Client:
Civil Engineering Division of Rijkswaterstraat

Modelling uncertainty in inspections of highway bridges in the Netherlands using Hidden Markov Models

Author: Magdalena Sztul
Delft University of Technology

Members of the committee:

Chairperson of the Committee: Prof. Dr. Ir. Jan M. van Noortwijk

Committee:

Prof. Dr. Ir. Jan M. van Noortwijk

Dr. Hans van der Weide

Ir. Maarten-Jan Kallen

Ir. Leo Klatter

Prof. Dr hab. Jolanta Misiewicz

Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science HKV Consultants

Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science

HKV Consultants

Civil Engineering Division of Rijkswaterstaat University of Zielona Góra, Poland

Acknowledgments

I am very grateful to Maarten-Jan Kallen for the introduction into the subject and the entire help during this work. I am also really thankful to Jan van Noortwijk for the supervision of my thesis, invaluable advices and his assistance during my research. I would like to thank HKV Consultants for giving me the opportunity to write the thesis within the company and to gain useful experience.

Many acknowledgments to the Delft University of Technology, to Roger Cooke and Dorota Kurowicka and also to Jolanta Misiewicz from University of Zielona Góra for giving me the chance to be here, study and learn life.

I am grateful to my friends: Gosia and Marcin for their friendship and permanent support. There are no words to express my feelings for you. I will remember this forever!

Also many thanks to Sandra, Sandro, Veronica, Weronika, Beata, Agnieszka, Patrycja and all my colleagues for being here together and for every kindness.

I would also like to thank my family and friends, especially the one person who has supported me all the time...

Abstract

In the Netherlands, the inspections of bridges are carried out periodically and their results are registered in an electronic database. On the basis of visual inspections, bridges are rated on a discrete scale ranging from a perfect condition to a very bad condition (failure). Among others, the inspections supply information about the transitions between the bridges' conditions. Modelling a bridge deterioration process is an important issue in order to gain better knowledge about the remaining time to failure. The Markovian approach is in our interest as the condition of the bridges can be expressed by discrete numbers. However a standard Markov model requires the states to be known without uncertainty. We believe that the results of inspections can be prone to a bias due to inspectors' subjectivity. Therefore, we consider a hidden Markov model. This model describes the deterioration process which is assumed to be Markov with unknown parameters. The hidden parameters (actual states) must be determined from the observable parameters (observations from the inspections).

To determine the optimal model parameters, the likelihood function of the data was derived and the maximum likelihood estimator was used. The research presents different approaches for determining the inspector errors and their results are compared.

Contents

Samenvatting 1
1 Introduction 5
1.1 Applications of the Hidden Markov Model in the literature 5
1.2 Bridges in the Netherlands 6
1.2.1 Bridge data 6
1.2.2 Visual inspection of the bridges 7
1.2.3 Explanation of the choice for a hidden Markov model 8
1.3 The goal of the research. 9
2 Markov and Hidden Markov Models 11
2.1 A brief introduction to Markov Chains. 11
2.2 An extension of Markov Chains to the Hidden Markov Model 12
2.3 Assumptions 13
3 Specification of misclassification error 15
3.1 Finding a proper misclassification matrix 15
3.2 Binomial distribution for the misclassification parameters 17
3.3 The maximum entropy principle 18
3.3.1 Lagrange multipliers 19
3.3.2 Newton-Raphson method 20
3.3.3 Binomial distribution with fixed mean 22
3.4 The relative information principle 24
4 Estimation of model parameters 27
4.1 The Maximum Likelihood Estimation (MLE) 27
4.2 Likelihood function for different models 33
4.2.1 Likelihood function for different initial vectors 35
5 Expected actual and observed condition 37
5.1 The expected actual state: $\mathrm{E}(\mathrm{X}(\mathrm{t}))$ 37
5.2 The expected observation: $\mathrm{E}(\mathrm{O}(\mathrm{t})$) 40
5.3 The probability of the actual state given the observation 43
6 First time to reach a failure 49
6.1 Perfect inspections. 49
6.2 Imperfect inspections 50
7 Conclusions 63
8 References A-0
Appendix A: Specific bridges from the data A-1
Appendix B: Proof of the formula for the likelihood (4-3) B-1
Appendix C: The extreme cases from the new data C-1
Appendix D: Proof of the recursive formula (6-8), p.51 D-1
Appendix E: First 'observation' time E-1

List of tables

Table 1-1: A part of the data7
Table 1-2: Condition rating scheme 8
Table 3-1: The discrete uniform distribution and its entropy 18
Table 3-2: The MaxEntr distribution and its entropy value 22
Table 3-3: The binomial distribution with fixed mean and its entropy value 23
Table 3-4: Juxtaposition of the values of the entropy for both distributions 23
Table 3-5: The relative information of binomial with respect to Max.Entr. distribution 24
Table 3-6: The relative information of binomial with respect to uniform distribution 25
Table 3-7: The relative information of Max.Entr with respect to uniform distribution 25
Table 4-1: The value of the entropy for the optimal binomial model 33
Table 4-2: The values of the log-likelihood functions 34
Table 4-3: The values of the log-likelihood functions 35
Table 4-4: The value of the likelihood for the different initial vector 36
Table 5-1: Probability of an actual state given the observation, $\mathrm{t}=12$ months 44
Table 5-2: Probability of an actual state given the observation, $t=24$ months 45
Table 5-3: Probability of an actual state given the observation, $t=36$ months 46
Table 5-4: Probability of an actual state given the observation, $t=120$ months 47
Table 8-1: Specific structures from the data A-2
Table 8-2: Extreme conditions from the new data C-2

List of figures

Figure 1-1: The amount of particular conditions in the data 8
Figure 3-1: Condition rating for the bridge with index 417, permissible error of one state 16
Figure 3-2: Condition rating for the bridge with index 417, permissible error of two states 16
Figure 4-1: Log-likelihood function with 'Misclassification matrix 1 ', $p \in[0: 1]$ 29
Figure 4-2: Log-likelihood function with 'Misclassification matrix 1 ', $p \in[0: 0.035]$ 30
Figure 5-1: The expectation of actual state as a function of age 38
Figure 5-2: The expectation of an actual state as a function of age 38
Figure 5-3: The expectation of an actual state for the new data 39
Figure 5-4: The expected observation as a function of age, binomial model 40
Figure 5-5: The expected observation as a function of age, uniform model 41
Figure 5-6: The expected observation as a function of age, Max.Entr and fixed binomial model 42
Figure 5-7: The expected observation as a function of age, models with misclassification matrices: ' 1 ' and ' 2 ' 42
Figure 5-8: Probability of the actual state given the observation, $\mathrm{t}=12$ months 44
Figure 5-9: Probability of the actual state given the observation, $t=24$ months 45
Figure 5-10: Probability of the actual state given the observation, $t=48$ months 46
Figure 5-11: Probability of the actual state given the observation, $t=120$ months 47
Figure 6-1: First passage time for a forward process, f_{05} 50
Figure 6-2: First 'observation' time for optimal binomial model, inspections carried out each year, f_{05}^{*} 53
Figure 6-3: First 'observation' time for optimal binomial model, inspections carried out each 24 months, f_{05}^{*} 54
Figure 6-4: First 'observation' time for optimal binomial model, inspections carried out each 36 months, f_{05}^{*}. 54
Figure 6-5: First 'observation' time for optimal binomial model, inspections carried out each 48 months, f_{05}^{*} * 55
Figure 6-6: First 'observation' time for optimal binomial model, inspections carried out each 120 months, f_{05}^{*}. 55
Figure 6-7: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each 12 months, f_{03}^{*} 56
Figure 6-8: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each 24 months, f_{03}^{*} 57
Figure 6-9: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each 36 months, f_{03}^{*} 57
Figure 6-10: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each 48 months, f_{03}^{*} 58
Figure 6-11: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each 120 months, f_{03}^{*} 58
Figure 6-12: First 'observation' time for Max.Entr model, inspections carried out each 12 months, f_{05}^{*} 59
Figure 6-13: First 'observation' time for Max.Entr model, inspections carried out each 24 months, f_{05}^{*} 59
Figure 6-14: First 'observation' time for Max. Entr model, inspections carried out each 36 months, f_{05}^{*} 60
Figure 6-15: First 'observation' time for Max. Entr model, inspections carried out each 48 months, f_{05}^{*} 60
Figure 6-16: First 'observation' time for Max. Entr model, inspections carried out each 120 months, f_{05}^{*} 61
Figure 8-1: Average condition for the new data. C-2
Figure 8-2: First 'observation' time, inspections carried out each 12 months, f_{0}^{*} E-1
Figure 8-3: First 'observation time, inspection carried out each 24 month, f_{05}^{*} E-1
Figure 8-4: First 'observation' time, inspection carried out each 36 month, f_{05}^{*} E-2
Figure 8-5: First 'observation' time, inspection carried out each 48 month, f_{05} E-2
Figure 8-6: First 'observation' time, inspection carried out each 4800 month, f_{05}^{*} E-3
Figure 8-7: First 'observation' time, inspection carried out each 12 month, f_{05}^{*} E-3
Figure 8-8: First 'observation' time, inspection carried out each 24 month, f_{05}^{*} E-4
Figure 8-9: First 'observation' time, inspection carried out each 36 month, f_{05}^{*} E-4
Figure 8-10: First 'observation' time, inspection carried out each 48 month, f_{05}^{*} E-5
Figure 8-11: First 'observation' time, inspection carried out each 120 month, f_{05}^{*} E-5

Samenvatting

Dit rapport is het resultaat van het afstudeerproject van Magda Sztul, studente Technische Wiskunde aan de faculteit Elektrotechniek, Wiskunde en Informatica (EWI) van de Technische Universiteit Delft. Het project is uitgevoerd in de periode van januari tot juli 2006 bij HKV Lun in water te Lelystad onder begeleiding van ir. M.J. Kallen en prof. dr. ir. J.M. van Noortwijk.

Introductie

Bruggen en viaducten die onderdeel uitmaken van de rijkswegen in Nederland worden beheerd door de Bouwdienst (Rijkswaterstaat, Ministerie van Verkeer en Waterstaat). Om de kwaliteit van deze belangrijke objecten te waarborgen, worden ze periodiek geïnspecteerd. Dit zijn visuele inspecties die op een doorlopende basis over het hele netwerk van bruggen en viaducten worden uitgevoerd. Tijdens de inspecties worden verschillende onderdelen van een brug nauwkeurig bekeken en kent de inspecteur aan elk onderdeel een toestandsindicator toe. Er zijn zeven discrete toestanden gedefinieerd en deze zijn weergegeven in Tabel 0-1.

Tabel 0-1: toestandsindicatoren in DISK

Indicator	Staat van onderhoud van kunstwerkdeel
$\mathbf{0}$	in prima staat
$\mathbf{1}$	in zeer goede staat
$\mathbf{2}$	in goede staat
$\mathbf{4}$	in redelijke staat
$\mathbf{5}$	in slechte staat

De gegevens van elke inspectie worden geregistreerd in het Data Informatie Systeem Kunstwerken (DISK). Dit systeem is al sinds december 1985 in gebruik en bevat derhalve bijna 20 jaar aan gegevens.

Omdat de interpretatie van de toestanden in Tabel 0-1 kunnen verschillen van persoon tot persoon, en omdat de interpretatie van de ernst van een schade en de algemene toestand van een brug ook subjectief zijn, is het mogelijk dat de inspecties onzekerheid (in de vorm van variabiliteit) toevoegen aan de gegevens. Het algemene doel van het afstudeeronderzoek is om een model toe te passen op de gegevens, waarin rekening gehouden wordt met de onzekerheid in de inspecties.

Omdat de veroudering van bruggen gemodelleerd wordt met behulp van Markovketens, wordt in dit onderzoek gebruik gemaakt van zogenaamde 'hidden Markov' modellen. Deze vormen een uitbreiding van de gewone Markovketens waarin ook de kans op een verkeerde classificatie door de inspecteurs wordt meegenomen. Er wordt dus aangenomen dat een brug verouderd volgens een Markovketen en dat de inspecteurs de daadwerkelijke toestand zo goed
mogelijk proberen te bepalen. De echte toestand van een brug is in dit model als het ware 'verborgen' voor de beheerder.

De vraag van de beheerder, in dit geval de Bouwdienst van Rijkswaterstaat, is of een dergelijk model geschikt is voor toepassing op de inspectiegegevens van bruggen in Nederland. Zo ja, dan is de vraag in welke vorm en onder welke aannames dit het geval is. Een bijkomend doel van het onderzoek is om een gevoel te krijgen van het gebruik van een dergelijk model en om een indruk te krijgen van de inspanning die nodig is om een dergelijk model te implementeren.

Model

Voor het meenemen van variabiliteit in inspectiegegevens, wordt gebruik gemaakt van een zogenaamd 'hidden Markov' model. Dit soort modellen zijn al in zeer beperkte mate gebruikt in de context van brugbeheer, maar de toepassing ervan vindt men vooral terug in de theorie van spraakherkenning en in medische toepassingen zoals het modelleren van ziekteverloop, het bepalen van DNA structuren, enz.

We nemen aan dat de toestand van een brug d.m.v. een Markovketen gemodelleerd wordt. Een Markovketen is een stochastisch proces $\left\{X_{k}, k=1,2,3, ..\right\}$ met de Markoveigenschap en die, in dit geval, een eindig aantal discrete toestanden kan aannemen:

$$
X_{k} \in\{0,1,2, \ldots, 5\}, \forall k
$$

De Markoveigenschap zegt ruwweg dat, gegeven de huidige toestand, de kans om een bepaalde toestand in de toekomst aan te nemen niet afhangt van de toestand in het verleden. De voortgang van een Markovketen wordt bepaald door de transitiekans

$$
P_{i j}(k)=\operatorname{Pr}\left\{X_{k+1}=j \mid X_{k}=i\right\}
$$

waarbij aangenomen wordt dat het proces stationair is. In een stationair proces hangen de transitiekansen niet af van de leeftijd van het proces. De kans om op een bepaald tijdstip een transitie naar een (andere) toestand te maken hangt dus niet af van hoe lang het stochastische proces reeds loopt.

Het hidden Markovmodel breidt de gewone Markovketen uit, door de kans op een meetfout mee te nemen. Stel O_{k} is een observatie op tijdstip t_{k} en X_{k} is de echte toestand op datzelfde tijdstip, dan is de kans op een verkeerde classificatie gedefinieerd door

$$
e_{i j}=\operatorname{Pr}\left\{O_{k}=j \mid X_{k}=i\right\}
$$

Dit is dus de kans dat de inspecteur aangeeft dat het object zich in toestand j bevindt, gegeven dat de echte toestand i is.

Zowel de transitiekansen als de kansen op een meetfout kunnen verzameld worden in een matrix. Door het gebruik van een maximum likelihood schatting kunnen dan de transitiekansen en de kansen op een meetfout bepaald worden. In dit verslag wordt ingegaan op verschillende keuzes voor de (vorm van de) matrix $E=\left\|e_{i j}\right\|$ en welke gevolgen deze keuze heeft voor de verwachte (geobserveerde) toestand. Een voorbeeld hiervan is het gebruik van een maximum entropy kansverdeling voor $e_{i j}, j=0,1, \ldots, 5$. De maximum entropy methode laat ons toe om een kansverdeling te bepalen met een gegeven verwachting zonder meer informatie (of ongewenste subjectiviteit) hieraan toe te voegen. In dit geval is aangenomen dat de
inspecteurs naar verwachting de echte toestand correct observeren. De maximum entropy methode resulteert in een volledig gevulde matrix met kansen op meetfouten, hetgeen wil zeggen dat er bijv. een kans is dat inspecteurs een toestand 0 aangeven i.p.v. de echte toestand 5. Het is ook mogelijk om slechts een gedeeltelijk gevulde kansenmatrix te kiezen, zodat de meetfout bijv. niet meer dan één of twee toestanden kan afwijken. Voor elke keuze van de E matrix is het mogelijk deze van te voren vast te leggen (bijv. door de keuze voor een maximum entropy methode) of deze te schatten aan de hand van de inspectiegegevens. In het eerste geval nemen we een meetfout aan en in het tweede geval proberen we uit de gegevens op te maken welke de meest waarschijnlijke meetfout is.

Als laatste is ook gekeken naar de tijd van de eerste observatie van de slechtste toestand (namelijk toestand 5) indien we aannemen dat elk object vanuit de perfecte toestand 0 begint. Deze tijd is onzeker en is vergelijkbaar met de zogenaamde 'first passage time' voor de gewone Markovketen. De tijd van eerste passage door een toestand van een Markovproces is het tijdstip waarop het stochastische proces de desbetreffende toestand de eerste keer aanneemt. Deze tijd is uiteraard onzeker vanwege de onzekerheid in het verloop van het proces zelf. Vanwege de extra onzekerheid in de observaties, is de 'first observation time' moeilijker te bepalen en hangt deze af van de tijd tussen de inspecties.

Resultaten en aanbevelingen

De resultaten van het onderzoek worden toegelicht aan de hand van de volgende onderzoeksvragen:

1. hoe kan de variabiliteit (of onzekerheid) in de observaties van inspecteurs meegenomen worden in het verouderingsmodel?
Omdat de veroudering gemodelleerd wordt d.m.v. een Markovketen, is de keuze voor het gebruik van een zogenaamd 'hidden Markov' model een natuurlijke keuze. Deze uitbreiding laat ons toe een kansverdeling over de meetfout van de toestand aan te nemen. Vanuit een wiskundig oogpunt is het een elegant model en gedraagt het zich zoals men zou verwachten. Vanuit een praktisch oogpunt, blijkt het lastig om de onzekerheid in de observaties duidelijk te scheiden van de onzekerheid in de veroudering. Bovendien hangt het eindresultaat sterk af van de keuze voor de foutmatrix E.
2. wat is de beste keuze voor de waarde van de parameters in het model?

Door het gebruik van de methode van maximum likelihood schatting, kunnen de parameters in het model zodanig bepaald worden dat de waarschijnlijkheid dat de gegevens gegenereerd zouden zijn door het model het hoogst is. We kiezen als het ware de waarde van de parameters zodanig dat de kans op de gegevens het grootst is.
3. hoe bepalen we de likelihood functie die gebruikt wordt voor het schatten van de parameters?
Voor de maximum likelihood methode is het noodzakelijk om de likelihood functie uit te rekenen en deze te maximaliseren. Drie verschillende algoritmes voor het bepalen van de waarschijnlijkheid van de gegevens worden in hoofdstuk 4 gepresenteerd.
4. hoe bepalen we de verwachting van de toestand als functie van de leeftijd van een brug?
Het verwachte toestandsverloop is interessante informatie die uit het toegepaste model voort vloeit. In hoofdstuk 5 wordt deze verwachting voor verschillende E matrices geanalyseerd en wordt ook gekeken naar het verschil tussen de verwachting van de echte toestand en de verwachting van de geobserveerde toestand.
5. hoe berekenen we de kans op een echte toestand, gegeven de observatie?

Naast het verloop van de verwachte toestand, zijn we ook geïnteresseerd in de echte toestand van een object gegeven de observatie van een inspecteur. In hoofdstuk 5 wordt gedemonstreerd hoe deze kans afhangt van de leeftijd van het object.
6. hoe leiden we een formule af voor het berekenen van de eerste tijd tot observatie van de slechtste toestand en hoe hangt deze onzekere tijd af van de frequentie van de inspecties?
Het bepalen van de kansverdeling van de tijd tot de eerste observatie van een toestand heeft veel weg van het bepalen van de kansverdeling van de zogenaamde 'first passage time' voor Markovprocessen. Door het gebruik van extra onzekerheid over de observaties is de implementatie echter een stuk moeilijker. Hoofdstuk 6 gaat in op twee manieren om deze kansverdeling te bepalen. Een belangrijk feit is dat deze kansverdeling afhankelijk is van de frequentie van de inspecties. Een observatie kan immers alleen gemaakt worden tijdens een inspectie. Het blijkt dat de verwachte tijd tot de eerste observatie van toestand 5 groter wordt naarmate het inspectie interval vergroot wordt. In de praktijk is dit natuurlijk niet logisch, omdat minder inspecteren zou resulteren in een langere levensduur van het object. Wiskundig gezien is het model echter correct, omdat er meerdere inspecties nodig zijn om de laatste toestand te observeren vanwege de meetfout.

De volgende aanbevelingen worden gedaan:

- in dit onderzoek zijn zowel de transitiekansen als de kansen op meetfouten stationair aangenomen. D.w.z. dat deze onafhankelijk zijn van de leeftijd van het object, of van de tijd dat ze in een bepaalde toestand verbracht hebben. De aanbeveling is om met name de kansen op meetfouten tijdsafhankelijk te maken, zodat bijv. de kans op het verkeerd observeren van de laatste en slechtste toestand steeds kleiner wordt naarmate het object ouder wordt.
- Het is aanbevolen om de variabiliteit in de observaties van inspecteurs te testen, bijvoorbeeld d.m.v. een proefopzet waarbij verschillende inspecteurs gevraagd wordt een bepaald object te classificeren. Interessant zou zijn om na te gaan wat de grootste fout is die gemaakt wordt door één van de inspecteurs. De informatie uit een dergelijke toets kan ondersteuning bieden voor het bepalen van de fouten kansmatrix E.
- Het uitrekenen van de likelihood functie is op slechts een enkele manier gedaan, terwijl er nog tenminste twee andere methoden hiervoor bekend zijn. De robuustheid en de efficiëntie van deze twee andere methoden zou vergeleken kunnen worden met de in dit verslag toegepaste methode.
- Aangezien onderhoudsacties uit de gegevens zijn gehaald, houdt het hier gepresenteerde model geen rekening met onderhoud. Het is een uitdaging om deze wel mee te nemen.

1 Introduction

Abstract

The Netherlands Ministry of Transport, Public Works and Water Management is responsible for the road network in the country. Because of the fact that bridges are a part of that, it involves also a need to care about them. The bridge maintenance actions are costly activities, so the minimization of the costs is of highest interest, together with the need to ensure the safety for the road users. Since 1985, The Civil Engineering Division ('Bouwdienst') of Rijkswaterstaat, which is a part of the ministry, stores the results from the inspections in electronic database called 'DISK'. Among others, it supplies information about the transitions between the bridges' conditions, which is the most important information for our current analysis.

Since structures like bridges deteriorate with time, this process is connected with some randomness, for instance due to environmental factors or difficulty in the precise prediction of the traffic intensity. Therefore, the deterioration can best be modelled using stochastic processes. One of such processes is a Markov chain. Markovian models are widely applicable in describing dynamic processes. However, the standard Markovian processes are based on the assumption that the actual state of the system is known without uncertainty. Since the inspections of bridges are carried out visually, it is important to realise that they do not yield perfect estimates of the real conditions. The estimates can be prone to a bias due to inspectors' subjectivity. Therefore, a modification of the Markov process is necessary in order to take into consideration this possible error due to the inspectors' subjectivity.

The thesis presents the idea of applying the Hidden Markov Model to the bridge inspections in the Netherlands. This model allows considering the results of inspections as observations that hide the information about the real states. Hence, it is suitable for our analysis. The standard Markov process is described by the transition probabilities between all possible states which create the transition matrix. The extension of the Markov model to the Hidden Markov model adds additional parameters to the problem, namely all the probabilities that describe an error between the real state and the given assessment of the state (observation).

The work is conducted under the supervision of Delft University of Technology and HKV Consultants, and with the cooperation of The Civil Engineering Division of Rijkswaterstraat. The Civil Engineering Division provided the data and HKV Consultants the precious advices related with the research direction.

1.1 Applications of the Hidden Markov Model in the literature

Neither the theory of Hidden Markov models (HMM's) nor their application is new. They are widely used in many science disciplines like for instance medicine, computer science and engineering. Hidden Markov Models were first described by Leonard E. Baum in the late 1960s in the series of statistical papers. One of their first applications was speech recognition in the mid-1970s. Later on, in the 1980s they start to be omnipresent in many areas, for instance in the bioinformatics field.

An example of the application of the HMM's in speech recognition is presented for in [8]. Real-word processes produce observable outcomes called signals. The signal can be often corrupted from other signal sources. Thanks to the HMM, it is possible to optimally remove the
noise from the system. Also, the HMMs provide necessary statistical characteristics of such signals.

Medicine is using HMM in areas as: genome [11], [12], or pneumology [13] and many others. However, the continuous HMM are mostly more suitable for those cases.

Exemplary application of the HMM for disease progression was presented by Jackson, [1]. An early detection of a disease has essential influence on the successive treatment. Therefore, systematic screening of a population can result in a meaningful reduction of the mortality from a disease. However the screening process can often be prone to a bias. Then the actual Markov disease process is not observed directly, but it is hidden inside the realizations. The diagnosis error is then measured by the misclassification probabilities, i.e. the probabilities of the screening results given the true states.

The application of the HMM is also not new in bridge management policy. The model is referred as partially observable Markov decision processes in many sources, like in [16] and [15]. In the last mentioned document, an error resulting from the uncertainty of measurements and forecasting in assessments of the highway pavement's conditions is considered, and the methodology for maintenance activity selection is derived. The model includes the maintenance actions after each inspection (which is assumed to be carried out at the beginning of every year). Therefore, it complicates the regular Hidden Markov Model to a higher extent. It is assumed that a decision maker observes outputs from the measurements. Those outputs are related to the actual condition of the system only probabilistically, hence they are not known with certainty. At the beginning of the planning horizon, the decision maker can evaluate maintenance policies for the whole horizon. He or she knows at this moment all the history of the measured states up to this time and the history of all the decisions made up to the previous action. However, as the uncertainty is introduced to the system, it affects the choice of the action since a measurement error can lead to the wrong activity. In the aftermath of this wrong decision the total lifecycle costs could be higher if the correct decision required less costs.

1.2 Bridges in the Netherlands

In the Netherlands, the road network is highly developed. It is easy to see with the naked eye that good quality roads can lead drivers to every place. However, a lot of the roads are situated on concrete viaducts and bridges. It is sometimes the only choice to avoid obstacles like other roads, railways or rivers. The term 'bridge' refers mostly to the structure built over the 'wet' obstruction while 'viaduct' is called every structure above 'dry' obstacles like highways and railways. In this work both kind of concrete structures are considered, but to shorten the notation one common name 'bridge' will be used further on.

Most of the concrete bridges in the country are getting old, as they are about 40 years or even more, and soon they will require serious renovation. Such structures can endanger peoples' safety, if they are not treated with proper attention. They must be inspected regularly and a maintenance action should be initiated as soon as a condition of a bridge exceeds the failure level. For this reason, estimation of the deterioration rate and the failure time, as precise as possible, is of great interest.

1.2.1 Bridge data

In the Netherlands, the information about the bridges is registered in the electronic database called 'DISK'. The database is a huge source of information, not only about the current
conditions but also about the location of the bridges, their age, history of inspections, etc. For this research we do not need the whole database, which has a really complicated structure. We will use only the data of which a part is presented below.

Index	Age of a bridge [in months]	Age of a bridge [in months]	Condition state	Condition state	Year of construction
411	307	419	2	3	1967
412	294	406	1	3	1968
413	275	407	3	2	1968
414	275	407	3	3	1968
415	273	296	3	3	1970
415	296	354	3	4	1970
415	354	378	4	4	1970
415	378	418	4	3	1970
416	251	382	3	4	1970
416	382	411	4	3	1970
417	251	382	4	3	1970
417	382	411	3	1	1970
418	751	850	3	2	1926
419	751	850	3	2	1926
420	751	850	4	3	1926
421	222	317	3	2	1970
422	223	317	3	2	1970

Table 1-1: A part of the data.

The meaning of the above table is as follows. The first column contains the index of a particular bridge. The second indicates the age of a respective bridge [in months] during the preceding inspection and the third gives the age of the bridge during the next inspection. The fourth column is associated with the second column as it contains the condition state of a bridge which was assigned during the preceding inspection. The fifth column is associated with the third column in an analogous way. The last column contains the year of the construction for each structure.

In general our data contains 3750 transitions between condition states for 2333 individual structures. We will differentiate the bridges built before and after 1985, when this electronic database was built. The reason for this is that we assumed that we know all the history of the bridges built after 1985, whereas for the bridges built before this time this is not the case.

1.2.2 Visual inspection of the bridges

In the Netherlands, inspections of bridges are carried out periodically. Each time inspectors inspect a bridge carefully and give a rate which, in their opinion, best reflects the actual state of a structure. The inspectors, however, do not have any additional tools which could help them to asses the condition of the bridges, except their eyes and experience, as the inspections are only visual. Therefore it is difficult to assume that the experts' rates represent the actual state of the structures without any error and the subjectivity of the inspectors should be taken into account.

Each time when an expert rates a bridge he or she assigns a number to it from a discrete scale from 0 to 6 where ' 0 ' indicates a perfect condition and ' 6 ' means that it is in an extremely bad condition (failure). The table with a description of all the possible conditions is presented below.

condition	description
0	Perfect
1	Very good
2	Good
3	Reasonable
4	Mediocre
5	Bad
6	Very bad

Table 1-2: Condition rating scheme

One remark need to be made here. As the conditions ' 5 ' and ' 6 ' occur rarely in the data, we decided to merge these two states together. So in fact we will be working with a discrete scale of range 6: from 0 to 5 .

Figure 1-1 presents the amount of particular conditions in the data (with conditions '5' and ' 6 ' together):

Figure 1-1: The amount of particular conditions in the data

1.2.3 Explanation of the choice for a hidden Markov model

The deterioration model used in this analysis is a hidden Markov model. This model was chosen because the condition of the bridges can be described with the help of a discrete scale from 0 to 5 . Furthermore we use a hidden Markov, not simply a Markov process, since we want to take into consideration the subjectivity of the inspectors. So we treat the observed condition states of the bridges not as actual states but rather as observations that can contain some bias.

Therefore the observations hide the real state from us and add extra parameters to the Markov model, namely the probabilities of errors resulting from the experts' subjectivity.

Another important property of the Markov model, which is useful to us, is that the future prediction of the state depends only on the present state and the history of the process is not important. This means that the model has the memoryless property. To predict the deterioration process of a bridge only the information about the current condition is of interest.

1.3 The goal of the research

The goal of the research is to create a Hidden Markov deterioration process for the bridges in the Netherlands. The first step in order to do that is to determine the shape of the matrices with the model parameters, i.e. the transition probability matrix as well as the matrix with parameters describing the errors between the observations and the actual states (called misclassification matrix). Later on, for estimating the unknown parameters, the likelihood function must be derived, which take both kinds of parameters into account. Finally, with the estimated parameters, some analysis will be carried out in order to gain knowledge about the expected lifetime of the bridges and how this expectation varies from that obtained without taking the inspectors' 'subjectiveness' into consideration. We are also interested in finding out how the intensity of the inspections influences this expectation. Therefore we present the idea of the time of first passing to a certain actual condition state (first passage time) and its extension to the time of first observing a certain state (first 'observation' time) for different inspection intervals.

The main questions that are posed in this thesis are:

1. How to introduce the uncertainty resulting from the experts' subjectivity into the deterioration model?
2. What is the best choice for the parameters which describe the uncertainty in the deterioration model?
3. How to derive a statistical function of parameters (likelihood function) that provides us a tool for finding the parameters that fit the data well?
4. How to determine the expectation of the condition as a function of age?
5. How to calculate and illustrate the probability that a bridge is in an actual state given inspectors' ratings?
6. How to derive the recursive formula for the probability density function of the first 'observation' time? Furthermore, how this density function changes as the 'frequency' of the inspections is changing?

The report is organized as follows:

Chapter 2 presents the theory about the Markov chains and their extension to the Hidden Markov Models. The necessary notation is introduced and also a way of choosing the model parameters is described. At the end of this chapter, the assumptions which are needed for the whole document are presented.

In chapter 3, the entropy principle and the relative information are presented in order to obtain a distribution for the misclassification error which does not add any additional information other than the expectation of the observation.

Chapter 4 contains the method of estimating the parameters of the deterioration model, which is the maximum likelihood method. We use this method to maximize the likelihood function and we obtain the optimal parameters for our model.

Chapter 5 presents the results of calculating the expectation of the actual state and the observed condition as a function of a bridge age. Also, the probability of the actual state given the observation is calculated and the results are visualised by use of a 'bar' plot.

Chapter 6 demonstrates the idea of the first passage time and its extension to the first 'observation' time, which is simply the mean time to observe the worst condition. The analysis takes into account the 'frequency' of the inspections and indicates how this intensity influences the mean time to failure.

The last chapter 7 is a summary of the analysis and gives recommendations for future research.

2 Markov and Hidden Markov Models

This section presents the theory of Markov processes together with its expansion to the Hidden Markov Model.

2.1 A brief introduction to Markov Chains

A Markov chain (or process) is a sequence of random variables $\left\{X_{k}, k=1,2,3, ..\right\}$ with the Markov property, where all the possible values are drawn from a discrete set, called the state space, i.e. $i \in\{0,1,2,3, \ldots\}$, [10]. The Markov property implies that the conditional probability distribution of a future state X_{k+1} given the past states is a function of the current state X_{k} alone. In other words, the future prediction of the state depends only on the present state and does not depend on the history of the process. This statement can be formulated mathematically as follows:

$$
P_{i j}(k)=\operatorname{Pr}\left(X_{k+1}=j \mid X_{k}=i, X_{k-1}=i_{k-1}, \ldots, X_{1}=i_{1}, X_{0}=i_{0}\right)=\operatorname{Pr}\left(X_{k+1}=j \mid X_{k}=i\right)
$$

where X_{k} denotes the real state at time t_{k} and the values $j, i, i_{k-1}, \ldots, i_{1}, i_{0}$ are the values of the state space set.

At any time, a finite Markov chain on n states: $\{0,1,2, \ldots, n-1\}$ is described by a one step transition probability matrix at unit time k :

$$
\mathrm{P}_{k}=\left[P_{i j}(k)\right]=\left[\begin{array}{cccc}
P_{00}(k) & P_{01}(k) & \ldots & P_{0, n-1}(k) \\
P_{10}(k) & P_{11}(k) & \ldots & P_{1, n-1}(k) \\
\ldots & \ldots & \ldots & \ldots \\
P_{n-1,1}(k) & P_{n-1,2}(k) & \ldots & P_{n-1, n-1}(k)
\end{array}\right]
$$

This matrix gives information about the progression of deterioration from one state to another in one time unit. The important assumption connected with the transition probability matrix is that each row must sum to 1 , since the transition probabilities should satisfy the usual probabilistic constraints.

When the transition probability matrix is the same for each moment, i.e. when this matrix does not depend on time, then the Markov chain is said to be stationary:

$$
P_{i j}(k)=P_{i j}=\operatorname{Pr}\left(X_{k+1}=j \mid X_{k}=i\right)=\operatorname{Pr}\left(X_{1}=j \mid X_{0}=i\right)
$$

Because the main focus of this thesis is modelling inspections uncertainty, we assume a stationary Markov chain. The assumption of stationarity simplifies the Markov model.

Furthermore, one is interested in finding the transition probabilities in m steps, which creates a m-steps matrix: $\mathrm{P}^{(m)}=\left[P_{i j}(k, k+m)\right]$, where $P_{i j}(k, k+m)=\operatorname{Pr}\left(X_{k+m}=j \mid X_{k}=i\right)$. For the stationary case we have: $P_{i j}(k, k+m)=P_{i j}(0, m)=\operatorname{Pr}\left(X_{m}=j \mid X_{0}=i\right)$ and the m-steps transition matrix $\mathrm{P}^{(m)}$ is calculated by multiplying the one step transition matrix m times by itself, i.e. $\mathrm{P}^{(m)}=\mathrm{P}^{m}=\underbrace{\mathrm{P} \cdot \mathrm{P} \cdot \ldots \cdot \mathrm{P}}_{m \text { times }}$.

Since the inspectors rate the bridges on the scale from 0 to 5 , our transition probability matrix is of the size 6 by 6 . Furthermore, it is assumed that the deterioration process can proceed at most one state per unit time. Therefore, for our model we will use the following one step transition probability matrix:

$$
P=\left[\begin{array}{cccccc}
1-p_{0} & p_{0} & 0 & 0 & 0 & 0 \\
0 & 1-p_{1} & p_{1} & 0 & 0 & 0 \\
0 & 0 & 1-p_{2} & p_{2} & 0 & 0 \\
0 & 0 & 0 & 1-p_{3} & p_{3} & 0 \\
0 & 0 & 0 & 0 & 1-p_{4} & p_{4} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The probabilities $1-p_{i}$ are the probabilities of staying in the state $\mathrm{i}, \mathrm{i}=0,1,2 \ldots, 5$, whereas the probabilities p_{i} are the probabilities of a transition from state i to state $\mathrm{i}+1$ in one step. The transition probabilities with respect to particular rows are state dependent to make the model more realistic. Intuitively, the rate of deterioration is dependent on the condition of a bridge. For instance, we can suppose that a bridge with perfect condition reaches a good condition faster then a bridge with good condition reaches a bad condition. Further analysis will verify if it is the case, or perhaps it is the other way around.

In the last row there is no parameter. There is only the number one, as the last 5-th state is an absorbing state. It means that once the deterioration process achieves state 5 it cannot leave this state without a repair.

2.2 An extension of Markov Chains to the Hidden Markov Model

In a Markov model, the states are directly visible and given with certainty. Therefore the state transition probabilities are the only parameters. A Hidden Markov Model (HMM) describes a system which is assumed to be a Markov process but with unknown parameters. Thus, the challenge is to determine the hidden parameters from the observable parameters.

With this knowledge we can write that in a HMM, the transition probability matrix describes the process of moving from one observation to another. As it is an observation, not the real state, this model includes the error between the real state and the observation. Therefore, the HMM adds additional parameters to the model, namely the conditional probability of the current observation given the real state: $e_{i j}=\operatorname{Pr}\left(O_{k}=j \mid X_{k}=i\right)$, where $X_{k}=X\left(t_{k}\right)$ denotes the real state at time t_{k} and $O_{k}=O\left(t_{k}\right)$ denotes the observation at time t_{k}. These probabilities create a misclassification matrix which is given as below:

$$
E=\left[e_{i j}\right]=\left[\begin{array}{cccccc}
e_{00} & e_{01} & e_{02} & e_{03} & \ldots & e_{0, n-1} \\
e_{10} & e_{11} & e_{12} & e_{13} & \ldots & e_{1, n-1} \\
\ldots & & \ldots & & \ldots & \\
e_{n-1,0} & e_{n-1,1} & e_{n-1,2} & e_{n-1,3} & \ldots & e_{n-1, n-1}
\end{array}\right]
$$

In the matrix E , the rows indicate the actual states and the columns the observed states.

In other words, elements $e_{i j}$ from the E matrix describe an error between the observation and the real condition of the state. In our case, an observation is a condition rating given by an inspector taken from the inspection data and a real state is an actual condition of a particular bridge which is hidden for us.

The goal is to select the misclassification matrix in a way such that it will suit our deterioration model. This is done in chapter 3.

2.3 Assumptions

The main assumption is that the conditions of the bridges can be assessed on the discrete scale from the range 0 to 5 . It allows us to considering the deterioration process as a Hidden Markov Model. However, a few more initial assumptions need to be made in order to start with the analysis.

The important aspect of the inspections is whether they are independent or not. Since the inspections are assessing the conditions of the bridges and those conditions are not completely random in time, we cannot say that the inspections are independent. Nevertheless, it will be assumed that the observed condition states are conditionally independent given the values of the real state of the bridge:

$$
\begin{align*}
& \operatorname{Pr}\left(O_{1}=j_{1}, \ldots, O_{m}=j_{m} \mid X_{1}=l_{1}, \ldots, X_{k}=l_{k}\right)= \tag{2-1}\\
& \quad=\operatorname{Pr}\left(O_{1}=j_{1} \mid X_{1}=l_{1}, \ldots, X_{k}=l_{k}\right) \cdot \ldots \cdot \operatorname{Pr}\left(O_{m}=j_{m} \mid X_{1}=l_{1}, \ldots, X_{k}=l_{k}\right), \text { for } m \leq k
\end{align*}
$$

Moreover, we have:

$$
\begin{equation*}
\operatorname{Pr}\left(O_{m}=j_{m} \mid X_{1}=l_{1}, \ldots, X_{m-1}=l_{m-1}, X_{m}=l_{m}, \ldots, X_{k}=l_{k}\right)=\operatorname{Pr}\left(O_{m}=j_{m} \mid X_{m}=l_{m}\right) \tag{2-2}
\end{equation*}
$$

for each $\mathrm{m}=1,2, \ldots$ and $m \leq k$, which comes from the Markov property of the real state process.

Also, we can write

$$
\begin{equation*}
\operatorname{Pr}\left(O_{m}=j_{m} \mid X_{m}=l_{m}, O_{m-1}=j_{m-1}, \ldots, O_{1}=j_{1}\right)=\operatorname{Pr}\left(O_{m}=j_{m} \mid X_{m}=l_{m}\right) \tag{2-3}
\end{equation*}
$$

as X_{m} comes from the Markov process, so we assume that it includes information about the past in the context of the real process as well as the observed process.

The data contains information about all the bridges in The Netherlands. There is information about the bridges built after 1985, when the database was built, as well as about the bridges built before this time. We assume that for the bridges built after 1985 we know the whole history of the deterioration process, and for the group of older bridges we cannot say anything what has happened till the first inspection. Therefore, we will distinguish the probability $\operatorname{Pr}\left(X_{1}=i\right)$ for $\mathrm{i}=0,1,2 \ldots, 5$, between those two cases. For the bridges built before 1985, we assume that the probability of being in state ' i ' during the first inspection is discrete uniformly distributed with equal probability for each state, i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(X_{1}=i\right) \sim \text { uniform }(6)=\frac{1}{6}, \text { for } i=0,1,2, \ldots, 5 \tag{2-4}
\end{equation*}
$$

See also section 4.2.1.
For the bridges built after 1985, this probability will read:

$$
\begin{equation*}
\operatorname{Pr}\left(X_{1}=i\right)=\sum_{k=0}^{5} \operatorname{Pr}\left(X_{1}=i, X_{0}=k\right)=\sum_{k=0}^{5} \operatorname{Pr}\left(X_{1}=i \mid X_{0}=k\right) \cdot \operatorname{Pr}\left(X_{0}=k\right) \tag{2-5}
\end{equation*}
$$

We also assume that a new bridge starts its deterioration process always from the perfect state, what can be written as

$$
\left\{\begin{array}{lll}
\operatorname{Pr}\left(X_{0}=i\right)=1 & \text { if } & i=0 \tag{2-6}\\
\operatorname{Pr}\left(X_{0}=i\right)=0 & \text { if } & i \neq 0
\end{array}\right.
$$

With this assumption we can write the formula (2-5) in a simpler way:

$$
\begin{equation*}
\operatorname{Pr}\left(X_{1}=i\right)=\sum_{k=0}^{5} \operatorname{Pr}\left(X_{1}=i \mid X_{0}=k\right) \cdot \operatorname{Pr}\left(X_{0}=k\right)=\operatorname{Pr}\left(X_{1}=i \mid X_{0}=0\right) \tag{2-7}
\end{equation*}
$$

Furthermore, as the database stores the bridges' age in months, we decided to consider the P matrix as a one-month transition probability matrix. It means that this matrix gives the probabilities of changing the states in one month. We assume that a bridge can move only from one state to the next state in one month and other transitions are not allowed in this period.

Moreover, we will consider a stationary misclassification matrix, which does not change with time. In other words, the probabilities of the error are the same regardless of the bridges' age.

Also, the important task is to determine the actual deterioration process. Therefore we assume that there is no maintenance included in the data. All transitions that could indicate some maintenance actions are omitted from our data. Nevertheless, as we assume imperfect inspections, transitions from a worse state to a better state are also possible in the data. It is because we treat the results of inspections as observations, not as real states. So they can contain some bias and it can be both an underestimating and overestimating error.

Finally, we assume that the hidden real process is a Markov process, so it possesses all properties resulting from it, while the observed process is not.

3 Specification of misclassification error

In this chapter we will determine a proper form for the misclassification matrix. In other words, we will determine how wide the possible error resulting from experts' subjectivity should be. Next, we will model the misclassification matrix by a few discrete distributions, namely some discrete distributions with restricted uncertainty bounds (partially filled misclassification matrix), a binomial distribution, a distribution following from the maximum-entropy method given a fixed mean and a binomial distribution with fixed mean.

3.1 Finding a proper misclassification matrix

The conditions of the bridges are rated using the discrete scale from 0 to 5 . Therefore the matrix E has size 6×6.

The first misclassification matrix that we study is not fully filled. That is, it looks as follows:

$$
E=\left[\begin{array}{cccccc}
1-e & e & 0 & 0 & 0 & 0 \\
e / 2 & 1-e & e / 2 & 0 & 0 & 0 \\
0 & e / 2 & 1-e & e / 2 & 0 & 0 \\
0 & 0 & e / 2 & 1-e & e / 2 & 0 \\
0 & 0 & 0 & e / 2 & 1-e & e / 2 \\
0 & 0 & 0 & 0 & e & 1-e
\end{array}\right]
$$

We made this assumption as we wanted to think about the error in the following way. The subjectivity of the inspectors must be taken into account but it is rather improbable that an inspector can be mistaken more than the difference of one condition. Therefore we put zeros everywhere in the matrix where the difference between a real state and an actual state is greater than 1.

We can change this matrix a bit, allowing the error to have a wider range of additional conditions, for instance in the following way:

$$
E=\left[\begin{array}{cccccc}
e_{00} & e_{01} & e_{02} & 0 & 0 & 0 \\
e_{10} & e_{11} & e_{12} & e_{13} & 0 & 0 \\
e_{20} & e_{21} & e_{22} & e_{23} & e_{24} & 0 \\
0 & e_{31} & e_{32} & e_{33} & e_{34} & e_{35} \\
0 & 0 & e_{42} & e_{43} & e_{44} & e_{45} \\
0 & 0 & e_{52} & e_{53} & e_{54} & e_{55}
\end{array}\right]
$$

Misclassification matrix 2

But the analysis of the data has shown that such misclassification matrices are inappropriate when the bridges condition can improve more than one or two states, respectively. This is so, because the transition probability matrix allows the deterioration to proceed only in one direction; that is, it does not allow the deterioration to go backward. Hence, for instance with matrix E defined as 'Misclassification matrix 1 ' and the transition matrix of
the Hidden Markov Model P, it is not possibility for the process to transit, for instance from state 4 to 1 . To illustrate this, the following diagram is presented:

Figure 3-1: Condition rating for the bridge with index 417, permissible error of one state

Figure 3-1 presents the condition rating for the bridge with index 417 . From this diagram it is clear that when the condition of the state is classified as 4, with a permissible error of one state in each direction, it is not possible to transit to the state 1 without proceeding backwards. But if we allow the error to be larger, say two states in each direction, then for this case it is possible to reach all of these states without proceeding backwards. The next diagram illustrates that:

Figure 3-2: Condition rating for the bridge with index 417, permissible error of two states

There are a significant number of transitions of the above type in the data. It means that very often the error between the observed condition and the actual state of a bridge can be large. Therefore, we decided to consider a misclassification error matrix which is fully filled and to use the above type of the misclassification matrix only when we consider the data without so big improvements in the conditions.

Finally the matrix E is of the following form:

$$
E=\left[\begin{array}{llllll}
e_{00} & e_{01} & e_{02} & e e_{03} & e_{04} & e_{05} \\
e_{10} & e_{11} & e_{12} & e_{13} & e_{14} & e_{15} \\
e_{20} & e_{21} & e_{22} & e_{23} & e_{24} & e_{25} \\
e_{30} & e_{31} & e_{32} & e_{33} & e_{34} & e_{35} \\
e_{40} & e_{41} & e_{42} & e_{43} & e_{44} & e_{45} \\
e_{50} & e_{51} & e_{52} & e_{53} & e_{54} & e_{55}
\end{array}\right]
$$

Misclassification matrix 3

There are several possibilities to specify the error probabilities: $e_{i j}$. One of them is based on the binomial distribution, which is the subject of the subparagraph 3.2. Another way to specify these probabilities is the Maximum Entropy principle described in chapter 5 . We will consider also the misclassification matrix from the uniform distribution, i.e. in which each $e_{i j}$ is $1 / 6$:

$$
E=\left[\begin{array}{llllll}
0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 \\
0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 \\
0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 \\
0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 \\
0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 \\
0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667
\end{array}\right]
$$

Uniform misclassification matrix

3.2 Binomial distribution for the misclassification parameters

Our task was to construct a model that accurately represents the experts' error in assessing the conditions of the bridges. In other words, we wanted to determine the conditional probabilities of observations given the actual state in the way they fit the data well. The choice for taking a binomial distribution to model the parameters was rather arbitrary. We were looking for a discrete model which would generate the whole misclassification matrix E in a reasonable way, but in the same time we wanted to minimize the number of necessary parameters to do it. Since the matrix E is of the size 6 on 6 , which implies 36 places to fill in (actually 30 places, since the last number in each row must be chosen in a way that we get one by summing all the values in the row).

The binomial distribution gives a discrete probability distribution. The probability mass function is given by the formula:

$$
f\left(j \mid w, e_{i}\right)=\binom{w}{j} \cdot e_{i}^{j} \cdot\left(1-e_{i}\right)^{w-j}, \text { where } \mathrm{j}=0,1, \ldots, \mathrm{w}
$$

where w represents the number of independent experiments, j is the number of successes and e_{i} is the probability of a success. The expected value of k is $E(k)=w \cdot e_{i}$.

From the previous subparagraph we know that the misclassification matrix E is of the form: $E=\left[e_{i j}\right]$ for $\mathrm{i}, \mathrm{j}=0,1, \ldots, 5$, where $e_{i j}=\operatorname{Pr}(O=j \mid X=i)$. We can simply fit the above probability mass function on our model. We take w equals 5 (as the label of the worst bridge condition). Then for fixed i and each $\mathrm{j}=0,1, \ldots 5$, the binomial mass function generates the number $e_{i}(j)$, which is the $e_{i j}$ element from the E matrix. Since we have $\mathrm{i}=0,1, \ldots, 5$ we need to find six parameters e_{i}, which will fully fill the whole matrix.

3.3 The maximum entropy principle

In this section we would like to use the entropy method in order to obtain a discrete distribution which is generated subject to the specified constraints; that is, the mean of this distribution is given and the sum of the probabilities is unity. The reason of doing this is that we would like to obtain a distribution for the misclassification error where we expect the inspectors to correctly identify the actual state on the average, without adding extra information to this. We are going to compare the entropy distribution with the binomial distribution with the same mean.

The entropy is a measure of randomness for a system. In other words, it tells how much information we add when we use parameters from a certain distribution. Following the definition of Bedford and Cooke, [2], in terms of a discrete distribution, the entropy $H_{n}(S)$ for a distribution S is:

$$
\begin{equation*}
H_{n}(S)=-\sum_{i=1}^{n} s_{i} \cdot \log \left(s_{i}\right) \tag{3-1}
\end{equation*}
$$

where obviously $s_{i} \geq 0$ for all i , and $\sum_{i=1}^{n} s_{i}=1$.
The entropy $H_{n}(S)$ is non-negative and strictly concave. It is easy to check that the discrete uniform distribution, i.e. $s_{i}=1 / n$, is the distribution with the maximum entropy (see Table 3-1). On the contrary, the entropy is minimal if all the mass is concentrated in one point. Therefore, the higher value the entropy has, the more randomness is in the system.

| discrete uniform distribution | | | | | the value of
 the entropy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[\begin{array}{llllll}0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667\end{array}\right]$ | $\mathbf{1 . 7 9 1 8}$ | | | | |

Table 3-1: The discrete uniform distribution and its entropy

In the previous sections, we have used the binomial distribution to determine the misclassification probabilities. Now, we would like to check how these probabilities can be determined using the maximum entropy method.

Let us assume that $s_{i}=\operatorname{Pr}\left(O_{t}=i \mid X_{t}=j\right)$ for states $\mathrm{i}=1,2, \ldots, 6$ and fixed state j . We would like to find a distribution subject to an additional constraint, namely the expectation of the conditional probability of the observation given the actual state is equal to this state. Hence we determine the discrete probability function for which the entropy is maximal given that the sum of probabilities is unity and the mean is known. We will call this distribution: Maximum-Entropy distribution (MaxEntr distribution). Later on, we will find the entropy for such a distribution and afterwards compare it with the binomial entropy generated for the same mean.

In order to find parameters for a distribution with mentioned constraints, we need to solve the following optimization problem:

$$
\begin{array}{ll}
\max & -\sum_{i=1}^{n} s_{i} \cdot \log \left(s_{i}\right) \tag{3-2}\\
\operatorname{sub} & \sum_{i=1}^{n} s_{i}=1 \\
& \sum_{i=1}^{n} i s_{i}=j
\end{array}
$$

3.3.1 Lagrange multipliers

We will solve the optimization problem (3-2) using the Lagrange multipliers method. It is a commonly used method for finding the extremum of a function with respect to given equality constraints. For this method we need to introduce new scalar variables λ_{k} for $k=1,2$ and create the Lagrangian function which is:

$$
\begin{equation*}
\Lambda\left(s_{1}, \ldots, s_{6}\right)=-\sum_{i=1}^{6} s_{i} \log \left(s_{i}\right)+\lambda_{1}\left(\sum_{i=1}^{6} s_{i}-1\right)+\lambda_{2}\left(\sum_{i=1}^{6} i s_{i}-j\right) \tag{3-3}
\end{equation*}
$$

Now, taking the partial derivatives with respect to all parameters and equating this expression to zero, we obtain the solution for each s_{i} of the form:

$$
\begin{equation*}
s_{i}=\exp \left(-1+\lambda_{1}+i \cdot \lambda_{2}\right) \tag{3-4}
\end{equation*}
$$

The last thing which has to be done to get the values for the parameters is to find λ_{1} and λ_{2}. For this purpose the solution (3-4) is put back into the constraints and the system of equations is solved:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \exp \left(-1+\lambda_{1}+i \cdot \lambda_{2}\right)=1 \tag{3-5}\\
\sum_{i=1}^{n} i \cdot \exp \left(-1+\lambda_{1}+i \cdot \lambda_{2}\right)=j
\end{array}\right.
$$

(3-5) can be transformed to:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \exp \left(i \cdot \lambda_{2}\right)=\exp \left(1-\lambda_{1}\right) \tag{3-6}\\
\sum_{i=1}^{n} i \cdot \exp \left(i \cdot \lambda_{2}\right)=j \cdot \exp \left(1-\lambda_{1}\right)
\end{array}\right.
$$

$(3-6)$ is equivalent with (3-7):

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \exp \left(i \cdot \lambda_{2}\right)=\exp \left(1-\lambda_{1}\right) \tag{3-7}\\
\frac{1}{j} \sum_{i=1}^{n} i \cdot \exp \left(i \cdot \lambda_{2}\right)=\exp \left(1-\lambda_{1}\right)
\end{array}\right.
$$

Equating both left sides of (3-7) we obtain the expression for the parameter λ_{2} :

$$
\begin{equation*}
1-j+\sum_{i=1}^{n-1} \exp \left(i \cdot \lambda_{2}\right) \cdot(i+1-j)=0 \tag{3-8}
\end{equation*}
$$

Furthermore, from the first equation of (3-6) we get:

$$
\begin{equation*}
\frac{\exp \left(\lambda_{2}\right)-\exp \left((n+1) \cdot \lambda_{2}\right)}{\left(1-\exp \left(\lambda_{2}\right)\right)}=\exp \left(1-\lambda_{1}\right) \tag{3-9}
\end{equation*}
$$

which follows that the parameter λ_{1} is expressed as:

$$
\begin{equation*}
\lambda_{1}=1-\log \left(\frac{\exp \left(\lambda_{2}\right)-\exp \left((n+1) \cdot \lambda_{2}\right)}{1-\exp \left(\lambda_{2}\right)}\right) \tag{3-10}
\end{equation*}
$$

Having the expression for λ_{1}, we can express the probability s_{i} as a function of λ_{2} as follows:

$$
\begin{equation*}
s_{i}=\frac{\exp \left(i \cdot \lambda_{2}\right)}{\exp \left(\lambda_{2}\right)} \cdot \frac{1-\exp \left(\lambda_{2}\right)}{1-\exp \left(n \cdot \lambda_{2}\right)}=\frac{\exp \left(i \cdot \lambda_{2}\right)}{\sum_{i=1}^{n} \exp \left(i \cdot \lambda_{2}\right)} \tag{3-11}
\end{equation*}
$$

Since it is not possible to find those values explicitly we use the numerical method of Newton-Raphson to work out the problem.

3.3.2 Newton-Raphson method

Newton-Raphson method (also called Newton's method or Newton-Fourier method) is a numerical algorithm, which uses the Taylor series, for finding approximations to the roots of a real valued function. The first order Taylor approximation to a function $f(x)$ about the point $x=x_{0}+\varepsilon$ is given by:

$$
\begin{equation*}
f\left(x_{0}+\varepsilon\right) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot \varepsilon \tag{3-12}
\end{equation*}
$$

Setting $f\left(x_{0}+\varepsilon\right)$ equal zero and solving for $\varepsilon \equiv \varepsilon_{0}$, we obtain the expression:

$$
\begin{equation*}
\varepsilon_{0}=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \tag{3-13}
\end{equation*}
$$

which is used to update the initial guess x_{0}. By letting $x_{1}=x_{0}+\varepsilon_{0}$, calculating a new ε_{1}, and so on, the process can be updated until it converges to a root using:

$$
\begin{equation*}
\varepsilon_{n}=-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{3-14}
\end{equation*}
$$

Hence the iterative formula for finding the root is:

$$
\begin{equation*}
x_{n+1}=x_{n}+\varepsilon_{n} \tag{3-15}
\end{equation*}
$$

In our case, we define a function $f\left(\lambda_{2}\right)$ as the formula (5-8) reads:

$$
\begin{equation*}
f\left(\lambda_{2}\right)=1-j+\sum_{i=1}^{n-1} \exp \left(i \cdot \lambda_{2}\right) \cdot(i+1-j) \tag{3-16}
\end{equation*}
$$

and we apply the Newton's iterative algorithm to get the values for λ_{2}. Once, we obtain this value, the parameter λ_{1} is calculated straightforward from the formula (3-10). Then those values are used to determine the probabilities s_{i} for the MaxEntr distribution.

Unfortunately, the iterative method of Newton-Raphson has some drawbacks that need to be avoided in order to make this method converge. First of all, a derivative of the function requires to be expressed in explicit form. This is fulfilled here, since the derivative of (3-15) reads:

$$
\begin{equation*}
f^{\prime}\left(\lambda_{2}\right)=\sum_{i=1}^{n-1} i \cdot \exp \left(i \cdot \lambda_{2}\right) \cdot(i+1-j) \tag{3-17}
\end{equation*}
$$

However, the explicit form of the derivative does not guarantee the convergence. The essential role plays the initial guess, which has to be chosen close 'enough' to the solution. If the initial guess is too far from the true zero, this method can fail to converge. Anyway, in this case the initial point is not extremely hard to be matched suitably. Therefore, we can still use this method to find the parameter λ_{2}.

The method does not converge also near a horizontal asymptote and it cannot be used for those cases. Therefore for $j=1$ and $j=6$ we need to find the solution without the numerical scheme. For $\mathrm{j}=1$ and $\mathrm{j}=6$, we assume that the mass of the MaxEntr distribution is concentrated in one point.

For $\mathrm{j}=1$, we have $s_{1}=1$ and $s_{i}=0$ for $i=2,3, \ldots 6$.
For $j=6$ the solution is analogue, but the mass is concentrated on the last coordinate of the probability vector.

The results of this analysis are presented in Table 3-2:

fixed mean	MaxEntr distribution						the entropy
$\mathrm{j}=1$	$\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$						0
$\mathrm{j}=2$	[0.4781	0.2548	0.1357	0.0723	0.0385	0.0205]	1.3672
$\mathrm{j}=3$	[0.2468	0.2072	0.1740	0.1461	0.1227	0.1031]	1.7484
$\mathrm{j}=4$	[0.1031	0.1227	0.1461	0.1740	0.2072	0.2468]	1.7484
$j=5$	[0.0205	0.0385	0.0723	0.1357	0.2548	0.4781]	1.3672
$\mathrm{j}=6$			[000	$001]$			0

Table 3-2: The MaxEntr distribution and its entropy value

The values from the MaxEntr method create the optimal Maximum Entropy misclassification matrix, which is presented below:

$$
E=\left[\begin{array}{llllll}
1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.4781 & 0.2548 & 0.1357 & 0.0723 & 0.0385 & 0.0250 \\
0.2468 & 0.2072 & 0.1740 & 0.1461 & 0.1227 & 0.1031 \\
0.1031 & 0.1227 & 0.1461 & 0.1740 & 0.2072 & 0.2468 \\
0.0250 & 0.0385 & 0.0723 & 0.1357 & 0.2548 & 0.4781 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

MaxEntr misclassification matrix

3.3.3 Binomial distribution with fixed mean

Now, we are going to generate a binomial distribution with fixed mean in order to compare the entropy of this distribution with the entropy of the MaxEntr distribution obtained in the previous section. Such a model can also be used to determine the misclassification matrix.

The binomial distribution is generated according to the probability mass function:

$$
\begin{equation*}
\operatorname{Pr}(K=k)=f(k \mid w, p)=\binom{w}{k} \cdot p^{k} \cdot(1-p)^{w-k} \quad \text { for } \mathrm{k}=0,1,2, \ldots, \mathrm{w} \tag{3-18}
\end{equation*}
$$

Knowing that the mean of the binomial is equal to $E(K)=p \cdot w$, we can obtain simply the value of the parameter p from the formula (3-18) as the expected value divided by number of trials w . To generate a binomial vector of length 6 , we need to take $w=5$ and we get the results for the fixed mean presented in the Table 3-3:

fixed mean	binomial distribution						the entropy
$E(K)=0$			100	$\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$			0
$E(K)=1$	[0.3277	0.4096	0.2048	0.0512	0.0064	0.0003]	1.2430
$E(K)=2$	[0.0778	0.2592	0.3456	0.2304	0.0768	0.0102]	1.4980
$E(K)=3$	[0.0102	0.0768	0.2304	0.3456	0.2592	0.0778]	1.4980
$E(K)=4$	[0.0003	0.0064	0.0512	0.2048	0.4096	0.3277]	1.2430
$E(K)=5$			$0 \quad 0$	$\left.\begin{array}{lll}0 & 0 & 1\end{array}\right]$			0

Table 3-3: The binomial distribution with fixed mean and its entropy value
One remark is needed in this place. We have generated binomial distributions for the fixed mean $E(K)=k$, where k is changing from 0 to 5 . Nevertheless, to be able to compare this distribution to the MaxEntr distribution we would like to have the mean from 1 to 6 . Let us denote the right hand side of the formula (3-18) as $\operatorname{Pr}(K=k)$ for $\mathrm{k}=0,1, \ldots, 5$. Then for $M=K+1$, where $m=1, . ., w+1$ we have:

$$
\operatorname{Pr}(M=m)=\operatorname{Pr}(K+1=m)=\operatorname{Pr}(K=m-1)=\binom{w}{m-1} \cdot p^{m-1} \cdot(1-p)^{w-m+1}
$$

which is in fact the distribution we would like to consider instead of (3-18). The expected value of M is equal to $E(M)=E(K+1)=E(K)+1$. Therefore, we draw a conclusion that these two approaches are equivalent.

The above binomial model with fixed mean gives the following misclassification matrix:

$$
E=\left[\begin{array}{llllll}
1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.3277 & 0.4096 & 0.2048 & 0.0512 & 0.0064 & 0.0003 \\
0.0778 & 0.2592 & 0.3456 & 0.2304 & 0.0768 & 0.0102 \\
0.0102 & 0.0768 & 0.2304 & 0.3456 & 0.2592 & 0.0778 \\
0.0003 & 0.0064 & 0.0512 & 0.2048 & 0.4096 & 0.3277 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

Binomial with fixed mean misclassification matrix

The next table presents the juxtaposition of the value of entropy for the Max.Entr distribution and the binomial distribution.

fixed mean	the value of entropy for MaxEntr distribution	the value of the entropy for the binomial distribution
1	0	0
2	1.3672	1.2430
3	1.7484	1.4980
4	1.7484	1.4980
5	1.3672	1.2430
6	0	0

Table 3-4: Juxtaposition of the values of the entropy for both distributions

From the Table 3-4 we can see that the binomial distribution has a smaller entropy than the MaxEntr distribution. It means that the MaxEntr distribution brings in more uncertainty (i.e. less information) into the stochastic model describing the deterioration process. However, the entropy measures how the given distributions are spread out with respect to the uniform distribution. To check the precise relation between both distributions we will use the relative information principle.

3.4 The relative information principle

The relative information measures the relation between two distributions without involving the uniform distribution. Thanks to this measure we can find how close one distribution is to another. In terms of mathematical formula the relative information of b with respect to s, is expressed as (Bedford and Cooke, [2]):

$$
I(b ; s)=\sum_{i=1}^{n} b_{i} \cdot \log \left(\frac{b_{i}}{s_{i}}\right)
$$

where $b=\left[b_{i}\right]$ is the binomial distribution and $s=\left[s_{i}\right]$ is the MaxEntr-distribution for our case.
The number $I(b ; s)$ is always non-negative. It takes its minimal value of 0 when $\mathrm{b}=\mathrm{s}$. Therefore, if two distributions are close to each other, what means that they bring comparable information to a process, then their relative information is close to 0 . However, this principle requires the elements b_{i} and s_{i} not to be equal 0 . For this case we have that the relative information goes to infinity.

From the analysis we got that the relative information of the binomial distribution with respect to the MaxEntr-distribution equals

fixed mean	the relative information
1	∞
2	$\mathbf{0 . 1 2 4 5}$
3	$\mathbf{0 . 2 5 0 8}$
4	$\mathbf{0 . 2 5 0 8}$
5	$\mathbf{0 . 1 2 4 5}$
6	∞

Table 3-5: The relative information of binomial with respect to MaxEntr distribution

We can see from the Table 3-5 that the difference between these two distributions is essential, and they bring to the deterioration model different amount of randomness. We will carry out further analysis comparing results obtained using both binomial and MaxEntr distributions.

In the Table 3-6 and Table 3-7, we present also the relation between the binomial distribution and the uniform distribution, and the MaxEntr distribution and the uniform distribution, respectively.

fixed mean	the relative information
1	∞
2	$\mathbf{0 . 5 4 8 9}$
3	$\mathbf{0 . 2 9 3 8}$
4	$\mathbf{0 . 2 9 3 8}$
5	$\mathbf{0 . 5 4 8 9}$
6	∞

Table 3-6: The relative information of binomial with respect to uniform distribution

fixed mean	the relative information
1	∞
2	$\mathbf{0 . 4 2 4 3}$
3	$\mathbf{0 . 0 4 3 1}$
4	$\mathbf{0 . 0 4 3 1}$
5	$\mathbf{0 . 4 2 4 3}$
6	∞

Table 3-7: The relative information of MaxEntr with respect to uniform distribution

From these results we can see that the Maximum Entropy distribution (MaxEntr) has always smaller relative information with respect to the uniform distribution than the binomial distribution with respect to the uniform distribution. Of course, it makes sense as the 'maximum entropy' indicates that the distribution is close to the uniform, so it must introduce a similar amount of randomness to the system. However, we can notice that for the mean ' 3 ' and ' 4 ' the value of the relative information is close to zero. This means that those cases bring comparable amount of uncertainty to the system.

4 Estimation of model parameters

In this chapter we would like to get the transition and the misclassification parameters for our model. Before the mathematical model is presented, we need to describe in detail the mechanism of the inspections.

The bridge inspections are carried out periodically. Therefore we do not have information about their conditions at any time, but only at the specified points in time. Predominantly, each structure was inspected two or three times, but for some of the structures the number of inspections was higher, like for instance six times. As it was mentioned before, we assume in this research that the ratings from experts are the observations, which are prone to a bias. Therefore, we consider expert observations and the corresponding actual states for each observation. We will denote the k-th observation for the i-th structure as O_{k}^{i} for $\mathrm{k}=1, \ldots, \mathrm{~m}$, where m is the number of observations for the particular structure i. Moreover, O_{k}^{i} means that the k-th inspection is carried out at time t_{k} and the corresponding actual state X_{k} is the real condition of the bridge at the same time t_{k}.

4.1 The Maximum Likelihood Estimation (MLE)

Once a model is specified with its parameters, the evaluation of its goodness of fit must be determined. Goodness of fit is assessed by finding values of the parameters of the model that best fit the data. This procedure is called parameter estimation.

One of the most popular and commonly used methods for estimating unknown parameters is maximum-likelihood estimation. A likelihood function is the probability density function of the data regarded as a function of the statistical parameters. The maximum likelihood estimators are the values of the parameters that maximize the likelihood function. We would like to use this method to estimate the parameters for the transition matrix and the misclassification matrix. The matrix product method to calculate the likelihood function, which was proposed by Jackson et al [1], is used here to estimate the parameters of the model for the bridges in the Netherlands.

Consider a family of probability functions, say $f_{X}(\cdot, \theta)$. The likelihood function of a random sample of size n from the population $f_{X}(\cdot, \theta)$ is the joint probability density function of the sample variables regarded as a function of the parameter θ. In mathematical formulation:

$$
\begin{equation*}
L(\underline{x}, \theta)=\prod_{i=1}^{n} f_{X}\left(x_{i}, \theta\right) \tag{4-1}
\end{equation*}
$$

A maximum likelihood estimate (MLE) of θ is a value of $\hat{\theta}$ such that for all θ :

$$
L(\underline{x}, \hat{\theta}) \geq L(\underline{x}, \theta)
$$

([4], Gibbons, Chakraborti, 1992).

Often it is more convenient to use the log-likelihood function, because logarithms transform products into sums, and maximizing the log-likelihood function is equivalent to maximizing the likelihood function.

The data supplies information about the number of inspections for each of the bridge and about the results of those inspections on a discrete scale. Thus, for each bridge we have a sequence of observations: $O_{1}^{i}, O_{2}^{i}, O_{3}^{i}, \ldots, O_{m}^{i}$, where i indicates the bridge index and m is the number of observations for the bridge. Therefore, every bridge i contributes to the likelihood function in the following way:

$$
\begin{align*}
& L_{i}(\underline{\theta})=\operatorname{Pr}\left(O_{1}^{i}=j_{1}, O_{2}^{i}=j_{2}, \ldots, O_{m}^{i}=j_{m}\right)= \tag{4-2}\\
& \quad=\sum \operatorname{Pr}\left(O_{1}^{i}=j_{1}, \ldots, O_{m}^{i}=j_{m} \mid X_{1}^{i}=l_{1}, \ldots, X_{m}^{i}=l_{m}\right) \cdot \operatorname{Pr}\left(X_{1}^{i}=l_{1}, \ldots, X_{m}^{i}=l_{m}\right)
\end{align*}
$$

where the sum is taken over all possible paths of the actual states and $j_{m}, l_{m} \in\{0,1,2, \ldots, 5\}$ are the values from the state sets.

Here, we need to use the assumption of conditional independence of the observations given the values of actual states. Also, we use the Markov property, and then we can write (4-2) in the form (for a proof, see Appendix B):
(4-3) $\quad L_{i}(\underline{\theta})=\sum_{l_{l}=0}^{5} \operatorname{Pr}\left(O_{1}^{i}=j_{1} \mid X_{1}^{i}=l_{1}\right) \operatorname{Pr}\left(X_{1}^{i}=l_{1}\right) \cdot \sum_{l_{2}=0}^{5} \operatorname{Pr}\left(O_{2}^{i}=j_{2} \mid X_{2}^{i}=l_{2}\right) \operatorname{Pr}\left(X_{2}^{i}=l_{2} \mid X_{1}^{i}=l_{1}\right)$.
$\sum_{l_{3}=0}^{5} \operatorname{Pr}\left(O_{3}^{i}=j_{3} \mid X_{3}^{i}=l_{3}\right) \operatorname{Pr}\left(X_{3}^{i}=l_{3} \mid X_{2}^{i}=l_{2}\right) \cdot \ldots \cdot \sum_{l_{m}=0}^{5} \operatorname{Pr}\left(O_{m}^{i}=j_{m} \mid X_{m}^{i}=l_{m}\right) \operatorname{Pr}\left(X_{m}^{i}=l_{m} \mid X_{m-1}^{i}=l_{m-1}\right)$
where $\operatorname{Pr}\left(O_{m}^{i}=j_{m} \mid X_{m}^{i}=l_{m}\right)$ is the misclassification probability $e_{l_{m} j_{m}}$ for each bridge i, and $p_{l_{m-1} l_{m}}\left(t_{m}-t_{m-1}\right)=\operatorname{Pr}\left(X_{m}^{i}=l_{m} \mid X_{m-1}^{i}=l_{m-1}\right)$ is the $\left(l_{m-1}, l_{m}\right)$ entry of the transition probability matrix in t steps, where $t=t_{m}-t_{m-1}$.

The formula (4-3) is in fact a product of matrices. To show this, let \underline{f}^{i} be the row vector of the form:

$$
\underline{f}^{i}=\left[\operatorname{Pr}\left(O_{1}^{i}=j_{1} \mid X_{1}^{i}=0\right) \cdot \operatorname{Pr}\left(X_{1}^{i}=0\right), \ldots, \operatorname{Pr}\left(O_{1}^{i}=j_{1} \mid X_{1}^{i}=5\right) \cdot \operatorname{Pr}\left(X_{1}^{i}=5\right)\right]
$$

For $\mathrm{k}=2,3, \ldots, \mathrm{~m}$, let F_{k}^{i} be a 6 by 6 matrix with (r, s) entry: $e_{s_{j}} \cdot p_{r s}\left(t_{j_{k}}-t_{j_{k-1}}\right)$, and let $\underline{1}$ be a column vector of size 6 , consisting of 1 s . Then the likelihood function for one object reads:

$$
\begin{equation*}
L_{i}(\underline{\theta})=\underline{f}^{i} \cdot F_{2}^{i} \cdot F_{3}^{i} \cdot \ldots \cdot F_{m}^{i} \cdot \underline{1} \tag{4-4}
\end{equation*}
$$

For convenience we will work with the log-likelihood function:

$$
\begin{equation*}
l_{i}(\underline{\theta})=\log L_{i}(\underline{\theta})=\log \left(\underline{f}^{i} \cdot F_{2}^{i} \cdot F_{3}^{i} \cdot \ldots \cdot F_{m}^{i} \cdot \underline{1}\right) \tag{4-5}
\end{equation*}
$$

Having the likelihood function for one object we can derive the likelihood for the whole data. Let N be the number of objects in our data. Then:

$$
\begin{equation*}
L(\underline{\theta})=\prod_{i=1}^{N} L_{i}(\underline{\theta})=\prod_{i=1}^{N}\left(\underline{f}^{i} \cdot F_{2}^{i} \cdot F_{3}^{i} \cdot \ldots \cdot F_{m}^{i} \cdot \underline{1}\right) \tag{4-6}
\end{equation*}
$$

And the log-likelihood function for the whole data is:

$$
\begin{equation*}
l(\underline{\theta})=\log L(\underline{\theta})=\log \prod_{i=1}^{N} L_{i}(\underline{\theta})=\sum_{i=1}^{N} l_{i}(\underline{\theta})=\sum_{i=1}^{N} \log \left(\underline{f}^{i} \cdot F_{2}^{i} \cdot F_{3}^{i} \cdot \ldots \cdot F_{m}^{i} \cdot \underline{1}\right) \tag{4-7}
\end{equation*}
$$

The parameter $\underline{\theta}$ is of the size 11 , since it contains five parameters for the transition matrix and six parameters for the misclassification matrix:

$$
\underline{\theta}=\left[\begin{array}{ll}
\underline{p} & e
\end{array}\right]=\left[\begin{array}{lllllllllll}
p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & e_{0} & e_{1} & e_{2} & e_{3} & e_{4} & e_{5}
\end{array}\right]
$$

The resulting parameter vector, which is sought by searching the multi-dimensional parameter space, gives us the probability distributions. According to the maximum likelihood principle, this is the distribution that is most likely to generate the observed data.

To give an illustration of the log-likelihood function, we consider for a moment a simplified theta of the form: $\underline{\theta}=[\underline{p} \underline{e}]$, where $p_{i}=p$ and $e_{i}=e$ for each $\mathrm{i}=0,1, \ldots, 5$. So in fact, we have only two parameters: the first for the transition probabilities and the second for the misclassification probabilities. Both Figure 4-1 and Figure 4-2 present the log-likelihood function for the misclassification matrix: 'Misclassification matrix 1 ' from page 9 , where p is from 0 to 1 in the first case and - after zooming in - from 0 to 0.035 for the second figure.

Figure 4-1: Log-likelihood function with 'Misclassification matrix $\mathbf{1}^{\prime}$, $p \in[0: 1]$

Figure 4-2: Log-likelihood function with 'Misclassification matrix $\mathbf{1}^{1}$, $p \in[0: 0.035]$

Until now, we have presented our basic algorithm that was implemented to get the optimal values for the parameters. However we would like to describe two other two recursive procedures (according by [8] and [9] respectively) for the derivation of the (log-)likelihood function. As before we have a sequence of observations: $O_{1}^{i}, O_{2}^{i}, O_{3}^{i}, \ldots, O_{m}^{i}$ for a particular bridge.

The first approach is the forward algorithm. In order to start with the forward approach we need to define the forward variable $\alpha_{k}^{i}(l)$ for each $l=0,1, \ldots, 5$ as follows:

$$
\alpha_{k}^{i}(l)=\operatorname{Pr}\left(O_{1}^{i}=j_{1}, O_{2}^{i}=j_{2}, \ldots, O_{k}^{i}=j_{k}, X_{k}^{i}=l\right) \text { where } k \leq m
$$

i.e. the probability of the partial observation sequence until inspection k and the actual state at time t_{k}. Then, we can solve the likelihood via the following steps:

Firstly, we use the law of total probability to rewrite the likelihood as:

$$
\begin{equation*}
L_{i}(\theta)=\operatorname{Pr}\left(O_{1}^{i}=j_{1}, O_{2}^{i}=j_{2}, \ldots, O_{m}^{i}=j_{m}\right)=\sum_{l=0}^{5} \operatorname{Pr}\left(O_{1}^{i}=j_{1}, \ldots, O_{m-1}^{i}=j_{m-1}, O_{m}^{i}=j_{m}, X_{m}^{i}=l\right) \tag{4-8}
\end{equation*}
$$

Secondly, we recognize in the sum in (4-8) the forward variable: $\alpha_{m}^{i}(l)$. Therefore, we can write the formula for the likelihood function as:
$(4-9) \quad L_{i}(\theta)=\sum_{l=0}^{5} \alpha_{m}^{i}(l)$
where the forward variable can be updated recursively via:

$$
\begin{align*}
& \alpha_{k}^{i}(l)=\operatorname{Pr}\left(O_{1}^{i}=j_{1}, \ldots, O_{k-1}^{i}=j_{k-1}, O_{k}^{i}=j_{k}, X_{k}^{i}=l\right)= \tag{4-10}\\
& =\operatorname{Pr}\left(O_{k}^{i}=j_{k} \mid X_{k}^{i}=l\right) \cdot \operatorname{Pr}\left(O_{1}^{i}=j_{1}, \ldots, O_{k-1}^{i}=j_{k-1}, X_{k}^{i}=l\right)= \\
& =\operatorname{Pr}\left(O_{k}^{i}=j_{k} \mid X_{k}^{i}=l\right) \sum_{w=0}^{5} \operatorname{Pr}\left(O_{1}^{i}=j_{1}, \ldots, O_{k-1}^{i}=j_{k-1}, X_{k-1}^{i}=w, X_{k}^{i}=l\right)= \\
& =\operatorname{Pr}\left(O_{k}^{i}=j_{k} \mid X_{k}^{i}=l\right) \sum_{w=0}^{5} \operatorname{Pr}\left(O_{1}^{i}=j_{1}, \ldots, O_{k-1}^{i}=j_{k-1}, X_{k-1}^{i}=w\right) \operatorname{Pr}\left(X_{k}^{i}=l \mid X_{k-1}^{i}=w\right)= \\
& =\operatorname{Pr}\left(O_{k}^{i}=j_{k} \mid X_{k}^{i}=l\right) \sum_{w=0}^{5} \alpha_{k-1}^{i}(w) \cdot \operatorname{Pr}\left(X_{k}^{i}=l \mid X_{k-1}^{i}=w\right) \quad \text { for } \mathrm{k}=2,3, \ldots \mathrm{~m}
\end{align*}
$$

and

$$
\alpha_{1}^{i}(w)=\operatorname{Pr}\left(O_{1}^{i}=j_{1}, X_{1}^{i}=w\right)=\operatorname{Pr}\left(O_{1}^{i}=j_{1} \mid X_{1}^{i}=w\right) \cdot \operatorname{Pr}\left(X_{1}^{i}=w\right)
$$

Of course, we can repeat steps and we will obtain the log-likelihood for the whole data using (4-6) and (4-7).

The second algorithm has close resemblance with the formula (4-10), except that it uses a normalization factor. Also the 'log' value is imposed from the beginning, so in fact the formula calculates directly the log-likelihood.

The algorithm is initialized by writing the likelihood in terms of the product of conditional probabilities, using the simple mathematical rule of conditional probability:
(4-11) $L_{i}(\theta)=\operatorname{Pr}\left(O_{1}^{i}=j_{1}, O_{2}^{i}=j_{2}, \ldots, O_{m}^{i}=j_{m}\right)=\prod_{u=1}^{m} \operatorname{Pr}\left(O_{u}^{i}=j_{u} \mid O_{1}^{i}=j_{1}, \ldots, O_{u-1}^{i}=j_{u-1}\right)$
where for $u=1$ we have simply an unconditional probability $\operatorname{Pr}\left(O_{1}^{i}=j_{1}\right)$.
Imposing the logarithm on both sides of (4-11), we obtain the sum of the logarithms. Then we can use the law of total probability and we obtain:
(4-12) $\log L_{i}(\theta)=\sum_{u=1}^{m} \log \sum_{l=0}^{5} \operatorname{Pr}\left(O_{u}^{i}=j_{u}, X_{u}^{i}=l \mid O_{1}^{i}=j_{1}, \ldots . O_{u-1}^{i}=j_{u-1}\right)$

$$
=\sum_{u=1}^{m} \log \sum_{l=0}^{5} \operatorname{Pr}\left(O_{u}^{i}=j_{u} \mid X_{u}^{i}=l\right) \cdot \operatorname{Pr}\left(X_{u}^{i}=l \mid O_{1}^{i}=j_{1}, \ldots . O_{u-1}^{i}=j_{u-1}\right)
$$

We can denote the conditional probability of being in the actual state at time t_{u} given the sequence of observations form (4-12) as $\phi_{u}^{i}(l)$. Then we can write (4-12) as:
(4-13) $\log L_{i}(\theta)=\sum_{u=1}^{m} \log \sum_{l=0}^{5} \operatorname{Pr}\left(O_{u}^{i}=j_{u} \mid X_{u}^{i}=l\right) \cdot \phi_{u}^{i}(l)$
The recursive variable can be computed as follows:

$$
\phi_{1}^{i}(l)=\operatorname{Pr}\left(X_{1}^{i}=l\right)
$$

$$
\begin{equation*}
\phi_{u+1}^{i}(l)=\frac{\sum_{w=0}^{5} \operatorname{Pr}\left(O_{u}^{i}=j_{u} \mid X_{u}^{i}=w\right) \cdot \phi_{u}^{i}(w) \cdot \operatorname{Pr}\left(X_{u+1}^{i}=l \mid X_{u}^{i}=w\right)}{\sum_{v=0}^{5} \operatorname{Pr}\left(O_{u}^{i}=j_{u} \mid X_{u}^{i}=v\right) \cdot \phi_{u}^{i}(v)} \text { for } u \geq 1 \tag{4-14}
\end{equation*}
$$

Since in Appendix B we have a similar proof to formula (4-14), we omit to prove it here.
Finally, the log-likelihood for the whole data is of the form:

$$
\begin{equation*}
L(\theta)=\sum_{i=1}^{N} \log L_{i}(\theta)=\sum_{i=1}^{N} \sum_{u=1}^{m} \log \sum_{l=0}^{5} \operatorname{Pr}\left(O_{u}^{i}=j_{u} \mid X_{u}^{i}=l\right) \cdot \phi_{u}^{i}(l) \tag{4-15}
\end{equation*}
$$

The numerical method was applied to obtain the optimal solution for $\underline{\theta}$. 'Matlab' provides the function 'fminsearch', which can perform an unconstrained nonlinear optimization of a function of several variables. Since this method is unconstrained, there is no certainty that the obtained parameters are from the interval $(0,1)$. In order to have the parameters from this interval, we apply a transformation which is presented below, [5]:

Taking $x \in R$, the parameter of the form:

$$
\begin{equation*}
\theta=\frac{\exp (x)}{\exp (x)+1}=\frac{1}{1+\exp (-x)} \tag{4-16}
\end{equation*}
$$

is from the interval $(0,1)$. It follows that:

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{\exp (x)}{\exp (x)+1}=1 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{\exp (x)}{\exp (x)+1}=0 \tag{4-17}
\end{equation*}
$$

From (4-16), we can write x as:

$$
\begin{equation*}
x=-\log \left(\frac{1-\theta}{\theta}\right) \tag{4-18}
\end{equation*}
$$

Hence, the constrained optimization for $\underline{\theta}$ on $(0,1)$ can be transformed to an unconstrained optimization for x .

The results from the Matlab optimization are presented below:

$$
\begin{align*}
& \underline{p}=\left[\begin{array}{llllll}
0.0231 & 0.0609 & 0.1427 & 0.1787 & 0.1264
\end{array}\right] \tag{4-19}\\
& \underline{e}=\left[\begin{array}{llllll}
0.2278 & 0.3034 & 0.3242 & 0.3325 & 0.3505 & 0.4823
\end{array}\right] \tag{4-20}
\end{align*}
$$

which gives the following transition matrix and misclassification matrix, respectively:

$$
\begin{aligned}
& P=\left[\begin{array}{cccccc}
0.9769 & 0.2321 & 0 & 0 & 0 & 0 \\
0 & 0.9391 & 0.0609 & 0 & 0 & 0 \\
0 & 0 & 0.8573 & 0.1427 & 0 & 0 \\
0 & 0 & 0 & 0.8213 & 0.1787 & 0 \\
0 & 0 & 0 & 0 & 0.8736 & 0.1264 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& E=\left[\begin{array}{llllll}
0.2745 & 0.4050 & 0.2390 & 0.0705 & 0.0104 & 0.0006 \\
0.1641 & 0.3572 & 0.3111 & 0.1355 & 0.0295 & 0.0026 \\
0.1407 & 0.3378 & 0.3246 & 0.1559 & 0.0374 & 0.0036 \\
0.1321 & 0.3297 & 0.3290 & 0.1642 & 0.0410 & 0.0041 \\
0.1151 & 0.3113 & 0.3368 & 0.1822 & 0.0493 & 0.0053 \\
0.0372 & 0.1733 & 0.3228 & 0.3006 & 0.1400 & 0.0261
\end{array}\right] \\
& \text { Optimal binomial misclassification matrix }
\end{aligned}
$$

Below, we present Table 4-1 with the entropy values for the above optimal misclassification matrix:

row	the value of entropy
1	1.3020
2	1.4177
3	1.4404
4	1.4486
5	1.4647
6	1.5229

Table 4-1: The value of the entropy for the optimal binomial model

4.2 Likelihood function for different models

So far, we have introduced a few models that can describe the deterioration process, namely the optimal binomial model, the binomial model with fixed mean, the discrete uniform model and the Maximum Entropy model with fixed mean. All of them were described in order to find the model that can best describe the deterioration process of the bridges. Furthermore, our aim was to determine a distribution for the misclassification matrix that would reflect the inspectors' behaviour as closely as possible. Given those models, we are interested in finding the value of the likelihood that corresponds to the desired model. The optimal binomial model was maximized with respect to all eleven parameters, therefore it is obvious that its loglikelihood value is the largest one. However, we would like to know how the value of the likelihood changes as we use those models respectively.

Below, we present the values of the transition parameters corresponding to the maximum entropy and the binomial models with fixed mean.

Model: maximum entropy with fixed mean

$$
\underline{p}=\left[\begin{array}{lllll}
0.4537 & 0.0551 & 0.0000 & 0.0000 & 0.0000 \tag{4-21}
\end{array}\right]
$$

Model: binomial with fixed mean

$$
\underline{p}=\left[\begin{array}{lllll}
0.3232 & 0.0416 & 0.0010 & 0.0000 & 0.0000 \tag{4-22}
\end{array}\right]
$$

These values indeed do not satisfy our expectation about them. We would rather expect to obtain numbers different than zeros as they indicate the probabilities of moving to the next states. With such values we get that the actual process stops at the state '2' and '3', respectively, for those models. However, with the fully filled misclassification matrix E, even with such parameters, it is still possible to observe any condition from the whole range of the discrete scale.

The reason for such results can be in the data. The data contains a disproportionately high amount of data concerning bridges below mediocre condition (condition 4) relatively to the small number of data concerning bridges assessed as 4 and 5 . This can influence the model a lot. If we look at the misclassification matrix generated for the optimal binomial model, we can see that the probability of observing the lower conditions is always very small and the highest probabilities are concentrated in the left part of the matrix. This is in opposite to the models with fixed means where more weights are assigned to the right part of the E matrix, especially in the lower part of this matrix.

Here we should present also the transition parameters for the discrete uniform distribution. However, during the analysis we noticed that those parameters do not influence the value of the likelihood. It means that no matter how those parameters are, the value of the likelihood stays always the same. The explanation of this fact will be given in the next chapter in terms of the expected value of the observation at time t.

Table 4-2 presents the values of the likelihood for all mentioned models. From the table we can see that the values differ significantly.

model	log-likelihood value
optimal binomial	-7257.70
binomial with fixed mean	-8458.68
Max.Entr	-10497.60
discrete uniform	-9728.17

Table 4-2: The values of the log-likelihood functions for different models (E-full)

We would like also to present the results from simulations for not fully filled misclassification matrices: 'Misclassification matrix 1 ' and 'Misclassification matrix 2'. The last one was generated by the binomial model in a similar way as the full matrix. In order to obtain the parameters we needed to delete from the data all transitions which result in the zero value of the log-likelihood. This results in higher log-likelihood values, such that tables 4-2 and 4-3 can not be directly compared.

Model: perfect inspections, E-identity

$$
\underline{p}=\left[\begin{array}{lllll}
0.0483 & 0.0329 & 0.0101 & 0.0030 & 0.0095
\end{array}\right]
$$

Model with 'Misclassification matrix 1'

$$
\begin{gathered}
\underline{p}=\left[\begin{array}{lllll}
0.0471 & 0.0391 & 0.0090 & 0.0015 & 0.0142
\end{array}\right] \\
\underline{e}=\left[\begin{array}{lll}
0.1311
\end{array}\right]
\end{gathered}
$$

Model with 'Misclassification matrix 2'
$\underline{p}=\left[\begin{array}{lllll}0.0240 & 0.1515 & 0.0151 & 0.0798 & 0.0380\end{array}\right]$
$\underline{e}=\left[\begin{array}{llllll}0.4525 & 0.3274 & 0.4986 & 0.0851 & 0.0364 & 0.2165\end{array}\right]$

Table 4-3 presents the values of the likelihood for those models:

model	log-likelihood value
perfect inspections, E-identity	$\mathbf{- 6 5 8 2 . 4 0}$
with 'Misclassification matrix 1'	$-\mathbf{6 4 7 6 . 8 4}$
with 'Misclassification matrix 2^{\prime} ', binomial	$\mathbf{- 6 7 7 2 . 8 5}$

Table 4-3: The values of the log-likelihood functions for different models (E-not full)

4.2.1 Likelihood function for different initial vectors

We would also like to check how the value of the likelihood is influenced by the initial vector $\operatorname{Pr}\left(X_{1}=i\right)$ for $\mathrm{i}=0,1,2, \ldots, 5$. At the beginning of this work, we have assumed this vector to be discrete uniform distributed for the bridges built before 1985. However, when we compare the log-likelihood values for the different choices of this vector we will be able to state if and how our initial assumption influences the whole model. It could be important to have this knowledge, as the uniform assumption was rather arbitrary. We made it, as we do not have any information about the history of those bridges, i.e. we do not know what had happened with them before the first inspection. Therefore we let these probabilities be completely random. However, it can happen that it is a too general assumption. One of the reasons for that could be as follows. The condition of a bride depends meaningfully on its age. But around 1985, when a lot of the first inspections were done, the bridges were not extremely old. Hence, it is difficult to believe that the probability of being in the worst state is the same as being for instance in the state ' 2 ' or ' 3 ' during the first inspection.

The result of this analysis, for the optimal binomial model, is presented in Table 4-4:

initial probabilities	distribution	log-likelihood
	Uniform(6)	-7257.7
[0.3277 0.4096 0.2048 0.0512 0.0064 0.0003]	Binomial, mean 1	-7345,1
[0.0778 0.2592 0.3456 0.2304 0.0768 0.0102]	Binomial, mean 2	-7230.6
[0.0102 0.0768 0.23040 .34560 .25920 .0778]	Binomial, mean 3	-7213.3
[0.4780 0.2550 0.13500 .07300 .03850 .0205]	Max.Entr, mean 1	-7397.6
[0.2465 0.20750 .17490 .14500 .12290 .1031$]$	Max.Entr, mean 2	-7280.0
[0.1031 0.12250 .14600 .17430 .20790 .2461$]$	Max.Entr, mean 3	-7255,2

Table 4-4: The value of the likelihood for the different initial vector

From the above result, we can state that the choice of the initial vector does not play a large role in both the values of log-likelihood as well as for the estimated parameters. Therefore, we can assume it to be discrete uniformly distributed. However, we can see the tendency that the value of the log-likelihood is rising up as the initial condition is more likely to be better.

5 Expected actual and observed condition

At the beginning of this chapter we will calculate the expected condition of a bridge as a function of time, under the assumption that the inspections give the assessment of the bridges' conditions without any error. Then we will consider the case in which this error is taken into account, so we will consider the Hidden Markov Model.

In the last section of this chapter, the analysis of the conditional probability of an actual state given the observation is presented.

5.1 The expected actual state: $E(X(t))$

Let us assume that the inspectors' ratings create the Markov deterioration process, what simply means there is no error between the ratings and the real condition of bridges, i.e. we use the model with identity misclassification matrix.

The expected value of an actual state at the time t is the sum of the probability of being in each state at the time t multiplied by its value:

$$
\begin{equation*}
\mathrm{E}\left(X_{t}\right)=\sum_{j=0}^{5} j \cdot \operatorname{Pr}\left(X_{t}=j\right) \tag{5-1}
\end{equation*}
$$

Since the probability from the formula (5-1) can be expressed as:

$$
\begin{equation*}
\operatorname{Pr}\left(X_{t}=j\right)=\sum_{i=0}^{5} \operatorname{Pr}\left(X_{t}=j \mid X_{0}=i\right) \cdot \operatorname{Pr}\left(X_{0}=i\right) \tag{5-2}
\end{equation*}
$$

The expected value reads:

$$
\begin{equation*}
\mathrm{E}\left(X_{t}\right)=\sum_{j=0}^{5} \sum_{i=0}^{5} j \cdot \operatorname{Pr}\left(X_{t}=j \mid X_{0}=i\right) \cdot \operatorname{Pr}\left(X_{0}=i\right) \tag{5-3}
\end{equation*}
$$

Figure 5-1 presents the expectation for this case as a function of time, i.e. the age of a bridge. We can see from the plot that the deterioration proceeds faster when a bridge is younger and it slows down as the state is getting worse. The figure also shows that after about 200 months (more than 16.5 years) the mean condition is ' 3 ', and after more then 800 months (more than 66.5 years) the condition converges to the worst state.

Figure 5-1: The expectation of actual state as a function of age

We would like to present also some other results from the analysis. The Figure 5-2 shows the expectation curve for the transition probabilities (4-19) from page 28 , neglecting the misclassification probabilities (4-20). We can see that for this case, the expected value converges to the worst condition rapidly and much faster than on the Figure 5-1. Now it takes a bridge to reach state ' 5 ' only 200 months (more then 16.5 years), while for the previous case a bridge was in the state ' 3 ' at this time. It comes up that the misclassification matrix has a significant influence on the model and by taking it into account we will obtain different results.

Figure 5-2: The expectation of an actual state as a function of age

Figure 5-3 presents the expectation for the Markov model (perfect inspections) but we use modified data to obtain it. Now, the data contains information about the most severe bridge damage. It means that the condition of a bridge depends on the condition of the worst part of the bridge. We can see how much faster the expectation goes to the worst state comparing it to the result in Figure 5-1. The expectation reaches state ' 5 ' after 1000 months, while for the previous case at time 1200 months it was close to this state, but still not exactly there. Besides, we can see that for this model a bridge transits from perfect condition: ' 0 ' to ' 1 ' with probability one, so in fact immediately. The explanation of this fact can be found after studying the data. There are conditions ' 0 ' only for new bridges (except one bridge with index 1440) and as soon as an inspection takes place it never results in a rate better than ' 1 ', but usually even worse. There is only one exception (i.e. bridges with index 757). We attach some of the extreme cases from this data in Appendix C. From those cases we can read that even a 4 month old bridges can have already label ' 1 ,' or even worse.

The transition parameters for this data are:

$$
\underline{p}=\left[\begin{array}{lllll}
1 & 0.0454 & 0.0264 & 0.0072 & 0.0043
\end{array}\right]
$$

and the value of the log-likelihood function for this case is $\mathbf{- 4 2 4 9 . 4 4}$. The value is much smaller than before, since there is less data than in the regular data set.

Figure 5-3: The expectation of an actual state for the new data

5.2 The expected observation: $\mathbf{E (O (t))}$

Now, we consider the inspectors' rating as the observations which can differ from the real states of the bridges, so we consider the Hidden Markov Model. We are interested in finding the expectation of an observation as a function of time. The formula for the expected value for an observation is more complex than the formula (5-3), as it takes into account the error between the observation and the real state:

$$
\begin{align*}
& \mathrm{E}\left(O_{t}\right)=\sum_{j=0}^{5} j \cdot \operatorname{Pr}\left(O_{t}=j\right)=\sum_{j=0}^{5} j \cdot \sum_{i=0}^{5} \operatorname{Pr}\left(O_{t}=j \mid X_{t}=i\right) \cdot \operatorname{Pr}\left(X_{t}=i\right)= \tag{5-4}\\
& =\sum_{j=0}^{5} j \cdot \sum_{i=0}^{5} \operatorname{Pr}\left(O_{t}=j \mid X_{t}=i\right) \cdot \sum_{k=0}^{5} \operatorname{Pr}\left(X_{t}=i \mid X_{0}=k\right) \cdot \operatorname{Pr}\left(X_{0}=k\right)= \\
& =\sum_{j=0}^{5} j \cdot \sum_{i=0}^{5} \operatorname{Pr}\left(O_{t}=j \mid X_{t}=i\right) \cdot \operatorname{Pr}\left(X_{t}=i \mid X_{0}=0\right)
\end{align*}
$$

The first step is to calculate the expectation of the observation for the optimal model from page 19 (for the optimal binomial misclassification matrix and the corresponding transition matrix). Figure 5-4 presents the result of the expectation (magenta dashed line). For comparison, in the same figure the red line is presented, which indicates the average condition of bridges in a particular age from our data.

Figure 5-4: The expected observation as a function of age, binomial model

We can see from Figure 5-4 that the dashed line of expectation follows the solid line. The expected condition of a bridge converges to 2.5, when the age increases. Moreover, the observation ' 1 ' is reached very fast, and then this process slows down. On average, the condition ' 2 ' is given by experts for a 77 months old bridge (more than 6.4 years).

Below, we present the plot of the expected observation for the discrete uniform model, together again with the average condition of bridges for a particular age from the data.

Figure 5-5: The expected observation as a function of age, uniform model

We can see in Figure 5-5 that the expected curve is perfectly straight and it is placed exactly in the middle of the scale, i.e. on the level of 2.5 . The explanation of this result is straightforward. The uniform misclassification matrix allows in fact the inspectors to be very bad experts whose assessments of the bridges' conditions are completely random and unpredictable. Therefore, the expectation of their opinion is the same at any time and it equals exactly 2.5 . Below we present the explanation of this fact, which is derived from the formula (5-4). It also shows that for the uniform model the choice of the transition matrix P is of no influence, as long as it satisfies the normal stochastic constraints, namely the probabilities from each row must sum to one.

We can always put the ' j ' index inside the second sum in the formula (5-4), as well as to interchange the sums. Then we get:

$$
\begin{align*}
& E\left(O_{t}\right)=\sum_{i=0}^{5} \sum_{j=0}^{5} j \cdot \operatorname{Pr}\left(O_{t}=j \mid X_{t}=i\right) \cdot \operatorname{Pr}\left(X_{t}=i \mid X_{0}=0\right)= \tag{5-5}\\
& =\sum_{i=0}^{5} \operatorname{Pr}\left(X_{t}=i \mid X_{0}=0\right) \cdot \sum_{j=0}^{5} j \cdot \operatorname{Pr}\left(O_{t}=j \mid X_{t}=i\right)=\sum_{i=0}^{5} \operatorname{Pr}\left(X_{t}=i \mid X_{0}=0\right) \cdot \sum_{j=0}^{5}\left(j \cdot \frac{1}{6}\right)= \\
& =\sum_{i=0}^{5} \operatorname{Pr}\left(X_{t}=i \mid X_{0}=0\right) \cdot(2.5)=2.5 \cdot \sum_{i=0}^{5} \operatorname{Pr}\left(X_{t}=i \mid X_{0}=0\right)=2.5 \cdot 1=2.5
\end{align*}
$$

Figure 5-6 presents the expectations of the observation for the two models: the Max.Entr and the binomial with fixed mean.

Figure 5-6: The expected observation as a function of age, Max.Entr and fixed binomial model

The last figure presents the expectation for the models with the not fully filled misclassification matrices that we described in section 5.2.

Figure 5-7: The expected observation as a function of age, models with misclassification matrices: ' 1 ' and ' 2 '

5.3 The probability of the actual state given the observation

Suppose that we now reverse the roles of O_{t} and X_{t}, and we consider the probability of the actual state given the observation: $\operatorname{Pr}\left(X_{t}=i \mid O_{t}=j\right)$. Informally speaking, we assume that the effect O_{t} is known, and we try to determine the probability that the cause X_{t} is true. Obviously, these results will depend on time, i.e. the age of the bridge. Therefore we should determine them for different t, and check how the proceeding time influences these probabilities. For this purpose we will use Bayes theorem, [2], which allows rewriting the probability as:

$$
\begin{equation*}
\operatorname{Pr}\left(X_{t}=i \mid O_{t}=j\right)=\frac{\operatorname{Pr}\left(O_{t}=j \mid X_{t}=i\right) \cdot \operatorname{Pr}\left(X_{t}=i\right)}{\operatorname{Pr}\left(O_{t}=j\right)} \tag{5-6}
\end{equation*}
$$

Furthermore, due to the law of total probability, we can write the denominator of the formula (5-6) in the form:

$$
\begin{equation*}
\operatorname{Pr}\left(O_{t}=j\right)=\sum_{k=0}^{5} \operatorname{Pr}\left(O_{t}=j \mid X_{t}=k\right) \cdot \operatorname{Pr}\left(X_{t}=k\right) \tag{5-7}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Pr}\left(X_{t}=k\right)=\sum_{l=0}^{5} \operatorname{Pr}\left(X_{t}=k \mid X_{0}=l\right) \cdot \operatorname{Pr}\left(X_{0}=l\right)=\operatorname{Pr}\left(X_{t}=k \mid X_{0}=0\right) \tag{5-8}
\end{equation*}
$$

Finally, formula (5-6) transforms into:

$$
\begin{equation*}
\operatorname{Pr}\left(X_{t}=i \mid O_{t}=j\right)=\frac{\operatorname{Pr}\left(O_{t}=j \mid X_{t}=i\right) \cdot \operatorname{Pr}\left(X_{t}=i \mid X_{0}=0\right)}{\sum_{k=0}^{5} \operatorname{Pr}\left(O_{t}=j \mid X_{t}=k\right) \cdot \operatorname{Pr}\left(X_{t}=k \mid X_{0}=0\right)} \tag{5-9}
\end{equation*}
$$

We perform calculations using the above rule and the results for the optimal binomial model are presented in figures Figure 5-8 to Figure 5-11. These figures are useful for viewing how an individual element (actual state) contributes to an aggregate amount (probability of one) and also for presenting results that change over a period of time.

Both Table 5-1 and Figure 5-8 illustrate the outcomes for the bridges which are one year old. We can see that the results are quite intuitive. At this time, the probability that the actual state is in perfect condition is very high given the inspectors' ratings. However, we can see the tendency that this probability is getting smaller as experts give a bridge a worse 'label'. Nevertheless, if an inspector rates severely a one year old bridge then these results may indicate that he or she makes some error. But it is an underestimating rather than overestimating error, i.e. the opinion about the condition of a bridge is more pessimistic than the condition could be actually. When a one year old bridge is rated as ' 5 ', it seems to be clear that it is a too severe label and it is rather possible only in theory. However, with a given observation '4' or ' 3 ', there is a high probability that a bridge is not in perfect state any more (the second blue bar at observations ' 3 ' and ' 4 ' are relatively high), because the probabilities that it is in ' 1 ' or ' 2 ' rise up.

Figure 5-8: Probability of the actual state given the observation, $\mathbf{t = 1 2}$ months

x o	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{0}$	0.8453	0.7819	0.7005	0.6022	0.4921	0.3702
$\mathbf{1}$	0.1163	0.1588	0.2100	0.2665	0.3214	0.3694
$\mathbf{2}$	0.0252	0.0378	0.0551	0.0771	0.1023	0.1288
$\mathbf{3}$	0.0095	0.0148	0.0223	0.0324	0.0447	0.0586
$\mathbf{4}$	0.0035	0.0059	0.0096	0.0152	0.0227	0.0320
$\mathbf{5}$	0.0003	0.0009	0.0024	0.0065	0.0169	0.0410

Table 5-1: Probability of an actual state given the observation, $t=12$ months

After two years (24 months) the situation changes a bit. The probability of being in state ' 0 ' is still high, but smaller than before and the other probabilities rise up. Now, if an inspector rates a bridge as for instance ' 3 ', the probability that he or she assesses it correctly is much higher than before. Nevertheless, a very likely scenario is that the actual condition is ' 5 ', or even more probably ' 0 ' for this case. We can see that while the proportion for the observations ' 0 ' and ' 1 ' does not change dramatically, the differences are visible for lower labels. We can perceive the following tendency: assessment of the real state when it oscillates around ' 3 ' and ' 4 ' is a difficult task, and we should be careful in trusting the inspectors' rating in this case. Furthermore, we can see in Figure 5-9 that if a bridge is rated as ' 5 ' after two years, there is about 0.38 probability that it is indeed in this condition.

Figure 5-9: Probability of the actual state given the observation, t=24 months

$0 x$	0	1	2	3	4	5
0	0.7234	0.6205	0.4986	0.3663	0.2386	0.1304
1	0.1613	0.2043	0.2423	0.2628	0.2527	0.2110
2	0.0524	0.0731	0.0956	0.1142	0.1209	0.1105
3	0.0320	0.0464	0.0629	0.0780	0.0858	0.0817
4	0.0244	0.0383	0.0562	0.0756	0.0900	0.0922
5	0.0065	0.0175	0.0444	0.1031	0.2119	0.3742

Table 5-2: Probability of an actual state given the observation, $\mathbf{t = 2 4}$ months

Figure 5-10 presents the 'bar' graph of the probabilities of the actual states given the observation for four year old bridges. We can see that again a correct assessment of the states in the middle of the scale is much more difficult and it is due to the possibilities of making a serious error. When the observation is ' 5 ' the probability that the real state is also ' 5 ' is the highest compared with the probabilities of being in another state. It can mean that it is not difficult to assess correctly the real state ' 5 '. An analogous situation we see for state ' 0 '. However, here the probability that the actual state is ' 1 ' when it is rated as ' 0 ' is relatively high.

Figure 5-10: Probability of the actual state given the observation, $\mathbf{t = 4 8}$ months

$\begin{aligned} & x \\ & 0 \end{aligned}$	0	1	2	3	4	5
0	0.5673	0.4175	0.2636	0.1380	0.0604	0.0225
1	0.1753	0.1905	0.1775	0.1372	0.0886	0.0505
2	0.0708	0.0847	0.0869	0.0741	0.0527	0.0328
3	0.0556	0.0691	0.0736	0.0651	0.0481	0.0312
4	0.0678	0.0912	0.1053	0.1009	0.0807	0.0564
5	0.0633	0.1470	0.2931	0.4847	0.6695	0.8065

Table 5-3: Probability of an actual state given the observation, $t=36$ months

We would like to present also the graph for ten year old bridges. We can read from Figure 5-11 that the situation is almost opposite to the situation seen in Figure 5-8. Now, the probability of being in the worst condition is very high given the inspectors ratings. These results seem to be a bit strange, as ten years old bridges are not so old structures. However, it gives an intuitive belief, that if we would take into consideration the misclassification errors which change over time (non-stationary case of the misclassification matrix), the situation could be whatsoever different and it would be worth to carry out such analysis.

Figure 5-11: Probability of the actual state given the observation, $\mathbf{t = 1 2 0}$ months

x	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
o						

Table 5-4: Probability of an actual state given the observation, $\mathbf{t = 1 2 0}$ months

6 First time to reach a failure

In this chapter we will try to answer the question: how long it will take for a process to reach state j from state i for the first time. The time required before the state will move from i to j for the first time is referred to as the first passage time. However, the most interesting aspect for us is to get to know how fast a bridge goes from the perfect condition ' 0 ' to the very bad condition ' 5 ' (failure). This information can help a decision-maker to fix an optimal time to carry out the inspections. Properly scheduled inspections can allow for minimizing the cost of maintenance and in the same time for keeping the bridges safe for their users.

We can pose the question about the average time of reaching the worst state, assuming that the process starts from the perfect condition. We will compare the mean time of reaching state ' 5 ' from state ' 0 ' for perfect inspections and for imperfect inspections. Moreover, we are highly interested in finding how the mean time of reaching state ' 5 ' changes when the time interval of inspections changes.

6.1 Perfect inspections

At the beginning, we consider a situation where the conditions of the bridges indicate the real states of the bridges. In other words, we assume that the inspectors made no error in the assessment of the bridges' conditions. So the process can go only forward. We do so, in order to compare how the situation will change when we introduce inspections with possible errors.

For a Markov process we define:

$$
T_{j}=\inf \left\{s \geq 1: X_{s}=j\right\}
$$

which is the first time that the process X_{s} visits the state j , [3]. That is, $T_{j}=S$ if and only if $X_{k} \neq j$ for $\mathrm{k}=1,2, \ldots, \mathrm{~s}-1$ and $X_{s}=j$. We define the probability density function $f_{i j}$ as:

$$
\begin{equation*}
f_{i j}(s)=\operatorname{Pr}\left(T_{j}=s \mid X_{0}=i\right)=\operatorname{Pr}\left(X_{s}=j, X_{s-1} \neq j, X_{s-2} \neq j, \ldots, X_{1} \neq j \mid X_{0}=i\right) \tag{6-1}
\end{equation*}
$$

The probability density function $f_{i j}(s)$ can be calculated recursively via:

$$
f_{i j}(s)=\left\{\begin{array}{lll}
\sum_{k \neq j}^{n} P_{i k} \cdot f_{k j}(s-1) & \text { if } & s>1 \tag{6-2}\\
P_{i j} & \text { if } & s=1
\end{array}\right.
$$

To see this, we have for $s \geq 2$:

$$
\begin{align*}
& f_{i j}(s)=\sum_{k \neq j} \operatorname{Pr}\left(X_{1}=k, X_{2} \neq j, \ldots, X_{s-1} \neq j, X_{s}=j \mid X_{0}=i\right)= \tag{6-3}\\
& =\sum_{k \neq j} \operatorname{Pr}\left(X_{1}=k \mid X_{0}=i\right) \cdot \operatorname{Pr}\left(X_{2} \neq j, \ldots, X_{s-1} \neq j, X_{s}=j \mid X_{1}=k\right)
\end{align*}
$$

But, by the Markov property and stationarity, it follows that:

$$
f_{i j}(s)=\sum_{k \neq j} \operatorname{Pr}\left(X_{1}=k \mid X_{0}=i\right) \cdot \operatorname{Pr}\left(X_{1} \neq j, X_{2} \neq j, \ldots, X_{s-2} \neq j, X_{s-1}=j \mid X_{0}=k\right)=\sum_{k \neq j} P_{i k} \cdot f_{k j(s-1)}
$$

Below, we present the results from the Matlab calculations, which were obtained using the recursive formula (6-2). The probability density function shows the expected time for the deterioration process to reach state ' 5 ' for the first time. From Figure 6-1 we can see that the mean time is about 574 months. The figure shows also that after about 1600 months (about 133 years) the probability that the condition of a bridge never has reached state ' 5 ' is almost zero.

Figure 6-1: First passage time for a forward process, f_{05}

6.2 Imperfect inspections

Now, we will consider the case of imperfect inspection, so we assume the deterioration process is hidden. For this case, the formula (6-1) must be transformed in a way, which will take into consideration the error resulting from the experts' subjectivity. As we need to include the misclassification matrix, it means that we allow the process to go backwards. Therefore, the first passage time is in fact the first 'observation' time. It says how many inspections must be carried out in order to observe the condition j for the first time. Now, we have:

$$
\begin{equation*}
f_{i j}^{*}(s)=\operatorname{Pr}\left(O_{s}=j, O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid O_{0}=i\right) \tag{6-4}
\end{equation*}
$$

As before, the notation O_{s} is equivalent with $O\left(t_{s}\right)$ and denotes the s-th inspection carried out at time t_{s}. Also, we assume that the observation at time t_{0} is equivalent with the actual state at time $t_{0}\left(O_{0} \equiv X_{0}\right)$.

We will present two approaches to this problem. The first one is based on the quasiNewton method which was described by Cappé et al, [9] in terms of the maximum likelihood estimation. The second approach uses the idea of the forward (or Baum-Welch) algorithm presented for instance by L.R. Rabiner, [8]. Both methods are efficient and give the same results. The speed of these two algorithms is comparable and very fast (it takes about 0.0022 and 0.0071 seconds to calculate, respectively).

To demonstrate the first approach, let us rewrite formula (6-4) as a product of two conditional probabilities as follows:

$$
\begin{equation*}
f_{i j}^{*}(s)=\operatorname{Pr}\left(O_{s}=j, O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid O_{0}=i\right)= \tag{6-5}
\end{equation*}
$$

$$
=\operatorname{Pr}\left(O_{s}=j \mid O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right) \cdot \operatorname{Pr}\left(O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid X_{0}=i\right)
$$

Now, the first term of the above formula can be formulated using the law of total probability:

$$
\begin{align*}
& \operatorname{Pr}\left(O_{s}=j \mid O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)= \tag{6-6}\\
& =\sum_{k=0}^{5} \operatorname{Pr}\left(O_{s}=j, X_{s}=k \mid O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)= \\
& =\sum_{k=0}^{5} \operatorname{Pr}\left(O_{s}=j \mid X_{s}=k\right) \cdot \operatorname{Pr}\left(X_{s}=k \mid O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)
\end{align*}
$$

We will denote the probability of the actual state at time s given the history of the observations until the time s-1 from the formula (6-6) as $\phi_{s}(k, j)$, i.e.:

$$
\begin{equation*}
\phi_{s}(k, j)=\operatorname{Pr}\left(X_{s}=k \mid O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right) \tag{6-7}
\end{equation*}
$$

The notation of $\phi_{s}(k, j)$ refers to the notation from [9] for the state prediction filter. (6-7) can be computed recursively:

$$
\begin{equation*}
\phi_{s}(k, j)=\frac{\sum_{\forall l \neq j u=0}^{5} \operatorname{Pr}\left(O_{s-1}=l \mid X_{s-1}=u\right) \cdot \operatorname{Pr}\left(X_{s}=k \mid X_{s-1}=u\right) \cdot \phi_{s-1}(u, j)}{\sum_{\forall l \neq j} \sum_{v=0}^{5} \operatorname{Pr}\left(O_{s-1}=l \mid X_{s-1}=v\right) \cdot \phi_{s-1}(v, j)} \tag{6-8}
\end{equation*}
$$

The proof of $(6-8)$ can be found in Appendix D. The denominator of the formula (6-8) is the normalization factor and it is the main factor that distinguishes the algorithm from the second one, which will be presented later on in this section.

Let us now focus on the second term of formula (6-5); that is, on the probability of the sequence of observations given the initial state. It looks similar to our first 'observation' time for step s-1 except that the process cannot still reach state j at this time. But

$$
\begin{align*}
& \operatorname{Pr}\left(O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid X_{0}=i\right)= \tag{6-9}\\
& =\sum_{l \neq j} \operatorname{Pr}\left(O_{s-1}=l, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid X_{0}=i\right)=\sum_{l \neq j} f_{i l}^{*}(s-1)
\end{align*}
$$

Finally, we can write the first 'observation' time via the recursive formula that reads:

$$
\begin{equation*}
f_{i j}^{*}(s)=\sum_{k=0}^{5} \operatorname{Pr}\left(O_{s}=j \mid X_{s}=k\right) \cdot \phi_{s}(k, j) \cdot \sum_{l \neq j} f_{i j}^{*}(s-1) \tag{6-10}
\end{equation*}
$$

where we start this recursion from $f_{i j}^{*}(1)$ which is simply:

$$
\begin{align*}
& f_{i j}^{*}(1)=\operatorname{Pr}\left(O_{1}=j \mid X_{0}=i\right)=\sum_{k=0}^{5} \operatorname{Pr}\left(O_{1}=j, X_{1}=k \mid X_{0}\right)= \tag{6-11}\\
= & \sum_{k=0}^{5} \operatorname{Pr}\left(O_{1}=j \mid X_{1}=k\right) \cdot \operatorname{Pr}\left(X_{1}=k \mid X_{0}=i\right)
\end{align*}
$$

Now, we will pay attention to the second method of obtaining the first 'observation' time, which is based on the forward algorithm. This algorithm does not require normalization. We start it by using directly the law of total probability to the formula (6-4), without breaking it into two conditional probabilities. Hence, we have:

$$
\begin{align*}
& f_{i j}^{*}(s)=\operatorname{Pr}\left(O_{s}=j, O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid O_{0}=i\right)= \tag{6-12}\\
& =\sum_{k=0}^{5} \operatorname{Pr}\left(O_{s}=j, X_{s}=k, O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid O_{0}=i\right)
\end{align*}
$$

The idea of this method is to use the forward variable $\alpha_{s}(l, k)$ defined as:

$$
\begin{equation*}
\alpha_{s}(l, k)=\operatorname{Pr}\left(O_{s}=l, X_{s}=k, O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid X_{0}=i\right) \tag{6-13}
\end{equation*}
$$

i.e., the probability of the partial observation sequence $O_{1}, O_{2}, \ldots, O_{s-1}$ not equal to j and the observation at the time s equals j while the actual state equals k at the time s.

We can write the probability from the sum (6-12) in terms of the forward variable (6-13). We use an analogue technique as we did in (6-5), but now we have already involved X_{s} into our probability:

$$
\begin{gather*}
\operatorname{Pr}\left(O_{s}=j, X_{s}=k, O_{s-1} \neq j, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid O_{0}=i\right)= \tag{6-14}\\
=\operatorname{Pr}\left(O_{s}=j \mid X_{s}=k, O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right) \cdot \operatorname{Pr}\left(X_{s}=k, O_{s-1} \neq j, \ldots, O_{1} \neq j \mid X_{0}=i\right)
\end{gather*}
$$

In the context of the assumption (2-3) from page 12 we can reduce the first conditional probability, by passing over the observation sequence and we get simply: $\operatorname{Pr}\left(O_{s}=j \mid X_{s}=k\right)$. The second term of $(6-14)$ can be modified using again the law of total probability and adding X_{s-1} into it (and using the same assumption (2-3)). We can write this term as a double sum, as follows:

$$
\begin{align*}
& \operatorname{Pr}\left(X_{s}=k, O_{s-1} \neq j, \ldots, O_{1} \neq j \mid X_{0}=i\right)= \tag{6-15}\\
& =\sum_{l \neq j} \sum_{m=0}^{5} \operatorname{Pr}\left(X_{s}=k, X_{s-1}=m, O_{s-1}=l, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid X_{0}=i\right) \\
& =\sum_{l \neq j} \sum_{m=0}^{5} \operatorname{Pr}\left(X_{s}=k \mid X_{s-1}=m\right) \cdot \operatorname{Pr}\left(X_{s-1}=m, O_{s-1}=l, O_{s-2} \neq j, \ldots, O_{1} \neq j \mid X_{0}=i\right)
\end{align*}
$$

We can recognize inside the above formula our forward variable: $\alpha_{s-1}(l, m)$. Therefore we can finally write the first 'observation' time (6-12) recursively via:

$$
\begin{equation*}
f_{i j}^{*}(s)=\sum_{k=0}^{5} \sum_{l \neq j} \sum_{m=0}^{5} \operatorname{Pr}\left(O_{s}=j \mid X_{s}=k\right) \cdot \operatorname{Pr}\left(X_{s}=k \mid X_{s-1}=m\right) \cdot \alpha_{s-1}(l, m) \tag{6-16}
\end{equation*}
$$

where the first iteration $f_{i j}^{*}(1)$ is calculated in the same way as it was done in the first method.

Let us consider the optimal binomial model, which seems to fit the best our data. We carry out an analysis to determine the influence of inspection intensity on the expected time to reach the last condition. Therefore, we start with the assumption that inspections take place every year and then successively we lengthen the inspection interval. The results for inspections taking place each year, two years, three years, four years and ten years are presented respectively.

The first conclusions are pretty obvious from the intuitive point of view. The analysis reveals an interesting tendency, namely that the intensity of the inspections' is important. The more inspections in a short period of time lead to a smaller expectation of the first 'observation' time.

Figure 6-2: First 'observation' time for optimal binomial model, inspections carried out each year, f_{05}^{*}

Figure 6-3: First 'observation' time for optimal binomial model, inspections carried out each 24 months, f_{05}^{*}.

Figure 6-4: First 'observation' time for optimal binomial model, inspections carried out each 36 months, f_{05}^{*}.

Figure 6-5: First 'observation' time for optimal binomial model, inspections carried out each 48 months, f_{05}^{*}

Figure 6-6: First 'observation' time for optimal binomial model, inspections carried out each $\mathbf{1 2 0}$ months, f_{05}^{*}

We can notice from Figure 6-2 to Figure 6-6 that the expected time to reach the worst condition is very long, even not realistic. This is especially for rarer inspections where we need to multiply the expected time to observe the worst state (failure) by the inspection interval in order to obtain the expected value in years. However, we can give an explanation for this fact. Lengthening the inspection interval portrays an interesting tendency, namely the expectation of the first 'observation' time convergences to 38.31 inspections. This number stays with strong relation to the misclassification matrix E . When we calculate the reciprocal of the probability of correctly identifying the last state we get the same number. Therefore the first 'observation' time does depend on what this probability is. In our case, the value of the probability is very small and this is the reason why we get so remote expected time to failure. Therefore, we would like to present also the figures visualising the observation of the condition ' 3 ' for the first time, as it is a quite serious condition which indicates that some maintenance actions should be already initiated. The time of reaching this state is considerably shorter (figures: Figure 6-7 to Figure 6-11).

The above conclusions may hint that we can improve our model by considering the non-stationary misclassification matrix, i.e. the matrix in which the error probabilities depend on time. With such a model the accuracy of identifying the actual state is in relation to the age of a bridge. Then, the probability of correctly identifying the worst condition is getting higher with time and it could change the expected value meaningfully.

From the results we can write one more conclusion. There is a significant difference whether we consider inspectors' ratings as actual states or as observations which can contain error. For the former process the deterioration proceeds faster than for the latter (except the case of inspection carried out every year where the first observation time and the first passage time are comparable). The actual process represents deterioration without paying attention to the intensity of the inspections what could be the main reason for this situation.

Figures 7-7 to 7-11 present the distribution of observing condition ' 3 ' for the first time:

Figure 6-7: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each 12 months, f_{03}^{*}

Figure 6-8: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each 24 months, f_{03}^{*}

Figure 6-9: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each $\mathbf{3 6}$ months, f_{03}^{*}

Figure 6-10: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each 48 months, f_{03}^{*}

Figure 6-11: First time of observation the condition ' 3 ' for optimal binomial model, inspections carried out each $\mathbf{1 2 0}$ months, f_{03}^{*}

Now, we will do an analogue analysis but for the Max. Entr model. Figures 6-12 to 6-16 present the obtained plots. We can read from them that the time to observe the last condition is much shorter than for the previous model. For this case, we observe that after lengthening the inspection interval, the expectation converges to 9.69 inspections. This number is the reciprocal of the probability of observing the last state given that the true state is ' 2 '. It is so since the actual process stops at the state ' 2 ' for this model (the transition matrix indicates that).

Figure 6-12: First `observation' time for Max.Entr model, inspections carried out each 12 months, f_{05}^{*}

Figure 6-13: First `observation' time for Max.Entr model, inspections carried out each 24 months, f_{05}^{*}

Figure 6-14: First 'observation' time for Max.Entr model, inspections carried out each 36 months, f_{05}^{*}

Figure 6-15: First 'observation' time for Max.Entr model, inspections carried out each 48 months, f_{05}^{*}

Figure 6-16: First 'observation' time for Max.Entr model, inspections carried out each 120 months, f_{05}^{*}

The Maximum Entropy model brings quite different results. The first time of observing the worst condition ' 5 ' is much shorter. This is because the actual state ' 2 ' is according the model an absorbing state (it is due to the optimal transition parameters for the model which are presented on page 30). The expectation of the first 'observation' time converges for this model to 9.67 inspections as we lengthening the inspection intervals. This is the reciprocal of the probability of observing the worst condition given the actual state is ' 2 '. Therefore the time of observing the worst condition is relatively shorter for this case.

The probability density functions of observing the worst state for the first time for the other models are presented in Appendix E.

7 Conclusions

The thesis concentrates on the analysis leading to developing a deterioration model for the bridges in the Netherlands. The model was based on the results from visual inspections that are collected in the database called 'DISK'. The bridges are rated on the discrete scale from ' 0 ' to ' 5 ' (in fact from ' 0 ' to ' 6 ,' but due to the small amount of data we have decided to merge the last two states together), where ' 0 ' means perfect condition and ' 5 ' means very bad condition (failure). Therefore we have used the Markovian model as a mathematical tool. Since the inspections are carried out only visually, a lot of factors can influence the expert opinions about the bridge conditions. Hence, the main aim was to take the subjectivity of the inspectors into account. In order to do that, we introduced the Hidden Markov Model where the observation is a probabilistic function of the state. In this model, the actual process is not observable directly (it is hidden), but can only be determined through the sequence of observations.

The Markov property indicates that given the present the history of the process is not important and the future prediction of the state depends only on the present state. However, it concerns the hidden process not the observable one. The Markov property does not hold for the observable process, but only for the actual process. We assume independence of the inspections given the values of the real deterioration process.

The most important challenge during this work was to derive the formula for the likelihood functions of the data that would take into account the parameters of the model. We have had two types of the parameters, namely the transition and the misclassification parameters. The transition parameters describe the probabilities of moving to the next states for the actual deterioration process. The misclassification parameters model the probabilities of inspector errors. Both types of parameters create matrices: the transition and misclassification matrix, respectively.

Literature describes a few approaches for fitting the transition and misclassification matrix. We decided to implement the method proposed by Jackson in [1]. Although the method is not given via recursive formulation, it allows for writing the likelihood function in terms of the matrices product and therefore makes the implementation passable. Unfortunately, the optimization algorithm to implement the maximum likelihood method for estimating the parameters is not a perfect method. It can happen that the solution is only a local maximum. It is difficult to judge whether we obtain a global or local solution and there is no algorithm which could confirm that. A possible way to verify it is to start the maximization scheme with various initial guesses and to make sure that it leads to the same values of the optimal parameters. If this is the case, we can suppose that we have indeed found the global maximum. Another approach is using global optimization methods (such as genetic algorithms).

Taking the inspectors' subjectivity into consideration allows for the possibilities of seeing a better condition for the bridge than it was on the previous inspections. In other words, we needed to accept that the condition can improve. However, we excluded transitions that could indicate maintenance from the data. Therefore, we assumed that the improvements in the conditions are only due to expert-judgment errors. It reflects the way of choosing both matrices: the transition and the misclassification matrix. The transition matrix does not allow the process to go backward. It only allows a bridge to move one condition forward in one unit of time (month). But the choice of the misclassification matrix needed to be adequate. Since we had to take into account all possible errors between the observations and the actual states, the misclassification matrix had to be fully filled.

We have introduced a few types of misclassification matrices which can describe the inspectors' errors. With the use of the optimization algorithm the optimal one was found, i.e. the one with the maximum likelihood value, together with the transition matrix. The probabilities of error were higher for the better conditions (from ' 0 ' to ' 2 ') in the misclassification matrix. This means that the inspectors are more likely to rate a condition of a bridge as satisfactory and therefore they make more mistakes within this part of the scale.

Imposing the expected value of the observed state equal to the actual state, a different type of misclassification matrix was built, namely the maximum entropy matrix. In this way, we obtained the probability distribution for the misclassification errors with maximum entropy given a fixed mean (i.e. with the minimum extra information). Also, we built the misclassification matrix using the binomial distribution with fixed mean in order to compare those two matrices in terms of the amount of additional information that they add. The analysis has shown that with such misclassification matrices, the optimal transition parameters became meaningful different. In these cases, transitions to the worse states were rather due to the error of the inspectors than due to the deterioration progress. The reason for this result was connected with the fact that these distributions put higher probabilities of error for the worse observations (form ' 3 ' to ' 5 ') in the misclassification matrix.

Since, the fully filled misclassification matrix assumed that the inspection error can span the whole range, it can be too uncertain. Therefore, other models were also considered, where only some of the places in the misclassification matrix were not equal to zero. It was connected with removing all transitions from the data which result in zero values for the likelihood function. The binomial model with such an incomplete misclassification matrix ('Misclassification matrix 2^{\prime}) has given quite nice results. All the parameters in this model differed from zero. However, the tendency from the previous models was kept, namely the probabilities of error stayed high for the better conditions. It indicates that the probability of correctly identifying the worst state was almost zero. This fact had a big influence on the further analysis of the time of first observing the worst state. We have also considered a model with a misclassification matrix which allows the error to be of the difference of one state at the most ('Misclassification matrix $\left.1^{\prime}\right)$. This matrix turned out to be close to the one for the perfect inspection. In other words, for this case, the optimal parameters indicate that the inspectors are almost perfect experts.

The misclassification matrix that comes from the maximum entropy method was generated according to some reasonable constraints (the mean was known and equal to the actual state). However, for this case the probabilities of correctly identifying the worse states were getting smaller, which is not the desired tendency. For the optimal binomial model, those probabilities were even smaller. It makes those models to be defective. The misclassification matrix resulting from the binomial model with a fixed mean seems to be much better in this respect. Therefore it is worth to pay attention to this matrix in the future research. Furthermore, it does not have to be a fully filled matrix. A partially filled misclassification matrix, which is generated according to a binomial distribution with a fixed mean could be also a good choice.

For the various misclassification models, we have illustrated the expectation for both the actual state and the observed state for various models. They gave different results, as the expected condition involved the probabilities of error. The expectation of the actual states converged to the worst state, while the expectation of the observation never reached this level. Moreover, the latter expectation was close to the line which indicated the average condition of bridges in a particular age from the data. However, it differed depending on the model.

Using Bayes' rule, we were able to calculate the probability of the actual state given the observed state. From this probability, we were able to read what the most probable actual state of a bridge is when an inspector gives it a particular rating.

In the last chapter we have presented the idea of the mean time to reach the worst state (first passage time) and its extension to the mean time to observe the worst state (first 'observation' time). They were described in terms of the probability density functions. The recursive formula for the density function for perfect inspection is not complicated and can be found in the literature. However, the first 'observation' time requires an algorithm that is more complex. The complexity results mainly from the fact that the sequence of observations does not have the Markov property as the hidden process has. Two approaches for this problem were presented which give the same results. Furthermore, the probability density functions of the first 'observation' times were calculated for various inspection intervals. The analysis reveals that the intensity of the inspections has a large impact on the mean time to observe a failure. The more often the inspections take place the shorter the mean time to observe the worst condition is. From the results, it is clear that the mean time to observe the failure is connected with the misclassification probability, precisely with the probability of correctly identifying the worst state (for the optimal binomial model). The mean time converges to the reciprocal of this probability. Therefore the higher this probability is, the shorter the mean time to failure.

Recommendation for future research:

In our analysis we assumed both the transition matrix and the misclassification matrix to be state-dependent and time-independent (stationary). However, taking the non-stationary model, especially the non-stationary misclassification matrix, could improve the results in great deal and it would be interesting to make such analysis in future research.

It will be useful to test the inspectors to have better knowledge how much their assessments could differ from the real states. In other words, what is the biggest error they can make. Then it would be clearer how to fill the misclassification matrix and whether it must be fully filled or not.

We implemented the likelihood function based on one method proposed by Jackson, [1]. The other mentioned models could be implemented and the results compared.

Since the transitions that could indicate maintenance were removed from the data, the model did not take them into account. Including them into the model would be an interesting challenge.

8 References

[1] Ch. H. Jackson, L. D. Sharples, S. G. Thompson, S. W. Duffy, E. Couto, 'Multistate Markov models for disease progression with classification error', The Statistician (2003), 52, Part 2, pp. 193-209.
[2] T. Bedford, R. Cooke, 'Probabilistic risk analysis', Cambridge University Press, 2001
[3] M. Kijima, 'Markov processes for stochastic modelling', London, Chapman and Hall, 1997
[4] J. Dickinson Gibbons, S. Chakraborti, 'Nonparametric statistical inference', Third edition, 1992, New York, Dekker, 1992
[5] M. Skuriat-Olechnowska, 'Statistical inference and hypothesis testing for Markov chains with interval censoring', Master Theses, TUDelft, 2005
[6] The website Wolfram Math World: http://mathworld.wolfram.com
[7] The website of Wikipedia: http://www.wikipedia.org
[8] L. R. Rabiner, `A turtorial on Hidden Markov Models and selected applications in speech recognition', Proceeding of the IEEE, Vol. 77, NO. 2, February 1989.
[9] O. Cappé, V. Buchoux, E. Moulines, 'Quasi-Newton method for maximum likelihood estimation of Hidden Markov Models', 1998 IEEE
[10] S. M. Ross, 'Introduction to probability models', 8th edition, San Diego: Academic Press, 2003
[11] C. Guihenneuc-Jouyaux, S. Richardson, I.M. Longini, 'Modelling markers of disease progression by a hidden Markov process: application to characterising CD4 cell decline', Biometrics, 56, 733-741, 2000
[12] G. Churchill, 'Hidden Markov chains and the analysis of genome structure', Computers and Chemistry, 16(2):107-1115, 1992
[13] C. H. Jackson, L. D. Sharples, 'Hidden Markov models for the onset and progression of bronchiolitis obliterans syndrome in lung transplant recipients', Statist. Med., 21, 113-128, 2002.
[14] M. Sztul, Internship report on the subjectivity of the bridge inspections in the Netherlands, TU Delft 2006
[15] W. Lafayette, 'Optimal infrastructure management decisions under uncertainty', School of Civil Engineering, Purdue University, IN 47907, U.S.A., Transpn. Res.-C, Vol. 1, No 1, pp 77-88, 1993
[16] M. Jiang, R. B. Corotis, J. H. Ellis, 'Optimal life-cycle costing with partial observability', Journal of Infrastructure Systems, pp 56-65, June 2000

Appendices

Appendix A: Specific bridges from the data

We present all the cases from the data that indicate the value zero of the likelihood function, when the misclassification matrix is of the first type.

Bridge index	Age of a bridge [in months]	Age of a bridge [in months]	Condition state	Condition state	Year of construction
127	198	213	1	3	1976
127	213	283	3	0	1976
410	307	318	2	5	1967
410	318	325	5	0	1967
410	325	390	0	3	1967
410	390	414	3	3	1967
410	414	454	3	3	1967
417	251	382	4	3	1970
417	382	411	3	1	1970
454	214	302	1	3	1970
454	302	310	3	5	1970
454	310	364	5	2	1970
779	716	727	4	1	1933
779	727	764	1	3	1933
800	234	262	4	1	1973
848	292	380	5	2	1966
856	665	694	4	3	1937
856	694	753	3	1	1937
932	437	481	5	1	1956
939	0	53	0	5	1988
939	53	56	5	4	1988
939	56	82	4	2	1988
1401	253	268	4	1	1970
1401	268	315	1	2	1970
1424	149	215	5	3	1980
1424	215	294	3	2	1980
1449	616	666	3	3	1939
1449	666	719	3	0	1939
1622	358	419	2	4	1957
1622	419	459	4	4	1957
1622	459	515	4	3	1957
1622	515	546	3	1	1957
1698	87	119	5	2	1985
1765	563	601	4	1	1940
1765	601	659	1	3	1940
1765	659	713	3	2	1940
1766	556	589	5	2	1941
1766	589	642	2	2	1941
1766	642	701	2	3	1941
1808	239	279	1	5	1970

1808	279	390	5	1	1970
1809	239	279	1	4	1970
1809	279	390	4	1	1970
1901	446	453	3	0	1955
1901	453	558	0	3	1955
2029	220	229	1	1	1969
2029	229	291	1	4	1969
2029	291	410	4	1	1969
2052	279	339	2	5	1965
2052	339	460	5	2	1965
2131	297	353	2	5	1963
2131	353	476	5	2	1963
2132	297	353	2	5	1963
2132	353	476	5	2	1963
2147	250	305	1	5	1967
2147	305	428	5	2	1967
2198	198	255	1	5	1972
2198	255	368	5	2	1972
2240	381	395	3	3	1961
2240	395	432	3	0	1961
2257	346	357	3	0	1963
2260	238	249	3	0	1972
2260	249	369	0	2	1972
2262	658	669	3	0	1937
2262	669	789	0	3	1937
2285	395	405	3	0	1959
2285	405	460	0	3	1959

Table A-1: Specific structures from the data

Appendix B: Proof of the formula for the likelihood (4-3)

We shall prove that the likelihood of the form (4-2):

$$
\begin{aligned}
L_{i}(\underline{\theta})= & \operatorname{Pr}\left(O_{1}^{i}=j_{1}, O_{2}^{i}=j_{2}, \ldots, O_{m}^{i}=j_{m}\right)= \\
& =\sum \operatorname{Pr}\left(O_{1}^{i}=j_{1}, \ldots, O_{m}^{i}=j_{m} \mid X_{1}^{i}=l_{1}, \ldots, X_{m}^{i}=l_{m}\right) \cdot \operatorname{Pr}\left(X_{1}^{i}=l_{1}, \ldots, X_{m}^{i}=l_{m}\right)
\end{aligned}
$$

(where the sum is taken over all possible paths of the actual states l_{m}), can be expressed by the formula (4-3):

$$
\begin{aligned}
& L_{i}(\underline{\theta})=\sum_{l_{1}=0}^{5} \operatorname{Pr}\left(O_{1}^{i}=j_{1} \mid X_{1}^{i}=l_{1}\right) \operatorname{Pr}\left(X_{1}^{i}=l_{1}\right) \cdot \sum_{l_{2}=0}^{5} \operatorname{Pr}\left(O_{2}^{i}=j_{2} \mid X_{2}^{i}=l_{2}\right) \operatorname{Pr}\left(X_{2}^{i}=l_{2} \mid X_{1}^{i}=l_{1}\right) \\
& \sum_{l_{3}=0}^{5} \operatorname{Pr}\left(O_{3}^{i}=j_{3} \mid X_{3}^{i}=l_{3}\right) \operatorname{Pr}\left(X_{3}^{i}=l_{3} \mid X_{2}^{i}=l_{2}\right) \cdot \ldots \cdot \sum_{l_{m}=0}^{5} \operatorname{Pr}\left(O_{m}^{i}=j_{m} \mid X_{m}^{i}=l_{m}\right) \operatorname{Pr}\left(X_{m}^{i}=l_{m} \mid X_{m-1}^{i}=l_{m-1}\right)
\end{aligned}
$$

Proof:

To make the formulas easier to write down, we will shorten the notation as follows:
$\left(O_{1}^{i}=j_{1}, \ldots, O_{m}^{i}=j_{m}\right) \equiv\left(O_{1}, \ldots, O_{m}\right)$ and $\left(X_{1}^{i}=l_{1}, \ldots, X_{m}^{i}=l_{m}\right) \equiv\left(X_{1}, \ldots, X_{m}\right)$.

We will start with the equation (4-3) and will finish with the form corresponding to the equation (4-4). Using the necessary assumptions, we have:

$$
\begin{aligned}
& \operatorname{Pr}\left(O_{1}, O_{2}, \ldots, O_{m}\right)=\sum_{\forall X_{1}} \sum_{\forall X_{2}} \ldots \sum_{\forall X_{m}} \operatorname{Pr}\left(O_{1}, O_{2}, \ldots, O_{m}, X_{1}, \ldots X_{m}\right)= \\
& =\sum_{\forall X_{1}} \sum_{\forall X_{2}} \ldots \sum_{\forall X_{m}} \operatorname{Pr}\left(O_{m}, X_{m}, \ldots, O_{2}, X_{2} \mid O_{1}, X_{1}\right) \cdot \operatorname{Pr}\left(O_{1}, X_{1}\right)= \\
& =\sum_{\forall X_{1}} \operatorname{Pr}\left(O_{1}, X_{1}\right) \cdot \sum_{\forall X_{2}} \ldots \sum_{\forall X_{m}} \operatorname{Pr}\left(O_{m}, X_{m}, \ldots, O_{2}, X_{2} \mid X_{1}\right)= \\
& =\sum_{\forall X_{1}} \operatorname{Pr}\left(O_{1} \mid X_{1}\right) \cdot \operatorname{Pr}\left(X_{1}\right) \cdot \sum_{\forall X_{2}} \ldots \sum_{\forall X_{m}} \frac{\operatorname{Pr}\left(O_{m}, X_{m}, \ldots, O_{2}, X_{2}, X_{1}\right)}{\operatorname{Pr}\left(X_{1}\right)}= \\
& =\sum_{\forall X_{1}} \operatorname{Pr}\left(O_{1} \mid X_{1}\right) \cdot \operatorname{Pr}\left(X_{1}\right) \cdot \sum_{\forall X_{2}} \ldots \sum_{\forall X_{m}} \frac{\operatorname{Pr}\left(O_{m}, \ldots, O_{2} \mid X_{m}, \ldots, X_{2}, X_{1}\right) \cdot \operatorname{Pr}\left(X_{m}, \ldots, X_{2}, X_{1}\right)}{\operatorname{Pr}\left(X_{1}\right)}
\end{aligned}
$$

Furthermore:
$\operatorname{Pr}\left(O_{m}, \ldots, O_{2} \mid X_{m}, \ldots, X_{1}\right)=\operatorname{Pr}\left(O_{m} \mid X_{m}, \ldots, X_{1}\right) \cdot \ldots \cdot \operatorname{Pr}\left(O_{2} \mid X_{m}, \ldots, X_{1}\right)=\operatorname{Pr}\left(O_{m} \mid X_{m}\right) \cdot \ldots \cdot \operatorname{Pr}\left(O_{2} \mid X_{2}\right)$
Therefore, to finish the proof we need to show that:

$$
\frac{\operatorname{Pr}\left(X_{m}, \ldots, X_{2}, X_{1}\right)}{\operatorname{Pr}\left(X_{1}\right)}=\operatorname{Pr}\left(X_{m} \mid X_{m-1}\right) \cdot \operatorname{Pr}\left(X_{m-1} \mid X_{m-2}\right) \cdot \ldots \cdot \operatorname{Pr}\left(X_{2} \mid X_{1}\right)
$$

But we have:

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left(X_{m}, \ldots, X_{2}, X_{1}\right)}{\operatorname{Pr}\left(X_{1}\right)}=\frac{\operatorname{Pr}\left(X_{m} \mid X_{m-1}, \ldots, X_{2}, X_{1}\right) \cdot \operatorname{Pr}\left(X_{m-1}, \ldots, X_{2}, X_{1}\right)}{\operatorname{Pr}\left(X_{1}\right)}= \\
& =\frac{\operatorname{Pr}\left(X_{m} \mid X_{m-1}, \ldots, X_{2}, X_{1}\right) \cdot \operatorname{Pr}\left(X_{m-1} \mid X_{m-2}, \ldots, X_{2}, X_{1}\right) \cdot \operatorname{Pr}\left(X_{m-2}, \ldots, X_{1}\right)}{\operatorname{Pr}\left(X_{1}\right)}=\ldots= \\
& =\frac{\operatorname{Pr}\left(X_{m} \mid X_{m-1}, \ldots, X_{2}, X_{1}\right) \cdot \ldots . \operatorname{Pr}\left(X_{2} \mid X_{1}\right) \cdot \operatorname{Pr}\left(X_{1}\right)}{\operatorname{Pr}\left(X_{1}\right)}
\end{aligned}
$$

Now, using the Markov property we get the final result.

Appendix C: The extreme cases from the new data

Below, we present some results of ratings the bridges from the modified data. These cases indicate how fast the bridges obtain the serious label.

Bridge index	Age of a bridge [in months]	Age of a bridge [in months]	Condition state	Condition state	Year of construction
65	0	16	0	3	1997
66	0	16	0	3	1997
120	0	26	0	4	1990
128	0	11	0	1	1998
135	0	8	0	1	1999
144	0	9	0	1	1997
147	0	9	0	1	1997
174	0	14	0	2	1999
192	0	10	0	1	2002
193	0	13	0	1	2002
194	0	11	0	3	1994
202	0	19	0	3	2000
211	0	15	0	4	2001
212	0	15	0	2	2001
213	0	15	0	3	2001
214	0	15	0	4	2001
215	0	15	0	2	2001
216	0	3	0	3	2001
217	0	15	0	4	2001
218	0	15	0	3	2001
219	0	7	0	2	2003
220	0	7	0	1	2003
221	0	7	0	4	2003
222	0	7	0	3	2003
284	0	42	0	5	1990
318	0	4	0	1	1995
323	0	14	0	3	1997
333	0	14	0	4	1997
362	0	8	0	3	1997
391	0	7	0	4	1996
452	0	5	0	3	1989
485	0	8	0	2	1997
490	0	9	0	2	1997
491	0	9	0	2	1997
557	0	4	0	4	1990
566	0	10	0	2	1999
591	0	6	0	2	1998
593	0	11	0	3	1997
619	0	6	0	3	1998
620	0	7	0	3	1996

751	0	$\mathbf{9 2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 9 9 0}$
768	0	10	0	3	1999
776	0	15	0	5	2003
965	0	4	0	3	1994
1001	0	19	0	3	1989
1080	0	14	0	3	1995
1297	0	4	0	3	2003
1330	0	12	0	2	1999
1350	0	10	0	3	1998
1434	0	1	0	0	1993
1440	214	1	0	2	1971
1544	0	1	0	3	2000
1619	0	9	0	3	1995
1620	0	0	0	2	1995
1621	0	0	0	1995	
1622	0	0	0	1995	

Table C-1: Extreme conditions from the new data

Here, we would like to also present a figure with the average condition of bridges in particular age from this data:

Figure C-1: Average condition for the new data

Appendix D: Proof of the recursive formula (6-8), p. 51

The proof is mainly the same as in the internship report (Appendix, [14]). The difference lies in the fact that we have now the sequence of observations not equal j, and the additional not complete sum over all states not equal to j needs to be involved into the formula.

We shall show that the conditional probability of the form:

$$
\begin{equation*}
\phi_{s}(k, j)=\operatorname{Pr}\left(X_{s}=k \mid O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right) \tag{6-7}
\end{equation*}
$$

can be determined via the recursive formula:

$$
\begin{equation*}
\phi_{s}(k, j)=\frac{\sum_{\forall l \neq j u=0}^{5} \operatorname{Pr}\left(O_{s-1}=l \mid X_{s-1}=u\right) \cdot \operatorname{Pr}\left(X_{s}=k \mid X_{s-1}=u\right) \cdot \phi_{s-1}(u, j)}{\sum_{\forall l \neq j} \sum_{v=0}^{5} \operatorname{Pr}\left(O_{s-1}=l \mid X_{s-1}=v\right) \cdot \phi_{s-1}(v, j)} \tag{6-8}
\end{equation*}
$$

Proof:

Using the law of total probability, the previous specified assumptions and the rule of the conditional probability, i.e.:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A, B)}{\operatorname{Pr}(B)}
$$

we have:

$$
\begin{aligned}
& \phi_{s}(k, j)=\operatorname{Pr}\left(X_{s}=k \mid O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)=\frac{\operatorname{Pr}\left(X_{s}=k, O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}{\operatorname{Pr}\left(O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}= \\
& =\frac{\sum_{u=0}^{5} \operatorname{Pr}\left(X_{s}=k, X_{s-1}=u, O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}{\operatorname{Pr}\left(O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}= \\
& =\frac{\sum_{u=0}^{5} \operatorname{Pr}\left(O_{s-1} \neq j \mid X_{s}=k, X_{s-1}=u, O_{s-2} \neq j, \ldots, X_{0}=i\right) \cdot \operatorname{Pr}\left(X_{s}=k, X_{s-1}=u, O_{s-2} \neq j, \ldots, X_{0}=i\right)}{\operatorname{Pr}\left(O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}= \\
& =\frac{\sum_{u=0}^{5} \operatorname{Pr}\left(O_{s-1} \neq j \mid X_{s-1}=u\right) \cdot \operatorname{Pr}\left(X_{s}=k \mid X_{s-1}=u\right) \cdot \operatorname{Pr}\left(X_{s-1}=u, O_{s-2} \neq j, \ldots O_{1} \neq j, X_{0}=i\right)}{\operatorname{Pr}\left(O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)} \\
& =\frac{\sum_{u=0}^{5} \operatorname{Pr}\left(O_{s-1} \neq j \mid X_{s-1}=u\right) \operatorname{Pr}\left(X_{s}=k \mid X_{s-1}=u\right) \operatorname{Pr}\left(X_{s-1}=u \mid O_{s-2} \neq j,,, X_{0}=i\right) \operatorname{Pr}\left(O_{s-2} \neq j,,, X_{0}=i\right)}{\operatorname{Pr}\left(O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}=
\end{aligned}
$$

$$
=\frac{\operatorname{Pr}\left(O_{s-2} \neq j, ., X_{0}=i\right) \sum_{u=0}^{5} \operatorname{Pr}\left(O_{s-1} \neq j \mid X_{s-1}=u\right) \operatorname{Pr}\left(X_{s}=k \mid X_{s-1}=u\right) \operatorname{Pr}\left(X_{s-1}=u \mid O_{s-2} \neq j, ., X_{0}=i\right)}{\operatorname{Pr}\left(O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}=
$$

The last probability in the numerator is simply our $\phi_{s-1}(u, j)$ in the step $s-1$. Moreover, the probability: $\operatorname{Pr}\left(O_{s-1} \neq j \mid X_{s-1}=u\right)$ can be written in terms of the sum over all possible states not equal j . And since we can interchange the sums we get:

$$
\phi_{s}(k, j)=\frac{\operatorname{Pr}\left(O_{s-2} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}{\operatorname{Pr}\left(O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)} \sum_{\forall l \neq j u=0}^{5} \operatorname{Pr}\left(O_{s-1}=l \mid X_{s-1}=u\right) \operatorname{Pr}\left(X_{s}=k \mid X_{s-1}=u\right) \cdot \phi_{s-1}(u, j)
$$

To finish the proof we need to show that the reciprocal of $\frac{\operatorname{Pr}\left(O_{s-2} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}{\operatorname{Pr}\left(O_{s-1} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)}$ from the above formula is equal to the denominator of equation (6-8). Indeed we have:
$\operatorname{Pr}\left(O_{s-1} \neq j, O_{s-2} \neq j, \ldots ., O_{1} \neq j, X_{0}=i\right)=$
$=\operatorname{Pr}\left(O_{s-1} \neq j \mid O_{s-2} \neq j, \ldots ., O_{1} \neq j, X_{0}=i\right) \cdot \operatorname{Pr}\left(O_{s-2} \neq j, \ldots ., O_{1} \neq j, X_{0}=i\right)$
which reduces to $\operatorname{Pr}\left(O_{s-1} \neq j \mid O_{s-2} \neq j, \ldots, O_{1} \neq j, X_{0}=i\right)$ after dividing by the denominator. As it was shown on page 47 in formula (6-6), this is the denominator of (6-8), which ends the proof.

Appendix E: First 'observation' time

Model with 'Misclassification matrix 1'

Figure E-1: First 'observation' time, inspections carried out each $\mathbf{1 2}$ months, f_{05}^{*}

Figure E-2: First 'observation time, inspection carried out each $\mathbf{2 4}$ month, f_{05}^{*}

Figure E-3: First 'observation' time, inspection carried out each $\mathbf{3 6}$ month, f_{05}^{*}

Figure E-4: First 'observation' time, inspection carried out each 48 month, f_{05}^{*}

Figure E-5: First 'observation' time, inspection carried out each $\mathbf{4 8 0 0}$ month, f_{05}^{*}

Model with 'Misclassification matrix 2'

Figure E-6: First 'observation' time, inspection carried out each $\mathbf{1 2}$ month, f_{05}^{*}

Figure E-7: First 'observation' time, inspection carried out each $\mathbf{2 4}$ month, f_{05}^{*}

Figure E-8: First 'observation' time, inspection carried out each $\mathbf{3 6}$ month, f_{05}^{*}

Figure E-9: First 'observation' time, inspection carried out each 48 month, f_{05}^{*}

Figure E-10: First 'observation' time, inspection carried out each $\mathbf{1 2 0}$ month, f_{05}^{*}

