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Chapter 1

Introduction

Many distributions that are found in practice are thin-tailed distributions. Heights and weights
of animals for example are usually thin-tailed distributions, but there are also a lot of examples
where heavy-tailed distributions can be found. The first example of heavy-tailed distributions
was found in Mandelbrot [1963] where it was shown that the change in cotton prices was heavy-
tailed. Since then many other examples of heavy-tailed distributions are found, among these
are data file traffic on the internet (Crovella and Bestavros [1997]), returns on financial markets
(Rachev [2003], Embrechts et al. [1997]) and magnitudes of earthquakes and floods (Latchman
et al. [2008], Malamud and Turcotte [2006]). But what are heavy-tailed distributions and what
is the difference with thin-tailed distributions, and how can one detect whether a distribution is
heavy-tailed or not?

1.1 Heavy-tailed distributions

There are a few different definitions of heavy-tailedness of a distribution. These definitions all
relate to the decay of the survivor function of a random variable. Two widely used classes
of heavy-tailed distributions are the regularly varying distributions and subexponential distri-
butions. We do not discuss the exact mathematical definition of these classes here, but these
definitions can be found in Chapter 4. For now the following notions suffice, a distribution
function is called regularly varying if the survivor function of this distribution looks like the
survivor function of the Pareto(α) distribution for large values. The survivor function of the
Pareto(α) distribution is given by

1− F (x) = x−α

The parameter α is often called the tail index. A generalization of the class of regularly varying
distributions is the class of subexponential distributions. A distribution function is called subex-
ponential if the survivor function of the maximum of n of these random variables looks like the
survivor function of the sum of n of these random variables. The regularly varying distribution
functions are a strict subset of the subexponential distribution functions.

An important property of regularly varying distribution functions is that the m-th moment
does not exist whenever m ≥ α. For a regularly varying distribution function the mean and
variance can be infinite. This has a few important implications. First consider the sum of inde-
pendent and identically distributed random variables that have a tail index α < 2. This means
that the variance of these random variables is infinite, and hence the central limit theorem does
not hold for these random variables. Instead the generalized central limit theorem (Uchaikin
and Zolotarev [1999]) holds. This theorem shows that if the tail index of a random variable is
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1.1. HEAVY-TAILED DISTRIBUTIONS CHAPTER 1. INTRODUCTION

less than two, then the sum of these random variables have a stable distribution as a limiting
distribution. These stable distributions are also regularly varying with the same tail index as
the original random variable. When we consider a random variable that has a regularly varying
distribution, with a tail index less than one, then the mean of this random variable is infinite.
This limits the use of historical data to make an inference about the future. Consider for instance
the moving average of such a random variable. If we consider a dataset with n observations,
X1,X2,X3, ... then the k-th moving average is defined as the average of the first k observations.
The moving average of a random variable, with a regularly varying distribution with tail index
less than one, increases as we add more observations. From this one might conclude that there is
a time trend in this plot, whilst actually one looks at a finite estimator of infinity that becomes
more and more accurate. In Figures 1.1 (a)–(b) we see the moving average of respectively a
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Figure 1.1: Moving average of two datasets

Pareto(1) distribution and a Standard Exponential distribution. The samples we generated had
a size of 1000. The mean of the Pareto(1) distribution is infinite whilst the mean of the Standard
Exponential distributions is equal to one. As we can see the moving average of the Pareto(1)
distribution shows an upward trend, whilst the moving average of the Standard Exponential
distribution converges to the real mean of the Standard Exponential distribution.

1.1.1 Properties of heavy-tailed distributions

In this section we discuss different properties of heavy-tailed distributions and how these prop-
erties differ from the properties of thin-tailed distributions. One of the characteristics of heavy-
tailed distributions is the fact that there are usually a few very large values compared to the
other values of the dataset. In the insurance business this is called the Pareto law or the 20-80
rule-of-thumb. This rule states that 20% of the claims account for 80% of the total claim amount
in an insurance portfolio. This can be elucidated by looking at the mean excess function. The
mean excess function of a random variable X is defined in the following way.

e(u) = E [X − u|X > u]

2



CHAPTER 1. INTRODUCTION 1.2. EXTREME VALUE THEORY

The mean excess function gives the expected excess of a random variable over a certain threshold
given that this random variable is larger than this threshold. It can be shown that for random
variables with a subexponential distribution the mean excess function tends to infinity as u tends
to infinity. This means that if we know that an observation from a subexponential distributions
is above a very high threshold then we expect that this observation is much larger than this
threshold. Another important fact of the mean excess function is that for random variables with
a regularly varying distribution, with tail index α > 1, the mean excess function is ultimately
linear with slope 1

α−1 .

Another way to measure the distance between two observations is by looking at the ratio be-
tween two observations. It turns out that for regularly varying distribution the ratio between
the larger values in a dataset have a non-degenerate limiting distribution, and for distributions
like the normal and exponential distribution this ratio tends to zero as we increase the number
of observations. Furthermore we find that if we order a dataset from a Pareto distribution, then
the ratio between two consecutive observations also has a Pareto distribution. In Table 1.1 we

Number of observations Standard Normal Distribution Pareto(1) Distribution

10 0.2343 1
2

50 0.0102 1
2

100 0.0020 1
2

Table 1.1: Probability that the next record value is twice as large as the previous record value
for different size datasets

see the probability that the largest value in the dataset is twice as large as the second largest
value for the standard normal distribution and the Pareto(1) distribution. The probability stays
constant for the Pareto distribution, but it tends to zero for the standard normal distribution
as the number of observations increases.

1.2 Extreme Value Theory

Another field where heavy-tailed distributions play an important role is in extreme value the-
ory. Here one tries to make an inference about the limiting behaviour of the extreme values
in a dataset. There are two main approaches in this field (Coles [2001]). In the block max-
ima method, one studies the asymptotic behaviour of the maximum of a dataset. It turns out
that the only non-degenerate limiting distribution of the maximum of a distribution is the gen-
eralized extreme value distribution. The limiting distribution of the maximum of a regularly
varying distribution is also regularly varying with the same tail index. One major drawback
of this method is that only one observation in a block is used to make an inference about the
limiting distribution of the maximum. In hydrology for example the typical size of a block is a
year, so one only use one observation each year.

That is why this method is mostly superseded by the peaks-over-threshold method. Here one
considers the behaviour of the distribution over a certain high threshold. It turns out that if
the maxima have the generalized extreme value distribution as a limiting distribution then the
exceedance over a high threshold is distributed according to the Generalized Pareto distribution.
The exceedances of a regularly varying distribution are also regularly varying with the same tail
index. But this method also has a drawback, since one of the assumptions made in the theory
is the fact that the observations need to be independent. In many natural processes however

3



1.3. SELF-SIMILARITY CHAPTER 1. INTRODUCTION

there is a time dependence, for instance when one considers the height of the water in a river.
There is a build up to a high water level and then the water level stays high for a while before
it returns to the normal level. This means that if we use the peaks-over-threshold method that
we see exceedances that are clustered and hence the observations are not independent. This
problem is usually countered by using methods to identify these clusters and taking the largest
value in this cluster as one observation.

1.3 Self-similarity

The sums of regularly varying distributions with infinite variance converge to a stable distribu-
tion with the same tail index. This can be observed in the mean excess plot of a dataset from
a regularly varying distribution. In the mean excess plot the empirical mean excess function of
a dataset is plotted. Define the operation aggregating by k as dividing a dataset into groups of
size k and summing each of these k values. If we consider a dataset of size n and compare the
mean excess plot of this dataset with the mean excess plot of a dataset we obtained through
aggregating the original dataset by k, then we find that both mean excess plots are very similar.
Whilst for datasets from thin-tailed distributions both mean excess plots look very different.
In order to compare the shapes of the mean excess plots we have standardized the data such
that the largest value in the dataset we consider is equal to one. This does not change the
shape of the mean excess plot, since we can easily see that e(cu) = ce(u). In Figure 1.2 (a)–
(d) we see the standardized mean excess plot of a sample from an exponential distribution, a
Pareto(1) distribution, a Pareto(2) distribution and a Weibull distribution with shape parame-
ter 0.5, the sample size is equal to 1000 for all samples. Together with the standardized mean
excess plots of a dataset acquired through aggregating by 10 and 50. The Weibull distribution
is a subexponential distribution whenever the shape parameter τ < 1. Aggregating by k for
the exponential distribution leads to a collapse of the slope of the standardized mean excess
plot. For the Pareto(1) distribution aggregating the sample does not have a big effect on the
mean excess plot, and for the Pareto(2) distribution we see that by taking large groups to sum
the slope collapses. The same can also be observed for the dataset from a Weibull distribution.
This means that whenever we encounter a regularly varying distribution we can see whether its
tail index is less than two by comparing the mean excess plot of the original dataset with the
mean excess plot of a aggregated dataset and checking whether the slope of the mean excess
plot changed a lot. We can observe the same behaviour when we look at the mean excess plot
of a dataset. Figures 1.3 (a)–(b) show the standardized mean excess plot for two datasets. The
standardized mean excess plot in Figure 1.3a is based upon the Income- and Exposure-adjusted
flood claims from the National Flood Insurance program in the United States from the years
1980 to 2006. From now on we refer to this dataset by NFIP. The second dataset we consider is
taken from the National Crop Insurance Data. This dataset, maintained by the US Department
of Agriculture, contains all crop insurance payments by county over the years 1979-2008. After
closer inspection of the database only the years 1980-2008 for 2898 counties across the USA
contain useful data entries. Our dataset contains all pooled values per county with claim sizes
larger than $ 1.000.000,-. The standardized mean excess plot of the NFIP database in Figure
1.3a seems to stay the same as we aggregate the dataset. This indicates that this dataset has
infinite variance. The standardized mean excess plot of the National Crop Insurance data in
Figure 1.3b changes a lot when taking random aggregations, which indicates a heavy-tailed dis-
tribution with finite variance.

The self-similarity of heavy-tailed distributions was used in Crovella and Taqqu [1999] to con-
struct an estimator for the tail index. In this paper he plotted the empirical survivor function
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CHAPTER 1. INTRODUCTION 1.4. ESTIMATING THE TAIL INDEX
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(b) Pareto α = 1
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(c) Pareto α = 2
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Figure 1.2: Standardized mean excess plots

on log-log axes of different levels of aggregating and searched for a proper region to fit a straight
line through. This estimator did not perform too well when compared to the Hill estimator
and could not discriminate between subexponential distributions and regularly varying distri-
butions. The Hill estimator is a widely used estimator of the tail index and we define it in the
next section.

1.4 Estimating the tail index

One of the most widely used classes of heavy-tailed distributions is the class of regularly varying
distributions. In order to make an inference using these distributions one needs to be able to
estimate the tail index of a dataset. In this section we review different methods to estimate the
tail index from a dataset.

One of the simplest methods is by plotting the empirical survivor function on log-log axes
and fitting a straight line above a certain threshold. The slope of this line is then used to
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Figure 1.3: Standardized mean excess plots of two datasets

estimate the tail index. A drawback of this method is that it is not clear how to choose the
threshold. Another widely used estimator of the tail index is the Hill estimator. This estimator
was proposed in Hill [1975] and is given by

Hk,n =
1

k

k−1∑

i=0

(log(Xn−i,n)− log(Xn−k,n)) ,

where Xi,n are such that X1,n ≤ ... ≤ Xn,n. The tail index is estimated by 1
Hk,n

. The idea

behind this method is that if a random variable has a Pareto distribution then the log of this
random variable has an exponential distribution with parameter equal to the tail index. The
Hill estimator is then an estimator of the parameter of this exponential distribution. The Hill
estimator has also a few drawbacks. First of all the Hill estimator depends on the value of k,
and it is not clear which value of k needs to be chosen for the best estimate. A useful heuristic
here is that k is usually less than 0.1 · n. There exist methods that choose k by minimizing the
asymptotic mean squared error of the Hill estimator. Another drawback of the Hill estimator is
that it works very well for Pareto distributed data, but for other regularly varying distribution
functions the Hill estimator becomes less effective. To illustrate this we have drawn two different
samples, one from the Pareto(1) distribution and one from a Burr distribution with parameters
such that the tail index of this Burr distribution is equal to one. In Figure 1.4 (a)–(b) we see the
Hill estimator for the two datasets together with the 95%-confidence bounds of the estimate. As
we can see from Figure 1.4a, the Hill estimator gives a good estimate of the tail index, but from
Figure 1.4b it is not clear that the tail index is equal to one. Finally note that in Figure 1.4 the
Hill estimate is plotted against the different values in the dataset and the largest value of the
dataset is plotted on the left of the x-axis. In Beirlant et al. [2005] various improvements of the
Hill estimator are given, but these improvements require extra assumptions on the distribution
of the dataset.
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Figure 1.4: Hill estimator for samples of a Pareto and Burr distribution with tail index 1.

Distribution Obesity index

Uniform 0.5

Exponential 0.75

Pareto(1) π2 − 9

Table 1.2: Obesity index for a number of distributions

1.5 The Obesity Index

We have discussed two different classes of heavy-tailed distributions, the regularly varying dis-
tributions and subexponential distributions. We saw that the tail index of a regularly varying
distributions could be used to characterize the heavy-tailedness of these distributions. The
drawback of using the tail index as a characterization of the heavy-tailedness of a distribution
is the fact that it is difficult to estimate the tail index from a dataset. This is due to the
fact that the tail index is a parameter that can only be observed at infinity and not directly
from a dataset. For the subexponential distributions there is not an index that measures the
heavy-tailedness of a subexponential distribution. In this thesis we will search for in index that
measures the heavy-tailedness of a distribution using an index that does not refer to the limiting
behavior of a distribution. In this thesis we propose to use the following estimator as a measure
of heavy-tailedness

Ob(X) = P (X1 +X4 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) , Xi ∼ X, i = 1, 2, 3, 4.

In table 1.2 the value of the Obesity index is given for a number of different distributions. In
Figure 1.5 we see the Obesity index for the Pareto distribution, with tail index α, and for the
Weibull distribution with shape parameter τ . From Figures 1.5a and 1.5b we find that the
Obesity index follows the notion that if a Pareto distribution has a small tail index then the
distribution is heavy-tailed. The same holds for the Weibull distribution, if τ < 1 then the
Weibull is a subexponential distribution and is considered heavy-tailed. The Obesity index in-
creases as τ decreases. The question arises if we consider two random variables X1 and X2,
which have the same regularly varying distribution function but with different tail indexes, α1

7
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Figure 1.5: Obesity index for different distributions.

and α2 respectively and for which α1 < α2 is the Obesity index of X1 larger than the Obesity
index of X2. Numerical approximation of two Burr distributed random variables indicate that
this is not the case. Consider X1, a Burr distributed random variable with parameters c = 1 and
k = 2, and a Burr distributed random variable with parameters c = 3.9 and k = 0.5. The tail
index of X1 is equal to 2 and the tail index of X2 is equal to 1.95. But numerical approximation
indicate that the Obesity index of X1 is approximately equal to 0.8237 and the Obesity index
of X2 is approximately equal to 0.7463.

Another issue of the Obesity index is that for any symmetrical random variable the Obesity
index is equal to 1

2 . This means the Obesity index of the normal distribution and the Cauchy
distribution both are equal to 1

2 , but the Cauchy distribution is a regularly varying distribution
with tail index 1 and the normal distribution is considered a thin-tailed distribution. This limits
the use of the Obesity index to positive random variables, which is the case in many applications
like insurance.

1.6 Outline of the thesis

In Chapter 2 and 3 we discuss different properties of order statistics from a distribution and some
results from the theory of records. These results shall be used in Chapter 5 to derive different
properties of the index we propose. And in Chapter 4 we discuss some different definitions of
heavy-tailed distributions and the relationship between these definitions.

8



Chapter 2

Order Statistics

In this chapter we discuss some properties of order statistic. We use these properties later on to
derive properties of the Obesity index. Most of these properties can be found in David [1981] or
Nezvorov [2001]. We only consider order statistics from an i.i.d. sequence of continuous random
variables. Now suppose we have a sequence of n continuous random variables X1, ...,Xn which
are independent and identically distributed. If we order this sequence in ascending order we
obtain the order statistics

X1,n ≤ ... ≤ Xn,n.

2.1 Distribution of order statistics

In this section we derive the marginal and joint distribution of an order statistic. The distribution
function of the r-th order statistic Xr,n, from a sample of a random variable X with distribution
function F , is given by

Fr,n(x) = P (Xr,n ≤ x)

= P (at least r of the Xi are less than or equal to x)

=

n∑

m=r

P ( exactly m variables among X1, ...,Xn ≤ x)

=

n∑

m=r

(
n

m

)
F (x)m (1− F (x))n−m

Using the following relationship

n∑

m=k

(
n

m

)
ym(1− y)n−m =

∫ y

0

n!

(k − 1)!(n − k)!
tk−1(1− t)n−kdt, 0 ≤ y ≤ 1,

we get the following result
Fr,n(x) = IF (x) (r, n − r + 1) , (2.1)

where Ix(p, q) is the regularized incomplete beta function which is given by

Ix (p, q) =
1

B (p, q)

∫ x

0
tp−1(1− t)q−1dt,

and B(p, q) is the beta function which is given by

B(p, q) =

∫ 1

0
tp−1(1− t)q−1dt.

9



2.1. DISTRIBUTION OF ORDER STATISTICS CHAPTER 2. ORDER STATISTICS

Now assume that the random variable Xi has a probability density function f(x) = d
dxF (x).

Denote the density function of Xr,n with fr,n. Using (2.1) we get the following result.

fr,n(x) =
1

B(r, n − r + 1)

d

dx

∫ F (x)

0
tr−1(1− t)n−rdt,

=
1

B(r, n − r + 1)
F (x)r−1 (1− F (x))n−r f(x) (2.2)

The joint density ofXk(1),n, ...,Xk(r),n, here {k(1), ..., k(r)} is a subset of the numbers 1, 2, 3, ..., n,
and k(0) = 0, k(r + 1) = n+ 1 and finally 1 ≤ r ≤ n, is given by

fk(1),...,k(n);n(x1, ..., xr) =
n!

∏r+1
s=1(k(s)− k(s− 1)− 1)!

,

r+1∏

s=1

(F (xs)− F (xs−1))
k(s)−k(s−1)−1

r∏

s=1

f(xs), (2.3)

where −∞ = x0 < x1 < ... < xr < xr+1 = ∞. We prove this for r = 2 and assume for
simplicity that f is continuous at the points x1 and x2 under consideration. Consider the
following probability

P (δ,∆) = P
(
x1 ≤ Xk(1),n < x1 + δ < x2 ≤ Xk(2),n < x2 +∆

)
.

We show that as δ → 0 and ∆ → 0 the following limit holds.

f(x1, x2) = lim
P (δ,∆)

δ∆

Now define the following events

A = {x1 ≤ Xk(1),n < x1 + δ < x2 ≤ Xk(2),n < x2 +∆ and the intervals

[x1, x1 + δ) and [x2, x2 +∆) each contain exactly one order statistic},
B = {x1 ≤ Xk(1),n < x1 + δ < x2 ≤ Xk(2),n < x2 +∆ and

[x1, x1 + δ) ∪ [x2, x2 +∆) contains at least three order statistics}.

We have that P (δ,∆) = P (A) + P (B). Also define the following events

C = {at least two out of n variables X1, ...,Xn fall into [x1, x1 + δ)}
D = {at least two out of n variables X1, ...,Xn fall into [x2, x2 +∆)}.

Now we have that P (B) ≤ P (C) + P (D). We find that

P (C) =

n∑

k=2

(
n

k

)
(F (x1 + δ) − F (x1))

k (1− F (x1 + δ) + F (x1))
n−k

≤ (F (x1 + δ) − F (x1))
2

n∑

k=2

(
n

k

)

≤ 2n (F (x1 + δ)− F (x1))
2

= O(δ2), δ → 0,

10
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and similarly we obtain that

P (D) =
n∑

k=2

(
n

k

)
(F (x2 +∆)− F (x2))

k (1− F (x2 +∆) + F (x2))
n−k

≤ (F (x2 +∆))
n∑

k=2

(
n

k

)

≤ 2n (F (x2 +∆)− F (x2))
2

= O
(
∆2
)
, ∆ → 0.

And so we obtain

lim
P (δ,∆)− P (A)

δ∆
= 0 as δ → 0, ∆ → 0.

So now it remains to see that

P (A) =
n!

(k(1) − 1)!(k(2) − k(1) − 1)!(n − k(2))!
F (x1)

k(1)−1 (F (x1 + δ) − F (x1))

(F (x2)− F (x1 + δ))k(2)−k(1)−1 (F (x2 +∆)− F (x2)) (1− F (x2))
n−k(2) .

From this equality we see that the limit exists and that

f(x1, x2) =
n!

(k(1) − 1)!(k(2) − k(1) − 1)!(n − k(2))!
F (x1)

k(1)−1 (F (x2)− F (x1))
k(2)−k(1)−1

(1− F (x2))
n−k(2)f(x1)f(x2),

which is the same as the joint distribution we wrote down earlier. Note that we only have found
the right limit of f(x1 + 0, x2 + 0), but since f is continuous we can obtain the other limits
f(x1 + 0, x2 − 0), f(x1 − 0, x2 + 0) and f(x1 − 0, x2 − 0) in a similar way.

Also note that when r = n in (2.3) we get the joint density of all order statistics and that
this joint density is given by

f1,...,n;n(x1, ..., xn) =

{
n!
∏n

s=1 f(xs) if, −∞ < x1 < ... < xn < ∞
0, otherwise.

(2.4)

2.2 Conditional distribution

When we pass from the original random variables X1, ...,Xn to the order statistics, we lose
independence among these variables. Now suppose we have a sequence of n order statistics
X1,n, ...,Xn,n, and let 1 < k < n. In this section we derive the distribution of an order statistic
Xk+1,n given the previous order statistic Xk = xk, ...,X1 = x1. Let the density of this conditional
random variable be denoted by f(u|x1, .., xk). We show that this density coincides with the

11
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distribution of Xk+1,n given that Xk,n = xk, denoted by f(u|xk)

f(u|x1, ..., xk) =
f1,...,k+1;n(x1, ..., xk, u)

f1,...,k;n(x1, ..., xk)

=

n!
(n−k−1)! [1− F (u)]n−k−1∏k

s=1 f(xs)f(u)

n!
(n−k)! [1− F (xk)]

n−k∏k
s=1 f(xs)

=

n!
(k−1)!(n−k−1)! [1− F (u)]n−k−1 F (xk)

k−1f(xk)f(u)

n!
(k−1)!(n−k)! [1− F (xk)]

n−k F (xk)k−1f(xk)

=
fk,k+1;n(xk, u)

fk,n(xk)
= f(u|xk).

From this we see that the order statistics form a Markov chain. The following theorem is an
important theorem when one tries to find the distribution of functions of order statistics.

Theorem 2.2.1. Let X1,n ≤ ... ≤ Xn,n be order statistics corresponding to a continuous distri-
bution function F . Then for any 1 < k < n the random vectors

X(1) = (X1,n, ...,Xk−1,n) and X(2) = (Xk+1,n, ...,Xn,n)

are conditionally independent given any fixed value of the order statistic Xk,n. Furthermore,
the conditional distribution of the vector X(1) given that Xk,n = u coincides with the uncondi-
tional distribution of order statistics Y1,k−1, ..., Yk−1,k−1 corresponding to i.i.d. random variables
Y1, ..., Yk−1 with distribution function

F (u)(x) =
F (x)

F (u)
x < u.

Similarly, the conditional distribution of the vector X(2) given Xk,n = u coincides with the uncon-
ditional distribution of order statistics W1,n−k, ...,Wn−k;n−k related to the distribution function

F(u)(x) =
F (x)− F (u)

1− F (u)
x > u.

Proof. To simplify the proof we assume that the underlying random variables X1, ...,Xn have
density f . The conditional density is given by

f(x1, ..., xk−1, xk+1, ..., xn|Xk,n = u) =
f1,...,n;n(x1, ..., xk−1, xk+1,n, ..., xn)

fk;n(u)

=

[
(k − 1)!

k−1∏

s=1

f(xs)

F (u)

][
(n − k)!

n∏

r=k+1

f(xr)

1− F (u)

]
.

As we can see the first part of the conditional density is the joint density of the order statistics
from a sample size k− 1 where the random variables have a density f(x)

F (u) for x < u. The second
part in the density is the joint density of the order statistics from a sample of size n− k where
the random variables have a distribution F (x)−F (u)

1−F (u) for x > u.

12
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2.3 Representations for order statistics

As we pointed out before one of the drawbacks of using the order statistics is losing the inde-
pendence property among the random variables. But if we consider order statistics from the
exponential distribution or the uniform distribution there are a few useful properties of the order
statistics that can be used when looking at linear combinations of the order statistics.

Theorem 2.3.1. Let X1,n ≤ ... ≤ Xn,n, n = 1, 2, ..., be order statistics related to independent
and identically distributed random variables with distribution function F , and let

U1,n ≤ ... ≤ Un,n,

be order statistics related to a sample from the uniform distribution on [0, 1]. Then for any
n = 1, 2, ... the vectors (F (X1,n), ..., F (Xn,n)) and (U1,n, ..., Un,n) are equally distributed.

Theorem 2.3.2. Consider exponential order statistics

Z1,n ≤ ... ≤ Zn,n,

related to a sequence of independent and identically distributed random variables Z1, Z2, ... with
distribution function

H(x) = max
(
0, 1 − e−x

)
.

Then for any n = 1, 2, ... we have

(Z1,n, ..., Zn,n)
d
=

(
v1
n
,
v1
n

+
v2

n− 1
, ...,

v1
n

+ ...+ vn

)
, (2.5)

where v1, v2, ... is a sequence of independent and identically distributed random variables with
distribution function H(x).

Proof. In order to prove Theorem 2.3.2 it suffices to show that the densities of both vectors in
(2.5) are equal. Putting

f(x) =

{
e−x, if x > 0,

0 otherwise,
(2.6)

and by substituting equation (2.6) into the joint density of the n order statistics given by

f1,2,...,n;n (x1, ..., xn) =

{
n!
∏n

i=1 f(xi), x1 < ... < xn,

0, otherwise,

we find that the joint density of the vector on the LHS of equation (2.5) is given by

f1,2,...,n;n(x1, ..., xn) =

{
n! exp{−

∑n
s=1 xs}, if 0 < x1 < ... < xn < ∞,

0, otherwise.
(2.7)

The joint density of n i.i.d. standard exponential random variables v1, ..., vn is given by

g(y1, ..., yn) =

{
exp{−∑n

s=1 ys}, if y1 > 0, ..., yn > 0,

0, otherwise.
(2.8)

The linear change of variables

(v1, ..., vn) = (
y1
n
,
y1
n

+
y2

n− 1
,
y1
n

+
y2

n− 1
+

y3
n− 2

, ...,
y1
n

+ ...+ yn)

13
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with Jacobian 1
n! which corresponds to the passage to random variables

V1 =
v1
n
, V2 =

v1
n

+
v2

n− 1
, ..., Vn =

v1
n

+ ...+ vn,

has the property that
v1 + v2 + ...+ vn = y1 + ...+ yn

and maps the domain {ys > 0s = 1, ..., n} into the domain {0 < v1 < v2 < ... < vn < ∞}. Equa-
tion (2.8) implies that V1, ..., Vn have the joint density

f(v1, ..., vn) =

{
n! exp {−∑n

s=1 vs} , if 0 < v1 < ... < vn,

0, otherwise.
(2.9)

Comparing equation (2.7) with equation (2.9) we find that both vectors in (2.5) have the same
density and this proves the theorem.

Using Theorem 2.3.2 it is possible to find the distribution of any linear combination of order
statistics from an exponential distribution, since we can express this linear combination as a
sum of independent exponential distributed random variables.

Theorem 2.3.3. Let U1,n ≤ ... ≤ Un,n, n = 1, 2, ... be order statistics from an uniform sample.
Then for any n = 1, 2, ...

(U1,n, ..., Un,n)
d
=

(
S1

Sn+1
, ...,

Sn

Sn+1

)
,

where
Sm = v1 + ...+ vm, m = 1, 2, ...,

and where v1, ..., vm are independent standard exponential random variables.

2.4 Functions of order statistics

In this section we discuss different techniques that can be used to obtain the distribution of
different functions of order statistics.

2.4.1 Partial sums

Using Theorem 2.2.1 we can obtain the distribution of sums of consecutive order statistics,∑s−1
i=r+1 Xi,n. The distribution of the order statistics Xr+1,n, ...,Xs−1,n given that Xr,n = y

and Xs,n = z coincides with the unconditional distribution of order statistics V1,n, ..., Vs−r−1

corresponding to an i.i.d. sequence V1, ..., Vs−r−1 where the distribution function of Vi is given
by

Vy,z(x) =
F (x)− F (y)

F (z)− F (y)
, y < x < z. (2.10)

From Theorem 2.2.1 we can write the distribution function of the partial sum in the following
way

P (Xr+1 + ...+Xs−1 < x) =

∫

−∞<y<z<∞
P (Xr+1 + ...+Xs−1 < x|Xr,n = y,Xs,n = z) fr,s;n(y, z)dydz

=

∫

−∞<y<z<∞
V (s−r−1)∗
y,z (x)fr,s;n(y, z)dydz,

where V
(s−r−1)∗
y,z (x) denotes the s− r − 1-th convolution of the distribution given by (2.10).

14
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2.4.2 Ratio between order statistics

Now we look at the distribution of the ratio between two order statistics.

Theorem 2.4.1. For r < s and 0 ≤ x ≤ 1

P

(
Xr,n

Xs,n
≤ x

)
=

1

B(s, n− s+ 1)

∫ 1

0
IQx(t)(r, s − r)ts−1(1− t)n−sdt, (2.11)

where

Qx(t) =
F
(
xF−1(t)

)

t
.

Proof.

P

(
Xr,n

Xs,n
≤ x

)
=

∫ ∞

−∞
P

(
y

Xs,n
≤ x|Xr,n = y

)
fXr,n(y)dy,

=

∫ ∞

−∞
P
(
Xs,n >

y

x
|Xr,n = y

)
fXr,n(y)dy,

=

∫ ∞

−∞

∫ ∞

y
x

fXs,n|Xr,n=y(z)dzfXr,n(y)dy,

=

∫ ∞

−∞

∫ zx

−∞
fXr,n(y)fXs,n|Xr,n=y(z)dydz,

= C

∫ ∞

−∞

∫ zx

−∞
F (y)r−1 [1− F (y)]n−r f(y)

[F (z)− F (y)]s−r−1 [1− F (z)]n−s f(z)

[1− F (y)]n−r dydz,

where C = 1
B(r,n−r+1)B(s−r,n−s+1) . We apply the transformation t = F (z) from which we get

the following

P

(
Xr,n

Xs,n
≤ x

)
= C

∫ 1

0

∫ xF−1(t)

−∞
F (y)r−1f(y) [t− F (y)]s−r−1 dy (1− t)n−s dt.

Next we use the transformation F (y)
t = u.

P

(
Xr,n

Xs,n
≤ x

)
= C

∫ 1

0

∫ F (xF−1(t))
t

0
tr−1ur−1 (t− tu)s−r−1 tdu (1− t)n−s dt,

= C

∫ 1

0

∫ F (xF−1(t))
t

0
ur−1 (1− u)s−r−1 duts−1 (1− t)n−s dt

We can rewrite the constant C in the following way

C =
1

B(r, n− r + 1)B(s − r, n − s+ 1)

=
n!

(r − 1)!(n − r)!

(n− r)!

(s− r − 1)!(n − s)!

=
1

(s− r − 1)!(r − 1)!

n!

(n− s)!

=
(s− 1)!

(s− r − 1)!(r − 1)!

n!

(n− s)!(s− 1)!

=
1

B(r, s − r)B(s, n− s+ 1)
.
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If we substitute this in our integral, and define Qx(t) =
F (xF−1(t))

t , we get the following

P

(
Xr,n

Xs,n
≤ x

)
=

1

B(s, n− s+ 1)

∫ 1

0

∫ Qx(t)
0 ur−1 (1− u)s−r−1 du

B(s, s− r)
ts−1 (1− t)n−s dt

=
1

B(s, n− s+ 1)

∫ 1

0
IQx(t)(r, s − r)ts−1 (1− t)n−s dt.

In this chapter we looked at the distribution of order statistics and derived different properties
of order statistics. We use these properties in chapter 5 to derive properties of the obesity index
and the distribution of the ratio between order statistics. In the next chapter we review the
theory of records which we use in Chapter 5.
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Chapter 3

Records

In this chapter we discuss the theory of records, in Chapter 5 we use these results to define an
estimator and derive some properties of this estimator. This theory is closely related to the field
of order statistics. We give a short summary of the main results. For a more detailed discussion
see Arnold et al. [1998] or Nezvorov [2001], where most of the results we present here can be
found.

3.1 Standard record value processes

Let X1,X2, ... be an infinite sequence of independent and identically distributed random vari-
ables. Denote the cumulative distribution function of these random variables by F and assume
it is continuous. An observation is called an upper record value if its value exceeds all previous
observations. So Xj is an upper record if Xj > Xi for all i < j. We are also interested in the
times at which the record values occur. For convenience assume that we observe Xj at time j.
The record time sequence {Tn, n ≥ 0} is defined as

T0 = 1 with probability 1

and for n ≥ 1,
Tn = min

{
j : Xj > XTn−1

}
.

The record value sequence {Rn} is then defined by

Rn = XTn , n = 0, 1, 2, ...

The number of records observed at time n is called the record counting process {Nn, n ≥ 1}
where

Nn = {number of records among X1, ...,Xn}.
We have that N1 = 1 since X1 is always a record.

3.2 Distribution of record values

Let the record increment process be defined by

Jn = Rn −Rn−1, n > 1,

with J0 = R0. It can easily be shown that if we consider the record increment process from a
sequence of i.i.d. standard exponential random variables then all the Jn are independent and

17
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Jn has a standard exponential distribution. Using the record increment process we are able
to derive the distribution of the n-th record from a sequence of i.i.d. standard exponential
distributed random variables.

P (Rn < x) = P (Rn −Rn−1 +Rn−1 −Rn−2 +Rn−2 − ...+R1 −R0 +R0 < x)

= P (Jn + Jn−1 + ...+ J0 < x)

Since
∑n

i=0 J + i is the sum of n+1 standard exponential distributed random variables we find
that the record values from a sequence of standard exponential distributed random variables
has the gamma distribution with parameters n+ 1 and 1.

Rn ∼ Gamma(n+ 1, 1), n = 0, 1, 2, ...

If a random variable X has a Gamma(n, λ) distribution then it has the following density function

fX(x) =

{
λ(λx)n−1e−λx

Γ(n) , x ≥ 0

0, otherwise

We can use the result above to find the distribution of the n-th record corresponding to a
sequence {Xi} of i.i.d. random variables with continuous distribution function F . If X has
distribution function F then

H(X) ≡ − log(1− F (X))

has a standard exponential distribution function. We also have that X
d
= F−1(1− e−X∗

) where
X∗ is a standard exponential random variable. Since X is a monotone function of X∗ we can
express the n-th record of the sequence {Xj} as a simple function of the n-th record of the
sequence {X∗}. This can be done in the following way

Rn
d
= F−1(1− e−R∗

n), n = 0, 1, 2, ...

Using the following expression of the distribution of the n-th record from a standard exponential
sequence

P (R∗
n > r∗) = e−r∗

n∑

k=0

(r∗)k

k!
, r∗ > 0,

the survival function of the record from an arbitrary sequence of i.i.d. random variables with
distribution function F is given by

P (Rn > r) = [1− F (r)]
n∑

k=0

− [log(1− F (r))]k

k!
.

3.3 Record times and related statistics

The definition of the record time sequence {Tn, n ≥ 0} was given by

T0 = 1, with probability 1,

and for n ≥ 1

Tn = min{j : Xj > XTn−1}.

18
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In order to find the distribution of the first n non-trivial record times T1, T2, ..., Tn we first look
at the sequence of record time indicator random variables. These are defined in the following
way

I1 = 1 with probability 1,

and for n > 1
In = 1{Xn>max{X1,...,Xn−1}}

So In = 1 if and only if Xn is a record value. We assume that the distribution function F , of
the random variables we consider, is continuous. It is easily verified that the random variables
In have a Bernoulli distribution with parameter 1

n and are independent of each other. The joint
distribution for the firstm record times can be obtained using the record indicators. For integers
1 < n1 < ... < nm we have that

P (T1 = n1, ..., Tm = nm) = P (I2 = 0, ..., In1−1 = 0, In1 = 1, In1+1 = 0, ..., Inm = 0)

= [(n1 − 1)(n2 − 1)...(nm − 1)nm]−1 .

In order to find the marginal distribution of Tk we first review some properties of the record
counting process {Nn, n ≥ 1} defined by

Nn = {number of records among X1, ...Xn}

=

n∑

j=1

Ij.

Since the record indicators are independent we can immediately write down the mean and the
variance for Nn.

E [Nn] =
n∑

j=1

1

j
,

Var(Nn) =

n∑

j=1

1

j

(
1− 1

j

)
.

We can obtain the exact distribution of Nn using the probability generating function. We have
the following result.

E
[
sNn

]
=

n∏

j=1

E
[
sIj
]

=

n∏

j=1

(
1 +

s− 1

j

)

From this we find that

P (Nn = k) =
Sk
n

n!

where Sk
n is a Stirling number of the first kind. The Stirling numbers of the first kind are given

by the coefficients in the following expansion .

(x)n =

n∑

k=0

Sk
nx

k,
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where (x)n = x(x− 1)(x− 2)...(x − n+ 1). The record counting process Nn follows the central
limit theorem.

Nn − log(n)√
log(n)

d→ N(0, 1)

We can use the information about the record counting process to obtain the distribution of Tk.
Note that the events {Tk = n} and {Nn = k + 1, Nn−1 = k} are equivalent. From this we get
that

P (Tk = n) = P (Nn = k + 1, Nn−1 = k)

= P (In = 1, Nn−1 = k)

=
1

n

Sk
n−1

(n− 1)!

=
Sk
n−1

n!
.

We also have asymptotic log-normality for Tk.

log(Tk)− k√
k

d→ N(0, 1)

3.4 k-records

There are two different sequences that are called k-record values in the literature. We discuss
both definitions here. First define the sequence of initial ranks ρn given by

ρn = #{j : j ≤ n and Xn ≤ Xj}, n ≥ 1.

We call Xn a Type 1 k-record value if ρn = k, when n ≥ k. Denote the sequence that is generated

through this process by
{
R

(k)
n

}
. The Type 2 k-record sequence is defined in the following way,

let T0(k) = k, R0(k) = Xn−k+1,k and

Tn(k) = min
{
j : j > T(n−1)(k),Xj > XT(n−1)(k)−k+1,T(n−1)(k)

}
,

and define Rn(k) = XTn(k)−k+1
as the n-th k-record. Here a k record is established whenever

ρn ≥ k. Although the corresponding Xn does not need to be a Type 2 k-record, unless k = 1,
but the observation eventually becomes a Type 2 k-record value. The sequence

{
Rn(k), n ≥ 0

}

from a distribution F is identical in distribution to a record sequence {Rn, n ≥ 0} from the
distribution function F1,k(x) = 1− (1−F (x))k . So all the distributional properties of the record
values and record counting statistics do extend to the corresponding k-record sequences.

The difference between the Type 1 and Type 2 k-records can also be explained in the fol-
lowing way. We only observe a new Type 1 k-record whenever an observation is exactly the
k-th largest seen yet. Whilst we also observe a new Type 2 k-record whenever we observe a new
value that is larger than the previous k-th largest yet.
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Chapter 4

Heavy-tailed distribtutions

In this chapter we discuss a number of classes of heavy-tailed distributions and look into the
relationships between these classes. We also discuss different properties of these classes and how
these are related to the properties of heavy-tailed distributions that we discussed in Chapter 1.

4.0.1 Regularly varying distribution functions

An important class of heavy-tailed distributions is the class of regularly varying distribution
functions. A distribution function is called regular varying at infinity with index −α if the
following limit holds.

lim
x→∞

F (tx)

F (x)
= t−α,

where F (x) = 1− F (x). The parameter α is sometimes referred to as the tail index.

Regularly varying functions

In this section we discuss some results from the theory of regularly varying function. For a more
detailed discussion about the theory of regularly variation we refer to Bingham et al. [1987].

Definition 4.0.1. A positive measurable function h on (0,∞) is regularly varying at infinity
with index α ∈ R if the following limit holds

lim
x→∞

h(tx)

h(x)
= tα, t > 0. (4.1)

We write h(x) ∈ Rα. If α = 0 we call the function slowly varying at infinity.

Instead of writing that h(x) is a regularly varying function at infinity with index α we simply
call the function h(x) regularly varying. If h(x) ∈ Rα then we can rewrite the function h(x) in
the following way

h(x) = xαL(x),

where L(x) is a slowly varying function. The following theorem, which is called Karamata’s
theorem, is an important tool when looking at the behaviour of regularly varying functions.

Theorem 4.0.1. Let L ∈ R0 be locally bounded in [x0,∞) for some x0 ≥ 0. Then

• for α > −1, ∫ x

x0

tαL(t)dt ∼ (α+ 1)−1xα+1L(x), x → ∞,
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• for α < −1 ∫ ∞

x
tαL(t)dt ∼ −(α+ 1)−1xα+1L(x), x → ∞.

Regular variation for distribution functions

The class of regularly varying distributions is an important class of heavy-tailed distributions.
This class is closed under convolutions as can be found in Applebaum [2005], where the result
was attributed to G. Samorodnitsky.

Theorem 4.0.2. If X and Y are independent real-valued random variables with FX ∈ R−α and
F Y ∈ R−β, where α, β > 0, then FX+Y ∈ Rρ, where ρ = min{α, β}.

The same theorem, but with the assumption that α = β can be found in Feller [1971].

Proposition 4.0.3. If F1 and F2 are two distribution functions such that as x → ∞

1− Fi(x) = x−αLi(x) (4.2)

with Li slowly varying, then the convolution G = F1 ∗ F2 has a regularly varying tail such that

1−G(x) ∼ x−α (L1(x) + L2(x)) . (4.3)

From Proposition 4.0.3 we obtain the following result using induction on n.

Corollary 4.0.1. If F (x) = x−αL(x) for α ≥ 0 and L ∈ R0, then for all n ≥ 1,

Fn∗(x) ∼ nF (x), x → ∞.

Now consider an i.i.d. sample X1, ...,Xn with common distribution function F , and denote
the partial sum by Sn = X1 + ...+Xn and the maximum by Mn = max {X1, ...,Xn}. Then for
all n ≥ 2 we find that

P (Sn > x) = Fn∗(x)

P (Mn > x) = Fn(x)

= F (x)
n−1∑

k=0

F k(x)

= nF (x), x → ∞.

From this we find that we can rewrite corollary 4.0.1 in the following way. If F ∈ R−α with
α ≥ 0, then we have that

P (Sn > x) ∼ P (Mn > x) as x → ∞.

This means that the tail of the distribution of the sum is determined by the tail of the maximum.
In table 4.1 a number of distribution functions from the class of regularly varying distributions.
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Distribution F (x) or f(x) Index of regular variation

Pareto F (x) = x−α −α

Burr F (x) =
(

1
xτ+1

)α
−τα

Log-Gamma f(x) = αβ

Γ(β) (ln(x))
β−1 x−α−1 −α

Table 4.1: Regularly varying distribution functions

4.0.2 Subexponential distribution functions

A generalization of the class of regularly varying distributions is the class of subexponential
distributions. In this section we discuss several properties of distributions with a subexponential
tails.

Definition 4.0.2. A distribution function F with support (0,∞) is a subexponential distribution,
if for all n ≥ 2,

lim
x→∞

Fn∗(x)

F (x)
= n. (4.4)

If F is a subexponential distribution we denote this by F ∈ S.
From equation (4.4) we find the same intuitive characterisation of subexponentiality as we

did for the regularly varying distributions. So for subexponential distributions we also find that
the following characteristic holds

P (Sn > x) ∼ P (Mn > x) as x → ∞.

In order to check if a distribution function is a subexponential distribution we do not need to
check equation (4.4) for all n ≥ 2. Instead we can use Lemma 4.0.4 which gives a sufficient
condition for subexponentiality.

Lemma 4.0.4. If the following equation holds

lim sup
x→∞

F 2∗(x)

F (x)
= 2,

then F ∈ S.
Lemma 4.0.5 gives a few important properties of subexponential distributions, these prop-

erties come from Embrechts et al. [1997].

Lemma 4.0.5. 1. If F ∈ S, then uniformly in compact y-sets of (0,∞),

lim
x→∞

F (x− y)

F (x)
= 1. (4.5)

2. If (4.5) holds then, for all ε > 0,

eεxF (x) → ∞, x → ∞

3. If F ∈ S then, given ε > 0, there exists a finite constant K such that for all n ≥ 2,

Fn∗(x)

F (x)
≤ K(1 + ε)n, x ≥ 0. (4.6)

In Table 4.2 a number of distributions are given that are subexponential. Unlike the class
of regularly varying distributions the class of subexponential distributions is not closed under
convolutions, a counterexample was provided in Leslie [1989].

23



4.1. MEAN EXCESS FUNCTION CHAPTER 4. HEAVY-TAILED DISTRIBTUTIONS

Distribution Tail F or density f Parameters

Lognormal f(x) = 1√
2πσx

e
−(ln(x)−µ)2

2σ2 µ ∈ R, σ > 0

Benktander-type-I F (x) =
(
1 + 2β

α ln(x)
)
e−β(ln(x))2−(α+1) ln(x) α, κ > 0

Benktander-type-II F (x) = e
α
β x−(1−β)e−αxβ

β α > 0, 0 < β < 1

Weibull F (x) = e−cxτ
c > 0, 0 < τ < 1

Table 4.2: Distributions with subexponential tails.

4.0.3 Related classes of heavy-tailed distributions

In this section we first give two more classes of heavy-tailed distributions, after this we discuss
the relationships between these classes. The first class we give is the class of dominatedly varying
distribution functions denoted by D

D =

{
F d.f. on (0,∞) : lim sup

x→∞

F
(
x
2

)

F (x)
< ∞

}

The final class of distribution functions we define is the class of long-tailed distributions, denoted
by L, which is defined in the following way

L =

{
F d.f. on (0,∞) : lim

x→∞
F (x− y)

F (x)
= 1 for all y > 0

}

The two classes of distribution functions we already discussed are the regularly varying distri-
bution functions (R) and the subexponential distribution functions (S).

R =
{
F d.f. on (0,∞) : F ∈ R−α for some α ≥ 0

}
,

S =

{
F d.f. on (0,∞) : lim

x→∞
Fn∗(x)

F (x)
= n

}
.

For these classes we have the following relationships

1. R ⊂ S ⊂ L and R ⊂ D,

2. L ∩D ⊂ S,

3. D * S and S * D.

4.1 Mean excess function

A tool that is widely used to detect whether a dataset shows heavy-tailed behaviour is the
mean excess function. This is due to the fact that if a distribution function is subexponential
the mean excess function tends to infinity. Whilst for the exponential distribution the mean
excess function is a constant and for the normal distribution the mean excess function tends to
zero. The mean excess function of a random variable X with finite expectation is defined in the
following way.

Definition 4.1.1. Let X be a random variable with right endpoint xF and E [X] < ∞, then

e(u) = E [X − u|X > u] , 0 ≤ u ≤ xF ,

is called the mean excess function of X.
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Distribution Mean excess function

Exponential 1
λ

Weibull x1−τ

βτ

Log-Normal σ2x
ln(x)−µ(1 + o(1))

Pareto κ+u
α−1 , α > 1

Burr u
ατ−1(1 + o(1)), ατ > 1

Loggamma u
α−1(1 + o(1))

Table 4.3: Mean excess functions of distributions

In insurance e(u) is called the mean excess loss function. Here e(u) can be interpreted as the
expected claim size over some threshold u. In reliability theory or in the medical field e(u) is
often called the mean residual life function. In data analysis one uses the empirical counterpart
of the mean excess function which is given by

ên(u) =

∑n
i=1Xi,n1Xi,n>u∑n

i=1 1Xi,n>u
− u.

The empirical version is usually plotted against the values u = xi,n for k = 1, ..., n − 1.

4.1.1 Basic properties of the mean excess function

For positive random variables the mean excess function can be calculated using the following
formula.

Proposition 4.1.1. The mean excess function of a positive model F can be calculated using the
following formula

e(u) =

∫ xF

u F (x)dx

F (u)
, 0 < u < xF ,

where xF is the endpoint of the distribution function F .

The mean excess function determines the distribution uniquely.

Proposition 4.1.2. Suppose we have a continuous distribution function F , then the following
relationship holds,

F (x) =
e(0)

e(x)
exp

{
−
∫ a

0

1

e(u)
du

}
.

In table 4.3 we see the first order approximations of the mean excess function for different
distribution functions. As we pointed out at the beginning of this section the mean excess plot
is a widely used tool to detect whether a distribution function is subexponential or not. This is
due to the following two propositions.

Proposition 4.1.3. If a positive random variable X has a regularly varying distribution function
with a tail index α > 1, then

e(u) ∼ u

α− 1
, as x → ∞.

Proof. Since we consider a positive random variable we can use proposition 4.1.1 to find that

e(u) =

∫∞
u F (x)dx

F (u)
(4.7)
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Since F ∈ R−α there exists a slowly varying function l(x) such that

F (x) = x−αl(x) (4.8)

Using equations (4.7) and (4.8) we find that

∫∞
u F (x)dx

F (u)
=

∫∞
u x−αl(x)dx

u−αl(x)
. (4.9)

From theorem 4.0.1 we find that

∫∞
u x−αl(x)dx

u−αl(x)
∼ u

α− 1
, u → ∞

Proposition 4.1.4. Assume that F is the distribution function of a positive continuous random
variable X which is unbounded to the right and has a finite mean. If for all y ∈ R

lim
x→∞

F (x− y)

F (x)
= eγy , (4.10)

for some γ ∈ [0,∞], then

lim
u→∞

e(u) =
1

γ
.

Proof. Since we are considering a positive continuous random variable we know that we can
calculate the mean excess function using proposition 4.1.1

e(u) =

∫∞
u F (x)dx

F (u)

Taking the limit to infinity with respect to u gives us the following expression

lim
u→∞

∫∞
u F (x)dx

F (u)
= lim

u→∞

∫ ∞

0

F (u+ x)

F (u)
dx

=

∫ ∞

0
lim
u→∞

lim
u→∞

F (u+ x)

F (u)
dx (4.11)

=

∫ ∞

0
e−γxdx

=
1

γ
.

We know that for all u > 0 the following inequality holds F (x) > F (x+ u) and

E [X] =

∫ ∞

0
F (x)dx < ∞.

This means that we can apply the dominated convergence theorem and can interchange the limit
and the integral in equation (4.11.
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Note that if F ∈ S, then equation (4.10) is satisfied with γ = 0. If a distribution function is a
subexponential distribution function the mean excess function e(u) tends to infinity as u → ∞.
If a distribution function is regularly varying with a tail index α > 1 then we know that the mean
excess function of this distribution is eventually linear with slope 1

α−1 . One of the drawbacks of
the mean excess function is that if we consider a regularly varying distribution function with a
tail index α < 1, then the mean excess function of this distribution function does not exist. But
when we plot the empirical mean excess function the slope of this plot is still finite. Another
drawback of the mean excess function is that the empirical mean excess plot is very sensitive to
the largest few values in the dataset.
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Chapter 5

Heuristics of heavy tailedness

In this chapter we look for ways to use the self-similarity of the mean excess plot for heavy-tailed
distributions to define a new measure of heavy-tailedness. First we look at the mean excess plot
and see how the mean excess plot changes when we aggregate a dataset by k. From this we
define two new measures, the first index is the ratio between the largest observation and the
second-largest observation in a dataset and the second is the Obesity index which we define as
the probability that the sum of the largest and the smallest observation in a dataset of four is
larger than the sum of the other two observations.

5.1 Self-similarity

One of the heuristics we discussed in the Chapter 1 was the self-similarity of heavy-tailed dis-
tributions and how this could be seen in the mean excess plot of a distribution. Now consider a
dataset of size n and create a new dataset by dividing the original dataset in to groups of size k
and sum each of the k members of each group, then we obtain a new dataset. We call this op-
eration aggregation by k. If we compare the mean excess plots of regularly varying distribution
function with tail index α < 2, then the mean excess plot of the original dataset and the dataset
acquired through aggregating by k look very similar. For distributions with a finite variance the
mean excess plot of the original sample and the aggregated sample look very different.
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(a) Exponential Distribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

M
ea

n 
E

xc
es

s

Original Dataset
Aggregation by 10
Aggregation by 50

(b) Pareto α = 1
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(c) Pareto α = 2
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(d) Weibull distribution τ = 0.5

Figure 5.1: Standardized mean excess plots

This can be explained through the generalized central limit theorem, which states that when
we consider random variables with a regularly varying distribution with a tail index α < 2 then
the normalized sums of these random variables converge to a stable distribution with the same
tail index. When we consider random variables with a finite variance then the normalized sums
converge to a standard normal distribution for which the mean excess function tends to zero. In
Figures 5.1 ??–?? we see the standardized mean excess plot of a number of simulated datasets
of size 1000. As we can see the mean excess plots of the Exponential and Weibull distributed
datasets quickly collapse under random aggregations, but the mean excess plot of the Pareto(2)
distribution collapses slowly and the mean excess plot of the Pareto(1) does not change much
when aggregated by 10 whilst aggregation by 50 leads to a shift in the mean excess plot but
the slope stays approximately the same. Figures 5.2 (a)–(b) were also in the introduction these
are the standardized mean excess plots of the NFIP database and the National Crop Insurance
data. The standardized mean excess plot in Figure 5.2c is based upon a dataset that consists
of the height of the bill that was written to a patient at the discharge date. Note that each
of the mean excess plots in Figure 5.2 show some evidence of heavy-tailedness since each mean
excess plot is increasing. But the NFIP dataset shows very heavy-tailed behaviour whilst the
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(a) NFIP
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(b) National Crop Insurance

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

M
ea

n 
E

xc
es

s

Original Dataset
Aggregation by 10
Aggregation by 50

(c) Hospital

Figure 5.2: Standardized mean excess plots of a few datasets

other datasets do not show very heavy-tailed behaviour since the mean excess plot collapses as
we apply aggregations to the dataset. This indicates that the NFIP data has infinite variance
and that the two other datasets hvae finite variance.

We have seen that when we look at the mean excess plot of a regularly varying distribution
function with a tail index α < 2 the standardized mean excess plot does not change much
when we apply aggregation by k on the dataset. Consider only the largest value in the original
dataset, denote this by Mn and the largest value in the dataset obtained through aggregation
by k, denote this by Mn(k). Then we know by definition that Mn < Mn(k), but for regularly
varying distributions with a small tail index the maximum of the aggregated dataset does not
differ much from the original maximum. This indicates that Mn is a member of the group which
produced Mn(k). In general it is quite difficult to calculate the probability that the maximum
of a dataset is contained in the group that produces Mn(k). But we do know that, for positive
random variables, whenever the largest observation in a dataset is at least k times as large as
the second largest observation, then the group that contains Mn produces Mn(k). So let us focus
on the distribution of the ratio of the largest and the second largest value in a dataset.
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5.1.1 Distribution of the ratio between order statistics

In Theorem 2.4.1 we derived the distribution of the ratio between two order statistics in the
general case, this distribution was given by

P

(
Xr,n

Xs,n
≤ x

)
=

1

B(s, n− s+ 1)

∫ 1

0
IQx(t)(r, s − r)ts−1(1− t)n−sdt, (r < s), (5.1)

where B(x, y) is the beta function, Ix(r, s) the incomplete beta function and Qx(t) =
F (tF−1(x)

t .
In our case we are interested in the case that r = n − 1 and s = n so the distribution function
in equation (5.1) simplifies to

P

(
Xn−1,n

Xn,n
≤ x

)
= n(n− 1)

∫ 1

0
IQx(t)(n− 1, 1)tn−2dt.

But as it turns out there is a much more simple form for the distribution function of the ratio
of successive order statistics when we consider order statistics from a Pareto distribution.

Proposition 5.1.1. When X1,n, ...,Xn,n are order statistics from a Pareto distribution then

the ratio between two consecutive order statistics,
Xi+1,n

Xi,n
, also has a Pareto distribution with

parameter (n− i)α.

Proof. The distribution function of
Xi+1,n

Xi,n
can be found by conditionalizing on Xi,n and using

Theorem 2.2.1 to find the distribution of Xi+1,n|Xi,n = x.

P

(
Xi+1,n

Xi,n
> z

)
=

∫ ∞

1
P (Xi+1,n > zx|Xi+1,n = x) fXi,n

(x)dx

=

∫ ∞

1

(
1− F (zx)

1− F (x)

)n−i 1

B(i, n− i+ 1)
F (x)i−1 (1− F (x))n−i f(x)dx

=
1

B(i, n− i+ 1)

∫ ∞

1
(1− F (zx))n−iF (x)i−1f(x)dx

=
1

B(i, n− i+ 1)
z−(n−i)α

∫ ∞

1
x−(n−i)α(1− x−α)i−1αx−α−1dx

= z−(n−i)α 1

B(i, n − i+ 1)

∫ 1

0
un−i(1− u)i−1du (u = x−α)

= z−(n−i)α 1

B(i, n − i+ 1)
B(i, n− i+ 1)

= z−(n−i)α.

One could wonder if the converse of proposition 5.1.1 also holds, i.e. if for some k and n the
following ratio

Xk+1,n

Xk,n
has a Pareto distribution, is the parent distribution of the order statistics

a Pareto distribution. This is not the case which can be shown through the counter-example of
Arnold [1983]. Let Z1 and Z2 be two independent Γ(12 , 1) random variables, and let X = eZ1−Z2 .
If one considers a sample of size 2, then we find that X1 and X2 are not Pareto distributed, but
that the ratio

X2,2

X1,2
does have a Pareto distribution.

Instead one needs to make additional assumptions like the ratio of two successive order statis-
tics have a Pareto distribution for all n, as was shown in Rossberg [1972]. Here we will give a
different proof of this result. The following lemma1 is needed to proof the result.

1Result was found on 1 February 2010 at http://at.yorku.ca/cgi-bin/bbqa?forum=ask an analyst 2006;
task=show msg;msg=1091.0001
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Lemma 5.1.2. If f(x) is a continuous function on [0, 1], and the following equation holds for
all n ≥ 0 ∫ 1

0
f(x)xndx = 0, (5.2)

then f(x) is equal to zero.

Proof. Since equation (5.2) holds, we know that for any polynomial p(x) the following equation
holds ∫ 1

0
f(x)p(x)dx.

From this we find that for any polynomial p(x)
∫ 1

0
f(x)2dx =

∫ 1

0
[f(x)− p(x)] f(x) + f(x)p(x)dx

=

∫ 1

0
[f(x)− p(x)] f(x)dx.

Since f(x) is a continuous function on [0, 1] we find by the Weierstrass theorem that for any
ε > 0 there exists a polynomial P (x) such that

sup
x∈[0,1]

|f(x)− P (x)| < ε.

By the Min-Max theorem we also know that there exists a constant M such that |f(x)| ≤ M
for all 0 ≤ x ≤ 1. From this we find that for any ε > 0 there exists a polynomial P (x) such that

|
∫ 1

0
f(x)2dx| = |

∫ 1

0
[f(x)− P (x)] f(x)dx|,

≤
∫ 1

0
|f(x)− P (x)||f(x)|dx,

≤ εM. (5.3)

But since equation (5.3) holds for all ε > 0 we find that
∫ 1

0
f(x)2dx = 0. (5.4)

By assumption f(x) is a continuous function and hence f(x)2 ≥ 0 is also a continuous function.
The only thing we need to proof now is that f(x)2 = 0 for all x ∈ [0, 1]. Now assume that f(x)2

is positive for some ξ ∈ [0, 1], then we know that there exists an M > 0 such that f(c)2 = M and
f(x) ≤ M for all x ∈ [0, 1]. Now let A = 1

2M , now there exists an interval [p, q] which contains
c such that f(x) > A for all x ∈ [p, q]. And since f(x)2 ≥ 0 for all x we find the following

∫ 1

0
f(x)2 =

∫ p

0
f(x)2dx+

∫ q

p
f(x)2dx+

∫ 1

q
f(x)2dx

≥
∫ q

p
f(x)2dx

≥
∫ q

p
Adx

= A(p − q) > 0.

Which is a contradiction and hence we find that f(x)2 = 0 for all x ∈ [0, 1] and hence f(x) = 0
for all x ∈ [0, 1].
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Theorem 5.1.3. If for a positive continuous random variable, for which the distribution function
has an inverse, the following equation holds for all n ≥ 2

P

(
Xn,n

Xn−1,n
> x

)
= x−α, (5.5)

for some α > 0, then X has the following distribution function

F (x) = 1−
(κ
x

)α
,

for x > κ.

Proof. From equation (5.5) we find that

n(n− 1)

∫ ∞

0
(1− F (xz))F (z)n−2f(z)dz = x−α.

From this we find that

n(n− 1)

∫ ∞

0
xα (1− F (zx))F (z)n−2f(z)dz = 1. (5.6)

Since we know that x > 1 the following inequality holds 1− F (xz) < 1− F (z), and since
∫ ∞

0
(1− F (z))F (z)n−2f(z)dz = 1,

since (1 − F (z))F (z)n−2f(z) is the density of the n − 1-th order statistic from a sample of n.
Now differentiate equation (5.6) with respect to x, we are able to interchange integration and
differentiation since we can apply the dominated convergence theorem. From this we find that

∫ ∞

0

(
αx−α−1(1− F (xz)− x−αzf(zx)

)
F (z)n−2f(z)dz = 0.

Using the substitution u = F (x) and dividing by xα−1 we find that

∫ 1

0

(
α(1 − F (xF−1(u)) − xF−1(u)f(xF−1(u))

)
un−2du. (5.7)

Since equation (5.3) holds for all n ≥ 2 we can apply lemma 5.1.2 and find that

α(1− F (xF−1(u))− xF−1(u)f(xF−1(u)) = 0.

We can rewrite this in the following way, by putting t = xF−1(u)

αF (t) + t
d

dx
F (t) = 0.

Solving this differential equation gives us

F (t) = Ct−α

for some constant C. We know that F (t) ≤ 1, this means that this solution is only valid for
x > C−1/α. We can also write the survivor function in the following way

F (t) =
(κ
t

)α
, x > κ
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By conditionalizing on the second-largest order statistic we find that the distribution of the
ratio between two upper order statistics can be obtained by evaluating the following integral.

P

(
Xn,n

Xn−1,n
> z

)
=

∫ ∞

−∞
(1− F (zx))F (x)n−2f(x)dx (5.8)

We have found an analytical solution for the integral in equation (5.8 ) of a Weibull distribution.
The distribution function of the ratio between the two upper order statistics from a Weibull
distribution is given by

P

(
Xn,n

Xn−1,n
> x

)
= n(n− 1)

∫ ∞

0
(1− F (zx))F (x)n−2f(x)dx

= n(n− 1)

∫ ∞

0

(
e−(λxz)τ

)(
1− e−(λz)τ

)
τλτ zτ−1e−(λz)τ dz

= n(n− 1)

∫ 1

0
ux

τ

(1− u)n−2du

= n(n− 1)B(xτ + 1, n− 1).

In Figures 5.3 (a)–(b) we see the approximation of the probability in equation (5.8), with z = 2,
for the Burr distribution with parameters c = 1 and k = 1 and the Cauchy distribution. This
Burr distribution and the Cauchy distribution both have a tail index one. The probability that
the largest order statistic is twice as large as the second largest order statistic seems to converge
to a half. Which is exactly the probability that the largest order statistic from a Pareto(1)
distribution is twice as large as the second largest order statistic. This indicates that if we
consider the distribution of the ratio of the two largest order statistics then the distribution of
this ratio converges to the distribution of the ratio between the two largest observation from a
Pareto distribution with the same tail index. The following theorems show that the ratio between
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Figure 5.3: P (Xn,n > 2Xn−1,n) for a few distributions

the upper order statistics have a non-degenerate limit if and only if the parent distribution of the
order statistics is regularly varying. Before we present these theorems we repeat some results
from the theory of regular variation. If the following limit exists for z > 1

lim
x→∞

F (zx)

F (x)
= β(z) ∈ [0, 1] , z > 1
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then the three following cases are possible.

1. if β(z) = 0 for all z > 1, then F is called a rapidly varying function,

2. if β(z) = z−α for all z > 1, where α > 0, then F is called a regularly varying distribution
function,

3. if β(z) = 1 for all z > 1, then F is called a slowly varying function.

This is exactly the result that can be found in Balakrishnan and Stepanov [2007].

Theorem 5.1.4. Let F be a distribution function such that F (x) < 1 for all x. If 1 − F is
rapidly varying distribution function and 0 < l ≤ k, then

Xn−k+l

Xn−k

P→ 1, (n → ∞)

If 1− F is regularly varying with index −α and 0 < l ≤ k, then

P

(
Xn−k+l

Xn−k
> z

)
→

l−1∑

i=0

(
k

i

)
(1− z−α)iz−α(k−i), (z > 1)

If 1− F is a slowly varying distribution function and 0 < l ≤ k, then

Xn−k+l

Xn−k

P→ ∞, (n → ∞).

The converse of Theorem 5.1.4 is also true, as was shown in Smid and Stam [1975].

Theorem 5.1.5. If for some j ≥ 1, z ∈ (0, 1) and α ≥ 0,

lim
n→∞

P

(
Xn−j

Xn−j+1
< z

)
= zjα (5.9)

then

lim
y→∞

1− F
(y
z

)

1− F (y)
= zα

From this theorem we get the following corollary

Corollary 5.1.1. If (5.9) holds for all z ∈ (0, 1), then 1 − F (x) is regularly varying of order
−α as x → ∞.

Theorem 5.1.5 was generalized and extended in Bingham and Teugels [1979].

Theorem 5.1.6. Let s ∈ {0, 1, 2, ...}, r ∈ {1, 2, ...} be fixed integers. Let F be concentrated on

the positive half-line. If
Xn−r−s,n

Xn−s,n
converges in distribution to a non-degenerate limit, then for

some ρ > 0, 1− F (x) varies regularly of order −ρ as x → ∞.
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5.2 The ratio as index

In the previous section we have shown that if the ratio between the two largest order statistics
converges in distribution to some non-degenerate limit, then the parent distribution is regu-
larly varying. This raises the question can we use this as a measure for heavy-tailedness of a
distribution function. In this section we look at the following probability

P

(
Xn,n

Xn−1,n
> k

)
, (5.10)

and how we can estimate this from a dataset. The most obvious way would be by choosing some
n and bootstrapping datasets of size n from the dataset and checking whether Xn,n > kXn−1,n,
but this has the drawback that it is not obvious which value n should be. Now consider the
following estimator. Suppose we have a dataset of size n, first consider the first two observations.
Now observe the next value in the dataset, if the new observation is larger than the previous
second largest value take ntrials = ntrials + 1 and if the largest value is larger than k times
the second largest value in the dataset take nsucces = nsucces + 1. Repeat this until we have

observed all values. The estimator of P
(

Xn,n

Xn−1,n
> k

)
is defined by nsucces

ntrials . We have not proven

that this is a consistent estimator, but simulations show that for the Pareto distribution the
estimator behaves as expected. Note that the ntrials is the number of observed type 2 2-record
values, the probability that a new observation is a type 2 2-record value is equal to

P (Xn > Xn−2,n−1) =

∫ ∞

−∞
P (X > y) fn−2,n(y)dy =

2

n

This means that if we have a dataset of size n then the expected number of observed Type 2
2-records equals.

n∑

j=3

2

j
= 2

(
n∑

i=1

1

j
− 1.5

)
≈ 2(log(n) + γ − 1.5).

Where γ is the Euler-Mascheroni constant and approximately equal to 0.5772. In figure 5.4 we
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Figure 5.4: Expected number of observed 2-records

see the expected number of 2-records plotted against the size of the dataset. In a dataset of
size 10000 we only expect to see 16 2-records. Since we do not observe a lot of 2-records we do

not expect the estimator to be very accurate. We have used the estimate for P
(

Xn,n

Xn−1,n
> k

)
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Figure 5.5: Histograms of the estimate of P
(

Xn,n

Xn−1,n
> x

)

on a number of simulated datasets. All these simulated dataset were of size 1000. In Figures
5.5 (a)–(d) we see a histogram of the estimator we proposed, we calculated the estimator 1000
times by reordering the dataset and calculating the estimator for the reordered dataset. For the
Pareto(0.5) distribution in Figure 5.5a we see that on average the estimator seems to be accurate
but that the estimator ranges from as low as 0.4 to as high as 1. For a Weibull distribution with
shape parameter τ = 0.5 we see that the estimate of the probability is much larger than zero.
This is due to the slow convergence of the probability to zero and the fact that we expect to
see more 2-records early in a dataset. In Table 5.1 we have summarized the results of applying
the estimators to a Pareto(0.5) distribution, a Pareto(3) distribution, a Weibull distribution
with shape parameter τ = 0.5 and a Standard Exponential distribution. We also applied these
estimators to the NFIP data, the National Crop Insurance Data and the Hospital data. From

Figure 5.6a we see that the estimate of the probability P
(

Xn,n

Xn−1,n
> 2
)

suggest more heavy-

tailed behavior than the estimate of the probability of the National Crop Insurance Data and
the Hospital data. Which is supported by looking at the mean excess plots of these datasets.
We have bootstrapped the dataset by reordering the data in order to calculate more than one
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Distribution Expected Value Mean Estimate

Pareto α = 0.5 0.7071068 0.7234412

Pareto α = 3 0.125 0.09511546

Weibull τ = 0.5 0 0.3865759

Exponential 0 0.1104443

Table 5.1: Mean estimate of P
(

Xn,n

Xn−1,n
> 2
)

Dataset Mean Estimate

NFIP 0.5857

National Crop Insurance 0.2190

Hospital 0.0882

Table 5.2: Mean estimate of P
(

Xn,n

Xn−1,n
> 2
)

realization of the estimator. Again we see that the estimator gives a nice result on average but
that the individual values seem to be very spread out.

5.3 The Obesity Index

In the previous section we tried to use the ratio between the largest observation and the second-
largest observation as a measure of heavy-tailedness. There were a few drawbacks with this
approach, when we tried to estimate the index we saw that the estimate was not very accurate.
This was due to the fact that we tried to make an inference based upon the observations from
a Type 2 2-record sequence and in this case we do net expect to see a lot of Type 2 2-records.
In this section we try and define another index of heavy-tailedness. We tried to construct a
measure of heavy-tailedness based upon the fact that if we apply aggregation by k on a dataset,
the maximum of the aggregated dataset is usually the sum of the group that contained the
maximum value. Now consider aggregation by 2 in a dataset of size 4 containing the observation
X1,X2,X3,X4. Which are independent and identically distributed random variables. Assume
thatX1 < X2 < X3 < X4. By definition we have thatX4+X2 > X3+X1 andX4+X3 > X2+X1,
so the only interesting case arises whenever we sum X4 with X1. Now define the Obesity index
by

Ob(X) = P (X4 +X1 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) , Xi ∼ X.

We expect that for heavy-tailed distribution this probability is larger than for thin-tailed dis-
tributions. We can rewrite the inequality in the probability in equation (5.3) in the following
way.

X4 −X3 > X2 −X1,

which was one of the heuristics of heavy-tailed distributions we discussed in Chapter 1, i.e. the
fact that larger observations lie further apart than smaller observations. Note that the Obesity
index is invariant under multiplication by a positive constant and translation, i.e. Ob(aX+b) =
Ob(X) for a > 0 and b ∈ R. In the following propositions we calculate the Obesity index for a
number of distributions. First note that whenever we consider a random variable X, for which
P (X = C) = 1 where C is a constant, has an Obesity index equal to zero.

Proposition 5.3.1. The obesity index of the uniform distribution is equal to 1
2 .
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Proof. The obesity index can be rewritten in the following way

P (X4 −X3 > X2 −X1|X1 < X2 < X3 < X4) = P (X4,4 −X3,4 > X2,4 −X1,4) . (5.11)

Using theorem 2.3.3 we can calculate the probability in equation (5.11). We get the following

P (X4,4 −X3,4 > X2,4 −X1,4) = P (X > Y ) , (5.12)

where X and Y are standard exponential random variables. Since the random variables X and Y
in equation (5.12) are independent and identically distributed random variables this probability
is equal to 1

2 .

Proposition 5.3.2. The obesity index of the exponential distribution is equal to 3
4 .

Proof. Again we rewrite the obesity index in the following way

P (X4 −X3 > X2 −X1|X1 < X2 < X3 < X4) = P (X4,4 −X3,4 > X2,4 −X1,4) . (5.13)
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Using theorem 2.3.2 we see that the obesity index of the exponential distribution is equal to

P (X4,4 −X3,4 > X2,4 −X1,4) = P

(
X >

Y

3

)
, (5.14)

where X and Y are independent standard exponential random variables. We can calculate the
probability on the RHS in equation (5.14).

P

(
X >

Y

3

)
=

∫ ∞

0
P (X > y) fY

3
(y)dy

=

∫ ∞

0
e−y3e−3ydy

=
3

4
.

Proposition 5.3.3. If X is a symmetrical random variable with respect to zero, X
d
= −X, then

the obesity index is equal to 1
2 .

Proof. If X
d
= −X, then we have that FX(x) = 1 − FX(−x), and fX(x) = fX(−x). The joint

density of X3,4 and X4,4 is now given by

f3,4;4(x3, x4) =
24

2
F (x3)

2f(x3)f(x4), x3 < x4

=
24

2
(1− F (−x3))

2f(−x3)f(−x4), −x4 < −x3

= f1,2;4(−x4,−x3)

Which is equal to the joint density of −X1,4 and −X2,4, and from this we find that

X4,4 −X3,4
d
= X2,4 −X1,4.

And hence the obesity index is equal to 1
2 .

From proposition 5.3.3 we find that for a random variable with a symmetrical distribution
with respect to some constant µ the Obesity index is equal to zero. This is the case because
if X is symmetric with respect to µ, X − µ is symmetric with respect to zero. And we have
that Ob(X) = Ob(X − µ). This means that the Obesity index of both the Cauchy and the
Normal distribution have an Obesity index that is equal to 1

2 . But the Cauchy distribution
has a regularly varying distribution function with tail index 1, and the Normal distribution is
considered to be a thin-tailed distribution. This limits the use of the Obesity index to positive
random variables, which is usually the case in applications like insurance and magnitudes of
natural disasters.

Theorem 5.3.4. The obesity index of a random variable X with distribution function F and
density f can be calculated by evaluating the following integral,

24

∫ ∞

−∞

∫ ∞

x1

∫ ∞

x2

F (x2 + x3 − x1)f(x1)f(x2)f(x3)dx3dx2dx1.
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Proof. The obesity index can be rewritten in the following way

P (X1 +X4 > X2 +X3|X1 ≤ X2 ≤ X3 ≤ X4) .

Recall that the joint density of all n order statistics out of a sample of size n is given by

f1,2,...,n;n(x1, x2, ..., xn) =

{
n!
∏n

i=1 f(xi), x1 < x2 < ... < xn,

0, otherwise,

In order to calculate the obesity index we need to integrate this joint density over all numbers
such that

x1 + x4 > x2 + x3, and x1 < x2 < x3 < x4.

To calculate the obesity index we then need to evaluate the following integral.

Ob(X) = 24

∫ ∞

−∞
f(x1)

∫ ∞

x1

f(x2)

∫ ∞

x2

f(x3)

∫ ∞

x3+x2−x1

f(x4)dx4dx3dx2dx1

Now the innermost integral is the probability that the random variable X is larger than x3 +
x2 − x1 so we can simplify this expression to

Ob(X) = 24

∫ ∞

−∞

∫ ∞

x1

∫ ∞

x2

F (x2 + x3 − x1)f(x1)f(x2)f(x3)dx3dx2dx1.

Using Theorem 5.3.4 we are able to calculate the Obesity index whenever the parameter α
is an integer. We have done this using Maple, in Table 5.3 the exact and approximate value of
the Obesity index for a number of α are given. From Table 5.3 we can observe that the Obesity

α Exact value Approximate value

1 π2 − 9 0.8696

2 593− 60π2 0.8237

3 −124353
5 + 2520π2 0.8031

4 19150997
21 − 92400π2 0.7912

Table 5.3: Obesity index of Pareto(α) distribution when α is an integer

index seems to increase as the tail index decreases. Which was exactly what we expected. Now
we are going to discuss some properties for the Obesity index of a Pareto random variable. These
properties are derived using the theory of majorization. We give a short review of the theory of
majorization before we derive the properties of the Obesity index.

5.3.1 Theory of Majorization

The theory of majorization is used to give a mathematical meaning to the notion that the
components of one vector are less spread out than the components of another vector.

Definition 5.3.1. A vector y ∈ Rn majorizes a vector x ∈ Rn if

n∑

i=1

xi =

n∑

i=1

yi,

42



CHAPTER 5. HEURISTICS OF HEAVY TAILEDNESS 5.3. THE OBESITY INDEX

and
k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, ..., n

where x[i] are the ordered elements of the vector x such that

x[1] ≥ ... ≥ x[n].

We denote this by x ≺ y.

There also exist functions which preserve the ordering we defined above. These functions
are called Schur-convex functions.

Definition 5.3.2. A function φ : A → R, where A ⊂ Rn, is called Schur-convex on A if

x ≺ y on A ⇒ φ(x) ≤ φ(y)

The following proposition gives sufficient conditions for a function φ to be Schur-convex.

Proposition 5.3.5. If I ⊂ R is an interval and g : I → R is convex, then

φ(x) =

n∑

i=1

g(xi),

is Schur-convex on In.

We prove two theorems about the inequality in the obesity index.

Theorem 5.3.6. If 0 < x1 < x2 < x3 < x4, then as α → 0 the following inequality holds

lim
α→0

x
−1/α
1 + x

−1/α
4 > lim

α→0
x
−1/α
2 + x

−1/α
3

Proof. From Hardy et al. [1934] we know that

lim
p→∞

(
n∑

i=1

xpi

) 1
p

= max {x1, ..., xn} .

From this we get that

lim
α→0

x
−1/α
1 + x

−1/α
4

max
{
x−1
1 , x−1

4

} = 1.

So this means that as α tends to 0, the terms x
−1/α
1 +x

−1/α
4 tends to max

{
x
−1/α
1 , x

−1/α
4

}
, which

by definition is equal to x
−1/α
1 . The same limit holds for x

−1/α
2 + x

−1/α
4 , where the maximum of

these two by definition is equal to x
−1/α
2 . And by definition we have that x

−1/α
1 > x

−1/α
2 .

Lemma 5.3.7. If 1 < y1 < y2 < y3 and

y3 + 1 > y2 + y1

then for all q > 1

yq3 + 1 > yq2 + yq1
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Proof. Note that (y1, y2) ≺ (y2 + y1 − 1, 1) and that the function g : R → R defined by

g(x) = xq, q > 1,

is convex. Then the function

φ(x1, x2) =

2∑

i=1

g(xi),

is Schur-convex on R2 by Proposition 5.3.5. From this we find that

φ(x1, x2) = yq1 + yq2
≤ (y2 + y1 − 1)q + 1

≤ yq3 + 1.

Theorem 5.3.8. For all 0 < x1 < x2 < x3 < x4 and α > β > 0, if the following inequality
holds

x
−1/α
4 + x

−1/α
1 > x

−1/α
2 + x

−1/α
3 ,

then
x
−1/β
4 + x

−1/β
1 > x

−1/β
2 + x

−1/β
3 .

Proof. We know that the following inequality holds

x
−1/α
4 + x

−1/α
1 > x

−1/α
2 + x

−1/α
3 .

From this we get

1 +

(
x4
x1

) 1
α

>

(
x4
x2

) 1
α

+

(
x4
x3

) 1
α

.

Now apply Lemma 5.3.7 with q = α
β > 1.

When X has a Pareto(α) distribution, then Xα/β has a Pareto(β) distribution. This means
that if β < α, then Ob(X) ≤ Ob

(
Xα/β

)
. And from Theorem 5.3.6 we know that

lim
α→0

Ob(X) = 1.

In fact we know that if we have two positive random variable X and Xa, with a > 1, then
Ob(X) ≤ Ob(Xa). And lima→∞Xa = 1. Using Theorem 5.3.4 we have approximated the
obesity index of the Pareto distribution, the Weibull distribution, the Log-normal distribution,
the Generalized Pareto distribution and the Generalized Extreme Value distribution. The gen-
eralized extreme value distribution is defined by

F (x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}
,

for 1 + ξ(x − µ)/σ > 0, the location parameter µ ∈ R, the scale parameter σ > 0 and shape
parameter ξ ∈ R. Where the case ξ = 0 the generalized extreme value distribution corresponds
to the Gumbel distribution. The Generalized Pareto distribution is defined by

F (x;µ, σ, ξ) =




1−

(
1 + ξ(x−µ)

σ

)−1/ξ
for ξ 6= 0,

1− exp
{
−x−µ

σ

}
for ξ = 0,
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Figure 5.7: Obesity index for different distributions.

for x ≥ µ when ξ ≥ 0, and x ≤ µ − σ
ξ when ξ < 0, the location parameter µ ∈ R, the scale

parameter σ > 0 and the shape parameter ξ ∈ R. Whenever ξ > 0 the generalized extreme value
distribution and the Generalized Pareto distribution are regularly varying distribution functions
with tail index 1

ξ . As we can see in Figures 5.7 and 5.8 the Obesity index of all the distributions
we consider here behave nicely. This is due to the fact that if we consider a random variable X
that has anyone of these distributions and consider Xa, then Xa also has the same distribution
but with different parameters. In these figures we have plotted the Obesity index against the
parameter that changes when considering Xa and that cannot be changed through adding a
constant to Xa or by multiplying Xa with a constant. One can wonder if the Obesity index of
a regularly varying distribution increases as the tail index of this distribution decreases. The
following numerical approximation does indicate that the this is not the case in general.

If X has a Pareto distribution with parameter k, then the following random variable has a
Burr distribution with parameters c and k

Y
d
= (X − 1)

1
c .
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(a) Generalized Pareto distribution
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(b) Generalized Extreme Value distribution

Figure 5.8: Obesity index for different distributions.

This holds since when X has a Pareto(k) distribution then

P
(
(X − 1)

1
c > x

)
= P (X > xc + 1) = (xc + 1)−k .

From table 4.1 we know that the tail index of the Burr distribution is equal to ck. This means
that if we consider a Burr distributed random variable with parameters k and c = 1, then the
Obesity index of this Burr distributed random variable equals the Obesity index of a Pareto
random variable with parameter k. From this we find that the Obesity index of a random variable
X1 with a Burr distribution with parameters c = 1, k = 2 is equal to 593 − 60π2 ≈ 0.8237. If
we now consider a random variable X2 with a Burr distribution with parameters c = 3.9 and
k = 0.5 and we approximate the Obesity index numerically we find that the Obesity index of
this random variable is approximately equal to 0.7463, which is confirmed by simulations. So
although the tail index of X1 is larger than the tail index of X2, we have that Ob(X1) > Ob(X2).
In Figure 5.9 the Obesity index of the Burr distribution is plotted for different values of c and
k. these
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Figure 5.9: The Obesity index of the Burr distribution
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Dataset Obesity Index Confidence Interval

Hospital Data 0.8 (0.7928,0.8072)

NFIP 0.876 (0.8700,0.8820)

National Crop Insurance 0.808 (0.8009,0.8151)

Table 5.4: Estimate of the Obesity index

5.3.2 The Obesity Index of a few Datasets

In this section we estimate the Obesity index of a number of datasets, and check whether the
Obesity index and the estimate of the tail index are different. In Table 5.4 we see the estimate
of the Obesity index based upon 250 bootstrapped values, and the 95%-confidence bounds of
the estimate. The estimate was based upon 250 samples from the dataset. From Table 5.4 we
get that the NFIP dataset is more heavy-tailed than the National Crop Insurance data and the
Hospital data. These conclusions are supported when looking at the mean excess plots of these
datasets, this could also be concluded from the Hill estimates of this datasets. In figure 5.10 we
see the Hill estimates based upon the top 20% observations of each dataset. Note that the Hill
plots in Figures 5.10a and 5.10c are quite stable, but that the Hill plot of the National Crop
Insurance Data in Figure 5.10b is not.
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Figure 5.10: Hill estimator of a number of datasets

The final dataset we consider is the G-econ database from Nordhaus et al. [2006]. This
dataset consists of environmental and economical characteristics of cells of 1 degree latitude and
1 degree longitude of the earth. One of the entries is the average precipitation. If we look at
the mean excess plot of this dataset, it is not clear whether we are dealing with a heavy-tailed
distribution or not. In Figure 5.11 we see that the mean excess plot first decreases and after that
shows increasing behavior. If we estimate the obesity index of this dataset we get an estimate of
0.728 with 95%-confidence bounds equal to (0.6728, 0.7832). This estimate suggest that we are
dealing with thin-tailed distribution. This conclusion is supported if we look at the exponential
QQ-plot of the dataset which shows that the data follows a exponential distribution almost
perfectly.

48



CHAPTER 5. HEURISTICS OF HEAVY TAILEDNESS 5.3. THE OBESITY INDEX

0 1000 2000 3000 4000 5000 6000

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Threshold

M
ea

n 
E

xc
es

s

Figure 5.11: Mean excess plot average precipitation.
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Figure 5.12: Exponential QQ-plot for the average precipitation.
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Chapter 6

Conclusions and future research

In this thesis we have looked at two different candidates to characterize the heavy-tailedness
of a dataset based upon the behavior of the mean excess plot under aggregations by k. We
first looked at the ratio between the largest observation and the second largest observation. As
it turned out this ratio has a non-degenerate limit if and only if the distribution is regularly
varying. We tried to construct an estimator that would estimate this limiting probability, the
problem with this estimator was that it was very inaccurate, since we based it on the observed
Type 2 2-records in a dataset. And one does not observe a lot of k-records when considering a
large dataset. For example the expected number of Type 2 2-records in a dataset of size 10000
is approximately equal to 16.58. The estimator was also biased when considering thin-tailed
distributions, since the limiting probability was equal to zero but the estimate was usually much
larger than zero. This was due to the fact that most 2-records will be observed early in the
dataset, and then the probability that the largest observation is twice as large as the second
largest observation is still quite large. This is why we looked for another characterization of
heavy-tailedness of a dataset. We then defined the Obesity index of a random variable in the
following way

Ob(X) = P (X1 +X4 > X2 +X3|X1 < X2 < X3 < X4) , Xi ∼ X.

We saw that for a lot of regularly varying distribution functions if the tail index got smaller the
Obesity index got larger. Unfortunately this was not the case in general. We found a counter-
example for which the tail index of a regularly varying distribution function got smaller and the
Obesity index also got smaller.

Consider the Burr distribution which has parameters c and k, and has a tail index ck. If
the parameter c is equal to one the Obesity index of the Burr distribution will be equal to the
Obesity index from the Pareto distribution with a parameter k. Using numerical approximation
we have shown that the Obesity index of the first Burr distribution is likely to be larger than
the Obesity index of the second Burr distribution.

When we estimated the Obesity index for a number of datasets we saw that the Obesity index
and the Hill estimator both gave the same results on the heavy-tailedness of the dataset. Al-
though the Hill estimator of the National Crop Insurance did not gave a clear estimate of the
tail index of the distribution. We also saw that when the mean excess plot of a distribution does
not give a clear indication whether a dataset is heavy-tailed or not the Obesity index could be
used to get an indication of the heavy-tailedness of the distribution.

The Obesity index seems to be an useful index when characterizing the heavy-tailedness of
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a distribution. In the examples we considered we saw that the Obesity index and the Hill esti-
mator both indicated the same amount of heavy-tailedness in a distribution. A drawback of the
Obestiy index seems to be that for the Burr distribution the Obesity index does not indicate
a heavy-tailed distribution although the tail index indicates that it is. Future research should
investigate under which conditions the Obesity index increases as the tail index of a regularly
varying distribution decreases.
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