m  equipped with a uniform 

Cartesian grid consisting of 21 grid cells in each direction as showed in 

Figure 4.15. The reservoir has an injector well in the middle of the field 

and four producers, one in each corner. One fluid (typically water) is 

injected through the injector well and oil is pumped out through the 

producers. This is the case of a so called two phase flow in which we 

                                                
5 For the ease of illustration we represent the 21X21 grid block in a smaller size. 
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distinguish two fluids: oil and water. The next section will give more 

details of the two phase flow for the reservoir illustrated in Figure 4.1. 

 

 
Figure 4.1: Reservoir field description 

4.1.1 Two phase flow 

We shall consider two fluids, water and oil, that flow into the 

reservoir described in the previous section. Water is injected through the 

injector well and oil is pumped out through the four producer wells 

located at each corner of the reservoir. A mathematical physical model is 

applied to the two dimensional square grid from Figure 4.1. We shall use 

the two phase flow mathematical physical model presented in Chapter 2 

of this thesis.  

 The reservoir is considered a closed space where liquid gets in 

and out only through the drilled wells. Therefore, the drilled wells 

become reservoir’s boundaries. As mentioned in Chapter 2, the injection 

and extraction of fluids through the drilled wells is modeled with the well 

model described in [24]. The flow is specified at the wells by bottom hole 

pressure and fluid flow rates. The well model imposes that either bottom 

hole pressure or fluid flow rates must be prescribed. We shall consider the 

case in which the injection well is constrained by the prescribed flow 

rates and production wells are constrained by the bottom hole pressure.  
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In reservoir simulation the two phase flow mathematical model is 

combined with the well model. The two phase flow mathematical model’s 

implementation, together with the well model is provided by the 

simulator ‘simsim’. Note that we shall consider the model as being 

perfect (without uncertainties).  
As mentioned, the reservoir from Figure 4.1 is a 21 grid cells in 

each direction. Therefore we distinguish a total of 441 grid blocks. Each 

grid cell is defined to have its own grid block pressure p and saturation6 

S . Let the grid block pressures and saturations be considered at different 

times 1,...,t T . We define the state vector of the system as the vector 

that contains grid block pressures and saturations for all the grid blocks at 

some time t : 

 

   
 

,
p t

X t
S t

 
  
 

                                                                        (4.1) 

 

 In this thesis we assume that the only available observations are 

the ones from the drilled wells. Therefore, given the well constraints, we 

measure bottom hole pressure, denoted by bhp , at the injector, and total 

flow rates, denoted by q , at the producers. Note that here by total flow 

rates we mean the summation of the water flow rate and oil flow rate. 

Separate oil and water flow rates could be considered. Nevertheless we 

chose to work with the sum of the two. The bhp  and q  measurements are 

often referred as the production data in reservoir simulation. We define 

the vector of measurements at each time t  as: 
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                                                                       (4.2) 

                                                
6 Here by S  we refer to water saturation which was denoted wS in Chapter 2 of this 
thesis.  
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Measurements are functions of field pressures and saturations. 

Observations are added to the state vector: 
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                                                                      (4.3) 

 

The purpose of this project is to estimate the permeability field. 

We denote permeability with k . Generally the values of the 

permeabilities are very small, e.g. values of 13 210 m    are usual. This is 

why we use the  natural logarithm of permeability instead of permeability. 

We augment the state vector with the log-permeability. The final form of 

the state vector is: 
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                                                                    (4.4) 

 

where log ( )k t  is a vector which consists of log-permeability values 

corresponding to each grid cell, i.e. 441 values. Hence the size of the state 

vector is 1328 . 

In the state vector presented above we distinguish three types of 

variables: 

 the dynamic variables: pressure and saturations. These are 

called dynamic because they change in time. 

  the static parameter log-permeability which is time 

invariant. This parameter is updated (corrected) at each 

assimilation (conditionalization) step. 

 the observations from the wells. 
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 4.2 Twin Experiment 

In this project we shall perform a twin experiment, i.e. we assume 

that the ‘truth’ is known. Of course this kind of situation is not 

encountered in real life but is often used in synthetic applications to test 

the performance to the method(s) used. We have available 1000 

realizations of the permeability field. We chose the ‘true’ permeability 

field as one realization from the 1000 members. Note that any realization 

out of the 1000 can serve as the ‘true’ permeability. The ‘true’ 

permeability field in both normal and logarithmic scale considered in this 

experiment is presented in Figure 4.2.  

 
True permeability field
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Figure 4.2: The realization chosen as the true permeability 

presented in logarithmic scale 

 

Both methods used in the estimation problem require 

measurements and an initial guesses. In the next subsections we shall 

present the measurements and the initial permeability ensembles used to 

compare the two methods. Section 4.2.1 shows the measurements 

generation, section 4.2.2 describes the initial ensembles chosen from the 

1000 realizations at our disposal. Moreover, one of the methods uses 

directed acyclic graphs to represent influences between variables as arcs. 

The directionality of the arcs is an important feature of the graph. Section 

4.2.3 illustrates the choice of the arcs directionality in the NPBN.  
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4.2.1 Measurements generation 

Typically, the reservoir is in a state of equilibrium at the starting 

time. Therefore, the initial dynamic variables (i.e. initial pressure and 

water saturation corresponding to each grid block) are assumed to be 

known and equal in every grid cell. The grid block pressure is equal to 

 73*10p Pa  and the grid block saturation is equal to 0.2S  . 

Moreover, at the starting time no production data is available. Hence in 

this setting the only choice that one has to make is the initial permeability. 

This will completely determine the behavior of the reservoir in time. By 

running the simulator with the chosen ‘true’ permeability field we obtain 

the ‘true’ production data. We generate synthetic measurements by 

adding error to the ‘true’ data.  The error for each observable variable is 

taken to be normally distributed with mean zero and variance as 5% 7 of 

the actual value of the variable of interest. We consider measurements for 

every 60 days for a period of 420 days. Figure 4.3 shows the noisy data 

derived from the ‘true’ data for the two phase flow.  

                                                
7 Typically the production data can have an error between 5%-20%.  
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Figure 4.3: The generated data with 5% error from the true 

observations used for experiment 

4.2.2 Initial ensemble  

We established that the reservoir is in a state of equilibrium at the 

starting time. Hence the grid block pressure and saturations are perfectly 

known and equal for each grid cell, and, the only choice that one has to 

make is the initial permeability. We shall perform experiments using 100, 

300 and 900 ensembles chosen from the 1000 realizations that we have at 

our disposal.  Figures 4.5 , 4.6 and 4.7 show the mean permeability value 

for the initial guess for 100, 300 and 900 ensembles. Figure 4.8 shows 

plots of 8 ensembles from the initial choice.   
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Figure 4.5: Left: the true log-permeability. Right: the mean of the 100 

log-permeabilities chosen as initial guess 
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Figure 4.6: Left: the true log-permeability. Right: the mean of the 300 

log-permeabilities chosen as initial guess 
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Figure 4.7: Left: the true log-permeability. Right: the mean of the 900 

log-permeabilities chosen as initial guess 
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Figure 4.8:  An example of 8 ensembles from the initial guess  

4.2.3 Arcs directionality in the NPBBN 

When applying the NPPBN based method we build a directed 

acyclic graph that contains the variables defined in the state vector 

described in section 4.1 of this Chapter. Each node in the directed acyclic 

graph is associated with a variable from the state vector at a certain 

location of the grid block. The dimension of the state vector is 1328 . 

Therefore for estimating the permeability field for the entire grid one may 

consider 1328 nodes in the directed acyclic graph of the NPBBN. 

However certain simplifications that will eventually reduce the size of the 

model will be applied. For the simplicity of the exposition we shall use 

the term permeability when we are actually referring to the log-

permeability.  

For building the directed acyclic graph of the NPBBN we must 

determine the flow of influence between the variables of the state vector, 

at different locations (see Figure 4.9). This section tries to answer 

questions like:  what is the variable that influences all other variables in 

the graph? Is permeability directly influencing the grid block pressure or 

the grid block pressure directly influences the permeability? Or for 

instance, what can one say about the direction of an arc between pressure 

and bottom hole pressure?,  etc. 
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Figure 4.9: Questions about the arcs directionality 

 

The variable that influences all others is the permeability. Firstly, 

the directionality between  permeability and grid block pressure is given 

by Darcy’s law (see formulas 2.4 and 2.5). According to Darcy’s law a 

modification of permeability has an immediate direct effect on the grid 

block pressure. Therefore arcs will be directed from permeability to grid 

block pressure.  

We shall recall that we inject water at the injector and given the 

pressure formed in the reservoir oil is pushed out at the producers. In 

time, water will spread from the injector in the directions of the 

producers. After some time, typically more than 500-600 days water will 

get to the producers and not only oil but also water will be pumped out 

from these wells. This is referred to as the moment when water breaks 

through. Before water breaks through the values of the saturations are 

very close to 0.2. After water breaks through the saturations values have a 

sudden increase to values near 0.8. Hence, theoretically saturation has an 

almost constant value at a given time (0.2 or 0.8). Any constant is 

independent of any other variable. That is why we have decided to 

exclude saturations from the NPBBN model.  

 The relation between the grid block pressure and the bottom hole 

pressure, and the relations between the grid block pressure and the flow 

rates are given by the well model [24]. According to this, a modification 

of the grid block pressure has a direct impact to both bottom hole pressure 
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and total flow rates. In the injector well, the well model gives a relation 

between the grid block pressure and the observable bottom hole pressure. 

In the producers, the well model gives the relation between the grid block 

pressure and the total flow rates. Therefore the arcs in the NPBBN are 

oriented from the grid block pressures to the bottom hole pressure and 

total flow rates.  Moreover the well model gives a one to one relation 

between the grid block pressure and the observable bottom hole pressure 

at the injector well. Also, at the producers the well model gives a one to 

one relation between the grid block pressure and the observable flow 

rates. Therefore we do not consider grid block pressures for the locations 

corresponding to the drilled wells.  

What about the directionality of arcs between bottom hole 

pressure and total flow rates? Since there was no evident answer for this 

question we have performed experiments for both situations/directions. 

Our results suggest that there is no major difference between the 

estimated permeabilities in both situations. Sometimes, differences of 

order 110  were observed for the estimated permeabilities. We have 

decided to arbitrarily consider arcs directed from bottom hole pressure to 

total flow rates. The NPBBN reprezentening our choices is pictured in 

Figure 4.10. 
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Figure 4.10: Choices of some arcs directionality 
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 But, what about the causality between permeabilities for different 

locations (see Figure 4.11)? Because the water flows from injector to 

producers pushing out the oil from the surface, we shall consider the arcs 

to be directed from the injector to the producers. We have applied the 

same reasoning for variables like: grid block pressure and permeability. 
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Figure 4.11: Arcs between permeabilities and pressures 

 

Regarding arcs directionality between the flow rates from the four 

producers there is no obvious answer. Again, one should perform 

experiments with different changes in the order of the flow rates and see 

whether any significant changes are noticed in the estimated 

permeabilities. Rarely differences of  110  were noticed for the estimates. 

We have randomly chosen the directionality between the flow rates. A 

final NPBBN representation of the state vector is given in Figure 4.12. 
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Figure 4.12: The DAG of the NPBBN 
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4.3 Measures of performance  

While performing experiments using different methods one must 

determine a way of evaluating them. Typically, we can measure the 

quality of history matching and the quality of predicting the production 

data. 

To measure the quality of the history matching we compare the 

‘true’ model parameter with the estimated model parameter (i.e. 

permeability). A measure of discrepancy is the root mean square error 

(RMSE).  RMSE can be computed for every time step as: 
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    (4.5) 

where truek  is the true permeability, k  is the estimated permeability, t is 

the time step, n is the number of grid block cells considered (e.g. for 

n=441 we compute the RMSE for the entire grid block at every time, for 

n=1 we can compute the RMSE for one location at every time step). 

When RMSE is computed for all locations at every time step, it gives just 

a general idea of the resemblance to the truth.  

On the other hand we may refer to the measures of performance 

on the basis of the quality of the predicted production data. There are two 

approaches here. The first one is called forecast8. After obtaining our 

estimate for the parameter, forecast can be performed in two ways.  One 

way is to run the simulator further in time from the last time step of 

estimation.  Another way is to run the simulator from the starting time 

(time zero) with the estimated permeability field and check how much it 

resembles the true forecast.  

                                                
8 Forecast is also called prediction in reservoir engineering. 
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We can also check the quality of the predicted production data by 

performing a so called data mismatch. Data mismatch shows how well 

the history matched model is able to reproduce the actual data used for 

history matching. If the model is able to reproduce the past behavior of 

the reservoir then, hopefully it will also be able to reproduce future 

reservoir behavior (forecast).  Data mismatch is a scalar defined as:  

 

     1 ,
T

Z H X R Z H X       (4.6) 

 

where Z  is the vector of measurements used for the history matching, X  

is the estimated state, R  is the measurements error,  H X  is the vector 

of measurements obtained with the estimated permeability field (obtained 

after the model is matched). 

 In this thesis we shall only use the RMSE. Nevertheless, when  

performing a twin experiment it is always helpful to also visually observe 

the resemblance of the estimated permeabilities with the truth. Therefore, 

pictures of the estimated permeabilities will be compared with the true 

permeabilities. One can argue that this is a more intuitive measure of 

performance; but sometimes, although the RMSE shows a certain 

general/avergae behavior for an estimated filed, the pictures of the 

permeabilities may reveal some extra information not captured by the 

RMSE.  

 The next Chapter will compare the performance of the two 

methods: EnKF (with localization) and NPBBN, given this experimental 

setup.  
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Chapter 5 

Case study 

 
This chapter presents the most important results for approaching a 

history matching problem using the ensemble Kalman filter method with 

localization and the non parametric Bayesian belief net based approach. 

The goal is to compare the performance of the two methods in estimating 

the permeability field. This chapter is organized as follows: we start by 

presenting results of estimating permeabilities from four locations 

(section 5.1). Next, we estimate permeabilities for larger grids: we chose 

7x7, 13x13 from the 21x21 grid block (section 5.2). In section 5.3 we 

perform experiments to check the sensitivity of the method to the initial 

ensemble chosen from the 1000 realizations at our disposal.  

5.1 Permeabilities estimated for 4 locations 

 We use the synthetic two dimensional squared petroleum reservoir 

presented in Chapter 4 of this thesis. We arbitrarily chose four different 

locations for estimating the permeabilities, as shown in Figure 5.1. The 

next subsection shows the results of estimating the permeabilities using 

the ensemble Kalman filter with localization with 100 and 300 ensembles. 

The same setup will be used in subsection 5.1.2 for estimating the 

permeabilities using the saturated NPBBN graph. In Chapter 3 of this 

thesis we presented a method for learning the structure of a NPBBN from 

data. In section 5.1.3 we shall compare results of estimating the desired 
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parameter by using EnKF, the saturated NPBBN and the NPBBN learned 

from data. 

   

 
Figure 5.1: Four chosen locations 

5.1.1 EnKF (with local analysis) 

 Our intention is to apply ensemble Kalman filter with localization 

for estimating the permeability for the filed presented in Figure 5.1. The 

appendix shows results of experiments using EnKF with local analysis for 

estimating the permeability field. It has been shown that for our field 

localization is effective when a small number of ensembles are used (e.g. 

less than 80 ensembles). When the size of the ensemble is larger than 80, 

the positive effects of localization are considerably diminished, i.e. the 

estimated permeability field using EnKF with localization is the same as 

the estimated permeability using EnKF only. Therefore, when using 100 

and 300 ensembles no localization is needed. The estimate of the 

permeabilities for the field illustrated in Figure 5.1 is presented as the 

mean of the estimated permeabilities for the ensembles used. Although 

EnKF is applied to the entire field in this section we shall illustrate results 

of estimating the permeabilities only in the four different locations of 

interest . Figure 5.2 shows the true prmeabilities, the initial choice for the 

permeabilitis and the estimated permeabilities afterv420 days for the four 

locations. We notice that the permeabilities for all four locations are 
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underestimated. The best estimate is achieved for location 7, whereas the 

worst is for location 9. As one would expect, the initial choice from 

location 7 is the best one; i.e. the closest to the true values.  Note that the 

initial from location 9 is quite far from the truth. We may say that the 

most significant improvement is observed in location 6 since we start 

with a clearly bad initial choice. Using a similar argument we notice that 

the smallest improvement to the estimate when using EnKF with 100 

ensembles is obtained in location 8.  
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Figure 5.2: Permeabilities estimated using EnKF with 100 ensembles 

 

We increase the number of ensembles to 300. Figure 5.3 presents 

the truth and the EnKF with 100 and 300 ensembles. One can observe that 

there are some small differences in the estimated permeabilities between 

EnKF with 100 ensembles and EnKF with 300 ensembles. Figure 5.4 

illustrates the RMSE for each location using both 100 and 300 ensembles. 

One should expect to obtain better or slightly better results when using 

EnKF with 300 ensembles than when using EnKF with 100 ensembles. 

This is the case for locations 7 and 9. However, for locations 6 and 8 the 

results with 100 ensembles are slightly better than the results with 300 

ensembles. The differences are visible in Figures 5.3 and 5.4. In search of 

an explanation for this behavior we looked at the initial ensemble. A 



 62

better initial might give a better estimate. However, Figure 5.5 shows the 

plot of the truth together with the mean of the initial for 100 and 300 

ensembles. The absolute differences between the initials are all of order 
210 . This is actually suggesting that the initial ensemble is not 

influencing the final result.  
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ure 5.3: Permeability estimated using EnKF with 100 versus 300 

ensembles 
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Figure 5.4: RMSE for each location using EnKF with 100 ensembles 

versus EnKF with 300 ensembles 
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Initial permeabilities 
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Figure 5.5: Initial permeabilities for 100 ensembles versus 300 

ensembles 

5.1.2 The Saturated NPBBN  

We shall use the NPBBN based approach to estimate the 

permeabilities from the four locations specified in the previous section. 

Experiments with 100 and 300 ensembles will be performed.  

First we consider 100 ensembles. We start by running the 

simulator ‘simsim’ for 60 days. We obtain the joint distribution of the 

variables after 60 days. This joint distribution is given in the form of a 

data set that can be mined and represented using a static NPBBN. Our 

intention is to learn a model that contains the variables defined in the state 

vector presented in section 4.1. Each node in the graph will be associated 

with a variable from the state vector at a certain location of the grid. In 

section 4.2.3 we illustrated the choice of arcs directionality in the 

NPBBN. Given the above, we can build a static saturated NPBBN model 

corresponding to the four locations specified in Figure 5.1. We first 

consider the saturated graph because we want to represent all possible 
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dependencies. Afterwards, we shall simplify the structure of the NPBBN 

model by using the learning algorithm presented in section 3.3. In order to 

represent the data using a NPBBN we assume the normal copula (see 

section 3.1.2). The assumption must be validated. We use the determinant 

of the correlation matrix as a measure of dependence. Given a data set, 

we may distinguish: 

 

 DER, the determinant of the empirical rank correlation 

matrix; 

 DNR, the determinant of the rank correlation matrix 

obtained by transforming the univariate distribution to 

standard normals and then transforming the product 

moment correlations to rank correlations using Pearson’s 

transformation; 

 DBBN, the determinant of the rank correlation matrix of a 

NPBBN using the normal copula. 

A statistical test for validating the joint normal copula is to obtain 

the sampling distribution of DNR and check whether DER falls within the 

90% confidence band of DNR. If DNR is not rejected on the basis of this 

test, we shall build a NPBBN which represents the data set.  

Any location that is not a drilled well location has its 

corresponding grid block pressure and permeability as shown in Figure 

5.6.  We denote the grid block pressures by p_6, p_7, p_8, p_9; and we 

denote the permeabilities by k_6, k_7, k_8, k_9. Moreover we measure 

bottom hole pressure (bhp) at the injector well and the total flow rates 

denoted by total_rate_1, total_rate_2, total_rate_3, total_rate_4, at each 

producer. Therefore, we are interest in the joint distribution of 13 

variables.  
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Figure 5.6: The Saturated NPBBN for four locations 

 

The NPBBN model is build in Uninet. By selecting the option 

view nodes as histograms in Uninet we can see the distribution of each 

variable. Figure 5.7 illustrates the NPBBN model from Figure 5.6 with all 

nodes viewed as histograms. The mean and standard deviation of each 

variable is shown in the respective histogram. 

The normal copula assumption after 60 days is validated, i.e. the 

DER falls within the 90% confidence band of the DNR. We obtained that 

  99 1026.85;66.31021.6  DER . 

 

 
Figure 5.7:  Saturated NPBBN with histograms. The marginal 

distributions of the variables after 60 days 
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One of the most important features of the NPBBN is that they can 

be used for inference. Hence, the static NPBBN will be used to perform 

the conditionalization/ assimilation step.  

Given the observed values of measurements at the wells, we can 

calculate the conditional distributions of the other variables. This is done 

in Uninet by switching to analytical conditioning view. One can notice 

that the observable variables are not normally distributed. Nevertheless, 

Gaussian noise is added when generating measurements.  

The conditioning is performed analytically as explained in 

Chapter 3.  Figure 5.8 shows the same NPBBN from previous pictures 

conditioned on the observations from the wells. We notice the change in 

the distributions of the unobserved nodes. The grey distributions are the 

original distributions of the variables and the black ones are the 

conditional distributions.  

 

 
Figure 5.8: Conditional distribution of 8 out of 13 variables. 

 

One of the assumptions of the EnKF method is that the 

conditional distribution is Gaussian. Figure 5.8 contradicts this statement 

by showing that not even the margins are normally distributed. After 
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conditioning, we stipulate the conditional distribution by sampling it. We 

shall use the sampling procedure illustrated in Chapter 3 of this project. 

Further, we introduce in ‘simsim’ the updated values (the grid block 

pressures and permeabilities) and we run the simulator for another 60 

days. In this way we shall obtain the distribution of the variables after 120 

days (with assimilation step after 60 days). The new joint distribution will 

be modeled with another static NPBBN. The two NPBBNs connected 

through the ‘simsim’ simulator are basically a dynamic BBN, where the 

temporal relations are functional. We shall repeat the above steps for a 

period of 420 days. Every time step we validate the normal copula 

assumption. Hence, we build a dynamic BBN for seven discrete times. 

In Uninet we also have the possibility of looking at the rank 

correlation matrix for each static NPBBN model. Figure 5.9 illustrates the 

correlations between permeability and other variables after 60 days 

(before the first conditionalization/assimilation step), 120 days and 420 

days. Generally, the absolute values of the rank correlations between 

permeabilities decrease after the first time step (first 60 days) and tend not 

to be recovered by the last time step. For instance, the absolute values of 

the rank correlation between k_6 and k_7 is 0.878 after 60 days, it 

becomes 0.727 after 120 days and by the last time step it decreases to 

0.444.  When referring to the absolute value of the rank correlations 

between permeabilities and grid block pressures one can say that some 

rank correlations recover while others do not. For example, the absolute 

values of the rank correlation between p_6 and k_6 is 0.274 before the 

first conditionalization/assimilation time step, it decreases to 0.0421 after 

the second time step and by the 420 days it increases to  0.107. However, 

the absolute value of the rank correlation between p_9 and k_9 decreases 

from 0.495 at time 1 to 0.0368 at time 2. At time 7 the absolute value of 

the rank correlation continues to decrease to 0.00868. Most of the 

absolute value of the correlations between the permeabilities and the 

observable variables (bottom hole pressure and total flow rates) tend to 
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decrease after the first time step and then some of them show a little 

increase by the end of the simulation. 
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 Rank correlations - Time 1            Rank correlations – Time2   Rank correlations - Time 7 

                                 
Figure 5.9: The rank correlations between the permeability and other variables in three discrete times.  
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The estimated permeabilities from the four locations using the 

saturated NPBBN based method are showed in Figure 5.10. When 100 

ensembles are used we observe that the permeabilities using the saturated 

NPBBN are overestimated. The best estimates are obtained for locations 

6 and 9, while the worst estimate is obtained for location 7. In Figure 5.12 

the RMSE for each time step for each location is illustrated. We notice 

that the RMSE has an increasing behavior for most of the locations of 

interest when using this number of ensembles. One reason could be that 

the joint distribution of 13 variables is not described well enough by only 

100 ensembles. Hence, we increase the size of the ensembles used to 300. 

We chose to use 300 ensembles because the correlation matrix is stable 

when using 300 ensembles, i.e. the differences between the correlation 

matrices calculated from 300 and 400 ensembles are of order 210 .  

Therefore, we expect to improve our estimate by using 300 ensembles.  
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Figure 5.10: Estimated pemeabilities with the saturated NPBBN using 

100 ensembles.  

 

We build a static saturated NPBBN model using 300 ensembles 

for every time step. Every time step we validate the normal copula 

assumption. For instance after 60 days, DER is within the 90% 
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confidence band of DNR’s distribution, i.e. we obtain that 

  88 106.97;84.51029.1  DER .  

Figure 5.11 compares the results of estimating the permeabilities 

from the four locations using 100 and 300 ensembles. As expected, the 

saturated NPBBN with 300 ensembles performs better than the saturated 

NPBBN with 100 ensembles.  The largest improvement is noticed for 

locations 8 and 9. Small improvements are observed for locations 6 and 7. 

Locations 6, 8 and 9 have a RMSE smaller than 0.5 (see Figure 5.12). 

Note that although improved, the RMSE for location 7, shows an 

oscillating (unstable) behavior.  

Looking at the correlations between the permeabilities from the 

four locations and other variables after 60 days, 120 days and 420 days 

we observe the same general behavior as when using 100 ensembles. 

Therefore, the correlations decrease considerably after the first 60 days. 

Some of the correlations tend to slightly increase by the 7th, but most of 

them remain very small. From a correlation of order 110  at the fist time 

step, one can see a correlation of order 310  at the 7th time step. If we 

compare the correlation matrix obtained using 100 ensembles with the 

one obtained when using 300 ensembles, the correlations are smaller in 

the latter situation for all time steps. Differences of order 110  can be 

noticed between the correlation matrix obtained when using 100 

ensembles and the correlations matrix obtained when using 300 

ensembles. This suggests that the ‘real’ correlations are indeed very small 

after the first time step.  
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Comparasion of the estimated permeabilities between the saturated 
NPBBN with 300 ensembles and the saturated NPBBN with 100 

ensembles
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Figure 5.11: Mean of the estimated permeabilities using 100 and 300 

ensembles 
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Figure 5.12: RMSE for each location when using the saturated NPBBN 

with 100 ensembles versus the saturated NPBBN with 300 ensembles 
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5.1.3 The Learned NPBBN 

The previous section illustrates results of estimating the 

permeabilities using the saturated graph. In this situation one considers all 

possible dependencies from a data base. However, some of the 

correlations might be unreal because they are due to sampling 

fluctuations. Our goal is to build a NPBBN model that eliminates these 

unreal correlations while approximating the saturated graph. In this 

section we shall learn the structure of the static NPBBN models used in 

the analysis. We are using the learning algorithm illustrated in section 3.3. 

When learning the structure of a NPBBN that approximates the saturated 

graph we introduce conditional independence relations. Hence one should 

validate that the learned model adequately represents the saturated graph. 

Again we use the determinant of the correlation matrix as an overall 

measure of dependence. For validating that the learned model adequately 

represents the saturated graph we use a validation test similar to the one 

presented in the previous section for validating the joint normal copula 

assumption. We compute the sampling distribution of DBBN and we 

check whether DNR is within the 90% confidence band of DBBN. If 

DBBN is not rejected on the basis of this test we validate the learned 

NPBBN model.  

Firstly we consider the NPBBN using 100 ensembles. Some arcs 

are deleted from the saturated NPBBN. We validate a simplified model 

(see Figure 5.13) that approximates the saturated graph. We obtain that 

DNR is within the 90% confidence band of the distribution of DBBN, i.e. 

  88 1018.44;71.11001.2  DNR . Every time step we learn a static 

NPBBN. Both the normal copula assumption and the model were 

validated for every static NPBBN. In this way a dynamic NPBBN with 

changes structure over time is built. Figure 5.14 shows the estimated 

permeabilities with the saturated NPBBN versus the learned NPBBN 

after 420 days. We notice that for some locations (e.g. location 6 and 
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location 7) the estimate improves when using the learned NPBBN. For 

location 8 almost the same estimate is obtained when using both the 

saturated and the learned graph, although the saturated graph seems to 

perform slightly better. For location 9 the saturated NPBBN gives a better 

estimate than the learned one. These results can be observed in Figure 

5.14 where the mean permeabilities are plotted, and also in Figure 5.15 

where we compare the RMSE for each location. Sometimes the saturated 

RMSE gives better estimates than the learned one. This can be the case if 

we eliminate small, yet real correlations. Nevertheless, if using the same 

NPBBN we encounter the opposite situation as well (the learned NPBBN 

better than the saturated NPBBN) for some locations. Drawing an 

unifying conclusion becomes difficult. The   fact that both situations are 

encountered for the same NPBBN, for different locations might also be a 

sign of numerical instabilities. 

 

 

 
Figure 5.13: The learned NPBBN when using 100 ensembles 
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Figure 5.14: The estimated permeabilities using the saturated NPBBN 

versus the learned NPBBN with 100 ensembles 
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Figure 5.15: RMSE for each location using the saturated NPBBN versus 

the learned NPBBN with 100 ensembles 

 
Next, we shall learn the structure of the NPBBN model when 

using 300 ensembles. A learned model that adequately represents the 

saturated graph is validated every time step. For example, after 60 days 

we validate a learned model for which DNR falls within the 90% 
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confidence band of DBBN’s distribution, i.e. 

 8 82.63 10 2.38;13.17 10DNR      . 

Figure 5.16 illustrates results of estimating the permeabilities after 

420 days. We observe that the saturated graph performs better for 

locations 7, 8, 9. For location 6 the saturated and the learned NPBBN 

perform equally well. The plot from Figure 5.17 shows the RMSE for 

each location, for the saturated NPBBN and the learned NPBBN. 

Therefore for all time steps, for most of the locations, the saturated graph 

gives a better estimate than the learned one. If comparing results of 

applying the learning procedure for the graph when using 100 and 300 

ensembles, one notices that as the number of ensembles increases there is 

less need of deleting arcs from the NPBBN. That is because in this case, 

the dependence structure is much better represented with 300 ensembles 

that just with 100. A similar situation was noticed when applying 

localization to the EnKF method. As the number of ensembles used for 

the EnKF increased, there was less need to apply localization.   
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Figure 5.16: Estimated permeabilities using the saturated versus the 

learned NPBBN with 300 ensembles 
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Figure 5.17: RMSE for each location using the saturated versus the 

learned NPBBN with 300 ensembles 

5.1.4 EnKF versus NPBBN  

In this section we shall compare the results from the previous 

sections when using the EnKF method and the NPBBN based approach.   

5.1.4.1 EnKF versus NPBBN for 100 ensembles 

Figure 5.18 shows the estimated permeabilities after 420 days 

using the EnKF, the saturated and the learned NPBBN for 100 ensembles. 

In Figure 5.19 the RMSE for each location is illustrated. We notice that 

the permeabilities from all four locations are underestimated when using 

the EnKF and overestimated when using both the saturated and the 

learned NPBBN. The NPBBN gives a better estimate than EnKF for 

locations 6 and 9. For location 6 the learned graph gives a better estimate, 



 78

while for location 9 the saturated NPBBN is closer to the truth. EnKF 

performs better than both the saturated and the learned NPBBN for 

location 7. With respect to location 8, we notice that all methods give 

similar estimates. However if we look at the RMSE, the EnKF method 

seems to give a slightly better estimate than NPBBN based approach for 

this location.  
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Figure 5.18: Comparative results of the estimated permeabilities using 

the EnKF versus the NPBBN based approach (with 100 ensembles) 
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Figure 5.19: RMSE for every location when using EnKF versus NPBBN 

based approach (with 100 ensembles) 

5.1.4.2 EnKF versus NPBBN for 300 ensembles 

When increasing the size of the ensembles to 300, the situation 

changes for most of the locations in favor of the NPBBN method. As 

shown in section 5.1.1 of this chapter the EnKF method does not show 

any major improvements when the size of the ensemble is increased from 

100 to 300. But, the NPBBN method, especially when using the saturated 

graph, gives much better results when we used 300 ensembles compared 

with 100 ensembles.  Figure 5.20 presents the results of the estimated 

permeabilities after 420 days. In Figure 5.21 the RMSE is showed for 

each location. For locations 6, 8 and 9 both the saturated and the learned 

NPBBN perform better than the EnKF method. However, EnKF still 

gives a better estimate than NPBBN (both the learned and the saturated 

graph) for location 7.   
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Figure 5.20: Comparative results of the estimated permeabilities using 

the EnKF versus the NPBBN based approach (with 300 ensembles) 
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Figure 5.21: RMSE for every location when using EnKF versus NPBBN 

based approach (with 300 ensembles) 
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5.2 Permeabilities estimated for a medium size 
grid block  

This section illustrates results of estimating the permeabilities 

from a 7x7 and a 13x13 square grids (see Figure 5.22). For estimating the 

49 permeabilities from a 7x7 grid we have 103 variables involved in the 

NPBBN based approach. When estimating the permeabilities for the 

13x13 grid we have 423 variables included in the NPBBN model. For 

these number of variables used, the determinants of the correlation 

matrices have very small values, e.g. values of order 20010 . Therefore the 

values of the determinants become meaningless and the validation steps 

inconclusive. Hence, we were not able to validate the normal copula 

assumption and a model that approximates the saturated graph.  In these 

conditions we performed experiments using the saturated graph and not 

the learned NPBBN. We shall present comparative results of estimating 

the permeabilities using the EnKF and the saturated NPBBN. It is worth 

mentioning that we use 900 initial ensembles chosen from the 1000 

realizations.  

Firstly we consider the 7x7 grid block chosen as in Figure 5.22 

left. We build a static saturated NPBBN for every time step for a period 

of 480 days. An example of such a saturated NPBBN is showed in Figure 

5.23. A saturated graph on 103 variables contains 5253 arcs, so is 

practically impossible to visualize all nodes and arcs in Figure 5.23.    

 

 
Figure 5.22: Medium size grid blocks chosen from the 21x21 grid block 
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Figure 5.23: An example of the saturated NPBBN for the 7x7 grid block 

 

Figure 5.24 illustrates comparative results using both methods for 

the 7x7 grid.  It presents the true permeabilities, the 900 initial ensembles, 

the estimated permeabilities after 480 days using the EnKF and the 

saturated NPBBN. We notice that the saturated NPBBN gives a better 

estimate than the EnKF for this grid. Figure 5.25 shows the RMSE at 

each time step. The behavior of the RMSE is quite different for the two 

methods. For the EnKF, the RMSE decreases at the first time step and 

then has an oscillating behavior with a tendency to stabilize around the 4th 

time step to a value of 0.7. The RMSE for the NPBBN has an increase 

after the first time step and afterwards is decreasing for every time step 

reaching a value of 0.5 by the 8th time step. Theoretically one would 

expect that the RMSE would decrease for every time step because as 

more data is assimilated, as closer the estimate should get to the truth. 

However, in practice , this seems not always to be the case. The NPBBN 

method uses rank correlations in the analysis. After the first time step the 

rank correlations between variables seemed to be quite large, as observed 

in section 5.1. the estimation of the correlation matrix is very sensitive to 

noise, so a wrong input can be amplified and and generate very wrong 

estimates. Maybe this could be an explanation of the RMSE behaviour 

after the first time step when using the NPBBN method. When more 

information is added to the model this seems to improve the performance 
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as expected. On the other hand it seems that after the 4th time step EnKF 

can not assimilate more information.  
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Figure 5.24: Top-left: the true permeability field. Top-right: the initial 

permeability field. Bottom-left: the permeability field estimated with the 

EnKF. Bottom-right: the permeability field estimated with the saturated 

NPBBN.  
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Figure 5.25: RMSE for the estimated permeabilities using EnKF 

versus the saturated NPBBN  
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We shall move on to present the results of estimating the 

permeabilities for the 13x13 grid as presented in Figure 5.22 right. Again, 

we illustrate comparative results using the EnKF and the saturated 

NPBBN with 900 initial ensembles. In Figure 5.26 we show the estimated 

permeabilities after 480 days when using both methods. The results 

indicate that the two methods are comparable. One could say that the two 

fields look equally well or even that the estimate using the saturated 

NPBBN looks slightly better than the field estimated using EnKF. 

However, the RMSE from Figure 5.27 contradicts the visual analysis. The 

RMSE for the entire field is clearly smaller and more stable for the EnKF 

than for the saturated NPBBN. The RMSE for enKF has a considerable 

decrease after the first time step and then a constant behavior, it stabilizes 

around the value of 0.5. Note that the RMSE for EnKF tells as that after 

the first time step the EnKF does not really assimilate anything. We 

observe that the RMSE for the saturated NPBBN decreases after the first 

60 days, it generally increases for the next five time steps and eventually 

decreases again for the last two assimilation step. One could ask whether 

the RMSE for the saturated NPBBN will continue to decrease if we 

assimilate further. When assimilating for one more time step, we observe 

that the RMSE increases again (see Figure 5.27). One possible 

explanation of this unstable behavior can be the fact that the number of 

ensembles used for this number of variables is too small. Note that we 

used 900 ensembles for 423 variables included in the saturated NPBBN. 

However, differences between the correlation matrices calculated with 

800 and 900 ensembles are of order 210 . This suggests that 900 

ensembles should suffice for 342 variables accounted in the saturated 

NPBBN. Still, this might not be the only way of checking whether the 

number of ensembles used is large enough.  

With respect to the ensembles used in next section we shall 

present a set of experiments that point out the fact that there is 

dependency between the 1000 realizations from which we have chosen 
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the initials. The sensitivity of both methods to the choice of the initial 

ensemble will be investigated.   
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Figure 5.26: Top-left: the true permeability field. Top-right: the initial 

permeability field. Bottom-left: the permeability field estimated with the 

EnKF. Bottom-right: the permeability field estimated with the saturated 

NPBBN. 
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Figure 5.27: RMSE for the estimated permeabilities using EnKF versus 

the saturated NPBBN 
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Figure 5.28: RMSE for the estimated permeabilities using EnKF versus 

the saturated NPBBN for a period of 540 days 

5.3 Sensitivity of the two methods to the initial 
ensemble 

In this section we perform experiments using different choices of 

the initial ensembles from the 1000 realizations at our disposal. The 

estimated permeabilities after 420 days using the saturated NPBBN with 

different initial ensembles are compared. With the same setup we run 

experiments using the EnKF.  For our experiments, we shall consider the 

four locations from section 5.1.  

We chose 100 ensembles from the 1000 realizations. Figure 5.29 

illustrates the mean of the different 100 realizations chosen. Note that the 

initial mean of the ensembles is very similar for different choices of 100 

realizations. The maximum absolute value difference between the mean 

of the initial choices noticed was 0.1.  
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Mean of 100 initial ensembles chosen in different ways from the 
1000 realizations
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Figure 5.29: Mean of the 100 initial ensembles chosen in different ways 

from the 1000 realizations 

 

Figure 5.30 illustrates the estimated permeabilities after 420 days 

using the EnKF. In Figure 5.31 we present the RMSE for each location 

using the EnKF method. For location 6 and 7 the choice of the initial does 

not make much difference.  The best estimate for location 6 is obtained 

when using the initial 100 ensembles with step 3. For location 7 the best 

estimate is noticed when using the initial 100 chosen with step 10. 

Locations 8 and 9 seem to be more sensitive to the choice of the initials 

than locations 6 and 7. Both locations suggest that the 100 ensembles 

chosen with step 3 give a better estimate than the other two choices. 

Moreover, the worst estimate for both locations is obtained when using 

the 100 ensembles chosen in row.  
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Estimated mean permeabilities
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Figure 5.30: The estimated permeabilities using the EnKF with different 

choices of the initial ensembles from the 1000 realizations 

 

 

0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

Time [days]

RMSE for Location 6

 

 
The EnKF 100 chosen 200:299
The EnKF 100 chosen 5:3:302
The EnKF 100 chosen 10:10:1000

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [days]

RMSE for Location 7

 

 
The EnKF 100 chosen 200:299
The EnKF 100 chosen 5:3:302
The EnKF 100 chosen 10:10:1000

0 100 200 300 400 500

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time [days]

RMSE for Location 8

 

 
The EnKF 100 chosen 200:299
The EnKF 100 chosen 5:3:302
The EnKF 100 chosen 10:10:1000

0 100 200 300 400 500

1.4

1.6

1.8

2

2.2

2.4

2.6

Time [days]

RMSE for Location 9

 

 
The EnKF 100 chosen 200:299
The EnKF 100 chosen 5:3:302
The EnKF 100 chosen 10:10:1000

 
Figure 5.31: RMSE for each location. Comparative results of the 

estimated permeabilities using the EnKF with different choices of the 100 

initial ensembles from the 1000 realizations.  

 



 89

The estimated permeabilities after 420 days using the saturated 

NPBBN are presented in Figure 5.31. Figure 5.32 illustrates the RMSE 

for each location with different choices of the initial. We notice that the 

NPBBN based approach is very sensitive to the choice of 100 the initial 

ensembles. The best estimates for all four locations are obtained when 

using 100 initial ensembles chosen with step 10. The results suggest that 

the more spread is in the initials, the better the estimates obtained.  

 

Estimated permeabilities with 100 ensembles chosen in different 
ways from the 1000 realizations
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Figure 5.32: The estimated permeabilities using the saturated NPBBN 

with different choices of the initial ensembles from the 1000 realizations 
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Figure 5.33: RMSE for each location. Comparative results of the 

estimated permeabilities using the saturated NPBBN with different 

choices of the 100 initial ensembles from the 1000 realizations. 

 

The results of this section show that the choice of the initial 

ensemble, from the 1000 realizations, influences the estimated 

permeabilities when both the EnKF and the NPBBN method are used. 

However, the NPBBN based approach seems to be more sensitive to the 

choice of the initial ensemble than the EnKF. This might be because 

estimating the correlation matrix is more demanding than estimating the 

first two moments, mean and covariance matrix.  

If the 1000 realizations are completely independent of each other, 

one would expect that the choice of the initial should not influence so 

much the final estimate. The obtained results might give an indication that 

the 1000 realizations are dependent. As a matter of fact the 1000 

ensembles are generated as linear combinations of 200 snapshots of a 

training image.  This introduces dependencies in the ensembles. We 

believe that the performance of both techniques, especially the NPBBN   

method should improve if completely independent initial realizations are 

to be available.  
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Chapter 6 

Conclusions and 
recommendations 

Reservoir simulation is an area of reservoir engineering that uses 

computer models to predict the flow of fluids in a reservoir. These models 

are used by oil companies for two purposes. The first one concerns the 

development of new fields, i.e. the drill of new production wells is of 

great interest. Models are also used in developed fields where the 

production forecast is used to make investment decisions. Typically, one 

is interested in the flow of fluids like oil, water and gas.  The ease of flow 

of such a fluid through a porous media is characterized by the 

permeability of the rock. The goal of this thesis was to estimate the 

permeability of the subsurface. The problem of estimating parameters like 

permeability is often referred to as the history matching problem in 

reservoir simulation.  

This was the first attempt to approach a history matching problem 

in reservoir simulation using the NPBBN method. The new approach was 

presented in a comparative way with the EnKF method. The idea was to 

use the ensemble Kalman filter with localization. However, given the 

setup for our experiments the localization proved not to be necessary.  

The results clearly indicate that the two methods are comparable 

when used to solve a history matching problem in reservoir engineering. 

However we would like to point out to the differences between them.   

Firstly, 100 ensembles are enough for estimating the 

permeabilities for the entire field using the EnKF. In section 5.3.1 we 

noticed that the difference between the estimates using 100 and 300 

ensembles (for the EnKF) was very small. The situation changes when  
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using the NPBBN method. If one looks at the stability of the correlation 

matrix, then 300 ensembles were necessary for estimating the 

permeabilities from four locations only. Note that the increase in the 

number of ensembles used for the NPBBN method does not interfere with 

the computational speed in contrast with the EnKF.  

Localization proved to be necessary for the EnKF when the size of 

the ensembles chosen for the entire filed (21x21 grid block) was very 

small (e.g. less than 80 ensembles). Similar results were noticed when 

applying the data mining procedure for learning the structure of the 

NPBBN from data. The saturated NPBBN showed better results than the 

learned one when 300 ensembles were used for estimating the 

permeabilities from four locations. However, when a NPBBN was 

learned and 100 ensembles were used, the results were inconclusive. For 

some locations, the estimate using the learned NPBBN improves, for 

others the saturated NPBBN gave better results.  

When presenting the twin experiment setup in Chapter 4 of this 

thesis we mentioned that the measurements are generated by adding 

Gaussian noise to the truth. Looking at the histograms of the variables we 

noticed that neither bottom hole pressure at the injector well, nor total 

flow rates at the producers are normally distributed. The assumption of 

normality is used for the EnKF method. For a fair comparation we 

decided to use the same setup. It could be of future interest to add errors 

to the observable variables with closer distributions to their true ones.    

One of the most important assumptions made by the EnKF 

method is that the conditional joint distribution is joint normal. Therefore, 

it can be characterized just by the first two moments (mean and variance). 

When the NPBBN model was built for four locations we observed that 

the margins of the assumed Gaussian distribution were far from being 

normally distributed. Note that no validation of the assumption of joint 

normality distribution is used for the EnKF method. On the other hand, 

the NPBBN approach uses the assumption of joint normal copula. Hence, 
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no assumption about the marginal distributions is made. In contrast with 

the EnKF, for the NPBBN method one can validate the assumption of 

joint normal copula by using a statistical test.  

As mentioned the NPBBN based approach uses statistical tests for 

two validation steps. Firstly, the joint normal copula is validated. 

Secondly, a learned NPBBN model that approximates the saturated graph 

is validated. The overall measure of dependence on which the statistical 

tests are based is the determinants of the correlation matrices. When a 

static NPBBN model was built for 13 variables both steps were validated 

using the statistical tests. However, as the number of variables in the 

graph increased, e.g. for 103 or 342 variables involved in the NPBBN 

model, the values of the determinants of the correlation matrices became 

meaningless. Therefore, the validation was not significant anymore. 

Different statistical tests, which are maybe based on a different measure 

of dependence would be of great interest.  

We presented results of estimating the permeabilities for: four 

different locations randomly chosen from the field at our disposal, a 7x7 

grid block and a 13x13 grid. For three out of four randomly chosen 

locations, the obtained estimates when using the NPBBN approach were 

closer to the truth than the ones obtained when using the EnKF. Better 

results were obtained with the NPBBN than with the EnKF when 

estimating the permeabilities for a 7x7 grid. However, when the 

permeabilities were estimated for a 13x13, the two methods performed 

more or less the same. One could argue that the RMSE for the NPBBN 

method shows a worse estimate. It is worth mentioning that RMSE gives 

just a general idea of the behavior of the estimate. The visual 

representation of the fields can be a powerful tool to evaluate the 

performance of the applied methods in a twin experiment. In this 

particular case, the images of the fields show that the NPBBN approach 

gives similar results to ones obtained with the EnKF method.  
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Our goal was to estimate the permeabilities for the entire field 

using both methods. However, we only illustrated results for a maximum 

of 13x13 grid block. Building a saturated NPBBN for a larger grid 

becomes computationally infeasible. The problem lies in the number of 

arcs and the number of computations needed in order to quantify them. 

The maximum number of permeabilities that we could estimate was 169 

out of 441. This constitutes a considerable limitation of the NPBBN based 

approach. Nevertheless, interpolation methods could be employed for 

estimating the permeabilities for larger fields.  

When comparing the estimated permeabilities using both methods, 

the EnKF was applied to the entire field (21x21 grid block). However, if 

EnKF would be applied to a smaller size grid block, e.g. a 7x7 or a 

13x13, one would expect to obtain a worse estimate because information 

is lost. The NPBBN was limited to be applied for estimating the 

permeabilities for a maximum of 13x13 grid block. We did not consider 

imposing the same limitation to the EnKF.  

In section 5.3 we performed some experiments to see how the 

choice of the initial ensemble influences the estimated permeabilities. The 

obtained results gave an indication that the 1000 ensembles might be 

dependent. As a matter of fact the 1000 realizations were generated as 

linear combination of 200 snapshots of a training image. This introduces 

dependencies in the ensembles. One should expect that the performance 

of both methods will improve if, in the future, completely independent 

initial ensembles are to be used. Our results also suggested that the 

NPBBN method is more sensitive to the initial choice than the EnKF. 

One reason for that could be the fact that the NPBBN method is based on 

the relationships among variables. Therefore the method works with the 

correlations between variables. Estimating the correlations matrix is more 

demanding than estimating the mean and covariance used by the EnKF.   
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We shall further present a summary of the main conclusions and 

recommendations discussed in this chapter: 

 

 The NPBBN based approach uses more ensembles than the 

EnKF method. However, this does not influence the 

computational speed in contrast to the EnKF. 

 For being affordable, the EnKF is limited to use a small 

number of ensembles. Typically between 50 and 100 

ensembles are used in reservoir applications. Given that 

the dimension of the state vector for real reservoir 

engineering applications can be of order 610 , the ensemble 

size is clearly too small. One way of dealing with these 

issues is to use localization methods. However, sometimes 

localization introduces inconsistencies in the system. 

 The NPBBN technique is limited to estimate the 

permeabilities for a maximum of a 13x13 grid block. We 

suggest employing interpolation methods for estimating 

permeabilities for larger grid blocks. 

 The NPBBN technique is more sensitive than EnKF to the 

choice of the initial ensemble. Better results are to be 

expected for both methods, especially for the NPBBN 

based approach, if completely independent initial 

ensembles are to be used. 

 The NPBBN method works with the assumption of joint 

normal copula. No assumption of the marginal distribution 

is made. Moreover, the method validates the assumption 

by using statistical tests. When the number of the variables 

involved in the NPBBN were greater than 100, the values 

of the statistical tests become meaningless. Hence, new 



 96

statistical tests for the NPBBN based approach are of great 

interest. 

 The EnKF uses the assumption that the joint distribution is 

normal. No validation of this assumption is involved when 

using the EnKF. Moreover the histograms of the variables 

point out the fact that the marginal distributions of the 

assumed Gaussian are far from being normal. 

 Measurements are generated by adding Gaussian noise to 

the true observations. Histograms of the observable 

variables indicate that the measurements are not normally 

distributed. Measurements generated by adding noise to 

the observable variables with closer distributions to their 

true one are of future interest. 

 

If one would have to make a choice it might be too early to say 

which approach performs better. We believe that further research 

considering all of the above mentioned recommendations should 

give more conclusive results when comparing the two approaches.  
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Appendix 

A.1 Introduction 
 

The purpose of this appendix is to present the two most common 

localization methods in EnKF systems: Covariance Localization (CL) and 

Local Analysis (LA). Both of these methods are popular for large scale 

applications with the EnKF [e.g.5,6,12,8,7,9].   

The appendix is organized as follows: in Section A2 and Section 

A3 Kalman Filter and Ensemble Kalman Filter are are placed in the 

context of data assimilation methods. Section A4 presents the distance 

based localization methods. A small case study of a petroleum 

engineering application is presented in Section A5.  

A.2 Kalman Filter 

Data assimilation is the methodology that combines a 

mathematical-physical model with available measurements for estimating 

and predicting different environmental processes.  

One of the most known data assimilation methods is the Kalman 

Filter, published by R.E.Kalman in 1960. The author is describing a 

recursive solution to the discrete data linear filtering problem. Since that 

time, mostly due to the computer advances, the Kalman Filter has been 

the subject of extensive study and research. A large number of new 

algorithms were developed for solving different type of applications. The 

Kalman Filter is a set of mathematical equations that are used to estimate 

the state of a process in a way that minimizes the distance between 

measurements and model predictions.  
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The Kalman Filter addresses the general problem of trying to 

estimate the state nx  of a process that is governed by the liner 

stochastic difference equation 

 

             1X k A k X k B k u k G k W k                          (1) 

 

With measurements  

 

       Z k H k X k V k                                                          (2)  

 

k  represents the time;  A k  is a n n  matrix that relates the state at the 

previous time step 1k   to the current step k ;  the matrix B  relates the 

input vector ku  to the state vector; the matrix  H  in eq. (2) relates the 

state to the measurements  Z k  . 

          The random variables  W k  and   V k  represent the model and 

measurement noises. They are assumed to be independent of each other 

and white Gaussian. 

                ~ 0,W k N Q k                                                 

               ~ 0,V k N R k                                                   

         To solve the filtering problem we have to determine the probability 

density of the state  X k  conditioned on the history of available 

measurements  Z k . This conditional density function is assumed to be 

Gaussian; hence, it can be fully characterized by the mean and covariance 

matrix. The Kalman Filter will recursively calculate the state vector 

 X k  along with its covariance matrix P , conditioned on the available 

measurements up to some time k , under the criterion that the estimated 
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error covariance is minimum. The main steps of the algorithm are 

described in the following Figure: 

 

Figure 1: Kalman Filter algorithm 

 

The main steps of the algorithm can be summarized as follows:  

        Initialization 

 

   0 0aX X                                                                              (5) 

   0 0aP P                                                                               (6)                                   

       

        Time update  

 

             1f aX k A k X k B k u k G k W k                      (7) 

           1 ( ) ,T Tf aP k A k P k A k G k Q k G k                      (8)                     

                                                 

 where the subscript f stands for forecasted value and the subscript a 

stands for analyzed. 

 

      Measurement updates  

 

            1 1 1 1 1 1a f fX k X k K k Z k H k X k                  (9)       
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1 1 1 1 1

1 1 1

a f f

f

P k P k K k H k P k

I K k H k P k

      

                                 (10)  

                                        

 1fP k   is also called the background error covariance matrix.  1K k   

is the Kalman Gain or weighting matrix, describing the difference 

between the observed and the forecasted variables. It is computed using 

the following equation: 

            1( 1) 1 1 [ 1 1 1 1 ]T Tf fK k P k H k H k P k H k R k           
)                                                                                                              (11)  

A.3 Ensemble Kalman Filter (EnKF) 

The Kalman Filer is computationally expensive for large scale 

systems and is not suitable for non linear systems. The most time 

consuming operation of the filter algorithm for large scale systems is 

calculating the first term in the time update of the covariance matrix: 

 

   1 ( 1) 1 TaA k P k A k                                                           (12) 

 

For large scale systems it is not attractive to store the matrix 

 A k  and to determine its transpose. In order to obtain a computationally 

feasible filter, a square root algorithm can be used. This algorithm is 

based on the fact that a covariance matrix P  can be factorized as follows:  

 
TP LL                                                                                       (13) 

 

Where L  is a square root of P . The factorization is not unique 

and there exist many square roots of P . Most of the algorithms that have 

been developed for large scale systems are based on a square root 
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representation of the covariance matrix P  [e.g. 6, 12]. An example of 

such an algorithm is Ensemble Kalman Filter (EnKF) for which the 

probability density of the state estimate is represented by a finite number 

M of randomly generated system states: 

 

 1 , 1,...,i k i M                                                                                  (14) 

 

The optimal estimate and the square root of the covariance matrix 

of the estimation error are now given by: 

 

   
1

11 1
M

i
i

X k k
M




                                                                        (15)  

           11 1 1 ... 1 1
T

ML k k X k k X k                    (16) 

 

The square root  1L k   defines an approximation of the 

covariance matrix  P k  from the finite number of ensembles: 

 

     11 1 1
1

T
aproxP k L k L k

M
   


                                                  (17) 

  

Matrix  L k  is also called the ensemble anomalies matrix. The main 

steps of the Ensemble Kalman Filter are described in Figure 2. 

 
Figure 2: Ensemble Kalman Filter algorithm 
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The Ensemble Kalman Filter algorithm’s steps from Figure 2 can 

be summarized as follows: 

 

Time update  

 

      1 ,f f i
i i kk f k k G k W                                                          (18) 

   
1

11 1
M

f f
i

i
X k k

M




                                                                    (19) 

           11 1 1 ... 1 1
Tf f f f f

ML k k X k k X k            (20) 

     11 1 1
1

Tf f f
aproxP k L k L k

M
   


                                               (21) 

 

Measurements update  

 

             
1

1 1 1 1 1 1 1 (22)T Tf f
aprox aproxK k P t H k H k P t H k R k


          

              1 1 1 1 1 1 1 (23)a f f
i i i ik k K k Z k V k H k k            
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                                                                     (24)                                                                                                                     
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A.4 Localization 
 

The main advantage of the EnKF is that it approximates the state 

error covariance matrix, thus it becomes suitable for large non linear 

problems. Generally, the EnKF is used for applications that have state 
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vectors of very large dimensions. The main disadvantage of EnKf appears 

when the dimension of state vector is much larger than the number of 

ensembles used.  This leads to sampling errors which makes the 

approximated covariance error to be underestimated.  As shown, in EnKF 

the covariance error equation (8) is approximated by Eq. (21). When the 

ensemble size is much smaller compared to the dimension of state vector, 

then this approximated covariance error is inaccurate. Unfortunately this 

is very often the case, since EnKF is a Monte Carlo Method and for being 

affordable for large systems a relatively small number of ensembles are 

used (generally 100 ensembles, but sometimes even less). The presence of 

unreal correlations, also called spurious correlations between large 

distance grid points is noticed in this case. In this way the model and state 

variables are updated in regions where they should not be updated, thus 

observations have high influence over too large distances, which is not 

physically true. 

One way of reducing these effects is to use localization methods. 

Errors can be correlated locally, but as mentioned, sometimes covariance 

shows correlations between large distance grid points. The process of 

eliminating these unreal, large distance correlations is called localization. 

The two classical localization methods are: Covariance Localization (CL) 

and Local Analysis (LA).  We shall briefly describe both of them in the 

following sections. 

A.4.1 Covariance Localization (CL) 

Covariance localization uses a Schur product of the covariance of 

the background error calculated from the ensembles and a correlation 

function with local support, denoted here by Corr. This method is 

described in [10],  [28].  

 
f f

aprox aproxP Corr P                                                                            (27) 
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By the Schur product theorem ( [29]) the product function is also a 

covariance function. The Schur, often called the Hadamard product of 

two matrices A and B is the matrix C having the same dimensions as A 

and B, , , ,i j i j i jC A B . The Schur Product is applied to the Kalman Gain as 

follows: 

 

    1loc f T f T
aprox aproxK Corr P H H Corr P H R


                                 (28)        

 

We denote by locK  the Kalman Gain for which we have applied 

the Schur product and f
aproxCorr P   denotes the Schur product of the 

correlation matrix Corr   with the covariance matrix  f
aproxP  .  The order of 

the forward interpolation and the Schur product can be changed without 

altering the results, so that (28) can be written as follows: 

 

    1loc f T f T
aprox aproxK Corr P H HCorr P H R


                                   (29) 

 
f T

aproxP H   can be calculated directly from the ensembles: 

 

  
1

1
1

M Tf T f f f f
aprox i i

i
P H X X HX HX

M 

  
                                      (30) 

 

Now, the question is “How to choose the correlation function also 

called sometimes a tapper function?” In [29] a number of examples of 

correlation functions with local support are given. Widely used is the fifth 

order polynomial with similar shape of a Gaussian function, proposed by 

Gaspari and Cohn, 1999, eq 4.10.  The correlation functions are generally 

smooth and monotonically decreasing with distance. These functions 

reduce and smooth the effect of observations at large distances. The effect 

varies from 1 at the observation point to 0 at some specified distance from 
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the grid point being analyzed. . The two safest choices are Gaussian and 

Gaspari and Cohn functions. To be applicable to a particular scheme, CL 

as defined in eq. (27) requires that the update equations are formulated in 

terms of P.  So, covariance localization can be applied only to schemes 

that use P. 

A.4.2 Local Analysis (LA) 

Local analysis is defined within a local region which means that 

only observations within a certain distance from the grid point being 

analyzed will impact the analysis in that grid point. This localization 

method is applied to the estimate update. Localization is done grid point 

by grid point so every time a small model state is solved. Observations 

within the local region can have equal or decreased influence of the 

observation on the analysis point regarding the local functions used. In [9] 

was proposed to use a cut off radius for which only observations within 

this defined radius are used for the grid point analyzed. This was one of 

the first attempts of doing localization in EnKF. It was shown that the use 

of a cut off radius produces discontinuity analysis increments, so that it 

becomes a source of noise itself. Another example presented in [9] 

suggested using a smoother function, a cylinder, such that only 

observations located within a given radius would be used for each 

analyzed grid point. Generally, we can use a function like normal or 

exponential 3 1  that decreases locally from 1 to 0 at some defined radius 

or distance. The same kind of functions applied globally for covariance 

localization can be used locally for local analysis. The main difference 

between the two approaches is that for covariance localization we apply 

the function to the background error covariance matrix, while for local 

analysis we apply the function to the estimate update.9  

                                                
9 3exp( 1/ 2*( tan / ) )dis ce radius  
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The choice of observations to be used,  in other words the choice 

of the radius for each grid point is up to the user of the method, a good 

choice must consider the particular system being modeled and the size of 

the ensembles (more ensembles should allow more distant observations to 

be used). It is also important that most of the measurements used in an 

analysis of a certain grid point to be used for the neighboring grid points 

in order not to have a drastic change of the values of very close grid 

points. Generally, the best choice of the radius is determined 

experimentally for the particular system modeled.  

A.5. Case Study 

We shall apply localization to the problem described in chapter 5 

of this project. All experiments setup are according to Chapter 5. 

A. 5.1 The choice of the localization method 

The first choice of what localization method to implement for our 

field was covariance localization (CL), the choice was mainly based on 

the fact that covariance localization is less computationally demanding 

than local analysis. In order to apply covariance localization we need to 

multiply the correlation function with the background error covariance 

matrix as described in Section AA4.1. Due to different units and scales 

for measuring the variables of the state vector pressure and saturation 

(pressure is of order 710  and saturation is of order 310 ) the matrix-matrix 

and matrix-vector multiplication from Kalman Gain became an issue. In 

[28], pages 48, 49 a trick is presented, which  consists in the use of some 

scaling matrices such that the multiplications matrix-matrix and matrix-

vector result in matrices which elements do not sufficiently differ in 

order. Unfortunately, the multiplication with the scaling matrices 
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separates matrices L and L’ such that it is impossible to apply the 

correlation function to the background covariance matrix fP . Then 

covariance localization becomes impossible to be applied to the available 

EnKF for the described field.  

We decided to apply local analysis. In this way localization is 

applied locally to the estimate update (measurements update) and not to 

the Kalman Gain matrices. Hence we avoid complications related with re-

scaling the state vector. Next Section AAwill present experiments using 

local analysis for different number of ensemble members.  

A.5.2 Experiments 

Because localization is related to the number of ensembles used, 

firstly we chose to perform experiments with a very small number of 

ensembles, thus we run EnKF with 15 ensembles with different 

localization functions. The normal function is chosen as our local 

function, this function decreases from 1 at the observation point to 0 at 

some specified radius. Figure 3 shows the RMSE for EnKF different 

radius for simulations run with 15 ensembles. The same exact ensembles 

are used for all simulations. 
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Figure 3: RMSE for 15 ensembles with different localization 

radius R 

 

From Figure 3 we notice that indeed by applying local analysis 

RMSE decreases, the smallest RMSE is observed for the local radius at 

the value 15. Also, because we use such a small number of ensembles, we 

observe that at the beginning of time RMSE tends to increase. After 

approximately 200-250 days RMSE decreases when we use localization 

but the increasing trajectory is kept for the use of EnKF only. Figure 4 

shows the estimated permeability field using EnKF. Figures 7 describe 

the estimated permeability field for EnKF using the local radius 15 as 

suggested in Figure 3. We notice that by using localization we obtain a 

closer estimate to the true value of the Permeability filed. Thus, for a 

small number of ensembles, as 15, the local analysis improves 

significantly the estimate.   
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True permeability field
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Estimated Permeability Filed using EnKF, 15 ensembles
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Figure 4: True Permeability field (top); Estimated permeability Field 

using EnKF (bottom) 

 

             

Estimated Permeability Field, 15 ensembles, R=15
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Figure 5: Estimated Permeability Field using EnKF with the local radius, 

R=15 

 



 110

For the previous experiments we used a normal function. The 

question is whether another function could perform better. In order to 

answer this question we perform simulations for the Step function and 

Exponential 3 functions also. Figure 6 presents the three comparative 

functions with radius 5 for the observation at the injector well.  

 
Normal function, observation at injector
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Exponential 3 function, observation at injector
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Figure 6. Local functions, top left-Normal function; Top-right-

Step function; Bottom-Exponential 3 function 

  

Figure 7 describes the RMSE for the local radius 15 for each of 

the local functions presented in Figure 6. We notice that the best 

performance for this radius is for the normal function. The worse 

performance, as expected is registered for the step function, since this is 

the simplest case where only values 1 and 0 are used. Exponential 3 has a 

better behavior than the Step function, but still the Normal function 

performs better. Hence we conclude that is better to use a decreasing 
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function from 1 at the observation point to 0 at some specified distance 

from the observation. We decide to continue our experiments using the 

Normal function.  
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Figure 7: RMSE for EnKF, R=15, with different local functions 

 

As the number of ensembles is increased there is less need of 

localization and the local radius increases as well, thus experiments with 

60 and 80 ensembles should reveal a larger local radius. Figure 8 

describes the RMSE for 60 ensembles with different local radiuses. As 

expected, the radius increases and also we notice that there aren’t big 

differences within different radiuses. The performance of EnKF without 

localization  is very similar with the behavior of EnKF with localization, 

no matter the radius used.  Some improvements could be considered for 

R=18. Figures 11, 12 and 13 show the estimated permeability fields for 

EnKF with 60 ensembles, EnKF with 60 ensembles and radius 18 and 

EnKF with 60 ensembles with the largest possible radius 30, so that every 

element of the grid point is updated for each observation. We notice small 

differences between the three pictures, but still localization improves 

slightly the estimate. We observe that even for the maximum radius we 

still obtain a better estimate in comparison with using EnKF without 
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localization, this is because although we update all grid points for each 

observation we give decreased weights from the observation point to the 

rest of the grid points, thus the estimate is more accurate. 
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Figure 8: RMSE for different local radiuses using 60 ensembles 

 

Estimated Permeability Filed using EnKF, 60 ensembles
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Figure 9: Estimated permeability using EnKF with 60 ensembles 
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Estimated Permeability Field, 60 ensembles, R=18
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Figure 10: Estimated permeability using EnKF with local analysis, R=18, 

with 60 ensembles 

Estimated Permeability Field, 60 ensembles, R=30
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Figure 11: Estimated permeability using EnKF with local analysis, R=30, 

with 60 ensembles 

 

 

The last round of experiments performed for this study is by 

considering 80 ensembles. As mentioned, we expect that there is less 

need of localization as the size of the ensembles increases. Figure 12 
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shows that the values of RMSE are vey close for very different local 

radiuses. There is almost no difference between EnKF and EnKF with 

localization. Still, EnKF with R=25 seems to produce a slightly smaller 

RMSE. Figures  15, 16 and 17 present EnKF, EnKF with R=15 and EnKF 

with R=30. Although localization does not change in a very drastic way 

the estimate for this number of ensembles, still there are some 

improvements. Considering the dimension of our field and the fact that 

the maximum distance between observation and a grid point is 

approximately 900m, local analysis shows some improvements for the 

estimate.  
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Figure 12: RMSE for EnKF with different localization radius using 80 

ensembles 
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Estimated Permeability Filed using EnKF, 80 ensembles
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Figure 13: Estimated permeability using EnKF with 80 ensembles 

 

Estimated Permeability Field, 80 ensembles, R=25
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Figure 14: Estimated permeability using EnKF with local analysis, R=25, 

with 80 ensembles 
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Estimated Permeability Field, 80 ensembles, R=30
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Figure 17: Estimated permeability using EnKF with local analysis, R=30, 

with 80 ensembles 

A.6. Conclusions 

Our goal was to describe and apply the two most common 

localization methods within the Ensemble Kalman filter techniques. 

Sections A2 and A3 present briefly the Kalman Filter and Ensemble 

Kalman Filter algorithms. The main advantage of the EnKF is that is 

suitable for large nonlinear systems. Still, because in general is used for 

large applications, the dimension of the state vector is much bigger than 

the size of the ensemble used. This introduces large correlations between 

distant grid points, also called spurious correlations, which lead to 

inaccuracy in our covariance error. Localization techniques deal with 

diminishing these spurious correlations and improving the accuracy of the 

estimate. The two most common localization methods are introduced in 

this study. Covariance localization (CL) is applied globally, to the 

Kalman Gain by multiplying the background error with some correlation 

function. The second method, local analysis is applied locally to the 

estimate update, every time only measurements situated within a certain 
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radius from the grid point analyzed contribute to the estimate.  Section A4 

presents the two localization methods. 

Section A5 presents a small application for which we use local 

analysis. The reasons for which covariance localization could not be 

applied for our field are also described. Different functions with local 

support are used and the choice between them is based on their 

performance on our example. Although the dimension of the state vector 

is rather small, the largest distance between the observation and a grid 

point is around 900 m, we could still observe improvements by applying 

local analysis, especially for a very small number of ensembles, like 15. 

As the number of ensembles increases the need of localization decreases 

and there are less and less improvements noticed, although even for 80 

ensembles, using the maximum localization radius we can still notice 

some positive effects.  

As shown in our study, if the ensemble size is small we must use 

localization methods. We presented the classical distance based methods, 

but many interesting alternatives exist in the literature, e.g. the so called 

“Adaptive localization Methods” [10], [11]. Alternatives have their own 

set of strengths and weaknesses, thus there is not one obvious superior 

method proffered by the community. The choice of the localization 

method should be based on criteria likes system’s characteristics, 

numerical effectiveness and computational properties.  
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