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Chapter 1

Introduction

1.1 Abstract

Without a doubt the dependence relations between random variables play a

very important role in many fields of mathematics and is one of the most

widely studied subjects in probability and statistics. A large variety of de-

pendence concepts have been studied by a number of authors, offering proper

definitions and useful properties with applications, just to mention an encyclo-

pedic work of H. Joe Multivariate model and dependence concepts (1997) and

other: Dall’Aglio, S. Kotz and G. Salinetti Advances in Probability Distribu-

tions with Given Marginals(1991), K.V.Mardia Families of Bivariate Distribu-

tions(1967),B. Shweizer, A. Sklar Probabilistic Metric Spaces (1983). In this

thesis I will mainly use results from the following books: R.Nelsen (1999) [1],

D.Kurowicka, R.Cooke (2005)[7] and J. Whittaker (1990)[6].
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8 CHAPTER 1. INTRODUCTION

This thesis elaborates on the dependence concept and describes well known

measures of dependence. We show how the dependence can be measured or

expressed and in which distributions we can measure this dependency. For

better understanding, we first concentrate on dependence concepts in bivariate

case and then we generalize these concepts to higher dimensions.

We examine well known measures of dependence such as: product moment

correlation, Spearman’s rank correlation and Kendall’s tau. Their properties,

advantages, disadvantages and applications in describing the dependence be-

tween random variables are discussed. Then, a more sophisticated measure of

dependence - measure of interaction (described by Whittaker) comes into play.

We explore its properties and compare with other measures of dependence.

The most widely used measure of dependence is the product moment corre-

lation (also called Pearson’s linear correlation). This correlation measures the

linear relationship between X and Y and can attain any value from [−1, 1].

Product moment correlation is easy to calculate and is a very attractive mea-

sure for the family of elliptical distributions (because for this distribution zero

correlation implies independence). However, it has many disadvantages: it does

not exist if the expectations and/or variances are not finite, its possible values

depend on marginal distributions and it is not invariant under nonlinear strictly

increasing transformations.

A more flexible measure of dependence is rank correlation (also called Spear-

man’s rank correlation) which, in contrast to linear correlation, always exists,

does not depend on marginal distributions and is invariant under monotonic

strictly increasing transformations. Another widely used measure of depen-

dence is Kendall’s tau, which has a simple interpretation and can be easily
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calculated.

These correlations are used in the joint distribution function of (X,Y ) to

model the dependence between random variables X and Y . The most popu-

lar bivariate distribution is the normal distribution, which belongs to the large

family of elliptical distributions. Elliptical distributions are very often used,

particulary in risk and financial mathematics. A special case of bivariate dis-

tributions are copulas, which are defined on the unit square with uniformly

distributed marginals. The relationship between a joint distribution and a cop-

ula allows us to study the dependency structure of (X, Y ) separately from the

marginal distributions. The most widely used copulas are: normal, archimedean

and elliptical.

All of the measures (product moment, rank correlation, Kendall’s tau) can

be computed from data (either directly from the data or from the ranks of the

data) but fail to measure more complicated dependence structure. In contrast,

the measures of interaction described by Whittaker in [6] require information

about joint distribution function and not the data. Then, the complex depen-

dence structure between two variables can be estimated by identifying regions

of positive, zero and negative values of interaction.

The concepts of dependence between two random variables is extended to the

concepts of multivariate dependency. The conditional correlation, describes the

relationship between two variables while conditioning on other variables. Con-

ditional correlation is simply a product moment correlation of the conditional

distributions, hence conditional correlation possess the same the disadvantages

as the product moment correlation. The conditional correlation is equal to par-

tial correlations in the family of elliptical distributions. The partial correlation

can be easily calculated from recursive formulas and therefore the conditional
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correlation is often approximated by, or replaced by the partial correlation. The

meaning of partial correlation for non-elliptical variables is less clear.

To represent multivariate dependence all of the measures of dependence be-

tween pairs of variables must be collected in a correlation matrix. This matrix

has to be complete and positive definite. In order to avoid those problems

with the correlation matrix, another way of representing multivariate distribu-

tions called vines, was introduced by Bredford, Cooke [10]. Using a copula-vine

method we can construct multivariate distributions in a straightforward way

by specifying marginal distributions and the dependence structure. This de-

pendence structure can be represented by a vine. The main advantage of this

approach is that, by assigning the conditional rank correlations between pairs

of variables to a vine, we do not have worry about the positive definiteness.

Finally the mixed derivative measures of conditional interactions are defined

as the extensions of bivariate interactions. We study and investigate possible

relations between interactions and a copula-vine specification of the multivariate

distributions.

1.2 Preliminaries

Let (Ω,A, P ) be a probability space, i.e., Ω is a non-empty set, A is a σ-

algebra of subsets of Ω (collection of events), and P is a probability function

P : A → [0, 1] such that: P (Ω) = 1, and if {An, n ≥ 1} is a sequence of

sets of A, where An and Am are disjoint, then P (
⋃∞

n=1 An) =
∑∞

n=1 P (An).

Let B(R) be the σ-algebra generated by the borelian sets in R. A random
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variable X is a measurable function on probability space X : ω → R. The

cumulative distribution function of a random variable X is defined to be the

function F (x) = P (X ≤ x) for x ∈ R. The cumulative distribution function

is non-decreasing, right-continuous, and limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

The probability density function f(x) or simply density function of a continuous

distribution is defined as the derivative of the (cumulative) distribution function

F (x), so:

F (x) = P (X ≤ x) =

∫ x

−∞
f(x)dx.

For a random vector (X, Y ) the joint distribution function is the function

H : R2 → [0, 1] defined by: H(x, y) = P (X ≤ x, Y ≤ y) for (x, y) ∈ R2.

For n-dimensional random vector (X1, · · · , Xn), the joint cumulative distribu-

tion function is defined by F (x1, · · · , xn) = P (X1 ≤ x1, · · · , Xn ≤ xn) for

(x1, · · · , xn) ∈ Rn. The joint distribution function completely characterizes the

behavior of (X1, · · · , Xn): it defines the distribution of each of its components,

called marginal distributions, and determines their relationships.

For better understanding of the independence concept, let us start with the

independence of events. Let A and B be two events defined on the probability

space (Ω,A, P ). Then A and B are independent if and only if P (A ∩ B) =

P (A)P (B). If two events are independent, then the conditional probability of

A given B is the same as the unconditional probability of A, that is:

A⊥B ⇔ P (A|B) = P (A).

Here the conditional probability of A given B is given by

P (A|B) =
P (A ∩B)

P (B)

if only P (B) 6= 0.
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For our purposes it is more suitable to talk about random variables, whose

values are described by a probability distribution function. From now on, the

random variables are assumed to be continuous. We say that the two random

variables X and Y are independent, denoted by X⊥Y , if and only if the joint

probability density function of vector (X,Y ) fXY , is equal to the product of

their marginal density functions:

fXY (x, y) = fX(x)fY (y)

for all values of x and y, where fX and fY are marginal densities of X and Y .

The conditional density function of X given Y is defined as fXY

fY
, where fY is

non-zero function. We can equivalently rewrite the definition of independence

of random variables in terms of conditional formulation:

X⊥Y ⇔ fX|Y (x; y) = fX(x).

The two random variables X and Y are conditionally independent given Z if

and only if there exist functions g and h such that

fXY Z(x, y, z) = g(x, z)h(y, z) (1.1)

for all x,y and z such that fZ(z) > 0, this is called the factorization criterion.

We can extend the independence of two variables to the multivariate case.

Then random variables X1, · · · , Xn are independent if and only if:

f1···n(x1, · · · , xn) = f1(x1) · · · fn(xn),

where f1···n is a joint probability density function of random vector (X1, · · · , Xn),

and fi’s are marginal densities, i = 1, · · · , n.

The factorization criterion can be also extended to higher dimensions. Then,

X and Y are conditionally independent given Z = (Z1, · · · , Zk) if and only if
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there exist functions g and h such that

fXY Z(x, y, z1, · · · , zk) = g(x, z1, · · · , zk)h(y, z1, · · · , zk)

for all x,y and z = (z1, · · · , zn) such that fz(z1, · · · , zk) > 0.

1.3 Thesis Overview

This thesis consists of two parts: the bivariate and the multivariate dependence

concept. Bivariate dependence modelling is a subject of Chapter 2, while the

multivariate aspects are studied in Chapter 3.

Chapter 2 is devoted to the dependence between two random variables X

and Y . The well known measures of dependence such as: Pearson’s linear

correlation, Spearman’s rank correlation and Kendall’s tau (their definitions

and properties) are described. Then we focus on the bivariate distribution

functions of X and Y . We consider such distributions as elliptical distributions

(normal and Cauchy distribution) and bivariate distributions with uniformly

distributed marginals -copulas.

There exists a relationship between joint distribution and copulas. The joint

distribution can be described as a product of the marginal distributions and the

appropriate copula. This makes copulas a very special method to model the

dependence in bivariate distributions. The most commonly used in applications

are: the normal copula and the Archimedean copulas. We present a few types

of copulas in this thesis: normal, Gumble, Clayton, Frank and elliptical copulas.

A significant part of this chapter is devoted to measures of interactions

previously studied and described by Joe Whittaker in [6]. They are defined



14 CHAPTER 1. INTRODUCTION

as mixed derivatives of the logarithm of the density. It is interesting that the

whole information about interactions between random variables is contained in

copula corresponding to the joint distribution between these random variables.

Chapter 3 discusses multidimensional concepts of dependence in a random

vector (X1, · · · , Xn).

First, as a key notions in multivariate modelling, the partial and conditional

correlation (which correspond to linear correlation), are described.

Further, we talk about multivariate distributions and as an example the

multivariate normal distribution is described. Multivariate distributions, like

bivariate distribution, can be described in terms of copulas. We can study

the dependence structure separately from marginal distributions. Further, we

use vines as another way to define multivariate distributions. We describe

the copula-vine method, which builds a joint density of random variables as a

product of copulas and conditional copulas.

We finalize this thesis by considering conditional interactions for copula-vine

distributions. Some conclusions and future research topics related to this thesis

are placed in the last chapter of this thesis.



Chapter 2

Bivariate Dependence Concept

In this chapter we discuss some dependence notions which have been discussed

by Kurowicka, Cooke [7], Nelsen [1],Whittaker [6].

When talking about bivariate dependence we need to discuss the following

aspects:

• how to measure the dependence between two random variables,

• and in which bivariate distributions this dependence can be measured.

The answer to the first question produces measures of dependence (linear cor-

relation, rank correlation, partial and conditional correlations), those measures

are then used to study dependence concepts in bivariate distribution (copula

approach).

15
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2.1 Product Moment Correlation

Let X and Y be random variables. The covariance of X and Y is defined as

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY ) − E(X)E(Y ). We can

standardize it by dividing by the square root of variances of each variable in-

volved. This coefficient is often called linear correlation or Pearson’s correlation

coefficient.

The following definition of product moment correlation is adapted from Karl

Pearson’s ”Mathematical Contributions... III. Regression, Heredity, and Pan-

mixia” published in 1896.

Definition 1. For any random variables X and Y with finite means and vari-

ances, the product moment correlation is defined as:

ρ(X, Y ) =
Cov(X, Y )

σXσY

. (2.1)

Pearson’s correlation coefficient is most widely known measure of depen-

dence because it can be easily calculated. Its properties are listed below:

• product moment correlation measures the linear relationship between two

variables.

• It ranges from −1 to +1;

• A correlation of +1 means that there is a perfect positive linear relation-

ship between variables X and Y , hence Y = aX + b almost surely for

a > 0, b ∈ R;
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• A correlation of −1 means that there is a perfect negative linear relation-

ship between variables X and Y , hence Y = −aX + b almost surely for

a > 0,b ∈ R;

• Product moment correlation is invariant under strictly increasing linear

transformations, i.e: ρ(aX + b, Y ) = ρ(X,Y ) if a > 0 and ρ(aX + b, Y ) =

−ρ(X,Y ) if a < 0;

• If X and Y are independent, then ρ(X, Y ) = 0.

In general, the converse of the last bullet does not hold. Zero correlation

does not imply the independence of X and Y , as the following example shows.

Example 1. Consider a standard normally distributed random variable X and

a random variable Y = X2, which is surely not independent of X. We have:

Cov(X,Y ) = E(XY )− E(X)E(Y ) = E(X3) = 0

because E(X) = 0 and E(X2) = 1, therefore ρ(X,Y ) = 0 as well.

We can observe that the equivalence between zero correlation and indepen-

dent variables holds for the elliptical distributions1.

Remark 1. For two elliptical distributed random variables X and Y , the fol-

lowing is true:

X⊥Y ⇔ ρ(X, Y ) = 0.

1Elliptical distributions will be discussed in section 2.4.1.
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So in case of elliptical distributed random variables, product moment cor-

relation coefficient seems to be a good and effective measure of dependence.

However, not all of the real problems have elliptical distributions. And for non-

elliptical distributions product moment correlation may be very misleading.

Product moment correlation can be calculated as follows:

ρ(X,Y ) =
Cov(X, Y )

σXσY

=

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2

√∑n
i=1(Yi − Y )2

,

where X is the average of X, and Y is the average of Y .

Another well known measure of dependence is rank correlation called Spear-

man’s rho.

2.2 Spearman’s rho

The value of Spearman’s rho, denoted by ρS is equivalent to the Pearson prod-

uct moment correlation coefficient for the correlation between the ranked data.

Spearman’s rho was developed by Charles Spearman (1904).

The definition of this measure is as follows:

Definition 2. For X and Y with cumulative distribution functions FX and FY

respectively, Spearman’s rank correlation is defined as

ρS(X,Y ) = ρ(FX(X), FY (Y )).

Another way of defining rank correlation is by introducing the so called

population version:

ρS = 3 (P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]) (2.2)
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where (X1, Y1), (X2, Y2), (X3, Y3) are three independent identically distributed

random vectors.

The most important properties of ρS are:

• Spearman’s rho always exists,

• it is independent of marginal distributions,

• it is invariant under non-linear strictly increasing transformations,i.e: ρS(X, Y ) =

ρS(G(X), Y ) if G : R→ R is strictly increasing function, and ρS(X,Y ) =

−ρS(G(X), Y ) if G : R→ R is strictly decreasing function,

• if ρS(X, Y ) = 1 then there exists a strictly increasing function G : R→ R

such that X = G(Y )

This measure is not perfect either, we can show an example that zero rank

correlation is not equivalent with independent random variables.

Example 2 ([7]). Let U and V be uniform on (0, 1) random variables. And

M , W are bivariate distributions such that mass is distributed uniformly on the

main diagonal, i.e. P (U = V ) = 1 or anti-diagonal i.e. P (U + V = 1) = 1

respectively. M and W are called the Fréchet-Hoeffding upper and lower bound

respectively and are discussed in section 2.5. The graph (2.1) represent the main

diagonal of unit square u = v (left) and anti-diagonal u = 1− v (right).

M and W describe positive and negative dependence between U and V re-

spectively. Then if U and V have joint distribution M then ρS(U, V ) = 1 and

if they’re joined with W then ρS(U, V ) = −1.
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Figure 2.1: The support of Fréchet-Hoeffding bounds: upper M (left) and lower

W (right)

Let us take mixture of the Fréchet-Hoeffding bounds, for which the mass is

concentrated on the diagonal and anti-diagonal depending on parameter α ∈
[0, 1]:

Cα(u, v) = (1− α)W (u, v) + αM(u, v)

for (u, v) ∈ [0, 1]2.

If we take α = 1
2
, then the variables U and V joined by Cα have rank

correlation equal to zero. But this mixture is not independent.

For Spearman’s Rank Correlation Coefficient the calculations are carried

out on the ranks of the data.

The values of the variable are put in order and numbered so that the lowest

value is given rank 1, and the second lowest is given rank 2 etc. If two data

values are the same for a variable, then they are given averaged ranks. This

ranking needs to be done for both variables. Spearman rank is calculated by

taking the product moment correlation of the ranks of the data. For given data

points: (x1, y1), (x2, y2), · · · , (xn, yn) we assign ranks in the following manner:
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ri = rank of xi, and si = rank of yi, then:

ρS =

∑n
i=1(ri − r)(si − s)√∑n

i=1(ri − r)2
√∑n

i=1(si − s)2
= 1− 6

n(n2 − 1)
∑n

1=1(ri − si)2
.

Since r and s are the ranks, then r = s = n+1
2

.

In the 1940s Maurice Kendall developed another rank correlation, which is

now called Kendall’s tau.

2.3 Kendall’s tau

One of the definitions of this measure is a population version of Kendall’s tau:

τ = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] (2.3)

for two independent identically distributed random vectors (X1, Y1), (X2, Y2).

We can see that Kendall’s τ is symmetric, i.e: τ(X1, X2) = τ(X2, X1), and

normalized to the interval [−1, 1]. Also the following holds:

Proposition 1. Let X1 and X2 be continuous random variables, then:

X1⊥X2 ⇔ τ(X1, X2) = 0.

Kendall’s tau and Spearman’s rho have another important property which

linear correlation does not have, they are copula-based measures and can be

specified in terms of copulas but this will be discussed later on.

Kendall’s tau can be estimated from an underlying data set by:

τ(X1, X2) =

∑
i<j signb(x1i − x1j)(x2i − x2j)c

(n
2 )

.
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This summation is across all possible pairs of observations.

Spearman’s rank correlation is a more widely used measure of rank corre-

lation because it is much easier to compute than Kendall’s tau. Both rank

correlation coefficients are more useful in describing the dependence, however

it is difficult to understand their exact meaning.

Product moment, rank correlation and Kendall’s tau are not the only mea-

sures of dependence. There are of course many more. Just to name few: Gini’s

γ, Blomqvist’s β, Schweizer and Wolff’s σ described by Nelsen in [1] in chapter

5. They will not be discussed in this thesis.

Let us now concentrate on bivariate distributions.

2.4 Bivariate Distributions

The joint distribution of the random vector (X, Y ) captures the dependence

between random variables X and Y . The most visual way to specify a random

vector is the probability density function (density). There are many bivariate

distributions, the most popular and widely used among them is the normal

distribution. The normal distribution is a special case of the larger class of

elliptical distributions.
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2.4.1 Elliptical Distributions

The 2-dimensional random vector X is said to be elliptically distributed, sym-

bolically X ∼ EC(µ, Σ, φ), if its characteristic function may be expressed in the

form:

ψ(t) = E[eitT X] = eitT µφ(tT Σt),

with µ a 2-dimensional vector, Σ a positive 2×2 matrix, and φ a scalar function

called characteristic generator.

The density of an elliptical random vector X ∼ EC(µ, Σ, φ) has the form:

f(x) =
c√
|Σ|φ

(
(x− µ)T Σ−1(x− µ))

)
.

This density is constant on ellipses, that means when viewed from above,

the contour lines of the distribution are ellipses. This is the reason for calling

this family of distributions elliptical.

Elliptical random vector have the following properties, for more details refer

to Fang et al.(1990):

• any linear combination of elliptically distributed variables is elliptical;

• Marginal distributions of elliptically distributed random vector are ellip-

tical.

• Suppose X ∼ EC(µ, Σ, φ) possess k moments, if k ≥ 1, then E(X) = µ,

and if k ≥ 2, then Cov(X) = −2ψT (0)Σ;

• it can be easily verified that the normal and t-distribution are members

of the class of elliptical distributions.
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Elliptical distributions are the easiest distributions to work with but not

always realistic.

We discuss two bivariate elliptical distributions: the normal which is the

most famous member of this family, and Cauchy distribution which is a special

case of the t-distribution.

2.4.2 Bivariate Normal Distribution

The normal distribution, also called Gaussian, is an elliptical distribution with

characteristic generator:

φ(t) = e−
1
2
t.

Normally distributed random variable is given by two parameters: the mean

µ and standard deviation σ, symbolically denoted by X ∼ N(µ, σ)

The probability density function of such distribution is:

f(x; µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

The standard normal distribution is the normal distribution with a mean of

zero and a standard deviation one:

f(x; 0, 1) =
1√
2π

exp

(
−x2

2

)
.

The bivariate normal distribution is a joint distribution of two normal vari-

ables X and Y . The joint normal density of (X, Y ) ∼ N([µ1, µ2], [σ1, σ2]) is

given by:

f(x, y) =
1

2πσ1σ2

√
1− ρ2

exp

(
−(x2−µ1

σ1
)2 − 2ρ (x−µ1)(y−µ2)

σ1σ2
+ (y2−µ2

σ2
)2

2(1− ρ2)

)
(2.4)
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And the density of the standard bivariate normal (X, Y ) ∼ N([0, 0], [1, 1])

has the following form:

f(x, y) =
1

2π
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
(2.5)

for x, y ∈ (−∞,∞) and a parameter ρ (Pearson’s product moment correlation)

∈ [−1, 1].

The properties of normal distribution make this distribution to be so impor-

tant and mostly used in many fields of mathematics. Some of them, relevant

in this thesis are listed below, for more details and proofs I refer to Kurowicka,

Cooke [7].

If (X, Y ) has bivariate standard normal distribution with parameter ρ, then:

• the marginal distributions of X and Y are standard normal;

• ρ(X, Y ) = 0 ⇔ X⊥Y , this in general, holds for any elliptical distributed

random vector;

• the relationship between product moment and Spearman’s rank correla-

tions also known as a Pearson’s transformation:

ρ(X, Y ) = 2 sin(
π

6
ρS(X, Y ));

• the relationship between product moment correlation and Kendall’s tau:

ρ(X, Y ) = sin(
π

2
τ(X, Y )).
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2.4.3 The Cauchy Distribution

The Cauchy distribution belongs also to the the family of elliptical distributions

and is characterized by the location parameter x0 and the scale parameter γ > 0.

The Cauchy distribution is a special case of the student t distribution with

one degree of freedom2.

The probability density function of the univariate Cauchy distribution is

defined as:

f(x; x0, γ) =
1

πγ[1 +
(

x−x0

γ

)2

]
,

and the cumulative distribution function is:

F (x; x0, γ) =
1

π
arctan

(
x− x0

γ

)
+

1

2
.

The special case when x0 = 0 and γ = 1 is called the standard Cauchy dis-

tribution. The bivariate standard Cauchy has the following probability density

function:

f(x1, x2) =
1

π(1 + x2
1 + x2

2)
3/2

. (2.6)

It is interesting that when U and V are two independent standard normal

distributions, then the ratio U
V

has the standard Cauchy distribution.

The Cauchy distribution is a distribution for which expectation, variance or

any higher moments are not defined.

2The density of the n dimensional t distribution with v degrees of freedom is defined by:

f(x1, · · · , xn) =
Γ(v+n

2 )

Γ(v
2 )

√
(vπ)n|Σ|

(
1 +

1
v
x′Σ−1x

)− v+n
2

,

where v
v−2Σ is the covariance matrix and is defined only if v > 2.
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The bivariate distributions on unit square with uniform marginal distri-

butions are called copulas. This class of distributions allows us to separate

marginal distributions and the information about dependence in joint distribu-

tion

Copulas were characterized by Abe Sklar in 1959 but they were studied by

other authors earlier. Recently, they became very popular and have been widely

investigated, see e.g. Nelsen [1].

2.5 Bivariate Copulas

The copulas are usually defined on the unit square I2, where I = [0, 1], this

interval can be transformed to, for instance: [−1/2, 1/2] or [−1, 1]. According

to Nelsen [1], the definition of a copula is:

Definition 3. A 2-dimensional function C from I2 to I is called a copula if it

satisfies the following properties:

1. For every u, v ∈ I

C(u, 0) = C(0, v) = 0

and

C(u, 1) = u,C(1, v) = v;

2. For every u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.
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An important result (Fréchet, 1951) states that any copula has a lower and

an upper bound. Let C be a distribution function of a copula. Then for every

(u, v) ∈ I2 the copula C must lie in the following interval:

W (u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v).

The bonds M and W are themselves copulas and are called Fréchet-Hoeffding

upper bond and Fréchet-Hoeffding lower bond respectively. Another very im-

portant copula is the product copula
∏

(u, v) = uv, also known as independent

copula.

The next theorem plays undoubtedly the main role in the theory of copulas.

2.5.1 Sklar’s theorem

Sklar’s theorem describes the relationship between distribution function H and

corresponding copula C.

Theorem 2 (Nelsen [1]). Let X and Y be random variables with margins

FX and FY respectively and joint distribution function H. Then there exists a

copula C such that for all x, y ∈ R2

H(x, y) = C(FX(x), FY (y)). (2.7)

If FX and FY are continuous, then C is unique.

Conversely, if C is a copula and FX and FY are distribution functions, then the

function H defined as above is a joint distribution function with margins FX

and FY .

Directly from this theorem comes the following definition:
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Definition 4. Random variables X and Y are joint by copula C if and only if

their joint distribution FXY can be written:

FXY (u, v) = C(F−1
X (u), F−1

Y (v)).

The above result provides a method of constructing copulas from joint dis-

tributions.

Since the copula corresponding to a joint distribution describes its depen-

dence structure, it might be appropriate to use measures of dependence which

are copula-based, so called measures of concordance. Spearman’s rho and

Kendall’s tau are examples of such concordance measures. And they can be

expressed in terms of copulas in the following way ([1]):

τ(X,Y ) = 4

∫ ∫

[0,1]2
C(u, v)dC(u, v)− 1, (2.8)

ρS(X, Y ) = 12

∫ ∫

[0,1]2
C(u, v)dudv − 3. (2.9)

As with standard distribution functions, copulas have associated densities.

2.5.2 Copula as a density function

The density of a copula C is denoted by lowercase c, then the density of bivariate

copula is just the mixed derivative of C, i.e:

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

.
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If X1 and X2 are random variables with densities f1, f2 and distribution

functions F1, F2 respectively, then the joint density function of a pair of random

variables (X1, X2) may be written as ([7]):

f12(x1, x2) = c(F1(x1), F2(x2))f1(x1)f2(x2). (2.10)

2.5.3 Parametric families of copulas

Parametric distributions are those bivariate distributions which are character-

ized by a vector of parameters, for instance the normal distribution is given by

(µ, σ) ∈ R× [0,∞). It is much more interesting to model bivariate distributions

with the same dependence structure given by a vector of parameters.

Among all, the most significant is a family of normal copulas. The standard

normal copula is described below.

Normal Copula

The normal copula allow us to create a family of bivariate normal distributions

with a specified correlation coefficient ρ ∈ [−1, 1].

The density of a bivariate standard normal copula is given by:

cN(u1, u2) =
1√

(1− ρ2)
exp

(
−ζ2

1 − 2ρζ1ζ2 + ζ2
2

2(1− ρ2)

)
exp

(
1

2
(ζ2

1 + ζ2
2 )

)
(2.11)

where ζ1 = Φ(−1)(u1), ζ2 = Φ(−1)(u2).

Figure (2.2) represents the density of an example of a normal copula.
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Figure 2.2: The density function of the normal copula θ = 0.8135 and corre-

sponding rank correlations: τ = 0.6049, ρS = 0.8).

From this figure, we can see that a normal copula is symmetric. In this

example we observe strong positive dependence between the variables because

the mass of the density is concentrated around the diagonal u = v (when the

mass is concentrated on diagonal u = 1−v we talk about negative dependence).

Another very important class of copulas are the Archimedean copulas.

Archimedean Copulae

There are many families of Archimedean copulae, which are characterized by

a generator function. They have nice properties and are very useful in many

applications.
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Let φ be a continuous, strictly decreasing convex function φ : (0, 1] → [0,∞]

with a positive second derivative such that φ(1) = 0 and φ(u) + φ(v) ≤ φ(0).

Definition 5. Copula C(u, v) is an Archimedean Copula with generator φ if:

C(u, v) = φ−1[φ(u) + φ(v)].

The density function c is then:

c(u, v) = −φ′′(C)φ′(u)φ′(v)

(φ′(C))3
.

As we know, Kendall’s tau and Spearman’s rho can be defined in terms of

copula and they are given by (2.8) and (2.9) respectively.

We can represent Kendall’s tau in terms of the generator function (Nelsen,

[1]), i.e:

τ = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt. (2.12)

The relation between Archimedean copulas and Spearman’s rho is less known.

To compute Spearman’s rho we use the general definition of this coefficient, i.e:

ρS = 12

∫ 1

0

∫ 1

0

C(u, v) dudv − 3. (2.13)

Nelsen in [1], Chapter 4. parameterized 22 families of Archimedean copulae,

amongst them:

• Frank Copula,

• Gumbel Copula and

• Clayton Copula.
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that will be discussed discussed here. These are the most popular Archimedean

copulas.

Frank’s copula The generating function of Frank’s family is:

φ(x) = − log
e−θx − 1

e−θ − 1
,

Where θ ∈ (−∞,∞) \ {0}. Parameter θ → 0 implies independence, θ →∞
means perfect positive, and θ → −∞ perfect negative dependence.

The Frank’s copula is given by:

C(u, v; θ)F = −1

θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

(e−θ − 1)

)
. (2.14)

The density of Frank’s copula for random variables U, V and parameter θ is

given by:

cF
θ (u, v) =

θ(1− e−θ)e−θ(u+v)

[1− e−θ − (1− e−θu)(1− e−θv)]
. (2.15)

For Frank copula the relationship between Kendall’s tau ρτ , Spearman’s rho

ρS and parameter θ is the following ([1]):

τ(θ) = 1− 4

θ

(
1− 1

θ

∫ θ

0

a

ea − 1
da

)
,

ρS(θ) = 1− 12

θ

(
4

θ

∫ θ

0

a

ea − 1
da− 2

θ2

∫ θ

0

a2

ea − 1
da

)
.

The figure (2.3) presents the Frank’s copula density. We can see that the

mass is distributed in a similar way as with the normal copula.
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Figure 2.3: The Frank copula density function for θ = 7.901 and the corre-

sponding rank correlations: τ = 0.5989, ρS = 0.8.

Gumbel’s copula The Gumbel copula CG
θ (u, v) is another member of the

Archimedean family with generator

φ(t) = (− log t)θ.

The distribution function of this copula can be written as follows:

CG
θ (u, v) = exp

(
−[(− log u)θ + (− log v)θ]

1
θ

)
.

The parameter θ ≥ 1 controls the degree of dependence between variables

joint by this copula. Parameter θ = 1 implies an independent relationship and

θ → ∞ means perfect positive dependence (the perfect negative dependence

does not exist for this copula).



2.5. BIVARIATE COPULAS 35

The density function of the Gumbel copula is given by ([18]) :

cG
θ (u, v) = (− ln u)θ−1(− ln v)θ−1

uv
exp

(
−[(− ln u)θ + (− ln v)θ]

1
θ

)
(
[(− ln u)θ + (− ln v)θ](

1−θ
θ )

2

+ (θ − 1)[(− ln u)θ + (− ln v)θ]
1−2θ

θ

)

(2.16)

There is a simple relationship between the parameter θ and Kendall’s tau τ .

τ = 1− θ−1,

where τ ∈ [0, 1].

Spearman’s rho for this copula is given by (2.13) and can be calculated

numerically in MATLAB;
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Figure 2.4: The density function Gumbel copula for parameter θ = 2.582 and

corresponding rank correlations: τ = 0.6127, ρS = 0.8.

The Gumbel copula density is presented in Figure (2.4). From this picture
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we can see that the density surface is very peaky in a right-upper corner, that

means the mass for Gumbel copula is concentrated in this corner. The higher

the peak is the stronger the (positive) dependence is.

Clayton’s copula The Clayton copula is an archimedean asymmetric copula

with generator function

φ(t) =
t−θ − 1

θ
,

where θ ∈ [−1,∞) \ {0} is a parameter controlling the dependence.

The distribution of Clayton copula is equal to:

CCl
θ (u, v) = max

(
[u−θ + v−θ − 1]−

1
θ , 0

)
.

Perfect positive dependence is obtained if θ → ∞ and perfect negative

dependence if θ → −1, while θ → 0 implies independence.

For the Clayton copula parameter θ is related with Kendall’s tau in the

following manner:

τ =
θ

θ + 2
.

The numerical value of Spearman’s rho given by (2.13) can be calculated in

MATLAB.

The implicit formula of a density of Clayton copula is given by ([17])

cCl
θ (u, v) = (1 + θ)(uv)−1−θ(u−θ + v−θ − 1)−

1
θ
−2. (2.17)

As we can see from the figure (2.5), the density of Clayton copula is peaky

in the lower left corner of the unit square.
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Figure 2.5: The Clayton copula density for parameter θ = 2.582 and corre-

sponding rank correlations: τ = 0.6127, ρS = 0.8.

Elliptical Copula

The elliptical copula was constructed by projecting the uniform distribution on

the ellipsoid in R3 to two dimensions (that is why this copula is called elliptical).

This construction was proposed by Hardin (1982) and Misiewicz (1996).

A density function of the elliptical copula with correlation ρ ∈ (−1, 1) is the

following ([7]):

cEl
ρ (x, y) =





1

π
√

1
4
− 1

4
ρ2−x2−y2−2ρxy

, if (x, y) ∈ B;

0, if (x, y) /∈ B.

(2.18)

where

B = {(x, y) : x2 + (
y − ρx√
1− ρ2

)2 <
1

4
}.

Note that the elliptical copula is absolutely continuous and realizes any
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correlation value in an interval (−1, 1). You can see the graph of elliptical

copula in Figure 2.6.
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Figure 2.6: The elliptical copula density function with parameter ρ = 0.8.

There are elliptical copulas that correspond to elliptical distributions. The

elliptical copula inherits some properties of the normal distribution, e.g. condi-

tional correlations are constant and are equal to partial correlations (see Kurow-

icka, Cooke, [7] for more details).

For zero correlation the mass of the elliptical copula is concentrated on a disk

(variables are not independent). So zero correlation is not a sufficient condition

for independence.

Let us now concentrate on another, more sophisticated measure of depen-

dence: the interactions.
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2.6 Mixed Derivative Measures of Interaction

A measure of interaction is a function that measure dependence between two

random variables. Interaction is an alternative to scalar dependence measures,

such as correlation.

The interaction measure was first proposed by Holland and Wang in 1987

and then described by Whittaker in [6]. It is the mixed partial derivative of the

logarithm of the density function.

Definition 6. When the variables X1 and X2 are continuous the mixed deriva-

tive measures of interaction between X1 and X2 is:

i12(x1, x2) = D2
12 log f12(x1, x2) (2.19)

where Dj denotes the ordinary partial derivative with respect to Xj, i.e.

Dj = ∂
∂xj

. The second mixed partial derivative with respect to j and k is:

D2
jk = ∂2

∂xj∂xk
.

From the facorisation criterion (1.1) we know that, if X1 and X2 are inde-

pendent and if their joint density function f12(x1, x2) is (sufficiently) differen-

tiable, then there exists functions g and h such that joint density factorises,

i.e., f12(x1, x2) = g(x1)h(x2) for all x1 and x2. Hence it is easy to prove the

following theorem (Whittaker, [6])

Theorem 3. Let (X1, X2) be bivariate random vector, and suppose their joint
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density is differentiable then:

X1⊥X2 ⇔ i12(x1, x2) = 0.

Proof. (⇒) If X1⊥X2 then f12(x1, x2) = g(x1)h(x2). And the interaction of

f12 is then:

i12(x1, x2) = D2
12 log f12(x1, x2) = D2

12(log g(x1) + log h(x2))

= D1[D2 log g(x1) + D2 log h(x2)] = D1(D2 log h(x2)) = 0.

(⇐) Let us denote f̄(x1, x2) = log f12(x1, x2).

If i12(x1, x2) = 0 then D2
12f̄(x1, x2) = 0.

Integrating the above with respect to x1 we get: D1
2f̄(x1, x2) = a(x2) for

some function a depending on x2.

Integrating once more with respect to x2 this time, we get: f̄(x1, x2) =

A(x2)+ b(x1), for some function b(x1) and A(x2) =
∫

a(x2)dx2. Hence the joint

density can be written as:

f12(x1, x2) = eA(x2)+b(x1) = g(x1)h(x2)

for some functions g and h, and this implies the independence of X1 and X2.

The above theorem shows that in contrast to correlations, the interactions

equal to zero are also sufficient for independence.

2.6.1 Bivariate distributions

We now calculate interaction measures of dependence for a few distributions

(normal, Cauchy distributions, archimedean copulas).
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Example 3 (The Bivariate Standard Normal Distribution). Let X =

(X1, X2) have the standard Normal distribution X ∼ N([0, 0], [1, 1]), then its

joint density function is given by (2.4.1).

Let Q be:

Q(x1, x2) =
1

(1− ρ2)
(x2

1 − 2ρx1x2 + x2
2)

Then the logarithm of the density (2.4.1) is given by:

log f12(x1, x2; ρ) = − log(2π)− 1

2
log(1− ρ2)− 1

2
Q(x1, x2)

The mixed derivative measure of interaction between X1 and X2 is then:

i12(x1, x2) = −1

2
D2

12Q(x1, x2) =
ρ

1− ρ2
.

The normal distribution is a very special one, because the interaction for

this distribution is constant. We can see that

i12(x1, x2) = 0 ⇔ ρ = 0.

and the interaction i12(x1, x2) increases as ρ increases.

Remark 4 (The Bivariate Normal Distribution). Let (X1, X2) be nor-

mally distributed random vector, (X1, X2)\N([µ1, µ2]; [σ1, σ2]) with joint density

function described by (2.4).

Then its mixed derivative measure of interaction is:

i12(x1, x2) =
ρ

(1− ρ2)σ1σ2

.
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Example 4 (Cauchy Distribution). The bivariate Cauchy distribution was

discussed in section 2.4.1 and its joint density was given by (2.6).

And now taking the mixed derivative of the logarithm of f12(x1, x2) we obtain

the following function for the Cauchy interaction:

i12(x1, x2) =
6x1x2

(1 + x2
1 + x2

2)
2

Its graph is presented in Figure 2.7.
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Figure 2.7: The interaction of the standard Cauchy distribution.

Observe that the interaction measure for bivariate Cauchy density changes

sign, it is positive in the first and the third quadrant and negative in the second

and fourth. The positive (negative) values of the interaction can be interpreted

as positive (negative) dependence between variables X1 and X2. It shows also

that a constant number of measure of dependence like Pearson’s correlation,
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rank correlation or Kendall’s τ can not describe the sign-varying dependence

structure.

2.6.2 Copulas

Copulas were presented in section 2.5. From the definition of the density of a

copula (2.10), the joint distribution can be represented as a product of marginal

distributions and the copula:

f(x1, x2) = f1(x1)f2(x2)c(F1(x1), F2(x2)).

Observe that there is an equivalence between the interaction of this joint

density and the interaction of the appropriate copula:

log f(x1, x2) = log f1(x1) + log f2(x2) + log c(F1(x1), F2(x2)),

and taking mixed derivatives, we obtain:

D2
12 log f(x1, x2) = D2

12 log c(F1(x1), F2(x2)),

which means that the interaction of the density function is equal to the

interaction of the corresponding copula.

Let us determine the interactions for the copulas discussed in section 2.5.3.



44 CHAPTER 2. BIVARIATE DEPENDENCE CONCEPT

Normal copula

The interaction for Normal copula of random variables with correlation coeffi-

cient ρ, is equal to:

i12(u, v) =
ρ

1− ρ2
,

which is always constant and depends on values of parameter ρ ∈ [−1, 1].

The interaction increases for bigger ρ. The plot below (fig. 2.8) shows the

interaction of normal copula as a function of parameter ρ.
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Figure 2.8: The interaction of normal copula, i12 as a function of ρ.

Archimedean copulas

The Bivariate Archimedean copulas were discussed in section 2.5.3, and three

families of Archimedean copulas were described (Frank, Gumbel and Clayton
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copula). Let us calculate interactions for these families.

Frank’s copula The findings for the interaction of Frank’s copula are very

interesting. The interaction for this copula is calculated in Maple, and takes

the following form:

iF (u, v) =
2θ2(1− e−θ)e−θ(u+v)

[1− e−θ − (1− e−θu)(1− e−θv)]2
. (2.20)

This interaction is shown in Figure 2.9.
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Figure 2.9: The interaction for Frank copula with parameter theta = 7.901 and

rank correlations: τ = 0.5989, ρS = 0.8.

If you compare this graph with the graph of Frank’s copula, figure (2.3),

presented in section 2.5.3, then you’ll see the similarities. Their shapes are the
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same but the values of the interaction are much bigger than the values of the

density.

Just to remind, the Frank’s copula density has the following form:

cF
θ (u, v) =

θ(1− e−θ)e−θ(u+v)

[1− e−θ − (1− e−θu)(1− e−θv)]2
. (2.21)

Comparing (2.20) with (2.21), we see that:

iF (u, v) = 2θ
θ(1− e−θ)e−θ(u+v)

[1− e−θ − (1− e−θu)(1− e−θv)]2
= 2θcF

θ (u, v),

and therefore:

∫ 1

0

∫ 1

0

iF (u, v)dudv = 2θ

∫ 1

0

∫ 1

0

cF
θ (u, v)dudv = 2θ.

Hence, we can normalize interactions and obtain the density of the Frank’s

copula. This is a very special property of this copula, which we have not con-

firmed for any other copulas.

Proposition 2. Frank’s copula is equal to normalized interaction of this copula,

i.e:

cF
θ (u, v) =

iF (u, v)∫ 1

0

∫ 1

0
iF (u, v)dudv

.

In the figure (2.10) one can see that the normalized interaction is in fact

identic to the density of Frank’s copula.
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Figure 2.10: The Normalized interaction of Frank copula with parameter

theta = 7.901 and rank correlations: τ = 0.5989, ρS = 0.8.

Using the Taylor’s expansion we can also show that the limit of iF (u, v; θ)

is zero when θ → 0.

We can approximate some function f(x) by T2(x), where T2(x) is the quadratic

approximation or a second Taylor polynomial for f based at b, such that:

T2(x) = f(b) + f ′(b)(x− b) +
1

2
f ′′(b)(x− b)2.

Let us denote, the Frank’s copula interaction as the fraction of two functions

of θ:
h(θ)

g(θ)
=

2θ2(1− e−θ)e−θ(u+v)

[1− e−θ − (1− e−θu)(1− e−θv)]2
,

We can compute the first and the second derivative of h in Maple. We

obtain: h(0) = h′(0) = h′′(0) = 0, so the quadratic approximation T2(θ) for the

numerator h based at θ = 0 is equal zero.
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Hence, the approximation for the interaction based at θ = 0 is also zero.

This result shows that the random variables are independent if θ → 0.

Frank’s copula seems to be a very interesting case, the shape of the density

function of Normal copula and the shape of Frank’s copula density are so much

alike, but their interactions so different. Interaction of normal copula is constant

while normalized Frank’s interaction is equal to the Frank’s density.

Although considerable research has been devoted to the relation between

interaction and Frank’s copula density, it remains unclear what makes the in-

teraction of Frank’s copula so extraordinary.

It would be of interest to study properties of the Frank’s copula that lead

to this result.

We examine now two more examples of Archimedean copula to see if there

is a similar behavior of the interactions.

Gumbel’s copula The density of the Gumbel copula is given by (2.16). The

interaction of this density can be computed in MATLAB. However, the gen-

eral formula for this interaction is very long and is enclosed in appendix 4.

The simplified form of the Gumbel copula interaction for parameter θ = 2 or

equivalently for Kendall’s tau τ = 1− θ−1 = 0.5, looks as follows:
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iG(u, v) =D2
uv log(cG

θ (u, v))

= {log(u)2
√

log(u)2 + log(v)2 + 6(log(u)2 + log(v)2)

+ 12
√

log(u)2 + log(v)2 + log(v)2
√

log(u)2 + log(v)2 + 6}
log(u) log(v)(log(u)2 + log(v)2)2uv((log(u)2 + log(v)2)1/2 + 1)−2;

The interaction of Gumbel’s copula is presented on the next figure (2.11).
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Figure 2.11: The interaction of Gumbel copula with parameter θ = 2.582 and

τ = 0.6127, ρS = 0.8

Unfortunately the Gumbel interaction does not possess Frank’s interaction

property.

From the figure it appears that high values of interaction correspond to

high values of the copula density, and the bigger interactions correspond with

stronger dependence.
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Clayton’s copula The density of Clayton’s copula is expressed by (2.17).

The interaction of this density is computed in MATLAB and can be found in

an appendix.

The interaction for θ = 1 takes the simple form:

iCl(u, v) =
−4(−v2 + 4uv − uv2 − u2 − u2v + 2u2v2)

(−v − u + uv)5
.

On the Figure 2.12 you can see the interaction for Clayton’s copula with

parameter θ = 2 for which Kendall’s tau is equal to: τ = θ
θ+2

= 0.5 and

Spearman’s rho ρS = 0.68.
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Figure 2.12: The interaction of Clayton copula with parameter θ = 2 and

τ = 0.5, ρS = 0.68

In the figures of Gumbel’s and Clayton’s interactions we can see that the

values in one of the corners rise up to infinity very quickly. Intuitively, this

means that Clayton copula assigns more probability mass to the region in the
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upper left corner while Gumbel assigns more probability mass to the region in

the right upper corner.

Concluding, the above examples show that the Frank copula is a special

distribution, when normalize, the mixed derivative measure of interaction is

equal to the joint density.

This surely is a starting point for further investigation. It would be of inter-

est to learn more about Frank’s copula property, and search for other families

of copulas with similar properties.

Elliptical Copula

For the elliptical copula with the density (2.18) the interaction is as follows:

iEl(u, v; ρ) =
2uv + ρu2 + ρv2 + 0.25ρ(1− ρ2)

[0.25− 0.25ρ2 − u2 − v2 − 2uvρ]2

for all u, v such that the point (u, v) belongs to: {u2 + ( v−ρu√
1−ρ2

)2 < 1
4
}.

For parameter value ρ = 0 the interaction is equal to iEl(u, v; 0) = 2uv
( 1
4
−(u2+v2))2

.

2.7 Summary

This chapter was concerned with the bivariate dependence concepts. We sum-

marize shortly our findings. The dependency between two random variables

is perfectly characterized by their joint distribution. The dependence between



52 CHAPTER 2. BIVARIATE DEPENDENCE CONCEPT

random variables can be measured by correlation coefficients (linear correlation,

rank correlation, Kendall’s tau). Well known bivariate distribution are ellipti-

cal distributions, and especially the normal distribution. For this distribution

there exists a relationship between the product moment, rank correlation and

Kendall’s tau. One can study the marginals separately from the dependency

structure by means of copulas. The most popular copulas are: normal and

family of Archimedean copulas, for which Kendall’s tau plays very important

role. We can also discuss the dependence by simply observing the joint density

or functions of the joint density, in particular so called interactions. Zero inter-

action correspond to independence. In contrast to correlations, the converse is

also true. It is easy to show that interaction of joint distribution equals thein-

teraction of corresponding copula. For normal copula (or equivalently normal

distribution) the interaction is constant while the interaction of Frank’s copula

is equal to normalized density of this copula.

The next chapter is an extension of those dependence concepts to n dimen-

sions.



Chapter 3

Multidimensional Dependence

Concept

This chapter is dedicated to the multivariate dependence concepts. Previously

introduced dependence concepts between two random variables are extended

to the dependency in n dimensional random vector (X1, · · · , Xn), where two

random variables are conditioned on all the other variables.

I start this chapter with introducing the measures of conditional depen-

dence: a conditional correlation and a partial correlation coefficient, which in a

sense, correspond to the product moment correlation. Partial and conditional

correlations are equal for the elliptical distributions, but in general they are not.

The multivariate joint distribution of a random vector contains whole in-

formation about this vector, hence also contain the information about the de-

pendence between random variables. As an example, the multivariate normal

distribution is described. All multivariate distributions with continuous mar-

gins have their corresponding multivariate copula, which is an extension of the

53
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bivariate copula. Multivariate normal and Archimedean copulas are presented.

To represent multivariate dependence we need to collect all the bivariate

measures of dependence between two variables into a positive definite matrix

(for instance joint multivariate normal distribution requires covariance matrix).

This however imposes difficulties. Kurowicka, Cooke [7] show an example, that

positive definite rank correlation matrix transformed to correlation matrix is no

longer positive definite. Moreover, for large matrices it is very unlikely to get

a positive definite matrix. Therefore, other methods for specifying dependence

must be used.

The copula-vine method uses the conditional dependence to construct mul-

tidimensional distributions from the marginal distributions and from the depen-

dence structure between variables. We can represent the dependence structure

via regular vine. In case of joint normal distribution, for which partial and

conditional correlation are equal, we can specify the vine with conditional rank

correlation or either conditional or partial correlation. Bredford, Cooke [10]

show, that the partial correlations on a regular vine are algebraically indepen-

dent and there is one-to-one correspondence with correlation matrices. This

approach is considered to be alternative way of specifying multivariate distri-

bution.

In chapter 2 we discussed measures of interactions, now we define the con-

ditional interactions for multidimensional random vector. Conditional inter-

actions are based onthe multivariate joint distributions. They are mixed dis-

tributions of logarithm of conditional distribution with respect to conditional

variables. We can write joint density using the copula-vine method and then

take the conditional interactions of such density function. Later, we investigate

interactions for vine distributions.
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Lets start with measures of conditional independence. The notions intro-

duced here, were described in [7].

3.1 Conditional Correlation

While product moment correlation describes the linear relationship between two

random variables, the conditional correlation describes the relationship between

two variables while conditioning on other variables.

Let us take the partition (Xi, Xj, Xa) of the n-dimensional random vector

X = (X1, X2, · · · , Xn), where a = {1, 2, · · · , n} \ {i, j}, so the vector Xa is a

vector composed of all the other variables except Xi and Xj.

Definition 7 (Conditional Correlation). The conditional correlation of Xi

and Xj given Xa denoted by ρXiXj |Xa (or simply ρij|a) is a product moment

correlation of Xi and Xj conditioned on Xa with respect to the conditional

distribution between Xi and Xj conditioned on Xa.

ρXiXj |Xa = ρ(Xi|Xa, Xj|Xa) =
E(XiXj|Xa)− E(Xi|Xa)E(Xj|Xa)

σ(Xj|Xa)σ(Xj|Xa)
(3.1)

The conditional correlation is ’an extension’ of ordinary linear correlation

and has similar properties :

• it ranges from −1 to +1,

• if Xi and Xj are independent given Xa, denoted by Xi⊥Xj|Xa, then

ρXiXj |Xa = 0,
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• if ρXiXj |Xa = 0 then Xi⊥Xj|Xa if and only if X is elliptically distributed

random vector.

3.2 Partial Correlation

A partial correlation describes the relationship between two variables, whilst

the other variables are kept constant.

The partial correlation ρ12;3,··· ,n represents the correlation between the or-

thogonal projections of X1 and X2 on the plane orthogonal to the space spanned

by X3, · · · , Xn

The partial correlation is defined in the following way:

Definition 8. Let Xi be random variables with E(Xi) = 0 and standard de-

viations σi = 1 for i = 1, · · · , n and let the numbers b12;3,··· ,n, · · · , b1n;2,··· ,n−1

minimize the following expected value:

E
(
(X1 − b12;3,··· ,nX2 − · · · − b1n;2,··· ,n−1Xn)2

)

Then partial correlation is defined as ([7]):

ρ12;3,··· ,n = sgn(b12;3,··· ,n)
√

b12;3,··· ,nb21;3,··· ,n. (3.2)

Partial correlations can be computed from correlations with the following

recursive formula ([7]):

ρ12;3,··· ,n =
ρ12;3,··· ,n−1 − ρ1n;3,··· ,n−1ρ2n;3,··· ,n−1√

1− ρ2
1n;3,··· ,n−1

√
1− ρ2

2n;3,··· ,n−1

(3.3)
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The partial correlation has similar properties to those of conditional corre-

lation, moreover there exists relationship between partial and conditional cor-

relation. Because partial correlation is easier to calculate, sometimes it is more

convenient to replace conditional with the partial correlation.

Baba, Shibata and Sibuya in [14] have discussed the relationship between the

partial correlation and the conditional correlation, showing that they are equiv-

alent for elliptical distributions. They suggest, that the linearity of conditional

expectation is a key property for this equivalence.

In general, outside the family of elliptical distributions, the partial and con-

ditional correlations are not equal.

Kurowicka, Cooke in [7] show an example, where the zero conditional cor-

relation does not imply zero partial correlation. They took X, Y, Z such that:

X was uniformly distributed on [0, 1], Y⊥Z|X, hence ρY Z|X = 0. And Y |X,

Z|X were uniformly distributed on [0, Xk], k > 0. For those kind of random

variables the difference: |ρY Z|X − ρY Z;X | converge to 3
4

as k →∞.

So for conditionally independent Y, Z given X, their partial correlation is

not zero.

The conditional and partial correlations measure the dependence but this is

a distribution of random vector X = (X1, · · · , Xn) that contain all information

about the dependence between those variables.
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3.3 Multidimensional distributions

If we have an n-dimensional random vector (X1, · · · , Xn), then its joint distri-

bution is called multivariate or n-dimensional distribution. To represent multi-

variate dependence all of the measures of dependence between pairs of variables

(correlation, rank correlation or Kendall’s tau) must be collected into n × n

dependence matrix. This matrix must be complete and positive definite.

The multivariate normal distribution discussed below, is a specific and very

important distribution because it possess many desired properties in probability

theory and statistics.

3.3.1 Multivariate normal distribution

A random vector X = (X1, · · · , Xn) follows a multivariate normal distribution,

symbolically denoted by X ∼ N(µ, Σ), if there is a vector µ = (µ1, · · · , µn) and

a symmetric, positive definite covariance matrix Σ (n×n matrix), such that X

has density:

f(x) =
1√

(2π)2|Σ| exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
,

where x = (x1, · · · , xn), |Σ| is the determinant of Σ, µ is a vector of expected

values of X (µi = E(Xi)), while components of Σ are the covariances (Σij =

Cov(Xi, Xj)).

Of course it is true that: if a random vector has a multivariate normal
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distribution then, any two or more of its components that are uncorrelated,

are independent (because zero correlation implies independence for elliptical

distributions). But it is not true, that two separate random variables that are

normally distributed and uncorrelated, are independent (two random variables

that are normally distributed may fail to be jointly normally distributed).

Example 5. Let X be a bivariate random vector with components X1 and X2.

Let X1 and Z be independent standard normal random variables, and define:

X2 = sign(X1)|Z|

where sign function returns 1 if X1 ≥ 0 and returns −1 if X1 < 0. In this case,

both X1 and X2 are standard normal, but the vector X is not joint normal.

The distribution of X1 + X2 has a substantial probability of being equal to 0,

whereas the normal distribution, as a continuous distribution has no discrete

part. Consequently X and Y are not jointly normally distributed, even though

they are separately normally distributed.

Another very important property of normal distribution is the equivalence

of partial and conditional correlation, i.e:

ρ(XiXj|Xa) = ρXiXj ;Xa .

For the proof refer to Kurowicka, Cooke [7].

Just like bivariate distribution, we can represent any continuous multidi-

mensional distribution as a product of marginals and a corresponding multidi-

mensional copula. The copula, being a dependence structure, tells us about the

relations between random variables X1, · · · , Xn.
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The notions of multivariate copulas described here, were introduced by

Nelsen in [1].

3.4 Multivariate Copulas

The concept of copula a bivariate distribution on the unit square with uniform

marginals, can be extended to the multivariate case. We can define multivariate

copula as a multidimensional distribution on an unit hypercube with uniform

marginal distributions.

Let X1, · · · , Xn be random variables. The role of copulas as dependence

functions justifies the Sklar’s theorem. Sklar’s theorem was previously presented

for bivariate distributions in section 2.5.1, here is its multivariate version.

Theorem 5 (Sklar’s theorem). Let H denote n dimensional distribution

function with marginal distributions F1, · · · , Fn. Then there exists the n dimen-

sional copula C such that for all (x1, · · · , xn):

H(x1, · · · , xn) = C(F (x1), · · · , F (xn))

If all marginals are continuous then the copula is unique. The converse of

the above statement is also true.

Proposition 3. Let F−1
1 , · · · , F−1

n denote the inverses of marginal distributions,

then for every (u1, · · · , un) there exists unique copula C such that:

C(u1, · · · , un) = H(F−1
1 (u1), · · · , F−1

1 (un)).

From this proposition we know that given any marginals and a copula we

can construct a joint distribution. The copula density contains all information

about dependence in the random vector.
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By applying Sklar’s theorem we can derive the multivariate copula density:

c[F1(x1), · · · , Fn(xn)] =
f(x1, · · · , xn)∏n

i=1 fi(xi)
.

And hence, the multivariate joint density can be written as:

f(x1, · · · , xn) = f1(x1) · · · fn(xn)c[F1(x1), · · ·Fn(xn)]

The most popular copula in multidimensional modelling is the normal cop-

ula, also known as Gaussian.

3.4.1 Multivariate Normal Copula

If ΦΣ is the multivariate normal cumulative distribution function with correla-

tion matrix Σ then the distribution function of normal copula is given by:

CN(u1, · · · , uN) = ΦΣ
n(Φ(−1)(u1), · · · , Φ(−1)(un)).

The expression for the copula density cN is as follows:

cN(u1, · · · , uN) =
1√
|Σ| exp

(
−1

2
ζT (Σ−1 − I)ζ

)

where ζ = (Φ(−1)(u1), · · · , Φ(−1)(un)), I is the n × n identity matrix and Φ(−1)

is the inverse of the standard univariate normal distribution.

Using cN as a dependence function, the joint multivariate normal density is

given by:

f(x1, · · · , xn) = f1(x1) · · · fn(xn)exp

(
−1

2
ζT (Σ−1 − I)ζ

)

where fi(xi) is a marginal density function of Xi, i = 1, · · · , n.

Another important class of multivariate copulas is a family of Archimedean

copulae. The bivariate Archimedean copulas described in chapter 2 can be
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generalized to higher dimensions, for more details on Archimedean copulas refer

to Nelsen [1].

3.4.2 Archimedean multivariate copulae

The extension of the 2-dimensional Archimedean copulas defined in the defi-

nition 5, results in writing the n-dimensional Archimedean copula with u =

(u1, · · · , un), in the following form:

Cn(u) = φ−1(φ(u1) + · · ·+ φ(un))

The function φ is defined like in the definition 5, and the functions Cn are

the serial iterates of the bivariate Archimedean copula generated by φ, i.e.:

Cn(u1, · · · , un) = C(Cn−1(u1, · · · , un−1), un).

For instance, if we set

C2(u, v) = C(u, v) = φ−1(φ(u) + φ(v)) = ũ.

Then

C3(u, v, z) =C(C2(u, v), z) = C(ũ, z) = φ−1[φ(ũ) + φ(z)]

= φ−1[φ(φ−1 (φ(u) + φ(v))) + φ(z)]

= φ−1[φ(u) + φ(v) + φ(z)].

Frank’s copula Let φ(t) = − log
(

e−θt−1
e−θ−1

)
and θ > 0, this function generates

the bivariate Frank’s family.
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We can generalize the Frank’s family of 2-dimensional copulas to a family

of n-dimensional copulas for any n ≥ 2:

Cn(u) = −1

θ
log

(
1 +

∏n
i=1(e

−θui − 1)

(e−θ − 1)n−1

)
.

Notice that there is only one parameter θ that can be specified. Hence this

distribution specifies exchangeable model. There are ways to specify that way

more complicated structures, but it is not trivial to find out which parameter

choices specify consistent model [Joe,(1997)].

The closed form of multivariate Frank’s copula density is not known, however

we can compute this density for small n in Maple. The three dimensional Frank

copula density is:

cF (u1, u2, u3) =
3θ2(1− e−θ)2e−θ(u1+u2+u3)[(1− e−θ)2 + (1− e−θu1)(1− e−θu2)(1− e−θu3)]

[(1− e−θ)2 − (1− e−θu1)(1− e−θu2)(1− e−θu3)]3
.

(3.4)

Clayton copula

We can generalize the Clayton family of bivariate copulas to a family of

n-dimensional copulas for parameter θ > 0, the generator φ(t) = tθ− 1 and any

n ≥ 2:

Cn(u) = (u−θ
1 + · · ·+ u−θ

n − n + 1)−
1
θ .

This copula has main advantage in the set of the multivariate Archimedean

copulas, its density as shown in [19] is easy to compute and is given by:
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cn(u) =

(
1− n +

n∑
i=1

u−θ
i

)−n− 1
θ n∏

j=1

(
u−θ−1

j {(j − 1)θ + 1}) . (3.5)

Gumbel copula

We can generalize the Gumbel family of bivariate copulas to a family of

n-dimensional copulas for θ ≥ 1, generator function φ(t) = (− log t)θ, and any

n ≥ 2:

Cn(u) = exp
(
−[(− log u1)

θ + · · ·+ (− log un)θ − n + 1]
1
θ

)
.

The three dimensional density of Gumbel copula can be computed in MAT-

LAB, however it appears as a very long expression and is not included in this

thesis. In Appendix, reader can find MATLAB code which generates the density

of three dimensional Gumbel copula as well as its interaction function.

Representing multivariate dependence in the ways described above has sev-

eral disadvantages.

To represent multivariate dependence a correlation matrix must be specified,

however there are several restrictions to this approach. The correlation matrix

must be complete and positive definite. So when we have missing data we can

not work with partially specified correlation structure (Kurowicka, Cooke [7]).

Moreover, to specify multivariate copula, a set of parameters has to be pro-

vided. It is in general not obvious which values of a parameter (or parameters)

specify consistent model and which dependence structures can be obtained with

given copula (Joe, 1997).
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These drawbacks are reasons to seek for other methods of representing mul-

tidimensional distributions.

The method known as a copula-vine method uses conditional dependence to

construct multidimensional distributions from marginal distributions (marginals

can be obtained from data or experts) and the dependency structure between

random variables represented by a vine (quantification of a vine is done by

experts).

3.5 Vines

A vine is a graphical modek introduced by Bedford, Cooke [9, 10] (2001) and

then studied by Kurowicka, Cooke [7, 8]. A copula-vine method allows us to

specify joint distribution from bivariate and conditional bivariate pieces.

A vine on N variables is a nested set of trees 1, where the edges of tree j

are the nodes of tree j + 1; j = 1, · · · , N − 2, and each tree has the maximum

number of edges. A regular vine on N variables is a vine in which two edges in

tree j are joined by an edge in tree j + 1 only if these edges share a common

node, j = 1, · · · , N − 2.

Definition 9 (Vine). V is a vine on n elements if

1. V = (T1, · · · , Tn−1)

1T = (N, E) is a tree with nodes N = 1, 2, · · · , n and edges E where E is a subset of

unordered pairs of N with no cycle. That is, there does not exist a sequence a1, · · · , ak where

k > 0 of elements of N such that

a1, a2 ∈ E, · · · ak−1, ak ∈ E, ak, a1 ∈ E.

The degree of node ai ∈ E is the number of edges attached to ai.
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2. T1 is a connected tree with nodes N1 = 1, · · · , n and edges E1; for i =

2, · · · , n− 1, Ti is a connected tree with nodes Ni = Ei−1

V is a regular vine on n elements if additionally:

3. proximity For i = 2, · · · , n− 1, if a = a1, a2 and b = b1, b2 are nodes of

Ti connected by an edge in Ti, then exactly one of the ai equals one of the

bi.

We recall two special kinds of vines, the D-vine and C-vine .

Definition 10. A regular vine is called a:

D-vine if each node in T1 has degree at most 2, see

C-vine if each tree Ti has a unique node of degree n−i. The node with maximal

degree in T1 is the root.

For each edge of a vine we define constraint, conditioned and conditioning

sets of this edge as follows ([7]):

Definition 11 (Conditioning, conditioned and constraint sets).

1. For j ∈ Ei, i ≤ n− 1 the subset Uj(k) of Ei−k = Ni−k+1, defined by

Uj(k) = {e|∃ei−(k−1) ∈ ei−(k−2) ∈ · · · ∈ j, e ∈ ei−(k−1)},
is called the k-fold union, U∗

j = Uj(i) is the complete union of j, that

is, the subset of {1, · · · , n} consisting of m-descendants of j.

If a ∈ N1 then U∗
a = ∅.

Uj(1) = {j1, j2} = j.

By definition we write Uj(0) = {j}.
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2. The constraint set associated with e ∈ Ei is U∗
e .

3. For i = 1, · · · , n− 1, e ∈ Ei, e = {j, k}, the conditioning set associated

with e is

De = U∗
j ∩ U∗

k

and the conditioned set associated with e is

{Ce,j, Ce,k} = U∗
j 4 U∗

k = {U∗
j \De, U

∗
k \De}

the order of node e is number of elements of De

Note that for e ∈ E1, the conditioning set is empty. For e ∈ Ei, i ≤ n−1, e =

{j, k} we have U∗
e = U∗

j ∪ U∗
k .

3.5.1 Regular vine specification

Each edge in a regular vine is associated with a constant conditional rank cor-

relation, such that conditioning variables are equal to conditioning set and

conditioned variables to conditioned set, this rank correlation is denoted by

rCe,j ,Ce,k|De .

In chapter 2., we have shown that the rank correlation is a measure of depen-

dence between two random variables joined by the copula. So the vine builds

the joint distribution by specifying copulas and conditional copulas according

to the structure of a vine.

The rank correlation specification on regular vine and copula determines the

whole joint distribution. The procedure of sampling such a distribution can be

written for any regular vine, see [7] for more details on sampling a vine.

The figure (3.1) represents the rank correlation specification on a D-vine on

four nodes.
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1 2 3 4
r12 r23 r34

r13|2 r24|3

r14|23

Figure 3.1: D-vine

3.5.2 The density function

Let assume that for each edge e ∈ Tm where m = 1, · · · , n − 1 and each

possible value of the variables in the conditioning set De a copula is specified.

The corresponding copula to an edge ij given De is denoted as Cij|De and its

density as cij|De while the density of this copula is written as cd. Also, marginal

distributions Fj are specified for each j ∈ N .

The density of a vine is defined as follows:

Definition 12. Let V = (T1, · · · , Tn) be a regular vine on n elements. Given

Fi and Cij|De defined as above, there is a unique vine dependent distribution

with density given by

f1···n = f1 · · · fn

n−1∏
m=1

∏
e∈Em

cij|De

(
Fi|De , Fj|De

)
(3.6)

where e is an edge labelled ij|De.

Example 6. This example shows how this can be applied to obtain the density
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of a vine dependent distribution for the regular vine in the figure 3.5.1.

f1234 = f14|23f23

= c14|23

(
F1|23, F4|23

)
f1|23f4|23f23

= c14|23

(
F1|23, F4|23

) f123f234

f23

= c14|23

(
F1|23, F4|23

) f13|2f2f24|3f3

f23

= c14|23

(
F1|23, F4|23

)
c13|2

(
F1|2, F3|2

)
c24|3

(
F2|3, F4|3

) f2f3f1|2f3|2f2|3f4|3
f23

= c14|23

(
F1|23, F4|23

)
c13|2

(
F1|2, F3|2

)
c24|3

(
F2|3, F4|3

) f12f23f34

f2f3

= c14|23

(
F1|23, F4|23

)
c13|2

(
F1|2, F3|2

)
c24|3

(
F2|3, F4|3

)

c12 (F1, F2) c23 (F2, F3) c34 (F3, F4) f1f2f3f4.

3.5.3 Partial correlation specification

Here, the edges of a regular vine are associated with the partial correlations

in the following manner: with values chosen arbitrarily in the interval (−1, 1)

in the following way: to every e ∈ Ei with either conditioned and condition-

ing variables {j, k} and De respectively, we associate partial correlation value:

ρj,k;De , where i = 1, · · · , n − 1. It is very convenient to do calculations with

partial correlations, such vine is called partial correlation vine.

The following theorem says that each such partial correlation vine specifi-

cation uniquely determines the correlation matrix, see Bedford, Cooke [10].

Theorem 6. For any regular vine on n elements there is a one to one corre-

spondence between the set n × n full rank correlation matrices and the set of

partial correlation specification for the vine.
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All assignments of the numbers from (−1, 1) to the edges of a partial corre-

lation regular vine are consistent, in the sense that there is a joint distribution

realizing these partial correlations, and all correlation matrices can be obtained

this way.

3.5.4 Normal Vines

The normal vine is a special regular vine with rank and conditional rank cor-

relation assigned to its edges. The copula used is a normal copula. This is

equivalent with transforming all marginal distributions to standard normal and

taking all conditional distributions to be normal distributions. Hence, the nor-

mal vine simply allows us to specify joint normal distribution with given corre-

lation matrix, hence we can avoid problems encountered with positiveness and

completeness of the dependency matrix.

This procedure may be described as follows. Suppose random variables

X1, · · · , Xn correspond to nodes of regular vine V with specified (conditional)

rank correlations rij|De for any edge e ∈ V . We can create a partial correlation

vine V ′ by assigning partial correlation ρij;De to every edge of V , where:

ρij;De = 2 sin(
π

6
rij|De).

Let R denote the correlation matrix determined by the partial correlations ρij;De

of V ′. Then we sample a joint normal distribution (Y1, · · · , Yn) with standard

normal margins and correlation R.

In chapter 2 we have discussed mixed derivative measures of interactions,

we have looked at its properties when applied to bivariate joint distributions.
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Now, as an extensions of bivariate interactions, we investigate mixed derivatives

of conditional interactions. These are related to multivariate distributions.

3.6 Mixed Derivative Measures of Conditional

Interaction

Consider the partition (Xi, Xj, Xa) of the X = (X1, X2, · · · , Xn), where a =

{1, 2, · · · , n} \ {i, j}, so the vector Xa is a vector composed of all the other

variables except Xi and Xj.

Whittaker in [6] defines mixed derivative measure of conditional interaction

as following:

Definition 13. When the variables Xi and Xj are continuous the mixed deriva-

tive measures of conditional interaction between Xi and Xj conditioning on Xa

is:

iij|a(xi, xj; xa) = D2
ij log fij|a(xi, xj; xa).

It is easy to show that the mixed derivatives of the joint and of the condi-

tional density functions are the same; that is

D2
ij log fij···n(xi, · · · , xn) = D2

ij log fij|a(xi, xj; xa),

because log fij|a = log fij···n − log fa.

Analogous to bivariate case, the necessary and sufficient condition for con-
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ditional independence, Xi⊥Xj|Xa, is that

iij|a(xi, xj; xa) = 0.

For better understanding next calculations are performed on 3 dimensional

random vector. Later the discussion will be extended to n dimensions.

Theorem 7. Let (X1, X2, X3) be a 3-dimensional random vector. Suppose that

their joint density function is differentiable. Then:

X1⊥X2|X3 ⇔ i12|3 = 0.

Proof. (⇒) Suppose X1⊥X2|X3, then the joint density function f of (X1, X2, X3)

may be written as:

f(x1, x2, x3) = g(x1, x3)h(x2, x3)m(x3).

From the definition of the interaction measure:

i12|3 = D2
12 log f(x1, x2, x3) =

D1[D2 log g(x1, x3) + D2 log h(x2, x3) + D2 log m(x3)] =

D1D2 log h(x2, x3) = 0

(⇐) Now assume that i12|3 = 0 and let f̄(x1, x2, x3) = log f(x1, x2, x3). Then

i12|3 = D2
12f̄(x1, x2, x3) = 0.

Integrating first over x1 we get:

D2f̄(x1, x2, x3) = a(x2, x3),
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for some function a(x2, x3). Integrating now with respect to x2 we have

f̄(x1, x2, x3) = A(x2, x3) + b(x1, x3),

for some function b(x1, x3), where D2A(x2, x3) = a(x2, x3). Finally f(x1, x2, x3) =

eA(x2,x3)+b(x1,x3) = g(x1, x3)h(x2, x3) which implies that

X1⊥X2|X3.

This theorem shows the equivalence between conditional independence and

zero conditional interaction. It was shown in chapter 2, that zero correlation do

not imply the independence (except for elliptical distribution), while interac-

tions do. This is main reason to consider interaction as a better measure than

correlation.

Lets calculate the conditional interactions for three dimensional normal dis-

tribution The following calculations were presented by Whittaker in [6], there-

fore further on in this text I may refer to it, as a Whittaker approach.

3.6.1 The Three Dimensional Standard Normal Distri-

bution

The standardized 3-dimensional normal probability density function of three

dimensional random vector (X1, X2, X3) can be written as:

f123(x1, x2, x3) =
1√

(2π)3|Σ| exp{−1

2
Q(x1, x2, x3)}, (3.7)
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where Σ is covariance matrix, |Σ| is the determinant of Σ, i.e: |Σ| = det(Σ),

and Σ−1 is its inverse matrix.

Σ =




1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1




The matrix Σ is symmetric with determinant equal to:

|Σ| = 1 + 2ρ12ρ13ρ23 − ρ2
12 − ρ2

13 − ρ2
23,

The inverse covariance matrix is given by:

Σ−1 =
1

|Σ|




1− ρ2
23 ρ12 − ρ13ρ23 ρ12ρ23 − ρ13

ρ12 − ρ13ρ23 1− ρ2
13 ρ23 − ρ12ρ13

ρ12ρ23 − ρ13 ρ23 − ρ12ρ13 1− ρ2
12




The quadratic form Q in (3.7) equals to:

Q(x1, x2, x3) = (x1, x2, x3)
′Σ−1(x1, x2, x3)

= a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3

where aij are elements of inverse covariance matrix Σ−1.

Observe that in the expansion of Q(x1, x2, x3) there are no terms higher than

quadratic. This is very special for normal distribution, that we can write the

logarithm of its density (3.7) as:

log f123(x1, x2, x3) = constant− 1

2
Q(x1, x2, x3). (3.8)

In order to get the mixed derivative measure of conditional interaction, i23|1,

we have to take the mixed partial derivative of (3.8) with respect to X2 and
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X3 given X3. In formula for Q(x1, x2, x3), there is only one x2x3 term with

coefficient: 2a23. That is:

i23|1(x1, x2, x3) = D2
23 log f123(x1, x2, x3)

= −a23

= − 1

|Σ|(ρ23 − ρ12ρ13).

Similarly we derive expressions for i13|2 and i12|3, i.e.

i13|2(x1, x2, x3) = −a13

i12|3(x1, x2, x3) = −a12

You can see that these interactions are constant. This result is unusual, no

other distribution was found for which the interaction takes constant values.

The measures of interactions are usually functions, and hardly ever a constant.

Observe the relationship between the element of inverse covariance matrix

a23, and the partial correlation ρ23;1, namely:

a23 = 0 ⇔ ρ23;1 = 0,

this comes directly from the definition of partial correlation:

ρ23;1 =
ρ23 − ρ12ρ13√

(1− ρ2
12)(1− ρ2

13)
,

where

ρ23;1 = 0 ⇔ (ρ23 − ρ12ρ13) = 0.

Naturally, we would get the same result calculating interactions for the nor-

mal copula because we can represent joint normal distribution as a product of
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marginals and a normal copula, where marginals do not influence the depen-

dence structure.

Whittaker considers the case when (X1, X2, X3) is normally distributed ran-

dom vector, characterized by complete 3× 3 Pearson’s correlation matrix Σ:

Σ =




1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1


 .

But we can also represent the joint normal distribution via regular vine.

It is enough to consider the partial correlation specification on a vine. Then

the partial correlations determine a unique, complete correlation matrix (by

theorem 6).

Assume, that we have given the partial correlations specification on a D-vine

of three variables, see Figure 3.2.

From given partial correlations we can calculate correlation matrix Σ, where

element ρ13 is obtained from the formula below:

ρ13 = ρ13;2

√
(1− ρ2

12)(1− ρ2
23) + ρ12ρ23. (3.9)

Having correlation matrix Σ, determined from partial correlations, the in-

teractions are computed in the similar way as in Whittaker’s approach.

The interaction i13|2 is written in terms of given partial correlations ρ12,ρ23

and ρ13;2:



3.6. MIXED DERIVATIVE MEASURES OF CONDITIONAL INTERACTION77

Figure 3.2: D-vine specified by the correlation : ρ12,ρ23 and ρ13;2.

i13|2 =
1

|Σ|(ρ12ρ23 − ρ13) = − 1

|Σ|(ρ13;2

√
(1− ρ2

12)(1− ρ2
23)).

Therefore i13|2 = 0 ⇔ ρ13;2 = 0.

Let us look at the other interaction:

i23|1 =
1

|Σ|(ρ23 − ρ12ρ13) =
1

|Σ|(ρ23 − ρ12ρ13;2

√
(1− ρ2

12)(1− ρ2
23)− ρ2

12ρ23).

(3.10)

We know (from Whittaker’s approach) that i23|1 = 0 ⇔ ρ23;1 = 0. Because

i23|1 is a function of ρ12,ρ23 and ρ13;2, we can find the relationship between these

partial correlations and ρ23;1 by solving the equation: i23|1 = 0.

This solution is obtained via MAPLE:

i23|1 = 0 ⇔ {ρ12 = 0, ρ23 = 0}, {ρ13;2 =
ρ23(1− ρ2

12)

ρ12

√
(1− ρ2

12)(1− ρ2
23)
}.

The relationship between given partial correlations specified on a vine (Fig-

ure 3.2) and the partial correlation ρ23;1 is:

ρ23;1 is equal to zero (or equivalently X2⊥X3|X1) if either both ρ12 and ρ23

are 0, or the partial correlation ρ13;2 is of the form: ρ13;2 =
ρ23(1−ρ2

12)

ρ12

√
(1−ρ2

12)(1−ρ2
23)

.
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3.6.2 Three dimensional Archimedean Copulae

The multivariate Archimedean copulas were discussed in section 3.4.2. The

interactions of three dimensional Archimedean copulas can be calculated in

MATLAB. They appear in a very long expressions and are not included in this

thesis. However, in appendix you can find a MATLAB code to generate those

interactions for Frank, Clayton and Gumbel copulas.

These three Archimedean copulas are characterized by one parameter only,

hence we can consider the conditional interaction as a function of parameter θ.

i12|3(θ) = D12 log c(u, v, z; θ),

where c is the density of either Frank, Clayton or Gumbel copula.

The solution of i12|3(θ) = 0 for Clayton’s copula is computed in MATLAB,

and is equal to 0, i.e: θ = 0.

For Frank’s and Gumbel’s copula the explicit solution could not be found,

however the limits of their interactions, limθ→0 i12|3(θ) are zero.

3.6.3 D-Vine

Earlier, in section , we have discussed conditional interactions of three dimen-

sional normal distribution specified by partial correlations on a d-vine on three

nodes (figure(3.2)). Now, we generalize this approach and consider a d-vine,

where nodes are joined by a copula and a conditional copula.

Let Xi be random variable with Fi-its cumulative distribution function and

fi-its density function, where i = 1, 2, 3 and cij a joint copula of (Xi, Xj). Lets
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consider d-vine with three nodes. Then the joint density function is defined as:

f123(x1, x2, x3) = f1(x1)f2(x2)f3(x3)c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))

c13|2(F1|2(x1; x2), F3|2(x3; x2)).

(3.11)

Then its logarithm is:

log f123(x1, x2, x3) = log f1(x1) + log f2(x2) + log f3(x3)

+ log c12(F1(x1), F2(x2)) + log c23(F2(x2), F3(x3))

+ log c13|2(F1|2(x1; x2), F3|2(x3; x2)).

And the interactions can be written as:

i13|2 = D2
13 log c13|2(F1|2(x1; x2), F3|2(x3; x2)).

i12|3 = D2
12 log

(
c12(F1(x1), F2(x2))c13|2(F1|2(x1; x2), F3|2(x3; x2))

)
;

i23|1 = D2
12 log

(
c23(F1(x1), F2(x2))c13|2(F1|2(x1; x2), F3|2(x3; x2))

)
.

The following proposition is a simple application of theorem (7)

Proposition 4. If (X1, X2, X3) is a 3-dimensional random vector with the den-

sity given by (3.11), then

1. X1⊥X3|X2 if and only if

c13|2(F1|2(x1; x2), F3|2(x3; x2)) = eA(x2,x3)+B(x1,x2);

2. X1⊥X2|X3 if and only if

c12(F1(x1), F2(x2))c13|2(F1|2(x1; x2), F3|2(x3; x2)) = eA(x1,x3)+B(x2,x3);
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3. X2⊥X3|X1 if and only if

c23(F1(x1), F2(x2))c13|2(F1|2(x1; x2), F3|2(x3; x2)) = eA(x1,x2)+B(x1,x3).

for some functions A(x2, x3), B(x1, x2).

Hence, the interaction is equal 0 if appropriate copula or the product of two

copulas can be represented as a function of separated variables.

The following example illustrates how this proposition applies to a normal

copula.

Example 7 (Normal copula). Let (X1, X2, X3) be 3-dimensional normal ran-

dom vector with (standard) normal marginal distributions X1, X2, X3.

A product of copulas as described in the point 2 of proposition 4 can be

derived from (3.11), hence:

c12c13|2 =
f123(x1, x2, x3)

f1(x1)f2(x2)f3(x3)c23(F2(x2), F3(x3))
; (3.12)

where c12c13|2 is an abbreviation of c12(F1(x1), F2(x2))c13|2(F1|2(x1; x2), F3|2(x3; x2)).

Lets remind the formula for the joint three dimensional standard normal

density:

f123(x1, x2, x3) =
1√

(2π)3|Σ| exp{−1

2
Q(x1, x2, x3)}, (3.13)

The product of marginal distributions can be written as:

f1(x1)f2(x2)f3(x3) =
1√

(2π)3
exp{−1

2
(x2

1 + x2
2 + x2

3)}, (3.14)

and the three dimensional normal copula as:
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c23(F3(x3), F3(x3)) =
1√

1− ρ2
23

exp{− 1

2(1− ρ2
23)

(x2
2−2ρ23x2x3+x2

3)} exp{1

2
(x2

2+x2
3)}

(3.15)

Inserting (3.13), (3.14) and (3.15) into the formula for c12c13|2 (3.12) we

derive the following formula:

c12c13|2 =

√
1− ρ2

23

|Σ| exp{−1

2
(a11x

2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3)}

exp{1

2
(x2

1)} exp{ 1

2(1− ρ2
23)

(x2
2 − 2ρ23x2x3 + x2

3)}.

Grouping elements of the above expression in such way to contain products

of functions of separated variables, we get

c12c13|2 =

√
1− ρ2

23

|Σ| exp{−1

2
(a11x

2
1 + a33x

2
3 + 2a13x1x3 − x2

1)}

exp{−1

2
(a22x

2
2 + 2a23x2x3 − 1

(1− ρ2
23)

(x2
2 − 2ρ23x2x3 + x2

3))} exp{−a12x1x2}

Hence, we have shown that, c12c13|2 can be rewritten as a product of the

following functions:

c12c13|2 = exp{A(x1, x3)} exp{B(x2, x3)} exp{−a12x1x2}.

This expression satisfies the point 2 of proposition 3.11 if and only if a12 = 0.

This is equivalent to: X1⊥X2|X3 ⇔ ρ12;3 = 0, where a12 is an element of inverse

covariance matrix Σ.

So far we have considered conditional interactions of three dimensional ran-

dom vector. We can now generalize our discussion to high dimensions. The
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multivariate normal distribution plays very important role in high dimensional

modelling and is discussed in this section.

3.6.4 Multivariate standard normal distribution

The multivariate normal distribution was described section 3.3.

It was said that the normal density is a special one because it can be written

in a log linear form,i.e:

log f(x) = const− log(|Σ|)− 1

2
xT Σ−1x.

for x = (x1, · · · , xn) ∈ Rn, where Σ is positive definite covariance matrix,

and |Σ| is the determinant of Σ.

It is a quadratic form in terms of coordinates of x and can be expanded to:

log f(x) = const− log(|Σ|)− 1

2

(
n∑
i

aiix
2
i +

n∑
ij

2aijxixj

)

= const− log(|Σ|)− 1

2

n∑
i

aiix
2
i −

n∑
ij

aijxixj,

where i < j and aij’s are the elements of the inverse covariance matrix Σ.

Then the interaction between xi and xj (the i-th and j-th derivative of

log f(x)) is entirely determined by aij, and the following holds:

aij = 0 ⇔ Xi⊥Xj|Xa.

Whittaker shows in [6], that the coefficients aij can be interpreted as partial

variances and partial correlations:
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aii = 1
var(Xi|Xa)

, and

aij = −ρ(Xi, Xj|Xa)
√

aiiajj = −ρ(Xi, Xj|Xa)
√

var(Xi|Xa)
√

var(Xj|Xa).

So, the criterion for pairwise conditional independence is that aij = 0 and

consequently the ρ(Xi, Xj|Xa) = 0.

Example 8 (The 4-dimensional Standard Normal Distribution). The

Q(x) for 4-dimensional normally distributed random vector can be written as:

Q(x) = (x1, x2, x3, x4)




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







x1

x2

x3

x4




and this is equal to the quadratic form:

Q(x) = x2
1a11 + x2

2a22 + x2
3a33 + x2

4a44 + 2a12x1x2 + 2a13x1x3 + 2a14x1x4 +

2a23x2x3 + 2a34x3x4.

The logarithm of joint density f is:

log f(x) = const− 1

2
Q(x) = const− 1

2
(x2

1a11 + x2
2a22 + x2

3a33 + x2
4a44)

− (a12x1x2 + a13x1x3 + a14x1x4 + a23x2x3 + a34x3x4)

and the mixed interactions correspond, of course to the elements aij, for

instance:

i13|24 = −a13

X1⊥X3|X2 ⇔ i13|2 = 0
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Chapter 4

Summary and conclusions

The thesis study different aspects of how to measure the dependence. The key

terms throughout this work were:

• Product moment correlation ;

• Rank correlations (Spearman’s rho and Kendall’s tau);

• Partial and conditional correlation;

• Copulas;

• Vines;

• Mixed derivative measures of (conditional) interactions.

Product moment correlation is by far the most used measure to test de-

pendence, it is easy to calculate but it has several disadvantages, just to name

few:

85



86 CHAPTER 4. SUMMARY AND CONCLUSIONS

• product moment correlation is only defined when the expectations and

variances of random variables are finite.

• In general zero correlation does not imply independence (this become

applicable for elliptical distributions);

• It depends on the marginal distributions.

The product moment correlation outside the world of elliptical distributions

may induce misleading conclusions and therefore can not reveal all the desired

information about the dependency hidden in a joint distribution. More flexible

measures are rank correlations. These are: Spearman’s ρS and Kendall’s τ . As

opposed to the product moment correlation coefficient, they can be expressed

in terms of copula C.

Both, Kendall’s tau and Spearman’s rho are very useful. They possess prop-

erties which are not shared by linear correlation.

• They may be considered as measures of the degree of monotonic depen-

dence, whereas product moment correlation measures the degree of linear

dependence only;

• They are invariant under monotone transformations, while the linear cor-

relation is not;

• ρS(X,Y ) and τ(X,Y ) depend only on the copula of (X, Y );

• if X⊥Y then ρS(X,Y ) = τ(X, Y ) = 0.

The dependence between random variables is characterized by their joint

distribution. We can talk about joint distributions in terms of copula, this is
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very convenient way when studying the dependence because the copula separate

the marginal distributions from dependence structure. From a practical point

of view, the advantages of the copula approach are:

• copula connects a given joint distribution function to its marginal distri-

butions,

• we can link together any two marginal distributions and any copula and

we’ll get a valid joint distribution function,

• the marginal distributions for the components of a multivariate distribu-

tion can be selected freely, and then linked with a suitable copula. So

the dependence structure can be modelled independently of the marginal

distributions.

Often the dependence structure between X and Y is very complicated and

describing it by scalar-based measures is not suitable. In this case we take an

advantage of mixed derivative measure of interactions. Interactions which are

functions calculated from the density, can reflect more complicated dependence

structures.

Copulas are used to represent either bivariate and multivariate distributions.

Alternative way of representing multivariate distributions is by specifying the

dependence structure using vines, the graphical model for conditional depen-

dence. The Vine model allows to give input conditional (rank) correlations. The

advantage of this approach is that there are no joint restrictions on the corre-

lations by contrast the correlation matrix for joint normal distribution must be

positive definite in case of Pearson product moment correlations.
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Finally, the conditional interactions measure the dependence for multivariate

joint distributions. It is shown that the mixed derivative measure of conditional

interaction when applied to multivariate normal distribution is equal to the

appropriate element of the inverse covariance matrix. The elements of such

matrix are interpreted as partial variances and partial correlations.

The aim of this thesis was to study the relationships between interactions

and other well known measures of dependence. Throughout the research we

have found many interesting properties of this measure of dependence, like:

• Interactions depend on the density function and not on the data;

• Interaction is a function that reflects complexity of the dependence;

• Interactions of the joint density and the corresponding copula are equal;

• The zero interaction for normal distribution corresponds to a zero partial

correlation;

• The normalized Frank’s interaction and the Frank’s copula density are

the same;

• They are sufficient and necessary condition for independence, i.e.: X⊥Y ⇔
i(X, Y ) = 0.

Observe, that the last bullet does not hold either for product moment or rank

correlations.
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The interaction is a very attractive tool to model the dependence (as a

function interaction contains much more information about the dependency

than a scalar based measures). From the other side it is an extraordinary

measure (for normal distributions it is constant and corresponds to the product

moment correlation and for Frank’s copula, when normalized, is equal to this

copula density). It would be of interest to investigate and learn more about

interactions and their properties. One can study the interactions of discreet

random variables (the derivatives are replaced by differences in this case).

In applications, interactions can be used in multivariate vine distributions

to measure the conditional dependence. Because the lack of the time unable

me to study this approach, it is a starting point for future research.
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Matlab codes for Archimedean copulas

1.Three dimensional Frank Copula

The interaction of 3-dimensional Frank copula (given by (3.4)) can be calculated

using either MAPLE or MATLAB. The result produced by MATLAB is in more

condensed form than the formula obtained in MAPLE, therefore here I enclose

the expression I have obtained in MATLAB.

These commands produce the interaction inter, of three dimensional Frank

copula:

syms u v z t

CDF=1/t*log(1-[(1-exp(-t*u))*(1-exp(-t*v))*...

...(1-exp(-t*z))]/(1-exp(-t))^2)

PDF=diff(diff(diff(CDF,u),v),z)

fun=log(PDF);

inter=diff(diff(fun,u),v)

Where CDF is a cumulative distribution function of Frank copula CF (u, v, z),

the PDF is the density function cF (u, v, z) given by (3.4) and inter is the inter-

action of this density.

The following set of commands produces the values of Spearman’s rho (spearman)

and Kendall’s tau (kendall) for Frank’s copula with given parameter θ.

warning off all

spearman = 1 + 12/t*(2/t^2*quad(inline(’a.^2./(exp(a)-1)’,’a’),0,t)...

...-1/t*quad(inline(’a./(exp(a)-1)’,’a’),0,t))

kendall=1-(4/t)*(1-1/t*quad(inline(’a./(exp(a)-1)’,’a’),0,t))

warning on

Where t denotes the parameter θ.
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2.Bivariate Clayton Copula

The interaction of the density of Clayton copula is given by (2.17) and can be

calculated using either MAPLE or MATLAB. The result produced by MATLAB

is in more condensed form than the formula obtained in MAPLE, therefore here

I enclose the expression I have obtained in MATLAB.

The following set of commands produces the interaction inter of bivariate

Clayton copula.

syms u v t

fun=log((1+t)*(u.*v).^(-t-1).*(u.^(-t)+v.^(-t)-1).^(-2-1/t));

z=diff(diff(fun,u),v);

inter = simplify(z)

inter=

−t(14v7ttu2t + 42u6tv3tt − 280v7tu5tt − 420u6tv6tt − 84u7ttv3t − 42v8tu6tt +

210u7tv6tt−14u8tv2tt+42u3tv6tt+14v2ttu7t−70u8ttv4t +42u8ttv3t +105v7tu6t +

21v8tu3t+105u4tv7t+7v8tu7t−105v6tu4t−u8tv8t−35u4tv8t+35u5tv4t−21v6tu8t+

210u6tv5t−42v7tu7t−140v5tu5t+35u5tv8t+u8tvt+7u8tv7t−42u3tv7t+210u5tv6t+

35u4tv5t + 35u8tv5t + 105u7tv4t + 7v7tu2t + 21u6tv3t − 140v7tu5t − 210u6tv6t −
42u7tv3t−21v8tu6t+105u7tv6t−7u8tv2t+21u3tv6t+7v2tu7t−35u8tv4t+21u8tv3t−
105u6tv4t−140u7tv5t−7v8tu2t+utv8t−210u6tv4tt+42v8ttu3t+2utv8tt+210u4tv7tt+

14v8ttu7t−210v6ttu4t−2u8tv8tt−70u4tv8tt+70u5tv4tt−42v6tu8tt+420u6tv5tt−
84v7ttu7t− 280v5tu5tt + 210v7ttu6t + 70u5tv8tt + 2u8ttvt + 14u8tv7tt− 84u3tv7tt +

420u5tv6tt+70u4tv5tt+70u8tv5tt+210u7tv4tt−280u7tv5tt−14v8ttu2t)/u/v/(−vt−
ut +utvt)4/(−v2t−2utvt +2utv2t−u2t +2u2tvt−u2tv2t)/(v3t +3utv2t−3utv3t +

3u2tvt − 6u2tv2t + 3u2tv3t + u3t − 3u3tvt + 3u3tv2t − u3tv3t)
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3. Three dimensional Clayton Copula

To generate the interaction of three dimensional Clayton’s copula, we use the

following set of commands:

syms u v z t

CDF=(u^(-t)+v^(-t)+z^(-t)-2)^(-1/t);

PDF=diff(diff(diff(CDF,u),v),z);

fun=log(PDF);

inter=diff(diff(fun,u),v)

Where command inter produces this interaction.

4. Two dimensional Gumbel Copula

The following MATLAB code is used to calculate the interaction of the density

of two dimensional Gumbel copula (2.16).

syms u v t;

z=log([exp(-[(-log(u)).^t+(-log(v)).^t].^(1/t)).*...

...[(-log(u)).*(-log(v))].^(t-1)]./...

...[u.*v.*((-log(u)).^t+(-log(v)).^t).^(2-1/t)].*...

...[((-log(u)).^t+(-log(v)).^t).^(1/t)+t-1]);

d=diff(diff(z,u),v)

where z is the logarithm of the density (2.16), and d is the mixed derivative

of z, hence the command d produces the formula for the interaction of the

Gumbel density.



93

5. Two dimensional Gumbel Copula

The next set of commands produces the 3-dimensional density (PDF) and 3-

dimensional interaction of this density (inter) for three dimensional Gumbel

copula given by the distribution function (CDF).

syms u v z t

CDF=exp(-[(-log(u))^t+(-log(v))^t+(-log(z))^t]^(1/t));

PDF=diff(diff(diff(CDF,u),v),z)

fun=log(PDF);

inter=diff(diff(fun,u),v)



94 CHAPTER 4. SUMMARY AND CONCLUSIONS



Bibliography

[1] R.B. Nelsen An Introduction to Copulas, Springer-Verlag New York, Inc.,

1999.

[2] R. T. Clemen, T. Reilly, Correlations and copulas for decision and risk

analysis, 1997;

[3] M. Dorey, P. Joubert, Modelling Copulas: An Overview, The Staple Inn

Actuarial Society;

[4] S. Demarta, A. J. McNeil,The t Copula and Related Copulas, Zurich, 2004;

[5] N. L. Johnson, S. Kotz, N. Balakrishan Continuous univariate distributions,

volume 1, Wiley Series in Probability and Mathematical Statistics, 1994;

[6] J. Whittaker, Graphical models in Applied Multivariate Statistics, John Wi-

ley & Sons, 1990;

[7] D. Kurowicka, R.M. Cooke, Uncertainty Analysis with High Dimensional

Dependence Modelling, TUDelft, 2005;

[8] D. Kurowicka, R.M. Cooke, Completion problem with partial correlation

vines, TUDelft, 2005;

95



96 BIBLIOGRAPHY

[9] T. Bedford, R. Cooke, Probability density decomposition for conditionally

dependent random variables modeled by vines?, Annals of Mathematics and

Artifical Intelligence, 2001;

[10] T. Bedford, R. Cooke, Vines - a new graphical model for dependent random

variables, 2001;

[11] T. S. Ferguson, A Class of Symmetric Bivariate Uniform Distributions,

1994;

[12] J. Bojarski, A new class of band copulas - distributions with uniform

marginals, Juournal of Mathematical Sciences, Vol. 111, No. 3, 2002;

[13] D. Fantazzini, Copula’s Conditional Dependence Measures for Portfolio

Management and Value at Risk, University of Konstanz;

[14] K. Baba, R. Shibata, M. Sibuya Partial Correlation and Conditional Cor-

relation as MEasures of Conditional Independence, Australian Statistical

Publishing Association Inc., 2004;

[15] H. M. Kat, The Dangers of Using Correlation to Measure Dependence, City

University, London, 2002;

[16] S. Nadarajah, K. Mitov, S. Kotz Local dependence functions for extreme

value distributions, Journal of Applied Statistics, 2003;

[17] P.G. Sankaran, R.P. Gupta Characterizations using local dependence func-

tion Communications in statistics, 2004;

[18] K. Aas Modelling the dependstructure of financial assets: A survey of four

copulas, Norwegian Computing Centre, 2004;



BIBLIOGRAPHY 97

[19] E. Cuvelier, M. Noirhomme-Fraiture Clayton copula and mixture decompo-

sition, University Notre-Dame de La Paix;


