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Abstract 
 
 

Mathematical Models for Air Pollution Health Effects 
 

by 
 

Oswaldo Morales Napoles 
 
 
 
A wide range of literature on air pollution by particles of aerodynamic diameter less than 10 
micrometers and their relation to human health has been developed. Data on population exposure to 
pollution and its effects on mortality and morbidity have been put forward, and most of these 
approaches have shown a positive association between increases in concentration levels and 
increases in mortality. 
 
The Cox proportional Hazards model for survival analysis will be explored and tools for model 
performance proposed. Regression models that investigate short term health effects of air pollution will 
be introduced and exemplified with data for a city in central Mexico. Finally expert judgment will be 
introduced as an element of the set of mathematical devices available for investigating and 
characterizing the uncertainty regarding air pollution health effects estimates. 
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Chapter 1. Introduction. 
 

1.1 General Remarks on Air Pollution. 
 
The modern world configuration is characterized by the intensive use and production of 
materials that are not necessarily friendly for the environment. By reaching the air, water, and 
soil in the earth, these substances may have an effect on humans’ health in a greater or lesser 
degree, depending on their toxicity or concentration for example. 
 
In particular, in the last decades, air pollution and its relationship to human health has become 
a major concern. Nations around the world have passed laws to prevent certain substances to 
exceed standard levels that are considered “admissible” and cooperation between countries, 
states, and different organisms to better understand this problem has been growing. 
 
It is a common practice now days to monitor substances in the air that are considered harmful 
to humans. The United States of America, for example has six criteria pollutants according to 
the Environmental Protection Agency that are monitored constantly because they are typical 
across the country and are considered as potentially harmful to humans. These are particulate 
matter, sulfur dioxide, carbon monoxide, nitrogen dioxide, ozone, and lead. The World Health 
Organization in setting guidelines for air quality standards for Europe recognizes four 
classical air pollutants: nitrogen dioxide, ozone and other photochemical oxidants, particulate 
matter and sulfur dioxide. In Mexico the Health Secretary together with the Secretary for 
Fisheries, Natural Resources and Environment formulated and published in December 1994 
the Mexican Official Norms criteria pollutants i e. ozone, carbon monoxide, sulfur dioxide, 
nitrogen dioxide, particles and lead. A brief description of these pollutants is included in 
Appendix A1.1. 
 
This research presents some of the methods commonly used by epidemiologists to explain the 
relationship between air pollution and mortality, proposes some tools for analysis and 
exemplifies when possible with results for studies conducted in Europe, United States and 
Mexico City. Also, new results are presented with mortality and air pollution data from the 
Mexican city of Toluca and recent tools for modeling uncertainty are exemplified with an 
exercise conducted in Mexico City with air pollution experts. Before continuing the reader is 
referred to appendix A1.2 to familiarize with some common definitions in epidemiology that 
will be used during the rest of the research. 
 

1.2 Particulate Matter and Mortality 
 
One of the pollutants that has been more studied in the past years is particulate matter (PM). 
A wide range of literature in air pollution by PM and its relation to human life has been 
developed. Data in population’s exposure to pollution and its effect on mortality and 
morbidity have been set forward and most of these approaches have shown a positive 
association between increases in concentration levels and increases in mortality. 
 
Basically, two approaches have been used to study the relationship between PM2.5,10 and 
health effects, both are environmental in the sense that population exposure to air pollution is 
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measured in central monitors rather than with individual monitors. The first one is referred to 
as time series analysis, which measure acute effects on health.  
 
The second approach is referred to as cohort studies. These are also environmental in the 
sense described above, but they investigate the relationship between air pollution and 
mortality following a population through time and gathering data for the population at hand. 
In this case, the event of dying is the endpoint of a person’s lifetime, and information about 
the time to death or survival time is available. 
 
These two kinds of models will be discussed in more detail in chapters 2 and 3 for the time 
being we will be content with showing some results found across the literature. It is important 
to mention that this section does not pretend to be exhaustive in any way; important 
differences in methods, results and interpretations can be found in the literature, the purpose 
of this section is to make the reader familiar with the results found in previous studies and, 
when possible, make these results comparable with the results from this investigation. 
 

1.2.1 Cohort Studies Results. 

 
Cohort studies use the Cox Proportional Hazards Model or some variation of this to 
investigate long-term health effects of air pollution. As stated before, it becomes a little 
difficult to make comparisons across studies basically due to differences in methodology 
(including data sources and air pollution measures) found in different studies. However, 
bearing this constraint in mind the reader may look at table A1 in the appendix where some 
results from well know cohort studies are summarized.  
 

1.2.1.1 Method. 

 
For the Cox Proportional Hazards Model (CPHM) all that matters is the order of event times 
when the covariates are time invariant, estimates of relative risk or ratio of hazards for 
individuals with different covariate values (given by coefficients) i.e. the change in risk per 
unit change in the predictor variable are estimated by maximizing the ln of the partial 
likelihood function: 
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In the expression above Z is the vector of covariates and the summation in the denominator 
runs over the individuals in the risk set, c is an indicator variable taking the value of cero 
when a censored time is observed. 
 

1.2.1.2 The Extended Adventist Health Study of Smog. 

 
The Extended Adventist Health Study of Smog (AHSMOG) study followed about 6000 
white, non-Hispanic, non-smoking, long-term California Seventh-Day Adventists residents 
for 6 to 10 years beginning in 1977 and updated through 1992. The participants were aged 27-
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95 and completed lifestyle questionnaires that ascertained different individual variables used 
in the study. All air quality monitors in the state were used to create individual exposure 
profiles. 
 
Estimates of monthly ambient concentrations of PM10, ozone, sulfur dioxide, and nitrogen 
dioxide were formed for study participants for the period 1966-1992 using site monitoring 
stations maintained by the California Air Resources Board. Concentrations of PM10 prior to 
1987 were estimated using site and season-specific regression based on TSP. 
 

1.2.1.3 The Harvard Six Cities Study. 

 
In the Harvard Six Cities Study (SCS), beginning in 1974 an 8111 white subjects (aged 25 to 
74 at enrolment) cohort was followed for 14 to 16 years. Participants completed a 
questionnaire assessing variables such as age, sex, weight, height, education level, complete 
smoking history, occupational exposures, and medical history.  
 
Outdoor concentrations of total suspended particulate matter, sulfur dioxide, ozone and 
suspended sulfates were measured in each community at centrally located site monitors. 
Adjusted mortality rate ratios were estimated for a difference in pollution equal to that 
between the city with highest levels of air pollution and the city with the lowest levels –that is 
the adjusted rate ratios across the range of exposure for each pollutant among the six cities. 
 

1.2.1.4 The American Cancer Society Study. 

 
On the extended American Cancer Society study (ACSS), ACS volunteers enrolled individual 
participants in the fall of 1982. Participants were residents across the 50 states of the USA, the 
District of Columbia and Puerto Rico. All were adults 30 years or older, and completed a 
questionnaire that elicited sex, age, weight, height, smoking history, alcohol use, occupational 
exposures, diet, education, marital status, and other characteristics. Mean concentrations of air 
pollution were compiled from various primary data sources. The quarterly mean values for all 
stations in each metropolitan area were calculated across the study years using daily averages 
except for ozone where daily 1-hour maximums were used and calculated for the full year and 
the third quarter only. 
 

1.2.1.5 Discussion. 

 
For a better understanding of the estimates presented in table A1 the reader is referred to the 
original paper. All the relative risk estimates (that have a multiplicative effect in baseline 
mortality for a given increment in air pollution) presented in Table A1 have been found 
statistically significant in the original report. The reader must also have in mind that even 
when the estimates are presented for 10 unit increase in concentration levels, these are not 
always reported in the original studies for an air pollution increase of this magnitude, 
sometimes they are reported for the difference in concentration between the most and least 
polluted sub population, or an inter quintile range of concentration estimate. 
 
As the reader may see, central estimates of risk ratio for a 10 microgram per meter cubic 
increase in the concentration of a given pollutant range from 0.99 to 1.33, and the confidence 
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bounds range from 0.78 to 1.10 for the lower bound and from 1.05 to 1.62 in the upper bound. 
These estimates are of course for different causes of mortality and pollution measures but few 
remarks are clear from a first look at table A1: if the models used in each study are correct, 
then the health effects are not the same for every pollutant and; second, there is a great deal of 
uncertainty regarding the true value of the coefficient that is considered as the per cent change 
in mortality due to 1 unit increase in air pollution if the population is homogeneous. 
 
Next, short term effects of air pollution studies will be summarized in the same way as the 
results for cohort studies. 
 

1.2.2 Time Series Studies Results. 

 
Generalized Linear Models (GLM), Generalized Additive Models (GAM) or GLM with 
regression splines, also referred to as “the fully parametric alternative for the GAM with non 
parametric smoothers” are often used to estimate effects associated to air pollution while 
accounting for smooth fluctuations in the mortality that confound estimates of air pollution 
effect; these models will be discussed in some detail in chapter 4. The use of GAMs, however 
has become common because it allows for non parametric adjustment for non linear 
confounding effects of seasonality, trends and weather variables and it is a more flexible 
approach than fully-parametric alternatives like the GLM with cubic splines.  
 

1.2.2.1 Method. 

 
 
Generally time series studies assume a Poisson distribution for the daily counts of the 
response variable (non-accidental, cardiovascular and/or respiratory disease related deaths) 
and regress them against some measure of variables that change in time, for example 
concentrations of other pollutants such as SO2, O3, NO2, or temperature. An Additive Model 
is fitted as: 
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Where fi is a nonparametric function estimated from data using smoothing operations, 
describing the relationship between each of the i predictors and the transformed mean 
response g(µ)=ln(µ).  
 
Unlike linear regression models, which are fitted by weighted least squares and have an exact 
solution, the estimation procedure for a GAM (or a GLM with splines) requires iterative 
approximations to find the optimal estimates. 
 
The coefficient for a particular predictor is the logarithm of the ratio of mortality rates on two 
days with values of the predictor that differ in one unit. Log linear regression coefficients 
multiplied by 1,000 can be interpreted as approximately the percentage of change in risk 
(mortality) associated with a ten-unit change in the predictor variable for a small coefficient. 
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1.2.2.2 The National Mortality, Morbidity and Air Pollution Study. 

 
 
Perhaps, the National Mortality, Morbidity and Air Pollution Study (NMMAPS) and the 
APHEA project are the largest projects that investigate short term effects of air pollution in 
health. The NMMAPS is the largest multi-site time series study conducted. In 90 USA cities 
the daily total mortality was regressed on PM10 with different lags to estimate the relative 
increase in mortality rates associated with a 10 µg/m3 increase in PM10. 
 
The goal of NMMAPS was to estimate city-specific, regional and national effects of PM10 on 
mortality. To pool the results from each city, a two stage hierarchical model and a three-stage 
regional model with non-informative priors on the variance components was used. This 
investigation will not discuss the models for estimating a multi-site coefficient. 
 

1.2.2.3 Other Time Series Studies. 

 
There might be differences between Europe and the United States, and within Europe Itself, 
which might influence the health effects of air pollution; these include emission sources, 
pollution mixtures, climate, lifestyle, and the underlying health of the population. The 
APHEA project included data from 15 cities including 5 in central-eastern Europe (4 Polish 
and 1 Slovakian). In this case, the summary estimates from the city specific estimates were 
weighted means of the regression coefficients, with weights inversely proportional to local 
variances. 
 
In Mexico time series studies have also been conducted, however, these have not been multi-
site but performed only in MCMA. The total population of MCMA at the moment of the 
studies was of at least 16 million people; again, emission sources, pollution mixtures, climate, 
lifestyle, and the underlying health of the population are factors that could be influential for 
different health effects outcomes in this setting.  
 
Table A2 shows some results from different time series analysis performed in different 
locations, once more, the reader must be aware that the estimates presented in the table might 
again be difficult to compare because of the methods employed, the quality of the information 
available (for mortality cause and environmental estimates of pollutants’ concentrations). One 
more thing to take into consideration is that although there are several reasonable alternatives 
for obtaining adequate control for confounding, an optimal method has not been identified. 
 

1.2.3 Uncertainty. 

 
In previous sections a brief discussion on the kind of studies and results available in air 
pollution health effects literature was set forward. However, there are large sources of 
uncertainty with respect to the different studies conducted. For time series studies, some 
sources of uncertainty include the differences in the regression model design used across 
studies, the uncertainty introduced by pollution exposure estimates, the differences in lags 
between exposure and response used by different studies and the population characteristics; 
for example considering more sensitive subgroups as the elderly should increase the 
magnitude of the coefficients but also the random variation due to the smaller number of 
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deaths. Studies such as NMMAPS have tried to deal with some of these and other issues that 
introduce uncertainty in time series models. 
 
In the case of cohort studies the major criticisms have been in the sense that ambient pollution 
concentrations are poor surrogates for personal exposures because of population’s mobility 
and time spent outdoors vs. indoors for example. Also, because of the characteristics of the 
Cox proportional hazards model, the population studied is assumed to be homogenous in 
other risk factors affecting survival times such as economic status or education level and this 
assumption is generally not satisfied across the studies available. More recent findings (Pope 
et.al., 2002) have tried to deal to some extent with these issues, but more work in this respect 
is still needed. 
 
An alternative approach to get a picture of how the scientific community perceives these 
issues is with expert judgment. The classical model for expert judgment has been introduced 
in (Cooke, 1991) and applied in many risk and reliability studies. This model for combining 
expert judgments bears its name because of a strong analogy with classical hypothesis testing. 
Expert judgment is performed for multiple reasons, for example, in many cases, there might 
not be sufficient data and hence a fair amount of uncertainty. The scientific foundation for 
subjective probability comes from the theory of rational decision-making; hence, the main 
aim of the method is to provide the basis for achieving rational consensus. 
 
The reader is referred to chapter 4 and the original references for details about the method. It 
is good however to have in mind that for the case at hand, structured expert judgment could 
be a useful tool for characterizing the uncertainty regarding coefficients estimated by time 
series studies and cohort studies and hence for decision making. 
 

1.3 About the rest of the thesis. 
 
So far a brief introduction to the mathematical models used for exploring air pollution health 
effects and main findings of these has been presented. In the rest of the thesis the models will 
be explored in more details and examples shown when possible. In chapter 2 the reader can 
find a discussion on the Cox proportional hazards model as used by epidemiologists. Since 
conducting a cohort study represents a very large availability of human, economic and time 
related resources that this investigation lacks at the moment, the analysis of the model will use 
data available in different sources and Monte Carlo methods.  
 
Chapter 3 will present the theory behind GLMs and GAMs not only in the mathematics but 
also as they are used by epidemiologists to investigate acute effects of air pollution in health. 
Examples will be presented for the city of Toluca (in central Mexico) using mortality, air 
pollution and atmospheric data for 1999-2000. 
 
In chapter 4 the theory for expert judgment will be sketched and an exercise recently 
conducted with Mexican experts on air pollution health effects will be discussed. Finally in 
chapter 5, comparisons with results from previous chapters will be performed and conclusions 
and recommendations based on the findings of this investigation will be presented for the 
reader’s consideration. Since each chapter keeps a certain amount of independence from other 
chapters, appendixes are presented at the end of each chapter that will help the reader through 
each chapter. 
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APPENDIX 1 
 

A1.1 Review of Criteria Pollutants  

 
1. Nitrogen Dioxide (NO2) 

 
Nature and sources. This is a reddish brown gas formed in the ambient air through the 
oxidation of Nitric Oxide (NO). Nitrogen Oxides (NOx) contribute to the formation of ozone, 
particulate matter, haze, and acid rain. The major source of man made NOx’s are high 
temperature processes such as those that occur in power plants and automobiles. Home 
heaters and gas stoves are big sources of indoors NO2.  
 
Health and Environmental Effects. Short-term exposures (e.g., less than 3 hours) to low levels 
of NO2 may lead to changes in airway responsiveness and lung function in individuals with 
preexisting respiratory illnesses. These exposures may also increase respiratory illnesses in 
children. Long-term exposures to NO2 may lead to increased susceptibility to respiratory 
infection and may cause irreversible alterations in lung structure. NOx react in the air to form 
ground-level ozone and fine particle pollution, which are associated with adverse health 
effects. 
 
NOx contribute to a wide range of environmental effects directly and when combined with 
other precursors in acid rain and ozone. Increased nitrogen inputs to terrestrial and wetland 
systems can lead to changes in plant species composition and diversity. Similarly, direct 
nitrogen inputs to aquatic ecosystems such as those found in estuarine and coastal waters can 
lead to eutrophication (a condition that promotes excessive algae growth, which can lead to a 
severe depletion of dissolved oxygen and increased levels of toxins harmful to aquatic life). 
 
Nitrogen, alone or in acid rain, also can acidify soils and surface waters. Acidification of soils 
causes the loss of essential plant nutrients and increased levels of soluble aluminum that are 
toxic to plants. Acidification of surface waters creates conditions of low pH and levels of 
aluminum that are toxic to fish and other aquatic organisms. NOx also contribute to visibility 
impairment. 
 

2. Ozone (O3) 
 
Nature and Sources. Ground-level ozone is the primary constituent of smog. Ozone is not 
emitted directly into the air but is formed by the reaction of Volatile Organic Coumpounds 
and NOx in the presence of heat and sunlight. Ground-level ozone forms readily in the 
atmosphere, usually during hot summer weather. VOCs are emitted from a variety of sources, 
including motor vehicles, chemical plants, refineries, factories, consumer and commercial 
products, and other industrial sources. NOx is emitted from motor vehicles, power plants, and 
other sources of combustion. Changing weather patterns contribute to yearly differences in 
ozone concentrations from region to region. Ozone and the pollutants that form ozone also 
can be transported into an area from pollution sources found hundreds of miles upwind. 
 
Health and Environmental Effects. Short-term (1 to 3 hours) and prolonged (6 to 8 hours) 
exposures to ambient ozone have been linked to a number of health effects of concern. For 
example, health effects attributed to ozone exposure include significant decreases in lung 
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function and increased respiratory symptoms such as chest pain and cough. Exposures to 
ozone can make people more susceptible to respiratory infection, result in lung inflammation, 
and aggravate preexisting respiratory diseases such as asthma. Also, increased hospital 
admissions and emergency room visits for respiratory problems have been associated with 
ambient ozone exposures. These effects generally occur while individuals are actively 
exercising, working, or playing outdoors. Children that are active outdoors during the summer 
when ozone levels are at their highest are most at risk of experiencing such effects. Other at-
risk groups include adults who are active outdoors (e.g., some outdoor workers) and 
individuals with preexisting respiratory disease such as asthma and chronic obstructive 
pulmonary disease. In addition, longer-term exposures to moderate levels of ozone present the 
possibility of irreversible changes in the lung structure, which could lead to premature aging 
of the lungs and worsening of chronic respiratory illnesses.  
 
Ozone also affects vegetation and ecosystems, leading to reductions in agricultural crop and 
commercial forest yields, reduced growth and survivability of tree seedlings, and increased 
plant susceptibility to disease, pests, and other environmental stresses (e.g., harsh weather). In 
long-lived species, these effects may become evident only after several years or even decades, 
thus having the potential for long-term effects on forest ecosystems. Ground-level ozone 
damage to the foliage of trees and other plants can also decrease the aesthetic value of 
ornamental species as well as the natural beauty of our national parks and recreation areas.  
 

3. Sulfur Dioxide (SO2) 
 
Nature and Sources. Sulfur dioxide belongs to the family of SOx gases. These gases are 
formed when fuel containing sulfur (mainly coal and oil) is burned at power plants and during 
metal smelting and other industrial processes. Most SO2 monitoring stations are located in 
urban areas. The highest monitored concentrations of SO2 are recorded near large industrial 
facilities. Fuel combustion, largely from electricity generation, accounts for most of the total 
SO2 emissions. 
 
Health and Environmental Effects. High concentrations of SO2 can result in temporary 
breathing impairment for asthmatic children and adults who are active outdoors. Short-term 
exposures of asthmatic individuals to elevated SO2 levels during moderate activity may result 
in breathing difficulties that can be accompanied by symptoms such as wheezing, chest 
tightness, or shortness of breath. Other effects that have been associated with longer-term 
exposures to high concentrations of SO2, in conjunction with high levels of PM, include 
aggravation of existing cardiovascular disease, respiratory illness, and alterations in the lungs’ 
defenses. The subgroups of the population that may be affected under these conditions include 
individuals with heart or lung disease, as well as the elderly and children.  
 
Together, SO2 and NOx are the major precursors to acidic deposition (acid rain), which is 
associated with the acidification of soils, lakes, and streams and accelerated corrosion of 
buildings and monuments. SO2 also is a major precursor to PM2.5, which is a significant 
health concern, and a main contributor to poor visibility. 
 

4. Particulate Matter (PM). 
 
Particulate matter is the general term used for a mixture of solid particles and liquid droplets 
found in the air. Some particles are large enough to be seen as dust or dirt. Others are so small 
they can be detected only with an electron microscope. PM2.5 describes the “fine” particles 
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that are less than or equal to 2.5 µm in aerodynamic diameter. “Coarse fraction” particles are 
greater than 2.5 µm, but less than or equal to 10 µm in diameter. PM10 refers to all particles 
less than or equal to 10 µm in aerodynamic diameter (about one-seventh the diameter of a 
human hair). PM can be emitted directly or formed in the atmosphere. “Primary” particles, 
such as dust from roads or black carbon (soot) from combustion sources, are emitted directly 
into the atmosphere. 
 
Health and Environmental Effects. Particles that are small enough to get into the lungs (those 
less than or equal to 10 µm in diameter) can cause numerous health problems and have been 
linked with illness and death from heart and lung disease. Various health problems have been 
associated with long-term (e.g., multiyear) exposures as well as daily and, potentially, peak 
(e.g., 1 hour) exposures to particles. Particles can aggravate respiratory conditions such as 
asthma and bronchitis and have been associated with cardiac arrhythmias (heartbeat 
irregularities) and heart attacks. 
 
Particles of concern can include both fine and coarse-fraction particles, although fine particles 
have been more clearly linked to the most serious health effects. People with heart or lung 
disease, the elderly, and children are at highest risk from exposure to particles. 
 
In addition to health problems, PM is the major cause of reduced visibility in many parts of 
the United States. Airborne particles also can impact vegetation and ecosystems and can cause 
damage to paints and building materials. (See sections on NO2, and SO2.) 
 

5. Carbon Monoxide (CO) 
 
Nature and Sources. Carbon monoxide is a colorless and odorless gas, formed when carbon in 
fuel is not burned completely. It is a component of motor vehicle exhaust. Non-road vehicles 
also account for the total CO emissions from transportation sources. High concentrations of 
CO generally occur in areas with heavy traffic congestion. In some cities, as much as 95 
percent of all CO emissions may come from automobile exhaust. Other sources of CO 
emissions include industrial processes, non-transportation fuel combustion, and natural 
sources such as wildfires. Peak CO concentrations typically occur during the colder months of 
the year when CO automotive emissions are greater and nighttime inversion conditions 
(where air 14 pollutants are trapped near the ground beneath a layer of warm air) are more 
frequent. 
 
Health Effects. CO enters the bloodstream through the lungs and reduces oxygen delivery to 
the body’s organs and tissues. The health threat from levels of CO sometimes found in the 
ambient air is most serious for those who suffer from cardiovascular disease such as angina 
pectoris. At much higher levels of exposure not commonly found in ambient air, CO can be 
poisonous, and even healthy individuals may be affected. Visual impairment, reduced work 
capacity, reduced manual dexterity, poor learning ability, and difficulty in performing 
complex tasks are all associated with exposure to elevated CO levels. 
 

6. Lead (Pb) 
 
Nature and Sources. In the past, automotive sources were the major contributor of lead 
emissions to the atmosphere. As a result of EPA’s regulatory efforts to reduce the content of 
lead in gasoline, however, the contribution of air emissions of lead from the transportation 
sector, and particularly the automotive sector, has greatly declined over the past two decades. 



 10 

Today, industrial processes, primarily metals processing, are the major source of lead 
emissions to the atmosphere. The highest air concentrations of lead are usually found in the 
vicinity of smelters and battery manufacturers. 
 
Health and Environmental Effects. Exposure to lead occurs mainly through inhalation of air 
and ingestion of lead in food, water, soil, or dust. It accumulates in the blood, bones, and soft 
tissues and can adversely affect the kidneys, liver, nervous system, and other organs. 
Excessive exposure to lead may cause neurological impairments such as seizures, mental 
retardation, and behavioral disorders. Even at low doses, lead exposure is associated with 
damage to the nervous systems of fetuses and young children, resulting in learning deficits 
and lowered IQ. Recent studies also show that lead may be a factor in high blood pressure and 
subsequent heart disease. Lead can also be deposited on the leaves of plants, presenting a 
hazard to grazing animals and humans through ingestion. 
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Table A1 Summary of Findings from Different Cohort Studies 

Study Mortality Cause (pollutant) 
Relative Risk for a 10 
units increase (C.I.) 

Units 

All cause mortality (PM10) 
1.09 

(1.03, 1.15) µg/m3  

All cause mortality (PM2.5) 
1.13 

(1.04, 1.23) 
µg/m3 

Lung Cancer (PM2.5) 
1.18 

(0.89, 1.57) 
µg/m3 

Cardio Pulmonary (PM2.5) 
1.18 

(1.06, 1.32) µg/m3  

Original SCS1 

All cause mortality (Sulfates) 1.33 
(1.10, 1.62) 

µg/m3 

All cause mortality (PM2.5) 
1.07 

(1.04, 1.10) µg/m3 

Cardiopulmonary (PM2.5) 
1.12 

(1.07, 1.17) 
µg/m3  

All cause mortality (Sulfates) 1.07 
(1.04, 1.11) µg/m3 

Lung Cancer (Sulfates) 1.17 
(1.05, 1.29) µg/m3 

Original ACS2 

Cardio Pulmonary (Sulfates) 1.12 
(1.08, 1.17) 

µg/m3  

All cause mortality in males (PM10)
3 1.04 

(0.99, 1.10) 
µg/m3 

Nonmalignant Respiratory (PM10)
4 1.06 

(0.99, 1.15) 
µg/m3 

Lung Cancer in males (SO2)
3 1.14 

(0.65, 1.56) ppb 

Lung Cancer in females (SO2)
5 1.00 

(0.78, 1.29) 
ppb 

Extended AHSMOG 

Lung Cancer in females (NO2)
5 0.99 

(0.94, 1.05) 
ppb 

All cause mortality (PM2.5) 
1.14 

(1.05, 1.24) µg/m3  

Cardiopulmonary (PM2.5) 
1.16 

(1.04, 1.30) 
µg/m3 

Reanalysis SCS 
(Extended model)6 

Lung Cancer (PM2.5) 
1.15 

(0.86, 1.54) µg/m3 

All cause mortality (PM2.5) 
1.07 

(1.04, 1.10) µg/m3  

Cardiopulmonary (PM2.5) 
1.11 

(1.07, 1.16) 
µg/m3 

Reanalysis ACS 
(Extended model)6 

Lung Cancer (PM2.5) 
1.00 

(0.91, 1.11) µg/m3 

All cause mortality (PM2.5) 
1.06 

(1.02, 1.11) 
µg/m3  

Cardiopulmonary (PM2.5) 
1.09 

(1.03, 1.16) 
µg/m3 Extended ACS7 

Lung Cancer (PM2.5) 
1.14 

(1.04, 1.23) µg/m3 

1. Mean concentration of each pollutant included individually in the CPHM 
2. For PM2.5 mean concentration, for sulfates, median concentration taken as air pollution measure. Adjusted for age, sex, race, cigarette 

smoking, exposure to cigarette smoke, BMI, drinks per day of alcohol, education, occupational exposure. 
3. Including age, years of education, pack years of past smoking, history of high blood pressure, years lived with a smoker and total 

exercise level. 
4. Including past years of pack smoking, BMI, total physical exercise, age within age strata. 
5. Adjusting for age, years of education, pack years of past smoking, years lived with a smoker, years worked with a smoker, occupational 

exposure for more than 10 years, BMI. 
6. Controlling for tobacco consumption, education level, occupational exposure, BMI, marital status, alcohol consumption and sex. 
7. Estimated and adjusted based on the baseline random effects CPHM, controlling for age, sex, race, smoking, history of high blood 

pressure, years lived with a smoker and total exercise level.  
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Table A2 Summary of Findings from Different Time Series Studies 

Regression coefficients for effect of PM 

Study Location Health effect Model characteristics 
% change 

per 10 
µg/m3 

Statistic for 
significance 

PM10 Unadjusted for other pollutants 
0.19 

(-0.47, 0.84) Na 

PM10 Adjusted for O3, NO2 
0.01 

(-0.67, 0.69) Na 

PM10 Adjusted for O3, SO2 
0.13 

(-0.54, 0.79) Na 

Total mortality 

PM10  Adjusted for O3, CO 
0.04 

(-0.66, 0.75) Na 

Cardiorespiratory PM10 Unadjusted for other pollutants 
0.55 

(-0.35, 1.45) Na 

Houston 

Other disease PM10 Unadjusted for other pollutants 
-0.64 

(-2.51, 1.23) Na 

PM10 Unadjusted for other pollutants 
0.65 

(-0.42, 1.72) Na 

PM10 Adjusted for O3, NO2 
1.95 

(-0.39, 4.29) Na 

PM10 Adjusted for O3, SO2 
1.72 

(0.14, 3.31) Na 

Total mortality 

PM10  Adjusted for O3, CO 
-0.07 

(-1.42, 1.29) Na 

Cardiorespiratory PM10 Unadjusted for other pollutants 
1.12 

(-0.22, 2.63) Na 

Phoenix 

Other disease PM10 Unadjusted for other pollutants 
0.16 

(-1.40, 1.72) Na 

PM10 Unadjusted for other pollutants 
0.05 

(-1.60, 1.70) Na 

PM10 Adjusted for O3, NO2 
-1.12 

(-3.36, 1.11) Na 

PM10 Adjusted for O3, SO2 
-0.95 

(-3.15, 1.24) Na 

Total mortality 

PM10 Adjusted for O3, CO 
-0.70 

(-3.17, 1.17) Na 

Cardiorespiratory PM10 Unadjusted for other pollutants 
-0.32 

(-2.69, 2.04) Na 

Atlanta 

Other disease PM10 Unadjusted for other pollutants 
0.44 

(-1.86, 2.74) Na 

PM10 + O3 
0.27 

(0.12, 0.44) Na 

PM10 + O3 + NO2 
0.21 

(-0.01, 0.44) Na 

PM10 + O3 + SO2  
0.21 

(0.02, 0.42) Na 

N
M

M
A

P
S

 

National 
Total mortality 
(using a non informative 
prior) 

PM10 + O3 + CO 
0.24 

(0.05, 0.43) Na 

All 
0.26 

(0.18, 0.34) p value = <0.0001 

Western 
0.57 

(0.42, 0.73) p value = <0.001 

Central-
eastern 

Total mortality 
aggregated using fixed 
effects 

Black smoke coefficient using old 
sinusoidal terms to control for 
seasonality (also controlling for 
temperature, relative humidity, day of 
the week, epidemic periods and 
holidays) 

0.12 
(0.02, 0.22) p value = 0.25 

All 
0.44 

(0.36, 0.51) p value = <0.0001 

Western 
0.61 

(0.47, 0.77) p value = <0.001 

A
P

H
E

A
 

Central-
eastern 

Total mortality 
aggregated using fixed 
effects 

Black smoke coefficient using GAM 
methodology (also controlling for 
temperature, relative humidity, day of 
the week, epidemic periods and 
holidays) 0.44 

(0.28, 0.45) p value = 0.04 
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Table A2 Summary of Findings from Different Time Series Studies 
(continue) 

Regression coefficients for effect of PM  

Study Location Health effect Model characteristics 
% change 

per 10 
µg/m3 

Statistic 
 for 

significance 

Total mortality 
1.68 

(0.23, 3.14) t = 2.27 

Respiratory 
1.68 

(-2.88, 6.42) t = 0.72 B
or

ja
 

A
bu

rt
o,

 
et

.a
l (

19
98

) 

Southwestern 
MCMA 

Cardiiovascular 

Three pollutant model (PM2.5, O3 and 
NO2) controlling for temperature on 
the 3 days before death and smoothed 
periodic cycles 3.42 

(0.67, 6.18) t = 2.43 

Total mortality 
2.47 

(1.14, 3.81) t = 3.63 

Respiratory 
6.40 

(2.16, 10.64) t = 2.96 

C
as

ti
lle

jo
s 

et
.a

l (
20

00
) 

Southwestern 
MCMA 

Cardiiovascular 

PM10 coefficient controlled for ozone, 
NO2, temperature on 3 days before 
death and non parametrically 
smoothed cycles 1.96 

(-0.56, 448) t = 1.53 

 

A1.2 Commonly Used Definitions in Epidemiology. 

 
Comments by Roger Cooke 

 
1. Risk 

 

 timeof period afor      
exposed persons #

 cases  new of  #
== RRisk  

 
Risk is dimensionless, intended to measure probability of occurrence between t0 and t1. 

 

2. Incidence rate 
 

 timeexposure  exposed persons #

cases new #
 

×
== IrateIncidence  

 

R = I × T 
 

3. Mortality rate 
 
Mortality rate = incidence rate of death 
 

4. Prevalence proportion 
 

(t) population in the people #

(t)effect  with people #
)(  )( == tproportionprevalencetP  

 

At equilibrium avDI
P

P
×=

− )1(
 ;            Dav = average duration of disease. 
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 Pw = Probability per unit time of recovery, 
w

av
P

D
1

=  

 Pd = Probability per unit time of getting sick = I 
 Nd(t) = # of people sick at t 
 

ddwdd PtNNPtNtN ))(()1)(()1( −+−=+  

w

d

d

d
dd

P

P

tNN

tN
tNtN =

−
⇔=+

)(

)(
)()1(  

 
5. Risk Ratio and Rate Ratio  

 
 
Rx = Risk of exposed group, Ru = Risk of unexposed group 
 

RatioRate
I

I

TI

TI

R

R
RatioRiskRR

u

x

u

x

u

x   ==≅==  

  
Ratios of probabilities of occurrence in a time interval ~ ratio of failure rates if interval is 

small 

 
 

6. Relative Risk 
 
Relative Risk = "Instantaneous Risk Ratios" = Rate Ratio. 
 
 

7. Attributable Fraction 
 

RR

RR

R

RR
FractioneAtributabl

x

ux 1
 

−
=

−
=  

 
8. Risk Ratio for Cox 

 

)(
CY

CY

0

1
01

01

0

1

)(

)(

Y),)(at  alive|in death (

Y),)(at  alive|in death (
),( XXb

bX

bX

Cox e
et

et

XtδtP

XtδtP
XXRR

−

•+

•+

==
+

+
=

γ

γ
 

 
Where Y is vector of other covariates and C is vector of coefficients for other covariates, γ(t) 
is baseline hazard. 
 
Though measurable in principle, in fact the coefficients are found by maximizing the partial 

likelihood. It is interpreted as a risk ratio for two populations having same covariates Y, 

differing only in X. However under the assumptions of the Cox model, this ratio does not 

depend on the particular values of Y. 
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9. Compare risk in populations P1 and P0:  

 
Covariates X,Y,  in  P1  X = x1,  in P0  X = x0;   y(i) = covariate value for individual i. 
 

),(in  
in  exposed persons #

in  cases  new of  #

1

1
1 δ+= tt

P

P
R ; 

 

∑
∑

∈

∈

•

=
+

=
1

1

1

 
in  exposed persons #

)(

in  exposed persons #

)at event  no|in event (

1

)(
1

1
1

Pi

Pi

Ciybx

P

eet

P

ttP
R

γ
δ

 

 

 in  exposed persons #)(

 in  exposed persons #)(

 in  exposed persons #)(

 in  exposed persons #)(

0
)(

0

1
)(

1

0
)(

0

1
)(

1

0

1

0

1

0

0

1

1

Pet

Pet

RR
Peet

Peet

R

R
RR

Pi

Ciy

Pi

Ciy

Cox

Pi

Ciybx

Pi

Ciybx

∑

∑

∑

∑

∈

•

∈

•

∈

•

∈

•

×===
γ

γ

γ

γ

 

CoxRRRR =  if the distribution of y and γ(t)  is same in both populations.  This is true if we 

compare the effect of "exposure" in ONE population.  If x1 = x0 but P1 ≠ P0, then the ratio of 

risks depend on P1, P2 .  But risk ratios R1/R0 in each population are the same.  
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Chapter 2. Long Term Effects of Air Pollution in Mortality. 
 
The first model that will be discussed is the Cox Proportional Hazards Model (CPHM) that is 
used in survival analysis for investigating long term effects of air pollution (particulate matter 
specifically) on health. To gather the data needed to fit this model requires considerable 
economic, human and time resources (see chapter one) that unfortunately are not available for 
the present setting. However some effort in assessing model adequacy will be encountered 
along the way. 
 

2.1. Cox Proportional Hazards Model. 
 
In 1972 Cox proposed a regression model for survival time in which the “partial likelihood” 
would be studied instead of the full likelihood function. This model assumes a hazard function 
with the following form: 
 

),()(),,( 0 ββ zrtzth Λ=  (1) 
 
In equation (1), the hazard is a function of the base line hazard Λ0 that depends on survival 
time and another function r that characterizes how the hazard changes as a function of 
covariates; β is the vector of covariates to be estimated from data. In practice the familiar 
choice for r is eZβ where z and β are the vectors of covariates and parameters respectively. To 
estimate parameters form this model the ln of the partial likelihood function (PL below) is 
maximized. For covariates that are constant in time, all that maters for the Cox model is the 
rank of events. 
 

ic

n

i

itRj

jZ

iZ

e

e
PL ∏

















∑
=

=

∈

1

)(

)(
β

β

β  (2) 

 
In the above expression c is an indicator that is one when an event is observed and zero 
otherwise, n is the total population and the summation in the denominator runs over all 
individuals in the risk set1 at time ti. Usually confidence intervals are obtained with a normal 
approximation in the usual way by taking the second derivative of the log likelihood function, 
computing the information matrix and estimating the standard deviation for the kth covariate 
coefficient estimate as the square root of the kth element in the diagonal of the inverse 
information matrix. For more details the reader is referred to (Allison, P.D., 2003) and 
(Homser, D.W. and Lemeshow, S.). 
 
The intuitive explanation for the model above is that given that the first death of the 
population occurs at t1 the probability that it happened to individual 1 is the hazard of this 
individual divided by the sum of the hazards of all other individuals in the population (3). 
 

                                                
1 The risk set is the set of survival times that have not been observed or censored at ti 
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∑∑
==

=
n

j

Z

Z

n

j

j

je

e

h

h

11

1
1

β

β

 
(3) 

 
After individual 1 is removed from the population, the same reasoning applies to the surviving 
population; given that a second event occurred at time t2, the probability that it happened to 
the second individual is as (4) and so on until n. 
 

∑∑
==

=
n

j

Z

Z

n

j

j

je

e

h

h

22

2
2

β

β

 
(4) 

 
In many important studies, model adequacy is not examined, and only estimates of the 
coefficients for some covariates are given with Wald confidence intervals for example (Pope, 
et al., 2002) and (Dockery, et al., 1993). The coefficients are used then for different risk 
assessments for regulation purposes. Next the issue of model adequacy will be discussed. 
 

2.2. Model Adequacy. 
 
For simplicity, consider a model with time invariant covariates X, Y, Z and parameters A, B, C 
the hazard rate has then the following form: 
 

ZCYBXAetZYXh ++Λ= )(),,( 0  (5) 
 
If this hazard rate holds, then for an individual with covariate values (x, y, z) the survivor 
function is:  
 

),,( zyxh
e

−
 (6) 

 
With (x, y, z) fixed, the time to death T random and with a constant baseline hazard scaled to 
one, then (6) considered as a function of the random variable T is uniformly distributed on 
[0,1], that is: 
 

h

U
T

)ln(
~

−  (7) 

 
Where U is a uniform random variable on [0,1]. This holds for each individual in the 
population, so if the values form (8) are ordered and plot against their number the points 
should lay along the diagonal if the proportional hazards model is true with coefficients A, B, 
C and constant baseline hazard equal to one.  
 

)( CizBiyAix
i et

e
++−

 
(8) 

 
However if the baseline hazard is also estimated from the data, (9) should plot as uniform. In 
that equation “^” denotes the estimators that naturally do not correspond to the values that 
generated the data. 
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))((
ˆˆˆ

0
CizBiyAix

i et
e

++Λ−
 

(9) 

 
 
The next steps illustrate a numerical experiment that will help the reader understand the issues 
relative to model adequacy. All calculations assume no ties and no censored observations.  
 

1. Choose coefficients (A, B, C), choose a constant baseline hazard scaled to one, and 
choose a distribution for (X, Y, Z)  

2. Sample independently 100 values for (X, Y, Z) an 100 values for U; and compute one 
hundred ti using (7) 

3. Find estimators for (A, B, C) and confidence bounds as described in the previous 
section and estimate the baseline hazard. 

 
Model (5) will be denoted as hXYZ. In practice, information is available for some of the 
covariates, but many others may not be represented in the model. For instance in air pollution 
studies, variables that measure disease prevalence, stress, medical care, home environment, 
genetic disposition are usually not included in the model and these could also have an 
influence in the event together with all other variables which are actually included in the 
model. To study the effects of model incompleteness a model using covariates X and Y and 
another one using only covariate X (denoted by hXY and hX respectively) will estimate the 
coefficient A and these will be compared with the “true” model hXYZ. This procedure is 
repeated 100 times with the same values for (A, B, C) and (X, Y, Z) sampled independently 
from a uniform distribution in [0,3] 
 

Figure 2.1 One hundred Ordered Estimates of A for hXYZ, hXY and hX 
X,Y,Z~U[0.3], (A,B,C) = (1.006, 1, 1). 
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Figure 4.1 shows that the two incomplete models tend to under estimate the coefficient A. 
This tendency becomes more pronounced in figure 4.2 where Z takes its maximum value, 3. 
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Figure 2.2 One hundred Ordered Estimates of A for hXYZ, hXY and hX 
X,Y,Z~U[0, 3], (A,B,C) = (1.006, 1, 3). 
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The statement that equation (9) should plot as uniform is checked below in figure 2.3; 
following (Kalbfleisch and Prentice, 2002) for a model without ties, the estimator of the 
cumulative hazard function is: 
 

∑
≤

−=Λ
ij

jit )ˆ1()(ˆ
0 α  (10) 

β

β

β

α

ˆ

ˆ

ˆ
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−=

∑
≥

 (11) 

 
The estimator above is obtained in a similar manner as the Nelson-Aalen and Kaplan-Meier 

estimators for the hazard function. For the simulation presented in this chapter )ˆ,ˆ,ˆ(ˆ CBA=β  
is the vector of estimated coefficients and Zi = (X, Y, Z) ~ U [0, 3] is the vector of covariates. 
Figure 2.3 show that when the base line hazard function is estimated, the three models, even 
the two incomplete models that clearly underestimate the coefficient A, lay along the 
diagonal, however when the additional restriction that 1ˆ

0 ≡Λ  is imposed, then uniformity is 
lost for the two incomplete models as shown in figure 2.4. 
 
Interval estimators are very important in any statistical analysis. If 95% confidence bands for 
the estimator of A are computed as described in the previous section, i e. assuming that the 
Wald statistic that is the estimated coefficient divided by the estimator of its standard 
deviation is asymptotically standard normal, then the “true” model hXYZ would miss the true 
value only 1 time out of the 100 repetitions. Figure 2.5 shows the confidence bounds with the 
model hXY again computed as described in the previous section. The experiment followed 
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through this chapter shows that the interval estimators do not capture the true value of the 
coefficient at all in 100 repetitions and the picture does not improve for the model hX. 

Figure 2.3 One hundred Ordered Values of (9) for hXYZ, hXY and hX 
X,Y,Z~U[0, 3], (A,B,C) = (1.006, 1, 3). 
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Figure 2.4 One hundred Ordered Values of (9) for hXYZ, hXY and hX 

X,Y,Z~U[0, 3], (A,B,C) = (1.006, 1, 3), 1ˆ
0 ≡Λ  
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The models hXY and hX are clearly incorrect and misestimate the covariate A. Relative risk 
coefficients based on incomplete models would be biased. The conclusion is that the lack of 
fit in the incomplete models is compensated by the estimated baseline hazard function. The 
last observation suggests that lack of fit in the covariates might be detected by comparing the 
estimated baseline hazard function with the population cumulative hazard function.  
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The Nelson-Aalen estimator (12) is used for the population cumulative hazard function, where 
di are the number of events at ti an ni is the population at risk at the same time. Figures 2.6 and 
2.7 show that the cumulative baseline hazard function for models hXY and hX have moved 
closer to the population cumulative hazard reflecting the heavier load for the missing 
covariate Z.  
 

∑
≤

=Λ
ij

jji ndt )(  (12) 

 

Figure 2.5 One Hundred 95% Confidence Bands for A with Model hXY of 
Figure 2.3 
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Figure 2.6 Cumulative Population and Base Line Hazard Functions for 
hXYZ, hXY, hX, (X, Y, Z)~U[0,3], (A, B, C)=(1.006, 1, 1) 
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Figure 2.7 Cumulative Population and Base Line Hazard Functions for 
hXYZ, hXY, hX, (X, Y, Z)~U[0,3], (A, B, C)=(1.006, 1, 3) 
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A possibility to assess model adequacy would be to test the null hypothesis that the 
cumulative hazard function is equal to the population cumulative hazard function. If the null 
hypothesis cannot be rejected, then using the Cox model would not be indicated. With the 
same notation as before, the variance estimator of the Nelson-Aalen cumulative hazard 
estimator (12) is computed as in (13).  
 

∑
≤

−=
ij

jjjji ndndtV
3)()(ˆ  (13) 

 
Figures 2.8 and 2.9 show the same picture as 2.6 and 2.7 respectively plus the “2-σ” bands for 
the population cumulative hazard function. Sigma is of course, the square root of the variance 
estimator (13); the reader may see in figure 2.8 that even when A is underestimated in the case 
where C = 1 the test proposed is unable to detect the lack of fit of the models hXY and hX; 
however in the case where C = 3, the model hX would fail a test for model adequacy as the 
cumulative baseline hazard is not easily distinguished from the population cumulative hazard 
function as observed in figure 2.9. If the assumptions from appendix A1.2 were true and the 
RR = RRCox then a change of k units in a continuous scale covariate would translate in a 
change of kβ in the log hazard. For the case described above this change would be of k if C = 
1 and 3 times larger when C = 3. 
 

2.3. Competing Risks. 
 
Another way to look at survival data, is the competing risks approach, the idea is that the 
event may be one of distinct “failure” types. Right censoring is a form of competing risk. In 
the competing risks approach the data is modeled as a sequence of identical independent 
distributed pairs (Ti, δi), i = 1, 2, …  . Each T is the minimum of two or more variables, 
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corresponding to the competing risks. It will be assume that there are only two competing 
risks, described by two random variables D and C such that T = min(D, C). D will be time of 
death which is of primary interest, while C is a censoring time corresponding to termination 
of observation by other causes. 
 

Figure 2.8 Cumulative Population and Base Line Hazard Functions for 
hXYZ, hXY, hX, (X, Y, Z)~U[0,3], (A, B, C)=(1.006, 1, 1) 
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Figure 2.9 Cumulative Population and Base Line Hazard Functions for 
hXYZ, hXY, hX, (X, Y, Z)~U[0,3], (A, B, C)=(1.006, 1, 3) 

 

-0.7

0.3

1.3

2.3

3.3

4.3

5.3

0 0.05 0.1 0.15 0.2

Time

Cumbase(xyz) Cumbase(xy) Cumbase(x)
PopCumHaz PCH+2sigm PCH-2sigma

 
 
In addition to the time T one observes the indicator variable δ = I (D < C) which describes the 
cause of the termination of observation. For simplicity we assume that P(D = C) = 0. It is 
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known (Tsiatis, 1975) that from observation of (T, δ) only the subsurvivor functions of C and 
D may be identified: 
 

)1,(),()(* =>=<>= δtTPCDtDPtSD  (14) 

)0,(),()(* =>=<>= δtTPDCtCPtSC
 (15) 

 
but not in general the true survivor functions of D and C, SD(t) and SC(t). Note that SD

*(t) 
depends on C, though this fact is suppressed in the notation. Note also that 
SD

*(0)=P(D<C)=P(δ=1) and SC
*(0)=P(C<D)=P(δ =0), so that SD

*(0)+SC
*(0)=1. 

 
The conditional subsurvivor functions are defined as the survivor functions conditioned on the 
occurrence of the corresponding type of event. Assuming continuity of SD

*(t) and SC
*(t) at 

zero, these functions are given by  
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Closely related to the notion of subsurvivor functions is the probability of censoring beyond 
time t,  
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As mentioned above, without any additional assumptions on the joint distribution of D and C, 
it is impossible to identify the marginal survivor functions SD(t) and SC(t). However, by 
making extra assumptions, one may restrict to a class of models in which the survivor 
functions are identifiable. A classical result on competing risks (Tsi, et al.,_____) states that, 
assuming independence of D and C, we can determine uniquely the survivor functions of D 
and C from the joint distribution of (T, δ), where at most one of the survivor functions has an 
atom at infinity. In this case the survivor functions of D and C are said to be identifiable from 
the censored data (T, δ). Hence, an independent model is always consistent with data. 
 
If the censoring is assumed to be independent then the survivor function for T, the minimum 
of D and C, can be written as 
 
ST(t) = SD(t) SC(t) (19) 
 
If it is assumed that D obeys a proportional hazard model, and that the censoring is 
independent, then the coefficients may be estimated by maximizing the partial likelihood 
function adapted to account for censoring: 
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where DN is the subset of observed times t1,..., tN at which death is observed to occur, and j 
runs over all times corresponding to death or censoring. 
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If the estimated coefficients are substituted in the survivor function (19), and use the familiar 
Kaplan Meier estimator for SC, then the ideas of the previous section may be applied to assess 
model adequacy. In appendix A2.1 some results from the theory of competing risks are 
summarized. Those results lead to heuristics for model selection. 
 
The probability Φ(t) of censoring after time t, yields a diagnostic for model selection, together 
with the conditional subsurvivor functions CSD

*(t) and CSC
*(t). Statistical tests are developed 

in (Bunea, et al. 2002). The following statements, which follow from the results shown in 
appendix A1, may guide in model selection. 
 

Table 2.1 Heuristics for Model Selection in Competing Risks. 

 
Model Conditional Subsurvivor 

functions 
Probability of censoring 

beyond t 
Independent Exponential Competing 
Risks 

CSD
*(t) = CSC

*(t) and exponential Φ (t) is constant. 

Random Signs Censoring CSD
*(t) > CSC

*(t) for all t > 0. Φ (0) > Φ (t) for all t > 0. 
Conditional Independence Model(V, U and 
W exponential) 

CSD
*(t) = CSC

*(t) Φ (t) is constant. 

Mixture of Exponentials Model CSD
*(t) ≤ CSC

*(t) for all t > 0 Φ (0) < Φ (t) for all t > 0. 

 
Next, an example with a subset of the Mayo Clinic Lung Cancer Data (Loprinzi, et al., 1994) 
will be presented. This data is available in several software applications (S-Plus, SAS) and in 
the website http://www.mayo.edu/hsr/people/therneau/book/data/lung.html.  

2.4. Example: The Mayo Clinic Lung Cancer Data. 
 
The data consists of 228 observations in total, from which 165 are observed times of death 
and 63 correspond to censoring times. The censoring is assumed to be independent. 8 
covariates are used to construct a proportional hazards model: Enrolling institution, age, sex, 
Eastern Cooperative Oncology Group (ECOG) performance score (as judged by physician), 
Karnofsky performance score (as judged by physician), Karnofsky performance score (as 
judged by the patient), daily calories consumed at meals and weight loss in the last 30 days. 
The ECOG and Karnofsky scores measure performance status of the patient and have been 
used as prognostic factors for patients in clinical trials. 
 
First, the partial likelihood (20) is maximized with respect to β to obtain the vector of 
estimated coefficients. Following (Kalbfleish & Prentice, 2002) the population cumulative 
hazard is estimated as: 
 

))(ˆln()(ˆ tStpop −=Λ  (21) 

 

Where Ŝ  is the Kaplan-Meier estimator of the survivor function. The baseline cumulative 
hazard is computed in the manner explained previously (see equations (10)-(11)). Figure 2.10 
shows the Cox cumulative baseline hazard function and the population cumulative hazard 
function. The baseline hazard is nearly linear up to 883 days, indicating a nearly constant 
baseline hazard rate. The last observations are censored; the fact that the baseline hazard is 
estimated only at times of death explains the flat shape after 883 days.  
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Figure 2.10 Cumulative Baseline Hazard (Cox Model) and Population 
Cumulative Hazard for Mayo Clinic Lung Cancer Data 
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Figure 2.11 Cumulative Baseline Hazard (Cox Model) and Population 
Cumulative Hazard for Mayo Clinic Lung Cancer Data with 2 Sigma 

Confidence Bounds. 
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Figure 2.11 adds the 2-sigma bounds computed as in (13). The Cox baseline hazard function 
is close to the upper bound for the cumulative population hazard. This means that the Cox 
model is barely able to distinguish the cumulative baseline hazard and population cumulative 
hazard functions. 
 
Figure 2.12 presents the empirical conditional subsurvivor functions for death and censoring 
and shows the probability of censoring after time t i. e. the function Φ(t) They are computed 
as shown in the appendix A2.2. The reader may see that the conditional subsurvivor function 
of censoring dominates that of death. The Φ(t) function is increasing up to the last observed 
event at day 883 where the conditional subsurvivor function for death becomes constant and 
Φ(t) decreases. From table 2.1 it could be inferred that this pattern correspond to a mixture of 
exponentials model (see appendix A2.1). 
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Figure 2.12 Cumulative Baseline Hazard (Cox Model) and Population 
Cumulative Hazard for Mayo Clinic Lung Cancer Data with 2 Sigma 

Confidence Bounds. 
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Since the test proposed in the previous section for this specific data set gives the result that the 
population cumulative hazard and the Cox baseline cumulative hazard are not easily 
distinguishable; and the censoring mechanism appears to come from an independent 
exponential censoring a mixture of exponential life variables, the suggestion would be to add 
more covariates to the Cox model in order to take load from the cumulative baseline hazard 
and make the coefficients more easily interpretable. 
 

2.5. Final Remarks. 
 
As stated before, tests like the one performed in the last part of this chapter to the Mayo Clinic 
Lung Cancer Data are not common in air pollution health effects studies. While trying to 
control the model for certain covariates, the power of the whole model after controlling is 
evaluated with likelihood related tests, however the methods presented in this chapter could 
also serve as a guide for model performance evaluation. According to the results presented 
above the Cox proportional hazard model with constant covariates entails a mixed exponential 
life distribution. 
 
In the next chapter models that investigate short term effects of air pollution will be discussed 
and examples will be drawn with data from the central Mexico capital city of the State of 
Mexico, Toluca. 
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APPENDIX 2 
 

A2.1. Independent Competing Risks Models. 

 
Independent Exponential Competing Risks 
 
A model in which D and C are independent is always consistent with the data, but an 
independent exponential model is not in general consistent with the data. One can derive a 
sharp criterion for independence and exponentiality in terms of the subsurvivor functions 
(Cooke, 1996): 
 
Theorem. Let D and C be independent life variables. Then any two of the following 
conditions imply the others: 
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Thus if D and C are independent exponential life variables with failure rates λ and γ, then the 
conditional subsurvivor functions of D and C are equal and correspond to exponential 
distributions with failure rate λ+γ. 
Moreover, the probability of censoring beyond time t is constant. Thus 
 

t

CD etCStCS )(** )()( γλ+−==  (12) 

γλ

γ

+
=Φ )(t  (13) 

 
Random Signs Censoring 
 
Suppose that the event that the time of death of a subject is censored is independent of the age 
D at which the subject would die, but given that the subject's time of death is censored, the 
time at which it is censored may depend on D. This situation is captured in the following 
definition: 
 
Let D and C be life variables with C = D – Wδ, where 0 < W < D is a random variable and δ is 
a random variable taking values [1,-1], with D and δ independent. The variable T ≡ [min 
(D,C), I(D<C)] is called a random sign censoring of D by C. Note that in this case 
 

)0()(}{)(}1{}{}1,{)( **
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Hence SD(t)=CSD

*(t) and it follows  that the distribution of D is identifiable under random 
signs censoring. 
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A joint distribution of (D, C) which satisfies the random signs requirement, exists if and only 
if CSD

*(t)>CSC
*(t) for all t>0. In this case the probability of censoring beyond time t,  

Φ(t), is maximum at the origin. 
 
Conditional Independence Model 
 
Another model from which there is identifiability of marginal distributions is the conditional 
independence model introduced by Hokstad. This model considers the competing risk 
variables D and C to be sharing a common quantity, V, and to be independent given V. More 
precisely, the assumption is that D = V + W, C = V + U, where V, U and W are mutually 
independent. Hokstad and Jensen derived explicit expressions for the case when V, U and W 
are exponentially distributed: 
 
Theorem. Let V, U, W be independent with t

V etS λ−=)( , t

U etS γ−=)(  and t
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Moreover, if V has an arbitrary distribution such that P(V≥0) = 1, and V is independent of U 
and W then still CSD

*(t)=CSC
*(t). 

 
Thus, as in the case of independent exponential competing risks we have equal conditional 
subsurvivor functions, and the probability of censoring beyond time t, Φ(t), is constant. 
However, the conditional subsurvivor functions need not be exponential. Nothing is known 
about their general form. 
 
Mixture of Exponentials Model 
 
Suppose that SD(t) is a mixture of two exponential distributions with parameters λ1, λ2 and 
mixing coefficient p, and that the censoring survivor distribution SC(t) is exponential with 
parameter λy: 
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The properties of the corresponding competing risk model is given by (Bunea, et al., 2003) 
 
Theorem. Let D and C be independent life variables with the above distributions. Then, 
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Moreover, Φ(t) is minimal at the origin, and is strictly increasing when λ1, ≠ λ2. 
 

A2.2. Empirical Subsurvivor and Conditional Subsurvivor functions (Bunea, 
2003). 
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Chapter 3. Short Term Effects of Air Pollution in Mortality: 
an Example with Toluca City. 
 
As explained in chapter one, the short term effects of PM in mortality are described by 
regression models. In this chapter, the theoretical foundation of these kinds of regressions is 
explored and examples are shown with data from Toluca’s Metropolitan Area (ZMT). Toluca 
was chosen to exemplify the theory presented here because it is a relatively important city in 
Mexico that still lacks of a formal study on air pollution effects on health. One remark that the 
reader should remember through this chapter is that the mortality data available corresponds 
to two years, which is a smaller set of observations than in other studies hence explaining 
possible differences with these as for example wider confidence bands. 
 

3.1. Description of Toluca City. 
 
Toluca is the capital city of the central Mexican state, State of Mexico. Air pollution data for 
Toluca city is recorded in RAMA-T by 7 monitoring stations in 3 municipalities in the State 
of Mexico. The codes for the stations, the municipalities to which they belong and the names 
of each station are summarized in Table and Figure 3.1 
 

Table 3.1 RAMA-T Description. 

 
Abbreviation 

Name 
Municipality 

OX Nueva Oxtotitlan Toluca 
CE Toluca Centro Toluca 
MT Metepec Metepec 
SM San Mateo Atenco San Mateo Atenco 
AP Aeropuerto Toluca 
SL San Lorenzo Tepaltitlan Toluca 
SC San Cristobal Huichochitlan Toluca 

 
Data for daily number of deaths from the country was available from the mortality database, 
INEGI/SSA 1990 and 2000 delivered personally by Raydel Valdés from Instituto Nacional de 
Salud Pública, Centro de Investigación en Salud Poblacional in Cuernavaca Mexico. From 
this data base, daily counts were extracted for the municipalities of the State of Mexico coded 
by INEGI (National Institute of Geography Statistics and Informatics) as 106 (Toluca), 076 
(San Mateo Atenco) and  054 (Metepec). 
 
The data base for pollution is “Bases de datos históricas de los contaminantes criterio de la 
ZMVT” provided by Instituto Nacional de Ecología-SEMARNAT (Nacional Institute of 
Ecology). Air pollution data is corrected for temperature and barometric pressure according to 
the Mexican official norm “Normas Oficiales Mexicanas (NOM-034-ECOL-1993 a NOM-
038-ECOL-1993)” with the following criteria: temperature of 298 K(25°C) and barometric 
pressure of 101 KPa (760 mm de Hg). The pollutants are given with the following units: 
Ozone ppm, NO2 ppm,  PM10 µg/m³. A summary for the data is presented in the next tables 
3.2 and 3.3. 
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Figure 3.1 RAMA-T in Toluca City. 

 

 
 
 

Table 3.2 Variables Description 

nad64-(circ64+res64) onad64 
Daily circulatory system related number of deaths in people less than 65 circ64 
Daily respiratory system related number of deaths in people less than 65 res64 
Daily non accidental number of deaths in people less than 65 nad64 
nad65-(circ65+res65) onad65 
Daily circulatory system related number of deaths in people 65 or older circ65 
Daily respiratory system related number of deaths in people 65 or older res65 
Daily non accidental number of deaths in people 65 or older nad65 
Daily respiratory system related number of deaths respt 
Daily circulatory system related number of deaths circt 
namt-(circt+respt) onamt 
Daily non accidental number of deaths namt 
24 hour PM10 average concentration (µg/m³) pm10 
24 hour O3 maximum concentration (ppm) O3max 
24 hour NO2 average concentration (ppm) NO2av 
24 hour minimum temperature (°C) TMPmin.. 
3 previous days average temperature (°C) pdtmin.3 
24 hour average relative humidity  (%) RH 
3 previous days average relative humidity (%) pdrh.3 
24 hour PM10 average concentration of the third day prior to death 
(µg/m³) 

pm10.3 

24 hour O3 maximum concentration of the third day prior to death (ppm) O3max.3 
24 hour NO2 average concentration of the third day prior to death (ppm) NO2av.3 

Table 3.3 Statistical Summary of Variables of Interest 

 
 onad64 circ64 res64 nad64 onad65 circ65 res65 nad65 respt circt onamt namt 

Min: 0 0 0 0 0 0 0 0 0 0  1.0   2.0  

Mean:  6.1   0.7    0.6   7.4   3.0    1.6   0.6   5.2   1.2    2.4   9.0  12.6  

Median:  6   1  0  7   3   1  0  5   1  2   9   12  

Max:  15.0   5.0   6.0  17.0  9.0   7.0  5.0  14.0   9.0   9.0  19.0  24.0  

Variance:  6.1   0.8   0.7   8.1   3.0  1.6   0.8   5.3  1.7   2.3   9.5  14.3  

Sum:  4,434  544   449   5,427   2,161   1,185   463   3,809   912   1,729   6,595  9,236  

 82% 10% 8% 100% 57% 31% 12% 100% 10% 19% 71% 100% 
Units as in Table 3.2.  

Automatic 

Manual 
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Table 3.3 Statistical Summary of Variables of Interest (continue) 

 
 pm10 O3max NO2av TMPmin.. pdtmin.3 RH 

Min: 9.717  0.024   0.008   0.100   0.333   24.483  

Mean: 47.604   0.079   0.022   6.701  6.715   60.581  

Median: 43.548   0.078  0.021   7.214   7.400   60.948  

Max: 166.725   0.180  0.042   13.157  12.662   86.607  

NA's : 35.000   8.000  34.000   4.000   4.000   4.000  

Variance: 740.892   0.001   0.000  10.986  10.075  145.953  

Units as in Table 3.2. NA’s means number of missing observation values. 
Data is from 731 daily averages (2 years). 

 
From table 3.3 it is observed that there are 9,236 non accidental deaths in two years (731 
days) in Toluca, roughly 19% of these are related to circulatory system diseases and 10% are 
respiratory system related deaths; also, 41% of the total number of deaths is among people 
aged 65 or more. The proportion of circulatory and respiratory related mortality is higher in 
the older age group (31% and 12% respectively) than in the younger. Some words of caution 
that the reader must bare in mind is that previous studies of “Mexico City death certificates 
for the years 1991 and 1994 suggested that 12% of deaths might be misclassified among 
broad categories such as respiratory and cardiovascular causes” (Borja-Aburto, 1998) this 
problem could be also observed in the case of Toluca. 
 
The Mexican norm for ozone (NOM-020-SSA1-1993) is 0.11 ppm 1 hour average, for 
nitrogen dioxide (NOM-023-SSA1-1993) 0.21 ppm 1 hour average and 50 µg/m3 one year 
average for PM10 (NOM-025-SSA1-1993). The average PM10 concentration for the two years 
is below the Mexican allowable level for 1 year, and so are the average concentrations of 
Ozone and nitrogen dioxide for their respective norms (table 3.3). A better picture of the daily 
variations for these variables can be observed in figure 3.2; for example, in some days the 
PM10 average concentration is above a 100 µg/m3, ozone also exceeds in some days the 
maximum allowable while the NO2 daily average concentration is always bellow the 
maximum 1 hour tolerance level.  
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Figure 3.2 Time series for selected variables. 
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namt = non accidental mortality, pm10 = PM10 (µg/m3), NO2av = NO2 (ppm) 
daily average concentration, O3max = Daily maximum concentration of ozone 
(ppm), TMPmin.. = minimum 24hour temperature (C°), RH = Relative 
Humidity (%), xpdtmp = 3 previous days average temperature, xpdrh = 3 
previous days average relative humidity. 
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3.2. Generalized Linear Models. 

 
The first classes of models to be considered are generalized linear models (GLM), these are 
an extension of classical linear models of the form  
 

),(~                          ;)( 2σµεβµ ii
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Where the random variables Yi are independent and form the basis of most analysis of 
continuous data. However, methods analogous to those developed for linear models are now 
used in the more general situations where the response variable follows other distributions 
than normal (they might be discrete) and where the relationship between expected response 
and explanatory variable is not necessarily linear. The exponential family of distributions 
(Appendix) offers some properties that make it desirable for these kinds of models. 
 
A generalized linear model has three components: 
 

1. Response variables Y1,…,YN which are assumed to share the same distribution from 
the exponential family in the canonical form.  

2. A set of parameters β1, …, βp and explanatory variables  
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3. A monotone link function g such that g(µi) = xi
T β+ ε  with µi = E(Yi)  

 
Models with data showing the auto-regressions of time series are excluded from a GLM 
analysis because they assume independent observations are being studied. A second 
assumption is that there is a single error term in the model. In classical linear models, the error 
term is assumed to be normal with constant variance. Hence, whether choosing Y or ln(Y) as 
scale has to take into consideration the restrictions of constant variance and normality for the 
error components together with additivity of the systematic components. In GLM this scaling 
problem is removed because normality and constant variance is no longer a requirement for 
the error component. 
 
Statistical packages such as S-Plus already support a routine for fitting GLM as described in 
the appendix. For example consider the data for Toluca city presented in previous sections, if 
we assume that Y1,…,YN are independent random variables with Yi denoting the number of 
deaths observed in a given day, then E(Yi) = µi = θi and the dependence of θi on explanatory 
variables is usually modeled as  
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Therefore, the generalized linear model with the logarithmic link function is  
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In some kind of models θi is multiplied by a constant ni for example if Y is the number of 
insurance claims for a particular model of car then ni would denote the number of cars of a 
particular kind. The amount ln(ni) will be added to (3.4); this amount is called the offset and it 
is a known constant which can be incorporated into the estimation procedure. 
 
One of the simplest models, is to explain impact on mortality in Toluca from PM10 using a 
model just like the one described by (3.2) – (3.4) in health effect studies the offset is normally 
not considered; the two vectors (x0 and x1) incorporated for the estimation of a model 
containing PM10 as the only predictor would be a vector of ones (that estimates the parameter 
β0 and a vector containing the PM10 measurements); the results from fitting this very simple 
model in S-Plus are shown in table 3.4; the value for each coefficient was checked in 
Microsoft Excel and Matlab with the algorithm and the program presented in the appendix. 
 

Table 3.4 Example of Poisson Regression for Mortality and PM10 
Concentration in Toluca City. 

 
glm(formula = namt ~ pm10, family = poisson(link = log), data =  

 MORTALITYSMALLCALCzmvt1, na.action = na.exclude, control = list( 

 epsilon = 0.0001, maxit = 50, trace = F)) 

 
Coefficients: 

                          Value      Std. Error      t value 

Intercept   (β0)     2.424638586    0.0217589095    111.43199 
     pm10   (β1)     0.002369523    0.0003842811      6.16612 
 
The table above presents the estimated values for the coefficients (β0, β1), its standard error 
(square root of the diagonal element corresponding to covariate i in the inverse of the 
information matrix) and the Wald test statistic i. e. the ratio of the coefficient value to its 
standard error, which is asymptotically standard normal. In practice, whenever the p value 
(left tale of the standard normal distribution evaluated at the Wald test statistic) is less than 
0.05 the hypothesis that the true value of the coefficient is zero is rejected. For the example 
above, the p value of the Wald statistic would be less than 0.000 showing a high probability 
that the coefficient is significantly different than zero. 
 
The usual interpretation or risk ratio applies to the situation at hand, hence, for a binary 
explanatory variable with xj = 0 if the factor is absent and xj = 1 if it is present the risk ratio 
will look as formula (3.4) 
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For a continuous explanatory variable, a one unit increase will result in a multiplicative effect 
of eβ on µ, if all other factors remain the same. If the regression above were correct then there 
would be a multiplicative effect of e 

pm10 = 1.002372336 on the mortality rate for a one µg/m3 
increase in PM10 exposure; this actually means a 0.23% increase in total mortality per µg/m3 
increase in PM10 average concentration or a 2.3 % increase in total mortality per 10 µg/m3 
increase in PM10 average concentration. Often times, epidemiologists take the estimated 
coefficient (β1 in table 3.4) and multiply it by 1000 (= 2.369523) to express the % change in 
mortality due to a 10 µg/m3 increase in PM10 average concentration which for small β is a 
good approximation. 
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To make inferences about the estimator, one common measure is the analysis of deviance; this 
estimator is derived from the notions of saturated, maximal or full model. If there are N 
observations all with potentially different values for the linear component xi

T β then the full 
model can have N parameters. However if some of the observations have the same linear 
component or covariate pattern, they are called replicates. In this case the maximum number 
of parameters that may be estimated from the saturated model m are less than or equal to N.  
 
Call βmax the vector of parameters for the saturated model and bmax it’s vector of maximum 
likelihood estimators. The likelihood function evaluated at bmax will be larger than any other 
likelihood function for these observations if L(b;y) denotes the maximum value of the 
likelihood function for the model of interest, then the likelihood ratio is: 
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);( max
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ybL
=λ  (3.6) 

 
);();()ln( max yblybl −=λ  (3.7) 

 
The quantity 2ln(λ) has a chi-squared distribution with degrees of freedom equal to the 
number of paramteres in the full model minus the number of parameters to be estimated (see 
appendix) and can be used for inference in a similar way as an anova table. 
 

3.3. Generalized Additive Models. 
 
In Generalized Additive Models (GAM) the elements to be considered are,  
 

1. Response variables Y1,…,YN which are assumed to share the same distribution from 
the exponential family in the canonical form.  

2. A set of explanatory variables  
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3. A link function g such that ∑
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jjii Xffg
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0 )()(µη  with µi = E(Yi|Xi)  

 
fj is a nonparametric function estimated from data using smoothing operations, describing the 
relationship between each of the j predictors and the transformed mean response. The 
estimation of these functions is accomplished by the algorithm described below (Hastie and 
Tibshirani, 1990) and (Schimek, 1999). 
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Table 3.5 Local Scoring Algorithm. 
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3. Backfitting steps:                    Solve for fk+1              for m = 0, 1, 2, . . .  
a) Initialization of inner loop: 
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In the above algorithm, Sj is a weighted cubic smoothing-spline operator; from (Schimek, 
1999) and (Green and Silverman, 1994) if hi = xi+1 – xi for i = 1, 2, …, n-1 then K = ∆T C-1 ∆ 
is a quadratic penalty matrix where ∆ is a tri-diagonal (n-2) × n matrix with ∆i,i = 1/ hi, ∆i,i+1 = 
-(1/ hi + 1/ hi+1), ∆i,i+2 = 1/ hi+1, and a symmetric tri-diagonal (n-2) × (n-2) matrix C with ci-1,i 
= ci,i-1 = hi / 6, ci,i = (hi + hi+1)/3. Then Sj = (W + λj Kj) 

-1 W, where W is a diagonal matrix with 
elements wii the reader may find the motivation for this approach in the appendix. 
 
Inference in this model is similar to that of GLM and the reader is referred to the references to 
go further in this respect. 
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3.4 Results for Toluca City. 

 
The models to be studied and compared in the present chapter for Toluca city when using 
GLM or GAM for mortality counts Yt, will take the form (3.8) and (3.9) respectively. A model 
very similar to (3.9) was used in the NMMAPS study (Dominici et. al., 2000) and  is also 
comparable to previous studies in Mexico (Borja Aburto, 1998) and (Castillejos, 2000).  
 

prevhumprevtemphumtemptimeDOWXYE ltt 76543210))(ln( ββββββββ +++++++= −
 (3.8) 

),(),(),(),(),())(ln( 32321210 λλλλλβββ prevhumShumSprevtempStempStimeSDOWXYE ltt +++++++= −
  (3.9) 

 
In the expression above X is the matrix of air pollution measures, time is the calendar time, 
temp is a measure of temperature (minimum in this case), prevtemp is the average minimum 
temperature of 3 previous days, hum is a measure of humidity or dew point (relative 
humidity), prevhum is the average relative humidity of 3 previous days, DOW are indicator 
variables for day of the week, l is the lag of the pollution exposure which is generally 
restricted to 0 to 7 days. The functions S( ·, λ) denote smooth functions of the covariates with 
smoothing parameter λ. For the models presented below λ1 = 7/year, λ2 = 6 and λ3 = 3, this 
choice is again motivated by the model used in NMMAPS. 
 
The model (3.9) is semi-parametric in the sense that besides the parametric part of the model 
that enters in the usual linear relationship of GLM, smooth functions of certain covariates are 
included to take into consideration possible non linear relationship of these to daily mortality 
counts. The model is fit using the local scoring algorithm, described in previous sections and 
separating the parametric from the nonparametric part of the fit; the parametric part is fit 
using weighted linear least squares (Appendix) within the backfitting algorithm. Next the 
results of fitting models (3.8) and (3.9) for Toluca city will be presented. 
 
Table 3.6 a) has the same interpretation as table 3.4; the first two columns show the name and 
estimated coefficients of each variable obtained by solving equation (28) in the appendix, the 
calculations were checked in Matlab with the code presented in appendix 3.3; the algorithm 
used by S-plus identifies a singularity in the estimate of the information matrix shown in the 
left hand side of (28) when the 7 indicator variables for day of the week are used and hence 
eliminates the last indicator (sun) to solve the system described by (28) with all but this 
covariate. The next column shows standard errors computed as the square root of the main 
diagonal elements of the inverse of the estimated information matrix after the last iteration; 
and the last column shows the Wald statistic; the p value for this statistic for pm10 in the 
example below would be 0.2207. As before, whenever the p value (left tale of the standard 
normal distribution evaluated at the Wald test statistic) is less than 0.05 the hypothesis that the 
true value of the coefficient is zero can be rejected; table 3.6 a) shows that it is very likely that 
the 0.0006 estimator of the coefficient for PM10 is not significantly different than zero. 
 
Table 3.6 b) is to be interpreted in the same way as table 3.6) except that the estimations are 
obtained with GAMs; as in a) the indicator variable for Sunday is removed from the 
calculations as singularities are found when using this covariate. The variables that are 
smoothed are denoted by s(variable, λi). The reader should notice that the estimated 
coefficient shows a positive influence of PM10 24 hour average concentrations on health 
however this coefficient is statistically not significantly different than zero (p value = 0.276). 
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Table3.6 Results for the Relation of PM10 in Total non Accidental Mortality in Toluca from Models 3.8 and 3.9. 

 
a) GLM Model (3.8) b) GAM Model (3.9) 

                    Value    Std. Error      t value  

(Intercept)  2.570793e+000  0.13303444897  19.32426868 

       pm10  6.127692e-004  0.00079600471   0.76980605 

      O3max -2.561561e-001  0.58421245327  -0.43846398 

      NO2av  3.141127e+000  2.69499757224   1.16553982 

        mon -8.101378e-003  0.04052810624  -0.19989531 

        tus -2.638994e-002  0.04110338911  -0.64203814 

        wed -4.079026e-002  0.04145779026  -0.98389857 

        thr -9.821575e-003  0.04131613149  -0.23771768 

        fri -3.157690e-002  0.04176243050  -0.75610770 

        sat -1.866582e-002  0.04091670076  -0.45619076 

        sun             NA             NA           NA 

        day  8.120721e-007  0.00006142607   0.01322032 

   TMPmin.. -2.349803e-003  0.00794113366  -0.29590270 

   pdtmin.3 -2.094585e-002  0.00847319387  -2.47201351 

         RH -9.081254e-004  0.00156641054  -0.57974932 

     pdrh.3  1.863330e-003  0.00176058157   1.05836046 

                        Value    Std. Error     t value  

   (Intercept)  2.69236718192  0.1319031336  20.4116999 

          pm10 -0.00047217204  0.0007955877  -0.5934884 

         O3max -0.13939559296  0.5848676198  -0.2383370 

         NO2av  5.00340947549  2.7031572276   1.8509502 

           mon -0.00488470905  0.0405263250  -0.1205318 

           tus -0.02584708725  0.0410963289  -0.6289391 

           wed -0.03964965077  0.0414670037  -0.9561735 

           thr -0.00752704590  0.0413266194  -0.1821355 

           fri -0.03062093956  0.0417558846  -0.7333323 

           sat -0.01076352800  0.0409239990  -0.2630126 

    s(day, 14) -0.00004388885  0.0000614229  -0.7145356 

s(TMPmin.., 6)  0.00155339734  0.0079387640   0.1956724 

s(pdtmin.3, 3) -0.01066454682  0.0084476575  -1.2624265 

      s(RH, 6) -0.00183729973  0.0015626216  -1.1757804 

  s(pdrh.3, 3) -0.00043561371  0.0017526721  -0.2485426 

 

Table3.7 Analysis of Deviance for the Models Described in table 3.6. 

 
a) GLM Model (3.8) b) GAM Model (3.9) 

          Df   Delta D.        Df   Resid. Dev   Pr(Chi)  

    NULL                      690   787.1315           

     mon   1   0.17390        689   786.9576   0.6766723 

     tus   1   0.00400        688   786.9536   0.9495826 

     wed   1   0.42047        687   786.5331   0.5167041 

     thr   1   0.19920        686   786.3339   0.6553645 

     fri   1   0.08428        685   786.2496   0.7715771 

     sat   1   0.03262        684   786.2170   0.8566695 

     sun   0   0.00000        684   786.2170           

     day   1   3.73514        683   782.4819   0.0532792 

TMPmin..   1  56.72469        682   725.7572   0.0000000 

pdtmin.3   1   7.58442        681   718.1728   0.0058875 

      RH   1   0.20787        680   717.9649   0.6484395 

  pdrh.3   1   0.60426        679   717.3606   0.4369579 

   NO2av   1   2.18471        678   715.1759   0.1393871 

   O3max   1   0.14690        677   715.0290   0.7015182 

    pm10   1   0.59172        676   714.4373   0.4417533 

                Df    Delta D    Df    Resid. Dev  Pr(Chi) 

          NULL                   690   787.1315        

           Mon   1    0.17390    689   786.9576   0.6766723 

           tus   1    0.00400    688   786.9536   0.9495826 

           wed   1    0.42047    687   786.5331   0.5167041 

           thr   1    0.19920    686   786.3339   0.6553645 

           fri   1    0.08428    685   786.2496   0.7715771 

           sat   1    0.03262    684   786.2170   0.8566695 

           sun   0    0.00000    684   786.2170     

    s(day, 14)   1    3.73514    683   782.4819   0.0532792 

s(TMPmin.., 6)   1   56.72469    682   725.7572   0.0000000 

s(pdtmin.3, 3)   1    7.58442    681   718.1728   0.0058875 

      s(RH, 6)   1    0.20787    680   717.9649   0.6484395 

  s(pdrh.3, 3)   1    0.60426    679   717.3606   0.4369579 

         NO2av   1    2.18471    678   715.1759   0.1393871 

         O3max   1    0.14690    677   715.0290   0.7015182 

          pm10  28   60.92454    648   654.1045   0.0003109 
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Table 3.7 a) shows the analysis of deviance for GLM, this table consists of 6 columns; the 
reader should look first at column 5 that shows the value of the deviance computed with the 
coefficients that a fit with all variables up to a given row would find, for instance a model that 
includes all variables up to O3max would have a deviance of approximately 715.03. This is 
approximately a chi squared variable with 677 degrees of freedom as shown in column 4 (the 
degrees of freedom are equal to the number of non missing observations in the data minus the 
number of parameters in the model that are 13 for this case); the deviance of the model 
including all variables is shown at the last row, column five, of the table (714.4373 with 676 
degrees of freedom) if this value is subtracted from the value found previously with all 
variables except PM concentrations a chi squared variable with 1 degree of freedom will be 
found. This is shown in the column labeled Delta D.  
 
In practice, whenever the p value (p(Chi) in the table above) of this number is less than 0.05 
the null hypothesis that the model including PM10 is equal to the model including all other 
variables but PM10 can be rejected, showing that a model including PM10 would describe 
better the data than a model excluding this variable. For the example above it is observed that 
it is likely (44% probability) that a model containing all variables up to O3 is not significantly 
different from a model containing also PM10. 
 
The reader may see that the only difference between tables 3.7 a) and b) is the last row. This 
is because the hypothesis to be tested is whether a model like 3.9 that contains smooth 
functions of calendar time, temperature and relative humidity is significantly different from a 
GLM that contains all variables except PM10. In this case, Delta D has 28 degrees of freedom 
this is because the deviance up to O3max has 677 degrees of freedom and the GAM model 
contains 690 degrees of freedom from the data minus one degree of freedom for the parameter 
for the intercept and each indicator variable except Sunday, 14 for the smoothing parameter 
λ1, 6 for each of the two λ2 parameters, 3 each of the two λ3 and one for each of the three 
pollutants considered giving a total of 648 degrees of freedom. It can be observed that the null 
hypothesis that a GAM containing all variables of interest with the smooth functions of 
selected variables is equal to a GLM containing all variables except PM10 can be rejected with 
some confidence. 
 
Further analysis will present risk ratios for 10 µg/m3 increase in PM10 using the coefficients 
computed by models (3.8) and (3.9), normal approximations of 95% confidence intervals and 
p values for the Wald statistic and the Delta D statistic that for GLM test the null hypothesis 
that a model containing all variables except PM10 is equal to a model containing also this 
variable; and for GAMs the null hypothesis that a GAM with all variables is equal to a GLM 
with all variables except PM10, this p values will be labeled p(t) for the Wald statistic and 
p(chi) for the Delta D statistic. The analysis breaks total non accidental mortality (ICD-10 
codes A to R) in circulatory system related mortality (ICD-10 code I), respiratory system 
related mortality (ICD-10 code J) and all other non accidental mortality. The results are 
presented in table 3.7 for same day pollution and in table 3.8 for a 3 day lag pollution; the 
choice for the air pollution lag follows the methodology employed in NMMAPS. 
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Table 3.7 Risk Ratio for 10 µg/m3 increase in PM10 average concentration 
in the same day. 

 
GLM (Model 3.8) GAM (Model 3.9) 

Cause of death and pollutants included 

in the model Risk Ratio and 

(95% C.I.) 
p(t) p(Chi) 

Risk Ratio and 

(95% C.I.) 
p(t) p(Chi) 

PM10 
1.010 

(0.995, 1.024) 
0.096 0.192 

1.003 

(0.989, 1.018) 
0.336 0.000 

PM10+O3max 
1.009 

(0.994, 1.024) 
0.115 0.230 

1.001 

(0.987, 1.016) 
0.424 0.000 

Total non 

accidental 

mortality 

PM10+O3max+NO2av 
1.006 

(0.991, 1.022) 
0.221 0.442 

0.995 

(0.980, 1.011) 
0.276 0.000 

PM10 
0.999 

(0.967, 1.033) 
0.478 0.957 

0.990 

(0.958, 1.023) 
0.275 0.205 

PM10+O3max 
0.993 

(0.960, 1.027) 
0.343 0.687 

0.983 

(0.950, 1.017) 
0.166 0.211 

Total circulatory 

system related 

mortality 

PM10+O3max+NO2av 
0.983 

(0.948, 1.019) 
0.175 0.843 

0.965 

(0.931, 1.001) 
0.028 0.151 

PM10 
1.017 

(0.973, 1.064) 
0.224 0.448 

1.004 

(0.961, 1.050) 
0.426 0.105 

PM10+O3max 
1.026 

(0.980, 1.074) 
0.139 0.279 

1.009 

(0.963, 1.056) 
0.356 0.125 

Total respiratory 

system related 

mortality 

PM10+O3max+NO2av 
1.026 

(0.977, 1.077) 
0.153 0.306 

1.005 

(0.957, 1.055) 
0.417 0.127 

PM10 
1.011 

(0.994, 1.028) 
0.104 0.209 

1.005 

(0.988, 1.022) 
0.291 0.009 

PM10+O3max 
1.011 

(0.993, 1.029) 
0.115 0.231 

1.003 

(0.986, 1.021) 
0.349 0.009 

Other non 

accidental 

mortality total 

PM10+O3max+NO2av 
1.010 

(0.991, 1.028) 
0.157 0.315 

1.000 

(0.982, 1.019) 
0.499 0.008 

PM10 
1.003 

(0.984, 1.022) 
0.377 0.753 

1.002 

(0.984, 1.021) 
0.406 0.001 

PM10+O3max 
1.006 

(0.987, 1.026) 
0.266 0.532 

1.004 

(0.985 1.023) 
0.344 0.001 

Total non 

accidental 

mortality 

(people < 65) 
PM10+O3max+NO2av 

1.003 

(0.983, 1.023) 
0.394 0.787 

0.997 

(0.977, 1.017) 
0.389 0.001 

PM10 
1.067 

(1.006,1.131) 
0.015 0.031 

1.062 

(1.002, 1.125) 
0.021 0.010 

PM10+O3max 
1.067 

(1.005, 1.133) 
0.017 0.034 

1.065 

(1.004, 1.130) 
0.019 0.010 

Total circulatory 

system related 

mortality 

(people < 65) 
PM10+O3max+NO2av 

1.047 

(0.983, 1.115) 
0.078 0.158 

1.027 

(0.964, 1.094) 
0.203 0.013 

PM10 
0.952 

(0.893, 1.014) 
0.063 0.127 

0.961 

(0.903, 1.022) 
0.103 0.0201 

PM10+O3max 
0.969 

(0.907, 1.034) 
0.170 0.341 

0.974 

(0.914, 1.039) 
0.211 0.0453 

Total respiratory 

system related 

mortality 

(people < 65) 
PM10+O3max+NO2av 

0.969 

(0.903, 1.039) 
0.185 0.369 

0.970 

(0.906, 1.039) 
0.194 0.0458 

PM10 
1.000 

(0.980, 1.021) 
0.483 0.967 

0.998 

(0.978, 1.019) 
0.439 0.0167 

PM10+O3max 
1.002 

(0.981, 1.024) 
0.411 0.823 

0.998 

(0.977, 1.020) 
0.441 0.0169 

Other non 

accidental 

mortality total 

(people < 65) 
PM10+O3max+NO2av 

1.001 

(0.979, 1.024) 
0.458 0.917 

0.995 

(0.973, 1.018) 
0.342 0.0155 

PM10 
1.019 

(0.996, 1.042) 
0.049 0.099 

1.002 

(0.980, 1.025) 
0.421 0.0488 

PM10+O3max 
1.013 

(0.990, 1.037) 
0.131 0.263 

0.996 

(0.973, 1.019) 
0.371 0.0672 

Total non 

accidental 

mortality 

(people > 65) 
PM10+O3max+NO2av 

1.011 

(0.987, 0.879) 
0.190 0.380 

0.991 

(0.967, 1.015) 
0.227 0.0662 

PM10 
0.970 

(0.932, 1.009) 
0.063 0.127 

0.957 

(0.920, 0.996) 
0.016 0.1017 

PM10+O3max 
0.960 

(0.921, 1.000) 
0.026 0.053 

0.946 

(0.907, 0.986) 
0.004 0.0709 

Total circulatory 

system related 

mortality 

(people > 65) 
PM10+O3max+NO2av 

0.955 

(0.914, 0.998) 
0.020 0.040 

0.937 

(0.897, 0.980) 
0.002 0.0603 

PM10 
1.086 

(1.020, 1.155) 
0.005 0.010 

1.052 

(0.988, 1.121) 
0.058 0.1126 

PM10+O3max 
1.085 

(1.017, 1.157) 
0.007 0.014 

1.047 

(0.980, 1.118) 
0.086 0.1316 

Total respiratory 

system related 

mortality 

(people > 65) 
PM10+O3max+NO2av 

1.085 

(1.014, 1.161) 
0.009 0.020 

1.043 

(0.973, 1.119) 
0.115 0.1467 

PM10 
1.033 

(1.003, 1.065) 
0.016 0.032 

1.019 

(0.989, 1.050) 
0.107 0.2753 

PM10+O3max 
1.029 

(0.997, 1.061) 
0.036 0.073 

1.015 

(0.984, 1.047) 
0.170 0.3656 

Other non 

accidental 

mortality total 

(people > 65) 
PM10+O3max+NO2av 

1.027 

(0.995, 1.061) 
0.052 0.104 

1.010 

(0.978, 1.044) 
0.273 0.3733 
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Table 3.8 Risk Ratio for 10 µg/m3 increase in PM10 average concentration 
at lag 3. 

 
GLM (Model 3.8) GAM (Model 3.9) 

Cause of death and pollutants included 

in the model Risk Ratio and 

(95% C.I.) 
p(t) p(Chi) 

Risk Ratio and 

(95% C.I.) 
p(t) p(Chi) 

PM10 
1.014 

(1.001 1.026) 0.016 0.031 

1.011 

(0.998, 1.023) 0.043 0.001 

PM10+O3max 
1.014 

(1.001 1.027) 0.017 0.035 

1.010 

(0.997, 1.023) 0.064 0.001 

Total non 

accidental 

mortality 

PM10+O3max+NO2av 
1.014 

(1.001 1.028) 0.021 0.043 

1.011 

(0.998, 1.025) 0.052 0.001 

PM10 
1.012 

(0.983, 1.041) 0.209 0.418 

1.012 

(0.983, 1.041) 0.215 0.241 

PM10+O3max 
1.008 

(0.978, 1.038) 0.304 0.609 

1.018 

(0.986, 1.051) 0.137 0.135 

Total circulatory 

system related 

mortality 

PM10+O3max+NO2av 
1.004 

(0.973, 1.036) 0.402 0.804 

1.004 

(0.972, 1.036) 0.408 0.283 

PM10 
1.032 

(0.993, 1.071) 0.055 0.111 

1.022 

(0.984, 1.062) 0.130 0.110 

PM10+O3max 
1.036 

(0.997, 1.078) 0.036 0.075 

1.025 

(0.985, 1.066) 0.112 0.113 

Total respiratory 

system related 

mortality 

PM10+O3max+NO2av 
1.031 

(0.988, 1.031) 0.079 0.162 

1.018 

(0.975, 1.062) 0.211 0.150 

PM10 
1.012 

(0.997, 1.027) 0.060 0.121 

1.007 

(0.992, 1.022) 0.184 0.012 

PM10+O3max 
1.012 

(0.997, 1.028) 0.059 0.118 

1.006 

(0.991, 1.022) 0.221 0.014 

Other non 

accidental 

mortality total 

PM10+O3max+NO2av 
1.015 

(0.998, 1.031) 0.039 0.078 

1.010 

(0.994, 1.027) 0.113 0.010 

PM10 
1.008 

(0.992, 1.025) 0.155 0.311 

1.011 

(0.995, 1.028) 0.088 0.002 

PM10+O3max 
1.011 

(0.994, 1.028) 0.100 0.201 

1.012 

(0.995, 1.029) 0.085 0.002 

Total non 

accidental 

mortality 

(people < 65) 
PM10+O3max+NO2av 

1.011 

(0.993, 1.030) 0.109 0.220 

1.011 

(0.995, 1.031) 0.073 0.002 

PM10 
1.042 

(0.991, 1.097) 0.055 0.111 

1.028 

(0.977, 1.082) 0.145 0.023 

PM10+O3max 
1.025 

(0.971, 1.082) 0.183 0.368 

1.003 

(0.951, 1.059) 0.451 0.029 

Total circulatory 

system related 

mortality 

(people < 65) 
PM10+O3max+NO2av 

1.024 

(0.968, 1.084) 0.204 0.409 

1.003 

(0.947, 1.061) 0.462 0.029 

PM10 
0.981 

(0.928, 1.036) 0.242 0.483 

0.980 

(0.927, 1.035) 0.229 0.028 

PM10+O3max 
0.997 

(0.943, 1.055) 0.460 0.921 

0.992 

(0.938, 1.049) 0.388 0.061 

Total respiratory 

system related 

mortality 

(people < 65) 
PM10+O3max+NO2av 

0.981 

(0.922, 1.042) 0.265 0.529 

0.976 

(0.918, 1.037) 0.212 0.073 

PM10 
1.007 

(0.989, 1.026) 0.209 0.418 

1.011 

(0.993, 1.029) 0.122 0.029 

PM10+O3max 
1.011 

(0.992, 1.030) 0.127 0.256 

1.013 

(0.994, 1.032) 0.095 0.040 

Other non 

accidental 

mortality total 

(people < 65) 
PM10+O3max+NO2av 

1.013 

(0.993, 1.033) 0.103 0.207 

1.016 

(0.996, 1.036) 0.056 0.034 

PM10 
1.021 

(1.002, 1.041) 0.016 0.032 

1.009 

(0.990, 1.029) 0.172 0.038 

PM10+O3max 
1.018 

(0.998, 1.039) 0.039 0.079 

1.006 

(0.986, 1.027) 0.267 0.055 

Total non 

accidental 

mortality 

(people > 65) 
PM10+O3max+NO2av 

1.019 

(0.997, 1.041) 0.044 0.090 

1.008 

(0.986, 1.029) 0.241 0.056 

PM10 
0.998 

(0.965, 1.033) 0.464 0.927 

1.003 

(0.969, 1.039) 0.424 0.178 

PM10+O3max 
1.000 

(0.965, 1.037) 0.495 0.989 

1.008 

(0.973, 1.045) 0.329 0.162 

Total circulatory 

system related 

mortality 

(people > 65) 
PM10+O3max+NO2av 

0.995 

(0.958, 1.034) 0.399 0.797 

1.002 

(0.965, 1.041) 0.455 0.162 

PM10 
1.082 

(1.027, 1.140) 0.002 0.004 

1.064 

(1.008, 1.122) 0.012 0.097 

PM10+O3max 
1.076 

(1.019, 1.136) 0.004 0.009 

1.057 

(0.999, 1.118) 0.027 0.134 

Total respiratory 

system related 

mortality 

(people > 65) 
PM10+O3max+NO2av 

1.079 

(1.019, 1.143) 0.005 0.011 

1.058 

(0.997, 1.123) 0.032 0.142 

PM10 
1.021 

(0.995, 1.047) 0.060 0.121 

0.999 

(0.974, 1.025) 0.475 0.247 

PM10+O3max 
1.015 

(0.988, 1.043) 0.135 0.270 

0.993 

(0.966, 1.020) 0.300 0.298 

Other non 

accidental 

mortality total 

(people > 65) 
PM10+O3max+NO2av 

1.019 

(0.990, 1.048) 0.101 0.204 

0.998 

(0.970, 1.027) 0.442 0.274 
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From table 3.7 the reader may observe that for the aggregated data, GLM and GAM show 
central estimate that indicate a positive association between daily mortality and PM10 
concentration levels except for circulatory system related mortality where the relationship is 
opposite, however in most cases (except for a GAM with total circulatory system related 
mortality including 3 pollutants and perhaps the GLM for total non accidental mortality 
including only the pollutant of interest) the hypothesis that the coefficient is different than 
zero would not be rejected. The hypothesis that a model including PM and a model including 
all other variables except this one are equal, would not be rejected in any case for the GLM. 
The null hypothesis for GAMs however would be rejected except for circulatory and 
respiratory mortality, showing that for total non accidental mortality and for mortality causes 
other than respiratory and circulatory, a model including smooth terms and PM10 is preferable 
to a GLM excluding PM as an explanatory variable. 
 
In the age group of people less than 65 years old, a consistent association of PM10 and 
circulatory system related mortality is observed in models including only this pollutant and 
ozone. It is to be notice that the p values for both hypothesis tests are less than 0.05 and the 
central estimates using either GAM or GLM range from a 6.2% to a 6.7% increase in 
circulatory system related mortality per 10 µg/m3 increase in PM10 levels. In all cases the 
GAM for this age group would be a preferable model than a linear model as measured by the 
Delta D statistic, however, only in the two cases previously mentioned the hypothesis that the 
coefficient is equal to zero would be rejected (p(t)< 0.02). 
 
In the older age group, in 50% of the cases (total non accidental mortality and less so in 
circulatory system related mortality), GAMs including PM10 seem not to be significantly 
different to a GLM not including this pollutant as for the hypothesis that the coefficient found 
by GAMs is significantly different than zero, it would be rejected in circulatory system related 
mortality that surprisingly shows a central estimate with a negative influence on mortality by 
this cause, this finding is consistent when considering GLM. On the other hand, a very 
significant linear influence of PM10 same day average concentrations is observed on 
respiratory system related mortality with at least an 8.5% increment per 10 µg/m3 increase in 
PM10, the reader should observe that a linear model better fits the data than a model 
considering smooth terms (p(Chi)>0.10 for GAMs). When fitting a model not considering 
ozone or nitrogen dioxide, a significant association of this pollutant with total non accidental 
mortality and mortality from causes other that circulatory or respiratory system diseases was 
observed; the central estimates show a 1.9% and 3.3% increase in baseline mortality per 10 
unit increase of air pollution respectively. 
 
For a 3 day lag effect of air pollution in total mortality, the GAMs seem to better describe the 
data than a GLM not including PM10 as measured by p(Chi), except in the case of non 
accidental deaths not related to respiratory or circulatory system diseases. A consistent 
statistical association of 3 day lag PM concentration was found when using GLM and GAM 
to explain total non accidental mortality (p(t)<0.064 and p(chi)<0.043 in all cases) showing an 
approximate 1.0 to 1.4% increase in mortality for 10 units increase in PM10 average 
concentration in the third day previous to death. Strong association was observed in the older 
age group for total non accidental mortality (% change in mortality for 10 unit increase in air 
pollution between 1.8 and 2.1%) and total respiratory mortality (% change in mortality for 10 
unit increase in air pollution between 7.6 and 8.2%) where the prediction power appears to be 
stronger as measured by the two test statistics. Some association, though less clear, is 
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observed in the models including 3 pollutants for other non accidental mortality and 2 
pollutants for total respiratory mortality. 
 
When looking at GAMs, the smallest p value for rejecting the null hypothesis that the 
coefficient for PM is different than zero is observed in total respiratory system related 
mortality in people 65 or older with the model considering one pollutant with 6.4% increase 
in mortality for 10 unit increase in 3 day lag PM10 concentration. In the younger age group, 
the most important association between 3 day lag air pollution and mortality was  observed 
with the 3 pollutant model in other non accidental mortality, and a consistent 1.1% increase in 
total non accidental mortality per 10 unit increase in air pollution is to be noted. 
 

3.5 Partial Correlation. 
 
The coefficients found previously are those that maximize the log likelihood function (9) in 
the appendix, assuming a Poisson distribution for mortality counts. Other question that is of 
interest is to investigate how strong is the association between the daily number of deaths 
from different causes with the variables included in models 3.8 and 3.9; to begin with, simple 
product moment correlation coefficients2 could be observed. To keep consistency with the 
previous models, mortality variables are in the log scale, the indicator variables for day of the 
week and the dummy variable for the time of study were excluded from the analysis. 
 

Table 3.9 Correlation Coefficients for Total non Accidental Mortality and 
Selected Variables. 

 
 ln(namt) pm10 O3max NO2av TMPmin Pdtmin.3 RH 3pdrh.3 

ln(namt) 1.0000        

pm10 0.1959 1.0000       

O3max 0.0766 0.4533 1.0000      

NO2av 0.1803 0.6452 0.5544 1.0000     

TMPmin -0.2529 -0.5641 -0.1942 -0.4819 1.0000    

pdtmin.3 -0.2716 -0.5963 -0.1767 -0.4897 0.8953 1.0000   

RH -0.1443 -0.6875 -0.4163 -0.4406 0.4447 0.4065 1.0000  

3pdrh.3 -0.1405 -0.7169 -0.3936 -0.4516 0.3813 0.4648 0.7670 1.0000 

 
From the table above it is observed that all correlation coefficients for the log of total non 
accidental mortality with a given variable are smaller than 0.28 in absolute value, all three 
pollutant measures are positively correlated with the log of daily number of deaths (PM10 
showing the “strongest” linear dependence with a coefficient equal to 0.19), while the 
atmospheric variables present a negative correlation with this variable. All three pollutant 
measures are positively correlated with each other with a coefficient between 0.45 and 0.64, 
and negatively correlated with atmospheric variables the strongest association in the matrix 
above is found between pdtmin.3 with TMPmin and 3pdrh.3 with RH which is natural 
because pdtmin.3 is the 3 previous day moving average of minimum temperature and 3pdrh.3 
is the 3 previous day moving average of relative humidity. 

                                                
2 The reader should remember that the product moment correlation for variable X and Y is the ratio of the 
covariance between the two variables to the product of the standard deviation for each variable. The coefficient 
is zero if the two variables are independent but it is not necessarily the case that when the coefficient is zero, the 
two variables are independent. The product moment correlation coefficient measures linear dependence. 
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To have a better picture of the dependence of daily mortality with PM10 partial correlation 
coefficients can be computed. Given n variables one may be interested in the regression of 
any one, upon any subset of the others. Partial correlation of {i, j} based on {k, l, ..} is related 
to the regression of i on j, in the presence of variables k, l, …,n as: 
 

21
,...,,;,...,,;,...,,;,...,,; ))(sgn( nlkjinlkijnlkijnlkij bbb=ρ  (3.8) 

 
Where bij;k,l,…,n are the numbers that minimize (3.9) 
 

[ ]2
1,...,;,...,; )...( nnjinjnkiji XbXbXE −−−−  (3.8) 

 
For a joint normal distribution, partial and conditional correlations are equal. In this case the 
interpretation is that if holding other variables fixed reduces the correlation between two 
variables, it will be inferred that their interdependence arises in part because of the influence 
of these other variables; if the partial correlation is close to zero, the interdependence of two 
given variables could be due to the influence of all other variables (those that are held fixed). 
When the partial correlation of two variables is larger than the original correlation, the 
conclusion is that the other variables were obscuring the true stronger association between 
two given variables. 
 
In this study, following (Kendall, 1961) partial correlation coefficients are computed as (3.9) 
where Cij is the cofactor of the (i, j)th element in the symmetric correlation matrix. All 
correlation and partial correlation coefficients were computed in Matlab with the program 
presented in the appendix. 
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Table 3.10 Partial Correlation Coefficients for Total non Accidental 
Mortality and Selected Variables. 

 
 ln(namt) pm10 O3max NO2av TMPmin pdtmin.3 RH 3pdrh.3 

ln(namt) -1.000        

pm10 0.014 -1.000       

O3max -0.006 0.073 -1.000      

NO2av 0.037 0.337 0.424 -1.000     

TMPmin -0.006 -0.036 -0.005 -0.066 -1.000    

pdtmin.3 -0.091 -0.130 0.119 -0.068 0.851 -1.000   

RH -0.023 -0.227 -0.112 0.058 0.340 -0.303 -1.000  

3pdrh.3 0.020 -0.306 -0.058 0.031 -0.338 0.338 0.585 -1.000 

 
The partial correlation of the log of non accidental mortality with all other variables is smaller 
than 3.7 ×10 -2 suggesting that any correlation that could be observed between these variables 
in table 3.9 could be induced by the influence of all other variables. It is also observed that the 
correlation between ozone and PM with NO2 does not drop dramatically when keeping the 
values of all other variables fixed suggesting that this correlation could be important. As it is 
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expected the 3 previous days moving averages for minimum temperature and relative 
humidity show the highest values for partial correlation with the single day measures of these 
variables. Since PM10 is the variable that this thesis is mainly concerned with, further analysis 
will present correlation and partial correlation coefficients for this variable and the measures 
of daily number of deaths considered through this chapter computed in the same way as in 
tables 3.9 and 3.10. 
 

Table 3.11 Correlation Coefficients and Partial Correlation Coefficients 
for Mortality and PM10 in Toluca. 

 

PM10 
PM10 

(3 day lag structure) 

ln(Y) CC PCC CC PCC 

non accidental deaths 0.196 0.014 0.209 0.067 

circulatory system related 0.124 -0.056 0.132 -0.019 

respiratory system related 0.186 0.025 0.204 0.028 
Total 

other  0.102 0.030 0.105 0.066 

non accidental deaths 0.123 0.044 0.135 0.059 

circulatory system related 0.083 0.031 0.069 0.016 

respiratory system related 0.040 -0.043 0.063 -0.073 

< 65 years 
old 

other  0.082 0.052 0.102 0.082 

non accidental deaths 0.180 0.013 0.176 0.044 

circulatory system related 0.099 -0.071 0.075 -0.086 

respiratory system related 0.140 0.012 0.156 0.047 

> 65 years 
old 

other  0.064 0.049 0.027 0.018 

CC = Pearson Correlation Coefficient. PCC = Partial Correlation Coefficient.  

 
From the table above it is observed that all correlation coefficients for PM10 and different 
causes of mortality in different age groups are smaller than 0.196 for the same day average 
concentration and 0.209 for a 3 day lag structure, suggesting that a linear association between 
PM10 and mortality, if any, is very weak. Moreover, for the same day average PM10 
concentration the largest absolute value of the partial correlation coefficient is 5.6 × 10-2 
observed in total circulatory system related mortality, and for the 3 day lag structure this 
number is 8.6 × 10-2. These numbers being so small suggest that any possible linear 
association between two given variables could be due to the influence of the other variables in 
the model. 
 

3.6 Final Remarks. 
 
As measured by Pearson’s and partial correlation coefficients, it would be difficult to observe 
any dependence of daily mortality counts on PM10 average concentration in the same day or 
with a 3 day lag structure with traditional regression techniques due to the assumption of joint 
normality. GAM and GLM however give some evidence of the influence of PM10 on daily 
mortality because they assume a Poisson distribution for mortality counts. It is to be noted 
that the estimated effects of air pollution are generally larger when fitting a simple linear 
model than when taking into account possible non-linear effects of confounding covariates, 
however GAMs generally fit better the data than GLM except in the case of the older age 
group where the Deviance statistic is smaller when using the more simple linear model. 
Taking these considerations into account it is also observable, that PM10 levels are more 
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strongly associated with respiratory disease related mortality, especially in the older age group 
for both, the model that investigates same day pollution levels and the 3 day lag model. These 
results are not far from previously reported studies (chapter one). 
 
There are many other possibilities to work with air pollution data and daily mortality counts, 
for instance, information for more than one city could be available and a combination of these 
information could be possible or Fourier analysis could be used in the air pollution time series 
for investigating different time scales. All possibilities would introduce some uncertainty, 
however, time series analysis of air pollution still are valuable for some reasons, including the 
fact that they provide important information in identifying whether particles acutely cause 
illness or death, presumably because persons with underlying heart and lung disease are more 
at risk. Also, by comparing mortality from day to day within the same population, time series 
studies are less subject to “ecologic bias” than cohort studies. Time series studies may also 
provide evidence relevant to scientific questions that support a causal relationship of particles 
with mortality including: the effects of co-pollutants, cause-of-death-specific pollution effects, 
and geographic variations in the pollution effects. 
 
The next chapter will present an alternative approach for getting a picture of the uncertainty 
surrounding air pollution-mortality relationship estimates as perceived by the scientific 
community and an example for Mexico City will be presented. 
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APPENDIX 3 
 

A3.1. Exponential Family of distributions 

 
Consider a random variable Y whose probability distribution depends on a single parameter θ. 
The distribution belongs to the exponential family if it can be written as, 
 

)()()()();( θθθ bya
etysyf =  (1) 

 
Take a(y) = y, s(y) = e 

d(y) and t(θ) = e 
c(θ) then the distribution is said to be in canonical or 

standard form and b(θ) is called the natural parameter  
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If there are other parameters, in addition to the parameter of interest θ they are regarded as 
nuisance parameters forming parts of the functions a, b, c and d and they are treated as though 
they are known. Take for example the Poisson distribution with discrete probability function 
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in the canonical form. Some properties of the exponential family will be illustrated using the 
Poisson distribution. First observe that for any exponential distribution with parameter θ: 
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Now for distributions in the exponential family: 
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Applying the results from (5) to (6) we have for the distributions in the exponential family 
and for the Poisson distribution in particular: 
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For the log-likelihood function  
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)()()()();( ydcbyayl ++= θθθ  (9) 
 
The score vector statistic is 
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And if this quantity is treated as a random variable, then from (7), 
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The information will be denoted by ℑ ; so applying the formula of the variance of linear 
transformations of random variables and from 8 
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Observe that  
 

)'()()var( 2
UEUEU −===ℑ  (13) 

 
Consider independent random variables Y1, …, YN satisfying the properties of a generalized 
linear model, we want to estimate parameters β which are related to the Yi’s through E(Yi) = µi 
and g(µi) = xT β = ηi. Each Yi will have a log likelihood function as (9) and since the 
distribution is in the canonical form, the log likelihood function for all the Yi’s is 
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To obtain the maximum likelihood estimator for the parameter βj we need 
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Consider each term in the right hand side of (15) separately, then from (9), (7), (8) and the 
fact that E(Yi) = µi 
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Hence, 
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And, 
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Because E[(yi - µi) (yl - µl)] = 0 for i ≠ l since the Yi’s are independent and using E[(yi - µi)]

2 = 
var(Yi) then, 
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A3.2. Scoring Procedure for Parameter Estimation. 

 
For the method of scoring the vector of estimates of the parameters b become  
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The right hand side of (23) is  
 

( )
∑∑∑

== =

−










∂

∂−
+









∂

∂ N

i i

i

i

ijii
p

k

N

i

m

k

i

i

i

ikij

y

xy
b

y

xx

11 1

)1(

2

)var()var( η

µµ

η

µ
 (25) 

 
If W is the N ×  N diagonal matrix with elements 
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Then, (24) and (25) become respectively 
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With µi and ∂ ηi / ∂ µi evaluated at b(m-1) hence the iterative equation can be written as  
 

WzXWXbX
TmT =)(  (28) 

 
This equation has to be solved iteratively because z and W depend on b. Thus for generalized 
Linear Models, maximum likelihood estimators are obtained by an iterative weighted least 
squares procedure. For the Poisson regression with the logarithmic link function equations 
(26) and (27) become, 
 

β̂T
ix

ii ew =  (29) 

1)/(ˆ
ˆ

−+= βη
T
ix

ii eyz  (30) 

 

A3.3 Matlab code for GLM. 

 
clear;clc;load namt_20.txt;load pm10_20.txt;n=length(pm10_20) 

load O3_20.txt;load no2av_20.txt;load mon_20.txt;load tues_20.txt; 

load wed_20.txt;load thr_20.txt;load fri_20.txt;load sat_20.txt;%load sun_20.txt; 

;load day_20.txt;load tmp_20.txt;load tmp3_20.txt; 

load rh_20.txt;load rh3_20.txt; 

xo=ones(n,1); 

x1=zeros(n,1); 

bo=zeros(15,1);k=0; 

X=[xo pm10_20 O3_20 no2av_20 mon_20 tues_20 wed_20 thr_20 fri_20 sat_20 day_20 

tmp_20 tmp3_20 rh_20 rh3_20]; 

eps=1 

while eps>0.0001 

    eta=X*bo; 

    W=diag(exp(eta),0); 

    z=zeros(n,1); 

    for i=1 : n 

        z(i)=eta(i)+(namt_20(i)/exp(eta(i)))-1; 

    end 

    A=X'*W*X; 

    c=X'*W*z; 

    %R = chol(A); 

    %b = R\(R'\c) 

    %[L,U] = lu(A); 

    %b= U\(L\c) 

    b=A^-1*c 

    eps=norm(bo-b) 

    bo=b; 

    k=k+1 

end 

 

A3.4 The Sampling Distribution for the Deviance. 

 
From a Taylor expansion of the log likelihood function for an estimated value b of β and the 
fact that if b is the maximum likelihood estimator of β (so that U(b)=0) 
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Then 
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Where p the degrees of freedom, is given by the number of parameters. Specifically, for the 
Deviance we have 
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The first term in square brackets in (33) has the 2

mχ  distribution, the second one 2
pχ  and the 

last one (v), is a positive constant near zero if the model of interest fits the data almost as well 
as the saturated model. Hence 2

,~ vpmD −χ  where v is the non-centrality parameter. 

 
For the Poisson model we have 
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A3.5. Derivation of the Local Scoring Algorithm for Generalized Additive 
Models. 

 

Let ∑
=

+=
d

j

jji Xff
1

0 )(η  and consider the log likelihood as a function of η. Let H be the space 

of all functions f that have two continuous derivatives and call a function smooth if it is in H. 
consider the following optimization problem. Find fj ∈ Hj to maximize: 
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Where λj ≥0 are smoothing parameters. The solution is a natural cubic spline interpolant (see 
for example Green & Silverman, 1994), that is, each coordinate function is a cubic spline3, if 
the expression above is parametrized by the evaluation of the cubic splines fj(x) at the 
observed points xij, . . ., xnj then the problem (3.4) may be stated as 

                                                
3 Suppose we are given real numbers t1, …, tn on some interval [a, b], such that a < t1 < t2 < . . .  < tn < b. A 
function f defined on [a, b] ia a cubic spline if: 

1. in each interval (a, t1), (t1, t2), (t2, t3), . . ., ( tn, b) f is a cubic polynomial; 
2. the polynomial pieces fit together at the points ti in such a way that g itself and its first and second 

derivatives are continuous at each ti and hence in the whole [a, b] 
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Where K is a penalty matrix defined as K = ∆T C-1 ∆, such that hi = xi+1 – xi   for i = 1, 2, …, 
n-1. ∆ is a tri-diagonal (n-2) × n matrix with ∆i,i = 1/ hi, ∆i,i+1 = -(1/ hi + 1/ hi+1), ∆i,i+2 = 1/ 
hi+1, and a symmetric tri-diagonal (n-2) × (n-2) matrix C with ci-1,i = ci,i-1 = hi / 6, ci,i = (hi + 
hi+1)/3.  

If u = ∂l/∂η and W = -∂l/∂ηηT is a diagonal matrix with elements 1
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Fisher scoring iterations become 
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By taking Sj = (W + λj Kj) 

-1 W and z = η + W-1
 u then (36) can be written as 
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And finally  
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A3.6. Matlab Code for Correlation and Partial Correlation Coefficients 
Calculation. 

 
clear;clc;load lnnamt.txt;load pm10.txt;n=length(pm10) 

load O3.txt;load no2av.txt;load mon.txt;load tues.txt; 

load wed.txt;load thr.txt;load fri.txt;load sat.txt;load sun.txt; 

;load day.txt;load tmp.txt;load tmp3.txt; 

load rh.txt;load rh3.txt; 

X=[lnnamt pm10 O3 no2av  tmp tmp3 rh rh3]; 

 

Ro = corrcoef(X); 

a=length(Ro) 

for i=1:a 

    for j=1:a 

        R=Ro; 

        R(i,:)=[]; 

        R(:,j)=[]; 

        CofR(i,j)=det(R)*(-1)^(i+j); 

    end 

end 

for i=1:a 

    for j=1:a 

        pro(i,j)=-CofR(i,j)/(CofR(i,i)*CofR(j,j))^0.5; 

    end 

end 
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Chapter 4. Expert Judgment as a Tool for Assessing Health 
Effects of Air Pollution. 
 
Long term effects of PM on human health are investigated by epidemiologists with the Cox 
Proportional Hazards Model (chapter two); some statistical techniques available for 
investigating short term effects of air pollution in mortality were exemplified for Toluca City 
in the previous chapter. In chapter four the classical method for expert judgment will be set 
forward as a tool for investigating both long term and short term health effects of air pollution 
and for characterizing the uncertainty surrounding published health effect estimates. 
 

4.1. An Introduction to Expert Judgment. 
 
Expert judgment is performed for multiple reasons. For example, in many cases, there might 
not be sufficient data available to investigate a certain phenomenon, but experts could have an 
“idea” of the behavior of it; or there could be different opinions in the scientific community 
regarding the “true” outcome of a certain experiment; in both cases decision makers would 
like to reach an agreement regarding the behavior of the phenomenon that is being 
investigated. One thing that could be done is take the different points of view of the experts 
and combine them in a certain way to get an outcome that possesses enough scientific validity 
to be used for taking decisions. 
 
According to Cooke (1991), any methodology of science (and structured expert judgment is 
not an exception) must aim at rational consensus. There are some methodological principles 
that structured expert judgment must meet to achieve rational consensus. 

a. Reproducibility. It must be possible for other scientists to review and if necessary 
reproduce an experiment (calculations). 

b. Scrutability/Accountability. In a scientific report, sources of data and instruments for 
measuring and performing calculations must be identified. In the case of expert 
judgment, experts’ names and assessments, and all processing tools should be subject 
to empirical quality controls. 

c. Empirical control. Scientific statements and scientific theories should be feasible in 
principle. It is recognized that theories can never be conclusively verified but at least it 
should be possible in principle to discover a reproducible conflict with observations, if 
the theory is in fact false. So, it must be possible (in principle) to evaluate expert 
probabilistic opinion on the basis of possible observation. 

d. Neutrality. The method for combining/evaluating expert opinion should encourage 
experts to state their true opinion. 

e. Fairness. All experts are treated equally, prior to processing the results of observation. 
 
The classical model for expert judgment has been introduced in (Cooke, 1991) and applied in 
many risk and reliability studies. This model for combining expert judgments bears its name 
because of a strong analogy with classical hypothesis testing. In the following section it will 
be described the basic model for the case where experts asses their uncertainty for quantities 
taking values in a continuous range. The scientific foundation for subjective probability 
comes from the theory of rational decision-making; hence, the main aim of the method is to 
provide the basis for achieving rational consensus. 
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4.2. The Classical Method for Expert Judgment. 

 
The first step in the classical model for expert judgment is to elicit questions on variables for 
which the experts provide a number of quantiles from their uncertainty distribution; the experts 
are asked to assess physical quantities which could be hypothetically measured in experiments. 
The classical model takes the data from each expert and constructs a weighted combination of 
expert’s probability assessments. These weights are based on two key performance measures, 
calibration and information which are assessed on variables whose true values are known post 
hoc (though not known to the experts at the time of assessment). Calibration corresponds to 
statistical likelihood. In the language of statistics, this is the “p-value” at which we would 
reject the hypothesis that a given experts’ probabilistic statements are true. Thus, low values 
for the calibration score (near zero) indicate low support for the hypothesis that the experts’ 
probability statements are accurate; high values (near one) indicate high support for this 
hypothesis. Information or informativeness measures the degree to which the experts’ 
distributions are concentrated. 
 
The weights are based on the theory of proper scoring rules4 and satisfy a proper scoring rule 
constraint.  This means that an expert receives his/her maximal expected score by, and only 
by, stating his/her true beliefs. There is thus no advantage in trying to mask one’s assessments 
so as to achieve maximal score. The weights are proportional to the product of the calibration 
and information scores, if the calibration scores exceeds a “significance level” cutoff, which 
may be found by optimization. 
 
The classical model computes “performance based” weighted combinations, but also uses the 
performance measures to assess the quality of other combinations. In particular, the 
performance of the equal weight combination is assessed. Generally, the combination 
exhibiting the best calibration and informativeness is recommended. A detailed explanation of 
these notions is found in Appendix B 
 

4.3. Application of Expert Judgment for Air Pollution Health Effects 
in Mexico City. 

 
A group from researchers from Delft University of Technology, Harvard Center for Risk 
Analysis and the Department of Environmental Health of the National Public Health Institute 
of Finland was put together as part of the Harvard-MIT Mexico city project. An elicitation of 
Mexico City air pollution experts was carried on during March 15th to 21st 2004, the purpose 
of this elicitation was to get a picture of the uncertainty, as perceived by Mexican experts, in 
the mortality response to air pollution by PM. Six Mexican experts participated in the 
experiment, they are presented in table 4.1. It is important to point out that the order in which 
they are presented does not correspond to the code they were assigned for the analysis of the 
data. 
 
 

                                                
4 Scoring is assigning a numerical value to probability assessments on the basis of observation. A scoring rule is 
called strictly proper if a subject receives his best expected score  if and only if his stated assessment corresponds 
to his true opinion. See for example Cooke 1991, chapter 9. 
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Table 4.1 Mexico City Air Pollution Experts. 

 
Msc. Matiana Ramírez Aguilar 
 
Surgery Physician from the National Polytechnic Institute, Mexico (ESM-IPN). Msc. Scholar Medicine (ESM-IPN). 
Master in Environmental Health  (University of California Los Angeles). PhD Candidate in Epidemiology Sciences 
(INSP). Associate Researcher level A form CISP - SPHM.  
 
Dr. Carlos Santos-Burgoa 
 
General Director of Equity and Development in Health, Sub secretary of Quality and Innovation, Health Department, 
Mexico, Medical Doctor graduated from the National Autonomous University of México. Masters in Public Health and 
PhD, in Environmental and Occupational Epidemiology from the Johns Hopkins School of Hygiene and Public Health. 
He was Chair of Epidemiology and Biostatistics and later on for six years Dean of The School of Public Health of 
Mexico. He was the General Director of Environmental Health and currently is the General Director for Equity and 
Health Director at the Secretariat of Health in Mexico. He was full professor of epidemiology and Director of the Global 
Health Program at the University of Michigan School of Public Health, where he is currently associate professor. 
 
Dr. Mauricio Hernandez Avila 
 
Recently appointed General Director of the National Institute of Public Health in Mexico (INSP), former Director of the 
centre for Research in Public Health (INSP), Titular Researcher level C in INSP, National Researcher level II. Professor 
and Associated Researcher at The Rollins School of Public Health at Emory University, he is Surgery Physician from the 
National Autonomous University of Mexico (UNAM), Specialty in Applied Mathematics. (IIMASS-UNAM), Master 
degree in Epidemiology (Harvard School of Public Health), PhD in Epidemiology (Harvard School of Public Health). 
 
Msc. Castillejos Salazar Margarita B. 
 
Msc. In Medical Demographics from the University of London. Since 1975 she is research professors, Level “C” in the 
Department of Health Attention, at Universidad Autónoma Metropolitana, Unidad Xochimilco. She has conducted since 
1985, several research projects on air pollution, particularly in health effects on children, with financial support from 
Harvard University, El Colegio de México, el National Council for Science and Technology, el CONSERVA, la 
Comisión Ambiental Metropolitana (CAM), and others, author of 19 scientific documents for national and international 
journals. Awarded with the  Prize “Matilde M. de Santos” by the Mexican Foundation for Health for her research paper 
“Effects of Ambient Ozone on Respiratory Function and Symptoms in Schoolchildren in Mexico, City”, recipient of the 

Fullbrigth schoolarship from Harvard University and member of the National System of Researchers. She was a member 
of the work group that performed the Revision to the Official Norms NOM-020-SSA1-1993, NOM-025-SSA1-1993, and 
in the project for the Official Mexican Norm for Particles Less than 2.5 microns (PM2.5), from an invitation of the 
General Direction of Environmental Health. From 2000 to 2001 directed the System for Integral Development of the 
Family (DIF-D.F.), nowadays she collaborates as assessor of the Government of the Federal District, in environmental 
issues. 
 
Dr. Álvaro R. Osornio Vargas 
 
A researcher at the Instituto Nacional de Cancerología (National Cancerology Institute) and a research associate with the 
Environmental Health Department at UNAM's Environmental Sciences Program, Dr. Osornio is a medical doctor who 
graduated from the Faculty of Medicine at UNAM. He has experience as a pathologist and has a Ph.D. in Basic 
Biomedical Research. His main area of research concerns the mechanisms of damage interceding in the effects produced 
by environmental contaminants such as particulates. This focus enabled a collaboration of over 10 years with the NIH's 
National Institute of Environmental Health Sciences, which was partially supported by the Fogarty Center. Dr. Osornio 
has recently published his results on the toxic effects of particulate contaminants in Mexico City and the impact of their 
size and composition. In addition, he is an enthusiastic popularizer on environmental issues, particularly with children 
and adolescents. He belongs to the Sistema Nacional de Investigadores (National System of Scientific Researchers), and 
is a member of the Mexican Academy of Sciences and the American Thoracic Society. 
 
Dr. Victor Hugo Borja Aburto 
 
M.D. Universidad Autonoma Metropolitana Xochimilco, Ph.D., Epidemiology. University North Carolina at Chapel Hill, 
Coordinator at Coordination for health at work, Social Security Mexican Institute, Mexico. Author and coauthor of 
numerous papers on air pollution and mortality in the MCMA, director of 12 students in epidemiology and environmental 
health at master’s level and one doctoral researcher. He is interested in the areas of Reproductive and Environmental 
Epidemiology and Health Effects of Air Pollution. He has directed 12 students in epidemiology and environmental health at 
the master level and one doctoral student. He has published 18 papers in different national and international journals in the 
past 3 years. 



 59 

During the interviews, the protocol previously developed by the research team was used; a 
summary of this protocol is presented in appendix A4.2. The tables and figures presented in 
this report are the output generated by EXCALIBUR, the software developed at the 
department of mathematics of Delft University of Technology for performance based 
combination of expert judgments. 
 
The part of the protocol that will be used in this chapter includes 9 questions of interest (1 to 9 
in appendix A4.2) that are variables for which a distribution is desired to be obtained from the 
experts’ combined opinion and 12 calibration questions, that are used for measuring expert’s 
performance (10-21 in appendix A4.2).  
 
Dr. Leonora Rojas from the National Institute of Ecology in Mexico made individual 
appointments with each expert and a maximum of 2 interviews per day were conducted 
during the week of the 15th to 21st of March 2004 with no interviews performed on 
Wednesday 17th  and Saturday 20th. All interviews, except those of Dr. Álvaro R. Osornio 
Vargas and Dr. Mauricio Hernandez Avila were performed at the office provided by the 
National Institute of Ecology in Periférico 5000, Col. Insurgentes Cuicuilco, C.P. 04530, 
Delegación Coyoacán, México D.F. 
 
During the interviews a maximum of 3 persons plus the expert were present. All the 
interviews were conducted by Prof. Cooke from Delft University of Technology who asked 
the questions. After the expert provided the 5th, 25th, 50th, 75th and 95th percentile of their 
distribution, one other member of the team (Andrew Wilson from Harvard School of Public 
Health, Jouni Tuomistu from the Department of Environmental Health in the National Public 
Health Institute, Finland or Oswaldo Morales Napoles from Delft University of Technology) 
asked questions regarding the experts’ rationale to get to his/her estimates. The purpose of 
doing so was on one hand, to gain insight in the experts’ true opinion and on the other, to help 
the expert think about all the factors that to his/her opinions were relevant for a given answer. 
The results presented here are preliminary in the sense that the answers to all of the 
calibration questions are not currently available. Thus it is of course possible that the results 
will change when the full set of calibration data becomes available. 
 

4.3.1 Calibration and Information. 

 
Table 4.2 below, shows the calibration and information scores for the six experts in this study.  
The first column gives the expert number; the second column gives the calibration score. The 
ratio of highest to lowest score is about 3 × 105. It will be noted that only expert 3 had a score 
corresponding to a p-value above 5%. Expert 4’s score is marginal, and the others are quite 
low. Calibration scores in the order 0.001 would fail to confer the requisite level of 
confidence in the results. The information scores for all items and for calibrations items are 
shown in columns 3 and 4 respectively. It will be noted that the overall information scores are 
quite similar, within a factor 1.5. 
 
For the variables with realizations, the differences are a bit larger, but the overall pattern is 
similar. Note that the expert with the best calibration score (nr 3) also has the lowest 
information score for the calibration variables. This is a recurrent pattern. This expert also has 
one of the highest scores for overall informativeness. This might lead one to question the 
representativeness of the calibration questions; however the differences are not large. 
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Table 4.2 Calibration and Information Scores. 
 

Case name : MEXICANEXPERTSforthesis120-7-2004               CLASS version W4.0 

________________________________________________________________________________ 

Results of scoring experts 

______________________________________________________________________________________ 

   Nr.|Calibr.   |Mean relat|Mean relat|Numb|UnNormaliz| 

      |          | total    |realizatii|real|weight    | 

______|__________|__________|__________|____|__________| 

     1|  0.007064|     0.971|     1.156|  12|  0.008169| 

     2|8.336E-007|      1.44|     1.376|  12|1.147E-006| 

     3|   0.08608|     1.131|    0.8659|  12|   0.07453| 

     4|   0.01767|     1.278|     0.885|  12|   0.01564| 

     5| 0.0009732|     1.207|     1.077|  12|  0.001048| 

     6|3.754E-007|     1.015|     1.652|  12|  6.2E-007| 

______________________________________________________________________________________ 

________________________________________________________________________________ 

                                                              (c) 1999 TU Delft 

 
The fifth column gives the number of calibration variables and the last column gives the “un-
normlaized weight”; this is the product of columns 2 and 4. If this column were normalized 
and used to form weighted combinations, experts 1, 3, 4 and 5 would be influential with (8.2, 
75, 15.7 and 1.1 per cent respectively). 
 
To get a picture of the degree of homogeneity within the expert group, range graphs showing 
all assessments per item are useful. Figure 4.1 shows all expert assessments for the first 9 
variables. For each expert, the upper and lower quantiles are given as “ [ --- ]  “; the 25% and 
75% quantiles are given as “  <  --  > “  , and the median is given as “ | “ .  The intrinsic range 
is shown below the expert assessments. In the appendix the range graphs for all items, 
including the equal weight decision maker are given. 
 

Figure 4.1 Range Graphs for Variables of Interest in the Mexican Air 
Pollution Experts Elicitation. 

 
                          Range graph of input data 

Item no.:   1 Item name: US_LongTerm Scale: UNI 

Experts 

  1                                                      [--<-----*------>--]   

  2                                                                   [--*>-]   

  3                                                         [--------<-*>---]   

  4                                                             [------<----*>] 

  5                                                               [------<-*>-] 

  6 [-----<------------------*----------------->------------------]             

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    -12                                                                  -0.06 

 

Item no.:   2 Item name: MCMA_LongTerm Scale: UNI 

Experts 

  1                                                                      [-<*>] 

  2                                                                         [>] 

  3                                                                     [<*->]  

  4                                                                        [<-] 

  5                                                                    [--<-*>] 

  6 [------------<-----------------------*-------------->----------]            

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    -40                                                                  -0.05 
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Figure 4.1 Range Graphs for Variables of Interest in the Mexican Air 
Pollution Experts Elicitation (Continue). 

 

Item no.:   3 Item name: EU_LongTerm Scale: UNI 

Experts 

  1                                                                 [-<--*-->]  

  2                                                                       [->]  

  3                                                                  [---<*->]  

  4                                                                     [--<-*] 

  5                                                                    [----<>] 

  6 [--------<--------------------------------------*-------->-----------]      

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    -25                                                                  -0.06 

 

Item no.:   4 Item name: US_OneWeek Scale: UNI 

Experts 

  1 [--------------------<--------------*-------------->----------------------] 

  2           [------<-------*------>--------------]                            

  3 <--*----->----]                                                             

  4 [<-*------->-----]                                                          

  5 [<--*-------------------------------->----]                                 

  6       [-------<--------------*------------->-----------------------------]  

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.04                                                                   5.1 

 

Item no.:   5 Item name: MCMA_OneWeek Scale: UNI 

Experts 

  1  [------------<--------------*-------------->--------------]                

  2           [-------<-------*------>--------------]                           

  3 [<---*-------->---]                                                         

  4 [<*----->--]                                                                

  5 [<-----------------*-------->--------]                                      

  6        [------<--------------*-------------->-----------------------------] 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.02                                                                     5 

 

Item no.:   6 Item name: EU_OneWeek Scale: UNI 

Experts 

  1  [-------------------<--------------*-------------->----------------------] 

  2           [-------<------*------>--------------]                            

  3 [<------*-->--]                                                             

  4 [<-*------->-----]                                                          

  5 [------<*-------------------->------------------]                           

  6        [------<--------------*-------------->----------------------------]  

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.017                                                                  5.1 

 

Item no.:   7 Item name: US_ThreeMonths Scale: UNI 

Experts 

  1 [------------<-------------*------------->--------------]                   

  2         [---------<---*---->----]                                           

  3    [--<--------*----------->----]                                           

  4 [--<-*---->-----]                                                           

  5 <--*-------------->-------]                                                 

  6         [---------<------------------*------------------>-----------------] 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.08                                                                     8 

 

Item no.:   8 Item name: MCMA_ThreeMont Scale: UNI 

Experts 

  1 [----------<-----------*---------->------------]                            

  2          [--------<----*--->----]                                           

  3       [-<---------*------------->----]                                      

  4 [-<-*-------->-]                                                            

  5 [-<----------*--------->---]                                                

  6          [--------<------------------*------------------>-----------------] 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.03                                                                     8 
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Figure 4.1 Range Graphs for Variables of Interest in the Mexican Air 
Pollution Experts Elicitation (Continue) 

 

Item no.:   9 Item name: EU_ThreeMonths Scale: UNI 

Experts 

  1 [------------<--------------*------------->-------------]                   

  2          [--------<----*---->---]                                           

  3     [--<---------*---------->---]                                           

  4 [----<*-------->---]                                                        

  5 [<---*----------------->------]                                             

  6          [--------<------------------*------------------>-----------------] 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.017                                                                    8 

 
The predominant picture is that the experts’ central 90% confidence, generally show 
considerable overlap. To appreciate Figure 1 numerical table 4.3 compares each expert to the 
“EWDM”; that is the equal weight decision maker. In discrepancy analysis, the relative 
information of each expert with respect to the Decision Maker is computed per item. These 
scores are averaged over all variables (column 6) and calibration variables only (column 7).  
 

Table 4.3 Discrepancy Analysis Relative to Equal Weight Decision Maker. 

 
Case name : MEXICANEXPERTSforthesis120-7-2004               CLASS version W4.0 

________________________________________________________________________________ 

Results of scoring experts and Relative Information to the DM 

 Bayesian Updates: no      Weights:  equal      DM Optimisation:  no   

 Significance Level:          0    Calibration Power:          1 

________________________________________________________________________________ 

   Nr.| Mean relat|Mean relat|Numb|UnNormaliz| Rel.Inf to|Rel.Inf to 

      |  total    |realizatii|real|weight    | total     |realiz. 

______| __________|__________|____|__________| __________|__________ 

     1|      0.971|     1.156|  12|  0.008169|     0.4867|    0.5673 

     2|       1.44|     1.376|  12|1.147E-006|     0.9532|     1.165 

     3|      1.131|    0.8659|  12|   0.07453|     0.6174|    0.6134 

     4|      1.278|     0.885|  12|   0.01564|      0.648|    0.5829 

     5|      1.207|     1.077|  12|  0.001048|     0.5236|    0.5581 

     6|      1.015|     1.652|  12|  6.2E-007|     0.9696|     1.223 

________________________________________________________________________________ 

________________________________________________________________________________ 

                                                              (c) 1999 TU Delft 

 
It may be seen that the relative information with respect to the equal weight combination is 
generally one half of the information in the experts’ individual assessments. 
 

4.3.2 Combination Schemes. 

 
In this exercise, experts give their uncertainty assessments on calibration variables in the form 
of 5%, 25%, 50%, 75% and 95% quantiles. To combine all experts’ assessments into one 
uncertainty assessment on each calibration variable there are three combination schemes. The 
combined distributions are weighted sums of the individual experts’ distributions, with non-
negative weights adding to one. Different combination schemes are distinguished by the 
method according to which the weights are assigned to densities. These schemes are 
designated "decision makers". Two kinds of decision makers are described below. 
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4.3.2.1 Equal Weight Decision Maker. 

 
The equal weight decision maker (table 4.4) results by assigning equal weight to each density. 
If E experts have assessed a given set of variables, the weights for each density are 1/E; hence 
for variable i in this set the decision maker’s density is given by:  
 

∑
=









=

Ej

ijiewdm f
E

f
L1

,,

1
 (1) 

 
where ijf ,  is the density associated with expert j’s assessment for variable i. 

 

Table 4.4 Equal Weight Decision Maker. 

 
Case name : MEXICANEXPERTSforthesis120-7-2004               CLASS version W4.0 

________________________________________________________________________________ 

Results of scoring experts 

 Bayesian Updates: no      Weights:  equal      DM Optimisation:  no   

 Significance Level:          0    Calibration Power:          1 

______________________________________________________________________________________ 

   Nr.| Calibr.  |Mean relat|Mean relat|Numb|UnNormaliz|Normaliz.w|Normaliz.w 

      |          | total    |realizatii|real|weight    |without DM|with DM 

______|__________|__________|__________|____|__________|__________|__________ 

     1|  0.007064|     0.971|     1.156|  12|  0.008169|    0.1667|   0.04149 

     2|8.336E-007|      1.44|     1.376|  12|1.147E-006|    0.1667|5.827E-006 

     3|   0.08608|     1.131|    0.8659|  12|   0.07453|    0.1667|    0.3785 

     4|   0.01767|     1.278|     0.885|  12|   0.01564|    0.1667|   0.07942 

     5| 0.0009732|     1.207|     1.077|  12|  0.001048|    0.1667|   0.00532 

     6|3.754E-007|     1.015|     1.652|  12|  6.2E-007|    0.1667|3.149E-006 

  EWDM|    0.2541|     0.474|    0.3838|  12|   0.09753|          |    0.4953 

______________________________________________________________________________________ 

________________________________________________________________________________ 

                                                              (c) 1999 TU Delft 

 
Table 4.4 shows 8 columns in total, the first 6 are the same as in table 4.2, the decision maker 
is the 7th expert identified as “EWDM”. As it may be seen in the table above, the third column 
shows that the combined opinion of the six experts, i.e. EWDM is better calibrated than every 
expert individually. Weights for each expert and for the decision maker are shown in the last 
three columns. Since the equal weight combination has been chosen in this case, column 7 
displays the same weight for all experts except the decision maker, and finally column 8 
shows that when normalizing the numbers in column 6 the decision maker and expert number 
3 would share almost all the weight. 
 

4.3.2.1 Global Weight Decision Maker. 

 
This kind of decision maker is from the class of performance based decision makers that are 
those where the weights are based on the experts’ performance.  Two performance based 
decision makers are supported in the software EXCALIBUR. The “global weight” decision 
maker uses average information over all calibration variables and computes one set of weights 
for all items. The “item weight” decision maker constructs weights for each item separately, 
using the experts’ information scores for the given item, rather than the average information 
score.  
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In this study the global and items weights do not differ, and we focus on the former.  The 
global weight decision maker (Table 5) uses performance based weights which are defined, 
per expert, by the product of expert’s calibration score and his(her) overall information score 
on calibration variables, and by an optimization5 procedure. For expert j, the same weight is 
used for all variables assessed. Hence, for variable i the global weight decision maker's 
density is:  
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Table 4.5 Global Weight Decision Maker. 

 
Case name : MEXICANEXPERTSforthesis120-7-2004               CLASS version W4.0 

________________________________________________________________________________ 

Results of scoring experts 

 Bayesian Updates: no      Weights:  global     DM Optimization:  yes  

 Significance Level:    0.08608    Calibration Power:          1 

______________________________________________________________________________________ 

   Nr.| Calibr.   |Mean relat|Mean relat|Numb|UnNormaliz|Normaliz.w|Normaliz.w 

      |           | total    |realizatii|real|weight    |without DM|with DM 

______|___________|__________|__________|____|__________|__________|__________ 

     1|   0.007064|     0.971|     1.156|  12|         0|         0|         0 

     2| 8.336E-007|      1.44|     1.376|  12|         0|         0|         0 

     3|    0.08608|     1.131|    0.8659|  12|   0.07453|         1|       0.5 

     4|    0.01767|     1.278|     0.885|  12|         0|         0|         0 

     5|  0.0009732|     1.207|     1.077|  12|         0|         0|         0 

     6| 3.754E-007|     1.015|     1.652|  12|         0|         0|         0 

 GWDM |    0.08608|     1.131|    0.8659|  12|   0.07453|          |       0.5 

______________________________________________________________________________________ 

________________________________________________________________________________ 

                                                              (c) 1999 TU Delft 

 
In this case, all experts with a calibration score less than the significance level found by the 
optimization procedure are unweighted as reflected by the zeros in column 5.  
 

4.3.3 Robustness 

 
Robustness analysis addresses the question, to what extent the results of the study would be 
affected by loss of a single expert or calibration variable in each case the total relative 
information with respect to the background measure, calibration and the total relative 
information with respect to the original decision maker are computed. Robustness is an issue 
whenever we optimize performance (robustness analysis for the equal weight decision maker 
is omitted). Tables 4.6 and 4.7 show the robustness analysis for the global weight decision 
maker; that is, they show how the scores would change if calibration variables (table 4.6) or 
experts (table 4.7) were removed from the analysis one at a time. 
 
 

                                                
5 For each value of α it is defined a decision maker dmα  computed as a weighted linear combination of the experts whose calibration score 
exceeds α. dmα is scored with respect to calibration and information. The weight which this dmα would receive if he were added as a “virtual 
expert” is called the "virtual weight" of dmα. The value of α for which the virtual weight of dmα is the greatest is chosen as the cut-off value 
for determining the unweighted expert.  
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Columns 3 and 4 from table 4.7 show that there is no significant gain or loss in the decision 
maker’s information scores with respect to the background measure when excluding a given 
item one at the time. In most of the cases there would be a gain in the calibration score when  
 

Table 4.6 Robustness Analysis by Items. 

 
Case name : MEXICANEXPERTSforthesis120-7-2004               CLASS version W4.0 

________________________________________________________________________________ 

Robustness analysis on seed Items 

 Bayesian Updates: no      Weights:  global     DM Optimization:  yes  

 Significance Level:   0.0861    Calibration Power:   1.0000 

__________________________________________________________________________ 

 Nr.| Id           |Rel.info/b|Rel.info/b|Calibr.   |Rel.info/o|Rel.info/o 

    | of excl. item|total     |realizatii|          |  total   |realizati  

____|______________|__________|__________|__________|__________|__________ 

   1|Days2003exceed|      1.14|    0.8587|     0.117|         0|         0 

   2|Days1995exceed|     1.143|     0.865|     0.117|         0|         0 

   3|Days2003below |     1.165|    0.9044|    0.2428|         0|         0 

   4|Days1995below |     1.164|    0.9022|    0.2428|         0|         0 

   5|Hours2003excee|     1.116|    0.8161|   0.06145|         0|         0 

   6|Hours1995excee|     1.115|    0.8145|     0.117|         0|         0 

   7|Hours2003below|    0.9397|    0.6181|    0.4742|    0.4987|    0.4773 

   8|Hours1995below|    0.7877|    0.6589|    0.1982|    0.7669|    0.6736 

   9|NAD2000highFD |     1.121|     0.825|    0.2428|         0|         0 

  10|NAD2000lowFD  |    0.9073|    0.5978|   0.05177|    0.3705|    0.3632 

  11|NAD2000highSM |    0.9883|     0.684|    0.2428|    0.1848|    0.1702 

  12|NAD2000lowSM  |     1.164|    0.9022|     0.117|         0|         0 

  13|None          |     1.131|    0.8659|   0.08608|          | 

__________________________________________________________________________ 

________________________________________________________________________________ 

                                                              (c) 1999 TU Delft 

 

Table 4.7 Robustness Analysis by Experts. 

 
Case name : MEXICANEXPERTSforthesis120-7-2004               CLASS version W4.0 

________________________________________________________________________________ 

Robustness analysis on Experts 

 Bayesian Updates: no      Weights:  global     DM Optimisation:  yes  

 Significance Level:    0.08608    Calibration Power:          1 

______________________________________________________________________ 

   Nr.| Id     |Rel.info/b|Rel.info/b|Calibr.   |Rel.info/o|Rel.info/o 

      |excl.exp| total    |realizatii|          | total    |realizati  

______|________|__________|__________|__________|__________|__________ 

     1|1       |     1.129|    0.8659|   0.08608|         0|         0 

     2|2       |     1.006|     0.648|   0.08608|         0|         0 

     3|3       |    0.8029|    0.6421|   0.06288|     0.871|    0.8629 

     4|4       |     1.122|    0.8517|   0.08608|         0|         0 

     5|5       |     1.113|    0.8363|   0.08608|         0|         0 

     6|6       |    0.8032|    0.7902|   0.08608|         0|         0 

     7|None    |     1.131|    0.8659|   0.08608|         0|         0 

______________________________________________________________________ 

________________________________________________________________________________ 

                                                              (c) 1999 TU Delft 

 
removing a given item. The largest gain in calibration would be achieved by removing 
question 16 in appendix A4.1. 
 
A similar picture as in table 4.6 is observed when analyzing columns two and three from table 
4.7; for the calibration score the most relevant comment is that there would be a loss of 
calibration in the decision maker by removing expert 3 from the analysis.  
 
A relevant comparison is between the last two columns of table 4.3 and tables 4.6 and 4.7. We 
see that the effect of “perturbing” the model by removing an expert or an item, is small 
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relative to the differences among the experts themselves. In case of removing expert 3, there 
is a significant change, but even this is within the inter-expert differences. 
 

4.3.4 Further Issues on Combination Schemes. 

 
Figure 4.2 shows the median, 5th and 95th percentile of the estimates for long term effects in 
mortality as assessed in questions 1, 2 and 3 of the elicitation protocol using two different 
combination schemes (see also Table A4.4), i.e. Global and Equal weight decision makers. 
The distribution generated with the equal weight decision maker, expresses the large 
disagreements among experts as to the lower percentile of the distribution (largest health 
effect observable), than that generated by optimization. The plot also shows that the 
differences in the median estimate generated with both combination schemes are not as large 
as those for the lower percentile estimate. 
 

Figure 4.2 Median, 5th and 95th Quantiles for the Long Term Effects of Air 
Pollution in Mortality 

EqualUS GlobalUS EqualMCMA GlobalMCMA EqualEU GlobalEU

1

-40

-30

-20
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0
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Data generated in Excalibur with results from the Mexico City Elicitation. 
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Figure 4.3 Median, 5th and 95th Quantiles for One Week Effects of Air 
Pollution in Mortality 
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1

0

1

2

3

4

2

 
Data generated in Excalibur with results from the Mexico City Elicitation. 

 
 

Figure 4.4 Median, 5th and 95th Quantiles for Three Month Effects of Air 
Pollution in Mortality 
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Data generated in Excalibur with results from the Mexico City Elicitation. 

 
Figures 4.3 and 4.4 show approximately the same trend as figure 4.2 i.e. consensus about the 
median but larger differences concerning the upper 95th percentile of the uncertainty 
distribution that correspond to the larger health effect observable. 
 
Another option to be explored is the exclusion of experts 4 and 5 (The elicitation staff think 
that estimates given by these, experts might not be independent of the elicitors’ opinion in the 
subject) .The results for Global and Equal combination are shown in tables 4.8 and A4.5. The 
calibration score for the two new decision makers EWDM_1 and GWDM_1 is the same as in 
the previous case, while the information scores show negligible variation. 
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Table 4.8 Decision Makers Excluding Experts 4 and 5. 
 
Case name : MEXICANEXPERTSforthesis 21-7-2004               CLASS version W4.0 

________________________________________________________________________________ 

Results of scoring experts 

 Bayesian Updates: no      Weights:  equal      DM Optimisation:  no   

 Significance Level:          0    Calibration Power:          1 

______________________________________________________________________________________ 

   Nr.| Calibr.   |Mean relat|Mean relat|Numb|UnNormaliz|Normaliz.w|Normaliz.w 

      |           | total    |realizatii|real|weight    |without DM|with DM 

______| __________|__________|__________|____|__________|__________|__________ 

     1|   0.007064|    0.9335|     1.094|  12|   0.00773|      0.25|   0.04246 

     2| 8.336E-007|     1.402|     1.313|  12|1.095E-006|      0.25|6.015E-006 

     3|    0.08608|     1.094|    0.8053|  12|   0.06932|      0.25|    0.3808 

     6| 3.754E-007|    0.9796|     1.595|  12|5.986E-007|      0.25|3.288E-006 

EWDM_1|     0.2541|    0.4322|    0.4131|  12|     0.105|          |    0.5767 

GWDM_1|    0.08608|     1.094|    0.8053|  12|   0.06932|          |       0.5 

______________________________________________________________________________________ 

________________________________________________________________________________ 

                                                              (c) 1999 TU Delft 

 
In table 4.2 it was observed that if normalizing the last column experts 4 and 5 would still 
have some influence in a distribution constructed with these weights, in this sense, one 
question that arises is how different the distributions constructed using the 6 experts would be 
to that excluding experts 4 and 5 from the analysis and that is done in figures 5, 6 and 7 
below. 
 

Figure 4.5 Median, 5th and 95th Quantiles for Long Term Effects of Air 
Pollution in Mortality 
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Data generated in Excalibur with results from the Mexico City Elicitation. 
Equal1 excludes experts 4 and 5. 
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Figure 4.6 Median, 5th and 95th Quantiles for One Week Effects of Air 
Pollution in Mortality 
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Data generated in Excalibur with results from the Mexico City Elicitation. 
Equal1 excludes experts 4 and 5. 

 

Figure 4.7 Median, 5th and 95th Quantiles for Three Months Effects of Air 
Pollution in Mortality 
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Data generated in Excalibur with results from the Mexico City Elicitation. 
Equal1 excludes experts 4 and 5. 

 
Figures 4.5, 4.6 and 4.7 show the uncertainty distribution for the variables of interest 
constructed with the equal weight combination scheme with all experts (Equal) and excluding 
experts 4 and 5 (Global). It is observed that there is little difference in the distributions by 
excluding these two experts from the analysis. 
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4.3.5 Choice of Combination. 

 
In choosing between the two decision makers considered in this analysis, the following should 
be borne in mind: 
 

1) Both the equal weight and the performance based decision makers show acceptable 
statistical performance 

2) The performance based decision maker is significantly more informative than the 
equal weight decision maker 

3) The overall scores between these two are rather close, 
4) The robustness of the performance based decision maker is quite satisfactory. 

 
Thus the conclusion is that there are no compelling scientific arguments driving the choice 
between the performance based and equal weight decision maker. 
 
Two things are to be noticed by comparing tables 4.4 and 4.5: The “GWDM” decision maker 
is less well calibrated than the “EWDM” decision maker by approximately a factor of 3, 
though is more informative. The second thing to be noticed is that when choosing an 
optimization procedure for determining weights, expert number three dominates the scene and 
the decision maker considers only this opinion in the combination. 
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APENDIX 4 
 

A4.1. Calibration and Information Scores in the Classical Model for Expert 
Judgment. 

 
Calibration. 
 
We have asked for experts’ uncertainty over a number of calibration variables; these variables 
are chosen to resemble the quantities of interest, and to tell us something about the expertise 
of the people from whom the assessments of the variables of interest will be required. An 
expert states n fixed quantiles for his/her subjective distribution for each of several uncertain 
quantities taking values in a continuous range. There are n+1 ‘inter-quantile intervals’ into 
which the realizations (actual values) may fall. Let  
 
P = (p1,…,pn+1) (1) 

 
denote the theoretical probability vector associated with these intervals. Thus, if the expert 
assesses the 5%, 25%, 50%, 75% and 95% quantiles for the uncertain quantities, then n = 5 
and  p = (5%, 20%, 25%, 25%, 20%, 5%). The expert believes there is 5% probability that the 
realization falls between his/her 0% and 5% quantiles, a 20% probability that the realization 
falls between his/her 5% and 25% quantiles, and so on. 
 
Suppose we have such quantile assessments for N seed variables. Let 
 
s = (s1,…sn+1) (2) 

 
denote the empirical probability vector of relative frequencies with which the realizations fall 
in the inter quantile intervals. Thus 
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 and, so on. 

 
If the expert is well calibrated, he/she should give intervals such that – in a statistical sense- 
5% of the realizations of the calibration variables fall into the corresponding 0% to 5% 
intervals, 20% fall into the 5% to 25% intervals, etc. 
 
Under the hypothesis that the uncertain quantities may be viewed as independent samples 
from the probability vector p, the quantity:6 
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6 I(s,p) is the Shannon relative information of s with respect to p. For all s,p with pi > 0, i = 1,…, n+1, we have 
I(s,p) ≥ 0 and I(s,p) = 0 if and only if s=p (see Kullback 1959). 
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is asymptotically Chi-square distributed with n degrees7 of freedom. Thus, if 2
nχ  is the 

cumulative distribution function for a Chi-square variable with n degrees of freedom, then 
 
CAL = 1 - 

2
nχ  (2NI(s,p)) (4) 

 
is the upper tail probability, and is asymptotically equal to the probability of seeing a 
disagreement no larger than I(s,p) on N realizations, under the hypothesis that the realizations 
are drawn independently from p. 
 
CAL is a measure of the expert’s calibration. Low values (near zero) correspond to poor 
calibration. This arises when the difference between s and p cannot be plausibly explained as 
the result of mere statistical fluctuation. In the language of hypothesis testing, CAL is the “p-
value” at which the hypothesis that the expert’s probability values, as given by p, are true 
would be rejected. For example, if N = 10, and we find that 8 of the realizations fall below 
their respective 5% quantile or above their respective 95% quantile, then we could not 
plausibly believe that the probability for such events was really 5%. This phenomenon is 
sometimes called “overconfidence”. Similarly, if 8 of the 10 realizations fell below their 50% 
quantiles, then this would indicate a “median bias”. In both cases, the value of CAL would be 
low. High values of CAL indicate good calibration.  
 
Information. 
 
Information shall be measured as Shannon’s relative information with respect to a user-
selected background measure. The background measure will be taken as the uniform (or 
loguniform) measure over a finite “intrinsic range” for each variable. For a given uncertain 
quantity and a given set of expert assessments, the intrinsic range is defined as the smallest 
interval containing all the experts’ quantiles and the realization, if available, augmented above 
and below by K%. 
 
The relative information of expert e on a given variable is: 
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Where ri are the background measures of the corresponding intervals and n the number of 
quantiles assessed. Overall informativeness per expert is the average of the information scores 
over all variables. For each expert, an information score for all variables is obtained by 
summing the information scores for each variable8. Roughly speaking, with the uniform 
background measure, more informative distributions are gotten by choosing quantiles, which 
are closer together, whereas less informative distributions result when the quantiles are farther 
apart. 
 
The calibration score is a “fast” function; that is, differences of several orders of magnitude 
are observed in a relatively small group of experts with, say 12 calibration variables. On the 
other hand, information is a “slow” function; differences are typically within a factor three. In 

                                                
7 P(2NI(s;p) ≤ x) ≈ 2

nχ (2NI(s;p)) 
8 This corresponds to the information in the expert’s joint distribution relative to the product of the background 
measures under the assumption that the expert’s distributions are independent. 
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combining expert judgments, these scores are multiplied and normalized; hence in combining 
experts, the calibration score dominates over information score. Information serves to 
modulate between more or less equally well-calibrated experts.  
 

A4.2 Summary of the Elicitation Protocol for Mexico City Air Pollution Experts. 

 

Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

1 US Long-term 1 µg/m3 PM2.5 Ambient 18 ug/m3 

What is your estimate of the true, but unknown, percent change in the total annual, non-accidental mortality 
rate in the adult U.S. population resulting from a permanent 1 µg/m3 reduction in long-term annual average 
PM2.5 (from a population-weighted baseline concentration of 18 µg/m3) throughout the U.S.?   To express the 
uncertainty associated with the concentration-response relationship, please provide the 5th, 25th, 50th, 75th, and 
95th percentiles of your estimate. 

 
 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 

 

Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

2 MCMA Long-term 1 µg/m3 PM2.5 Ambient 35 ug/m3 

What is your estimate of the true, but unknown, percent change in the total annual, non-accidental mortality 
rate in the adult MCMA population resulting from a permanent 1 µg/m3 reduction in long-term annual average 
PM2.5 (from a population-weighted baseline concentration of 35 µg/m3) throughout the MCMA?   To express 
the uncertainty associated with the concentration-response relationship, please provide the 5th, 25th, 50th, 75th, 
and 95th percentiles of your estimate. 

 
 
 
 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 

 

Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

3 EU Long-term 1 µg/m3 PM2.5 Ambient 20 ug/m3 

What is your estimate of the true, but unknown, percent change in the total annual, non-accidental mortality 
rate in the adult European population resulting from a permanent 1 µg/m3 reduction in long-term annual average 
PM2.5 (from a population-weighted baseline concentration of 20 µg/m3) throughout the EU?   To express the 
uncertainty associated with the concentration-response relationship, please provide the 5th, 25th, 50th, 75th, and 
95th percentiles of your estimate. 

 
 
 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
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Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

4 US Short-term (one week) 10 µg/m3 PM2.5 Ambient Current 

What is your estimate of the true, but unknown, percent change in non-accidental mortality in the adult U.S. 
population over the one week following a 10 µg/m3 increase in PM2.5 levels on a single day throughout the U.S.?   
To express the uncertainty associated with the concentration-response relationship, please provide the 5th, 25th, 
50th, 75th, and 95th percentiles of your estimate. 

 
 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 

 

Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

5 MCMA Short-term (one week) 10 µg/m3 PM2.5 Ambient Current 

 
What is your estimate of the true, but unknown, percent change in non-accidental mortality in the adult 

MCMA population over the one week following a 10 µg/m3 increase in PM2.5 levels on a single day throughout 
the MCMA?   To express the uncertainty associated with the concentration-response relationship, please 
provide the 5th, 25th, 50th, 75th, and 95th percentiles of your estimate. 
 

 
 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 

 

Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

6 EU Short-term (one week) 10 µg/m3 PM2.5 Ambient Current 

What is your estimate of the true, but unknown, percent change in non-accidental mortality in the adult 
Eurpoean population over the one week following a 10 µg/m3 increase in PM2.5 levels on a single day 
throughout the EU?   To express the uncertainty associated with the concentration-response relationship, please 
provide the 5th, 25th, 50th, 75th, and 95th percentiles of your estimate. 

 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
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Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

7 
US 

Short-term              
(three months) 10 µg/m3 PM2.5 Ambient Current 

What is your estimate of the true, but unknown, percent change in non-accidental mortality in the adult U.S. 
population over the three months following a 10 µg/m3 increase in PM2.5 levels on a single day throughout the 
U.S.?  To express the uncertainty associated with the concentration-response relationship, please provide the 
5th, 25th, 50th, 75th, and 95th percentiles of your estimate. 

 
 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 

 

Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

8 MCMA 
Short-term              

(three months) 10 µg/m3 PM2.5 Ambient Current 

What is your estimate of the true, but unknown, percent change in non-accidental mortality in the adult 
MCMA population over the three months following a 10 µg/m3 increase in PM2.5 levels on a single day 
throughout the MCMA?   To express the uncertainty associated with the concentration-response relationship, 
please provide the 5th, 25th, 50th, 75th, and 95th percentiles of your estimate. 

 
 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 

 

Question Setting 

Exposure              

(Effect Interval) Change Pollutant Composition Baseline 

9 EU 
Short-term              

(three months) 10 µg/m3 PM2.5 Ambient Current 

What is your estimate of the true, but unknown, percent change in non-accidental mortality in the adult 
European population over the three months following a 10 µg/m3 increase in PM2.5 levels on a single day 
throughout the EU?   To express the uncertainty associated with the concentration-response relationship, please 
provide the 5th, 25th, 50th, 75th, and 95th percentiles of your estimate. 

 
 
 
5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 

 
 
10. On how many days in 2003 does the daily average PM10 concentration exceed the 24 hr limit at least one 
of the above RAMA stations (max 365)? 
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5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 

 
 
11. On how many days in 1995 did the daily average PM10 concentration exceed the 24 hr limit at least one of 
the above RAMA stations (max 365)?                   

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
12. On how many days in 2003 does the daily average PM10 concentration lie below 50 µg/m3 in at least one of 
the above RAMA stations (max 365)? 

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
13. On how many days in 1995 did the daily average PM10 concentration lie below 50 µg/m3 in at least one of 
the above RAMA stations (max 365)?                    

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
14. On how many hours in 2003 does the hourly average O3 concentration exceed the 1hr limit in at least one 
of the above RAMA stations (max 8736)?  

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
15. On how many hours in 1995 did the hourly average O3 concentration exceed the 1hr limit in at least one of 
the above RAMA stations (max 8736)?  

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
16. On how many hours in 2003 does the hourly average O3 concentration lie below 0.05 ppm in at least one of 
the above RAMA stations (max 8736)? 

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
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17. On how many hours in 1995 did the hourly average O3 concentration lie below 0.05 ppm in at least one of 
the above RAMA stations (max 8736)?  

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
18. What is the number of non-accidental deaths in the week (7 days starting from January 1st) of 2000 with the 
highest average PM10 concentration (92 µg/m3) averaged over these three RAMA stations? 

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
19. What is the number of non-accidental deaths in the week (7 days starting from January 1st) of 2000 with the 
lowest average PM10 concentration (23 µg/m3) averaged over these three RAMA stations ? 

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
20. What is the number of non-accidental deaths in the week (7 days starting from January 1st) of 2000 with the 
highest average PM10 concentration (120 µg/m3) averaged over these two RAMA stations ? 

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
21. What is the number of non-accidental deaths in the week (7 days starting from January 1st) of 2000 with the 
lowest average PM10 concentration (23 µg/m3) averaged over these two RAMA stations ? 

5% :____________  25%:____________  50% :____________  75%:____________ 95%:____________ 
 
A4.3 Range Graphs for Calibration Questions in the Mexico City Air Pollution Experts 
Elicitation. 
 
Item no.:   1 Item name: US_LongTerm Scale: UNI 

Experts 

  1                                                      [--<-----*------>--]   

  2                                                                   [--*>-]   

  3                                                         [--------<-*>---]   

  4                                                             [------<----*>] 

  5                                                               [------<-*>-] 

  6 [-----<------------------*----------------->------------------]             

EWDM      [===================================================<=========*==>==] 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    -12                                                                  -0.06 
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Item no.:   2 Item name: MCMA_LongTerm Scale: UNI 

Experts 

  1                                                                      [-<*>] 

  2                                                                         [>] 

  3                                                                     [<*->]  

  4                                                                        [<-] 

  5                                                                    [--<-*>] 

  6 [------------<-----------------------*-------------->----------]            

EWDM            [========================================================<==*>] 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    -40                                                                  -0.05 

 

Item no.:   3 Item name: EU_LongTerm Scale: UNI 

Experts 

  1                                                                 [-<--*-->]  

  2                                                                       [->]  

  3                                                                  [---<*->]  

  4                                                                     [--<-*] 

  5                                                                    [----<>] 

  6 [--------<--------------------------------------*-------->-----------]      

EWDM        [=========================================================<====*=>] 

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    -25                                                                  -0.06 

 

Item no.:   4 Item name: US_OneWeek Scale: UNI 

Experts 

  1 [--------------------<--------------*-------------->----------------------] 

  2           [------<-------*------>--------------]                            

  3 <--*----->----]                                                             

  4 [<-*------->-----]                                                          

  5 [<--*-------------------------------->----]                                 

  6       [-------<--------------*------------->-----------------------------]  

EWD [==<==========*===================>==============================]          

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.04                                                                   5.1 

 

Item no.:   5 Item name: MCMA_OneWeek Scale: UNI 

Experts 

  1  [------------<--------------*-------------->--------------]                

  2           [-------<-------*------>--------------]                           

  3 [<---*-------->---]                                                         

  4 [<*----->--]                                                                

  5 [<-----------------*-------->--------]                                      

  6        [------<--------------*-------------->-----------------------------] 

EWD [===<===========*==============>===========================]                

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.02                                                                     5 

 

Item no.:   6 Item name: EU_OneWeek Scale: UNI 

Experts 

  1  [-------------------<--------------*-------------->----------------------] 

  2           [-------<------*------>--------------]                            

  3 [<------*-->--]                                                             

  4 [<-*------->-----]                                                          

  5 [------<*-------------------->------------------]                           

  6        [------<--------------*-------------->----------------------------]  

EWD [======<======*==================>===============================]          

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.017                                                                  5.1 

 

Item no.:   7 Item name: US_ThreeMonths Scale: UNI 

Experts 

  1 [------------<-------------*------------->--------------]                   

  2         [---------<---*---->----]                                           

  3    [--<--------*----------->----]                                           

  4 [--<-*---->-----]                                                           

  5 <--*-------------->-------]                                                 

  6         [---------<------------------*------------------>-----------------] 

EWD [====<===========*===========>================================]             

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.08                                                                     8 
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Item no.:   8 Item name: MCMA_ThreeMont Scale: UNI 

Experts 

  1 [----------<-----------*---------->------------]                            

  2          [--------<----*--->----]                                           

  3       [-<---------*------------->----]                                      

  4 [-<-*-------->-]                                                            

  5 [-<----------*--------->---]                                                

  6          [--------<------------------*------------------>-----------------] 

EWD [=======<=========*==========>===============================]              

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.03                                                                     8 

 

Item no.:   9 Item name: EU_ThreeMonths Scale: UNI 

Experts 

  1 [------------<--------------*------------->-------------]                   

  2          [--------<----*---->---]                                           

  3     [--<---------*---------->---]                                           

  4 [----<*-------->---]                                                        

  5 [<---*----------------->------]                                             

  6          [--------<------------------*------------------>-----------------] 

EWD [======<==========*===========>===============================]             

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    0.017                                                                    8 

 

Item no.:  10 Item name: Days2003exceed Scale: UNI 

Experts 

  1       [--<--------*--------->--------]                                      

  2 [<-*>-]                                                                     

  3             [-----<--*--------->-----]                                      

  4             [--------<---------*-------------->---------]                   

  5       [----------<-------------------------*---------------->-------------] 

  6                   [------------<-------------*--->------]                   

EWDM [========<=============*=================>======================]          

Real::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

                  23 

    1E-005                                                                 120 

 

Item no.:  11 Item name: Days1995exceed Scale: UNI 

Experts 

  1 [---<--------*--->----]                                                     

  2 [---<---*---->---]                                                          

  3              [---<----*------->--------]                                    

  4              [----<------------------*->----------------------------------] 

  5   [--------<-------------------------------*-->--------------]              

  6                       [---<--------*----->------]                           

EWDM [=========<=========*================>=====================]               

Real:::::::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

                     50 

    10                                                                     180 

 

Item no.:  12 Item name: Days2003below Scale: UNI 

Experts 

  1  [---------------<------------------*---------------->-------------------]  

  2 <>]                                                                         

  3             [-----<-----*----------->------------------------------------]  

  4        [-----------<----*--->-------]                                       

  5  [<---*----->--------]                                                      

  6                                                 [-----<-------*-->-------]  

EWD [===<================*===========================>====================]     

Real::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::# 

                                                                            307 

    1E-005                                                                 307 

 

Item no.:  13 Item name: Days1995below Scale: UNI 

Experts 

  1 [----------------<----------------*----------------->----------------]      

  2 |                                                                           

  3             [-----<-----*------------>------------------------]             

  4    [----<---*->---]                                                         

  5 [<--*---->---------]                                                        

  6             [-----<-----*------------>-----------]                          

EWD [==<==========*==============>==============================]               

Real::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::# 

                                                                            301 

    1E-005                                                                 301 
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Item no.:  14 Item name: Hours2003excee Scale: UNI 

Experts 

  1       [-<-*->--]                                                            

  2    [--<---*>------------------------]                                       

  3       [-----<--*>-------]                                                   

  4        [-------<-------*--->----]                                           

  5 [--<---*----------->--------]                                               

  6                                                        [---<----*--->-----] 

EWDM [=======<====*============>========================================]       

Real:::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

       718 

    300                                                                   8736 

 

Item no.:  15 Item name: Hours1995excee Scale: UNI 

Experts 

  1             [-<-*->-]                                                       

  2               [------<--*----->-------------------------]                   

  3        [------<-*->------]                                                  

  4                  [-----<---*----->------]                                   

  5 [<---------------------------*------------>------------]                    

  6                                                            [----<---*->---] 

EWDM [==============<======*==================>===========================]     

Real:::::::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

                1592 

    80                                                                    8736 

 

Item no.:  16 Item name: Hours2003below Scale: UNI 

Experts 

  1      [----<-----*---->-----]                                                

  2 [---------<---------*--------->---------]                                   

  3                                 [--------<-------------*-------------->---] 

  4                  [-------<------*------>------]                             

  5 [---<---------------------*------------->----------]                        

  6 [*]                                                                         

EWDM [====<===============*================>==============================]     

Real::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#:: 

                                                                          7778 

    108                                                                   8000 

 

Item no.:  17 Item name: Hours1995below Scale: UNI 

Experts 

  1  [-----<-----*----->----]                                                   

  2 [---------<---------*--------->---------]                                   

  3                                 [--------<--------------*------------->---] 

  4            [-----<--*----->--------]                                        

  5 [<---------*-------------------->----]                                      

  6 <]                                                                          

EWD [==<=============*===============>====================================]     

Real:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#::::: 

                                                                        7379 

    90                                                                    8000 

 

Item no.:  18 Item name: NAD2000highFD Scale: UNI 

Experts 

  1         [-<--*>-]                                                           

  2           [----------<-------------------------------*---------->---------] 

  3 [-------<--*->----]                                                         

  4      [----<--*->-----]                                                      

  5           [*>---]                                                           

  6            <*]                                                              

EWDM   [=======<*==>=================================================]          

Real::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

                      953 

    600                                                                   2000 

 

Item no.:  19 Item name: NAD2000lowFD Scale: UNI 

Experts 

  1                                         [-----<----*-->--]                  

  2 [----------<-----------*---->-----]                                         

  3                                   [----------------<----*------>----------] 

  4                                   [-----<--------------*->----------]       

  5                                                   [-<---*>--------]         

  6                                               [----<-----*--->]             

EWDM         [===============================<===========*====>==========]      

Real::::::::::::::::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::: 

                                                          771 

    300                                                                    950 
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Item no.:  20 Item name: NAD2000highSM Scale: UNI 

Experts 

  1        [<-*->-]                                                             

  2        [------------<-------------------*---------------->----------------] 

  3 [-----<-*--->--]                                                            

  4    [--<--*------->--]                                                       

  5         <*------>------]                                                    

  6          [<*-->--]                                                          

EWDM  [=====<==*=====>==========================================]               

Real::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

                  607 

    400                                                                   1500 

 

Item no.:  21 Item name: NAD2000lowSM Scale: UNI 

Experts 

  1                                [----<---*---->---]                          

  2 [----------<----------*----------->----------]                              

  3                       [--------------------<---*---------------->---------] 

  4 [--------<------------------------------*-------->------------------]       

  5                                     [-<-----*--------->-------------]       

  6                                       [-----<--*----->--]                   

EWDM   [============================<==========*======>==================]      

Real:::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::::::::::::: 

                                     449 

    300                                                                    630 

 

A4.4 Uncertainty Distribution for Variables of Interest (all experts). 

 
QUANTILE 

VARIABLE 
5% 25% 50% 75% 95% 

EqualUS_LongTerm -11.01 -2.61 -1.16 -0.67 -0.13 

GlobalUS_LongTerm -3.00 -1.50 -1.24 -1.10 -0.50 

EqualMCMA_LongTerm -33.48 -3.02 -1.51 -0.82 -0.08 

GlobalMCMA_LongTerm -3.50 -2.80 -2.30 -1.50 -0.90 

EqualEU_LongTerm -22.07 -2.74 -1.19 -0.68 -0.11 

GlobalEU_LongTerm -3.20 -2.00 -1.60 -1.00 -0.50 

EqualUS_OneWeek 0.06 0.27 1.04 2.39 4.48 

GlobalUS_OneWeek 0.05 0.10 0.30 0.70 1.00 

EqualMCMA_OneWeek 0.05 0.33 1.11 2.13 3.98 

GlobalMCMA_OneWeek 0.05 0.10 0.40 1.00 1.25 

EqualEU_OneWeek 0.05 0.50 1.03 2.29 4.49 

GlobalEU_OneWeek 0.05 0.10 0.60 0.80 1.00 

EqualUS_ThreeMonths 0.11 0.70 1.91 3.20 6.63 

GlobalUS_ThreeMonths 0.50 0.75 1.75 3.00 3.50 

EqualMCMA_ThreeMonths 0.08 0.89 2.02 3.21 6.58 

GlobalMCMA_ThreeMonths 0.70 0.90 2.00 3.50 4.00 

EqualEU_ThreeMonths 0.08 0.77 2.03 3.22 6.65 

GlobalEU_ThreeMonths 0.50 0.80 1.85 3.00 3.50 
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A4.5 Uncertainty Distribution for Variables of Interest 
(excluding experts  4 and 5). 

 
QUANTILE 

VARIABLE 
5% 25% 50% 75% 95% 

Equal1US_LongTerm -11.38 -3.48 -1.41 -0.92 -0.46 

Global1US_LongTerm -3.00 -1.50 -1.24 -1.10 -0.50 

Equal1MCMA_LongTerm -35.79 -8.37 -1.81 -0.93 -0.27 

Global1MCMA_LongTerm -3.50 -2.80 -2.30 -1.50 -0.90 

Equal1EU_LongTerm -23.14 -3.86 -1.72 -0.91 -0.44 

Global1EU_LongTerm -3.20 -2.00 -1.60 -1.00 -0.50 

Equal1US_OneWeek 0.06 0.65 1.54 2.65 4.74 

Global1US_OneWeek 0.05 0.10 0.30 0.70 1.00 

Equal1MCMA_OneWeek 0.06 0.71 1.42 2.48 4.30 

Global1MCMA_OneWeek 0.05 0.10 0.40 1.00 1.25 

Equal1EU_OneWeek 0.06 0.73 1.54 2.65 4.74 

Global1EU_OneWeek 0.05 0.10 0.60 0.80 1.00 

Equal1US_ThreeMonths 0.39 1.52 2.62 3.76 7.12 

Global1US_ThreeMonths 0.50 0.75 1.75 3.00 3.50 

Equal1MCMA_ThreeMonths 0.37 1.51 2.60 3.71 7.07 

Global1MCMA_ThreeMonths 0.70 0.90 2.00 3.50 4.00 

Equal1EU_ThreeMonths 0.39 1.54 2.63 3.76 7.12 

Global1EU_ThreeMonths 0.50 0.80 1.85 3.00 3.50 
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Chapter 5. Conclusions and Recommendations. 
 
Several conclusions have been presented throughout this research. This section will 
summarize those findings considered more relevant so that recommendations may be put 
forward in a more comprehensible way for the reader. In this chapter all relevant quantities 
were transformed to relative risks for 10 units increase in air pollution to make comparison 
easier. The reader should refer to original sources or the chapter of interest for more details on 
how the original quantities are reported. 
 

5.1 Long Term Effects of Air Pollution in Mortality. 
 
In figure 5.1 the estimates for long term mortality (5th, 50th and 95th percentiles) found with 
the expert judgment exercise described in chapter 4 (Global Weights Decision Maker) 
transformed to risk ratios are plotted against one of the most recent studies that use a variant 
of the Cox proportional hazards model described in chapter 1. The first two boxes correspond 
to the risk ratio estimates from (Pope, et. al., 2002) for total and cardiopulmonary mortality 
respectively9. The next three boxes correspond to equivalent estimates from the expert 
judgment study for application in the United States, Mexico City, and Europe in that order. 
 

Figure 5.1 Relative Risk from Cox Model per 10 µg/m3 Increase in PM2.5 
(Central and Interval Estimates). 

 

EACS(T) EACS(CP) GW_US GW _MCMA GW _EU

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

1.32

1.36

1.40

 
EACS(T)= Extended American Cancer Society Study (Total Mortality); EACS(T)= Extended 
American Cancer Society Study (Cardiopulmonary Mortality); Estimated and adjusted based on 
the baseline random effects CPHM, controlling for age, sex, race, smoking, history of high blood 
pressure, years lived with a smoker and total exercise level. 
GW_US = Global Weight Decision Maker United States Setting; GW_US = Global Weight 
Decision Maker for United States; GW_MCMA = Global Weight Decision Maker for Mexico 
City Metropolitan Area; GW_EU = Global Weight Decision Maker for European Union. 

 
                                                
9 The confidence intervals shown for this study are only thought to reflect the sampling error in estimating the 
coefficients. The authors don’t make any suggestion that these are the true uncertainty intervals of the estimates. 
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From the picture two conclusions may be drawn. First, that the experts (or at least Mexican 
experts) believe that the “true” effect of PM2.5 in mortality is larger than that reported in the 
ACS study as expressed by the central estimate: 50th percentile of global weights decision 
maker compared to the central estimate from the ACS study. For the 3 geographic locations, 
the experts believe that the central estimate for total mortality could be even larger than the 
central estimate found in the study of reference for cardiopulmonary mortality. This 
observation is consistent with the results from chapter 1 where an incomplete Cox model 
considerably underestimated the “true” value of the coefficient.  
 
The second conclusion is that experts express their uncertainty in the estimates found across 
the literature by providing a range for the 90% confidence much wider than the one normally 
reported in the literature, this result is expected as the uncertainty surrounding a given 
estimate is influenced by other factors than just statistical fluctuation reflected by confidence 
intervals. This expert opinion combination does not consider the possibility of no effect of 
particulate matter on mortality. 
 
The results from the investigation show that more emphasis should be placed in assessing 
model adequacy. The reports that investigate long term exposure to air pollution should 
include not only central and interval risk estimates but also measures of model performance 
and analysis of the whole survival experience of the population studied so that the decision 
maker can include these measures in their analysis. Another conclusion extracted from 
chapter four is that expert judgment could also be a useful tool for characterizing and 
monitoring the uncertainty as perceived by the scientific community regarding such kind of 
studies. 
 

5.2 Short Term Effects of Air Pollution in Mortality. 
 
Figure 5.2 is the equivalent of 5.1 for short term effects of air pollution in total mortality. The 
first two boxes in the plot correspond to estimates for the United States; the next two 
correspond to estimates for Europe and the last 4 correspond to estimates for Mexico. From 
the estimates for the United States it may be observed that experts believe that PM2.5 has a 
larger influence than that documented for PM10 in the total daily number of deaths, and that 
they express larger uncertainty regarding the true effect by giving a larger range for their 90% 
confidence than the one found in previous studies. 
 
The smaller confidence bounds estimate for the risk ratio in the APHEA study is possibly 
obtained because of the use of black smoke as air pollution measurement, when these 
estimates are compared to the Mexican expert’s “optimized” opinion it is observed that 
experts’ believe that short term effects of air pollution in mortality could be different across 
geographical location, possibly because of baseline health status or differences in the 
pollution mix. Their best estimate for Europe is larger than the one for USA whereas their 
uncertainty is in general expressed in the same manner as for the previous setting. 
 
The estimate found with GLM for effects of PM10 in mortality in Toluca city is roughly the 
same as the one found in (Borja-Aburto, 1998) for PM2.5 in Mexico City when considering 
smooth functions of some covariates in the regression analysis and is also not far from the one 
found later by (Castillejos, et. al., 2000) for PM10. This leads to the conclusion that a 
regression that does not control for possible non linear effects of certain covariates is also 
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capable to capture air pollution health effects (the estimates presented where found 
statistically significant with hypothesis testing).  
 
From figure 5.2 it is observed that the experts believe that the estimates available for Mexico 
City (and hence possibly the one found for Toluca in this investigation) might be over 
estimated. Taking these considerations together a recommendation would be to conduct a 
multi-site air pollution study in Mexico. Furthermore, from the results of chapter three a 
multi-site study incorporating methodologies previously used (Fourier decomposition of time 
series, hierarchical models for combining site-specific estimates, etc.) is desirable but not 
sufficient. To go further in investigating short term effects of air pollution, different 
sensitivity and uncertainty measures (like the attempt made in chapter three of using also 
partial correlation coefficients) should be applied to the models and incorporated in the 
reports, and an expert judgment exercise similar to the one sketched in chapter four would be 
desirable after new multi site information becomes available. 
 

Figure 5.2 Short Term Air Pollution Effects on Mortality (Central and 
Interval Estimates). 
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NMMAPS = National Mortality and Morbidity Air Pollution Study US total mortality (using a 
non informative prior, PM10 + O3 + NO2);  
GW_US = Global Weight Decision Maker for United States, adult population (PM2.5); 
APHEA = Air Pollution and Health: a European Approach (Black smoke, using GAM) 
GW_EU = Global Weight Decision Maker for European Union, adult population (PM2.5). 
B-A = Borja-Aburto, 1998 (PM2.5 + O3 + NO2, GLM with splines) 
C = Castillejos,2000 (PM10 + O3 + NO2, GLM with splines) 
GW_MCMA = Global Weight Decision Maker for Mexico City Metropolitan Are, adult 
population (PM2.5); 
CH 3 = Estimate found in chapter 3 for Toluca (PM2.5, 3 day lag, GLM)  

 
 
In figure 5.3 the reader may observe that the effects of PM10,2.5 in mortality related to the 
respiratory system observed in Mexico City and Toluca are likely to be larger than the effect 
that experts’ believe PM2.5 could have in adult mortality in Mexico city. However, the 
variation of the central indicator is so large that the possibility of no effect of air pollution in 
respiratory system related mortality is also observed in the first box in figure 5.3. 
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In chapter four, the classical method for expert judgment proved to be a useful tool for dealing 
with the uncertainty surrounding air pollution health effect estimates, and it could also be a 
useful tool for investigating cause specific mortality that could provide information about the 
relationship of the pollutants with frail groups of people. The multi-site aggregation should 
include also cause specific mortality analysis. 
 
 

Figure 5.3 Respiratory System Related Mortality Central and Interval 
Estimates. 
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Borja-Aburto, 1998; respiratory causes (PM2.5 + O3 + NO2, GLM with splines) 
Castillejos,2000; respiratory causes (PM10 + O3 + NO2, GLM with splines) 
CH 3 = Estimate found in chapter 3 for Toluca, respiratory causes (3 day lag, GLM)  
GW_MCMA = Global Weight Decision Maker for Mexico City Metropolitan Area, adult 
population (PM2.5); 

 
This investigation suggests that there is enough evidence derived from the mathematical 
models available at the moment to support the hypothesis that air pollution has negative 
effects in health; however it also indicates that not everything is settled with these tools, 
especially regarding model performance and sensitivity and uncertainty analysis. These issues 
should be address more extensively in future research. 
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