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Chapter 1

Introduction

In mathematical modelling data, is important. Unfortunately real data is very
often incomplete or even unavailable. One alternative method to obtain or gen-
erate data can be Expert Judgement (EJ). Expert Judgement is the common
name for all methods that use experts. Not all Expert Judgement methods pro-
duce valuable scientific data. In order to be scientifically adequate one must be
able to reproduce the results and have insight in the process. The basic idea
behind Expert Judgment methods is to ask a group of experts in the field of
interest to quantify their degree of belief regarding the value and uncertainty of
some unknown variables. These opinions can then be combined into one opinion.
In general an Expert Judgement method involves the way of eliciting experts,
scoring and weighting them and combining the various opinions into one result.

One of the components of each expert judgement method is thus to combine
the expert opinions. This can be done in several ways. In this thesis three Expert
Judgement methods are considered. The Classical Model (Cooke, 1991), the
Bayesian Belief Net Method (Small et al, 2005) and the Copula Method (Jouini
and Clemen, 1998). The latter one is not studied here but forms a basis of some
comparisons.

In 2001, a project was started at the Harvard Center for Risk Analysis to
evaluate and compare the performance of the Classical Model and the Copula
Method. (Hammit and Cohen, 2001) Cohen and Hammit proposed a comparison
of the two combining Expert Judgements methods: the classical and copula
methods by using synthetic data. Their goal was to provide useful guidances to
decision makers and practioners. [1]

Another way to compare the two studies is by using real data. TU Delft has
performed many EJ studies over the years and evaluation of the two methods
using data from these studies can be found in: [2, 3].
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The results of comparing the two methods on real data showed that the
Classical Model performed better than the Copula Method. Based on these early
results from real data and the fact that the copula method has not been profiled
much the past couple of years, The Harvard group focused on the Classical
Model and use of synthetic data to gain more insight in the statistical behaviour
of the model.

In the past years, many new Expert Judgement methods have been published
that describe the use of Bayesian techniques. Mitchell Small et al [5] proposed
the use of Bayesian Belief Nets in weighting and aggregating multiple expert
judgements. Although the method seems very attractive and easy to implement,
there are a few theoretical comments.

1.1 Objectives

1.1.1 Evaluation of the Classical Model

This thesis describes a model to produce synthetic expert opinions that gives
insight in the statistical behaviour, convergence and performance of the Classical
Model. The advantage of using synthetic data it that one knows exactly what
processes produce the experts’ judgements and hence the true value of their
calibration, dependence and other characteristics that are not known with real
expert judgement data.

Statistical Insight

It is important to investigate the way Expert Judgement methods respond to
changes in expert characteristics. Early results evaluating the Classical Model
using synthetic data suggest that it responds in a sensible fashion to differences
in the expert distributions. The way the Classical model responds to changes in
expert biases, variance, correlation as well as various numerical variations can
be found in Chapter 3, Modelling Experts.

Convergence

When performing an Expert Judgement project in real life it is useful to have
some ideas or guidelines on the method’s convergence properties. For instance,
if the Decision Maker consults very few experts, an extra expert could make a
significant difference in the final result. On the other hand consulting a large
number of experts to ensure convergence results in practical problems, time and
money constraints. This results in:

1. Under what conditions does the Classical Model converge?

2. If it converges, at what rate?
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1.1.2 Evaluation of the Bayesian Belief Net Method

Many methods have been proposed on weighting and combining experts us-
ing Bayesian techniques. It would be interesting to know to what extend these
methods are useful in the everyday practice of Expert Judgement studies and
what they add to already existing methods like the Classical Model. In evaluat-
ing the theoretical justification and by applying the method on real data from
Expert Judgement studies performed at the TU Delft I have tried to answer
these questions.

Applying the method to existing data from Expert Judgement studies per-
formed at the TU Delft shows that performance-based weighting as used on
the Classical Model outperforms the Bayesian Belief Net method. This thesis
presents the results on performance of the Bayesian Belief Net method and our
theoretical evaluation of the method as well as an overview of Bayesian Belief
Nets in general.

1.2 Outline of this Report

II Chapter 2 will provide the reader with some background on Expert Judge-
ment in general. Concepts that are used throughout this thesis are explained
and defined.

III Chapter 3 presents model I. This is a model to generate synthetic expert
distributions. By applying the Classical Model to this synthetic data, we gain
more insight in the Classical Model. The Bin-model in Chapter 3 uses the same
way to model experts and without generating any expert distributions, leads to
the probability density function of the performance-based weight in the Classical
Model.

IV The results from Chapter 3 lead to Chapter 4. In this chapter the conver-
gence of the Classical Model is illustrated and comparing with other results lead
to practical suggestions regarding the use of groups of experts.

V and VI Chapter 6 gives an overview on Bayesian Belief Nets and Chap-
ter 5 will give the results from evaluating the Bayesian Belief Net Method. By
comparing this method with other weighting methods on real data from Expert
Judgement studies from the TU Delft, we can give some conclusions regarding
the performance of the Bayesian Belief Net method.

VII Finally this thesis will end with conclusions and recommendations in
Chapter 7.
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Chapter 2

Basic concepts of Expert
Judgement

2.1 Introduction

Expert Judgement deals with data obtained from experts that can be used in
various decision-making problems involving uncertainty. Expert Judgement is
typically used in cases where data is sparse of difficult to obtain.

2.1.1 Experts and Uncertainty

Before giving more information about some Expert Judgement models and
methods, let us look more closely at the concepts experts and uncertainty. In
general experts are people that work in the field of interest. They are for instance
prominent researchers, educators or practioners in the field. At the TU Delft,
many Expert Judgement studies have been performed. Typically the group of
expert consists of 10−15 persons. Throughout this thesis E will denote the total
number of experts in one Expert Judgement study or analysis and the expert
are represented by e1, e2, . . . , eE .

Uncertainty There are many ways to elicit experts as can be found in [6].
In the case of continuous variables, experts can either estimate the exact value
or express their uncertainty about a variable by giving a distribution. Although
experts may in general possess valuable knowledge about the problems or field
of interest, their knowledge is not certain. Therefore eliciting a distribution for
each variable is preferred to eliciting point estimates. Eliciting distributions can
be realised in non-parametric and parametric forms. Parametric elicitation in
the case when experts are able to assess certain parameters of distributions of a
known type (e.g. Normal, Weibull, Exponential.) In the case of non-parametric
elicitation, the expert can express his belief by specifying so-called quantiles.
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Quantiles One way to elicit a distribution is by asking experts to assess a
number of quantiles. By quantifying various quantiles, the expert expresses his
belief about his uncertainty and the value of an unknown variable. Quantifying
the a− and b−quantile where a < b, the expert expresses his belief that the
probability that the true value of the unknown variable lays in between the two
quantiles is (b − a). In most Expert Judgement studies at the TU Delft the
0.05, 0.50 and 0.95− quantiles where elicited. In this thesis we will denote the
quantiles with q1, . . . , qK where K is the number of quantiles.

Example An expert assesses values x0.05, x0.50 and x0.95 to the
0.05, 0.50, 0.95 quantiles respectively. This means that the expert’s subjec-
tive belief about the true value of this variable is that it is smaller than x0.05

with probability 0.05, between x0.05 and x0.50 and between x0.50 and x0.95 with
probability 0.45 and larger than x0.95 with probability 0.05.

2.1.2 Scoring and Weighting

When the experts have given their subjective probability distribution for each
variable, the next step is to combine these distributions into one distribution
for each variables, called the Decision Maker’s distribution. There are many
ways to combine experts. One way is to weight each expert and combining
them as a weighted average Decision Maker. Weighting can be based on scoring
rules. A scoring rule defines a measure to quantify the experts’ performance or
significance. In order to assure reliable results, one requirement of scoring rules
is that they should be (strictly) proper. The informal definition of a (strictly)
proper scoring rule is that it should be defnied such that an expert receives
maximal score if (and only if) his stated assessment corresponds to his true
opinion.

This requirement ensures that an expert can only optimise his weight by
telling his true belief [13].

Using a ((strictly) proper) scoring rule to quantify each expert’s performance
should result into weights for all experts that sum up to one. Thus, based
on their performance (quantified in some way,) each experts receives a weight
w1, w2, . . . , wE , and the Decision Maker’s distribution for each variable is the
weighted average of the expert’s assessments:

DMi(x) =
E∑

j−1

wifj,i(x) (2.1)

where fj,i(x) denotes expert j’s distribution for variable i.

Seed Variables In order to quantify the performance of the experts, in Expert
Judgement studies one can ask expert to assess variables that are already known
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to the analyst or will be known during the analysis. These variables are called
seed variables and in this thesis are also referred to as seeds. N will denote
the number of seed variables. The values of the seed variables are called their
realisations.

2.2 The Classical Model

This section briefly describes the Classical Model as proposed by Cooke. For an
extended explanation of the model, we would like to refer to [6]. The Classical
Model has been thoroughly reviewed and used in over 30 real-life Decision-
making problems. Appendix C gives an overview of all these studies.

The Classical Model describes a way to quantify the performance of experts
who give their subjective probability functions in the form of a number of spec-
ified quantiles. Two measures are used and the product of those two measures
for each expert gives his unnormalised weight.

2.2.1 Performance-based Weighting

The Classical Model uses a performance-based weighting scheme to weight the
experts. The basic idea behind this is that experts who are performing ”well”
on seed variables might also perform well predicting the unknown variables
of interest. To express the performance of experts in a quantitative manner,
two quantitative measures are used in the Classical Model: the Calibration and
Information.

2.2.2 Calibration

In the Classical Model the Calibration measures the statistical likelihood of the
hypothesis that the realizations are sampled independently from distributions
agreeing with the expert’s assessments.

An expert states a number of n fixed quantiles (say three) of his subjective
probability distribution for each uncertain variable. Then for each distribution
there are n + 1 bins between the n quantiles in which the actual value of the
variable may fall. Now we define the probability vector P as the vector containing
the probabilities corresponding to the size of the bins. Suppose an expert gives
his quantile assessments for N seed variables. Then of all N realisations of the
seed variables, a number falls below the smallest quantile, a number falls in
between the quantiles and a number of seed variables falls strictly above the
upper quantile. These numbers can be computed as relative frequencies and the
empirical probability vector containing these relative frequencies is denoted by
S.
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Calibration Now, we can calculate the Calibration by testing the hypothesis
that the realisations are an independent sample from the multinomial distribu-
tion with probability vector P. In case of using the 5−, 25−, 50−, 75− and 95-
quantiles, the above hypothesis means that exactly 5% of the realisations of the
seed variables fall under the 5-quantile of the corresponding distribution given
by the expert, 20% falls between the 5- and 25-quantile of the corresponding
expert distribution and so on. A known results in statistics is that when sam-
pling S independently from a multinomial distribution with probability vector
P, the quantity

2NI(S, P ) = 2N
N∑

i=1

Si ln(
Si

Pi
) (2.2)

is asymptotically Chi-square distributed with n degrees of freedom (n is the
number of assessed quantiles.)

Let χ2
n denote the cumulative probability function for a Chi-square variable

with n degrees of freedom. Then the Calibration is defined as the probability
that a Chi-square distributed random variable with n degrees of freedom is
larger than 2NI(S, P ) under the hypothesis. Thus:

C = 1− χ2
n(2NI(S, P )) (2.3)

The larger this probability, the better the calibration. Recall that P is the same
for all experts as all experts assess the same quantiles, and S depends on the
expert assessments.

2.2.3 Relative Information

Calibration tells us something about how far away expert assessments are from
the realisations of the seed variables. Another way to quantify the expert perfor-
mance is by means of his Relative Information. Information tells us something
about the spread of the expert assessed distributions.

Information In the Classical Model this Information is computed as the av-
erage Relative Information of the expert distributions with respect to a user-
defined background. This is either a uniform or log-uniform distribution on the
intrinsic range. The intrinsic range is the smallest interval containing all as-
sessments for a given item plus the realization if available, overshot by 10%
above and below. The expert’s information scores are affected by the choice of
the overshoot. A very large overshoot moves the information scores of the ex-
perts relatively close together. In general the Relative Information between two
densities f and g on an intrinsic range Ij is :

I (f, g) =
∫

u∈Ij
f(u) ln

(
f(u)
g(u)

)
du in the continuous case

I(f, g) =
∑

u∈Ij
f(u) ln

(
f(u)
g(u)

)
in the discrete case

(2.4)
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The Relative Information of an expert’s distribution with respect to the uniform
background is:

c
∑
e∈Ij

f(u) ln(
f(u)

1
Ij

) (2.5)

(2.6)

=
∑
e∈Ij

f(u) ln(f(u)Ij) (2.7)

=
∑
e∈Ij

f(u) ln(f(u)) + f(u) ln(Ij) (2.8)

2.2.4 Global Weights

The performance of each expert can thus be quantified with both the Informa-
tion and the Calibration. The performance-based weights or global weights are
now proportional to the product of the Calibration and average Information
over seed variables. This is the strictly proper scoring on which the Classical
Model is based.

2.3 Other Methods

Of many other Expert Judgement methods I would like to mention Bayesian
models and the Social Network method.

2.3.1 Bayesian Models

Bayesian models are Expert Judgement models in which the expert assessments
are treated as observations and Bayes’ theorem is used to update the prior
distribution of an unknown variable based on the observations. [6] A compre-
hensive review of Bayesian methods is given in [14]. In Chapter 6 an Expert
Judgement method using Bayesian Belief Nets is reviewed and compared with
performance-based global weights and equal weights.

2.3.2 Social Networks

Recently Huang and Cooke review the use of Social Networks as a tool for
Expert Judgement. [13] Social Network (SN) theory views social relationships
in terms of nodes and ties and focuses on relationships among social entities. In
comparison with performance-based global weighting and combining of experts
SN does not perform well. It does however outperform equal weighting and
combining. More on this subject can be found in [13] and Chapter 6.
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Chapter 3

Modelling Experts

This chapter gives the result of modelling expert opinions with a stochastic pro-
cess. Instead of real expert opinions these stochastic processes result in synthetic
data. This data will be interpreted as data produced by experts and applying
the Classical Model to this data gives results on how the method responds to
changes in experts characteristics.

Model I produces synthetic expert distributions and the Classical Model is
used to aggregate the expert distributions. This leads to some results illustrating
the statistical behaviour of the Classical Model. The experts’ characteristics are
represented as the parameters of their underlying distribution. In the next sec-
tion we will look further into the expert characteristic distributions. Using bins
we can construct the probability density function of the unnormalised weight.
In this bin-model there are no expert distributions generated. Together the re-
sults from the two different models lead to some interesting conclusions about
the way the Classical Model deals with experts’ distributions in terms of the
experts’ characteristics.

3.1 Model I - Modelling Experts with Synthetic
Data

By modelling experts in order to produce synthetic data, we will know exactly
what processes produce the expert judgements. Applying an Expert Judgement
method to this synthetic data will result in more insight in the statistical be-
haviour of the method. Model I produces expert judgements in such a way. In
[1, 17, 18] the authors propose a model which we will use. The model incor-
porates the fact that an expert does not know his own characteristics but the
analyst does. The latter is not true in real life. The expert specific parameters
are an input to the model and enable the analyst to ”play around” with and
investigate the effect of changes in the parameters of an expert on the final
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aggregated distribution for the target variable or on the (un)normalised weight
an expert receives.

3.1.1 Model Assumptions

This model has as main goal to produce synthetic expert data. First we define
E as the number of experts and N + 1 as the number of variables. Of these
variables N are used as seed variables for computing the performance-based
weights in the Classical Model as explained in Chapter 2. For each of these
variables model I will generate the assessments of all E experts. Furthermore
let the subscript e denote an arbitrary expert, e = 1, 2, . . . , E and the subscript
j denote an arbitrary variable, j = 1, 2, . . . , N + 1. Finally. let the true value of
all variables be zero.

Expert Distribution Instead of reporting a point estimate for each variable
the expert expresses his uncertainty about a variable by reporting a distribu-
tion. Another model assumption is that all expert distributions are normal
distributions. Before looking more carefully at these normal distributions and
their parameters we will first give the notation.

Expert e’s distribution for variable j is represented by:

N (xe,j , σ
2
e) (3.1)

Medians Finally, we assume that the medians of the expert distributions
xe,j are also randomly distributed. The medians of all expert distributions are
modelled as realisations of a random variable characteristic of expert e. For
this, we choose the random variables Xe ∼ N (µe, σ

2
e). Xe is thus normal and its

parameters are characteristic for each expert. This is a logical choice. It is both
mathematically attractive and a realistic representation of errors in general. [4]

3.1.2 Expert Characteristics

Each expert has his own characteristics that influence the errors he makes in as-
sessing each unknown variable. An expert can for example tend to overestimate.
In the case of overestimating, the average median of the expert distributions
will be higher than zero, the true value of all unknown variables. The other way
around, the higher the medians, the more an expert tends to overestimate. We
will represent the expert characteristics by an expert-specific underlying dis-
tribution. This underlying distribution is normal and determines the medians
of the expert distributions. The underlying distribution of expert e: N (µe, σ

2
e)

where the mean µe is the expert e’s underlying bias and the underlying variance
σ2

e represents the underlying spread of the expert judgements. In the case of the
overestimating expert, µe will be a positive number.

17



Now the medians of the expert distributions are drawn from his underlying
distribution. Thus xe,1, . . . , xe,N+1 are realisations from the random variable
Xe ∼ N (µe, σ

2
e) and for variables j = 1, . . . , N + 1 expert e reports

N (xe,1, σ
2
e), . . . ,N (xe,N+1, σ

2
e) (3.2)

In practice experts are asked for a few points of their distribution, the quantiles.
In this analysis each expert reports five quantiles of his normal distribution.
These five quantiles are:

[
0.05 0.25 0.5 0.75 0.95

]
. Recall from Chap-

ter 2 that by quantifying the 0.25- and 0.5-quantile an expert expresses that
his belief is that the true value of the variable he assesses falls between the two
quantiles with probability 0.5− 0.25 = 0.25.

3.1.3 Correlation

Another characteristic for each expert is the dependence between his assess-
ments. A measure of this dependence is the correlation between these assess-
ments. In practice it makes sense to assume that the medians of an expert’s
distributions xe,j ’s for the various variables are correlated with each other. Cor-
relation between the various experts is another realistic assumption, but is not
yet incorporated in the model. To draw a sample for each median of the expert
distribution and to assure that these medians are correlated, we will sample
from a multivariate normal distribution.

Multivariate Normal Distribution

Each expert has his own underlying mean µe and variance σ2
e which represents

the expert’s characteristics and are input for the model. Besides these character-
istics each expert has an underlying correlation that represents the dependence
between the medians of his reported distributions. By imposing a correlation
between the medians of the distributions (the variances are identical) we model
this dependence.

To determine the medians of the expert distributions xe,1, · · · , xe,N+1 for ex-
pert e with a non-zero correlation ρe between them and underlying distribution
N (µe, σ

2
e), we will sample from a multivariate normal distribution. The param-

eters of the multivariate normal distribution differ among the experts and are a
vector of means Mu and a covariance matrix S. The multivariate normal distri-
bution must have a dependence structure that involves a correlation ρe between
the variables for each expert.

Using the following general relations:

corr(Xi, Xj) = cov(Xi,Xj)
σiσj

corr(Xi, Xi) = cov(Xi,Xi)
σ2

i
= 1 (3.3)
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the covariance matrix that is one of the parameters of the multivariate normal
distribution for expert e is given by:

S =

 σ2
e ρe ∗ σ2

e . . .
ρe ∗ σ2

e σ2
e . . .

...
...

. . .

 (3.4)

The other input parameter, the vector of means Mu contains the underlying
bias µe and is given by

Mu =

 µe

...
µe

 (3.5)

Drawing samples from a multivariate normal distribution with covariance
matrix S and mean Mu results in N +1 medians for expert e. The medians are
correlated with correlation ρe and together with the expert underlying variance
σ2

e the expert distributions are generated.

Example Let us look at three experts, all with underlying mean zero and vari-
ance one. Let the correlation between the medians of expert 1’s distributions be
0.1, for expert 2’s be 0.5 and expert 3’s distributions be 1 (completely dependent
observation errors.) Say, we have 3 seed variables and one target variable, the
the covariance matrix S1 for expert 1 is:

S1 =


1 0.1 0.1 0.1

0.1 1 0.1 0.1
0.1 0.1 1 0.1
0.1 0.1 0.1 1

 (3.6)

Then the medians of the distributions the expert reports for each variable are
sampled from the multivariate normal distribution with covariance matrix S1

and zero mean.

Positive and Negative Correlation

A correlation close to zero indicates that the two variables are unrelated. A
positive correlation indicates that the two variables move together, and the rela-
tionship is stronger the closer the correlation gets to one. A negative correlation
indicates the two variables move in opposite directions, and that relationship
also gets stronger the closer the correlation gets to minus 1. In the simulations
we have only considered positive correlation between the medians of an expert
distribution. Negative correlation is also something to investigate but could in
our simulations lead to a non positive (semi-)definite covariance matrix from
which we cannot sample. In section 3.1.7 the results are shown of some nega-
tively correlated experts.

19



3.1.4 Summary Model I

• The true values of all variables are assumed to be zero.

• For each variable j expert e reports five quantiles of a normal distribution
N (xe,j , σe).

• The medians of the distributions xe,1, . . . , xe,N+1 are sampled from the
expert underlying characteristic distribution N (µe, σe).

• When incorporating some correlation between the medians of the expert
distribution, we will have to draw realisations xe,1, . . . , xe,N+1 from a mul-
tivariate normal distribution.

3.1.5 Implementation of the Classical Model with Syn-
thetic Data

Expert e’s assessment for variable j are the five quantiles of a normal distribution
that has the parameters xe,j and σ2

e . For each variable and each expert quantile
points, f(j, e) is the minimal information density function fitted to expert e’s
quantiles for variable j. With this minimal information density the Calibration
is computed. The Information is the average Information score with respect to
the background over all seed N variables. The product of these two scores is the
unnormalised weight per expert and normalising the weights lead to the final
performance based weight for each expert.

3.1.6 Background

The Classical model assumes that there is no prior information on the expert
distributions. Therefore the background measure is chosen either uniform or
loguniform on the intrinsic range. Recall that the intrinsic range is the smallest
interval containing all expert quantiles and the realisations of the seed variables
plus a ten% overshoot on both sides. In our model for producing synthetic
expert distributions however we do make a prior assumption about the expert
distributions. Namely that all expert distributions are normal. This means that a
normal background would be a better choice. However, since we are interested in
the performance of the Classical Model we have used the uniform background.
This is a slight disadvantage of the Classical Model. Figure 3.1 shows N + 1
expert distributions generated as described above and respectively the uniform
and normal background on the intrinsic range. In ?? the authors propose to
find the parameters of the normal background density function as a solution
of an optimisation problem. In order to find a normal background density that
minimises the Relative Information of the experts together with respect to the
background we must maximise the following expression:

E∏
j=1

4∏
i=1

(∫ xj
qi+1

xj
qi

f(x)dx

)∆qi

(3.7)
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Figure 3.1: Expert distributions with respect to both uniform and normal back-
ground.
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where f(x) is the normal density function, qi’s are the quantile points for seed
variable i and xj

qi
is expert j’s assessment for quantiles qi.

The values of the relative information between the expert distributions and
both backgrounds corresponding to the expert distributions shown in figure 3.1
are listed in table 3.1 As can be seen if table 3.1 the Relative Information of

Table 3.1: Relative Information for both uniform and normal backgrounds

Background
Uniform Normal
0.0536 0.0356
0.0559 0.1491
0.0547 0.1125
0.0585 0.2188
0.0559 0.0011
0.0536 0.0545
0.0535 0.0423
0.0595 0.0068
0.0536 0.0616
0.0570 0.0000
0.0580 0.2043

Average
0.0558 0.0806

the same expert distributions with respect normal background is on average
higher than the Relative Information with respect to the uniform background.
This means that we disadvantage the Classical Model by using the uniform
background whilst assuming normal expert distributions. There is a theoretical
explanation given in AppendixC.
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Figure 3.2: Expert’s weight as function of his underlying mean.

3.1.7 Results Modelling Experts with Synthetic Data

The above describes a model to generate synthetic data. To this data we can
apply the Classical Model. This mainly gives more insight in the statistical
behaviour of the Classical Model. Here are some of the results where unless
noted otherwise, the number of draws and seed variables is ten and there is one
target variable.

Mean and Variance Changes in the experts underlying mean and variance
reflect in changes in his rewarded weight. A high underlying mean means that the
expected value of the medians of the expert distribution is also greater than zero.
It is in fact µe. Having an expert distribution with positive (negative) median
can still lead to a good relative information score. On calibration however the
expert will perform worse with higher (lower) medians than with medians close
to zero.

In figure 3.2 the experts weight decreases when the mean of his underlying
normal distribution increases. The mean of his underlying distribution char-
acterises the expert’s bias. An increasing underlying mean µe means that the
medians of the expert’s distributions are likely to be bigger than zero. Having
reported a distribution for the seed variables with positive medians leads to
lower weights.
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Figure 3.4: Expert weight as a function of his self-correlation - 100 runs
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Correlation In section 3.1.3 we introduced the so-called self-correlation ρe.
This is the correlation between the medians of the expert distributions. Each ex-
pert has his own specific underlying correlation, his self-correlation. One would
expect that when an expert’s self-correlation is closer to one this will result in
a lower weight. The self-correlation mainly influences an expert’s Calibration
score. Recall from Chapter 2 that the Calibration score is computed by testing
the hypothesis that the expert distributions are such that the realisations of
the N seed variables are an independent sample from the multinomial distribu-
tion with parameter P. A high positive correlation between the medians of the
expert distributions will in fact reduce the effective number of samples. This
is equivalent with scoring the expert on too many seed variables. Instead of a
χ2-test of 2NI(S, P ) one should reduce M. Not doing this leads to a calibration
score that is too low.

Figure 3.3 shows the weights of each expert when considering two experts as
a function of the correlation between their expert distribution medians. The two
experts have identical underlying characteristic distributions. In the upper left
corner of the figure, expert 1 has correlation zero and expert 2 has correlation
one. It shows that expert 1 who is the better one in terms of uncorrelated me-
dians of his distributions and equally good in terms of underlying bias receives
weight one. In the lower left corner both experts have correlation zero and thus
receive weight 0.5. Finally, the lower right corner of figure 3.3 shows that in
the situation of a completely correlated expert 1 and a uncorrelated expert 2,
expert 1 receives zero weight. For completeness, figure 3.4 confirms that an ex-
perts performs worse and consequently receives a lower weight as the correlation
between the medians of his distributions increases.

To illustrate the influence of experts’ underlying correlation we will look at
how the Calibration changes as a function of this self-correlation. Since in-
creasing the underlying correlation decreases the number of effectively inde-
pendent samples within the χ2-test, the test might need a correction. Higher
self-correlation means that we are no longer testing whether the expert distri-
butions are such that the N realisations of the seed variables are N independent
samples from the multinomial distribution.

In figure 3.5 and 3.6 an expert’s calibration using ten seed variables is dis-
played as a function of the self-correlation. The correlation is averaged over the
number of simulation runs. It seems that the relation between the self-correlation
and the Calibration is linear. Does this mean that we could correct N somehow
in order for the χ2-test to remain reasonable?
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Figure 3.5: Calibration as a function of self-correlation.
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Figure 3.6: Calibration as a function of self-correlation - more runs.
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3.2 Probability Density of the Unnormalised
Weight

Typically Expert Judgement studies at the TU Delft use around ten experts and
seed variables and all use the Classical Model to weigh and combine the experts.
It is unknown whether this number is sufficient to obtain a stable combined
judgement. It is possible that adding one single expert to ten experts changes the
final judgement for some unknown variable significantly. An interesting question
to be answered is the matter of convergence of the Classical Model.

One approach can be to consider the following: How sensitive is the combined
distribution e.g. the distribution for a target variable to adding another expert
as a function of the characteristics of that expert?
In other words: How much influence has a new expert on the final combined
judgement and how does this influence depend on his characteristics and that
of the other experts?

As a measure for the sensitivity of the combined distribution to adding new
experts we have taken the relation between the unnormalised weights of the
new expert and that of the previous experts. Let us consider for example two
experts who both have an equal unnormalised weight. Adding a new, third ex-
pert who has a significant higher unnormalised weight can result in a completely
different combined distribution. In this case the third expert will add new in-
formation to the combined distribution. If however the new expert has a much
lower unnormalised weight he has less influence on the combined distribution.

Eventually, we are interested in the influence of adding new experts onto the
Decision Maker’s distribution and how this depend on the experts characteris-
tics. Measuring this using the unnormalised weight, we would like to know the
dependence of the unnormalised weight on expert characteristics. We will there-
fore construct the probability density of the unnormalised weight depending on
the expert characteristics as input variables. This will enable us to compare the
influence of different experts or adding expert depending only on their charac-
teristics.

3.2.1 Quantifying Expert Performance with his Underly-
ing Distribution and Bins

In the previous section, a model was proposed to generate synthetic expert
distributions. In this section we will continue with this model. Recall that an
expert-specific distribution represents the expert characteristics. Each expert is
characterised by a normal distribution which is parameterised by his underlying
mean and variance, µe and σ2

e :

N (µe, σ
2
e) (3.8)
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Figure 3.7: Bins in which the Seed Variables can fall

The realisations of the seed variables are still zero and the expert distributions
are assumed normal distributions.

Bins

To construct the probability distribution for the unnormalised weight the six
intervals between the five quantiles of each distribution are represented as six
bins. The bins of each expert distribution are the intervals in which the reali-
sation of the seed variables can fall. Figure 3.7 shows the six bins for an expert
distribution with median zero and variance one. Now, before generating the
expert distributions for each seed variable, his underlying distribution already
determine the stochastic process of determining the positions of the bins. For
example, figure 3.8 shows that the value zero of a seed variable falls into an-
other bin if the median of the expert distribution would shift from zero to two.
Thus, the bins in which the seed variables fall are completely determines by the
expert’s underlying distribution. Let us illustrate this with an example:

Example We consider an expert with standard normal underlying distribu-
tion. N (µe, σ

2
e) = N (0, 1). The medians of this expert, xe,i’s are all realisations

of his underlying distribution. Now, we consider one seed variable and median
xe. The probability that the median of the expert distribution for this seed
variable is such that its realisation falls into the first bin is also completely
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determined by the expert’s underlying distribution:

P (seed variable ∈ bin1)

= P (xq1 > 0|Xe ∼ N (0, 1))
= P (xe > xq5 |Xe ∼ N (0, 1))
= 1− P (xe ≤ xq5 |Xe ∼ N (0, 1))
= 1− q5

= q1

(3.9)

where qi denotes the ith quantile (e.g. 0.05, 0.25, . . . , 0.95) and xqi
denotes the

value of the expert distribution at that quantile.

Now, we have illustrated how the underlying distribution determines the po-
sitions of the bins and therefore determines the probabilities with which the
realisations of the seed variables fall into the bins. Knowing the probability
with which the seed variables fall into the bins leads to quantifying the expert’s
performance as described in the next sections.

Using bins to construct the desired PDF

In order to quantify the expert distributions, we will first describe the construc-
tion of frequency vectors. Frequency vectors represent the bin in which the seed
variable falls. The stochastic process for a seed variable falling into one of the
six bins is the multinomial distribution and will be explained in section 3.2.3.
The multinomial distribution gives each possible frequency vector a probabil-
ity. In 3.2.5 will be explained how each frequency vector leads to a value for
the calibration and relative information. The calibration and relative informa-
tion determine the unnormalised weight and together with the corresponding
probabilities this leads to a probability density for the unnormalised weight.
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To determine the probability density of the unnormalised weight we consider
a single expert to begin with. The distribution however depends on other ex-
perts since the relative information is calculated with respect to the background
measure. The background measure depends on the distributions of all experts
and is explained in 3.2.5

3.2.2 Frequency Vector

The intervals between the quantiles of the unknown expert distribution are rep-
resented as six bins. Let us consider the six bins represented by S1, S2, S3, S4, S5

and S6 and N seed variables. When a seed variable would fall into bin i Si is
increased by one, otherwise Si remains the same. Then we introduce the fre-
quency vector which contains all S′

is: S = [S1 S2 S3 S4 S5 S6] . Taking
into account N seed variables increases the number of frequency vectors very
quickly. Each of the possible values of the frequency vector occurs with a prob-
ability depending on the parameters of the expert’s underlying distribution:
N (µe, σ

2
e).

3.2.3 Probabilities

Recall that the coordinates of the six bins are random and the underlying
stochastic process is determined by the expert characteristic distribution.

The bins in which the seed variable falls depends on the underlying distri-
bution. Assuming that each seed variable has true value zero there are many
different possible frequency vectors. Each frequency vector has a probability
of occurring and leads to a different value of the unnormalised weight. The
stochastic process describing seed variables falling into one of multiple bins is
the multinomial distribution.

Multinomial Distribution

The multinomial distribution is a discrete distribution and an extension of the
binomial distribution involving joint probabilities. It involves a similar statistical
experiment, but this time there are more than two possible outcomes. Specifi-
cally, each trial can result in any of the k events E1, E2, . . . , Ek, with respective
probabilities P1, P2, . . . , Pk. In this case, the multinomial distribution is the joint
probability distribution of the set of random variables X1, X2, . . . , Xk, where Xi

is the number of occurrences of Ei, i = 1, 2, . . . , k in n independent trials. It has
a probability mass function of the following form:

P (x1, x2, . . . , xk|P1, P2, . . . , Pk, n) =
(

n

x1x2 · · ·xk

)
P x1

1 P x2
2 · · ·P xk

k (3.10)

where
k∑

i=1

xi = n,

k∑
i=1

Pi = 1
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In other words, the multinomial distribution gives the probability of choosing
a given collection of m items from a set of k items with repetitions and the
probabilities of each choice given by P1, . . . , Pk. These probabilities are the
parameters of the multinomial distribution. Conjugate prior of the parameters
of the multinomial distribution is the Dirichlet distribution. ??

Parameter of the Multinomial Distribution

The intervals between the five quantiles of the possible expert distribution are
represented as six bins in which the true value of the seed variables could fall.
The probability model for this process is thus a multinomial distribution with
parameter P . The probability vector P depends on the characteristics of the
expert and is recalculated using the expert underlying distribution. Each pa-
rameter of the multinomial distribution P is calculated in the following way:

Recall from the example in section 3.2.1 that if an expert underlying bias is
zero then the probabilities with which the seed variables fall into the various
bins are the standard sizes of the bins. The probability vector is Pstandard =
[ 0.05 0.2 0.25 0.25 0.2 0.05] . If however the expert underlying bias is
unequal to zero, the probability vector Pstandard changes into Pbiased. The x-
coordinates of the quantiles and thus the bins shift to the right with the under-
lying bias µe. The new x-coordinates are therefore:

xnew = [x0.05,old + µe x0.25,old + µe x0.5,old + µe x0.75,old + µe x0.95,old + µe]

and the new probability vector Pbiased are the increments of the cumulative
density function of xnew with parameters µe and σ2

e . This means that when an
expert has an underlying bias larger than zero, the probability that the median
of the expert distribution is such that the first bin contains value zero increases
and the probability that the last bin contains value zero decreases.

3.2.4 Calculating the Density of the Frequency Vector

There is an underlying stochastic process for the bins in which the seed variables
fall. This means that the the parameter P for the multinomial distribution is
equal for each seed variable. Since the true values of the seed variables is always
zero, the frequency vector has the following form: zeros on all but one entry and
one on the remaining entry.

The probability distribution for the number of seeds variables that fall into
the various bins thus follows from the multinomial distribution:

P (S1 = s1, S2 = s2, . . . , Sn+1 = sn+1) =
N !

s1!s2! · · · sn+1!
P s1

1 P s2
2 · · ·P sn+1

n+1 , (3.11)
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where S = (S1, S2, . . . , Sn+1) is the vector of numbers of seed variable realisa-
tions that fall into each of the bins and P is the probability vector. All possible
combinations of seed variables in the various bins, S and the multinomial dis-
tribution together result in the (discrete) probability density for the frequency
vectors of the seed variables.

The outcome of the multinomial distribution gives a probability for each of
the possible frequency vectors. The frequency vectors all lead to a different value
of the unnormalised weight and together with the corresponding probabilities
this leads to the desired PDF of the unnormalised weight.

3.2.5 Probability Density of the Unormalised Weight

The previous section described how we have come to all possible frequency vec-
tors and their corresponding probabilities of occurrence. Each frequency vector
leads to a value for the relative information and the calibration in a way that
will be explained here. The product of these values is the unnormalised weight.
Each frequency vector has a specific probability and therefore the corresponding
values of the calibration and relative information leading to the unnormalised
weight also have this probability. Together, this leads to a probability distribu-
tion of the unnormalised weight. First we will show how each frequency vector
Si leads to a value of the unnormalised weight:

Calibration

Using a recursive algorithm we will obtain all possible frequency vectors as
explained in 3.2.2 The frequency vector represents the number of seed variables
that fall into one of the six bins. The calibration for each frequency vector Si is
now calculated as:

Ci = 1− χ2(2N

6∑
i=1

Si

N
ln
(

Si/N

Pi,standard

)
, 5) (3.12)

Here Pi,standard is the standard probability vector for the multinomial distribu-
tion as explained in 3.2.3.

Relative Information and Background Measure

The relative information is calculated with respect to a background measure.
Within the Classical Model this is either the uniform or loguniform density on
an intrinsic range. Recall from Chapter 2 that the intrinsic range is the interval
of minimal length that contains all expert assessments and all realisations of
the seed and target variables plus a ten percent overshoot. It is not possible to
specify the intrinsic range up front. It depends on the expert distributions. In
our model however we do not specify the expert distributions but we still would
like to be able to determine the intrinsic range. this is necessary for computing
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the unnormalised weights. In the simulations, the parameters of the expert’s
underlying distribution are bounded by µmax and σmax. In practice it appears
to works well if we specify the intrinsic range as follows:

I = [1.1(CDF−1(0.95|µmax, (σmax + 1)2)− CDF−1(0.05|µmax, (σmax + 1)2))]

Since the parameters of the expert underlying distributions are bounded by
µmax and σmax and their values are � 10, a suitable background measure will
always be the uniform density as opposed to the log uniform density over the
fixed intrinsic range I as specified above.

The relative information for expert e and the variable i in the Classical Model
is:

I(fi,e, gi) =
n∑

k=1

fi,e(xk)ln
(

fi,e(xk)
gi(xk)

)
(3.13)

where fi,e is the minimal information density function fitted to the expert’s
quantiles and gi is either the uniform or the loguniform density function de-
pending on the scale of the variable. In our case this gi is thus the uniform
density function.

The unnormalised weight is the product of the expert’s relative information
and the calibration. An important fact to keep in mind is that the relative
information of each expert depends on the other experts. This is a problem in
our simple model of one expert. Instead of modelling the sample distribution
for the unnormalised weight as a function of the characteristics of one expert,
we should take into account the assessments of all other experts. The question
is now whether it is possible to make an assumption about the influence of the
tails of the background measure?

Let us look at the continuous equivalent: Let S be the fitted density to expert
quantiles and assume it is the standard normal density function. Let P be the
background measure uniform on [−b, b] where b is unknown. Then the relative
information is given by:

R.I. =
∫ b

−b
S(x) ln

(
S(x)
P (x)

)
dx =∫ b

−b
S(x) ln

(
S(x)

1
2b

)
dx =∫ b

−b
S(x) ln(S(x)) + S(x) ln(2b)dx =∫ b

−b
S(x) ln(S(x))dx + ln(2b)

∫ b

−b
S(x)dx

(3.14)

Since S(x) is a density function, the second integral of the last equation will go
to ln(2b) as b becomes large and the first integral will go to zero. This means
that there remains a factor ln(2b). This shows that the influence of b remains
even if the tails of the uniform distribution get very large. The simple model
however only takes into account one expert. Conclusion from figures: the value of
b does affect the relative information, but will do so in a constant way. Therefore
the model will use one expert and a fixed background.
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Unnormalised Weight When the Calibration and information score have
been computed for the set of frequency vectors, the unnormalised weight for
each frequency vector is simply the product of the two scores. Finally, the set of
unnormalised weights and the set of probabilities, both corresponding with the
set of frequency vectors determine the discrete probability density function of the
unnormalised weight of one expert as a function of his underlying distribution.

3.2.6 Results and Conclusions

In the previous section we have explained the construction of the probability
density of the unnormalised weight depending on expert characteristics. Recall
from the introduction that the main reason to construct the probability density
of the unnormalised weight was our interest in the influence of adding new
experts on the Decision Maker’s distribution and how this depends on expert
characteristics.

Here are some results about the relation between the unnormalised weight and
expert characteristics. The results are subdivided into prototype experts. We
look at the standard expert, the extreme experts and some variations in between.
The standard expert has an underlying N (0, 1) distribution and the extreme
expert has an underlying N (3, 4) distribution. These numbers come from the
bounds µmax and σmax. Varying the underlying mean from the standard to the
extreme mean and the same for the variance gives the variations in between the
two extremes.

Standard Expert

Figure 3.9 and 3.10 show the discrete probability function of the unnormalised
weight for the standard expert. The first figure shows the possible values for the
unnormalised weight for only one seed variable and the second one for ten seed
variables. Figure 3.9 displays three different values for the unnormalised weight.
To explain this we need to realise that the calibration score is symmetric: If an
expert assesses a distribution such that the seed variable falls into the first bin of
his distribution he is just as poorly calibrated as when he assesses a distribution
such that the seed variable falls into the last bin. Therefore six bins lead to three
different values of the unnormalised weight.

Figure 3.10 shows many different values for the unnormalised weight, but
shows the same spread and structure as the first graph: The first bar in figure 3.9
counts for the many small bars for low values in figure 3.10 and so on. The
expected unnormalised weight in case of ten seed variables however is lower
than when using one seed. The reason that the expected weight is lower than
in case of one seed variable is the expected calibration depends on the χ2-test
that is performed.
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Figure 3.9: Discrete Density for Weight for Standard Normal Expert
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Figure 3.10: Discrete Density for Weight for Standard Normal Expert
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Figure 3.11: 1-Chi-square distribution with 5 degrees of freedom

Let Z be:

Z = 2N
6∑

i=1

Si

N
ln
(

Si/N

Pi,standard

)
(3.15)

If Z is a χ2
K-distributed variable, the expectation of Z is:

Z ∼ χ2
K : EZ = K (3.16)

When the number of seed variables increases, the number

2N
6∑

i=1

Si

N
ln
(

Si/N

Pi,standard

)
(3.17)

increases as well. If Z is χ2
K , the expected value of Z remains K no matter how

many seed variables there are. The calibration score is:

1− χ2(Z, 5) (3.18)

Expression 3.2.6 decreases when Z increases as is illustrated by figure 3.11.
This explains why the expected weight decreases with increasing number of
seed variables.

Extreme Expert

We continue with considering only one seed variable. This results in clear graphs.
Figure 3.12 shows the discrete probability function of the unnormalised weight
for the most extreme expert we consider. This expert has an underlying mean
of three and variance of four. The expected weight for the most extreme expert
is very low compared with the standard expert. Adding the extreme expert
to standard normal experts will thus change approximately nothing about the
DM’s distribution.
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Figure 3.12: Probabilities for unnormalised weight for maximal parameters of
expert distribution.
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Figure 3.15: Cumulative distribution function for unnorm. weight standard nor-
mal expert - 5 Seeds

Variations between Standard and Extreme Experts

Now we can ask ourselves what will be the difference in the influence of adding
an expert with a higher underlying mean µe and adding an expert with a higher
underlying variance σ2

e? Figure 3.13 shows the probability function of the weight
for three different experts. All three experts have the same underlying variance.
Their underlying mean however changes. The probability functions show a shift
from a high probability of a value around 0.6 to a high probability of a value
around 0.3 twice as low.

To compare the influence of the expert underlying bias and variance, fig-
ure 3.14 again shows the probability function for three different experts. The
three experts all have underlying zero mean. Their underlying variances change
with the same increments as the underlying mean in figure 3.13. The probability
functions show a much quicker shift to low unnormalised weights. The corre-
sponding probabilities however are the same. This means that a larger spread
in the expert distributions has more influence than his bias.
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Figure 3.16: Cumulative distribution function for unnorm. weight most extreme
expert - 5 Seeds
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CDF of the Unormalised Weight

Until now we have given results of the probability density function of the un-
normalised weight. Figure 3.15 and 3.16 however show the cumulative density
of the unnormalised weight for five seed variables. The first figure shows the cu-
mulative probability function for a standard normal expert. It can be seen that
the CDF is approximately linear. The second figure corresponds to the most ex-
treme expert, the one with underlying maximal mean three and variance four.
His CDF is not linear.

Thus, the cumulative density function of an expert with underlying zero mean
seems to approach a linear function. Calculating the CDF with more seeds show
that the asymptotic CDF indeed is linear. This result corresponds with the
underlying theory: Let S(n) be the minimal information density fitted to the
expert distribution. We know that if S(n) ∼

∏n
P the asymptotic distribution

of 2nI(S(n), P ) is χ2. Therefore the cumulative density function of the unnor-
malised weight of an zero-mean expert should simply be the χ2 distribution of
a χ2 parameter which is asymptotically linear.

Influence on the DM

The questions posed in this section was: How much influence has a new expert
on the final combined judgement and how does this influence depend on his
characteristics and that of the other experts? When taking the unnormalised
weight as a measure of the influence the results have shown that the weight
decreases with increasing bias and even more with increasing underlying vari-
ance. This means that an expert that gives assessment with a small spread and
intermediate bias still may influence the distribution of the Decision Maker in
a fair amount.
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Chapter 4

Convergence of the
Classical Model

Using the same approach the bin-model this chapter shows the results of keep
adding experts with the same or different characteristics and aggregate them
using the Classical Model. The main purpose is to obtain some interesting results
about the convergence of the method.

4.1 Introduction

When performing an Expert Judgement analysis it is important to have some
ideas or guidelines on the way the method converges. Is there something we
can say about the number of experts from which it does not make a significant
difference to add a new one? In other words: Does the Classical Model converges
and with how many experts? In this chapter we will address the question of con-
vergence. Both the Decision Maker’s characteristics as the relative information
of consecutive DM’s are used as a measure of convergence.

Outline First section 4.2 gives some results on the influence of more and
less biased experts on the aggregated distribution of the Decision Maker. Then
instead of considering the experts and their influence on the Decision Maker we
consider the Decision Maker himself. Does the distribution of the Decision Maker
keep changing after adding a lot of experts? Finally the relative information is
used as a measure of convergence of the Decision Maker’s distribution when
adding new experts followed by conclusions.

4.2 Influence on the DM

In the previous chapter we have constructed a probability density for the
unnormalised weight of an expert. This unnormalised weight was taken as a
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measure of influence of an expert on the aggregated distribution of the Decision
Maker. The following results will visualise this concept.

Figure 4.1 shows the two distributions of a N (0, 1)-expert and a N (1.5, 1)-
expert and the distribution of their combination using ten seed variables. The
figure illustrates that the unbiased expert has a much higher influence than
the biased expert. The unbiased expert thus has a much bigger influence as
can be seen in the figure. Adding a third unbiased expert, again with higher
expected unnormalised weight should change the Decision Maker’s distribution.
Figure 4.2 shows this indeed. Here only the aggregated distributions of the two
Decision Makers are shown. One for the Decision Maker constructed from an
unbiased N (0, 1)-expert and a biased N (1.5, 1)-expert and one for those two
experts plus an extra unbiased expert. The aggregated distribution changes, it
shifts more to the left. So we have seen that adding a new expert with a high
unnormalised weight with respect to the other experts, e.g. the unbiased new
expert shows a change in the aggregated distribution of the Decision Maker.

Figure 4.3 on the other hand shows that adding a biased expert with a rela-
tive low unnormalised weight does not change the aggregated distribution. This
agrees with our choice of taking the unnormalised weight as a measure of the
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influence of an expert to the distribution of the Decision Maker: the biased ex-
pert has a very low expected unnormalised weight thus his expected influence
is almost none. N.B. Figure 4.3 shows the results of a different simulation than
figure 4.2. This explains the difference in values. It is still an illustration of the
fact that a Decision Maker from two experts (an unbiased and a biased one) is
approximately the same as from three experts (an extra biased one.)

Finally, figure 4.4 shows that adding a new unbiased expert to a Decision
Maker who is already based on 11 unbiased experts does not show significant
difference. Even thought the new expert is unbiased and has a high expected
unnormalised weight. This results leads us at addressing the convergence of the
Decision Maker himself.

4.3 Convergence of the Decision Maker

In the previous section we saw that adding an unbiased expert to two experts
made more difference in the distribution of the Decision Maker than adding a
new expert to eleven unbiased experts. However in order to say something more
about the convergence of the Decision Maker himself instead of the influence
experts have on the Decision Maker, let us look again at the Bin Model.

4.3.1 The Medians of the Expert Distribution

We thus follow the bin approach described in the previous chapter. Instead of
leaving the expert distributions unknown we will draw a realisation for each
median of the expert distribution. Recall that for each expert and each seed
variable the medians of the expert distribution follows the expert underlying
distribution: N (µe, σe).

Expert e is characterised by the his underlying distribution N (µe, σe). For
each seed variable j he reports a normal distribution N (xe,j , σe,j) Each median
xe,j is a realisation of the random variable Xe where Xe ∼ N (µe, σe).

4.3.2 Frequency Vectors

With six bins and a known expert distribution the seed variables with value zero
will always fall into the same bin. Therefore once the observation error is drawn
from the underlying normal distribution the frequency vector representing the
bins in which the seed variables fall is also known. It always has the same form:
five zeros and one entry with value one. Which entry has value one depends on
the expert disitribution and in our case directly on the median of this distri-
bution. As described in Chapter 3 this frequency vector leads to a value of the
calibration, relative information and finally the unnormalised weight. This is a
very simple approach, but makes it easy to look at what happens when adding
a large number of experts.
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Figure 4.5: Mean and variance when adding 200 new (0,1)-experts.

Now we can use the extended bin model as described above to look at the
consequences of adding a large number of more and less similar experts. This will
give a suggestion on how the question from the introduction on the necessary
number of experts needed for the distribution of the Decision Maker to convert
should be answered.

4.4 Convergence Results

Because all the experts have un unbiased underlying distribution. Keeping
addingN (0, 1)-experts one would expect that the aggregated distribution will go
to some equilibrium. As a measure of the aggregated distribution the following
figure 4.5 shows the mean and variance of the aggregated distribution as func-
tion of the number of added N (0, 1)-experts. Once the unnormalised weight of
an expert is calculated it stays fixed. When adding a new expert only his unnor-
malised weight will be calculated and all normalised weights of course change.
At first sight the mean and variance of the aggregated distribution stabilises
after adding very few

Figure 4.6 shows the results of the same approach but instead of using experts
with an underlying (0,1)-distribution, we now sample the mean of the underlying
distribution again from a normal distribution. The more likely it is to produce a
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Figure 4.6: Comparison of the DM from (0,1)-experts and sampled (0,1)-experts

very bad expert, the slower is the convergence. Figure 4.7 shows the same results
for using equal weights. It suggests that performance-based weights provide
stronger convergence than equal weights.

This however is not a very satisfactory way of looking at the convergence of
the Decision Maker. Due to statistical variation it is not so clear whether and
from which point the curves of the mean and variance in figure 4.5 show some
convergence.

4.4.1 Convergence in terms of Relative Information

The fact that the distribution of the Decision Maker is constructed from ex-
perts distribution using relative information and calibration a quantitative per-
formance measures justifies out choice of the relative information between two
successive Decision Makers as a measure of convergence. Each time after adding
a new expert to the group of experts the distribution of the Decision Maker
changes. If it does not change significantly we could say that the aggregated
distribution of the Decision Maker converges. In that case the new expert does
not add any new information to the Decision Maker’s distribution.
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Figure 4.8: Convergence of the DM’s distribution measured with the Relative
Information

Twenty Experts Figure 4.8 shows again a comparison between N (0, 1)-
experts and experts who’s underlying mean is sampled from a N (0, 1) distri-
bution. This time however the measure of convergence of the Decision Maker’s
distribution is the relative information between each pair of two successive dis-
tributions of the Decision Maker. After adding approximately twenty experts,
the relative information of the distribution of the new Decision Maker with re-
spect to the distribution of the previous Decision Maker stays (approximately)
zero. This suggests that in practice a group of twenty experts is sufficient to
ensure convergence.

Note that we have added expert with similar characteristics; either the same
or sampled from the same distribution. When using a broader range of char-
acteristics it will be more likely that there is one or a few ”best experts” that
receive all the weight. In this case convergence should occur sooner that in the
case a similar experts.

Equal Weights Again figure 4.9 shows the same results with equal weighting.
Together with figure 4.7 it suggests that equal weighting has a much slower
convergence rate than performance-based weights. This can easily be explained
by the fact the with equal weighting even the really bad experts still receive
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Figure 4.10: Convergence of the DM’s distribution measured with the Relative
Information

the same weight as the best expert. Adding new expert, regardless of their
characteristics, will add new information to the Decision Maker and therefore
the DM’s distribution does not stabilise until the whole range of expert is added.
With this we mean all experts from very good to very bad.

At last, figure 4.10 shows three completely different situations in one graph.
Again convergence is measured by the relative information between two suc-
cessive distributions of the Decision Maker. The dotted line represents a group
of experts that have a highly biased underlying distribution. Their underlying
mean is sampled from a N (2.5, 3.5) distribution and their underlying variance
is one. It shows that the relative information between successive distributions of
the Decision Maker is lower than in the other two cases where the experts are
less biased. On the other hand adding the thirtieth-something expert still leads
to a change in the distribution of the Decision Maker. Well at least in terms of
relative information.

4.5 Conclusion

The results in this chapter suggest that performance-based weighting provides
a quicker consensus on the Decision Maker’s distribution than equal weight-
ing. This is not surprising since performance-based weighting rises the situation
where one or a few very good experts receive all the weight and the (many) bad
ones receive zero weight. This is not possible when using equal weights.
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Another result is that adding around twenty experts to the group is enough
to ensure convergence. This results from both the DM’s characteristics as the
relative information between the pairs of consecutive DM distributions.
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Chapter 5

Bayesian Belief Nets

5.1 Introduction

In many problems that deal with decision making and uncertainty, Bayesian
Belief Nets (BBNs) are emerging. A Bayesian Belief Net is a graphical represen-
tation of a joint probability distribution and applications of BBNs range from
medical, computer vision, financial to military domains. [7, 8] BBNs have proven
to be a very satisfactory tool in all kinds of problems involving uncertainty. They
bring back the number of quantities that have to be assessed and the conditional
probabilities that specify the BBN in most cases have natural physical meaning
to the Decision Maker. The definition of a Bayesian Belief Net [9, 10] is:

Definition 5.1 A BBN is a pair (G, P ) consisting of a directed acyclic graph
G = (V,E) and encodes a probability density P. The set V is the index of a
set of variables {Xv}v∈V . E is the set of directed arcs that connect the vari-
ables Xv and P is the probability density on {Xv} specified by a set of con-
ditional independence statements in the form of a acyclic directed graph and
a set of probability functions. The joint probability function P is given by:
P (x1, . . . , xv) =

∏
i P (xi|parents(i)

The complete graph and conditional independence statements specify a joint
probability over the variables {Xv}v∈V in the graph.

Each directed arc represents an influence from the node at the head of the
arc which we will call the parent, to the child, the node at the tail of the arc.
Also, each variable is fully specified by the variable itself and his parents in the
graph. The conditional independence statements encoded in the graph allow us
to calculate the joint probability as:

f(x1, x2, . . . , xn) =
n∏

i=1

f(xi|xparents(i)) (5.1)

where f(xi|xparent(i)) = f(xi) if parents(i) = Ø [9, ?]
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Figure 5.1: Example of Bayesian Belief Net.

We will distinguish between two kinds of BBNs, discrete and continuous.
Discrete BBNs have discrete nodes and continuous BBNs have continuous nodes.
The BBN with binary nodes in the following example is a special case of a
discrete BBN. The difference in specifying the two different types of BBNs
is in the joint distribution. A discrete BBN encodes conditional probability
tables whilst a continuous BBN requires conditional probability functions and
regression coefficients corresponding with the arcs in the graph.

5.2 Discrete BBNs

Table 5.1: Example of Conditional Probability Tables

P (A1) P (A2) P (A3|A1, A2) P (A4|A3)
T F T F A1 A2 T F A3 T F
0.4 0.6 0.9 0.1 T T 0.6 0.4 T 0.5 0.5

T F 0.2 0.8 F 0.5 0.5
F T 0.8 0.2
F F 0.3 0.7

Figure 5.1 shows a simple Bayesian Belief Net with corresponding condi-
tional probability table 5.1. Together, figure 5.1 and table 5.1 specify a discrete
BBN. The graph tells us that variables 1 and 2 are independent, variable 3
is conditioned on 1 and 2 and variable 4 is conditioned on 3. Table 5.1 shows
the marginal distributions of variable 1 and 2 and the conditional distributions
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of 3 and 4. Together these distributions specify the joint distribution over the
variables. In case of our example the joint probability function is given by:

P (A1, A2, A3, A4) = P (A1)P (A2)P (A3|A1, A1)P (A4|A3) (5.2)

5.3 Continuous BBNs

When the nodes in the BBN represent continuous variables we speak of a contin-
uous BBN. For these variables one needs to specify their conditional probability
functions and a partial regression coefficient for each arc. A special case of con-
tinuous BBNs is the Gaussian Bayesian Belief Net. Here the joint distribution
over the variables in the graph is normal.

5.3.1 Gaussian BBNs

We will call a Bayesian Belief Net Gaussian if the joint probability distribution
of the variables in the BBN is multivariate normal. [19] Each variable has a
conditional probability distribution, conditioned on its parents if the variable
has parents. For joint normal variables constructing continuous BBNs is easier
than discrete BBNs. Instead of specifying conditional probability tables we can
interpret the influence among variables as partial regression coefficients when
the child is regressed on the parents. [9, ?, ?]

In Gaussian BBNs, the conditional distribution for each variable is charac-
terised by an unconditional mean, a conditional variance and partial regression
coefficients. [9, 19] The definition of the conditional variance is given by:

Definition 5.2 Conditional variance. If we are considering a conditional dis-
tribution Y |X, we define the conditional variance as

var(Y |X) = E[Y − E(Y |X)]2|X).

Say we have N variables X1, . . . , Xi, . . . , XN . Then the joint distribution for
X1, . . . , XN can be characterised by the unconditional means µi = EXi and a
covariance matrix: ∑

NN

= Var(XN) = EXNXT
N − EXNEXT

N (5.3)

Also, in a Gaussian BBN each conditional variable Xj |Xparents(j) is normally
distributed with mean µj +

∑
k∈parents(j) bkj(Xk − µk) and variance νj where

bkj is the linear coefficient that represents the influence among variable k and
j.
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The Partial Regression coefficient

The linear coefficient bjk can be written in terms of Yule’s partial regression
coefficient β in the following way: [19]

bkj = βjk·parents(j)\(k) (5.4)

where β is defined by:

Definition 5.3 Regression coefficient. Let us consider X and Y with covariance
cov(X, Y ) and variances σ2

x and σ2
y. Then the regression coefficients are given

by

βXY =
cov(X, Y )

σ2
x

, βY X =
cov(X, Y )

σ2
y

In terms of linear predictors: Let X and Y be random variable with mean zero.
Then bY X minimises

E((X − bY XY )2);

and bXY minimises
E((X − bY XY )2).

We are interested in the linear coefficients which are defined in terms of partial
regression coefficients.

Definition 5.4 Partial regression coefficient Let us consider variables Xi with
mean zero, i = 1, . . . , n. The numbers b12;3,...,n, . . . , b1n;2,...,n−1 are the values
that minimise

E((X1 − b12;3,...,nX2 − · · · − b1n;2,...,n−1Xn)2).

Covariance Representation of Gaussian BBNs

The representation of a Gaussian BBN is closely related to the standard repre-
sentation of the multivariate normal distribution in terms of the vector of means
and correlation matrix. The key in this relation is the following theorem [9, 19]:

Theorem 5.5 The covariance matrix
∑

NN is positive (semi-) definite if and
only if νN > (≥)0. Further more, the rank of

∑
NN is equal to the number of

nonzero elements in νN .

This theorem shows us how to verify whether a Gaussian BBN has a positive
(semi-) definite covariance matrix and how to determine its rank. To fully specify
a Gaussian BBN we need an unconditional mean and a conditional variance for
each variable and a linear coefficient for each arc. The standard representation of
multivariate normal distributions is in terms of unconditional statistics: a vector
of means and a correlation matrix. Since the conditional variances in general
have more meaning to expert than a correlation matrix, eliciting Gaussian BBNs
is much more straightforward.

57



Once a Gaussian BBN has been assessed, the corresponding covariance ma-
trix can be constructed. similarly, we can construct a Gaussian BBN from a
covariance representation. In [19] the authors propose two algorithms to trans-
form the BBN representation of a joint normal distribution into the covariance
matrix representation and vice versa.
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Chapter 6

BBN Expert Method

6.1 Introduction

In the past years, several methods are published to weight and combine expert
judgements. Many of them describe the use of Bayesian techniques and seem
very attractive and easy to work with. Mitchell Small et al [5] proposed the use of
Bayesian Belief Nets in weighting and aggregating multiple expert judgements.
Although, the method is mathematically attractive and easy to implement, there
are a few theoretical comments. Applying their weighting method to existing
data from Expert Judgement studies performed at the TU Delft shows that
performance-based weighting of the Classical Model outperforms the underlying
way of scoring of the Bayesian Belief Net method. This chapter presents the
results of performance of the Bayesian Belief Net method and our theoretical
evaluation of the method.

6.1.1 Outline

After explaining the method, there are three points on which the method is
evaluated. First we show that the likelihood scoring rule is defined in such a
way that experts can always maximise their score by telling the Decision Maker
something other than their true belief. Then we look into the Decision Maker
and show that although his distributions are the results of a Bayesian analysis,
he himself is not Bayesian. Finally, we present a comparison of the likelihood
score used on the BBN Method with a proper scoring rule on some real Expert
Judgement data from studies performed at the TU Delft. It shows that the
method’s performance is not bad but can be improved.

6.2 Bayesian Belief Net Method [5]

The proposed BBN method builds upon available procedures for Bayesian model
averaging and expert aggregation. Many researchers have developed Bayesian
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approaches for aggregating multiple expert models or expert opinions by using
observed evidence to update the probability that the expert model or expert
assessment is correct. These methods depend on the development of a likelihood
function. This likelihood function is the probability that the observed evidence
could have occurred given a particular expert model. In this section the method
of weighting and combining experts using Bayesian Belief Nets will be explained.
For a more detailed description we like the refer to [5].

6.2.1 Experts and BBNs

For each expert an individual Bayesian Belief Net is constructed by the Decision
Maker. These BBNs differ among the experts only in the (conditional) proba-
bility tables or in case of continuous variables probability functions and partial
regression coefficients. The child parents structure is the same for each expert
and predetermined by the Decision Maker. This means that the Decision Maker
has an important role as will be discussed further in section 6.4.

From now on the reader should interpret conditional probabilities as either
continuous of discrete. The underlying directed acyclic graph G = (V,E) is
thus the same for each expert. Each expert provides the necessary prior and
conditional probabilities and thus completely determines the joint probability
density on his own BBN. This is his expert model. After eliciting each expert
on the probability and dependence structure of his BBN, all expert models are
fully specified.

Then, evidence about some of the variables, often called seed variables, is used
to update each expert model. After observing evidence x̃ = [x1, . . . , xK ] the like-
lihood functions of the observation given the expert models can be computed. [5]
The likelihood then determines the weights for each expert. The BBNs produce
new forecasts that are assumed to follow the posterior beliefs of the respective
expert conditioned on the evidence.

6.2.2 Combining

After updating each expert model with the observed evidence, the Decision
Maker constructs a joint distribution over all variables (which are the model
nodes) A1, A2, . . . , An as a weighted combination of individual expert opinions.
This weight should be equal to the relative probability that each expert model
is correct given the observed evidence. For an expert system with E experts, Mj

denotes the model for expert j, j = 1, . . . , E, the Decision Maker’s distribution,
the probability-weighted aggregate prediction of variable A is given by:

P (A) =
E∑

j=1

P (A|Mj)P (Mj) (6.1)
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Here P (A|Mj) is the probability of event A given that expert model Mj is cor-
rect. P (Mj) is the probability that expert model Mj is correct and

∑E
j=1 P (Mj)

is set to one. The prior information state is the state before any observations
have been made and is designated by the subscript 0. In this prior state the De-
cision Maker does not have any extra information to begin with regarding the
performance of the expert or the likelihood of their models. All expert models
are then considered equally likely and have probability P 0(Mj) = 1

E here E is
again the total number of experts.

6.2.3 Weights

The likelihood of the evidence x̃ given expert model Mj can be calculated for
any number of pieces of evidence x̃. Let the evidence consist of: x̃ = (A1 =
a1), . . . , (AK = aK) where Ak denotes model node k and K is the total number
of observed model nodes. Then, the likelihood of x̃ given expert model Mj is: [11]

P (x̃|Mj) = P 0
j [(A1 = a1)]Pj [(A2 = a2)|(A1 = a1)]

×
∏K

k=2 Pj [(Ak = ak)|(A1 = a1) ∩ · · · ∩ (Ak−1 = ak−1)]
(6.2)

Each expert j is weighted according to the probability that expert model Mj

is correct. This probability is determined as the likelihood of the observations
given the specific expert model.

This likelihood that each expert model is correct after observing x̃ is updated
using Bayes Rule:

P (Mj |x̃) =
P (x̃|Mj)P 0(Mj)∑J

h=1 P (x̃|Mh)P 0(Mh)
(6.3)

where P (x|Mj) is the likelihood function for the probability that the evidence
x̃ could have occurred given model j and P 0(Mj) is the prior weight for expert
j.

6.3 Scoring Rule

In this chapter, we will show that the likelihood score is not a (strictly) proper
scoring rule and therefore the experts are able to maximise their score by not
express their true belief. Recall that a scoring rule is (strictly) proper if an
expert receives the maximal expectation of his score under his model if (and
only if) his stated assessment corresponds to his true belief. This means that
the optimal assessment an expert can give is his true belief and experts cannot
cheat to receive higher weights. To show that the likelihood is not a strictly
proper scoring rule, we will illustrate that with the likelihood as scoring rule,
the expert can always maximise his expected weight by giving an opinion not
equal to his true belief.
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Before we will show that the likelihood score is (strictly) improper, first let us
consider the expert score. With E experts and K variables the score for expert
ei is given by:

score(ei) =
P (x|Mi)P 0(Mi)∑E

h=1 P (x|Mh)P 0(Mh)
(6.4)

where x is some observed evidence and P 0(Mi) is the prior weight for expert ei

given by the Decision Maker. Without any extra initial information about the
experts’ performance, the prior weights are set to 1

E and thus will fall out of
equation 6.4. therefore the expert score can be rewritten as:

score(ei) =
P (x|Mi)∑E

h=1 P (x|Mh)
(6.5)

To show that the likelihood is not a (strictly) proper scoring rule we will first
assume that an expert expresses a different belief than his true belief. Then,
we show that by choosing this different belief smartly the expert can maximise
his expected score. Which means we have shown that each expert can always
maximise his score by not telling his true belief. Therefore the likelihood is
(strictly) improper:

To optimise his score an expert should optimise the numerator of the right
hand side expression of equation 6.6. Let g(x) denote the expert’s true belief
about variable x = x1, x2, . . . , xn and let f(x) denote the distribution he re-
ports, trying to maximise his weight. Furthermore, assume that f 6= g and his
prior weight is 1

E . After observing some evidence x̃ this weight will change into
the likelihood of the observed evidence given the expert’s assessments. The ex-
pectation of this score is the expected likelihood before observing any evidence.
The expected likelihood is therefore the sum over all possible pieces of observa-
tions x̃ of the likelihood of the particular observation times the probability of
this observation given the expert model. In the discrete case, the expectation of
the likelihood is:

EL(x̃) =
n∑

i=1

L(x̃i)P (L(x̃i)) (6.6)

Since f is the distribution the expert reports, the likelihood of x̃ given
the expert model, is f(x̃) and the probability of this observation x̃i given the
expert model, is g(x̃i) which is the expert’s true belief is g. The expected
likelihood therefore becomes:

E(L) =
∑

x

f(x)g(x) (6.7)

The expert gives the distribution f over x, but his true belief is that it is g.
In order to maximalise his weight, the expert should maximise his expected
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likelihood given by the above expression 6.3. The optimal solution is:

arg maxfE(L) = 1(x){argmaxxg}g (6.8)

In words: the distribution that gives ones to the vector xmax that maximises
the expert’s true belief, maximises the likelihood and thus the expected weight.
This shows that using the likelihood as a scoring rule is not a strictly proper
scoring rule and that an expert can always receive equal or higher weight by
not telling his true belief!

6.4 Properties Decision Maker

Within the BBN method, the Decision Maker has an important role. He specifies
the structure of each BBN and can influence the outcome by giving prior weights
to the experts. In this section we will show that the Decision Maker is not
Bayesian. Followed by some general remarks about the role of the Decision
Maker in Bayesian practice. To illustrate that although the Decision Maker is
the combination of experts updated with Bayes’ theorem, he is not Bayesian
himself I repeatedly make use of this theorem. Recall:

Theorem 6.1 Let A and Bj be sets. Conditional probability requires that

P (A ∩Bj) = P (A)P (Bj |A) = P (Bj)P (A|Bj)

Therefore,

P (Bj |A) =
P (Bj)P (A|Bj)

P (A)
(6.9)

An extension to multiple distinct events B1, · · · , Bn is:

P (Bi|A) =
P (Bi)P (A|Bi)∑n

j=1 P (Bi)P (A|Bi)
(6.10)

6.4.1 Non-Bayesian Decision Maker

The Decision maker is not Bayesian. With this is meant that updating the Deci-
sion Maker with new evidence directly will not results in the same distributions
as updating the experts individually and combining them. In general the Deci-
sion Maker can also be seen as an expert. With this method however he does
not have the same properties as the real experts since he is not Bayesian.

Say we have E experts who report g1(x), g2(x), . . . , gE(x) and assume that all
experts receive prior weight 1

E . Let us consider expert ei who reports gi(x) After
observing the first variable x0 the weight expert ei receives follows from 6.2 (the
prior weights cancel out.)

score(ei|x0) =
gi(x0)∑E

h=1 gh(x0)
(6.11)
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Substituting 6.11 for the probability P (Mj) that expert models are correct
into 6.1 gives the Decision Maker’s distribution for the next variable x1 given
x0 as the weighted combination of the expert distributions:

DM(x1|x0) =
E∑

j=1

gj(x0)∑E
k=1 gk(x0)

gj(x1|x0) (6.12)

Analogously, after observing the second variable x1 and recalculating the
weights, the Decision Maker’s distribution for x2 given x1, x0 will be:

DM(x2|x1, x0) =
E∑

j=1

gj(x0, x1)∑E
k=1 gk(x0, x1)

gj(x2|x1, x0) (6.13)

Looking at the Decision Maker directly however and updating his distribution
with a new observed variable x1 using Bayes’s rule (theorem 6.1) gives the
following expression for the Decision Maker’s distribution for x2 given x1, x0:

DM(x2|x1, x0) =
DM(x2, x1|x0)

DM(x1|x0)
(6.14)

The Decision Maker is Bayesian if equation 6.13 and 6.14 are the same. In order
to show that the Decision Maker is not Bayesian we can rewrite equation 6.14
using 6.12 to:

DM(x2|x1, x0) =(∑E
j=1

gj(x0)∑E
k=1 gk(x0)

gj(x1, x2|x0)
)(∑E

j=1
gj(x0)∑E

k=1 gk(x0)
gj(x1|x0)

)−1
(6.15)

=

∑E
j=1 gj(x0)gj(x1, x2|x0)∑E

j=1 gj(x0)gj(x1|x0)

The last expression in 6.15 is clearly not equal to 6.13. This means that
although the Decision Maker obtains his aggregated distribution by Bayesian
techniques, he himself is not Bayesian.

6.4.2 Role of the Analyst

As mentioned before, the role of the Decision Maker in the BBN Method is
considerable. This has both positive and negative effects. On the one hand, the
Decision Maker has a large role in determining the structure of the Bayesian
Belief Net and thus the dependence structure of the variables. In reality this
structure may be as unknown to the DM as the distributions of the variables
itself. However this is also something to obtain using Expert Judgement. On
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the other hand, to give weights to the various experts a priori gives the DM
the opportunity to reflect his initial information about experts in the model.
This means that an experienced Decision Maker can add valuable information
to the analysis. It can be concluded that in practice the Decision Maker has
an significant and difficult role in the BBN method and that an experienced
Decision Maker can influence the performance of the method in a positive way.
The Decision Maker could also assume some correlation between the experts
and can express that in his choice of prior weights.

6.5 Performance

Comparing the likelihood weights with global weights in Excalibur on existing
Expert Judgement data from TU Delft gives insight in how the likelihood score
performs compared to a proper scoring rule. Note that we are not comparing
the two methods itself but only the way of scoring. Therefore we consider the
following two scoring rules:

Scoring Rule 6.2 The likelihood of the expert’s assessments given the realisa-
tions of the seed variables.

Scoring Rule 6.3 The product of the expert’s calibration and relative infor-
mation, both calculated for and then averaged over the seed variables.

Recall from Chapter 2 that the Calibration is the statistical likelihood of the
hypothesis that the realisations of the seed variables are sampled independently
from distributions agreeing with the expert’s assessments. The Information is
the average Relative Information of the expert’s probability distributions with
respect to a background measure over all seed variables.

To compare the two scoring rules we first need a way to quantify the likelihood
of the realisations of the seed variables given the expert models. In case of the
data from TU Delft Expert Judgement studies, the expert models are expert
distributions given by quantifying three or five quantile points.

In two recent studies, the Dikering and AOT Risk study, the experts were
asked to quantify the five [0.050.250.500.750.95] quantiles of their distribution
for each variable. The likelihood of the realisation of a seed variable given an
expert opinion is simply calculated as the size of the percentile in which the
realisation of the seed variable falls. For N seed variables this leads to a value
of the likelihood of all seed variables. Normalising the likelihoods of the seed
variables for all experts gives a weight and the Decision Maker obtains a distri-
bution for each variable as a weighted combination of all expert distributions
and can be compared with a Decision Maker using another weighting scheme.

Note that in this way, we will not reproduce results from the Bayesian Belief
Net method. The purpose is the compare the two scoring rules given by 6.2
and 6.3.
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Example Say an expert assesses the following five values for the percentiles
of his distribution for seed variable i: [−2.5 −0.5 3 4.25 6] and the re-
alisation of this seed variable is zero. Then the realisation thus falls in between
the 0.25 and 0.50 quantile of the expert’s distribution and has a likelihood of

Li = (0.50− 0.25) = 0.25

For N seed variables, the likelihood of an expert distribution is now the prod-
uct of the N likelihood values

∏N
i=1 Li of the seed variables. With Excalibur, a

software package developed at the TU Delft, the weights calculated using the
calibration and relative information or the likelihood can be compared. Follow-
ing Excalibur and the Classical Model, the performance of the Decision Maker
is quantified by his calibration and relative information.

6.5.1 Results

We calculate the likelihood of seed variables as the size of the bin of the expert
distribution in which the seed variable falls. This means however that we cannot
compare studies where experts quantified a different number of quantile points.
Since the possible likelihood values decrease with increasing number of bins.

Example When expert are asked to quantify the 0.05, 0.50 and 0.95 quantiles,
the values of the likelihood computed as described above are either: 0.05, 0.45,
0.45 or 0.05. When experts are asked to quantify five quantile points however,
the values of the likelihood can be: 0.05, 0.2, 0.25, 0.25 0.2 and 0.05. In case
of a seed variables falling into the bin to the right of the median of the expert
distribution, the likelihood scores are respectively 0.25 and 0.45 for five and
three quantiles. This will lead to an unfair comparison. Note: our estimation for
the likelihood score do get more accurate however with increasing number of
quantiles.

First we will give results of the comparison for data from two recent studies
at the TU Delft where experts assessed five percentiles of their distribution
for each item, the Dike Ring and AOT-studies. The results show that the

Table 6.1: Dikering Data

Result Comparison Excalibur
Weights Calibration Mean Rel. Information Product
Global 0.3956 0.6462 0.25
Likelihood 0.1676 0.5721 0.1

Decision Maker based on the improper lieklihood scoring rule 6.2 does not
perform too bad. His calibration and relative information are at the most about
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twice as small. Results in Expert Judgement studies in general show much
higher differences between the experts than between our two Decision Makers.
Comparing the two scoring rules in the same way, but for studies with three
percentiles gives more results. Here are the results of the ten studies that can
be found in table 6.3.

Figure 6.1 shows a scatter plot of the calibration of the Decision Maker
when using scoring rule 6.2 against 6.3. Although more than half of the points
lay under the diagonal, the rest lays above. This shows that in general the
proper Decision Maker is better calibrated, but the difference is not very
convincing. Figure 6.2 shows the relative information of the Decision Maker
for both scoring rules. The two scoring rules give an equal Decision Maker in
terms of relative information for one study. All the other studies show a more
informative Decision Maker for the strictly proper scoring rule.

Table 6.2: AOT Risk Data

Result Comparison Excalibur
Weights Calibration Mean Rel. Information Product
Global 0.827 1.212 1.0
Likelihood 0.4742 0.7426 0.35

Table 6.3: Considered Expert Judgement Studies

EJ Studies with 3 Q’s
Estec-1 DSM-1
Acnepts Eunrca s
Gas95 Infosec
Opriskbank Mont1
RETURNafter BSWAAL
DCPWWLW2 WATERPOL
DSM2 GROND5
ESTEC2 ESTEC3
CARMA-GREECE NH3EXPTS
SO3EPTS EUR-DD
EUR-WD EUR-INT
EUR-EAR EUR-SOI MVBLBARR
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Figure 6.1: Scatterplot of calibration with global weights against likelihood
weights.
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Figure 6.2: Scatterplot of relative information with global weights against like-
lihood weights.
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6.5.2 Comparing with Equal Weights

From the results above could be concluded that performance-based weighting
outperforms likelihood weighting. Note however that we have not compared the
actual methods, but only the two underlying scoring rules. The actual BBN
Method uses evidence on the seeds to update the expert models and is therefore
expected to perform better than only the likelihood score which already does
not perform too bad. Another scoring rule we can compare with likelihood
weighting is equal weighting. This is the manner of weighting when there is
no extra information on the experts’ performance at all. In order for the BBN
Method to be a useful method it should at least outperform equal weighting. If
equal weighting appears to give better results there is no point in calculating
the likelihood for each expert model and updating each BBN with evidence.

Table 6.4 compares the Calibration and Information of the equal weighting
and likelihood weighting Decision Makers for the Expert Judgement data from
the studies listed in table 6.3. In order to make the table more ledgible, the
names of the studies that corresponds to the numbers 1, . . . , 27 are listed in ap-
pendix B. In more than half of the cases, the likelihood weight Decision Maker
has a higher Correlation- a higher Information-score than the equal weight De-
cision Maker. The result is more convincing in the Relative Information graph.
This indicates at least that the likelihood weights outperform equal weights
on Information score whilst performance based global weighting outperformed
likelihood weighting on Information.

Figures E.1 and 6.4 again illustrate that the likelihood Decision Maker is
slightly better calibrated and more informative.

6.6 Conclusion

After illustrating that the likelihood is an improper scoring rule and the Deci-
sion Maker in the BBN method is not Bayesian himself the results using this
improper scoring rule are not that bad at all. Especially considering the fact that
the potential strength of the BBN Method, updating the expert models with
evidence, is not even taken into account in our comparison. The likelihood score
the BBN method uses, outperforms equal weighting and the likelihood Decision
Maker in general has a calibration close to the performance-based global weight
Decision Maker.

When comparing the the likelihood and performance-based Decision Makers
one immediately notices that the calibration of both Decision Makers is not so
different as their Information-scores. One explanation could be that, as Calibra-
tion, the likelihood measures how likely the observations are given the expert
models. Likelihood does not tell us anything about the spread of the assessed
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Table 6.4: Comparing equal with likelihood weights

Calibration Information Product
likelihood equal likelihood equal likelihood equal

1 0.75 0.43 1.06 1.42 0.80 0.61
2 0.08 0.53 0.91 0.81 0.07 0.43
3 0.29 0.28 1.54 1.51 0.45 0.42
6 0.76 0.56 0.87 0.30 0.66 0.17
7 0.81 0.12 1.06 0.72 0.86 0.09
8 0.19 0.71 1.70 1.01 0.33 0.72
9 0.17 0.34 0.59 0.32 0.10 0.11
10 0.64 0.53 1.01 0.75 0.65 0.40
11 0.09 0.01 0.71 0.17 0.06 0.00
12 0.53 0.64 0.18 0.29 0.10 0.18
13 0.00 0.00 0.00 0.14 0.00 0.00
14 0.00 0.36 1.25 1.10 0.00 0.39
15 0.93 0.50 3.01 0.62 2.79 0.31
16 0.15 0.06 3.01 2.90 0.47 0.17
17 0.00 0.97 0.36 0.15 0.00 0.14
18 0.47 0.13 0.98 0.53 0.46 0.07
19 0.18 0.18 0.36 0.29 0.06 0.05
20 0.23 0.29 1.55 0.97 0.35 0.28
21 0.34 0.15 2.55 2.09 0.86 0.31
22 0.00 0.00 0.14 0.17 0.00 0.00
23 0.01 0.00 0.58 0.65 0.01 0.00
24 0.36 0.11 0.77 0.56 0.28 0.06
25 0.01 0.07 0.30 0.16 0.00 0.01
26 0.00 0.00 0.29 0.97 0.00 0.00
27 0.03 0.22 1.44 0.55 0.05 0.12
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Figure 6.3: Scatterplot of calibration with equal weights against likelihood
weights.
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Figure 6.4: Scatterplot of relative information with equal weights against likeli-
hood weights.
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distributions. The Information of the likelihood Decision Maker is in general
about twice as low as that of the performance-based Decision Maker.

6.6.1 Recommendations

The likelihood Decision Maker has a Calibration score not so far off that of
the performance-based Decision Maker. The Information-score however is much
better for the performance-based Decision Maker. One explanation that was
offered is that the likelihood measure is similar to the Calibration in the sense
that they both quantify the likelihood of the seed variables given the expert
models. The likelihood however does not provide anything on the spread of
the expert models. One way to improve the BBN-method therefore could be to
include some measure that quantifies this spread, like the Relative Information.

Using the likelihood to weight the experts means using an improper scoring
rule. However it is not clear whether this is a problem in real-life Expert Judge-
ment practising. By improving the BBN method it can therefore become a very
useful Expert Judgement tool.

Comparing with Social Networks

Huang and Cooke [13] have evaluating the performance of a Social Network
Decision Maker. They used data from the TU Delft joined EU USNRC un-
certainty analysis of accident consequence for nuclear power plants. This data
includes ten expert panels and have resulted in performance based combinations
of expert judgements. Recall from 2 that Social Networks theory views social re-
lationships in terms of nodes and ties and focuses on relationships among social
entities. Experts where weighted within these Social Networks by taking into
account the number of scientific publications, experience and recommendations
of a wide class of experts. In their study the authors use seven expert panels.
Using the seven expert panels from EU USNRC data to compare the likelihood
weight with Social networks could be a nice extension. However, the likelihood
weights seem to outperform the equal weight whilst the SN Method does not
seem perform better than equal weighting.
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Chapter 7

Conclusions and
Recommendations

This thesis has been about two different aspects of Expert Judgement.

I In the first part, we have a model to produce synthetic expert data. The
most interesting results lead to some remarks and conclusions on the effect of
Correlation and on Convergence of the Classical Model.

II The second part dealt with a new Expert Judgement method proposed by
Small et al [5], the BBN Method. Although there are some thearetical comments
to be made, evaluating the method on existing EJ data showed that the method
does perform quite well.

7.1 Correlation

There are many possible forms of correlation that can have effect on the perfor-
mance of an EJ method.

7.1.1 Dependence between Experts

In the first part of this thesis some illustrating results have been presented from
applying the Classical Model onto synthetic expert data. The most interesting
results concern the correlation effects. It is very well plausible that there exists
some correlation between experts. An example where half of the experts are
academics and the other half work in the field makes this clear. The academics
might be correlated among each other as well as the other half. Correlation
lowers the number of independent samples from the multinomial sample distri-
bution and therefore delays the convergence to a Chi-square distribution. This
means that the hypothesis test that determines the Calibration score can be-
come invalid. My recommendation is that whenever the analyst suspects a high
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correlation between some (or all) experts he should include more seed variables
to ensure Chi-square convergence and a valid hypothesis test. Also one should
think about a way to correct the effective number of samples N when there is
a high correlation between the expert distributions.

7.1.2 Dependence between Seeds

The Classical Model is based on the assumption that there is a large dependency
between the seed variables and the unknown variables of interest. It is therefore
also plausible to assume that the seed variables are not independent.

In Chapter 3, Modelling Experts, however we have not assumed any depen-
dence between the seed variables or with the target variable. It is however in-
teresting the research the effect of (un-)correlated seed variables on the perfor-
mance of the Classical Model. Even more interesting would be to look at the
correlation or dependence between the seed variables and target variables. One
could for instance expect that when there is no dependence between the seed
variables and the target variables, the Classical Model looses some of its value.
Once again the EJ database from TU Delft could be very useful. With all this
data at hand, one can just calculate the correlation or dependece between the
seed variables and target variables.

7.2 Expert Characteristics

The main results from section 4.2 followed our expectations and thus our model
to produce synthetic expert distributions provided us a useful model to eval-
uate for instance the effects of correlation and convergence. One fundamental
question however remains. How does the way we model expert characteristics
compare with real experts? In order to make the results presented in this thesis
more relevant, one has to think of a way to quantify the expert characteristics
for real experts.

Within our model to produce synthetic expert distributions, we used a fixed
underlying bias. Suggested further research could investigate the situation where
the underlying bias is not constant. What would be the influence of the seed
variables in the case where experts have a much lower underlying bias for the
seed variables as for the unknown variables?

The two questions posed above are closely related to the effect of the cor-
relation. If there is no correlation between the seed variables and the target
variable, it is more plausible to assume different underlying biases for the seed
and target variables. On the other hand, the correlation between experts is the
one characteristic that an analyst could estimate from a group of experts as in
the example of academic and field specialists.
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7.3 Convergence

Using the Bin-approach in Chapter 4 showed that the common number of around
10 experts might not always be enough to ensure convergence. Comparing the
theoretical results with real data from Meng [15] confirms this.

One way to come to our conclusions on convergence of the Classical Model
was to compare successive Decision Maker when adding experts. We compared
the Decision Makers using their characteristics and the Relative Information.
Using Relative Information however could be too strict of a comparison. Initial
results on comparing the successive Decision Makers with respect to the seed
variables show that we need even more experts to find a stable Decision Maker.
These results can be found in Appendix ??.

7.4 Evaluating the BBN Method

Except the theoretical disadvantages, the BBN Method seems to be a promising
method. Considering the fact that the potential strength of the BBN Method,
updating the expert models with evidence, is not even taken into account in our
comparison it performs well. If it is possible to implement a measure of spread of
the expert models it could provide a useful alternative for existing EJ methods.

7.5 Remarks

7.5.1 The Use of Numbers

Throughout this thesis we have used specified number of seed variables, experts
and quantiles in our simulations and examples. The choice for using ten seed
variables in most simulations is given by the fact that this is a common number
of seed variables in practice. Most Expert Judgement studies at the TU Delft
have used three quantiles. In this thesis however we have described the use of five
quantiles. This is done in order to reduce the effect of the seed variables already a
little bit. Using even more quantiles - which is easily done in modelling synthetic
expert distributions - would not give justice to the real life practice of Expert
Judgement. Eliciting expert on many quantiles will be too time consuming and
moreover too hard for the experts. The number of experts has been one of the
parameters that we have varied in order to infer something on convergence. In
other simulations however, we used ten experts. This is again an amount given
by the everyday practice of Expert Judgement.

7.5.2 Normalised vs. Unnormalised Weight

In Chapter 3 we have constructed the probability density function of the unnor-
malised weight of an expert depending on his underlying characteristics. The
reason to look at the unnormalised weight as opposed to the normalised weight
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is that the unnormalised weight reflects only the characteristics of the expert
under consideration. The normalised weight however will also take into account
other experts and expresses more than the relation between the expert charac-
teristics and his weight. It also includes the performance of the expert relative
to the performance of other experts.
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Appendix A

Theoretical explanation
Backgrounds

Let f , g and h be the probability functions of respectively an expert distribu-
tion, the normal background and the uniform background. Then the relative
information of the expert distribution and both backgrounds can be computed
by:

RI(f, g) =
∫ u
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and
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Subtracting the second equation from equation A.1 gives us:∫ u
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(A.3)
Substituting the parameters of the normal background distribution

σ2
2 = (0.25(u− l))2

µ2 = 0.5(u + l) (A.4)

81



into equation A.3 gives:∫ u
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All we need to show now is that this last equation is bigger than zero.
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Appendix B

Names EJ Studies

Table B.1: Comparing equal with likelihood weights

1 estec1 2 dsm1
3 acne 4 aotrisk
5 dikering 6 aseed
7 gas95 8 infosec
9 opriskbank 10 mont
11 returnafter 12 bswaal
13 dcpwwlw2 14 waterpolo
15 dsm2 16 grond5
17 estec2 18 estec3
19 carma-greece 20 nh3expts
21 so3expts 22 eurdd
23 eurwd 24 eurint
25 eurear 26 eursoi
27 mvblbarr
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Appendix C

Expert Judgement studies
by the TU Delft

The following table lists all Expert Judgement studies performed by the Delft
Institute of Applied Mathematics at the Delft University of Technology. It gives
both the scores of the performance-based and equal-weight Decision Maker as of
the best expert. It total 21942 elicitations were made in the pas years, resulting
in an extensive database of Expert Judgement data.
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Appendix D

Bayesian Belief Net
Software

The last table gives an overview of available software for updat-
ing Bayesian Belief Nets coming from http://www.cs.ubc.ca/ mur-
phyk/Software/BNT/bnsoft.html

What do the headers in the table mean?

• Src = source code included? (N=no) If so, what language?

• API = application program interface included? (N means the program
cannot be integrated into your code, i.e., it must be run as a standalone
executable.)

• Exec = Executable runs on W = Windows (95/98/NT), U = Unix, M =
Mac, or - = any machine with a compiler.

• Cts = are continuous (latent) nodes supported? G = (conditionally) Gaus-
sians nodes supported analytically, Cs = continuous nodes supported by
sampling, Cd = continuous nodes supported by discretization, Cx = con-
tinuous nodes supported by some unspecified method, D = only discrete
nodes supported.

• GUI = Graphical User Interface included?

• Learns parameters?

• Learns structure? CI = means uses conditional independency tests

•

• Utility = utility and decision nodes (i.e., influence diagrams) supported?
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• Free? 0 = free (although possibly only for academic use). $ = commercial
software (although most have free versions which are restricted in various
ways, e.g., the model size is limited, or models cannot be saved, or there
is no API.)

• Undir? What kind of graphs are supported? U = only undirected graphs,
D = only directed graphs, UD = both undirected and directed, CG =
chain graphs (mixed directed/undirected).

• Inference = which inference algorithm is used? jtree = junction tree, vare-
lim = variable (bucket) elimination, MH = Metropols Hastings, G = Gibbs
sampling, IS = importance sampling, sampling = some other Monte Carlo
method, polytree = Pearl’s algorithm restricted to a graph with no cycles,
none = no inference supported (hence the program is only designed for
structure learning from completely observed data)

• Comments. If in ”quotes”, I am quoting the authors at their request.
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Appendix E

Performance DM’s wrt. the
Seeds

The following figure shows the Calibration and Relative Information of the De-
cision Maker when adding expert based on only one seed variable. Since it is
only based on one seed, this is a very preliminary result.
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Figure E.1: Performance of the DM with respect to the seed variables
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