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Abstract 

In the Netherlands, the inspections of bridges are carried out periodically and their 

results are registered in an electronic database. On the basis of visual inspections, bridges are 

rated on a discrete scale ranging from a perfect condition to a very bad condition (failure). 

Among others, the inspections supply information about the transitions between the bridges' 

conditions. Modelling a bridge deterioration process is an important issue in order to gain better 

knowledge about the remaining time to failure. The Markovian approach is in our interest as the 

condition of the bridges can be expressed by discrete numbers. However a standard Markov 

model requires the states to be known without uncertainty. We believe that the results of 

inspections can be prone to a bias due to inspectors' subjectivity. Therefore, we consider a 

hidden Markov model. This model describes the deterioration process which is assumed to be 

Markov with unknown parameters. The hidden parameters (actual states) must be determined 

from the observable parameters (observations from the inspections). 

To determine the optimal model parameters, the likelihood function of the data was 

derived and the maximum likelihood estimator was used. The research presents different 

approaches for determining the inspector errors and their results are compared. 
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Samenvatting 

Dit rapport is het resultaat van het afstudeerproject van Magda Sztul, studente 

Technische Wiskunde aan de faculteit Elektrotechniek, Wiskunde en Informatica (EWI) van de 

Technische Universiteit Delft. Het project is uitgevoerd in de periode van januari tot juli 2006 bij 

HKV LIJN IN WATER te Lelystad onder begeleiding van ir. M.J. Kallen en prof. dr. ir. J.M. van 

Noortwijk. 

Introductie 

Bruggen en viaducten die onderdeel uitmaken van de rijkswegen in Nederland worden 

beheerd door de Bouwdienst (Rijkswaterstaat, Ministerie van Verkeer en Waterstaat). Om de 

kwaliteit van deze belangrijke objecten te waarborgen, worden ze periodiek geïnspecteerd. Dit 

zijn visuele inspecties die op een doorlopende basis over het hele netwerk van bruggen en 

viaducten worden uitgevoerd. Tijdens de inspecties worden verschillende onderdelen van een 

brug nauwkeurig bekeken en kent de inspecteur aan elk onderdeel een toestandsindicator toe. 

Er zijn zeven discrete toestanden gedefinieerd en deze zijn weergegeven in Tabel 0-1. 

Tabel 0-1: toestandsindicatoren in DISK 

Indicator Staat van onderhoud van kunstwerkdeel 

0 in prima staat 

1 in zeer goede staat 

2 in goede staat 

3 in redelijke staat 

4 in matige staat 

5 in slechte staat 

6 in zeer slechte staat 

De gegevens van elke inspectie worden geregistreerd in het Data Informatie Systeem 

Kunstwerken (DISK). Dit systeem is al sinds december 1985 in gebruik en bevat derhalve bijna 

20 jaar aan gegevens. 

Omdat de interpretatie van de toestanden in Tabel 0-1 kunnen verschillen van persoon 

tot persoon, en omdat de interpretatie van de ernst van een schade en de algemene toestand 

van een brug ook subjectief zijn, is het mogelijk dat de inspecties onzekerheid (in de vorm van 

variabiliteit) toevoegen aan de gegevens. Het algemene doel van het afstudeeronderzoek is om 

een model toe te passen op de gegevens, waarin rekening gehouden wordt met de onzekerheid 

in de inspecties.  

Omdat de veroudering van bruggen gemodelleerd wordt met behulp van Markovketens, 

wordt in dit onderzoek gebruik gemaakt van zogenaamde ‘hidden Markov’ modellen. Deze 

vormen een uitbreiding van de gewone Markovketens waarin ook de kans op een verkeerde 

classificatie door de inspecteurs wordt meegenomen. Er wordt dus aangenomen dat een brug 

verouderd volgens een Markovketen en dat de inspecteurs de daadwerkelijke toestand zo goed 
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mogelijk proberen te bepalen. De echte toestand van een brug is in dit model als het ware 

‘verborgen’ voor de beheerder. 

De vraag van de beheerder, in dit geval de Bouwdienst van Rijkswaterstaat, is of een 

dergelijk model geschikt is voor toepassing op de inspectiegegevens van bruggen in Nederland. 

Zo ja, dan is de vraag in welke vorm en onder welke aannames dit het geval is. Een bijkomend 

doel van het onderzoek is om een gevoel te krijgen van het gebruik van een dergelijk model en 

om een indruk te krijgen van de inspanning die nodig is om een dergelijk model te 

implementeren. 

Model 

Voor het meenemen van variabiliteit in inspectiegegevens, wordt gebruik gemaakt van 

een zogenaamd ‘hidden Markov’ model. Dit soort modellen zijn al in zeer beperkte mate 

gebruikt in de context van brugbeheer, maar de toepassing ervan vindt men vooral terug in de 

theorie van spraakherkenning en in medische toepassingen zoals het modelleren van 

ziekteverloop, het bepalen van DNA structuren, enz. 

We nemen aan dat de toestand van een brug d.m.v. een Markovketen gemodelleerd 

wordt. Een Markovketen is een stochastisch proces{ },..3,2,1, =kX k  met de Markoveigenschap 

en die, in dit geval, een eindig aantal discrete toestanden kan aannemen: 

{ } kX k ∀∈ ,5,,2,1,0 K . 

De Markoveigenschap zegt ruwweg dat, gegeven de huidige toestand, de kans om een bepaalde 

toestand in de toekomst aan te nemen niet afhangt van de toestand in het verleden. De 

voortgang van een Markovketen wordt bepaald door de transitiekans 

{ },Pr)( 1 iXjXkP kkij === +  

waarbij aangenomen wordt dat het proces stationair is. In een stationair proces hangen de 

transitiekansen niet af van de leeftijd van het proces. De kans om op een bepaald tijdstip een 

transitie naar een (andere) toestand te maken hangt dus niet af van hoe lang het stochastische 

proces reeds loopt. 

Het hidden Markovmodel breidt de gewone Markovketen uit, door de kans op een 

meetfout mee te nemen. Stel kO  is een observatie op tijdstip kt  en kX  is de echte toestand 

op datzelfde tijdstip, dan is de kans op een verkeerde classificatie gedefinieerd door 

{ }.Pr iXjOe kkij ===  

Dit is dus de kans dat de inspecteur aangeeft dat het object zich in toestand j bevindt, gegeven 

dat de echte toestand i is.  

Zowel de transitiekansen als de kansen op een meetfout kunnen verzameld worden in 

een matrix. Door het gebruik van een maximum likelihood schatting kunnen dan de 

transitiekansen en de kansen op een meetfout bepaald worden. In dit verslag wordt ingegaan 

op verschillende keuzes voor de (vorm van de) matrix ijeE =  en welke gevolgen deze keuze 

heeft voor de verwachte (geobserveerde) toestand. Een voorbeeld hiervan is het gebruik van 

een maximum entropy kansverdeling voor 5,,1,0, K=jeij . De maximum entropy methode laat 

ons toe om een kansverdeling te bepalen met een gegeven verwachting zonder meer informatie 

(of ongewenste subjectiviteit) hieraan toe te voegen. In dit geval is aangenomen dat de 
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inspecteurs naar verwachting de echte toestand correct observeren. De maximum entropy 

methode resulteert in een volledig gevulde matrix met kansen op meetfouten, hetgeen wil 

zeggen dat er bijv. een kans is dat inspecteurs een toestand 0 aangeven i.p.v. de echte 

toestand 5. Het is ook mogelijk om slechts een gedeeltelijk gevulde kansenmatrix te kiezen, 

zodat de meetfout bijv. niet meer dan één of twee toestanden kan afwijken. Voor elke keuze 

van de E matrix is het mogelijk deze van te voren vast te leggen (bijv. door de keuze voor een 

maximum entropy methode) of deze te schatten aan de hand van de inspectiegegevens. In het 

eerste geval nemen we een meetfout aan en in het tweede geval proberen we uit de gegevens 

op te maken welke de meest waarschijnlijke meetfout is. 

Als laatste is ook gekeken naar de tijd van de eerste observatie van de slechtste 

toestand (namelijk toestand 5) indien we aannemen dat elk object vanuit de perfecte toestand 

0 begint. Deze tijd is onzeker en is vergelijkbaar met de zogenaamde ‘first passage time’ voor 

de gewone Markovketen. De tijd van eerste passage door een toestand van een Markovproces is 

het tijdstip waarop het stochastische proces de desbetreffende toestand de eerste keer 

aanneemt. Deze tijd is uiteraard onzeker vanwege de onzekerheid in het verloop van het proces 

zelf. Vanwege de extra onzekerheid in de observaties, is de ‘first observation time’ moeilijker te 

bepalen en hangt deze af van de tijd tussen de inspecties. 

Resultaten en aanbevelingen 

De resultaten van het onderzoek worden toegelicht aan de hand van de volgende 

onderzoeksvragen: 

1. hoe kan de variabiliteit (of onzekerheid) in de observaties van inspecteurs 

meegenomen worden in het verouderingsmodel?  

Omdat de veroudering gemodelleerd wordt d.m.v. een Markovketen, is de keuze voor het 

gebruik van een zogenaamd ‘hidden Markov’ model een natuurlijke keuze. Deze uitbreiding 

laat ons toe een kansverdeling over de meetfout van de toestand aan te nemen. Vanuit een 

wiskundig oogpunt is het een elegant model en gedraagt het zich zoals men zou 

verwachten. Vanuit een praktisch oogpunt, blijkt het lastig om de onzekerheid in de 

observaties duidelijk te scheiden van de onzekerheid in de veroudering. Bovendien hangt 

het eindresultaat sterk af van de keuze voor de foutmatrix E. 

2. wat is de beste keuze voor de waarde van de parameters in het model?  

Door het gebruik van de methode van maximum likelihood schatting, kunnen de parameters 

in het model zodanig bepaald worden dat de waarschijnlijkheid dat de gegevens 

gegenereerd zouden zijn door het model het hoogst is. We kiezen als het ware de waarde 

van de parameters zodanig dat de kans op de gegevens het grootst is.  

3. hoe bepalen we de likelihood functie die gebruikt wordt voor het schatten van de 

parameters?  

Voor de maximum likelihood methode is het noodzakelijk om de likelihood functie uit te 

rekenen en deze te maximaliseren. Drie verschillende algoritmes voor het bepalen van de 

waarschijnlijkheid van de gegevens worden in hoofdstuk 4 gepresenteerd. 

4. hoe bepalen we de verwachting van de toestand als functie van de leeftijd van een 

brug?  

Het verwachte toestandsverloop is interessante informatie die uit het toegepaste model 

voort vloeit. In hoofdstuk 5 wordt deze verwachting voor verschillende E matrices 

geanalyseerd en wordt ook gekeken naar het verschil tussen de verwachting van de echte 

toestand en de verwachting van de geobserveerde toestand. 

5. hoe berekenen we de kans op een echte toestand, gegeven de observatie?  
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Naast het verloop van de verwachte toestand, zijn we ook geïnteresseerd in de echte 

toestand van een object gegeven de observatie van een inspecteur. In hoofdstuk 5 wordt 

gedemonstreerd hoe deze kans afhangt van de leeftijd van het object. 

6. hoe leiden we een formule af voor het berekenen van de eerste tijd tot observatie 

van de slechtste toestand en hoe hangt deze onzekere tijd af van de frequentie 

van de inspecties?  

Het bepalen van de kansverdeling van de tijd tot de eerste observatie van een toestand 

heeft veel weg van het bepalen van de kansverdeling van de zogenaamde ‘first passage 

time’ voor Markovprocessen. Door het gebruik van extra onzekerheid over de observaties is 

de implementatie echter een stuk moeilijker. Hoofdstuk 6 gaat in op twee manieren om 

deze kansverdeling te bepalen. Een belangrijk feit is dat deze kansverdeling afhankelijk is 

van de frequentie van de inspecties. Een observatie kan immers alleen gemaakt worden 

tijdens een inspectie. Het blijkt dat de verwachte tijd tot de eerste observatie van toestand 

5 groter wordt naarmate het inspectie interval vergroot wordt. In de praktijk is dit natuurlijk 

niet logisch, omdat minder inspecteren zou resulteren in een langere levensduur van het 

object. Wiskundig gezien is het model echter correct, omdat er meerdere inspecties nodig 

zijn om de laatste toestand te observeren vanwege de meetfout.  

De volgende aanbevelingen worden gedaan: 

• in dit onderzoek zijn zowel de transitiekansen als de kansen op meetfouten stationair 

aangenomen. D.w.z. dat deze onafhankelijk zijn van de leeftijd van het object, of van de 

tijd dat ze in een bepaalde toestand verbracht hebben. De aanbeveling is om met name de 

kansen op meetfouten tijdsafhankelijk te maken, zodat bijv. de kans op het verkeerd 

observeren van de laatste en slechtste toestand steeds kleiner wordt naarmate het object 

ouder wordt. 

• Het is aanbevolen om de variabiliteit in de observaties van inspecteurs te testen, 

bijvoorbeeld d.m.v. een proefopzet waarbij verschillende inspecteurs gevraagd wordt een 

bepaald object te classificeren. Interessant zou zijn om na te gaan wat de grootste fout is 

die gemaakt wordt door één van de inspecteurs. De informatie uit een dergelijke toets kan 

ondersteuning bieden voor het bepalen van de fouten kansmatrix E. 

• Het uitrekenen van de likelihood functie is op slechts een enkele manier gedaan, terwijl er 

nog tenminste twee andere methoden hiervoor bekend zijn. De robuustheid en de 

efficiëntie van deze twee andere methoden zou vergeleken kunnen worden met de in dit 

verslag toegepaste methode. 

• Aangezien onderhoudsacties uit de gegevens zijn gehaald, houdt het hier gepresenteerde 

model geen rekening met onderhoud. Het is een uitdaging om deze wel mee te nemen. 
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1 Introduction 

The Netherlands Ministry of Transport, Public Works and Water Management is 

responsible for the road network in the country. Because of the fact that bridges are a part of 

that, it involves also a need to care about them. The bridge maintenance actions are costly 

activities, so the minimization of the costs is of highest interest, together with the need to 

ensure the safety for the road users. Since 1985, The Civil Engineering Division (‘Bouwdienst’) 

of Rijkswaterstaat, which is a part of the ministry, stores the results from the inspections in 

electronic database called ‘DISK’. Among others, it supplies information about the transitions 

between the bridges’ conditions, which is the most important information for our current 

analysis.   

Since structures like bridges deteriorate with time, this process is connected with some 

randomness, for instance due to environmental factors or difficulty in the precise prediction of 

the traffic intensity. Therefore, the deterioration can best be modelled using stochastic 

processes. One of such processes is a Markov chain. Markovian models are widely applicable in 

describing dynamic processes. However, the standard Markovian processes are based on the 

assumption that the actual state of the system is known without uncertainty. Since the 

inspections of bridges are carried out visually, it is important to realise that they do not yield 

perfect estimates of the real conditions. The estimates can be prone to a bias due to inspectors’ 

subjectivity. Therefore, a modification of the Markov process is necessary in order to take into 

consideration this possible error due to the inspectors’ subjectivity.  

The thesis presents the idea of applying the Hidden Markov Model to the bridge 

inspections in the Netherlands. This model allows considering the results of inspections as 

observations that hide the information about the real states. Hence, it is suitable for our 

analysis. The standard Markov process is described by the transition probabilities between all 

possible states which create the transition matrix. The extension of the Markov model to the 

Hidden Markov model adds additional parameters to the problem, namely all the probabilities 

that describe an error between the real state and the given assessment of the state 

(observation).  

The work is conducted under the supervision of Delft University of Technology and HKV 

Consultants, and with the cooperation of The Civil Engineering Division of Rijkswaterstraat. The 

Civil Engineering Division provided the data and HKV Consultants the precious advices related 

with the research direction. 

1.1 Applications of the Hidden Markov Model in the 
literature 

Neither the theory of Hidden Markov models (HMM’s) nor their application is new. They 

are widely used in many science disciplines like for instance medicine, computer science and 

engineering. Hidden Markov Models were first described by Leonard E. Baum in the late 1960s 

in the series of statistical papers. One of their first applications was speech recognition in the 

mid-1970s. Later on, in the 1980s they start to be omnipresent in many areas, for instance in 

the bioinformatics field. 

An example of the application of the HMM’s in speech recognition is presented for in [8]. 

Real-word processes produce observable outcomes called signals. The signal can be often 

corrupted from other signal sources. Thanks to the HMM, it is possible to optimally remove the 
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noise from the system. Also, the HMMs provide necessary statistical characteristics of such 

signals. 

Medicine is using HMM in areas as: genome [11], [12], or pneumology [13] and many 

others. However, the continuous HMM are mostly more suitable for those cases.  

Exemplary application of the HMM for disease progression was presented by Jackson, 

[1]. An early detection of a disease has essential influence on the successive treatment. 

Therefore, systematic screening of a population can result in a meaningful reduction of the 

mortality from a disease. However the screening process can often be prone to a bias. Then the 

actual Markov disease process is not observed directly, but it is hidden inside the realizations. 

The diagnosis error is then measured by the misclassification probabilities, i.e. the probabilities 

of the screening results given the true states.  

The application of the HMM is also not new in bridge management policy. The model is 

referred as partially observable Markov decision processes in many sources, like in [16] and 

[15]. In the last mentioned document, an error resulting from the uncertainty of measurements 

and forecasting in assessments of the highway pavement’s conditions is considered, and the 

methodology for maintenance activity selection is derived. The model includes the maintenance 

actions after each inspection (which is assumed to be carried out at the beginning of every 

year). Therefore, it complicates the regular Hidden Markov Model to a higher extent. It is 

assumed that a decision maker observes outputs from the measurements. Those outputs are 

related to the actual condition of the system only probabilistically, hence they are not known 

with certainty. At the beginning of the planning horizon, the decision maker can evaluate 

maintenance policies for the whole horizon. He or she knows at this moment all the history of 

the measured states up to this time and the history of all the decisions made up to the previous 

action. However, as the uncertainty is introduced to the system, it affects the choice of the 

action since a measurement error can lead to the wrong activity. In the aftermath of this wrong 

decision the total lifecycle costs could be higher if the correct decision required less costs.  

1.2 Bridges in the Netherlands 

In the Netherlands, the road network is highly developed. It is easy to see with the 

naked eye that good quality roads can lead drivers to every place. However, a lot of the roads 

are situated on concrete viaducts and bridges. It is sometimes the only choice to avoid 

obstacles like other roads, railways or rivers. The term ‘bridge’ refers mostly to the structure 

built over the ‘wet’ obstruction while ‘viaduct’ is called every structure above ‘dry’ obstacles like 

highways and railways. In this work both kind of concrete structures are considered, but to 

shorten the notation one common name ‘bridge’ will be used further on.  

Most of the concrete bridges in the country are getting old, as they are about 40 years 

or even more, and soon they will require serious renovation. Such structures can endanger 

peoples’ safety, if they are not treated with proper attention. They must be inspected regularly 

and a maintenance action should be initiated as soon as a condition of a bridge exceeds the 

failure level. For this reason, estimation of the deterioration rate and the failure time, as precise 

as possible, is of great interest.      

 

1.2.1 Bridge data 

In the Netherlands, the information about the bridges is registered in the electronic 

database called ‘DISK’. The database is a huge source of information, not only about the current 



July 2006  Hidden Markov Models 

HKV CONSULTANTS R0112 7 

conditions but also about the location of the bridges, their age, history of inspections, etc. For 

this research we do not need the whole database, which has a really complicated structure. We 

will use only the data of which a part is presented below. 

 

Index Age of a bridge 

[in months] 

Age of a bridge 

[in months] 

Condition 

state 

Condition 

state 

Year of 

construction 

411 307 419 2 3 1967 

412 294 406 1 3 1968 

413 275 407 3 2 1968 

414 275 407 3 3 1968 

415 273 296 3 3 1970 

415 296 354 3 4 1970 

415 354 378 4 4 1970 

415 378 418 4 3 1970 

416 251 382 3 4 1970 

416 382 411 4 3 1970 

417 251 382 4 3 1970 

417 382 411 3 1 1970 

418 751 850 3 2 1926 

419 751 850 3 2 1926 

420 751 850 4 3 1926 

421 222 317 3 2 1970 

422 223 317 3 2 1970 

Table 1-1: A part of the data. 

 

The meaning of the above table is as follows. The first column contains the index of a 

particular bridge. The second indicates the age of a respective bridge [in months] during the 

preceding inspection and the third gives the age of the bridge during the next inspection. The 

fourth column is associated with the second column as it contains the condition state of a bridge 

which was assigned during the preceding inspection. The fifth column is associated with the 

third column in an analogous way. The last column contains the year of the construction for 

each structure.   

In general our data contains 3750 transitions between condition states for 2333 

individual structures. We will differentiate the bridges built before and after 1985, when this 

electronic database was built. The reason for this is that we assumed that we know all the 

history of the bridges built after 1985, whereas for the bridges built before this time this is not 

the case.     

 

1.2.2 Visual inspection of the bridges 

In the Netherlands, inspections of bridges are carried out periodically. Each time 

inspectors inspect a bridge carefully and give a rate which, in their opinion, best reflects the 

actual state of a structure. The inspectors, however, do not have any additional tools which 

could help them to asses the condition of the bridges, except their eyes and experience, as the 

inspections are only visual.  Therefore it is difficult to assume that the experts’ rates represent 

the actual state of the structures without any error and the subjectivity of the inspectors should 

be taken into account.   
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Each time when an expert rates a bridge he or she assigns a number to it from  

a discrete scale from 0 to 6 where ‘0’ indicates a perfect condition and ‘6’ means that it is in  

an extremely bad condition (failure). The table with a description of all the possible conditions is 

presented below. 

 

Table 1-2: Condition rating scheme 

One remark need to be made here. As the conditions ‘5’ and ‘6’ occur rarely in the data, 

we decided to merge these two states together. So in fact we will be working with a discrete 

scale of range 6: from 0 to 5.   

Figure 1-1 presents the amount of particular conditions in the data (with conditions ‘5’ 

and ‘6’ together): 

 
Figure 1-1: The amount of particular conditions in the data 

1.2.3 Explanation of the choice for a hidden Markov model 

The deterioration model used in this analysis is a hidden Markov model. This model was 

chosen because the condition of the bridges can be described with the help of a discrete scale 

from 0 to 5. Furthermore we use a hidden Markov, not simply a Markov process, since we want 

to take into consideration the subjectivity of the inspectors. So we treat the observed condition 

states of the bridges not as actual states but rather as observations that can contain some bias. 

condition description 

0 

1 

2 

3 

4 

5 

6 

Perfect 

Very good 

Good 

Reasonable 

Mediocre 

Bad 

Very bad 
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Therefore the observations hide the real state from us and add extra parameters to the Markov 

model, namely the probabilities of errors resulting from the experts’ subjectivity. 

Another important property of the Markov model, which is useful to us, is that the future 

prediction of the state depends only on the present state and the history of the process is not 

important. This means that the model has the memoryless property. To predict the deterioration 

process of a bridge only the information about the current condition is of interest.  

1.3 The goal of the research 

The goal of the research is to create a Hidden Markov deterioration process for the 

bridges in the Netherlands. The first step in order to do that is to determine the shape of the 

matrices with the model parameters, i.e. the transition probability matrix as well as the matrix 

with parameters describing the errors between the observations and the actual states (called 

misclassification matrix). Later on, for estimating the unknown parameters, the likelihood 

function must be derived, which take both kinds of parameters into account. Finally, with the 

estimated parameters, some analysis will be carried out in order to gain knowledge about the 

expected lifetime of the bridges and how this expectation varies from that obtained without 

taking the inspectors’ ‘subjectiveness’ into consideration. We are also interested in finding out 

how the intensity of the inspections influences this expectation. Therefore we present the idea 

of the time of first passing to a certain actual condition state (first passage time) and its 

extension to the time of first observing a certain state (first ‘observation’ time) for different 

inspection intervals. 

The main questions that are posed in this thesis are: 

1. How to introduce the uncertainty resulting from the experts’ subjectivity into the 

deterioration model? 

2. What is the best choice for the parameters which describe the uncertainty in the 

deterioration model? 

3. How to derive a statistical function of parameters (likelihood function) that provides 

us a tool for finding the parameters that fit the data well? 

4. How to determine the expectation of the condition as a function of age?  

5. How to calculate and illustrate the probability that a bridge is in an actual state 

given inspectors’ ratings? 

6. How to derive the recursive formula for the probability density function of the first 

‘observation’ time? Furthermore, how this density function changes as the 

‘frequency’ of the inspections is changing? 

The report is organized as follows: 

Chapter 2 presents the theory about the Markov chains and their extension to the 

Hidden Markov Models. The necessary notation is introduced and also a way of choosing the 

model parameters is described. At the end of this chapter, the assumptions which are needed 

for the whole document are presented. 
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In chapter 3, the entropy principle and the relative information are presented in order to 

obtain a distribution for the misclassification error which does not add any additional 

information other than the expectation of the observation. 

Chapter 4 contains the method of estimating the parameters of the deterioration model, 

which is the maximum likelihood method. We use this method to maximize the likelihood 

function and we obtain the optimal parameters for our model. 

Chapter 5 presents the results of calculating the expectation of the actual state and the 

observed condition as a function of a bridge age. Also, the probability of the actual state given 

the observation is calculated and the results are visualised by use of a ‘bar’ plot. 

Chapter 6 demonstrates the idea of the first passage time and its extension to the first 

‘observation’ time, which is simply the mean time to observe the worst condition. The analysis 

takes into account the ‘frequency’ of the inspections and indicates how this intensity influences 

the mean time to failure. 

The last chapter 7 is a summary of the analysis and gives recommendations for future 

research. 
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2 Markov and Hidden Markov Models 

This section presents the theory of Markov processes together with its expansion to the 

Hidden Markov Model. 

2.1 A brief introduction to Markov Chains 

A Markov chain (or process) is a sequence of random variables { },..3,2,1, =kX k  with 

the Markov property, where all the possible values are drawn from a discrete set, called the 

state space, i.e. { },...3,2,1,0∈i , [10]. The Markov property implies that the conditional 

probability distribution of a future state 1+kX  given the past states is a function of the current 

state kX alone. In other words, the future prediction of the state depends only on the present 

state and does not depend on the history of the process. This statement can be formulated 

mathematically as follows: 

)Pr(),,...,,Pr()( 10011111 iXjXiXiXiXiXjXkP kkkkkkij ========= +−−+  

where kX  denotes the real state at time kt  and the values 011 ,,...,,, iiiij k−  are the values of 

the state space set.  

 At any time, a finite Markov chain on n states:{ }1,...,2,1,0 −n  is described by a one step 

transition probability matrix at unit time k: 

[ ]


















==Ρ

−−−−

−

−

)(...)()(
............

)(...)()(
)(...)()(

)(

1,12,11,1

1,11110

1,00100

kPkPkP

kPkPkP
kPkPkP

kP

nnnn

n

n

ijk  

This matrix gives information about the progression of deterioration from one state to 

another in one time unit. The important assumption connected with the transition probability 

matrix is that each row must sum to 1, since the transition probabilities should satisfy the usual 

probabilistic constraints.  

When the transition probability matrix is the same for each moment, i.e. when this 

matrix does not depend on time, then the Markov chain is said to be stationary: 

)Pr()Pr()( 011 iXjXiXjXPkP kkijij ======= +  

 Because the main focus of this thesis is modelling inspections uncertainty, we assume a 

stationary Markov chain. The assumption of stationarity simplifies the Markov model.  

Furthermore, one is interested in finding the transition probabilities in m steps, which 

creates a m-steps matrix: )],([)( mkkPij
m +=Ρ , where )Pr(),( iXjXmkkP kmkij ===+ + . 

For the stationary case we have: )Pr(),0(),( 0 iXjXmPmkkP mijij ====+  and the m-steps 

transition matrix )(mΡ  is calculated by multiplying the one step transition matrix m times by 

itself, i.e. 43421
timesm

mm Ρ⋅⋅Ρ⋅Ρ=Ρ=Ρ ...)( . 
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Since the inspectors rate the bridges on the scale from 0 to 5, our transition probability 

matrix is of the size 6 by 6. Furthermore, it is assumed that the deterioration process can 

proceed at most one state per unit time. Therefore, for our model we will use the following one 

step transition probability matrix: 



























−
−

−
−

−

=

100000
10000

01000
00100
00010
00001

44

33

22

11

00

pp
pp

pp
pp

pp

P  

The probabilities ip−1  are the probabilities of staying in the state i, i=0,1,2…,5, 

whereas the probabilities ip  are the probabilities of a transition from state i to state i+1 in one 

step. The transition probabilities with respect to particular rows are state dependent to make 

the model more realistic. Intuitively, the rate of deterioration is dependent on the condition of a 

bridge. For instance, we can suppose that a bridge with perfect condition reaches a good 

condition faster then a bridge with good condition reaches a bad condition. Further analysis will 

verify if it is the case, or perhaps it is the other way around.       

In the last row there is no parameter. There is only the number one, as the last 5-th 

state is an absorbing state. It means that once the deterioration process achieves state 5 it 

cannot leave this state without a repair.  

2.2 An extension of Markov Chains to the Hidden Markov 
Model 

In a Markov model, the states are directly visible and given with certainty. Therefore the 

state transition probabilities are the only parameters. A Hidden Markov Model (HMM) describes 

a system which is assumed to be a Markov process but with unknown parameters. Thus, the 

challenge is to determine the hidden parameters from the observable parameters.  

With this knowledge we can write that in a HMM, the transition probability matrix 

describes the process of moving from one observation to another. As it is an observation, not 

the real state, this model includes the error between the real state and the observation. 

Therefore, the HMM adds additional parameters to the model, namely the conditional probability 

of the current observation given the real state: )Pr( iXjOe kkij === , where )( kk tXX =  

denotes the real state at time kt  and )( kk tOO = denotes the observation at time kt . These 

probabilities create a misclassification matrix which is given as below: 

[ ]


















==

−−−−−−

−

−
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1,113121110

1,003020100

...
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...
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ij

eeeee

eeeee
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eE  

In the matrix E, the rows indicate the actual states and the columns the observed states. 
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In other words, elements ije  from the E matrix describe an error between the 

observation and the real condition of the state. In our case, an observation is a condition rating 

given by an inspector taken from the inspection data and a real state is an actual condition of a 

particular bridge which is hidden for us. 

 The goal is to select the misclassification matrix in a way such that it will suit our 

deterioration model. This is done in chapter 3. 

2.3 Assumptions 

The main assumption is that the conditions of the bridges can be assessed on the 

discrete scale from the range 0 to 5.  It allows us to considering the deterioration process as a 

Hidden Markov Model. However, a few more initial assumptions need to be made in order to 

start with the analysis. 

The important aspect of the inspections is whether they are independent or not. Since 

the inspections are assessing the conditions of the bridges and those conditions are not 

completely random in time, we cannot say that the inspections are independent. Nevertheless, 

it will be assumed that the observed condition states are conditionally independent given the 

values of the real state of the bridge: 

(2-1)    ===== ),...,,...,Pr( 1111 kkmm lXlXjOjO  

  ),...,Pr(...),...,Pr( 111111 kkmmkk lXlXjOlXlXjO ===⋅⋅==== , for km ≤  

Moreover, we have: 

(2-2)   )Pr(),...,,,...,Pr( 1111 mmmmkkmmmmmm lXjOlXlXlXlXjO ======== −−   

for each m=1,2,… and km ≤ , which comes from the Markov property of the real state process. 

 Also, we can write 

(2-3) )Pr(),...,,Pr( 1111 mmmmmmmmmm lXjOjOjOlXjO ======= −−  

as mX  comes from the Markov process, so we assume that it includes information about the 

past in the context of the real process as well as the observed process. 

 The data contains information about all the bridges in The Netherlands. There is 

information about the bridges built after 1985, when the database was built, as well as about 

the bridges built before this time. We assume that for the bridges built after 1985 we know the 

whole history of the deterioration process, and for the group of older bridges we cannot say 

anything what has happened till the first inspection. Therefore, we will distinguish the 

probability )Pr( 1 iX =  for i=0,1,2…,5, between those two cases. For the bridges built before 

1985, we assume that the probability of being in state ‘i’ during the first inspection is discrete 

uniformly distributed with equal probability for each state, i.e.  
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(2-4)  
6
1)6(~)Pr( 1 == uniformiX , for 5,...,2,1,0=i . 

See also section 4.2.1. 

For the bridges built after 1985, this probability will read: 

(2-5)              )Pr()Pr(),Pr()Pr( 0

5

0
01

5

0
011 kXkXiXkXiXiX

kk
=⋅======= ∑∑

==

 

We also assume that a new bridge starts its deterioration process always from the perfect state, 

what can be written as 

(2-6)             




≠==
===

00)Pr(
01)Pr(

0

0

iifiX
iifiX

 

With this assumption we can write the formula (2-5) in a simpler way: 

(2-7)              )0Pr()Pr()Pr()Pr( 010

5

0
011 ====⋅==== ∑

=

XiXkXkXiXiX
k

 

Furthermore, as the database stores the bridges’ age in months, we decided to consider 

the P matrix as a one-month transition probability matrix. It means that this matrix gives the 

probabilities of changing the states in one month. We assume that a bridge can move only from 

one state to the next state in one month and other transitions are not allowed in this period. 

Moreover, we will consider a stationary misclassification matrix, which does not change 

with time. In other words, the probabilities of the error are the same regardless of the bridges’ 

age. 

Also, the important task is to determine the actual deterioration process. Therefore we 

assume that there is no maintenance included in the data. All transitions that could indicate 

some maintenance actions are omitted from our data. Nevertheless, as we assume imperfect 

inspections, transitions from a worse state to a better state are also possible in the data. It is 

because we treat the results of inspections as observations, not as real states. So they can 

contain some bias and it can be both an underestimating and overestimating error.  

 Finally, we assume that the hidden real process is a Markov process, so it possesses all 

properties resulting from it, while the observed process is not. 
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3 Specification of misclassification error 

In this chapter we will determine a proper form for the misclassification matrix. In other 

words, we will determine how wide the possible error resulting from experts’ subjectivity should 

be. Next, we will model the misclassification matrix by a few discrete distributions, namely some 

discrete distributions with restricted uncertainty bounds (partially filled misclassification matrix), 

a binomial distribution, a distribution following from the maximum-entropy method given a fixed 

mean and a binomial distribution with fixed mean. 

3.1 Finding a proper misclassification matrix 

The conditions of the bridges are rated using the discrete scale from 0 to 5. Therefore 

the matrix E has size 66× .  

The first misclassification matrix that we study is not fully filled. That is, it looks as 

follows: 

 


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E

10000
2/12/000

02/12/00
002/12/0
0002/12/
00001

 

Misclassification matrix 1 

We made this assumption as we wanted to think about the error in the following way. 

The subjectivity of the inspectors must be taken into account but it is rather improbable that an 

inspector can be mistaken more than the difference of one condition. Therefore we put zeros 

everywhere in the matrix where the difference between a real state and an actual state is 

greater than 1. 

We can change this matrix a bit, allowing the error to have a wider range of additional 

conditions, for instance in the following way: 
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Misclassification matrix 2 

But the analysis of the data has shown that such misclassification matrices are 

inappropriate when the bridges condition can improve more than one or two states, 

respectively. This is so, because the transition probability matrix allows the deterioration to 

proceed only in one direction; that is, it does not allow the deterioration to go backward. Hence, 

for instance with matrix E defined as ‘Misclassification matrix 1’ and the transition matrix of  
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the Hidden Markov Model P, it is not possibility for the process to transit, for instance from state 

4 to 1. To illustrate this, the following diagram is presented: 

 

 

 

Figure 3-1: Condition rating for the bridge with index 417, 

permissible error of one state 

Figure 3-1 presents the condition rating for the bridge with index 417. From this 

diagram it is clear that when the condition of the state is classified as 4, with a permissible error 

of one state in each direction, it is not possible to transit to the state 1 without proceeding 

backwards. But if we allow the error to be larger, say two states in each direction, then for this 

case it is possible to reach all of these states without proceeding backwards.  The next diagram 

illustrates that: 

 

 

Figure 3-2: Condition rating for the bridge with index 417,  

 permissible error of two states 
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There are a significant number of transitions of the above type in the data. It means 

that very often the error between the observed condition and the actual state of a bridge can be 

large. Therefore, we decided to consider a misclassification error matrix which is fully filled and 

to use the above type of the misclassification matrix only when we consider the data without so 

big improvements in the conditions. 

Finally the matrix E is of the following form: 
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Misclassification matrix 3 

There are several possibilities to specify the error probabilities: ije . One of them is 

based on the binomial distribution, which is the subject of the subparagraph 3.2. Another way 
to specify these probabilities is the Maximum Entropy principle described in chapter 5. We will 

consider also the misclassification matrix from the uniform distribution, i.e. in which each ije   

is 1/6: 
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E  

Uniform misclassification matrix 

3.2 Binomial distribution for the misclassification 
parameters 

Our task was to construct a model that accurately represents the experts’ error in 

assessing the conditions of the bridges. In other words, we wanted to determine the conditional 

probabilities of observations given the actual state in the way they fit the data well. The choice 

for taking a binomial distribution to model the parameters was rather arbitrary. We were looking 

for a discrete model which would generate the whole misclassification matrix E in a reasonable 

way, but in the same time we wanted to minimize the number of necessary parameters to do it. 

Since the matrix E is of the size 6 on 6, which implies 36 places to fill in (actually 30 places, 

since the last number in each row must be chosen in a way that we get one by summing all the 

values in the row). 

 The binomial distribution gives a discrete probability distribution. The probability mass 

function is given by the formula: 
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
= )1(),( , where j=0,1,…,w 

where w represents the number of independent experiments, j is the number of successes and 

ie  is the probability of a success. The expected value of k is iewkE ⋅=)( . 

From the previous subparagraph we know that the misclassification matrix E is of the form:    

][ ijeE =  for i,j=0,1,…,5, where )Pr( iXjOeij === . We can simply fit the above probability 

mass function on our model. We take w equals 5 (as the label of the worst bridge condition). 

Then for fixed i and each j=0,1,…5, the binomial mass function generates the number )( jei , 

which is the ije  element from the E matrix. Since we have i=0,1,…,5 we need to find six 

parameters ie , which will fully fill the whole matrix.  

3.3 The maximum entropy principle 

In this section we would like to use the entropy method in order to obtain a discrete 

distribution which is generated subject to the specified constraints; that is, the mean of this 

distribution is given and the sum of the probabilities is unity. The reason of doing this is that we 

would like to obtain a distribution for the misclassification error where we expect the inspectors 

to correctly identify the actual state on the average, without adding extra information to this. 

We are going to compare the entropy distribution with the binomial distribution with the same 

mean.  

The entropy is a measure of randomness for a system. In other words, it tells how much 

information we add when we use parameters from a certain distribution. Following the definition 

of Bedford and Cooke, [2], in terms of a discrete distribution, the entropy )(SHn  for a 

distribution S is: 

(3-1)                                      ∑
=

⋅−=
n

i
iin ssSH

1
)log()(  

where obviously 0≥is  for all i, and ∑
=

=
n

i
is

1
1 . 

The entropy )(SHn  is non-negative and strictly concave.  It is easy to check that the 

discrete uniform distribution, i.e. nsi /1= , is the distribution with the maximum entropy (see  

Table 3-1). On the contrary, the entropy is minimal if all the mass is concentrated in one point. 

Therefore, the higher value the entropy has, the more randomness is in the system. 

discrete uniform distribution the value of  

the entropy 

[0.1667    0.1667    0.1667    0.1667    0.1667    0.1667] 1.7918 

Table 3-1: The discrete uniform distribution and its entropy 

In the previous sections, we have used the binomial distribution to determine the 

misclassification probabilities. Now, we would like to check how these probabilities can be 

determined using the maximum entropy method.  
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Let us assume that )Pr( jXiOs tti ===  for states i=1,2,…,6 and fixed state j. We 

would like to find a distribution subject to an additional constraint, namely the expectation of 

the conditional probability of the observation given the actual state is equal to this state. Hence 

we determine the discrete probability function for which the entropy is maximal given that the 

sum of probabilities is unity and the mean is known. We will call this distribution:  

Maximum-Entropy distribution (MaxEntr distribution). Later on, we will find the entropy  

for such a distribution and afterwards compare it with the binomial entropy generated for the 

same mean. 

In order to find parameters for a distribution with mentioned constraints, we need to 

solve the following optimization problem: 

(3-2)         )log(max
1

i

n

i
i ss ⋅− ∑

=

 

    sub            ∑
=

=
n

i
is

1
1  

                                                        ∑
=

=
n

i
i jis

1
 

3.3.1 Lagrange multipliers 

We will solve the optimization problem (3-2) using the Lagrange multipliers method. It 

is a commonly used method for finding the extremum of a function with respect to given 

equality constraints. For this method we need to introduce new scalar variables kλ  for k=1,2 

and create the Lagrangian function which is: 

(3-3)                     )()1()log(),...,(
6

1
2

6

1

6

1
161 ∑∑ ∑

== =

−+−+−=Λ
i

i
i i

iii jissssss λλ  

Now, taking the partial derivatives with respect to all parameters and equating this expression 

to zero, we obtain the solution for each is  of the form:  

(3-4)                                ( )211exp λλ ⋅++−= isi  

The last thing which has to be done to get the values for the parameters is to find 1λ  and 2λ . 

For this purpose the solution (3-4) is put back into the constraints and the system of equations 

is solved: 

(3-5)                               










=⋅++−⋅

=⋅++−

∑

∑

=

=

jii

i
n

i

n

i

1
21

1
21

)1exp(

1)1exp(

λλ

λλ
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(3-5) can be transformed to: 

(3-6)                              










−⋅=⋅⋅

−=⋅

∑

∑

=

=

)1exp()exp(

)1exp()exp(

1
1

2

1
12

λλ

λλ

jii

i
n

i

n

i  

(3-6) is equivalent with (3-7): 

(3-7)                             










−=⋅⋅

−=⋅

∑

∑

=

=
n

i

n

i

ii
j

i

1
12

1
1

2

)1exp()exp(1

)1exp()exp(

λλ

λλ
 

Equating both left sides of (3-7) we obtain the expression for the parameter 2λ : 

(3-8)                           0)1()exp(1
1

1
2 =−+⋅⋅+− ∑

−

=

jiij
n

i
λ  

Furthermore, from the first equation of (3-6) we get: 

 

(3-9)                          )1exp(
))exp(1(

))1exp(()exp(
1

2

22 λ
λ

λλ
−=

−
⋅+− n

 

which follows that the parameter 1λ  is expressed as: 

 

(3-10)                       )
)exp(1

))1exp(()exp(log(1
2

22
1 λ

λλ
λ

−
⋅+−

−=
n

 

Having the expression for 1λ , we can express the probability is  as a function of 2λ  as follows: 

(3-11)            

∑
=

⋅

⋅
=

⋅−
−

⋅
⋅

= n

i

i

i

i
n
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1
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)exp(

)exp(
)exp(1
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λ

λ
λ

λ
λ
λ

 

Since it is not possible to find those values explicitly we use the numerical method of 

Newton-Raphson to work out the problem.  

3.3.2 Newton-Raphson method 

Newton-Raphson method (also called Newton’s method or Newton-Fourier method) is  

a numerical algorithm, which uses the Taylor series, for finding approximations to the roots of  

a real valued function. The first order Taylor approximation to a function )(xf  about the point 

ε+= 0xx  is given by: 
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(3-12)   εε ⋅+≈+ )(')()( 000 xfxfxf  

Setting )( 0 ε+xf  equal zero and solving for 0εε ≡  , we obtain the expression: 

(3-13)   
)('
)(

0

0
0 xf

xf
−=ε  

which is used to update the initial guess 0x . By letting 001 ε+= xx , calculating a new 1ε , and 

so on, the process can be updated until it converges to a root using: 

(3-14)   
)('
)(

n

n
n xf

xf
−=ε  

Hence the iterative formula for finding the root is:  

(3-15)   nnn xx ε+=+1   

In our case, we define a function )( 2λf  as the formula (5-8) reads: 

(3-16)   )1()exp(1)(
1

1
22 jiijf

n

i
−+⋅⋅+−= ∑

−

=

λλ  

and we apply the Newton’s iterative algorithm to get the values for 2λ . Once, we obtain this 

value, the parameter 1λ  is calculated straightforward from the formula (3-10). Then those 

values are used to determine the probabilities is  for the MaxEntr distribution.  

 Unfortunately, the iterative method of Newton-Raphson has some drawbacks that need 

to be avoided in order to make this method converge. First of all, a derivative of the function 

requires to be expressed in explicit form. This is fulfilled here, since the derivative of (3-15) 

reads:  

(3-17)    )1()exp()('
1

1
22 jiiif

n

i
−+⋅⋅⋅= ∑

−

=

λλ  

However, the explicit form of the derivative does not guarantee the convergence. The 

essential role plays the initial guess, which has to be chosen close ‘enough’ to the solution. If 

the initial guess is too far from the true zero, this method can fail to converge. Anyway, in this 

case the initial point is not extremely hard to be matched suitably. Therefore, we can still use 

this method to find the parameter 2λ .  

The method does not converge also near a horizontal asymptote and it cannot be used 

for those cases. Therefore for j=1 and j=6 we need to find the solution without the numerical 

scheme. For j=1 and j=6, we assume that the mass of the MaxEntr distribution is concentrated 

in one point.  
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For j=1, we have 11 =s  and 0=is  for 6,...3,2=i . 

For j=6 the solution is analogue, but the mass is concentrated on the last coordinate of 

the probability vector. 

The results of this analysis are presented in Table 3-2: 

fixed mean MaxEntr distribution the entropy 

j=1 [1 0 0 0 0 0] 0 

j=2 [0.4781    0.2548    0.1357    0.0723    0.0385    0.0205] 1.3672 

j=3 [0.2468    0.2072    0.1740    0.1461    0.1227    0.1031] 1.7484 

j=4 [0.1031    0.1227    0.1461    0.1740    0.2072    0.2468]   1.7484 

j=5 [0.0205    0.0385    0.0723    0.1357    0.2548    0.4781] 1.3672 

j=6 [0 0 0 0 0 1] 0 

Table 3-2: The MaxEntr distribution and its entropy value 

The values from the MaxEntr method create the optimal Maximum Entropy misclassification 

matrix, which is presented below: 



























=

0000.10000.00000.00000.00000.00000.0
4781.02548.01357.00723.00385.00250.0
2468.02072.01740.01461.01227.01031.0
1031.01227.01461.01740.02072.02468.0
0250.00385.00723.01357.02548.04781.0
0000.00000.00000.00000.00000.00000.1

E  

MaxEntr misclassification matrix 

3.3.3 Binomial distribution with fixed mean 

Now, we are going to generate a binomial distribution with fixed mean in order to 

compare the entropy of this distribution with the entropy of the MaxEntr distribution obtained in 

the previous section. Such a model can also be used to determine the misclassification matrix. 

The binomial distribution is generated according to the probability mass function: 

(3-18)  kwk pp
k
w

pwkfkK −−⋅⋅







=== )1(),()Pr(      for k=0,1,2,…,w 

Knowing that the mean of the binomial is equal to wpKE ⋅=)( , we can obtain simply the 

value of the parameter p from the formula (3-18) as the expected value divided by number of 

trials w. To generate a binomial vector of length 6, we need to take w=5 and we get the results 

for the fixed mean presented in the Table 3-3: 
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fixed mean binomial distribution the entropy 

E(K)=0 [1   0   0   0   0   0] 0 

E(K)=1 [0.3277    0.4096    0.2048    0.0512    0.0064    0.0003] 1.2430 

E(K)=2 [0.0778    0.2592    0.3456    0.2304    0.0768    0.0102] 1.4980 

E(K)=3 [0.0102    0.0768    0.2304    0.3456    0.2592    0.0778] 1.4980 

E(K)=4 [0.0003    0.0064    0.0512    0.2048    0.4096    0.3277] 1.2430 

E(K)=5 [0   0   0   0   0   1] 0 

Table 3-3: The binomial distribution with fixed mean and its entropy value 

One remark is needed in this place. We have generated binomial distributions for the 

fixed mean E(K)=k, where k is changing from 0 to 5. Nevertheless, to be able to compare this 

distribution to the MaxEntr distribution we would like to have the mean from 1 to 6. Let us 

denote the right hand side of the formula (3-18) as )Pr( kK =  for k=0,1,…,5. Then for 

M=K+1, where m=1,..,w+1 we have: 

11 )1(
1

)1Pr()1Pr()Pr( +−− −⋅⋅







−

=−===+== mwm pp
m
w

mKmKmM  

which is in fact the distribution we would like to consider instead of (3-18). The expected value 

of M is equal to 1E(K)1)E(KE(M) +=+= . Therefore, we draw a conclusion that these two 

approaches are equivalent. 

The above binomial model with fixed mean gives the following misclassification matrix: 



























=

0000.10000.00000.00000.00000.00000.0
3277.04096.02048.00512.00064.00003.0
0778.02592.03456.02304.00768.00102.0
0102.00768.02304.03456.02592.00778.0
0003.00064.00512.02048.04096.03277.0
0000.00000.00000.00000.00000.00000.1

E  

       Binomial with fixed mean misclassification matrix 
 

The next table presents the juxtaposition of the value of entropy for the Max.Entr 

distribution and the binomial distribution. 

 

fixed mean the value of entropy for MaxEntr 

distribution 

the value of the entropy for the 

binomial distribution 

1 0 0 

2 1.3672 1.2430 

3 1.7484 1.4980 

4 1.7484 1.4980 

5 1.3672 1.2430 

6 0 0 

Table 3-4: Juxtaposition of the values of the entropy for both distributions 
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From the Table 3-4 we can see that the binomial distribution has a smaller entropy than the 

MaxEntr distribution. It means that the MaxEntr distribution brings in more uncertainty (i.e. less 

information) into the stochastic model describing the deterioration process. However, the 

entropy measures how the given distributions are spread out with respect to the uniform 

distribution. To check the precise relation between both distributions we will use the relative 

information principle. 

3.4 The relative information principle 

The relative information measures the relation between two distributions without 

involving the uniform distribution. Thanks to this measure we can find how close one 

distribution is to another. In terms of mathematical formula the relative information of b with 

respect to s, is expressed as (Bedford and Cooke, [2]): 

∑
=

⋅=
n

i i

i
i s

b
bsbI

1
)log();(  

where ][ ibb =  is the binomial distribution and ][ iss =  is the MaxEntr-distribution for our case. 

The number );( sbI  is always non-negative. It takes its minimal value of 0 when b=s. 

Therefore, if two distributions are close to each other, what means that they bring comparable 

information to a process, then their relative information is close to 0. However, this principle 

requires the elements ib and is  not to be equal 0. For this case we have that the relative 

information goes to infinity. 

From the analysis we got that the relative information of the binomial distribution with 

respect to the MaxEntr-distribution equals  

fixed mean the relative information 

1 ∞  

2 0.1245 

3 0.2508 

4 0.2508 

5 0.1245 

6 ∞  

Table 3-5: The relative information of binomial with respect to MaxEntr distribution 

 We can see from the Table 3-5 that the difference between these two distributions is 

essential, and they bring to the deterioration model different amount of randomness. We will 

carry out further analysis comparing results obtained using both binomial and MaxEntr 

distributions. 

 In the Table 3-6 and Table 3-7, we present also the relation between the binomial 

distribution and the uniform distribution, and the MaxEntr distribution and the uniform 

distribution, respectively. 
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fixed mean the relative information 

1 ∞  

2 0.5489 

3 0.2938 

4 0.2938 

5 0.5489 

6 ∞  

Table 3-6: The relative information of binomial with respect to uniform distribution 

fixed mean the relative information 

1 ∞  

2 0.4243 

3 0.0431  

4 0.0431  

5 0.4243 

6 ∞  

Table 3-7: The relative information of MaxEntr with respect to uniform distribution 

 From these results we can see that the Maximum Entropy distribution (MaxEntr) has 

always smaller relative information with respect to the uniform distribution than the binomial 

distribution with respect to the uniform distribution. Of course, it makes sense as the ‘maximum 

entropy’ indicates that the distribution is close to the uniform, so it must introduce a similar 

amount of randomness to the system. However, we can notice that for the mean ‘3’ and ‘4’ the 

value of the relative information is close to zero. This means that those cases bring comparable 

amount of uncertainty to the system. 
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4 Estimation of model parameters 

In this chapter we would like to get the transition and the misclassification parameters 

for our model. Before the mathematical model is presented, we need to describe in detail the 

mechanism of the inspections. 

The bridge inspections are carried out periodically. Therefore we do not have 

information about their conditions at any time, but only at the specified points in time. 

Predominantly, each structure was inspected two or three times, but for some of the structures 

the number of inspections was higher, like for instance six times. As it was mentioned before, 

we assume in this research that the ratings from experts are the observations, which are prone 

to a bias. Therefore, we consider expert observations and the corresponding actual states for 

each observation. We will denote the k-th observation for the i-th structure as i
kO  for k=1,…,m, 

where m is the number of observations for the particular structure i. Moreover, i
kO  means that 

the k-th inspection is carried out at time kt  and the corresponding actual state kX  is the real 

condition of the bridge at the same time kt . 

 

4.1 The Maximum Likelihood Estimation (MLE) 

Once a model is specified with its parameters, the evaluation of its goodness of fit must 

be determined. Goodness of fit is assessed by finding values of the parameters of the model 

that best fit the data. This procedure is called parameter estimation. 

One of the most popular and commonly used methods for estimating unknown 

parameters is maximum-likelihood estimation. A likelihood function is the probability density 

function of the data regarded as a function of the statistical parameters. The maximum 

likelihood estimators are the values of the parameters that maximize the likelihood function. We 

would like to use this method to estimate the parameters for the transition matrix and the 

misclassification matrix. The matrix product method to calculate the likelihood function, which 

was proposed by Jackson et al [1], is used here to estimate the parameters of the model for the 

bridges in the Netherlands. 

Consider a family of probability functions, say ),( θ⋅Xf . The likelihood function of a 

random sample of size n from the population ),( θ⋅Xf  is the joint probability density function 

of the sample variables regarded as a function of the parameter θ . In mathematical 

formulation: 

(4-1)                                  ∏
=

=
n

i
iX xfxL

1

),(),( θθ  

A maximum likelihood estimate (MLE) of θ  is a value of θ̂  such that for all θ : 

      ),()ˆ,( θθ xLxL ≥  

([4], Gibbons, Chakraborti, 1992). 

Often it is more convenient to use the log-likelihood function, because logarithms 

transform products into sums, and maximizing the log-likelihood function is equivalent to 

maximizing the likelihood function. 
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The data supplies information about the number of inspections for each of the bridge 

and about the results of those inspections on a discrete scale. Thus, for each bridge we have a 

sequence of observations: ,,...,,, 321
i
m

iii OOOO where i indicates the bridge index and m is the 

number of observations for the bridge. Therefore, every bridge i contributes to the likelihood 

function in the following way:  

(4-2)     ===== ),...,,Pr()( 2211 m
i
m

ii
i jOjOjOL θ  

),...,Pr(),...,,...,Pr( 111111 m
i
m

i
m

i
m

i
m

i
m

i lXlXlXlXjOjO ==⋅===== ∑  

where the sum is taken over all possible paths of the actual states and }5,...,2,1,0{, ∈mm lj   are 

the values from the state sets. 

Here, we need to use the assumption of conditional independence of the observations 

given the values of actual states. Also, we use the Markov property, and then we can write 

(4-2) in the form (for a proof, see Appendix B): 

(4-3)  ∑∑
==

⋅====⋅====
5

0
1122222211

5

0
1111

2

)Pr()Pr()Pr()Pr()(
l

iiiii

l

ii
i lXlXlXjOlXlXjOL

l

θ  

     

∑∑
=

−−
=

====⋅⋅====
5

0
11

5

0
22333333 )Pr()Pr(...)Pr()Pr(
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i
mm

i
mm

i
mm

i
m

l

iiii lXlXlXjOlXlXlXjO

 

where  )Pr( m
i
mm

i
m lXjO ==  is the misclassification probability 

mm jl
e for each bridge i, and  

)Pr()(
1111 −−− ===−

− m

i
mm

i
mmmll lXlXttp

mm
 is the ),( 1 mm ll −  entry of the transition probability 

matrix in t steps, where 1−−= mm ttt .  

The formula (4-3) is in fact a product of matrices. To show this, let 
if  be the row 

vector of the form: 

)]5Pr()5Pr(),...,0Pr()0[Pr( 11111111 =⋅===⋅=== iiiiiii XXjOXXjOf  

For k=2,3,…,m, let i
kF  be a 6 by 6 matrix with (r,s) entry: )(

1−
−⋅

kkk jjrssj ttpe , and let 

1 be a column vector of size 6, consisting of 1s. Then the likelihood function for one object 
reads: 

(4-4)                1...)( 32 ⋅⋅⋅⋅⋅= i
m

iii
i FFFfL θ  

For convenience we will work with the log-likelihood function: 

(4-5)                )1...log()(log)( 32 ⋅⋅⋅⋅⋅== i
m

iii
ii FFFfLl θθ  

Having the likelihood function for one object we can derive the likelihood for the whole 

data. Let N be the number of objects in our data. Then: 
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(4-6)               ∏∏
==

⋅⋅⋅⋅⋅==
N

i

i
m

iii
N

i
i FFFfLL

1
32

1

)1...()()( θθ  

And the log-likelihood function for the whole data is: 

(4-7)               ∑∑∏
===

⋅⋅⋅⋅⋅====
N

i

i
m

iii
N

i
i

N

i
i FFFflLLl

1
32

11

)1...log()()(log)(log)( θθθθ  

The parameter θ  is of the size 11, since it contains five parameters for the transition matrix 

and six parameters for the misclassification matrix: 

][][ 54321043210 eeeeeepppppep ==θ  

The resulting parameter vector, which is sought by searching the multi-dimensional parameter 

space, gives us the probability distributions. According to the maximum likelihood principle, this 

is the distribution that is most likely to generate the observed data. 

To give an illustration of the log-likelihood function, we consider for a moment a 

simplified theta of the form: ][ ep=θ , where ppi =  and eei =  for each i=0,1,…,5. So in 

fact, we have only two parameters: the first for the transition probabilities and the second for 

the misclassification probabilities. Both Figure 4-1 and Figure 4-2 present the log-likelihood 

function for the misclassification matrix: ‘Misclassification matrix 1’ from page 9, where p is 

from 0 to 1 in the first case and - after zooming in - from 0 to 0.035 for the second figure. 

 

Figure 4-1: Log-likelihood function with ‘Misclassification matrix 1’, ]1:0[∈p  

 



Hidden Markov Models  July 2006 

30 R0112 HKV CONSULTANTS 

 

 

Figure 4-2: Log-likelihood function with ‘Misclassification matrix 1’, ]035.0:0[∈p  

Until now, we have presented our basic algorithm that was implemented to get the 

optimal values for the parameters. However we would like to describe two other two recursive 

procedures (according by [8] and [9] respectively) for the derivation of the (log-)likelihood 

function. As before we have a sequence of observations: i
m

iii OOOO ,...,,, 321  for a particular 

bridge. 

The first approach is the forward algorithm. In order to start with the forward approach 

we need to define the forward variable )(likα for each 5,...,1,0=l  as follows: 

               ),,...,,Pr()( 2211 lXjOjOjOl i
kk

i
k

iii
k =====α   where mk ≤  

i.e. the probability of the partial observation sequence until inspection k and the actual state at 

time kt . Then, we can solve the likelihood via the following steps: 

Firstly, we use the law of total probability to rewrite the likelihood as: 

(4-8) ∑
=

−− =========
5

0
11112211 ),,,...,Pr(),...,,Pr()(

l

i
mm

i
mm

i
m

i
m

i
m

ii
i lXjOjOjOjOjOjOL θ  

Secondly, we recognize in the sum in (4-8) the forward variable: )(li
mα . Therefore, we can 

write the formula for the likelihood function as:  

(4-9) ∑
=

=
5

0
)()(

l

i
mi lL αθ  

where the forward variable can be updated recursively via: 
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k wXlXwlXjO α   for k=2,3,…m 

and       )Pr()Pr(),Pr()( 11111111 wXwXjOwXjOw iiiiii =⋅======α . 

Of course, we can repeat steps and we will obtain the log-likelihood for the whole data using 

(4-6) and (4-7). 

The second algorithm has close resemblance with the formula (4-10), except that it 

uses a normalization factor. Also the ‘log’ value is imposed from the beginning, so in fact the 

formula calculates directly the log-likelihood. 

The algorithm is initialized by writing the likelihood in terms of the product of conditional 

probabilities, using the simple mathematical rule of conditional probability: 
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where for u=1 we have simply an unconditional probability )Pr( 11 jOi = . 

Imposing the logarithm on both sides of (4-11), we obtain the sum of the logarithms. Then we 

can use the law of total probability and we obtain: 
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We can denote the conditional probability of being in the actual state at time ut  given the 

sequence of observations form (4-12) as )(liuφ . Then we can write (4-12) as: 
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The recursive variable can be computed as follows: 

      )Pr()( 11 lXl ii ==φ  
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Since in Appendix B we have a similar proof to formula (4-14), we omit to prove it here. 

Finally, the log-likelihood for the whole data is of the form: 
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The numerical method was applied to obtain the optimal solution for θ . ‘Matlab’ 

provides the function ‘fminsearch’, which can perform an unconstrained nonlinear optimization 

of a function of several variables. Since this method is unconstrained, there is no certainty that 

the obtained parameters are from the interval (0,1). In order to have the parameters from this 

interval, we apply a transformation which is presented below, [5]: 

Taking Rx∈ , the parameter of the form: 

(4-16)                            
)exp(1

1
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xx

x
−+

=
+
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is from the interval (0,1).  It follows that: 
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x
 

From (4-16), we can write x as:  

(4-18)   )1log(
θ

θ−
−=x  

Hence, the constrained optimization for θ  on (0,1) can be transformed to an unconstrained 

optimization for x. 

The results from the Matlab optimization are presented below: 

(4-19)  ]0.1264   0.1787   0.1427   0.0609   0.0231[=p  

(4-20)  ]0.4823   0.3505   0.3325   0.3242   0.3034   0.2278[=e  

which gives the following transition matrix and misclassification matrix, respectively: 
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

























=

100000
1264.08736.00000
01787.08213.0000
001427.08573.000
0000609.09391.00
00002321.09769.0

P  

Optimal transition matrix 



























=

0261.01400.03006.03228.01733.00372.0
0053.00493.01822.03368.03113.01151.0
0041.00410.01642.03290.03297.01321.0
0036.00374.01559.03246.03378.01407.0
0026.00295.01355.03111.03572.01641.0
0006.00104.00705.02390.04050.02745.0

E  

Optimal binomial misclassification matrix 

Below, we present Table 4-1 with the entropy values for the above optimal 

misclassification matrix: 

row the value of entropy 

1 1.3020 

2 1.4177 

3 1.4404 

4 1.4486 

5 1.4647 

6 1.5229 

Table 4-1: The value of the entropy for the optimal binomial model 

4.2 Likelihood function for different models 

So far, we have introduced a few models that can describe the deterioration process, 

namely the optimal binomial model, the binomial model with fixed mean, the discrete uniform 

model and the Maximum Entropy model with fixed mean. All of them were described in order to 

find the model that can best describe the deterioration process of the bridges. Furthermore, our 

aim was to determine a distribution for the misclassification matrix that would reflect the 

inspectors’ behaviour as closely as possible. Given those models, we are interested in finding 

the value of the likelihood that corresponds to the desired model. The optimal binomial model 

was maximized with respect to all eleven parameters, therefore it is obvious that its log-

likelihood value is the largest one. However, we would like to know how the value of the 

likelihood changes as we use those models respectively.  

Below, we present the values of the transition parameters corresponding to the 

maximum entropy and the binomial models with fixed mean.  
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Model: maximum entropy with fixed mean  

(4-21)   ]0.0000   0.0000   0.0000   0.0551  0.4537[=p  

Model: binomial with fixed mean 

(4-22)   ]0.0000   0.0000   0.0010   0.0416  0.3232[=p  

These values indeed do not satisfy our expectation about them. We would rather expect 

to obtain numbers different than zeros as they indicate the probabilities of moving to the next 

states. With such values we get that the actual process stops at the state ‘2’ and ‘3’, 

respectively, for those models. However, with the fully filled misclassification matrix E, even 

with such parameters, it is still possible to observe any condition from the whole range of the 

discrete scale. 

The reason for such results can be in the data. The data contains a disproportionately 

high amount of data concerning bridges below mediocre condition (condition 4) relatively to the 

small number of data concerning bridges assessed as 4 and 5. This can influence the model a 

lot. If we look at the misclassification matrix generated for the optimal binomial model, we can 

see that the probability of observing the lower conditions is always very small and the highest 

probabilities are concentrated in the left part of the matrix. This is in opposite to the models 

with fixed means where more weights are assigned to the right part of the E matrix, especially 

in the lower part of this matrix. 

Here we should present also the transition parameters for the discrete uniform 

distribution. However, during the analysis we noticed that those parameters do not influence the 

value of the likelihood. It means that no matter how those parameters are, the value of the 

likelihood stays always the same. The explanation of this fact will be given in the next chapter in 

terms of the expected value of the observation at time t. 

Table 4-2 presents the values of the likelihood for all mentioned models. From the table 

we can see that the values differ significantly. 

model log-likelihood value 

optimal binomial -7257.70 
binomial with fixed mean -8458.68 
Max.Entr -10497.60 

discrete uniform -9728.17 

Table 4-2: The values of the log-likelihood functions  

for different models (E-full) 

We would like also to present the results from simulations for not fully filled 

misclassification matrices: ‘Misclassification matrix 1’ and ‘Misclassification matrix 2’. The last 

one was generated by the binomial model in a similar way as the full matrix. In order to obtain 

the parameters we needed to delete from the data all transitions which result in the zero value 

of the log-likelihood. This results in higher log-likelihood values, such that tables 4-2 and 4-3 

can not be directly compared. 
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Model: perfect inspections, E-identity 

]0095.00030.00101.00329.00483.0[=p  

Model with ‘Misclassification matrix 1’ 

]0.0142   0.0015   0.0090   0.0391  0.0471[=p  

]0.1311[=e  

Model with ‘Misclassification matrix 2’ 

]0.0380    0.0798    0.0151    0.1515    0.0240[=p  

]0.2165    0.0364    0.0851    0.4986    0.3274    0.4525[=e  

Table 4-3 presents the values of the likelihood for those models: 

model log-likelihood value 

perfect inspections, E-identity -6582.40 

with ‘Misclassification matrix 1’  -6476.84 
with ‘Misclassification matrix 2’, binomial - 6772.85          

Table 4-3: The values of the log-likelihood functions  
   for different models (E-not full) 

4.2.1 Likelihood function for different initial vectors 

We would also like to check how the value of the likelihood is influenced by the initial 

vector )Pr( 1 iX = for i=0,1,2,…,5. At the beginning of this work, we have assumed this vector 

to be discrete uniform distributed for the bridges built before 1985. However, when we compare 

the log-likelihood values for the different choices of this vector we will be able to state if and 

how our initial assumption influences the whole model. It could be important to have this 

knowledge, as the uniform assumption was rather arbitrary. We made it, as we do not have any 

information about the history of those bridges, i.e. we do not know what had happened with 

them before the first inspection. Therefore we let these probabilities be completely random. 

However, it can happen that it is a too general assumption. One of the reasons for that could be 

as follows. The condition of a bride depends meaningfully on its age. But around 1985, when a 

lot of the first inspections were done, the bridges were not extremely old. Hence, it is difficult to 

believe that the probability of being in the worst state is the same as being for instance in the 

state ‘2’ or ‘3’ during the first inspection.  

The result of this analysis, for the optimal binomial model, is presented in Table 4-4: 
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initial probabilities distribution log-likelihood 

[0.1667 0.1667 0.1667 0.1667 0.1667 0.1667] Uniform(6) -7257.7 

[0.3277 0.4096 0.2048 0.0512 0.0064 0.0003] Binomial, mean 1 -7345,1 

[0.0778 0.2592 0.3456 0.2304 0.0768 0.0102] Binomial, mean 2 -7230.6 

[0.0102 0.0768 0.2304 0.3456 0.2592 0.0778] Binomial, mean 3 -7213.3 

[0.4780 0.2550 0.1350 0.0730 0.0385 0.0205] Max.Entr, mean 1 -7397.6 

[0.2465 0.2075 0.1749 0.1450 0.1229 0.1031] Max.Entr, mean 2 -7280.0 

[0.1031 0.1225 0.1460 0.1743 0.2079 0.2461] Max.Entr, mean 3 -7255,2 

Table 4-4: The value of the likelihood for the different initial vector 

From the above result, we can state that the choice of the initial vector does not play  

a large role in both the values of log-likelihood as well as for the estimated parameters. 

Therefore, we can assume it to be discrete uniformly distributed. However, we can see the 

tendency that the value of the log-likelihood is rising up as the initial condition is more likely to 

be better. 
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5 Expected actual and observed condition 

At the beginning of this chapter we will calculate the expected condition of a bridge as a 

function of time, under the assumption that the inspections give the assessment of the bridges’ 

conditions without any error. Then we will consider the case in which this error is taken into 

account, so we will consider the Hidden Markov Model.  

In the last section of this chapter, the analysis of the conditional probability of an actual 

state given the observation is presented.  

 

5.1 The expected actual state: E(X(t)) 

Let us assume that the inspectors’ ratings create the Markov deterioration process, what 

simply means there is no error between the ratings and the real condition of bridges, i.e. we use 

the model with identity misclassification matrix. 

  The expected value of an actual state at the time t is the sum of the probability of 

being in each state at the time t multiplied by its value: 
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0
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j
tt jXjX  

Since the probability from the formula (5-1) can be expressed as: 
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The expected value reads: 
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Figure 5-1 presents the expectation for this case as a function of time, i.e. the age of a 

bridge. We can see from the plot that the deterioration proceeds faster when a bridge is 

younger and it slows down as the state is getting worse. The figure also shows that after about 

200 months (more than 16.5 years) the mean condition is ‘3’, and after more then 800 months 

(more than 66.5 years) the condition converges to the worst state. 
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Figure 5-1: The expectation of actual state as a function of age 

 

We would like to present also some other results from the analysis. The Figure 5-2 

shows the expectation curve for the transition probabilities (4-19) from page 28, neglecting the 

misclassification probabilities (4-20). We can see that for this case, the expected value 

converges to the worst condition rapidly and much faster than on the Figure 5-1. Now it takes a 

bridge to reach state ‘5’ only 200 months (more then 16.5 years), while for the previous case a 

bridge was in the state ‘3’ at this time. It comes up that the misclassification matrix has a 

significant influence on the model and by taking it into account we will obtain different results. 

 
Figure 5-2: The expectation of an actual state as a function of age 
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Figure 5-3 presents the expectation for the Markov model (perfect inspections) but we 

use modified data to obtain it. Now, the data contains information about the most severe bridge 

damage. It means that the condition of a bridge depends on the condition of the worst part of 

the bridge. We can see how much faster the expectation goes to the worst state comparing it to 

the result in Figure 5-1. The expectation reaches state ‘5’ after 1000 months, while for the 

previous case at time 1200 months it was close to this state, but still not exactly there. Besides, 

we can see that for this model a bridge transits from perfect condition: ‘0’ to ‘1’ with probability 

one, so in fact immediately. The explanation of this fact can be found after studying the data. 

There are conditions ‘0’ only for new bridges (except one bridge with index 1440) and as soon 

as an inspection takes place it never results in a rate better than ‘1’, but usually even worse. 

There is only one exception (i.e. bridges with index 757). We attach some of the extreme cases 

from this data in Appendix C. From those cases we can read that even a 4 month old bridges 

can have already label ‘1,’ or even worse.   

The transition parameters for this data are: 

]0043.00072.00264.00454.01[=p  

and the value of the log-likelihood function for this case is -4249.44. The value is much smaller 

than before, since there is less data than in the regular data set. 

 

Figure 5-3: The expectation of an actual state for the new data 
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5.2 The expected observation: E(O(t)) 

Now, we consider the inspectors’ rating as the observations which can differ from the 

real states of the bridges, so we consider the Hidden Markov Model. We are interested in finding 

the expectation of an observation as a function of time. The formula for the expected value for 

an observation is more complex than the formula (5-3), as it takes into account the error 

between the observation and the real state: 
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The first step is to calculate the expectation of the observation for the optimal model 

from page 19 (for the optimal binomial misclassification matrix and the corresponding transition 

matrix). Figure 5-4 presents the result of the expectation (magenta dashed line). For 

comparison, in the same figure the red line is presented, which indicates the average condition 

of bridges in a particular age from our data. 

 

Figure 5-4: The expected observation as a function of age, binomial model 

 

We can see from Figure 5-4 that the dashed line of expectation follows the solid line. 

The expected condition of a bridge converges to 2.5, when the age increases. Moreover, the 

observation ‘1’ is reached very fast, and then this process slows down. On average, the 

condition ‘2’ is given by experts for a 77 months old bridge (more than 6.4 years). 
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Below, we present the plot of the expected observation for the discrete uniform model, 

together again with the average condition of bridges for a particular age from the data. 

 
Figure 5-5: The expected observation as a function of age, uniform model 

We can see in Figure 5-5 that the expected curve is perfectly straight and it is placed 

exactly in the middle of the scale, i.e. on the level of 2.5. The explanation of this result is 

straightforward. The uniform misclassification matrix allows in fact the inspectors to be very bad 

experts whose assessments of the bridges’ conditions are completely random and unpredictable. 

Therefore, the expectation of their opinion is the same at any time and it equals exactly 2.5. 

Below we present the explanation of this fact, which is derived from the formula (5-4). It also 

shows that for the uniform model the choice of the transition matrix P is of no influence, as long 

as it satisfies the normal stochastic constraints, namely the probabilities from each row must 

sum to one. 

We can always put the ‘j’ index inside the second sum in the formula (5-4), as well as to 

interchange the sums. Then we get: 
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 Figure 5-6 presents the expectations of the observation for the two models: the 

Max.Entr and the binomial with fixed mean. 

 
Figure 5-6: The expected observation as a function of age, Max.Entr and fixed 

binomial model 

  

The last figure presents the expectation for the models with the not fully filled 

misclassification matrices that we described in section 5.2.  

 
Figure 5-7: The expected observation as a function of age, models with 

misclassification matrices: ‘1’ and ‘2’ 
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5.3 The probability of the actual state given the 
observation 

Suppose that we now reverse the roles of tO and tX , and we consider the probability of 

the actual state given the observation: )Pr( jOiX tt == . Informally speaking, we assume 

that the effect tO is known, and we try to determine the probability that the cause tX  is true. 

Obviously, these results will depend on time, i.e. the age of the bridge. Therefore we should 

determine them for different t, and check how the proceeding time influences these 

probabilities. For this purpose we will use Bayes theorem, [2], which allows rewriting the 

probability as: 
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Furthermore, due to the law of total probability, we can write the denominator of the formula 

(5-6) in the form: 
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Finally, formula (5-6) transforms into: 
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We perform calculations using the above rule and the results for the optimal binomial 

model are presented in figures Figure 5-8 to Figure 5-11. These figures are useful for viewing 

how an individual element (actual state) contributes to an aggregate amount (probability of 

one) and also for presenting results that change over a period of time.  

Both Table 5-1 and Figure 5-8 illustrate the outcomes for the bridges which are one 

year old. We can see that the results are quite intuitive. At this time, the probability that the 

actual state is in perfect condition is very high given the inspectors’ ratings. However, we can 

see the tendency that this probability is getting smaller as experts give a bridge a worse ‘label’. 

Nevertheless, if an inspector rates severely a one year old bridge then these results may 

indicate that he or she makes some error. But it is an underestimating rather than 

overestimating error, i.e. the opinion about the condition of a bridge is more pessimistic than 

the condition could be actually. When a one year old bridge is rated as ‘5’, it seems to be clear 

that it is a too severe label and it is rather possible only in theory. However, with a given 

observation ‘4’ or ‘3’, there is a high probability that a bridge is not in perfect state any more 

(the second blue bar at observations ‘3’ and ‘4’ are relatively high), because the probabilities 

that it is in ‘1’ or ‘2’ rise up.  
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Figure 5-8: Probability of the actual state given the observation, t=12 months 

 X 

O 

0 1 2 3 4 5 

0 0.8453 0.7819 0.7005 0.6022 0.4921  0.3702 

1 0.1163 0.1588   0.2100   0.2665 0.3214 0.3694 

2 0.0252 0.0378 0.0551 0.0771 0.1023 0.1288 

3 0.0095 0.0148 0.0223 0.0324 0.0447 0.0586 

4 0.0035   0.0059 0.0096 0.0152 0.0227 0.0320 

5 0.0003 0.0009 0.0024 0.0065 0.0169 0.0410 

Table 5-1: Probability of an actual state given the observation, t=12 months 

 

After two years (24 months) the situation changes a bit. The probability of being in 

state ‘0’ is still high, but smaller than before and the other probabilities rise up. Now, if an 

inspector rates a bridge as for instance ‘3’, the probability that he or she assesses it correctly is 

much higher than before. Nevertheless, a very likely scenario is that the actual condition is ‘5’, 

or even more probably ‘0’ for this case. We can see that while the proportion for the 

observations ‘0’ and ‘1’ does not change dramatically, the differences are visible for lower 

labels. We can perceive the following tendency: assessment of the real state when it oscillates 

around ‘3’ and ‘4’ is a difficult task, and we should be careful in trusting the inspectors’ rating in 

this case. Furthermore, we can see in Figure 5-9 that if a bridge is rated as ‘5’ after two years, 

there is about 0.38 probability that it is indeed in this condition.   
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Figure 5-9: Probability of the actual state given the observation, t=24 months 

  X 

O 

0 1 2 3 4 5 

0 0.7234 0.6205 0.4986 0.3663 0.2386 0.1304 

1 0.1613 0.2043 0.2423 0.2628 0.2527 0.2110 

2 0.0524 0.0731 0.0956 0.1142 0.1209 0.1105 

3 0.0320 0.0464 0.0629 0.0780 0.0858 0.0817 

4 0.0244 0.0383 0.0562 0.0756 0.0900 0.0922 

5 0.0065 0.0175 0.0444 0.1031 0.2119 0.3742 

Table 5-2: Probability of an actual state given the observation, t=24 months  

 

Figure 5-10 presents the ‘bar’ graph of the probabilities of the actual states given the 

observation for four year old bridges. We can see that again a correct assessment of the states 

in the middle of the scale is much more difficult and it is due to the possibilities of making a 

serious error. When the observation is ‘5’ the probability that the real state is also ‘5’ is the 

highest compared with the probabilities of being in another state. It can mean that it is not 

difficult to assess correctly the real state ‘5’. An analogous situation we see for state ‘0’. 

However, here the probability that the actual state is ‘1’ when it is rated as ‘0’ is relatively high. 
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Figure 5-10: Probability of the actual state given the observation, t=48 months 

.X 

O 

0 1 2 3 4 5 

0 0.5673 0.4175 0.2636 0.1380 0.0604 0.0225 

1 0.1753 0.1905 0.1775 0.1372 0.0886 0.0505 

2 0.0708 0.0847 0.0869 0.0741 0.0527 0.0328 

3 0.0556 0.0691 0.0736 0.0651 0.0481 0.0312 

4 0.0678 0.0912 0.1053 0.1009 0.0807 0.0564 

5 0.0633 0.1470 0.2931 0.4847 0.6695 0.8065 

Table 5-3: Probability of an actual state given the observation, t=36 months 

 

 

We would like to present also the graph for ten year old bridges. We can read from 

Figure 5-11 that the situation is almost opposite to the situation seen in Figure 5-8. Now, the 

probability of being in the worst condition is very high given the inspectors ratings. These 

results seem to be a bit strange, as ten years old bridges are not so old structures.  However, it 

gives an intuitive belief, that if we would take into consideration the misclassification errors 

which change over time (non-stationary case of the misclassification matrix), the situation could 

be whatsoever different and it would be worth to carry out such analysis. 
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Figure 5-11: Probability of the actual state given the observation, t=120 months 

.X 

O 

0 1 2 3 4 5 

0 0.2681 0.1204 0.0455 0.0157 0.0052 0.0016 

1 0.0965 0.0640 0.0357 0.0182 0.0088 0.0043 

2 0.0422 0.0308 0.0189 0.0106 0.0057 0.0030 

3 0.0361 0.0274 0.0175 0.0102 0.0057 0.0031 

4 0.0537 0.0441 0.0305 0.0192 0.0116 0.0068 

5 0.5033 0.7133 0.8518 0.9262 0.9631 0.9812 

Table 5-4: Probability of an actual state given the observation, t=120 months 
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6 First time to reach a failure 

In this chapter we will try to answer the question: how long it will take for a process to 

reach state j from state i for the first time. The time required before the state will move from i 

to j for the first time is referred to as the first passage time. However, the most interesting 

aspect for us is to get to know how fast a bridge goes from the perfect condition ‘0’ to the very 

bad condition ‘5’ (failure). This information can help a decision-maker to fix an optimal time to 

carry out the inspections. Properly scheduled inspections can allow for minimizing the cost of 

maintenance and in the same time for keeping the bridges safe for their users. 

We can pose the question about the average time of reaching the worst state, assuming 

that the process starts from the perfect condition. We will compare the mean time of reaching 

state ‘5’ from state ‘0’ for perfect inspections and for imperfect inspections. Moreover, we are 

highly interested in finding how the mean time of reaching state ‘5’ changes when the time 

interval of inspections changes.  

6.1 Perfect inspections 

At the beginning, we consider a situation where the conditions of the bridges indicate 

the real states of the bridges. In other words, we assume that the inspectors made no error in 

the assessment of the bridges’ conditions. So the process can go only forward.  We do so, in 

order to compare how the situation will change when we introduce inspections with possible 

errors.  

For a Markov process we define: 

{ }jXsT sj =≥= :1inf  

which is the first time that the process sX  visits the state j, [3]. That is, sT j =  if and only if 

jXk ≠  for k=1,2,…,s-1 and jX s = . We define the probability density function ijf  as: 

(6-1)           ),...,,,Pr()Pr()( 01210 iXjXjXjXjXiXsTsf sssjij =≠≠≠===== −−  

The probability density function )(sf ij  can be calculated recursively via: 

(6-2)          






=

>−⋅
= ∑

≠

1

1)1(
)(

sifP

sifsfP
sf

ij

n

jk
kjik

ij  

To see this, we have for 2≥s : 

(6-3)       ∑
≠

− ===≠≠==
jk

ssij iXjXjXjXkXsf ),,...,,Pr()( 0121  

      ∑
≠

− ==≠≠⋅===
jk

ss kXjXjXjXiXkX ),,...,Pr()Pr( 11201  

But, by the Markov property and stationarity, it follows that: 

∑∑
≠

−
≠

−− ⋅===≠≠≠⋅===
jk

skjik
jk

ssij fPkXjXjXjXjXiXkXsf )1(0122101 ),,...,,Pr()Pr()(  
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Below, we present the results from the Matlab calculations, which were obtained using 

the recursive formula (6-2). The probability density function shows the expected time for the 

deterioration process to reach state ‘5’ for the first time. From Figure 6-1 we can see that the 

mean time is about 574 months. The figure shows also that after about 1600 months (about 

133 years) the probability that the condition of a bridge never has reached state ‘5’ is almost 

zero.  

 

Figure 6-1: First passage time for a forward process, 05f  

6.2 Imperfect inspections 

Now, we will consider the case of imperfect inspection, so we assume the deterioration 

process is hidden. For this case, the formula (6-1) must be transformed in a way, which will 

take into consideration the error resulting from the experts’ subjectivity. As we need to include 

the misclassification matrix, it means that we allow the process to go backwards. Therefore, the 

first passage time is in fact the first ‘observation’ time. It says how many inspections must be 

carried out in order to observe the condition j for the first time. Now, we have: 

(6-4)  ),...,,,Pr()( 0121
* iOjOjOjOjOsf sssij =≠≠≠== −−  

As before, the notation sO  is equivalent with )( stO  and denotes the s-th inspection carried out 

at time st . Also, we assume that the observation at time 0t  is equivalent with the actual state 

at time 0t  ( 00 XO ≡ ). 

We will present two approaches to this problem. The first one is based on the quasi-

Newton method which was described by Cappé et al, [9] in terms of the maximum likelihood 

estimation. The second approach uses the idea of the forward (or Baum-Welch) algorithm 

presented for instance by L.R. Rabiner, [8]. Both methods are efficient and give the same 

results. The speed of these two algorithms is comparable and very fast (it takes about 0.0022 

and 0.0071 seconds to calculate, respectively). 
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To demonstrate the first approach, let us rewrite formula (6-4) as a product of two 

conditional probabilities as follows: 

(6-5)  ==≠≠≠== −− ),...,,,Pr()( 0121
* iOjOjOjOjOsf sssij  

    ),...,,Pr(),,...,,Pr( 01210121 iXjOjOjOiXjOjOjOjO sssss =≠≠≠⋅=≠≠≠== −−−−  

Now, the first term of the above formula can be formulated using the law of total probability: 

(6-6)  ==≠≠≠= −− ),,...,,Pr( 0121 iXjOjOjOjO sss  

==≠≠=== ∑
=

−

5

0
011 ),,...,,Pr(

k
sss iXjOjOkXjO  

),,...,Pr()Pr( 011

5

0
iXjOjOkXkXjO ss

k
ss =≠≠=⋅=== −

=
∑  

We will denote the probability of the actual state at time s given the history of the observations 

until the time s-1 from the formula (6-6) as ),( jksφ , i.e.: 

(6-7)  ),,...,Pr(),( 011 iXjOjOkXjk sss =≠≠== −φ  

The notation of ),( jksφ  refers to the notation from [9] for the state prediction filter. (6-7) can 

be computed recursively: 

(6-8)  
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The proof of (6-8) can be found in Appendix D. The denominator of the formula (6-8) is the 

normalization factor and it is the main factor that distinguishes the algorithm from the second 

one, which will be presented later on in this section.   

Let us now focus on the second term of formula (6-5); that is, on the probability of the 

sequence of observations given the initial state. It looks similar to our first ‘observation’ time for 

step s-1 except that the process cannot still reach state j at this time. But 

(6-9)    ==≠≠≠ −− ),...,,Pr( 0121 iXjOjOjO ss  

∑∑
≠≠

−− −==≠≠==
jl

il
jl

ss sfiXjOjOlO )1(),...,,Pr( *
0121  

Finally, we can write the first ‘observation’ time via the recursive formula that reads: 

(6-10)  ∑ ∑
= ≠

−⋅⋅===
5

0

** )1(),()Pr()(
k jl

ijsssij sfjkkXjOsf φ  

where we start this recursion from )1(*
ijf  which is simply: 
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(6-11)  ∑
=

=======
5

0
01101

* ),Pr()Pr()1(
k

ij XkXjOiXjOf  

 

        ∑
=

==⋅===
5

0
0111 )Pr()Pr(

k
iXkXkXjO  

Now, we will pay attention to the second method of obtaining the first ‘observation’ 

time, which is based on the forward algorithm. This algorithm does not require normalization. 

We start it by using directly the law of total probability to the formula (6-4), without breaking it 

into two conditional probabilities. Hence, we have: 

(6-12)         ==≠≠≠== −− ),...,,,Pr()( 0121
* iOjOjOjOjOsf sssij  

        ∑
=

−− =≠≠≠===
5

0
0121 ),...,,,,Pr(

k
ssss iOjOjOjOkXjO  

The idea of this method is to use the forward variable ),( klsα  defined as: 

(6-13)         ),...,,,,Pr(),( 0121 iXjOjOjOkXlOkl sssss =≠≠≠=== −−α  

i.e., the probability of the partial observation sequence 121 ,...,, −sOOO  not equal to j and the 

observation at the time s equals j while the actual state equals k at the time s.  

We can write the probability from the sum (6-12) in terms of the forward variable (6-13). We 

use an analogue technique as we did in (6-5), but now we have already involved sX  into our 

probability: 

(6-14)         ==≠≠≠== −− ),...,,,,Pr( 0121 iOjOjOjOkXjO ssss  

        = ),...,,Pr(),,...,,Pr( 011011 iXjOjOkXiXjOjOkXjO sssss =≠≠=⋅=≠≠== −−  

In the context of the assumption (2-3) from page 12 we can reduce the first conditional 

probability, by passing over the observation sequence and we get simply: )Pr( kXjO ss == . 

The second term of (6-14) can be modified using again the law of total probability and adding 

1−sX  into it (and using the same assumption (2-3)). We can write this term as a double sum, 

as follows: 

(6-15)           ==≠≠= − ),...,,Pr( 011 iXjOjOkX ss  

        ∑∑
≠ =

−−− =≠≠====
jl m

ssss iXjOjOlOmXkX
5

0
01211 ),...,,,,Pr(  

        ),...,,,Pr()Pr( 01211

5

0
1 iXjOjOlOmXmXkX sss

jl m
ss =≠≠==⋅=== −−−

≠ =
−∑∑  

We can recognize inside the above formula our forward variable: ),(1 mls−α . Therefore we can 

finally write the first ‘observation’ time (6-12) recursively via: 
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(6-16)  ∑∑∑
= ≠

−
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5

0
1
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0
1

* ),()Pr()Pr()(
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s
m

ssssij mlmXkXkXjOsf α  

where the first iteration )1(*
ijf is calculated in the same way as it was done in the first method. 

Let us consider the optimal binomial model, which seems to fit the best our data. We 

carry out an analysis to determine the influence of inspection intensity on the expected time to 

reach the last condition. Therefore, we start with the assumption that inspections take place 

every year and then successively we lengthen the inspection interval. The results for inspections 

taking place each year, two years, three years, four years and ten years are presented 

respectively. 

The first conclusions are pretty obvious from the intuitive point of view. The analysis 

reveals an interesting tendency, namely that the intensity of the inspections’ is important. The 

more inspections in a short period of time lead to a smaller expectation of the first ‘observation’ 

time.  

 

 

Figure 6-2: First ‘observation’ time for optimal binomial model, 

inspections carried out each year, *
05f  
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Figure 6-3: First ‘observation’ time for optimal binomial model, 

inspections carried out each 24 months, *
05f . 

 

 

Figure 6-4: First ‘observation’ time for optimal binomial model, 

inspections carried out each 36 months, *
05f . 
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Figure 6-5: First ‘observation’ time for optimal binomial model,  

inspections carried out each 48 months, *
05f  

 

Figure 6-6: First ‘observation’ time for optimal binomial model,  

inspections carried out each 120 months, *
05f  
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We can notice from Figure 6-2 to Figure 6-6 that the expected time to reach the worst 

condition is very long, even not realistic. This is especially for rarer inspections where we need 

to multiply the expected time to observe the worst state (failure) by the inspection interval in 

order to obtain the expected value in years. However, we can give an explanation for this fact. 

Lengthening the inspection interval portrays an interesting tendency, namely the expectation of 

the first ‘observation’ time convergences to 38.31 inspections. This number stays with strong 

relation to the misclassification matrix E. When we calculate the reciprocal of the probability of 

correctly identifying the last state we get the same number. Therefore the first ‘observation’ 

time does depend on what this probability is. In our case, the value of the probability is very 

small and this is the reason why we get so remote expected time to failure. Therefore, we would 

like to present also the figures visualising the observation of the condition ‘3’ for the first time, 

as it is a quite serious condition which indicates that some maintenance actions should be 

already initiated. The time of reaching this state is considerably shorter (figures: Figure 6-7 to 

Figure 6-11).  

The above conclusions may hint that we can improve our model by considering the 

non-stationary misclassification matrix, i.e. the matrix in which the error probabilities depend on 

time. With such a model the accuracy of identifying the actual state is in relation to the age of a 

bridge. Then, the probability of correctly identifying the worst condition is getting higher with 

time and it could change the expected value meaningfully.  

From the results we can write one more conclusion. There is a significant difference 

whether we consider inspectors’ ratings as actual states or as observations which can contain 

error. For the former process the deterioration proceeds faster than for the latter (except the 

case of inspection carried out every year where the first observation time and the first passage 

time are comparable). The actual process represents deterioration without paying attention to 

the intensity of the inspections what could be the main reason for this situation.  

Figures 7-7 to 7-11 present the distribution of observing condition ‘3’ for the first time:  

 
Figure 6-7: First time of observation the condition ‘3’ for optimal binomial model,  

inspections carried out each 12 months, *
03f  
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Figure 6-8: First time of observation the condition ‘3’ for optimal binomial model,  

inspections carried out each 24 months, *
03f  

 

 

Figure 6-9: First time of observation the condition ‘3’ for optimal binomial model,  

inspections carried out each 36 months, *
03f  
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Figure 6-10: First time of observation the condition ‘3’ for optimal binomial model,  

inspections carried out each 48 months, *
03f  

 

 

Figure 6-11: First time of observation the condition ‘3’ for optimal binomial model,  

inspections carried out each 120 months, *
03f  
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Now, we will do an analogue analysis but for the Max.Entr model. Figures 6-12 to 6-16 

present the obtained plots. We can read from them that the time to observe the last condition is 

much shorter than for the previous model. For this case, we observe that after lengthening the 

inspection interval, the expectation converges to 9.69 inspections. This number is the reciprocal 

of the probability of observing the last state given that the true state is ‘2’. It is so since the 

actual process stops at the state ‘2’ for this model (the transition matrix indicates that). 

 
Figure 6-12: First ‘observation’ time for Max.Entr model, inspections carried out each 

12 months, *
05f  

 
Figure 6-13: First ‘observation’ time for Max.Entr model, inspections carried out each 

24 months, *
05f  
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Figure 6-14: First ‘observation’ time for Max.Entr model, inspections carried out each 

36 months, *
05f  

 
Figure 6-15: First ‘observation’ time for Max.Entr model, inspections carried out each 

48 months, *
05f  
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Figure 6-16: First ‘observation’ time for Max.Entr model, inspections carried out each 

120 months, *
05f  

The Maximum Entropy model brings quite different results. The first time of observing 

the worst condition ‘5’ is much shorter. This is because the actual state ‘2’ is according the 

model an absorbing state (it is due to the optimal transition parameters for the model which are 

presented on page 30). The expectation of the first ‘observation’ time converges for this model 

to 9.67 inspections as we lengthening the inspection intervals. This is the reciprocal of the 

probability of observing the worst condition given the actual state is ‘2’. Therefore the time of 

observing the worst condition is relatively shorter for this case. 

The probability density functions of observing the worst state for the first time for the 

other models are presented in Appendix E. 
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7 Conclusions 

The thesis concentrates on the analysis leading to developing a deterioration model for 

the bridges in the Netherlands. The model was based on the results from visual inspections that 

are collected in the database called ‘DISK’. The bridges are rated on the discrete scale from ‘0’ 

to ‘5’ (in fact from ‘0’ to ‘6,’ but due to the small amount of data we have decided to merge the 

last two states together), where ‘0’ means perfect condition and ‘5’ means very bad condition 

(failure). Therefore we have used the Markovian model as a mathematical tool. Since the 

inspections are carried out only visually, a lot of factors can influence the expert opinions about 

the bridge conditions. Hence, the main aim was to take the subjectivity of the inspectors into 

account. In order to do that, we introduced the Hidden Markov Model where the observation is a 

probabilistic function of the state. In this model, the actual process is not observable directly (it 

is hidden), but can only be determined through the sequence of observations.  

 The Markov property indicates that given the present the history of the process is not 

important and the future prediction of the state depends only on the present state. However, it 

concerns the hidden process not the observable one. The Markov property does not hold for the 

observable process, but only for the actual process. We assume independence of the inspections 

given the values of the real deterioration process. 

The most important challenge during this work was to derive the formula for the 

likelihood functions of the data that would take into account the parameters of the model. We 

have had two types of the parameters, namely the transition and the misclassification 

parameters. The transition parameters describe the probabilities of moving to the next states 

for the actual deterioration process. The misclassification parameters model the probabilities of 

inspector errors. Both types of parameters create matrices: the transition and misclassification 

matrix, respectively.  

Literature describes a few approaches for fitting the transition and misclassification 

matrix. We decided to implement the method proposed by Jackson in [1]. Although the method 

is not given via recursive formulation, it allows for writing the likelihood function in terms of the 

matrices product and therefore makes the implementation passable. Unfortunately, the 

optimization algorithm to implement the maximum likelihood method for estimating the 

parameters is not a perfect method. It can happen that the solution is only a local maximum. It 

is difficult to judge whether we obtain a global or local solution and there is no algorithm which 

could confirm that. A possible way to verify it is to start the maximization scheme with various 

initial guesses and to make sure that it leads to the same values of the optimal parameters. If 

this is the case, we can suppose that we have indeed found the global maximum. Another 

approach is using global optimization methods (such as genetic algorithms).  

 Taking the inspectors’ subjectivity into consideration allows for the possibilities of seeing 

a better condition for the bridge than it was on the previous inspections. In other words, we 

needed to accept that the condition can improve. However, we excluded transitions that could 

indicate maintenance from the data. Therefore, we assumed that the improvements in the 

conditions are only due to expert-judgment errors. It reflects the way of choosing both 

matrices: the transition and the misclassification matrix. The transition matrix does not allow 

the process to go backward. It only allows a bridge to move one condition forward in one unit of 

time (month). But the choice of the misclassification matrix needed to be adequate. Since we 

had to take into account all possible errors between the observations and the actual states, the 

misclassification matrix had to be fully filled.  
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 We have introduced a few types of misclassification matrices which can describe the 

inspectors’ errors. With the use of the optimization algorithm the optimal one was found, i.e. 

the one with the maximum likelihood value, together with the transition matrix. The 

probabilities of error were higher for the better conditions (from ‘0’ to ‘2’) in the 

misclassification matrix. This means that the inspectors are more likely to rate a condition of a 

bridge as satisfactory and therefore they make more mistakes within this part of the scale.   

Imposing the expected value of the observed state equal to the actual state, a different 

type of misclassification matrix was built, namely the maximum entropy matrix. In this way, we 

obtained the probability distribution for the misclassification errors with maximum entropy given 

a fixed mean (i.e. with the minimum extra information). Also, we built the misclassification 

matrix using the binomial distribution with fixed mean in order to compare those two matrices 

in terms of the amount of additional information that they add. The analysis has shown that 

with such misclassification matrices, the optimal transition parameters became meaningful 

different. In these cases, transitions to the worse states were rather due to the error of the 

inspectors than due to the deterioration progress. The reason for this result was connected with 

the fact that these distributions put higher probabilities of error for the worse observations 

(form ‘3’ to ‘5’) in the misclassification matrix. 

Since, the fully filled misclassification matrix assumed that the inspection error can span 

the whole range, it can be too uncertain. Therefore, other models were also considered, where 

only some of the places in the misclassification matrix were not equal to zero. It was connected 

with removing all transitions from the data which result in zero values for the likelihood 

function. The binomial model with such an incomplete misclassification matrix (‘Misclassification 

matrix 2’) has given quite nice results. All the parameters in this model differed from zero. 

However, the tendency from the previous models was kept, namely the probabilities of error 

stayed high for the better conditions. It indicates that the probability of correctly identifying the 

worst state was almost zero. This fact had a big influence on the further analysis of the time of 

first observing the worst state. We have also considered a model with a misclassification matrix 

which allows the error to be of the difference of one state at the most (‘Misclassification matrix 

1’). This matrix turned out to be close to the one for the perfect inspection. In other words, for 

this case, the optimal parameters indicate that the inspectors are almost perfect experts.  

The misclassification matrix that comes from the maximum entropy method was 

generated according to some reasonable constraints (the mean was known and equal to the 

actual state). However, for this case the probabilities of correctly identifying the worse states 

were getting smaller, which is not the desired tendency. For the optimal binomial model, those 

probabilities were even smaller. It makes those models to be defective. The misclassification 

matrix resulting from the binomial model with a fixed mean seems to be much better in this 

respect. Therefore it is worth to pay attention to this matrix in the future research. 

Furthermore, it does not have to be a fully filled matrix. A partially filled misclassification 

matrix, which is generated according to a binomial distribution with a fixed mean could be also 

a good choice.  

For the various misclassification models, we have illustrated the expectation for both the 

actual state and the observed state for various models. They gave different results, as the 

expected condition involved the probabilities of error. The expectation of the actual states 

converged to the worst state, while the expectation of the observation never reached this level. 

Moreover, the latter expectation was close to the line which indicated the average condition of 

bridges in a particular age from the data. However, it differed depending on the model.  
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Using Bayes’ rule, we were able to calculate the probability of the actual state given the 

observed state. From this probability, we were able to read what the most probable actual state 

of a bridge is when an inspector gives it a particular rating. 

 In the last chapter we have presented the idea of the mean time to reach the worst 

state (first passage time) and its extension to the mean time to observe the worst state (first 

‘observation’ time). They were described in terms of the probability density functions. The 

recursive formula for the density function for perfect inspection is not complicated and can be 

found in the literature. However, the first ‘observation’ time requires an algorithm that is more 

complex. The complexity results mainly from the fact that the sequence of observations does 

not have the Markov property as the hidden process has. Two approaches for this problem were 

presented which give the same results. Furthermore, the probability density functions of the 

first ‘observation’ times were calculated for various inspection intervals. The analysis reveals 

that the intensity of the inspections has a large impact on the mean time to observe a failure. 

The more often the inspections take place the shorter the mean time to observe the worst 

condition is. From the results, it is clear that the mean time to observe the failure is connected 

with the misclassification probability, precisely with the probability of correctly identifying the 

worst state (for the optimal binomial model). The mean time converges to the reciprocal of this 

probability. Therefore the higher this probability is, the shorter the mean time to failure. 

Recommendation for future research: 

In our analysis we assumed both the transition matrix and the misclassification matrix 

to be state-dependent and time-independent (stationary). However, taking the non-stationary 

model, especially the non-stationary misclassification matrix, could improve the results in great 

deal and it would be interesting to make such analysis in future research.  

It will be useful to test the inspectors to have better knowledge how much their 

assessments could differ from the real states. In other words, what is the biggest error they can 

make. Then it would be clearer how to fill the misclassification matrix and whether it must be 

fully filled or not. 

We implemented the likelihood function based on one method proposed by Jackson, [1]. 

The other mentioned models could be implemented and the results compared. 

Since the transitions that could indicate maintenance were removed from the data, the 

model did not take them into account. Including them into the model would be an interesting 

challenge. 



 

 

8 References 

 

[1] Ch. H. Jackson, L. D. Sharples, S. G. Thompson, S. W. Duffy, E. Couto, ‘Multistate Markov 

models for disease progression with classification error’, The  Statistician (2003), 52, Part 2, pp. 

193-209. 

[2] T. Bedford, R. Cooke, ‘Probabilistic risk analysis’, Cambridge University Press, 2001 

[3] M. Kijima, ‘Markov processes for stochastic modelling’, London, Chapman and Hall, 1997 

[4] J. Dickinson Gibbons, S. Chakraborti, ‘Nonparametric statistical inference’, Third edition, 

1992, New York, Dekker, 1992 

[5] M. Skuriat-Olechnowska, ‘Statistical inference and hypothesis testing for Markov chains with 

interval censoring’, Master Theses, TUDelft, 2005 

[6] The website Wolfram Math World: http://mathworld.wolfram.com 

[7] The website of Wikipedia: http://www.wikipedia.org 

[8] L. R. Rabiner, ‘A turtorial on Hidden Markov Models and selected applications in speech 

recognition’, Proceeding of the IEEE, Vol. 77, NO. 2, February 1989. 

[9] O. Cappé, V. Buchoux, E. Moulines, ‘Quasi-Newton method for maximum likelihood 

estimation of Hidden Markov Models’, 1998 IEEE 

[10] S. M. Ross, ‘Introduction to probability models’, 8th edition, San Diego: Academic Press, 

2003  

[11] C. Guihenneuc-Jouyaux, S. Richardson, I.M. Longini, ‘Modelling markers of disease 

progression by a hidden Markov process: application to characterising CD4 cell decline’, 

Biometrics, 56, 733-741, 2000 

[12] G. Churchill, ‘Hidden Markov chains and the analysis of genome structure’, Computers and 

Chemistry, 16(2):107-1115, 1992 

[13] C. H. Jackson, L. D. Sharples, ‘Hidden Markov models for the onset and progression of 

bronchiolitis obliterans syndrome in lung transplant recipients’, Statist. Med., 21, 113-128, 

2002. 

[14] M. Sztul, Internship report on the subjectivity of the bridge inspections in the Netherlands, 

TU Delft 2006  

[15] W. Lafayette, ‘Optimal infrastructure management decisions under uncertainty’, School of 

Civil Engineering, Purdue University, IN 47907, U.S.A., Transpn. Res.-C, Vol. 1, No 1, pp 77-88, 

1993 

[16] M. Jiang, R. B. Corotis, J. H. Ellis, ‘Optimal life-cycle costing with partial observability’, 

Journal of Infrastructure Systems, pp 56-65, June 2000 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendices





July 2006  Hidden Markov Models 

HKV CONSULTANTS R0112.20  A-1

Appendix A: Specific bridges from the data 

We present all the cases from the data that indicate the value zero of the likelihood function, 

when the misclassification matrix is of the first type. 

 

Bridge 

index 
Age of a bridge 

[in months] 

Age of a bridge 

[in months] 

Condition 

state 

Condition 

state 

Year of 

construction 

127 198 213 1 3 1976 

127 213 283 3 0 1976 

410 307 318 2 5 1967 

410 318 325 5 0 1967 

410 325 390 0 3 1967 

410 390 414 3 3 1967 

410 414 454 3 3 1967 

417 251 382 4 3 1970 

417 382 411 3 1 1970 

454 214 302 1 3 1970 

454 302 310 3 5 1970 

454 310 364 5 2 1970 

779 716 727 4 1 1933 

779 727 764 1 3 1933 

800 234 262 4 1 1973 

848 292 380 5 2 1966 

856 665 694 4 3 1937 

856 694 753 3 1 1937 

932 437 481 5 1 1956 

939 0 53 0 5 1988 

939 53 56 5 4 1988 

939 56 82 4 2 1988 

1401 253 268 4 1 1970 

1401 268 315 1 2 1970 

1424 149 215 5 3 1980 

1424 215 294 3 2 1980 

1449 616 666 3 3 1939 

1449 666 719 3 0 1939 

1622 358 419 2 4 1957 

1622 419 459 4 4 1957 

1622 459 515 4 3 1957 

1622 515 546 3 1 1957 

1698 87 119 5 2 1985 

1765 563 601 4 1 1940 

1765 601 659 1 3 1940 

1765 659 713 3 2 1940 

1766 556 589 5 2 1941 

1766 589 642 2 2 1941 

1766 642 701 2 3 1941 

1808 239 279 1 5 1970 
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1808 279 390 5 1 1970 

1809 239 279 1 4 1970 

1809 279 390 4 1 1970 

1901 446 453 3 0 1955 

1901 453 558 0 3 1955 

2029 220 229 1 1 1969 

2029 229 291 1 4 1969 

2029 291 410 4 1 1969 

2052 279 339 2 5 1965 

2052 339 460 5 2 1965 

2131 297 353 2 5 1963 

2131 353 476 5 2 1963 

2132 297 353 2 5 1963 

2132 353 476 5 2 1963 

2147 250 305 1 5 1967 

2147 305 428 5 2 1967 

2198 198 255 1 5 1972 

2198 255 368 5 2 1972 

2240 381 395 3 3 1961 

2240 395 432 3 0 1961 

2257 346 357 3 0 1963 

2260 238 249 3 0 1972 

2260 249 369 0 2 1972 

2262 658 669 3 0 1937 

2262 669 789 0 3 1937 

2285 395 405 3 0 1959 

2285 405 460 0 3 1959 

Table A-1: Specific structures from the data 
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Appendix B: Proof of the formula for the 
likelihood (4-3) 

We shall prove that the likelihood of the form (4-2): 

===== ),...,,Pr()( 2211 m
i
m

ii
i jOjOjOL θ  

),...,Pr(),...,,...,Pr( 111111 m
i
m

i
m

i
m

i
m

i
m

i lXlXlXlXjOjO ==⋅===== ∑  

(where the sum is taken over all possible paths of the actual states ml ), can be expressed by 

the formula (4-3): 
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Proof: 

To make the formulas easier to write down, we will shorten the notation as follows: 

),...,(),...,( 111 mm
i
m

i OOjOjO ≡==  and  ),...,(),...,( 111 mm
i
m

i XXlXlX ≡== . 

 
We will start with the equation (4-3) and will finish with the form corresponding to the equation 

(4-4). Using the necessary assumptions, we have: 
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Furthermore: 
 

)Pr(....)Pr(),...,Pr(....),...,Pr(),...,,...,Pr( 2212112 XOXOXXOXXOXXOO mmmmmmm ⋅⋅=⋅⋅=  

 
Therefore, to finish the proof we need to show that: 
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Now, using the Markov property we get the final result. 
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Appendix C: The extreme cases from the new 
data 

Below, we present some results of ratings the bridges from the modified data. These 

cases indicate how fast the bridges obtain the serious label. 

Bridge 

index 

Age of a bridge 

[in months] 

Age of a bridge 

[in months] 

Condition 

state 

Condition 

state 

Year of 

construction 

65 0 16 0 3 1997 

66 0 16 0 3 1997 

120 0 26 0 4 1990 

128 0 11 0 1 1998 

135 0 8 0 1 1999 

144 0 9 0 1 1997 

147 0 9 0 1 1997 

174 0 14 0 2 1999 

192 0 10 0 1 2002 

193 0 13 0 1 2002 

194 0 11 0 3 1994 

202 0 19 0 3 2000 

211 0 15 0 4 2001 

212 0 15 0 2 2001 

213 0 15 0 3 2001 

214 0 15 0 4 2001 

215 0 15 0 2 2001 

216 0 3 0 3 2001 

217 0 15 0 4 2001 

218 0 15 0 3 2001 

219 0 7 0 2 2003 

220 0 7 0 1 2003 

221 0 7 0 4 2003 

222 0 7 0 3 2003 

284 0 42 0 5 1990 

318 0 4 0 1 1995 

323 0 14 0 3 1997 

333 0 14 0 4 1997 

362 0 8 0 3 1997 

391 0 7 0 4 1996 

452 0 5 0 3 1989 

485 0 8 0 2 1997 

490 0 9 0 2 1997 

491 0 9 0 2 1997 

557 0 4 0 4 1990 

566 0 10 0 2 1999 

591 0 6 0 2 1998 

593 0 11 0 3 1997 

619 0 6 0 3 1998 

620 0 7 0 3 1996 
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751 0 92 0 0 1990 

768 0 10 0 3 1999 

776 0 15 0 5 2003 

965 0 4 0 3 1994 

1001 0 19 0 3 1989 

1080 0 14 0 3 1995 

1297 0 17 0 3 2003 

1330 0 4 0 3 1999 

1350 0 12 0 2 1998 

1434 0 10 0 3 1993 

1440 214 243 2 0 1971 

1544 0 9 0 4 2000 

1619 0 1 0 2 1995 

1620 0 1 0 3 1995 

1621 0 1 0 3 1995 

1622 0 9 0 2 1995 

Table C-1: Extreme conditions from the new data 

Here, we would like to also present a figure with the average condition of bridges in 

particular age from this data: 

 
Figure C-1: Average condition for the new data 
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Appendix D: Proof of the recursive formula 
(6-8), p.51 

The proof is mainly the same as in the internship report (Appendix, [14]). The difference lies in 

the fact that we have now the sequence of observations not equal j, and the additional not 

complete sum over all states not equal to j needs to be involved into the formula. 

We shall show that the conditional probability of the form: 

(6-7)  ),,...,Pr(),( 011 iXjOjOkXjk sss =≠≠== −φ  

can be determined via the recursive formula: 

(6-8)  
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Proof: 

Using the law of total probability, the previous specified assumptions and the rule of the 

conditional probability, i.e.: 
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The last probability in the numerator is simply our ),(1 jus−φ  in the step s-1. Moreover, the 

probability: )Pr( 11 uXjO ss =≠ −−  can be written in terms of the sum over all possible states 

not equal j. And since we can interchange the sums we get: 

 ∑∑
≠∀ =

−−−−
−

− ⋅====
=≠≠
=≠≠

=
jl u

sssss
s

s
s juuXkXuXlO

iXjOjO
iXjOjO

jk
5

0
1111

011

012 ),()Pr()Pr(
),,...,Pr(
),,...,Pr(

),( φφ  

To finish the proof we need to show that the reciprocal of 
),,...,Pr(
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011
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s
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above formula is equal to the denominator of equation (6-8). Indeed we have: 

==≠≠≠ −− ),,....,,Pr( 0121 iXjOjOjO ss  

),,....,Pr(),,....,Pr( 0120121 iXjOjOiXjOjOjO sss =≠≠⋅=≠≠≠= −−−  

which reduces to ),,....,Pr( 0121 iXjOjOjO ss =≠≠≠ −− after dividing by the denominator. 

As it was shown on page 47 in formula (6-6), this is the denominator of (6-8), which ends the 

proof. 
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Appendix E: First ‘observation’ time  

Model with ‘Misclassification matrix 1’ 
 

 
Figure E-1: First ‘observation’ time, inspections carried out each 12 months, *

05f  

 
Figure E-2: First ‘observation time, inspection carried out each 24 month, *

05f  
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Figure E-3: First ‘observation’ time, inspection carried out each 36 month, *

05f  

 

Figure E-4: First ‘observation’ time, inspection carried out each 48 month, *
05f  
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Figure E-5: First ‘observation’ time, inspection carried out each 4800 month, *

05f  

 

Model with ‘Misclassification matrix 2’ 

 

Figure E-6: First ‘observation’ time, inspection carried out each 12 month, *
05f  
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Figure E-7: First ‘observation’ time, inspection carried out each 24 month, *
05f  

 

Figure E-8: First ‘observation’ time, inspection carried out each 36 month, *
05f  
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Figure E-9: First ‘observation’ time, inspection carried out each 48 month, *

05f  

 

Figure E-10: First ‘observation’ time, inspection carried out each 120 month, *
05f  


