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This chapter reviews aspects of non-parametric Bayesian belief nets
(NPBBN). The theory behind NPBBNs is closely related to that of reg-
ular vines and it benefits from the latter’s developments. It also offers
an alternative to undirected graphical models in general, and to regular
vines in particular. The differences and similarities in modelling using
directed versus undirected graphs are discussed in this chapter from the
perspective of NPBBNs and vines. Until recently, Bayesian belief nets
(BBNs) were either discrete or discrete-normal. Despite their popular-
ity, both suffer from severe limitations. Discrete BBNs are limited by
size and complexity, discrete-normal BBNs are limited by the assump-
tion of joint normality. NPBBNs were introduced to overcome these
limitations. Algorithms for specifying, sampling and analysing high di-
mensional distributions using NPBBNs are developed and successfully
applied in decision support systems.
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1.1. Introduction or: how to represent information bur-
dened by uncertainty

Understanding and representing multivariate distributions along with their
dependence structure is a highly active area of research. A large body of
scientific work treating multivariate models is available. This chapter in
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particular, and this book in general, advocates graphical models to repre-
sent high dimensional distributions with complex dependence structures.

Graphical models proved to be a flexible probabilistic framework and
their use has increased substantially, hence the theory behind them has
been constantly developed and extended.

There are two main types of graphical models: directed, based on
directed acyclic graphs (DAGs), and undirected, generally referred to as
Markov networks. The regular vines are a generalisation of Markov trees,
hence they fall into the former category, whereas the Bayesian belief nets
(BBNs) belong to the latter. Why or when to use one graphical model or
another is not a question with a straightforward answer. This chapter will
provide some insights into the differences and similarities between the two
types of models, and hopefully these will serve as guidelines for modelers.

Both directed and undirected models consist of a qualitative and a quan-
titative part. The qualitative part is represented by the graph itself together
with the (in)dependence relationships entailed by it. Maybe the most im-
portant difference between directed and undirected graphs, in general, is
that they make different statements of conditional independence. We will
first focus on the differences arising from the graphical structures, rather
than the quantification of a joint multivariate distribution.

The absence of a link between two nodes means that any dependence be-
tween these two variables is mediated via some other variables, hence they
encode conditional (in)dependence statements between variables. Given
the nested tree structure of a regular vine, one can consider them as fully
connected graphs. In this sense, in regular vines, the concept of condi-
tional independence is weakened to allow for various forms of conditional
dependence. Is this an advantage or a disadvantage of vines? The answer
depends on many factors, which may lead to the conclusion that the ques-
tion is ill-posed.

A number of examples will shed some light on the matter. Consider 3
random variables X1, X2 and X3 represented as nodes in a graphical struc-
ture. The node that corresponds to variable Xi is denoted by i. Let node 3
have converging links. This is a configuration that yields conditional inde-
pendence in Markov networks and conditional dependence in BBNs. The
structure in Fig. 1.1(a) entails the conditional dependence of X1 and X2

given X3
a, whereas Fig. 1.1(b) entails the conditional independence of X1

and X2 given X3.

aand the independence of X1 and X2.
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(a) (b)

Fig. 1.1. Node with converging links. (a) Node with converging arrows in a BBN. (b)
Node with converging edges in a Markov network.

The possibility of representing the combination of statements in
Fig. 1.1(a) may be regarded as an advantage of BBNs over undirected
structures, since it permits the display of induced and non-transitive de-
pendencies. This configuration also represents the main difference between
the separation properties in the directed and undirected graphs. In di-
rected graphs, the direction-dependent criterion of connectivity called the
d-separation criterion consists in the above rule for converging arrows, plus
the usual cutset criterion of Markov networks, whenever the arrows are di-
verging or cascaded [16]. If two nodes of a BBN are d-separated by a set
of nodes, then the corresponding variables are conditionally independent,
given that set.

Remark 1.1. If two nodes are not d-separated it does not necessarily mean
that the corresponding variables are not conditionally independent. In
other words, whenever an arc or an unblocked pathb exists between two
nodes, it is not necessarily the case that the corresponding variables are
dependent.

Regular vines however may be also used to represent the independence
of X1 and X2, and the conditional dependence of X1 and X2 given X3.
Nevertheless, the graphical structure alone will not suffice in completing this
task and this might be viewed as a disadvantage of regular vines. Given the
full connectivity of vines (conditional) dependencies and/or independencies
can only be represented through quantification. Edges of a regular vine can
be associated with (conditional) rank correlations. If these rank correlations
are realised by copulae with the zero independence property, representing
the independence of X1 and X2 reduces to associating the edge between
bIntuitively, an unblocked path may carry information, or dependence between end
nodes. For exact definitions we refer to [16].
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them with a zero rank correlation. This is shown in Fig. 1.2(a). Yet, the
conditional dependence of X1 and X2 given X3 is not obvious. A few
calculations are needed in order to verify that, and a different graph is
needed to actually visualise it. Fig. 1.2(b) shows a non-zero conditional
rank correlation between X1 and X2 given X3, but fails to represent the
independence of X1 and X2.

(a) (b)

Fig. 1.2. D-vines ”representing” induced and non-transitive dependencies. (a) D-vine
representing the independence of X1 and X2. (b) D-vine representing the conditional
dependence of X1 and X2 given X3.

It is worth remembering that the present discussion regards solely
the representation of certain (conditional) (in)dependencies using differ-
ent graphical structures, and not the full representation/quantification of
joint distributions. The specification of (conditional) rank correlations on
the edges of a regular vine serves here this purpose only.

Another feature of BBNs that can be regarded as an advantage over
regular vines is that conditional independencies are represented by missing
arcs, therefore by deleting arcs certain conditional independencies become
visible in the graph. Consider the D-vine on 4 variables in Fig. 1.3. In
this example and further in this chapter, the copulae used to realise the
(conditional) rank correlations associated to the edges of a regular vine will
posses the zero independence property.

Fig. 1.3. A D-vine on 4 variables representing the following: X1 ⊥ X3|X2; X2 6⊥ X4|X3;
X1 6⊥ X4| (X2, X3); X1 6⊥ X2, X2 6⊥ X3, X3 6⊥ X4 .

Variables X1 and X3 are independent given X2. Independence is de-
noted by ⊥, e.g. X1 ⊥ X3|X2. The notation X2 6⊥ X4|X3 means that X2
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and X4 are not conditionally independent given X3. If a (conditional) rank
correlation from the D-vine is not replaced by zero the corresponding vari-
ables are considered to be (conditionally) dependent. The information rep-
resented by the D-vine in Fig. 1.3 can be represented using a saturated BBN,
from which the arc between X1 and X3 is deleted. In this way the depen-
dence between the two variables is mediated only via X2 (see Fig. 1.4(a)).
Further, X2 and X4 are conditionally dependent given X3. Since the pres-
ence of arcs does not guarantee dependence between variables (see Remark
1.1), this statement cannot be represented with a BBN. The best one could
do is to avoid representing the opposite (i.e. X2 ⊥ X4|X3). The depen-
dence between X2 and X4 is not mediated only through X3, therefore the
arc between them can be deleted (see Fig. 1.4(b)). This of course will in-
troduce a new conditional independence statement, i.e. X2 ⊥ X4| (X1, X3),
but it will not necessarily violate the requirements imposed by the D-vine.
The resultant structure is presented in Fig. 1.4(c).

(a) (b) (c)

Fig. 1.4. (a) A BBN with 4 nodes and 5 arcs representing X1 ⊥ X3|X2. (b) A BBN
with 4 nodes and 4 arcs representing X1 ⊥ X3|X2. (c) The same BBN as in b).

Only 4 arcs are necessary in order to represent the same conditional
independence statements as in the D-vine. The reduction in the number
of arcs constitutes a major advantage, since it results in a sparser, more
readable structure. Another example of a set of conditional independence
statements represented with a D-vine with 15 edges versus a BBN with 6
arcs is presented in Fig. 1.5 and Fig. 1.6.

Following the same strategy as before, i.e. starting with the saturated
BBN and removing the arcs corresponding to the independence statements,
results in the BBN in Fig. 1.6(a). As expected, the number of arcs is
reduced to 11. Nevertheless, if one only wants to preserve the conditional
independence statements shown in the regular vine and not to violate the
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Fig. 1.5. A D-vine on 6 variables representing 4 conditional independence statements.

conditional dependencies, the structure can be reduced even further, e.g.
Fig. 1.6(b).

(a) (b)

Fig. 1.6. (a) BBN with 6 nodes and 11 arcs representing the same conditional indepen-
dence statements as the D-vine in Fig 1.5. (b) BBN with 6 nodes and 6 arcs representing
the same conditional independence statements as the D-vine in Fig 1.5.

In larger structures, with many conditional independence statements
present, the reduction might be even more dramatic. Nevertheless, there are
configurations in which deleting arcs from a saturated BBN (corresponding
to a regular vine) does not result in a better ”picture”. Consider the D-vine
in Fig. 1.7.

Starting with the saturated BBN and deleting the arcs between X1,X3

and X2, X4 will result in the BBN in Fig. 1.4(c). But, in this structure
X2 and X4 are not d-separated by X3. This does not imply that they are
not conditional independent given X3. They might be, but this conditional
independence is not visible anymore, and the BBNs’ advantage of being
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Fig. 1.7. A D-vine on 4 variables representing the following: X1 ⊥ X3|X2; X2 ⊥ X4|X3;
X1 6⊥ X4| (X2, X3); X1 6⊥ X2, X2 6⊥ X3, X3 6⊥ X4 .

visually more intuitive vanishes. Any reorientation of the arcs will fail to
represent - via d-separation - both conditional independence statements.

On the other hand, starting with the BBN structure in Fig. 1.4(c) (rear-
ranged as in Fig. 1.8(a)) and trying to represent its conditional independen-
cies with a vine might prove difficult. Fig. 1.8(a) encodes X4 ⊥ X2|X1, X3

and X1 ⊥ X3|X2. To represent the first statement on a D-vine, variable X1

has to be before variable X2 in the first tree (see Fig. 1.8(b)), whereas to
represent the second statement the order of these variables has to change
(see Fig. 1.8(c)).

(a)

(b) (c)

Fig. 1.8. (a) A BBN representing X4 ⊥ X2|X1, X3 and X1 ⊥ X3|X2. (b) A D-vine
representing X4 ⊥ X2|X1, X3. (c) A D-vine representing X1 ⊥ X3|X2.

The choice between representing a multivariate distribution using a reg-
ular vine, or using a BBN depends on many factors. A few of them, related
exclusively to the graphical representation of (in)dependence statements
were discussed above. Other factors will be explored throughout this chap-
ter.

The rest of the chapter is organized as follows. We first introduce non-
parametric Bayesian belief nets (NPBBNs) and their connection with regu-
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lar vines. Differences in sampling and performing inference using a NPBBN
versus using a regular vine are further discussed. The issues of model learn-
ing and validation are addressed and some applications of the NPBBNs
methodology are finally presented. The last section gathers conclusions.

1.2. Non-Parametric Bayesian Belief Nets: sampling and
conditionalising

This chapter concentrates on BBNs. As already mentioned, BBNs are
DAGs, whose nodes represent univariate random variables and arcs repre-
sent direct influencesc.

The origin of BBNs can be tracked back in the early decades of the 20th
century to the pioneering work of Sewell Wright [19] who developed path
analysis to help the study of genetic inheritance.

In their most popular form, BBNs were introduced in the 80’s as a
knowledge representation formalism to encode and use the information ac-
quired from human experts in automated reasoning systems to perform
diagnostic and prediction [16].

BBNs provide a compact representation of high dimensional distribu-
tions of a set of variables and encode their joint density/mass function
by specifying a set of conditional independence statements and a set of
probability functions. The graph itself and the (conditional) independence
relations that are entailed by it form the qualitative part of a BBN model.
The quantitative part of the model consists of the conditional probability
functions associated with the variables. In Section 1.1 we concentrated our
attention on the qualitative part of BBNs. Further we will mainly discuss
their quantitative aspects and the techniques to build high dimensional dis-
tributions.

Until recently, BBNs were discrete, normal or discrete-normal. In dis-
crete BBNs nodes represent discrete random variables. These models spec-
ify marginal distributions for source nodes, and conditional probability ta-
bles for child nodes. If the nodes of a BBN correspond to variables that
follow a joint normal distribution, we talk of Gaussian BBNs (or normal
BBNs) [16, 18]. Continuous BBNs developed for joint normal variables in-
terpret influence of the parents on a child as partial regression coefficients
when the child is regressed on the parents. They require means, conditional
variances and partial regression coefficients which can be specified in an al-
cBBNs can also contain functional nodes, i.e nodes which are functions of other nodes.
The ensuing discussion refers to probabilistic nodes.
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gebraically independent manner [18].
Despite their popularity, they suffer from severe limitations. Discrete

BBNs are limited by size and complexity; normal and discrete-normal BBNs
are limited by the assumption of joint normalityd.

Uncertainty distributions may not be assumed to conform to any para-
metric form. Algorithms for specifying, sampling and analysing high di-
mensional distributions should therefore be non-parametric. Regular vines
allow us to move beyond discrete BBNs without defaulting to the joint nor-
mal distribution. When no marginal distribution assumption is made, we
talk of non-parametric BBNs, abbreviated NPBBNs. NPBBNs and their
relationship with regular vines were introduced in [11] and extended in [5].
The focus of this section is on quantifying and building a joint distribution
using a NPBBN.

A NPBBN is a DAG, together with a set of (conditional) rank corre-
lations, a copula class parametrised by the rank correlation, with the zero
independence property, and a set of marginal distributions. In NPBBNs
nodes are associated with arbitrary distributions and arcs with (condi-
tional) rank correlations that are realised by the chosen copula. In contin-
uous NPBBNs nodes are associated with continuous invertible distribution
functions. The nodes of a NPBBN will be assumed continuous unless other-
wise specified. Further in this chapter, whenever we speak of NPBBNs, we
mean the DAG together with the specification of rank correlations, copula
and margins.

The DAG of a NPBBN induces a (non-unique) ordering, and stipulates
that each variable is conditionally independent of all predecessors in the
ordering given its direct predecessors. The direct predecessors of a node i,
corresponding to variable Xi are called parents and the set of all i’s parents
is denoted Pa(i).

Each variable is associated with a conditional probability function of
that variable given its parents in the graph, fi|Pa(i), i = 1, . . . , n. The con-
ditional independence statements encoded in the graph allow us to writee:

f1,2,...,n =
n∏

i=1

fi|Pa(i). (1.1)

dFor a detailed discussion about the disadvantages of discrete and normal BBNs we refer
to Chapter 1 of [4].
eThis factorisation is of course valid for BBNs in general and not only for NPBBNs.



February 4, 2013 10:3 World Scientific Review Volume - 9in x 6in AHanea

10 A. Hanea

For each variable i with parents i1...ip(i), we associate the arc ip(i)−k −→ i

with the conditional rank correlation:{
ri,ip(i) , k = 0
ri,ip(i)−k|ip(i),...,ip(i)−k+1

, 1 ≤ k ≤ p(i)− 1.
(1.2)

The assignment is vacuous if {i1...ip(i)} = ∅ (see Fig. 1.9).

Fig. 1.9. Node i of a NPBBN and the set of parent nodes for i.

Therefore, every arc in the NPBBN is assigned a (conditional) rank
correlation between parent and child. These assignments are made accord-
ing to a protocol presented in [11]. The conditional rank correlations need
not be constant, although they are taken to be constant in the following
examplef . We will illustrate the protocol for assigning (conditional) rank
correlations to the arcs of a NPBBN with an example.

Example 1.1. Let us consider the undirected cycle on 4 variables in
Fig. 1.10. This structure is similar with the structure presented in
Fig. 1.8(a).

Fig. 1.10. BBN with 4 nodes and 4 arcs.

The DAG of this NPBBN induces 2 orderingsg of the variables: 1, 2,
3, 4, or 1, 3, 2, 4. Let us choose 1, 2, 3, 4. The factorization of the joint
distribution is:
fThe conditional rank correlations must be constant when the normal copula is used.
gSuch an ordering of the variables is referred to as sampling order or topological order.



February 4, 2013 10:3 World Scientific Review Volume - 9in x 6in AHanea

Non-Parametric BBNs vs.Vines 11

P (1)P (2|1)P (3|12)P (4|231). (1.3)

The underscored nodes in each conditioning set are the non-parents of the
conditioned variable. Thus they are not necessary in sampling the condi-
tioned variable. This uses some of the conditional independence relations in
the NPBBN. The correlation between the child and its first parenth will be
an unconditional rank correlation, and the correlations between the child
and its next parents (in the ordering) will be conditioned on the values of the
previous parents. Hence, one set of (conditional) rank correlations that can
be assigned to the edges of the NPBBN in Fig. 1.10 is: {r21, r31, r42, r43|2}.
For each term i (i = 1, . . . , 4) of the factorization (1.3) a D-vine on i vari-
ables is built. This D-vine is denoted by Di and it contains: the variable
i, the non-underscored variables, and the underscored ones, in this order.
Fig. 1.11 shows the D-vines built for variables 2, 3, 4.

Fig. 1.11. D2,D3,D4 for Example 1.1.

Building the D-vines is not a necessary step in specifying the rank cor-
relationsi, but it is essential in proving a result that not only establishes
the connection between NPBBNs and vines, but is also crucial for the de-
velopment of NPBBNs. The result will be further formulated; for its proof
we refer to [5]:

Given a continuous NPBBN on n variables, the joint distribution of the
variables is uniquely determined. This joint distribution satisfies the char-
acteristic factorization (1.1) and the conditional rank correlations in (1.2)
are algebraically independent.

The (conditional) rank correlations and the marginal distributions
needed in order to specify the joint distributions represented by the NPBBN
can be retrieved from data if available, or elicited from experts [14].

hThe parents of each variable can be ordered in a non-unique way.
iThese are assigned directly to the arcs of the BBN. Each arc is associated with a
(conditional) parent-child rank correlation as in Fig. 1.9.
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1.2.1. Sampling a NPBBN

Since no analytical/parametric form of the joint distributions is available,
the only way to stipulate it is by sampling it. In order to sample a NPBBN
we will use the procedures for regular vines presented in Chapter 3. Vari-
able Xi is sampled using the procedure for the vine Di. When using regular
vines to sample a continuous NPBBN, it is not in general possible to keep
the same order of variables in successive vines. In other words, we will
have to re-order the variables before constructing Di+1 and sampling Xi+1,
and this will involve calculating some conditional distributions. If the or-
der of variables does not change from one vine to another the sampling
procedure for the NPBBN coincides with the sampling procedure for the
regular vine built for the last variable in the ordering (for details and ex-
amples see [13]). In Fig. 1.11, one can notice that the D-vine for the 3rd

variable is D3 = D(3, 1, 2), and the order of the variables from D4 must be
D(4, 3, 2, 1). Hence, this NPBBN cannot be represented as just one D-vine.
This particularity of an undirected cycle was already noticed in Fig. 1.8
from Section 1.1. In order to sample X4 we use the sampling procedure
described in Chapter 3 of this book:

x4 = F−1
r42;x2

(F−1
r43|2;Fr32;x2 (x3)

(F−1
r41|32;Fr21|3;Fr32;x3 (x2)(Fr31;x3 (x1))

(u4))),

which, using the conditional independencies from the graph, reduces to:

x4 = F−1
r42;x2

(F−1
r43|2;Fr32;x2 (x3)

(u4)).

The conditional distribution Fr32;x2(x3) is not given explicitly, but it can
be calculated as follows:

F3|2(x3) =
∫ x3

0

∫ 1

0
c21(x2, x1)c31(v, x1)dx1dv,

where ci1 is the density of the chosen copula with correlation ri1, i ∈ {2, 3}.
For each sample, one needs to calculate the numerical value of the dou-

ble integral. In this particular case, when only one double integral needs to
be evaluated, it can be easily done without excessive computational burden.
If the NPBBN contains an undirected cycle of five variables, and the same
sampling procedure is applied, a triple integral will have to be calculated.
The bigger the undirected cycle is, the larger the number of multiple inte-
grals that have to be numerically evaluated.

In large structures, that contain large undirected cycles, this may con-
stitute a big disadvantage of NPBBN in comparison with vines. If the
multivariate distribution can be represented and assessed using one single
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regular vine, no extra calculations are needed in order to obtain samples
from the joint distribution, hence the computational time reduces drasti-
cally.

Nevertheless, the disadvantage mentioned above vanishes when the nor-
mal copula is used. A different sampling protocol based on the normal cop-
ula uses the properties of normal vines to realise the dependence structure
specified via (conditional) rank correlations on the NPBBN. This sampling
protocol is presented in Chapter 3. The main advantage of this method is
that everything is calculated on the joint normal vine, hence we can reorder
the variables (if necessary) and recompute all partial correlations needed.
This results in a dramatic decrease in the computational time. For exam-
ples and comparisons see [5].

It is worth mentioning that the approach to continuous NPBBNs us-
ing vines is extended to include ordinal discrete random variables. The
dependence structure in the NPBBN is defined via (conditional) rank cor-
relations, hence with respect to the underlying uniform variables. The rank
correlation of 2 discrete variables and the rank correlation of their underly-
ing uniforms are not equal. The relationship between them is established in
[6]. This relationship is based on a generalisation of the population version
of Spearman’s rank correlation coefficient for the case of ordinal discrete
random variables.

Since the sampling procedure for NPBBNs is based on the one for reg-
ular vines, we cannot talk about the advantages of the former compared to
the latter.

1.2.2. Conditionalising a NPBBN

Maybe one of the most important features of probabilistic graphical models
is that they can be used for inference. One can calculate the distributions
of unobserved nodes, given the values of the observed ones, i.e. conditional
distributions.

For regular vines, if values of some variables are observed, the results of
sampling the model - conditional on these values - can be obtained either
by sampling again the structure (the cumulative approach), or by using
the density approach, both presented in Chapter 3. The new conditional
distribution, although calculated, cannot be easily visualised and compared
with the unconditional one. Even if this is merely an implementation issue
for graphical software, still NPBBNs hold the advantage that conditional-
isation can be visualised and interpreted in terms of the directionality of
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arcs. In other words, if the reasoning is done ”bottom-up” (in terms of
the directionality) the NPBBN is used for diagnosis, whereas if it is done
”top-down”, the NPBBN serves for prediction. Following the principle a
picture is worth a thousand words, we will continue with an example. This
example is loosely based on an ongoing project undertaken by the Euro-
pean Union that uses the NPBBNs’ methodology. The name of the project
is Beneris (which stands for Benefit and Risk) and it focuses on the anal-
ysis of health benefits and risks associated with food consumptionj. The
model introduced here is a highly simplified version of the NPBBN model
used in the project [10]. The goal is to estimate the beneficial and harmful
health effects in a specified population, as a result of exposure to various
contaminants and nutrients through ingestion of fish.

Example 1.2. Fig. 1.12(a) resembles the version of the model that we are
considering for purely illustrative purposes.

(a) (b)

Fig. 1.12. (a) Simplified fish consumption NPBBN. (b) Simplified fish consumption
NPBBN with histograms.

The variables of interest for this model are the health endpoints result-
ing from exposure to fish constituents, namely cancer and cardiovascular
risk. These risks are defined in terms of remaining lifetime risks. The 3
fish constituents that are considered are: dioxins/furans, polychlorinated
biphenyls, and fish oil. The first two are persistent and bio-accumulative
toxins which cause cancer in humans. Fish oil is derived from the tis-
sues of oily fish and has high levels of omega-3 fatty acids which regulate
jhttp://www.beneris.eu/
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cholesterol and reduce inflammation throughout the human body. Personal
factors such as smoking, socioeconomic status and age may also influence
cancer and cardiovascular risk. Smoking is measured as yearly intake of
nicotine during smoking and passive smoking, while the socioeconomic sta-
tus is measured by income, and is represented by a discrete variable with
4 income classes (unemployed, blue collars, white collars, and farmers and
entrepreneurs) . The age is taken, in this simplified model, as a discrete
variable with 2 states, 15 to 34 years, and 35 to 59 (we are considering only
a segment of the whole population).

The distributions of the variables are presented in Fig. 1.12(b) together
with their means and standard deviations. They are chosen by the author
for illustrative purposes only. So are the (conditional) rank correlations
assigned to the arcs of the NPBBN.

We are interested in what if? scenarios, in diagnosis and/or prediction,
and moreover in visualisations and comparisons with the default situation.
Examine the situation in which there is a very high risk of cancer. To do
that, we conditionalise on the 0.9 value of cancer risk and study in what
way the other variables in the graph are affected by this information. In
this case the NPBBN is used for diagnosis.

(a) (b)

Fig. 1.13. Diagnostic & predictive reasoning using the NPBBN. (a) Conditionalised
NPBBN for cancer risk = 0.9. (b) Conditionalised NPBBN for dioxins furans=0.022,
smoking=0.1, socio econ status=4.

Fig. 1.12 and 1.13 are obtained with UniNet, a software application
where the approach to mixed non-parametric continuous & discrete BBNs
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has been implementedk. In Fig. 1.13 the grey distributions in the back-
ground are the unconditional marginal distributions, provided for compar-
ison. The conditional means and standard deviations are displayed under
the histograms. In Fig. 1.13(a) we examine the situation of a very high
cancer risk. We are interested in what can we infer about the factors in-
fluencing the cancer risk, when this is known to be 0.9. From the shift of
the distributions, one can notice that if a person is neither very young, nor
very wealthy, smokes much, and ingests a large amount of dioxins/furans,
and polychlorinated biphenyls, is more likely to have a high cancer risk.
Because some of this factors influence also the cardiovascular risk, the shift
in their distributions causes an increase in the cardiovascular risk as well.

The conditionalisation in a NPBBN can also be used for prediction. For
example one can be interested in the cancer risk of a person that inhales a
very small amount of nicotine, has a high socioeconomic status and ingests
very little dioxins/furans. Fig. 1.13(b) presents the flow of this information
through the graph. The expected value of the cancer risk decreases from
0.4 to 0.23. A substantial decrease can be also noticed in the cardiovascu-
lar risk. Because socioeconomic status and age are positively correlated, a
high socioeconomic status results in a reduction of the population to the
segment older than 35 years.

All the results and computations performed in this section are also pos-
sible if the model used is a regular vine rather then a NPBBN. Nevertheless
the visualisation of such results is not yet available and the interpretations,
in terms of the flow of influences, might be somewhat cumbersome when
using regular vines.

One might wonder how we actually calculated the conditional distribu-
tions presented in Fig. 1.13. There are several ways to perform condition-
alisation in NPBBNs.

Since sampling a NPBBN is based on the sampling procedure for reg-
ular vines, the cumulative or density approach for vines, mentioned in the
beginning of this section, can be used to perform inference in NPBBNs.
Whichever of the two methods is preferred, if the DAG contains undirected
cycles, multiple integrals need to be evaluated for each sample, and for any
new conditionalisation. This might be a very time consuming operation.
Nevertheless, the problem owner might not be prepared to wait days or

kThe software is available on http://dutiosc.twi.tudelft.nl/∼risk/, together with sup-
porting scientific documentation.
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not even hours for the results of new scenarios and policies. In these cases
the advantages of fast updating algorithms for discrete BBNs [3, 16] are
decisive. The reduced assessment burden and modelling flexibility of the
NPBBNs are combined with the fast updating algorithms of discrete BBNs
in the hybrid method presented in [5]. Sampling a large NPBBN structure
once, and then discretizing it so as to enable fast updating provides an
elegant solution to the above problem. This method is not applicable when
working with regular vines, since no fast algorithms for vines on discrete
variables are available.

The last and fastest way of conditionalising in a NPBBN is in the partic-
ular case in which the normal copula is used to realise the rank correlations.
Since all the calculations are performed on a joint normal vine, any condi-
tional distribution will also be normal, hence in this case conditioning can
be performed analytically. This last method is implemented in UniNet,
hence it was used to produce Fig. 1.13.

The advantages of the normal copula are also used in the next section
where the model learning problem is discussed.

1.3. Data Mining with NPBBNs

In situations when data does not exist or is very limited, expert judgement
must be used to define the graphical structure and assess the required pa-
rameters. However, if the data are available we would like to extract a
fitting model from data. In the process of learning a model from data, two
aspects can be of interest: learning the parameters of the model, given the
structure, and learning the structure itself. Both learning the parameters of
a regular vine, given the structure, and learning the vine structure together
with its parameters are discussed in Chapter 3. The ensuing discussion
concentrates on learning the DAG of a NPBBN together with its parame-
ters from an ordinal data set.

The idea behind model inference for NPBBNs coincides with the one
for regular vines, and it is based on the factorisation of the determinant
of the correlation matrix on the arcs of the NPBBN. This factorisation is
similar with the one for regular vines and the proof of this fact is available
in [7]. Once again, the directed nature of a NPBBN and the possibility of
excluding arcs that correspond to zero rank correlations made learning a
NPBBN a more intuitive task than learning a regular vine.

A NPBBN induced from data can be used to investigate distant rela-
tionships between variables, as well as making predictions, by computing
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the conditional probability distribution of one variable given the values of
some others (see the previous section).

The distinctive feature of learning a NPBBN from a data set is that the
one dimensional marginal distributions are taken directly from data, and
the model assumes only that the joint distribution has a normal copula.
That is to say that the variables’ rank dependence structure is that of a
joint normal distribution. The NPBBN methodology is based on represent-
ing (conditional) dependencies on the arcs of a DAG, hence our strategy
for inferring a NPBBN from data searches conditional dependencies in the
data and associates arcs to them. A detailed discussion is found in [7]; here
we only sketch the ideas.

The concepts of learning and validation are closely connected, as in-
deed the goal is to learn a NPBBN that is valid. Validation involves two
steps: validating that the joint normal copula adequately represents the
multivariate data, and validating that the NPBBN is an adequate model of
the saturated graph. Validation requires an overall measure of multivariate
dependence on which statistical tests can be based. A suitable measure
in this case is the determinant of the rank correlation matrix [7]. The
determinant is 1 if all variables are independent, and 0 if there is linear
dependence between the normal versions of the variables. We distinguish
3 determinants: DER is the determinant of the empirical rank correlation
matrix. DNR is the determinant of the rank correlation matrix obtained
by transforming the marginals to standard normals, and then transform-
ing the product moment correlations to rank correlations using Pearson’s
transformationl. Finally DBBN is the determinant of the rank correlation
matrix of a NPBBN using the normal copula. DNR will generally dif-
fer from DER because DNR assumes the normal copula, which may differ
from the empirical copula. A statistical test for the suitability of DNR for
representing DER is to obtain the sampling distribution of DNR and check
whether DER is within the 90% central confidence band of DNR. If DNR
is not rejected on the basis of this test, we shall attempt to build a NPBBN
which represents the DNR parsimoniously. The saturated NPBBN will in-
duce a joint distribution whose rank determinant is equal to DNR, since
the NPBBN uses the normal copula. However, many of the influences only
reflect sample jitter and we will eliminate them from the model. Moreover,
for a large number of variables, the saturated graph is dense and unintu-

lPearson’s transformation[17] is characteristic to the normal distribution. The normal
copula assumption implies that the variables are assumed to have the distribution of
transforms of a joint normal vector.
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itive.
Once the normal copula is validated we will build the NPBBN by adding

arcs between variables only if the rank correlation between those two vari-
ables is among the largest. The second validation step is similar to the first.
The general procedure can then be represented thus:

(1) Verify that DER is not outside the plausible central confidence band
for DNR. If so, the normal copula hypothesis is not rejected;

(2) Construct a skeletal NPBBN by adding arcs to capture known causal
or temporal relations;

(3) If DNR is within the 90% central confidence band of the determinant of
the skeletal NPBBN, then stop, else continue with the following steps;

(4) Find the pair of variables such that the arc between them is not in
the DAG and their rank correlation is greater than the rank correla-
tion of any other pair not in the DAG. Add an arc between them and
recompute DBBN together with its 90% central confidence band;

(5) If DNR is within the 90% central confidence band of DBBN, then stop,
else repeat step 4.

The procedure for building a NPBBN to represent a given data set is not
fully automated, as it is impossible to infer directionality of influence from
multivariate data. Insight into the causal processes generating the data
should be used, whenever possible, in constructing a NPBBN. Because of
this fact, there are different NPBBN structures that are wholly equiva-
lent, and many non-equivalent NPBBNs may provide statistically accept-
able models of a given multivariate ordinal data set.

This approach is already used in several studies that try to link PM2.5

concentrations to stationary source emissions [7, 8, 15]. Other applications
of the NPBBN methodology are briefly mentioned in the next section.

1.4. Applications of NPBBNs

In Example 1.2 we have already mentioned one of the ongoing applications
that uses NPBBNs, namely Beneris. Beneris is a project undertaken by
the European Union. The name of the project stands for Benefit and Risk
and it focuses on the analysis of health benefits and risks associated with
food consumption[10].

Another project which uses NPBBNs is CATS, which stands for Causal
Model for Air Transport Safety. It is a large scale application on risks in
the aviation industry, currently under development. The project is commis-
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sioned by the Netherlands Ministry of Transport and Water Management[1,
2].

It is worth mentioning that both Beneris and CATS models use
NPBBNs with hundreds of nodes and arcs. Models involving hundreds
of variables benefit greatly form the advantages of the directed structure of
a NPBBN. The use of regular vines in such situations would be somewhat
cumbersome if not impossible.

A third application employs NPBBNs as a tool to estimate the extent
of a fire in a building, given any combination of possible conditions and any
unexpected course of events during an emergency[9].

The latest attempt to use a NPBBN based approach is in the field of
reservoir engineering, namely in the estimation of surface characteristics
(see www.data-assimilation.com/ssda).

All of the above projects use UniNet, the software application men-
tioned in Section 1.2.2. UniNet was initially developed to support the
CATS project, and it is under constant development. The main program
features are presented in the Appendix of [4].

1.5. Conclusions

In the present book graphical models have been chosen to represent mul-
tivariate distributions with complex dependence structures. More specifi-
cally, regular vines were advocated for this purpose. This chapter proposes
NPBBNs as an alternative to regular vines and discusses the differences
and similarities between the two.

The most important difference between NPBBNs and regular vines
turned out to be the different statements of conditional (in)dependence
that they make through their undirected and directed nature, respectively.
In the DAG of a NPBBN the absence of an arc encodes (conditional) in-
dependence statements. Regular vines on the other hand can be viewed as
fully connected graphs that represent (conditional) dependence statements.
Accordingly the absence of edges in a regular vine is only possible for very
special structuresm. Nevertheless, the presence of arcs in NPBBNs does not
guarantee dependence between variables (see Remark 1.1). Consequently
if one graph fails to represent dependencies, the other one fails to represent
independencies.

The possibility of excluding arcs from a NPBBN, whenever a (condi-
mIf all conditional rank correlations in the higher order trees of a vine are zero, then the
edges of these trees can be removed[12].
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tional) independence statement is known, has the advantage of a sparser
resultant graphical structure, which is often more readable. In order to vi-
sualise (conditional) independence statements on a regular vine one has to
resort to assigning zero (conditional) rank correlations to the edges. In this
way, similar independence statements can be represented using both struc-
tures, and comparisons can be made. After such an analysis, no definite
conclusion emerged. Some combinations of statements are better repre-
sented using a regular vine, whereas others benefit from the representation
in a DAG form. Nevertheless, this is only true for small structures. When
hundreds of variables are involved, the saturated nature of regular vines
constitutes a great disadvantage in modelling and visualising. Moreover
the directed structure of NPBBNs holds the advantage of a more intuitive
representation in terms of the flow of influences between variables.

When it comes to the quantitative part of the models, both NPBBNs
and regular vines require marginal distributions and (conditional) rank
correlations. Once these are obtained, the joint distribution is stipulated
through a sampling procedure. The sampling procedure for NPBBNs uses
the one for regular vines, hence we cannot talk about the advantages of
the former compared to the latter. Moreover in DAG structures, that con-
tain large undirected cycles, sampling a NPBBN involves extra numerical
calculations that might be time consuming. These calculations are not nec-
essary if the multivariate distribution can be represented and assessed using
a regular vine. However, this disadvantage of NPBBNs vanishes when the
normal copula is used.

Possessing a joint distribution allows us to perform inference. We can
calculate the conditional distributions of unobserved variables, given the
values of the observed ones. To achieve this, similar calculations are per-
formed in both graphical models. Numerical complications that might arise
for DAGs containing undirected cycles are circumvented by using a hybrid
method that combines the flexibility of NPBBNs with the fast updating
algorithms of discrete BBNs. When regular vines are used, the new con-
ditional distributions, although calculated, cannot be easily visualised and
compared with the unconditional one. This is purely an implementation
issue for graphical software, hence it might be viewed as a recommenda-
tion for future development. Nonetheless NPBBNs hold the advantage that
conditionalisation can be interpreted in terms of the directionality of arcs.
In other words, if the reasoning is done ”bottom-up” (in terms of the di-
rectionality) then the NPBBN is used for diagnosis, whereas if it is done
”top-down”, the NPBBN serves for prediction.
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When data are available we are interested in learning a fitting model
from data. In this process we could either learn the parameters of the
model, given the structure, or learn the structure itself. The subject of
learning the parameters of a NPBBN given the structure was not yet ad-
dressed. Future research could investigate the methodology presented in
Chapter 3 and its applicability to NPBBNs.

The idea behind learning the DAG of a NPBBN together with its pa-
rameters from an ordinal data set coincides with the one for learning regular
vines. Still, the directed nature of a NPBBN and the possibility of including
only arcs that correspond to the highest rank correlations make learning a
NPBBN a more intuitive task than learning a regular vine.
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