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Chapter 1

Introduction

The drive behind this project is the desire to be better able to model the processes
within an oil reservoir undergoing production using a combination of simulation
software and available observations. This is a desired ability because of the in-
creasing availability of smart reservoir management technologies, which allow
engineers to control many parameters within production and injection wells and
better monitor the reservoir. The hope is that optimization techniques could
be applied to the production parameters at existing wells within a field and the
development plan of a reservoir. With the application of optimization techniques
it will be possible to recover more of the hydrocarbons within a reservoir after
the start of water injection and during the life-time of production. Such opti-
mization routines will require reservoir monitoring schemes which will be able to
provide accurate estimates of the fluid and rock properties of the reservoir and
quantitative predictions of dynamic properties at multiple time scales.

Software-based monitoring schemes for producing reservoirs typically rely on
some data assimilation technique to combine knowledge of the reservoir coming
from simulation and observation. In this project, we focus on the use and evalua-
tion of the Ensemble Kalman Filter (EnKF). Examples reporting positive history
matching results for a reservoir using the EnKF are found in the following works:
[12], [6] and [15]. This sequential data assimilation method provides a probabilis-
tic way to look at reservoir model and improve it using observations such that the
estimates of the filter are consistent with the production history of the reservoir.
This is a process known as history matching. At the analysis step, the point in
simulated time at which data is assimilated into the filter, a set of variables from
the model are changed to make the results better match the true dynamics of
the system. These variables can be the predicted variables of interest, such as
the ratio of oil to water in a region of the reservoir, or a parameter of the model
which is unknown, such as a rock property in that region. The quantaties subject
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2 CHAPTER 1. INTRODUCTION

to analysis at the filtering step are generally; porosity, permeability, saturation
and pressure. There is quite a bit of data available in the time domain at a
reservoir’s wells, but data between the wells is rare. One example is data taken
from seismic surveys of a reservoir, which provide spatially dense information at
a certain point in time.

In practice, not much is known about the dynamics in a reservoir as it is un-
dergoing production, injection or other processes. There is a significant amount
of information available to engineers at the wells and usually some sparse geo-
logical information, but otherwise engineers are blind to the internal processes of
the reservoir. Seismic imaging allows the engineer to get somewhat of a picture
of the reservoir away from wells. The technique uses shear and pressure waves
to measure the impedance of the reservoir, which can be inverted to estimate
fluid and rock properties. Field engineers often combine their experience reading
maps of seismic properties to make educated guesses about the properties of a
reservoir. These techniques seem to be reliable for production purposes and de-
termining the location of new wells. Optimization procedures, however, require
a quantitative estimate of some of the reservoir properties for seismic data to be
of use. Currently, the data is usually processed through a full inversion. The
seismic properties measured in a single survey of a field are inverted to the fluid
properties of the reservoir. This inversion is non-linear and requires sufficient
computational effort. Researchers in the field are actively pursuing alternatives
to the full inversion.

The introduction of time-lapse seismic data, exploiting the difference in seis-
mic measurements over time, to improve the historical strength of these methods
is a new subject. One example is found in the paper by Skjervheim et. al. [16]. In
that paper, the authors combine 4D seismic data with production data to realize
a ’slight reduction’ in production mismatch and significantly different porosity
and permeability estimates from the production data base case. This is an im-
portant point, as one of the possible causes of gross mismatch with production
data is a history matching scheme that updates the permeability and porosity in
a poor way. It is hoped that seismic data will force better estimations of these
parameters, allowing the model to perform better. The authors of [16] refer to
the use of time-lapse data in their paper, but they are using a slightly different
definition than I do in this report. They used fully-inverted data, meaning a one
pass seismic survey is inverted into pressures and saturations, taking the differ-
ence between two runs after performing the inversion. I use the term time-lapse
data to mean differences in measured impedances (I) and 2-way travel times (T2).
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1.1 Project Outlook

The goal for this project is to investigate ways to include 4-D seismic data into
history matching schemes without having to perform a full inversion of the seis-
mic data. Through discussions with my colleagues from the reservoir engineering
section, we have highlighted two possible ways to realize this goal. Both meth-
ods will utilize the differences in impedence and time-travel for multiple seismic
surveys to supply data to an ensemble kalman filtering scheme. The difference
is where the necessary geologic modeling, which bridges seismic properties with
reservoir properties, takes place within the filtering scheme.

In the first idea, shown graphically in figure 1.1, I will use a forward rock
physics model to estimate the seismic properties corresponding to the physical
changes in each member of the ensemble. This forward model is refered to as
the Rock Physics Framwork and abbreviated RPF. The RPF predicts the seismic
measurements we would expect, given the model state. These forecasts will then
be combined with the instrumental data in a filtering step.
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Figure 1.1: Graphical Representation of Method 1

The second method will use an inverted rock physics framework, Mario Trani’s
Modified Landro Method, to transform the measured changes in the seismic prop-
erties into changes in the reservoir properties. The inversion process is compli-
cated and all of the processing takes place outside of the CLOREM-controlled
filtering step, but it is computationally preferable to the full inversion previously
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discussed.
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Figure 1.2: Graphical Representation of Method 2

This project report will focus on the use of time lapse seismic data, the dif-
ference in seismic properties between two or more successive surveys of a field, in
assimilation. The difference in seismic measurements can be inverted into differ-
ences in reservoir properties using several methods based in geological physics.
We cooperated with Mario Trani in the Faculty of Civil Engineering to implement
his inversion technique, known as a Modified Landrø method.

1.2 Reservoir Simulation

Reservoir simulation is meant to provide field and research engineers with a quan-
titative estimate of hydrocarbon volume in a reservoir undergoing production.
The quality of geological data for a particular reservoir and the quality of the
modeling technique both contribute to the uncertainties in the estimates provided
by simulation software. The field of reservoir simulation is quite large, but there
are some important concepts to understand for this application. I will discuss
these here by describing both reservoir structure and the methods by which they
are represented.

A reservoir is typically represented on a grid structure, where each cell has
it’s own values of porosity, permeability, pressure, relative saturations of water
and hydrocarbons, temperature and others. The definitions for these properties
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follow. I have included the symbology that I will attempt to maintain throughout
the report. They are interpreted from [3] and [7].

• Porosity, φ, The non-rock fraction of volume which can be occupied by
liquids.

• permeability, k, A constant which describes the ease with which fluids flow
through a given material.

• Pressure, P , The internal pressure of the reservoir.

• Saturation, S, The percentage, within a control volume, of a particular
liquid. For example, Sw denotes water saturation. In practice, these satu-
rations are bounded to an interval well within (0,1). It is not possible to
force all of the oil out of a reservoir.

Likewise, the grid has a set of spatial properties.

• Grid Block Height, h, The physical height of a gridblock.

• Grid Block Length/Width, ∆x, /∆y, Size of the gridblock in the lateral
directions.

The simulation of a reservoir undergoing production is based on the conservation
of momentum and mass within the reservoir. The equations for an isothermal
reservoir with two-phase, oil/water, flow, as they are presented in [7] are based
on Darcy’s Law,

v̄w = −krw
µw

K̄(∇pw − ρwg∇d), (1.1)

v̄o = −kro
µo

K̄(∇po − ρog∇d),

Darcy’s equations provide the conservation of momentum within a control vol-
ume. µ is the fluid viscosity, K̄ is the permeability tensor, g is the acceleration
of gravity, and d is the depth. The subscripts o and w refer to oil and water and
krw and kro are the relative permiabilities of oil and water. The latter two quan-
tities represent additional resistance to the flow of each liquid in the presence
of the other. Typically, the coordinate system of the simulation is setup with
regard to the geologic layering such that the permeability tensor is a diagnol
matrix. Darcy’s Law is an empirical relationship developed through labratory
experiments. The Darcy Velocity, v̄ is the hypothetical velocity of the fluid, ab-
sent the restricted volume within the pore space. The true velocity within the
pores is v̄/φ. The mass-balance within a control volume can be written,

∇ • (αρwv̄w) + α
∂(ρwSwφ)

∂t
− αρwqw = 0, (1.2)

∇ • (αρov̄o) + α
∂(ρoSoφ)

∂t
− αρoqo = 0, (1.3)
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where α = 1 (in three dimensions) and q is a source term which represents flow
rate per unit time due to production and injection. This term is of importance
near wells. ∇• is the divergence operator. The equations given by mass-balance
calculations and Darcy’s Law are subject to the constraints

So + Sw = 1 and po − pw = pc(Sw).

The first limits the model constitutents to oil and water. In the second constraint,
the term pc represents the capillary pressure at a given water saturation and
represents the pressure drop at oil-water interfaces. In the cited example, Jansen
[7], the capillary pressure is neglected. This is justifiable for that case because the
capillary pressure causes a low-order diffusion, which is often unimportant on the
scale of a reservoir and dwarfed in scale by transitive effects. It is also common
to use numerical diffusion, resulting from a particular discretization scheme, to
approximate the capillary diffusion. With capillary effects considered negligable,
the constraint becomes,

po = pw.

Lastly, the isothermal assumption gives equations of state which relate pressure,
density and compressability.

co = 1
ρo

∂ρo

∂po
(1.4)

co = 1
ρw

∂ρw

∂pw
(1.5)

cr = 1
φ

∂φ
∂po

(1.6)

(1.7)

The third line is the definition of rock compressability. Combining the above, we
arrive at a reasonable set of governing equations,

−∇
[
αρwkrw

µw
K̄(∇p− ρwg∇d)

]
+ αρwφ

[
Sw(cw + cr)

∂p

∂t
+

∂Sw

∂t

]
= αρwqw,(1.8)

−∇
[
αρokro

µo
K̄(∇p− ρog∇d)

]
+ αρoφ

[
(1− Sw)(co + cr)

∂p

∂t
− ∂Sw

∂t

]
= αρoqo.(1.9)

These two equations do not differentiate between oil and water pressure, due to
the lack of capillary pressure. The system allows us to see the kind of problem
that a reservoir simulator is asked to solve, even though it is a simplification
of the dynamics we will later model. The problem is parabolic with respect to
pressure and approachs elliptic as compressability in the seccond term goes to
zero. Saturation is described by mixed parabolic-hyperbolic terms, but is totally
hyperbolic here because of the lack of capillary pressure. Thus, a simulation
method should be designed to represent fast changes in pressure and more gradual
changes in saturation.
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In a reservoir simulator equations 1.8 and 1.9 would be combined with a
well model, a detailed model of the geology in a neighborhood of a well and the
conditions at the top of a well, which calculates the production of the well due to
the pressure drop between the top and bottom. Such a model provides estimates
of output rate (input rate in the case of a injector) and the water saturation of
the produced (injected) fluid. These models are a field of study themselves and
are trusted in comparison to porous media models like the one described above.
They are not considered to be sources of high uncertainty in this project, so we
will not describe them in detail. Jansen gives a simple introduction to well models
to go along with the above physical modeling.

1.3 Seismic Reservoir Data

The goal of this project is to investigate how the information provided through
the seismic study of a reservoir can be incorporated in a monitoring scheme. For
an offshore reservoir, a seismic survey is carried out by a boat, which sends seismic
waves into the reservoir and listens for them to return. Figure 1.3 shows a basic
diagram of the process, where the first layer is the overburden of the reservoir
and the second is the reservoir itself.

Shale - Cap Rock

Sand - Reservoir

α₁,β₁,ρ₁

α₂,β₂,ρ₂

α₂’,β₂’,ρ₂’

Source Receiver

θ

I₀ I₁

1

2

Figure 1.3: A sample path of a seismic wave, from the source to the reservoir
bottom and back.

We consider two kinds of seismic data. The first is forward seismic data,
often refered to as the seismic attributes, which is a certain type of data that
is measured or easily calculated directly during a seismic survey. Section 1.3.1
shows how we generate this type of data for our synthetic studies by relating
them to the fluid and geological properties of the reservoir. The second type of
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seismic data we considered in known as time-lapse seismic data, modified Landrø
data or inverted difference seismic data. Such data is in terms of changes in
pressure and water saturation in the reservoir, ∆P and ∆Sw, and is calculated
from the changes in the seismic attributes between two seismic surveys. The
modified Landrø method is the work of Mario Trani, a phd student in the TU
Delft faculty of Civil Engineering. The method that he modified is explained in
section 1.3.2 and his modification is briefly motivated.

1.3.1 Seismic Attributes

The Seismic Attributes of a reservoir are those which can be directly measured
or result from simple calculations on the measurements. In this project, we refer
to the seismic attributes known at AVO data and the two-way travel time of
P-waves in the reservoir. This section outlines how we model these attributes
from the state of the reservoir for assimilation and as input for the time-lapse
inversion. We solve for wave speeds in the reservoir in terms of geological and
fluid properties and then translate wave speeds into reflectivity constants. The
specific calculations can be found in [14].

We assume a reservoir like the one shown in figure 1.3, where the overburden
has known seismic properties. We then use the Gassman equation to calculate
the compressability of a control volume in the reservoir, including the rocks and
fluids.

Ksat = Kdry +

(
1− Kdry

K0

)2

φ
Kfl

+ 1−φ
K0

− Kdry

K2
0

. (1.10)

K is the bulk modulus of the control volume, or its resistence to pressure changes,
and the subscripts indicate a material for which K is known.

• Ksat is the bulk modulus of the reservoir, including fluid and rock effects.

• Kdry is the bulk modulus of the rock structure without fluid.

• K0 is the bulk modulus of the minerals in the geological structure.

• Kfl is the bulk modulus of the fluid in the control volume. This changes
with saturation and pressure changes.

A control volume also has a shear modulus, or resistance to shear waves, which
does not depend on the fluid. Defining µ as the shear modulus,

µsat = µdry.
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Given the moduli, and the density of the saturated volume, ρSat, we calculate
the wave speeds for P and S waves in the reservoir by,

α =

√
Ksat+

4
3
µsat

ρsat

β =
√

µsat

ρsat
.

Keeping to the notations used in the seismic field, I define α as the P-wave
velocity and β the velocity of S-waves. Additionally, I is the intensity of a signal,
the square of the amplitude.

After calculating the wave speeds within the reservoir, we can move to the
calculation of the seismic attributes. The two-way travel time of P-waves within
the reservoir, T2, is given by

T2 =
2 ∗D

α

for a vertical shot. With an angle of incidence, the transform comes from trigono-
metric calculations. To relate α and β to the reflectivity at the interface we use
the Zoeppritz equation,

R =

(
b cos θ1

α1
− c cos θ2

α2

)
F −

(
a + d cos θ1

α1

cos ψ2

β2

)
Hp2

D
. (1.11)

Where θ is the P-wave angle of incidence at the interface and ψ is the S-wave
angle of reflection at the interface.

p =
sin θ1

α1

a = ρ2(1− 2β2
2p2)− ρ1(1− 2β2

1p2)

b = ρ2(1− 2β2
2p2) + 2ρ1β

2
1p2

c = 2ρ2β
2
2p2 + ρ1(1− 2β2

1p2)

d = 2(ρ2β
2
2 − ρ1β

2
1)

F = b
cosψ1

β1
+ c

cosψ2

β2

H = a− d
cos θ2

α2

cosψ1

β1

The most important property of the relation in equation 1.11 is that the reflec-
tivity depends on the angle of incidence θ. For small values of θ, the relationship
of R to θ is approximately linear and we use a linear fit to define

R ≈ R0 + Gθ.

for several calculations of the Zoeppritz equation. R0 is the reflectivity for a
square incident wave and G represents how the reflectivity changes as the angle
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of incidence increases. G should have negative sign. R0, G and T2 are the seismic
attributes we use for direct assimilation in chapter 5 and as inputs for the modified
Landrø method. These quantities are typically available from seismic surveys of
a reservoir.

1.3.2 Landro Method

The following description of the estimation of change in pore pressure and water
saturation in a reservoir using time-lapse seismic data is based on the method
presented by Landrø[10]. The difference in wave intensities measured at the
source and the receiver can be used to calculate the reflection coefficient. This
measured property can be related to the initial properties at the interface by,

R0(θ) =
1
2

(
∆ρ

ρ
+

∆α

α

)
− 2β2

α2

(
∆ρ

ρ
+

2∆β

β

)
sin2(θ) +

∆α

2α
tan2(θ). (1.12)

In the above equation ∆ρ = ρ2− ρ1 and ρ = (ρ1 + ρ2)/2. These relationships are
valid for α and β as well. The reflection coefficient can be written for the second
imaging time and combined with eq. 1.12 to yield

R1(θ) =
1
2

(
∆ρ

ρ
+

∆α

α

)
− 2β2

α2

(
∆ρ

ρ
+

2∆β

β

)
sin2(θ) +

∆α

2α
tan2(θ)

+
1
2

(
∆ρ′

ρ
+

∆α′

α

)
− 2β2

α2

(
∆ρ′

ρ
+

2∆β′

β

)
sin2(θ) +

∆α′

2α
tan2(θ),

with ∆ρ′ = ρ′2 − ρ2, and so on. This combination ignores all second-order terms
and relies on the assumptions

∆α

α
,
∆α′

α
¿ 1 (1.13)

β′

α′
≈ β

α . (1.14)

The detailed derivation is included in the appendix of [10]. At this point in
the derivation, Landrø separates the effects of fluid substitution, a change in
saturation, and pressure changes. Under fluid substitution the shear modulus
remains constant, meaning that the speed of S-waves are unaffected, and thus
∆β2ρ = 0. This zeros the fifth term in R1 and we see

R1(θ) = R0(θ) +
1
2

(
∆ρ′

ρ
+

∆α′

α

)
+

∆α′

2α
tan2(θ). (1.15)

Expressed as the change in reflectivity due to fluid substitution,

∆R(θ) =
1
2

(
∆ρ′

ρ
+

∆α′

α

)
+

∆α′

2α
tan2(θ). (1.16)
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Under a change in pore pressure, density should not change, because changes in
porosity due to pressure changes are negligible. Mathematically,

∆ρ

ρ
≈ 0.

This leads to the change in reflectivity due to a change in pore pressure,

∆R(θ) =
1
2

∆α′

α
− 4β2

α2

∆β′

β
sin2(θ) +

∆α′

2α
tan2(θ). (1.17)

Equations and are accurate to first-order changes in the wave velocities and den-
sity and they are combined linearly to arrive at the total change in reflection
constant. It is given by

∆R(θ) =
1
2

∆ρ′

ρ
+

∆α′

α
− 4β2

α2

∆β′

β
sin2(θ) +

∆α′

α
tan2(θ). (1.18)

The relative changes in wave speed and density can be estimated by combina-
tions of the changes in saturation and pressure. Landrø uses linear changes in
saturation and quadratic changes in pressure. The relationships,

∆α′

α
≈ kα∆S + lα∆P + mα∆P 2, (1.19)

∆β′

β
≈ kβ∆S + lβ∆P + mβ∆P 2, and (1.20)

∆ρ′

ρ
≈ kρ∆S, (1.21)

need to be estimated from data according to some regression technique. These
relationships can be inserted into eq. 1.18

∆R ≈ 1
2
(kρ∆S + kα∆S + lα∆P + mα∆P 2)

+
1
2
(kα∆S + lα∆P + mα∆P 2) tan2(θ)

−4β2

α2
(lβ∆P + mβ∆P 2) sin2(θ).

Generally, in these types of analysis, it is assumed that θ is sufficiently small, such
that sin2(θ) ≈ tan2(θ). Then, each vertical transect of the reservoir can be imaged
from multiple values of θ (all small) and we can perform a linear regression for
the model R = Rc + G sin2(θ). Multiple surveys allows us to find,

∆Rc ≈ 1
2(kρ∆S + kα∆S + lα∆P + mα∆P 2) (1.22)

∆G ≈ 1
2(kα∆S + lα∆P + mα∆P 2) (1.23)

−4β2

α2 (lβ∆P + mβ∆P 2). (1.24)
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The above equations are solvable for ∆S and ∆P, using an estimate for the ratio,
β/α.

In our implementation, we use a Trani’s modified version of the Landrø
method for inverting time-lapse seismic attributes. The modified version includes
some of the higher order terms dropped in the above derivation and includes the
change in ∆T2. We relate the change in travel time to the fluid changes by

∆T2 = 2D
α′2
− 2D

α2

= 2D
α′

∆α′
α′ ,

and the relative change in α can be estimated by the fluid changes according to
the relationships seen previously. The system that we use to relate the changes
in the seismic attributes to the fluid changes is shown below. All of the constants
come from pervious data. This is a system of three equations on two unknowns.
We approximate a solution using a Gauss-Newton method.

∆R0 ∼ a∆S2 + b∆S + c∆P 2 + d∆P (1.25)

∆R0 ∼ e∆S2 + k∆S + g∆P 2 + h∆P (1.26)

∆T2 ∼ 2D
α′ (i∆S2 + j∆S + k∆P 2 + l∆P ). (1.27)



Chapter 2

Kalman Filtering Techniques

Kalman filtering is a powerful technique used in filtering and prediction problems
where high uncertainty is a characteristic of both the modeling and observation
of a dynamic system. The general technique is named after Rudolf E. Kalman,
who presented it in his 1960 paper [8], and has been extended and modified over
the last 50 years to allow for use on larger classes of problems. The traditional
Kalman filter is applied to a linear system that can be described by

Xk+1 = F (k)Xk + B(k)Uk + G(k)Wk (2.1)

Zk = M(k)Xk + Vk (2.2)

where

• Xk denotes the state of the system,

• k is the time index,

• Zk is the set of observables,

• Uk represents system input,

• Fk, Bk, Mk are matrices,

• Wk is a Gaussian noise with mean zero and covariance matrix Q, and

• Vk is a Gaussian noise with mean zero and covariance matrix R.

Equation 2.1 describes the propogation of the system state through time and
equation 2.2 describes the relationship between the system and the available
observations. Wk and Vk are taken as independent, indicating independence in
the modeling uncertainty in eq. 2.1 and the observation uncertainty in eq. 2.2.

13
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2.1 Kalman Filter

The Kalman filtering technique solves for the distribution of the state Xk condi-
tioned on the measurements Z1, . . . Zl, l ≤ k. This conditional density function
is Gaussian, because of the conditions imposed on the noise processes V and
W . Therefore it is completely characterized by the mean and covariance matrix.
Moreover, for a Gaussian distribution the mean is an optimal estimate of the
state in the minimum variance sense and also in the maximum likelihood sense.
Recursive equations to obtain the mean, X(k|l), and covariance matrix, P (k|l),
of the probability density of the state Xk at time k conditioned on the history of
the measurements Z1, . . . , Zl up to and including time l are formulated as follows:
Initial condition:

X(0|0) = X0,

P (0|0) = P0.

Time update:

X(k|k − 1) = F (k)X(k − 1|k − 1),

P (k|k − 1) = F (k)P (k − 1|k − 1)F (k)T + G(k)Q(k)G(k)T .

Measurement update:

X(k|k) = X(k|k − 1) + K(k) (Zk −M(k)X(k|k − 1)) ,

P (k|k) = (I −K(k)M(k))P (k|k − 1),

where I is an identity matrix and K(k) is the Kalman gain,

K(k) = P (k|k − 1)M(k)T
(
(k)P (k|k − 1)M(k)T + R(k)

)−1
. (2.3)

The term
(Zk −M(k)X(k|k − 1)) =: Ik (2.4)

is called the innovation of the filter and can be useful in evaluating the perfor-
mance of a filter.

The direct use of the standard Kalman Filter algorithm for reservoir simu-
lation is impossible for several reasons. Primarily, the model which moves the
reservoir forward in time is non-linear, requiring the model matrix F (k) be re-
placed by an operator F. Secondly, because the sytem is very large, the calculation
of F (k)P (k|k − 1)F (k)T is very expensive. The filtering technique shown in the
next section is an extension of the traditional Kalman Filter shown above which
has relaxed conditions.
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2.2 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) was originally proposed by Evensen [4]
and later altered by Burgers [1]. A recent paper by Evensen [5] provides a good
summary of the theory and implementation of the method, which formed the
basis for the description given in this section.

The EnKF is a recursive filter suitable for problems with a large number
of variables, such as reservoir modeling, and it is relatively easy to implement.
EnFK methods apply a Monte-Carlo method to estimate the forecast system
state, based on an estimation of the probability density of the state estimate by
a finite number, N, randomly generated system states ψ = {ψi}, i = 1, . . . , N .
The forcast density is then adjusted, with the available observations, using Baye’s
Rule. The data then have a higher likelihood for the analyzed state than for the
forecast state.

The EnKF algorithm is presented below, with a following explanation.
The initial ensemble of state vectors:

ψ0 ∼ N(X0, P0)

Forecast Step:

ψf
k+1 = M(ψk),

Pf
k+1 = E

[
(ψf − ψ̄f )(ψf − ψ̄f )T

]

Analysis Step:

Kk+1 = Pf
k+1H

T (HPf
k+1H

T + R)−1 (2.5)

ψa
k+1 = ψf

k+1 + Kk+1(Dk+1 −Hψf ) (2.6)

The sub-index k refers to time, M is the model operator, ψf is called the fore-
casted ensemble, P f is the covariance of the forecasted ensemble, the bar operator
indicates an average over the ensembles, K is the Kalman gain, the matrix H

describes the relationship between the ensemble state and the measured quantites
in the ensemble of measurements

D = [d1, . . . , dN ], dj = d + vj , vj ∼ N(0, R).

The analyzed estimate of the ensemble state is represented by ψa and W and V
are matricies where each column is a random vector with covariances Q and R.

2.2.1 Measurement Formulation

One of the strengths of the EnKF is its ability to utilize a general operator, M,
for the forward predictions rather than a strictly linear dynamical system or a
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linearized approximation. However, the method does require a linear relationship,
H, between the observation matrix and ensemble, according to the formulation
in eqns. 2.5 and 2.6. The creation and storage of H poses a challenge in practical
applications of the EnKF for several reasons.

The matrix H is often very large and sparse. In a practical application the
state vector can contain on the order of 109 members. The number of measure-
ments will certainly be lower, for any given time step. The number of measure-
ments available is typically on the order of 101 or 102, where each is either a
direct measurement of a member of the state vector or linearly related to several
members of the state. In such a case, H includes many zeros. If a measurement
is a complicated function of many variables in the state vector then the matrix H

can become quite difficult to construct. Likewise, if the measurements available
change with time H must be reconstructed with every new measurement. It is
desirable to use an operator h(x) to define the state-measurement relationship
according to

h(ψi) = Hψi + f,

or

Hψ = [h(ψ1)− f, . . . , h(ψN )− f ].

Thus, h predicts the measurements that would be provided by the product Hψ

up to some error vector f .
Under a slightly different formation, the analysis step can be performed with

h instead of H. The description of this method that is included here is based on
the work of Mandel [13]. The derivation of the observation matrix free kalman
equations begins with a rewriting of the predicted ensemble covariance,

P =
AAT

N − 1
(2.7)

where

A = (ψf − ψ̄f ).

The substitution of eqn. 2.7 into eqns. 2.6 and 2.5, the analysis step can be
rewritten

ψa = ψf +
1

N − 1
A(HA)T G−1(D −Hψf )

with

HA = Hψf −Hψf , and

G =
1

N − 1
HA(HA)T + R.
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If the analysis step is calculated using the above equations, it is only necessary
to calculate HA once. Considering a single column of HA,

[HA]j = Hψj −Hψ̄

= Hψj −H
1
N

N∑

l=1

ψl

= (Hψj + f)− 1
N

N∑

l=1

(Hψl + f)

= h(ψj)− 1
N

N∑

l=1

h(ψl).

Thus, the single calculation of h(ψi) for all ensemble members i = 1, . . . , N
can be used to find HA and calculate the ensemble update without storage or
construction of the matrix H. This method, using the operator h, is employed
in the applications udertaken for this project, see chp. 3, in order to utilize the
Modified Landro method for inverting seismic data.

2.2.2 Twin Experiments

In practice, an EnKF is supplied with instrumental measurement of the actual
physical process and the true state of the world is easily defined. In a synthetic
case, the definition of the true state of the world is less obvious. To give some
order to a synthetic experiment with an EnKF, we perform a twin experiment.
In such an experiment, an extra ensemble member is propogated forward in time
by the same modeling software and this serves as the base for the synthetic mea-
surements. The extra state vector is not included in any of the calculations of
ensemble statistics. The influence of the true case on the ensemble is communi-
cated through the measurements of the true state. Thus, as this report proceeds,
when we refer to the true state or make calculations using the true value we are
refering to the extra state vector. This allows us to measure the performance
of the filter. Measures which require the true values would not be available in
practice.

2.3 Filter Performance

Given the construction of the EnKF in the preceding section, the second part
of this chapter focuses on measuring the performance of a filter after a number
of analysis steps. Measurement of a filter’s performance allows for comparison
between filter configurations and can provide confidence in a filter’s applicability.
The measurement schemes are seperated into two groups. The first measures the
filter’s performance as parameter estimation tool. The second type measures the
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reliability of the predictions made by the filter after an initial training period,
which consists of a number of analysis steps.

Typically, uncertain parameters from the forward modeling scheme are in-
cluded as variables in the state vector. These modeling parameters, as well as
variables in the system state which do not vary significantly on the time scale of
simulation, are the subject of parameter estimation measurement schemes. The
theory states that as the analysis steps are performed, the estimated distribu-
tion for the time-constant variables becomes more representative of reality. In
reservoir modeling, engineers are usually interested in the ability of the EnKF to
estimate the geological properties of the reservoir. As previously described, qual-
ity information regarding the rock properties of the reservoir is spatially sparse
and the EnKF is known to resolve some information about these parameters.
Refinement of the estimates of the geological properties of the reservoir allow en-
gineers to develop the reservoir by strategically adding producing and injecting
wells or altering the controls on the existing infastructure.

The second type of performance measurement assesses the quality of the pre-
dictions made by the EnKF after time integration. From the predictive stand-
point, the assimilation of data improves the filter’s predictions of the system
for advanced times by training the filter for the specific problem. Practically,
it is important that a mature filtering scheme performs reliable predictions. In
reservoir engineering, it is useful to be able to predict the fluid properties of the
reservoir in the future. It is especially desireable to estimate the total production
and injection rates for the entire field, but it is certainly important that the filter
predict fluid motion within the reservoir.

This section introduces several measurements of performance and discusses
how they are used to evaluate the schemes used in the experiments, see 4 and 5.

2.3.1 Graphical Method

The Graphical Method asks the engineer to compare plots of variables as es-
timated by the EnKF and the simulated true state to evaluate how well the
ensemble represents the truth. This technique is typically used to evaluate the
parameter estimates provided by the filter, especially regarding geological prop-
erties. The true reservoir state and the ensemble estimate are plotted in color
over a horizontal map of the reservoir. Figure 2.1 is an example of the type of
plots which are considered using this technique. The figure shows the porosity,
φ, in a layer of the example reservoir for the true state of the system and three
example estimates. The first, in the upper right-hand side, shows an estimate
in which each grid point takes the average value of φ for the layer with a slight
random perturbation. Graphically, this is not an impressive estimate. The plot
shows none of the structure that is seen in the true case. The next two examples
provide more structure.
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It falls to the analyst to interpret which filter is providing a better estimate
of φ. In such a case, the evaluation of an estimate or the comparison of estimates
becomes subjective. The subjectivity of this method is it’s weakness. Addition-
ally, it can become very labor intensive on the part of the analyst to evaluate
these plots for large or complicated reservoirs. In 3 dimensional reservoirs it is
especially difficult as at least each geological layer should be checked, but it is
better to check each vertical discretization layer. However, the graphical method
does provide a good way to check that the filter is not estimating unreasonable
values for porosity or permiability.

2.3.2 Error Measurements

In order to counter the subjectivity inherent in the graphical evaluation of fil-
ter performance it can be useful to measure the absolute error of the estimate
provided by the EnKF with the true state. The root mean squared error is a
common measurement for the distance between the estimate and the truth. For
a vector variable, X,

RMS(X̂) =


 1

dim(X)

∑

dim(X)

(X̂ −Xtrue)2



−1/2

.

The RMS provides the analyst with a quantitative measurement of the filter
performance. Like the graphical method, it is typically applied to measure a
filter algorithm’s ability to perform parameter estimation. The RMS values for
the example porosity estimates in figure 2.1 are shown in the following table.

Truth Appx. Mean
RMS = 0 RMS = 0.036

Est. 1 Est. 2
RMS = 0.025 RMS = 0.036

The results in the above table indicate that the estimate presented in the lower-
left of the figure is the best. The RMS values of the other estimate reveal a
weakness of the RMS as a measure of filter performance. The two estimates are
very different in nature, but are rated as nearly equal under RMS. This is due
to the fact that the RMS measurement collapses quite a bit of information into
a single quantity. Additionally, the RMS measurement is unit-dependent. This
can lead to confusion and difficulties when analyzing the parameter estimation
for variables with different units valued on different scales.

It is generally advisable to use a combination of the graphical method and
RMS scores to evaluate the performance of different filters. In this case, the
combination of the two would rate the filter resulting in the estimate on the
lower-left as the most suitable. This result is in accord with the construction
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of the example estimates. The lower-left estimate is a smoothed version of the
truth. The estimate on the right is a 180 degree rotation of the other.

2.3.3 Graphical Prediction Validation

Graphical prediction validation is a subjective method for measuring the viability
of the forecasts given by an EnKF. A prediction validation plot typically shows
an independent measurement of a variable along with the ensemble estimates for
that same quantity. Often this is done for several measurements. Plotting the two
together shows where the measurement, or the true value if it is available, falls
within the ensemble’s predictions. Figure 2.2 shows such a plot for four producers
from the test reservoir introduced in chapter 3. Taking the last time available,
we see that the predictions for the two producers on the top seem acceptable.
The ensemble estimates are scattered around the true value with a slight bias.
In the other cases the ensemble is biased or too small and misses the true value.
The estimate in the southwest corner seems particularly bad from a graphical
standpoint. In this report, we plot all of the ensemble estimates along with the
realiztions. In other studies, it is common to see the ensemble mean plotted with
the realization and a pair of bounds which are given by the ensemble variance or
extreme values.

2.3.4 Reliability Measurement

The graphical method of prediction validation can be formalized statistically to
provide a quantification of the prediction reliability, given a set of validation
measurements. The statistical definition of prediction reliability is based on the
distributions governing the system variables. Thus, a filter’s predictions are con-
sidered perfectly reliable if,

F̂ (F ) = U [0, 1] ∀ F,

where F is the distribution of the variables to be validated and F̂ is the empirical
distribution from the ensemble. The equality will be satisfied when the empirical
distribution given by the ensemble is equal to the true distribution of the system
variable. If the relationship is approximate, instead of equal, then the predictions
can still be considered reliable as equality can usually only be approached at
high sample sizes. This is naturally a difficult thing to measure, but this section
introduces a statistic, the reduced centered random variable (RCRV), used in
evaluating the reliability of weather prediction systems [2], that can be used to
gauge the degree to which the empirical distribution matches the truth.

Consider a group of m varification variables for an EnKF, {ξl, l = 1 . . .m}.
This is a set of measurements of variables from the state vector of the modeled
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system. There is then an associated group of variables,

Zl =
ξl − µl

σl
,

where µl and σ2
l are the ensemble mean and variance for the measured variable.

The set {Zl, l = 1, . . . m} represents samples of the RCRV, Z. Given that the
samples of the verification variables are performed independently, we expect to
see, for a proper EnKF configuration,

E[Z] = 0

and
Var(Z) = 1.

If the sample mean of Z differs from 0, then there is some bias in the distribution
of the ensemble. A positive expectation of Z indicates that the ensemble is
underestimating the verification variables and a negative expectation indicates
that the ensemble prediction is too high. If the sample variance of Z is lower
(higher) than 1, then the empirical distribution represented by the ensemble is
too large (small) with respect to the true distribution.
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Figure 2.1: This figure shows φ for 1 layer of an experimental reservoir. The
frame in the upper left is the truth. An almost homogenous realization is plotted
in the upper right. Two possilbe ensemble means for these variables are shown
on the bottom row.
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Figure 2.2: Watercut at 4 producers in the test reservoir. The true water cut is
plotted in blue, the ensemble estimates are shown in red.





Chapter 3

Experimental Design

In order to be able to compare the efficacy of different data assimilation schemes,
we developed a repeatable experiment that offered the ability to include the
two types of seismic data, time-lapse and forward modeling, in different simula-
tions of the same reservoir. The selected model is a three-dimensional oil/water
reservoir. The production of the reservoir was simulated using the commercial
package MoReS, from Royal Dutch Shell. The EnKF analysis was done using the
CLOREM package, which was also developed by Shell. In the appendix for this
chapter, we show the results of an EnKF configuration which assimilates only
production data. That case is presented as a point of reference for the results in
chapters 4 and 5.

3.1 The Box Model

We tested the different EnKF schemes on the so-called Box Model. A two-phase,
oil/water, reservoir which we represent in three dimensions on a cartesian grid
with dimensions 25 x 15 x 11. The gridblocks represent volumes of dimension 30
x 30 x 10 m, giving the reservoir a total horizontal dimension of 750 x 450 m.
The depth of the reservoir, D, is 110 m. In field units, which is the unit system
used in the simulations, the reservoir has the approximate dimensions 2460 x
1476 x 360 ft. Figure 3.1 shows a 3-D picture of the reservoir and colors the cells
according to porosity.

The reservoir features 5 wells, 4 producers and 1 injector. Figure 3.2 shows the
locations of the injector and producers. We attempt to mantain the orientation
of the horizontal map seen in figure 3.2 in following maps of the reservoir. The
injector was placed near the horizontal center of the reservoir and the producers
were placed near the corners. The local environment for each well is summarized

25
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Figure 3.1: The true porosity, φ, for the reservoir.

in the following:

• Injector 1 : Located near the horizontal center of the reservoir, grid point
(9,15). The neighborhood of the injector is characterized by an average
value of porosity and low permeability.

• Producer 1 : Located in the lower left of the aerial maps of the reservoir
(2,2). The surrounding geological properties display low-mid permeability
and high-mid porosity.

• Producer 2 : Located in the upper right of the aerial maps of the reservoir
(13,3). The surrounding geological properties display medium porosity and
low permeability.

• Producer 3 : Located in the upper right of the aerial maps of the reservoir
(2,21). This producer is in a region of low-mid permeability and high-mid
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porosity, similar to producer 1.

• Producer 4 : Located in the upper right of the aerial maps of the reservoir
(14,24). This producer is in a region of low permeability and high porosity.

Figure 3.2: This figure shows the vertical mean porosity of the reservoir, from an
aerial perspective. The location of the injecting well is denoted by the red dot.
Likewise, the green dots inidicate the locations of the 4 producers.

Figure 3.3: The X,Y , and Z-permeabilities, averaged in the vertical direction.
The coloring is uniform amidst the plots.

The producers are constrained during simulation to a constant production
rate of about 1700 barrels per day (BBL/DAY). Figure 3.4 shows the production
rate curves for one experiment. In the experiments, maximum and minimum
bottom hole pressures are defined, but these conditions are never imposed over
the controlled rate.
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Figure 3.4: The oil, water and total production rates for the four producers for
1 simulation of the reservoir.

3.2 Ensemble Kalman Filter Details

The possible configurations for an EnKF are numerous for any application. It falls
to the engineer to decide which parameters should be modeled with uncertainty
and which can be considered known, what kind of measurements can be used, the
timing of the analysis steps and the use of transformations to maintain physical
results. In this section we show some of the parameters we used our experiments.

The data that is considered uncertain by our EnKF is listed below. Sw and So

were included in the state vector using the Reynold’s transformation [18], which
constrains the saturations between 0 and 1 using log transformations [9].

• Elements in the state vector: log(kx,y,z), φ, P , Sw, So

• Measurements Available: {bottom hold pressure (BHP), water rate (Rw),
oil rate(Ro)} and {∆Sw,∆P} or {R0, G, T2}

Our state vector has size O(104) members and we use ensembles with N = 80
members. The production measurements are known for each of the wells, giving
us 15 well measurements. There are 375 measurements for each of the seismic
attributes and the inverted fluid changes, one for each horizontal gridpoint. Us-
ing standard estimates for the uncertainty in the measurements, we define the
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measurement uncertainty covariance matricies as

Rwells =

(
5625I(5) 0

0 900I(10)

)
,

RIS =

(
0.0036I(375) 0

0 900I(375)

)
and

RAVO =




0.01I(375) 0 0
0 0.09I(375) 0
0 0 5x10−13I(375)


 .

I(m) represents the identity matrix with main diagnol length m. The use of
the identity matrix imposes the assumption that the uncertainty in the measure-
ments is independent. It is known that the uncertainty in seismic data cannot
be assumed to be fully independent, see [11], but the dependence is small and
widely modeled as zero.





Chapter 4

Inverted Seismic Assimilation

This chapter includes results and analysis for configurations of the EnKF assim-
ilating the estimates obtained as Gauss-Newton approximations of the system of
equations beginning at 1.25. Results for simulations testing parameter estimation
and prediction are shown. As a point of camparison, the appendix for chapter 3
includes results for a EnKF that assimilated only production data.

4.1 Initial Experiment

The initial experiments on configurations featuring inverted time-lapse data showed
suspicious results. Investigation showed that there was a mismatch in the mea-
surements calculated by the modified Landrø method and the true values. Figure
4.1 shows the measurements supplied by the modified Landrø equations for ∆Sw

at 540 days in a certain simulation. The true change in saturation is shown adja-
cent to the measurement. At this time, the seismic measurement overestimated
the truth. A similar plot of pressure change is shown in the appendix, B.2. It
shows that the pressure measurement was also too high. The source of this bias
was assumed to come from inaccuracies in the geological parameters from the
modified Landrø calculations, which were taken from experimental values and
not developed for the Box Model geology specifically.

We ran the EnKF, which produced the results shown in figure 4.1 for 2556
days, calculating the error in the ∆S and ∆P measurements given by the modified
Landrø method. We discovered an increasing relationship between the mean
error, over the 375 points, in ∆S and ∆P and the time of the second seismic
survey. This relationship is illustrated in figure 4.2, along with the relationship
between the measured ∆S at each update time and the mean error in the inverted
measurements. The appendix contains the plots for ∆P. These plots show a
clear positive bias in the measurements supplied by the seismic inversion, which

31



32 CHAPTER 4. INVERTED SEISMIC ASSIMILATION

5 10 15 20 25

2

4

6

8

10

12

14

True ∆ SAT, t = 540

5 10 15 20 25

2

4

6

8

10

12

14

Measured ∆ SAT, t = 540

Figure 4.1: The measured and exact change in water saturation between 180 and
540 days in a realization of the true model. The color scheme is the same for
both frames.

we chose to estimate using a best linear fit. The fit resulted in the following
estimations for the error, or bias, in the modified Landrø inversion, which we
removed in subsequent experiments.

ε∆Sw = 0.2726 ˆ∆Sw + 0.0087

ε∆P = 0.9580∆̂P + 1.9207

The bias correcting factor shown above was not included in the update at the
first seismic survey, because it is known that the change in ∆S and ∆P is zero
at that point. We took the bias into account for all later measurements, which
were truely time-lapse measurements.
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Figure 4.2: The mean error in the ∆Sw measurement is plotted against both the
time of the second seismic survey used in the time-lapse inversion and the mean,
inverted, ∆S values for the associated time windows.

4.2 Bias Removal

We performed an EnKF simlation of the box model reservoir, removing the bias
we observed in the initial experiments. As in the initial experiment, the EnKF
simulated the production of the reservoir for 2556 days. At every 180 days of
simulation, we simulated a seismic survey of the reservoir and assimilated modi-
fied Landrø data with the bias removed. Figure 4.3 shows the ensemble and true
water cut at the 4 producers. The curves show mixed performance of the filter
on the prediction of water breakthrough. The ensemble predictions for producers
1 and 4 predicted water breakthrough late, while the others predicted it early.

The assimilation of the time-lapse seismic data improved the parameter es-
timation properties of the EnKF, over the assimilation of only production data.
Figure 4.4 shows the time evolution of the X-permeability in layer 7 of the reser-
voir. Plots of the other geological parameters, similar to those in figure 4.4, are
shown in the appendix. Unlike in the production-only EnKF, we saw that the
EnKF revealed the structure of the field when the time-lapse seismic data was
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Figure 4.3: The water cut curves for each of the producers, under the assimilation
of bias-removed modified Landrø data. The ensemble is shown in red and the
truth in blue.

used in the analysis step. The evolving estimate of the layer 7 X-permeability,
kx, starts to approximate the true structure. The area of high permeability near
producer 2 (upper left) is resolved, especially in the analyzed version at 540 days,
which has experienced 2 inverted seismic updates. As the filter moved the en-
semble forward in time and assimilates new data, we observed overshooting of
the true values of kx. The final estimate shows a large region (approximately 50
grid blocks) of high permeability near the injector, located in the middle of the
map.

The global RMSE in the ensemble estimates of kx, shown in 4.5, shows the
overshooting seen in the permeability maps. After the update at 1020 days, the
RMSE of the estimate increases with subsequent updates. We observed the same
overshooting behavior in the other geological parameters with this experiment,
see the appendix for the corresponding plots.

Moving to the predictive tests for this configuration of the EnKF, we mea-
sured the reliability of the cumulative oil production forecasts graphically and
using RCRV statistics. Figure 4.6 shows the cumulative oil output for the 4 pro-
ducers along with the value from the truth model. It shows that the ensemble
underestimates the cumulative oil production in the 3rd producing well. The
underestimation is in accord with the overestimation of Sw at this producer seen
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Figure 4.4: The X-permeability in layer 4 of the box model, truth (upper left) and
three ensemble estimates, under assimilation of bias-removed modified Landrø
data.

in figure 4.3, given the controlled total fluid rate. The other producers show a
slight overestimation of the cumulative oil production.

Though the estimates of cumulative oil production mentioned above are bi-
ases, the overall agreement of the ensemble with the truth is satisfactory. The
true value is typically in the body of the ensemble, without the assimilation of
production data. This reliability is confirmed by the RCRV statistics shown in
figure 4.7. To attain the Z corresponding to the pictured statistics, we measured
the cumulative oil output for the producers at 30 day time intervals starting at
a certain time and ending at the end of the simulation. The construction of Z

explains the instability of the means for high starting times, plotted in the upper
window of the figure, as there are fewer measurements available to average. The
estimates for producer 2 were the most reliable, but the mean and variance of Z

for producers 1 and 3 are also reasonable. The variance of Z for the 4th producer
is much higher than the others indicating that the ensemble is too small.

4.3 Predictive Experiments

The overshooting in the parameter estimation we saw in the EnKF configuration
in the previous section led us to consider a difference updating scheme, with an
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Figure 4.5: The RMSE for the post-analysis X-permeability estimates after the
assimilation of modified Landrø data.

otherwise identical filter setup. Instead of assimilating the bias-adjusted modified
Landrø data every 180 days until the end of simulation, we stopped regularly
assimilating data after the update at 1260 days and performed a final assimilation
at the end of simulation (2551 days). There were several motivations for experi-
menting with this update timing. First, we observed an increasing RMSE in the
geological parameter estimates after the first few assimilations of time-lapse data.
Additionally, we sought to test the predictive power of the ensemble after a long
period of uninterrupted simulation. From a practical standpoint, it is also desir-
able to see if the benefits of inverted seismic assimilation can be acheived with
fewer surveys. In practice, it is very expensive to perform a seismic survey and
field operators would like to maximize their returns with respect to the number
of surveys performed on a given field.

The filter configuration with a break in seismic assimilation for the second
half of the simulation time yielded results quite similar to those of the config-
uration with regular seismic surveys. Figure 4.8 shows the evolving ensemble
estimate of kx for layer 7 of the reservoir. Again, the EnKF picks up much of the
reservoir structure in the estimations, but suffers from overshooting. Comparing
the estimates in this figure to the results from the filter configuration in section
4.2, we see a similar structure to the estimate at 540 days, but a higher degree
of overshooting at 1260 days in the current experiment than we saw in the final
estimate from the previous configuration.

The RMSE for the estimates of kx given by the predictive configuration is
shown in figure 4.9. There, we see that the RMSE again increases after the first
couple assimilations of time-lapse seismic data. In this case, the final assimilation
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Figure 4.6: The cumulative oil curves for each of the producers, under the assim-
ilation of bias-removed modified Landrø data. The ensemble values are shown
in red and the true value is shown in blue.

at the end of simulation exhibits a very high RMSE, indicating that the final
analysis step causes a large overshooting phenomena. The appendix shows the
RMSE plots for the other geological parameters and each shows a similar final
increase. Porosity is unique in that the RMSE of the estimate in increasing
throughout the EnKF simulation, something which we observed in all of the
EnKF schemes. The final increase in the RMSE of the parameter estimates,
combined with the high level of overshooting after the analysis step at 1020 days
led us to believe that the regular assimilation of time-lapse seismic is preferable
from a parameter estimation standpoint.

While the parameter estimates given by this configuration of the EnKF were
less desireable than those generated with regular assimilation of data, the reliabil-
ity measures seemed highlight the advantage of assimilating less modified Landrø
data. Figure 4.10 shows the produced watercut at the 4 producers. Again, the
ensemble underestimates the time of water breakthrough at producer 3, but the
other predictions appear to be acceptable. The ensemble mean might overesti-
mate the time of water breakthrough at producers 2 and 4, but the true Sw curves
are well within the bounds of the ensemble throughout the simulation. Figure
4.11 shows improved predictive ability over the results from the more data-laden
configuration. The ensemble contains the true value of the cumulative oil pro-
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Figure 4.7: The statistics of the RCRV, calculated for cumulative oil production
at all of the producers, under the assimilation of bias-removed modified Landrø
data.

duction for each of the producers throughout the simulation. It still holds that
the ensemble overestimates the oil production at the 4th producer.
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Figure 4.8: The X-permeability in layer 7 of the box model, truth (upper left) and
three ensemble estimates, under assimilation of bias-removed modified Landrø
data up to 1260 days.

The statistics of the RCRV for cumulative oil production, sampled at 30 day
intervals with 10% error, are included in figure 4.12. By these measures, the
EnKF under this configuration performs quite well. While there are biases in the
means of Z for producers 3 and 4, the means for producers 1 and 2 are close to
zero. Likewise, the variance of Z for producers 1 and 2 are close to 1 as is the
variance of Z for producer 3. Producer 4 still exhibits a high variance of Z.

4.4 Summary

This chapter exposed typical results for EnKF configurations which assimilated
modified Landrø data, taken with a time-lapse intervals of 180 days. We observed
that the assimilation of time-lapse data improved the parameter estimation of the
EnKF over the production-only base case. The improvement was seen in both
the graphical estimates and the RMSE of the geological parameters. This result
indicates that there is a strong covariance between the geological parameters,
particularly permeability, and the changes in saturation and pressure after pro-
duction. This is a nice result, as previously permeability has been a difficult
variable for EnKFs to estimate. A caveat to this result is that the reservoir
under consideration was fairly homogeneous and the method might have trou-
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Figure 4.9: The RMSE for the post-analysis X-permeability estimates after the
assimilation of modified Landrø data up to 1260 days with a final assimilation
near the end of simulation.

ble with a more segmented reservoir. This potential weakness is especially true
for reservoirs in which the geology changes significantly in the vertical direction.
From a predictive standpoint, the forecasts made after an initial training with
inverted time-lapse data seemed to be fine. Though there was some bias in the
forecasts, the ensemble had an appropriate spread, and the bias could be quickly
removed with the added assimilation of production data from several points in
time.
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Figure 4.10: The water cut curves for each of the producers, under the assimi-
lation of bias-removed modified Landrø data up to 1260 days. The ensemble is
shown in red and the truth in blue.
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Figure 4.11: The cumulative oil curves for each of the producers, under the as-
similation of bias-removed modified Landrø data up to 1260 days. The ensemble
values are shown in red and the true value is shown in blue.
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Figure 4.12: The statistics of the RCRV, calculated for cumulative oil production
at all of the producers, under the assimilation of bias-removed modified Landrø
data up to 1260 days.





Chapter 5

Seismic Attribute Assimilation

In this chapter we present results from an experiment where the seismic attributes
introduced in section 1.3.1: G, R0 and T2, are assimilated by an EnKF simulating
the test reservoir. Recall that these attributes are calculated at each assimilation
time and are not considered time-lapse data. The configuration for the EnKF in
this section is similar to those featured in the preceeding chapter. The reservoir is
simulated for 2556 days, 7 years, and seismic data is assimilated and an analyzed
state is calculated every 180 days of simulation. The data is generated by the rock
physics framework and the Zoeppritz equation. An example of the measurements
provided by the measurement operator are shown in figure 5.1. The figure shows
a clear relationship between the seismic parameters and the average porosity.
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Figure 5.1: The Seismic Attributes of the reservoir, calculated for the analysis
step at 540 days, and the vertically averaged true porosity. A correlation between
mean porosity and the Seismic attributes is evident.
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The EnKF configuration, with the direct assimilation of the seismic param-
eters, performed poorly by both methods of parameter estimation. From the
graphical perspective, figure 5.2 shows the evolving X-permeability estimate for
the 7th layer. It is clear from the figure that the estimate misrepresents the
structure of kx in this layer and gets worse through time. Unlike in the con-
figurations that assimilated inverted seismic data, the results for this simulation
do not exhibit overshooting. Instead the estimates diverge from the true values.
This divergence is evident in the RMSE plot for X-permeability seen in figure
5.3. The values of the RMSE are high and increase quickly with the assimilation
of more seismic data. From both perspectives, graphical and quantitative, this
EnKF configuration did not effectively estimate the geological parameters of the
reservoir. The appendix includes example plots for porosity and the other per-
meabilities, but none looks satisfactory. This is an unexpected result for porosity,
as we saw such a clear relationship between the seismic parameters and φ maps
in figure 5.1.
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Figure 5.2: The X-permiability in layer 4 of the box model, truth (upper left)
and three ensemble estimates, under assimilation of seismic attributes.

Given that the assimilation of seismic data does not provide reasonable pa-
rameter estimates, we still consider the predictive ability of the method. Figures
5.4 and 5.5 show the ensemble estimates for the watercut and cumulative oil
production at the 4 producing wells. These plots show mixed results and some
strange behavior in the ensemble. At producers 2 and 3, the ensemble overesti-
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Figure 5.3: The RMSE for the post-analysis X-permiability estimates after the
assimilation of seismic parameters.

mates Sw and underestimates the cumulative production. The opposite holds for
producers 1 and 4, as can be seen in the statistics of Z shown in figure 5.6. In
the upper frame of the figure, the sample mean of Z is away from 0 for all of the
producers and almost all of the starting times for the collection of verification
values of cumulative oil. As was previously described, we collected the cumula-
tive oil production at the producers every 30 days until the end. Interestingly,
this configuration led to variances of Z less than 1. This indicates that the en-
semble is too large, which is an unexpected behavior. Due to the biases in each
of the producers and the large spread of the ensemble, this EnKF configuration
is unreliable compared to the performace that we saw in the inverted seismic and
production assimilating configurations.

5.1 Summary

This chapter showed our measurements of the performance of an EnKF config-
uration which assimilated the seismic parameters known as AVO data into the
Box Model simulation. We were expecting to see improved parameter estimation
compared with the production case, especially for porosity, as there is a known
relationship between the geologic and seismic parameters. For porosity, this re-
lationship is pictured in figure 5.1 and can also be seen in the equations from
the rock physics model, see section 1.3.1. We did not observe an improvement
and in fact observed quite a bit of instability when this data was assimilated.
Many simulations would eventually fail as the state vector became inplausible
after a number of analysis steps. As we know there is a correlation between the
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Figure 5.4: The water cut curves for each of the producers, under the assimilation
of seismic parameters. The ensemble is shown in red and the truth in blue.

geology and seismic measurements, it could be that the source of the instability
may come from a modeling error in our seismic modeling. It also could be that
the permeability and porosity relationship is just difficult to expose using the
one-shot seismic attributes. The data here is not conclusive enough to say which
of these is more consistent with what we observed.
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Figure 5.5: The cumulative oil curves for each of the producers, under the assim-
ilation of seismic parameters. The ensemble values are shown in red and the true
value is shown in blue.
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Figure 5.6: The statistics of the RCRV, calculated for cumulative oil production
at all of the producers, under the assimilation of forward seismic data.



Chapter 6

Conclusions

In this project, we developed a data assimilation technique for the monitoring
and forecasting of an oil reservoir based on the Ensemble Kalman Filter (EnKF).
Specifically, we extended the Shell-owned software CLOREM to include the abil-
ity to assimilate synthetic seismic data. The purpose was to use a twin experiment
to investigate seismic assimilation with respect to the information that it could
supply to the EnKF and the elements of filter configuration necessary to make
seismic data relevent. The idea of the data being relevent led to an investigation
of the various ways to evaluate the performance of an EnKF describing a reservoir
undergoing fluid injection and extraction.

One of the fundamental considerations for this project was the type of seis-
mic data which we would attempt to assimilate using the EnKF. Seismic data is
essentially an instrumental measurement of impedence within the reservoir and
travel times to and from the interfaces within the reservoir. The data can then
be processed to estimate the properties of the reservoir. Different estimates can
be made according to the data present and the amount to computational power
available. We chose to implement the modified Landrø inversion scheme, pro-
vided by Mario Trani [17], which estimates the change in saturation and pressure
between two seismic surveys of a reservoir. This is much easier, computation-
ally, than the full inversion from seismic to exact pressures and saturations. We
also experimented with the assimilation of the seismic properties of the reservoir,
known as AVO data, which are given by a minimumal amount of computation
of the instrumental data. The difference between the assimilation of these two
can be seen in the difference between figures 1.1 and 1.1. The results for the two
methods were shown in the chapters 4 and 5.

We found that the assimilation of the inverted, time-lapse, seismic data re-
sulted in better performance of the EnKF, in parameter estimation and predictive
ability, than did the assimilation of the seismic attributes directly. We believe

51
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the better performance results from a stronger correlation between the changes
in seismic attributes and the changes in fluid properties than between the seismic
attributes and fluid properties at a given time. It could also be that there was
some modeling error in the seismic modeling. Those calculations include many
co-efficients and other model parameters which come from experimental values
and legacy calculations. In the case of the modified Landrø data, we had to
remove a bias in the seismic results to see improved performance of the EnKF.
This was not possible for the AVO data, as the true seismic parameter is not
something which we can take from the forcasts of the true state and it must be
modeled. Inaccuracies in the rock physics framework could have caused problems
with the assimilation of the seismic parameters.

In evaluating the assimilation of the modified Landrø data, we also compared
the performance of that EnKF configuration with one which assimilated the pro-
duction and injection at the wells. The comparison between the two showed
that the EnKF with time-lapse seismic data resolved the rock properties of the
reservoir better than the production-only EnKF, particularly with regard to the
structure of the permeability and porosity fields. Though further work is required
to determine the number of seismic shots necessary to get the best characteriza-
tion of the rock properties possible. It is likely that future observation schemes
will combine the assimilation of production and seismic data and an interesting
course of study would be to look at using several seismic surveys early in the mon-
itoring and then continue to use production data in updates as the EnKF moves
the ensemble forward. The RCRV statistics may even give a way to monitor the
performance of the EnKF and request further seismic or geological data when
the predictive power of the ensemble with respect to fluid production degrades
below some acceptable level.

The use of statistical measures to monitor the performance of an EnKF is
one of the most interesting ideas to come from this thesis from a mathematical
standpoint. We introduce the reduced centered random variable (RCRV) as a
measure of filter predictive power. Specifically, we tracked the statistics of the
that variable to assess the ensemble’s bias and spread for production variables.
In our experiments, the RCRV for cumulative oil production seemed to give a
new way to evaluate the efficacy of a EnKF configuration’s predictions. The
RCRV showed when the ensemble was too small or large and also indicated bias
and the statistics of the RCRV seemed stable over a large number of samples.
From a practical standpoint, it would be easy to implement an RCRV in real
time, especially with regard to production data. The benefits from knowing the
statistical strength and informativeness of the production predictions with regard
to optimization strategies should be further investigated.

In the end, we concluded that the assimilation of inverted time-lapse seismic
data is a promising technique for reservoir engineers. We found that after a few
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assimilations of modified Landrø data the ensemble parameter estimates were
greatly improved. From the reservoir structure standpoint, this was especially
true. This could prove to be very useful for engineers charged with making the
field development plans and further study should be performed to get a better
idea of the practicalities of using modified Landrø data in reservoir EnKFs.
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Addendum to Chapter 3
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Figure A.1: The X-permeability in layer 4 of the box model, truth (upper left)
and three ensemble estimates, under assimilation of production data.
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Figure A.2: The RMSE for the post-analysis X-permeability estimates after the
assimilation of production data.
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Figure A.3: The cumulative oil curves for each of the producers, under the assim-
ilation of production data. The ensemble values are shown in red and the true
value is shown in blue.
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Figure A.4: The water cut curves for each of the producers, under the assimilation
of production data. The ensemble is shown in red and the truth in blue.
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Figure A.5: The statistics of the RCRV, calculated for cumulative oil production
at all of the producers, under the assimilation of production data.
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Figure A.6: The porosity truth (upper left) and three ensemble estimates, under
assimilation of production data.
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Figure A.7: The Y -permeability truth (upper left) and three ensemble estimates,
under assimilation of production data.
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Figure A.8: The Z-permeability truth (upper left) and three ensemble estimates,
under assimilation of production data.
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Figure A.9: The RMSE for the post-analysis porosity estimates after the assimi-
lation of production data.
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Figure A.10: The RMSE for the post-analysis Y -permeability estimates after the
assimilation of production data.
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Figure A.11: The RMSE for the post-analysis Y -permeability estimates after the
assimilation of production data.
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Figure B.1: The change in pressure between 180 and 540 days in a realization of
the true model. The color scheme is the same for both frames.
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Figure B.2: The mean error in the ∆P measurement is plotted against both the
time of the second seismic survey used in the time-lapse inversion and the mean,
inverted, ∆P values for the associated time windows.
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Figure B.3: The porosity truth (upper left) and three ensemble estimates, under
assimilation of bias-removed modified Landrø data.
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Figure B.4: The Y -permeability truth (upper left) and three ensemble estimates,
under assimilation of bias-removed modified Landrø data.
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Figure B.5: The Z-permeability truth (upper left) and three ensemble estimates,
under assimilation of bias-removed modified Landrø data.
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Figure B.6: The RMSE for the post-analysis porosity estimates after the assimi-
lation of modified Landrø data.
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Figure B.7: The RMSE for the post-analysis Y -permeability estimates after the
assimilation of modified Landrø data.
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Figure B.8: The RMSE for the post-analysis Y -permeability estimates after the
assimilation of modified Landrø data.
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Figure B.9: The porosity truth (upper left) and three ensemble estimates, under
assimilation of bias-removed modified Landrø data until 1260 days.
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Figure B.10: The Y -permeability truth (upper left) and three ensemble estimates,
under assimilation of bias-removed modified Landrø data until 1260 days.
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Figure B.11: The Z-permeability truth (upper left) and three ensemble estimates,
under assimilation of bias-removed modified Landrø data until 1260 days.
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Figure B.12: The RMSE for the post-analysis porosity estimates after the assim-
ilation of modified Landrø data until 1260 days.
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Figure B.13: The RMSE for the post-analysis Y -permeability estimates after the
assimilation of modified Landrø data until 1260 days.
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Figure B.14: The RMSE for the post-analysis Y -permeability estimates after the
assimilation of modified Landrø data until 1260 days.
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Figure C.1: The porosity truth (upper left) and three ensemble estimates, under
assimilation of the AVO seismic attributes.
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Figure C.2: The Y -permeability truth (upper left) and three ensemble estimates,
under assimilation of the AVO seismic attributes.
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Figure C.3: The Z-permeability truth (upper left) and three ensemble estimates,
under assimilation of the AVO seismic attributes.



77

0 500 1000 1500 2000 2500 3000
0.029

0.0295

0.03

0.0305

0.031

0.0315

0.032

0.0325

0.033
RMSE in Porosity Estimates vs. Time

Figure C.4: The RMSE for the post-analysis porosity estimates after the assimi-
lation of the AVO seismic attributes.
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Figure C.5: The RMSE for the post-analysis Y -permeability estimates after the
assimilation of the AVO seismic attributes.
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Figure C.6: The RMSE for the post-analysis Y -permeability estimates after the
assimilation of the AVO seismic attributes.


