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A B S T R A C T 

Eradication of a disease promises significant health and financial benefits. Preserving those benefits, 
hopefully in perpetuity, requires preparing for the possibility that the causal agent could re-emerge 
(unintentionally or intentionally). In the case of a vaccine-preventable disease, creation and planning for 
the use of a vaccine stockpile becomes a primary concern. Doing so requires consideration of the dynamics 
at different levels, including the stockpile supply chain and transmission of the causal agent. This paper 
develops a mathematical framework for determining the optimal management of a vaccine stocl<pile 
over time. We apply the framework to the polio vaccine stockpile for the post-eradication era and present 
examples of solutions to one possible framing of the optimization problem. We use the framework to 
discuss issues relevant to the development and use of the polio vaccine stockpile, including capacity 
constraints, production and filling delays, risks associated with the stockpile, dynamics and uncertainty 
of vaccine needs, issues of funding, location, and serotype dependent behavior, and the implications of 
likely changes over time that might occur. This framework serves as a helpful context for discussions and 
analyses related to the process of designing and maintaining a stockpile for an eradicated disease. 

© 2010 Elsevier Ltd. All rights reserved. 

1. Introduction 

Global eradication of infectious diseases offers the promise of 
substantial health and financial benefits due to the prevention 
of cases of disease and the reduction of costs for disease control 
and treatment after eradication. Recognizing the humanitarian and 
economical beneflts of eradication, the international public health 
community successfully eradicated smallpox, and is currently 
attempting to eradicate the transmission of wild polioviruses, dra-
cunculiasis (guinea worm), and rinderpest (an animal disease) [1,2]. 
Eradication of other diseases, including measles and malaria, repre­
sents a continuing topic of discussion [3-5]. Preserving the beneflts 
achieved through eradication requires preparing for the possi­
bility that the causal agent could re-emerge (unintentionally or 
intentionally). In the case of a vaccine-preventable disease, cre­
ation and planning for the use of a vaccine stockpile becomes a 
primary concern, particularly when achieving the goal of erad­
ication leads to expectations and demands to stop vaccination. 
For example, following smallpox eradication, national and inter­
national public health agencies prepared to respond to potential 
but unlikely reintroductions of smallpox after the cessation of 
vaccination for smallpox by creating vaccine stockpiles. Milstien 
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conducted an extensive review of the smallpox vaccine stockpile 
and other stockpiles for non-eradicated diseases (i.e., meningitis, 
yellow fever, influenza, and anthrax), and offered lessons learned 
related to the establishment, maintenance, governance, flnancing, 
regulation, implementation, and use of a post-eradication stockpile 
(Table 1) [6]. Emergency antigen and vaccine banks also exist for 
foot and mouth disease and other animal diseases [7]. 

Stockpiles for eradicated diseases, for which routine vaccina­
tion with a vaccine used to achieve eradication wil l cease, differ 
from those for non-eradicated diseases in two important ways. 
First, while the perceived risk of reintroduction of the causal agent 
remains small for an eradicated disease, population immunity wil l 
likely decrease substantially after reduced agent vaccination, lead­
ing to a situation in which a reintroduction can potentially spread 
very rapidly. This means that the speed of deployment of the vac­
cine becomes a key requirement of the stockpile and that the 
possible consequences of insufficient quantities of vaccine in the 
stockpile become very important. Second, the stockpile may con­
tain a no longer routinely used vaccine, making a rotating stock 
procurement strategy impossible, with implications for vaccine 
licensing, testing, expiry, and storage. Thus, managing the stockpile 
requires consideration of the dynamic interactions between the 
vaccine supply chain and disease transmission in a highly uncertain 
environment. The complexity of the issues suggests the need for 
quantitative analysis to inform the process of developing and main­
taining a post-eradication stockpile for a vaccine that wi l l cease 
to be used for routine vaccination following eradication. While 
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Table 1 

Lessons learned from prior stockpiles {adapted from Milstien [6]). 

Aspect of the stockpile Lessons learned 

Establishment 

Maintenance 

Governance 

Financing 

Regulation 

Implementation 

Need for more than one manufacturer 
Need to keep stocks in more than one format 

Need to make provisions for potential advances in 
the field 
Need for strategies to handle intellectual property 
rights issues 

Need of an independent oversight committee 
Need for permanent institutional memory 
provisions 
Manufacturing facilities may provide the best 
storage possibilities in terms of oversight 
Importance of well-designed and implemented 
quality assurance and quality control 

Need for advance funding for procurement 
Funding must cover storage, transport, quality 
assurance and quality control, and other costs 

Possible need for innovative regulatory approaches 
WHO prequalification is essential 
Importance of national acceptance of the stockpile 

Need for liability indemnification 
Need for criteria for trigger events and 
distribution, including epidemiological and 
laboratory confirmation 

several mathematical models of stockpiles of antiviral drugs for 
influenza contributed to the evolving discussions of preparedness 
for an influenza pandemic [8-10], to our knowledge no quantita­
tive model exists for analyzing stockpiles for eradicated diseases. 
This paper formulates a mathematical framework for optimizing 
the management of a stockpile for an eradicated disease. We focus 
on the current development of the polio vaccine stockpile for the 
post-eradication era [11], and anticipate that this framework wil l 
provide helpful context for discussions and analyses related to the 
process of its design, use, and maintenance. Building on our prior 
work exploring responses to outbreaks [12,13], we use the frame­
work to discuss numerous issues, including capacity constraints, 
production and filling delays and the expiry process, risks associ­
ated with the stockpile, dynamics and uncertainty of vaccine needs, 
issues of funding, location, and serotype dependent behavior, and 
the implications of likely changes over time that might occur. 

The following section presents a general framework for 
stockpile optimization, with two distinct formulations of the opti­
mization problem. The next section provides background related 
to the polio vaccine stockpile and then presents the supply chain 
model for this study. We then present a hypothetical example to 
illustrate some of the dynamics and present variations of the opti­
mization model that highlight different issues with respect to a 
polio vaccine stockpile to demonstrate the value of the framework. 
Finally, we discuss insights we derived from developing the frame­
work and analyzing the example, and we suggest the need for 
continued work on this topic. 

2. General optimization frameworlc 

While optimizing the use of scarce health resources typically 
relies on relatively static tools such as cost-effectiveness analyses, 
mathematical optimization offers opportunities to further improve 
resource allocation decisions [14-17). In the case of a vaccine stock­
pile, optimization requires an understanding of the dynamics of the 
supply chain and the nature of the demand [18-20]. In this sec­
tion, we formulate optimization problems for a simplified, abstract 
stockpile to illustrate the general framework. 

We consider the simplified stock-and-flow diagram for the 
stockpile depicted in Fig. 1. A stock-and-flow diagram consists of 
stocks (shown as boxes) whose levels can change over time, inflows 
and outflows (shown as arrows with valves) that control the levels 
in the stocks, and intermediate variables (shown as text connected 
with arrows) that may contain constants or calculations and influ­
ence the flows [21]. The arrows show direct influences between 
stocks, flows, and intermediate variables. In text discussing the 
stock-and-flow flgures, we refer to stocks using bold text and flows 
or other variables using italics. The box stockpile in Fig. 1 repre­
sents the quantity of vaccine readily available for use. The stoclq)ile 
size gets drawn down as a result of expiry and loss due to a flnite 
shelf-life or wastage in storage, or deployment in response to vaccine 
demand. Vaccine demand depends on how quickly we can vacci­
nate people (captured in the distribution constraints). The amount 
of vaccine in the stoclcpile and the time needed to deploy vaccine 
from the stocltpile, captured in the deployment constraints, together 
determine the maximum deployment rate (e.g., the maximum deploy­
ment rate becomes 0 if the amount of vaccine from the stoclqiile 
is 0). The stoclcpile size may increase as a result of a nonnegative 
order rate, but due to the production process, newly ordered vac­
cine flrst accumulates in the stock vaccine in production through 
the production starts flow before arriving in the stoclqjile through 
the production flow. The stock vaccine in production in reality 
includes many intermediate stocks representing different stages in 
the production pipeline, including vaccine orders waiting to enter 
the production pipeline, production of bulk, storage of bulk, vac­
cine being filled, and vaccine waiting to be tested. For simplicity, 
we represent them here all in one stock, vaccine in production, 
and show the box in bold face to indicate that this stock in real­
ity consists of multiple stages. We capture the delays and capacity 
constraint of the production process in production constraints. The 
production constraints and amount of vaccine in production deter­
mine the maximum production rate, and loss may occur as a result of 
wastage during the production process. Managers place orders at a 
certain order rate following their ordering strategy, although a delay 
may exist between setting the strategy and executing it, as shown 
by the delay mark (double line) in the arrow from ordering strat­
egy to order rate. The ordering strategy at any given time t may be 
subject to financial constraints and use information about the stoclc-
pile size at time t (both shown by the dotted arrows) and other 
information about the current state of the stockpile (arrows not 
shown). Production leads to vaccine costs and unmet vaccine needs 
lead to sub-optimal outbreak response and thus to public liealth 
costs. Whenever deployment cannot meet the vaccine demand due 
to insufficient vaccine available from the stoclqiile, this leads to 
unmet vaccine needs. 

Optimizing the vaccine stockpile involves balancing the trade­
off between vaccine costs and public health costs. We formulate two 
different framings of the optimization problem. 

Framing 1: Minimize the present value of total costs over all feasible 
ordering strategies, assuming no financial constraints: 

pec 

Minimize C= (cp(t) + c„(t))e-'^'dt 
Jto 

s.t. o ( t ) > 0 

where C is the net present value of the total costs, Cp and c„ are the 
order rate dependent annual public health costs and annual vaccine 
costs, respectively, r is the discount rate, and o is the order rate. It 
follows from the constraint that any ordering strategy that leads to 
nonnegative order rate is feasible. If the order rate exceeds the max­
imum production rate, excess orders wi l l simply remain in the stock 
vaccine in production as backlog and the production constraints 
will govern the rate at which these orders ultimately flow to the 
stoclqjile. 
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Fig. 1. Stylized general stockpile model. 

Framing 2: Minimize tlie present value of public healtii costs over 
all feasible ordering strategies subject to the financial constraints: 

/»oo 

Minimize Cp = Cp{t)e-''Ut 
Jto 

s.t. o(t) > 0 

0 < / c„(t)e^' 'dt < F 
Jto 

where Cp is the net present value of the public health costs, F 
represents the financial constraints as a total amount of available 
funds (alternatively, the financial constraint could consist of vari­
able maximum funds available over different time periods), and 
all other symbols are as in framing 1. Under framing 2 the avail­
able funds determine the lowest possible health costs, while under 
framing 1 the potential public health costs determine the amount 
of funds available for the stockpile. 

3. Vaccine stockpile model: disease-specific context for 
polio 

Before formulating the polio vaccine stockpile model and pre­
senting a hypothetical example, the following subsection provides 
background on polio eradication and stockpiles. 

3.1. Background 

3.1.1. Global polio eradication 
The Global Polio Eradication Initiative (GPEl) anticipates suc­

cessful interruption of wild poliovirus transmission in the next 
few years, given sufficient financial resources, at which time it 
wil l begin implementation of post-eradication risk management 
strategies [11]. The benefits of the successful polio immunization 
program in the United States include preventing large numbers 
of cases of paralytic polio and overwhelming economic savings 
due to avoided treatment costs [22], Similarly, finishing polio 
eradication globally promises large long-term net benefits [23] 
as long as the GPEl can successfully contain the post-eradication 
outbreaks that likely wi l l occur due to the possibihty of circu­
lating vaccine-derived polioviruses (cVDPVs) [24]. Other potential 
outbreak risks include, unintendonal or intentional poliovirus rein­
troductions, VDPVs from immunodeficient long-term excretors, 
and any polioviruses circulating after apparent interruption of 
transmission or remaining in the environment [24]. The World 
Health Organization (WHO) currently plans for the cessation of 
routine use of the live, oral poliovirus vaccine (OPV) several years 
after wild poliovirus eradication to minimize the risk of generating 
new VDPVs [25]. Following global eradication, national and global 
policy makers wil l face numerous choices [26,27], including cre­
ation and maintenance of one or more vaccine stockpiles. All of 
these choices, including whether to use IPV for routine immuniza­

tion, and the surveillance and response policies, influence the risks 
and epidemiology of outbreaks and hence the size of the optimal 
stockpile. 

3.1.2. US polio vaccine stoclipile 
The current vaccine tools to respond to polio outbreaks include 

OPV, with trivalent (tOPV), bivalent (bOPV, types 1 and 3), and 
monovalent (mOPV) OPV formulations currentiy available, inac­
tivated poliovirus vaccine (IPV), a combination of these, or doing 
nothing. Jenkins and Modlin performed a decision analysis to eval­
uate these options in the context of a potential future outbreak 
in the US and they identified mOPV as the vaccine of choice if 
a supply exists, although they recognized that IPV is currently 
the only licensed polio vaccine in the US and carries no risk of 
causing vaccine-associated paralytic polio (VAPP) or cVDPVs [28]. 
In February 2004, a joint National Vaccine Advisory Committee 
and Advisory Committee on Immunization Practices work gtoup 
concluded that an 8 million dose stock of IPV represents a nec­
essary component of a US stockpile for polio, and that this size 
would be adequate in the event of a short-term disruption of the 
routine IPV supply or to control an outbreak given current and 
anticipated continued high population immunity [29,30]. However, 
questions remain about the efficacy of IPV in outbreak response, 
and as a result the committee also stated that prudent prepared­
ness requires access to 8 million doses of tOPV or 8 million doses 
of mOPV of each serotype. It recommended that the US "work with 
the WHO and other international partners to help finance, create, 
and maintain a global poliovirus vaccine stockpile that provides the 
US with immediate and guaranteed access." [29, p. 1110] Given the 
desire to contain or avoid the spread of viruses derived from OPV 
used in outbreak response, a report from the international Com­
mittee on Development of a Polio Antiviral and Its Potential Role 
in Global Poliomyelitis Eradication recommended rapid develop­
ment of at least one and preferably two polio antiviral compounds 
as an additional tool for outbreak response [31]. The US now has 
partially filled the recommended stockpile of 8 million doses of IPV, 
and the current plan for an international stockpile includes ensured 
universal access to mOPV [32]. The size and composition of the US 
stockpile, however, might need to change over time, as the risks of 
polio outbreaks and the availability of IPV and OPV change. 

3.1.3. Global polio vaccine stockpile 
WHO plans to establish a global polio vaccine stockpile as a 

prerequisite for OPV cessation [33,34], Currently, development 
of the global polio vaccine stockpile centers on the requirement 
that the stockpile contain sufficient doses either to re-interrupt 
poliovirus transmission following any post-eradication outbreaks, 
or if unable to stop transmission, to vaccinate until OPV production 
restarts assuming insufflcient IPV production capacity for univer­
sal use [32]. Based on analysis and a review of prior stockpiles, 
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Fig. 2. High-level stock-and-flow representation of the polio vaccine and antiviral stockpile.yicronyms: AVI, AV2: two different (trivalent) antiviral products; IPV: (trivalent) 

inactivated poliovirus vaccine; mOPVl, mOPV2, mOPV3: monovalent oral poliovirus vaccine types 1,2, and 3, respectively; tOPV: trivalent oral poliovirus vaccine. 

recommendations in 2004 for a polio vaccine stockpile included 
establishment of an independent oversight commission, interna­
tional financing, periodic assessment of costs, ensured access for 
all countries without regulatory hurdles or import/export barriers, 
and liability protection [6], Current WHO standard operating proce­
dures (SOPs) call for a stockpile of 750 million doses of each mOPV 
serotype, including 250 million doses of each serotype stored as 
finished product at the time of OPV cessation and a minimum bal­
ance of 100 million at any time, with the remaining mOPV stored 
as bulk [32]. The SOPs further state that UNICEF would main­
tain ownership of the international stockpile to ensure universal 
access and coherent use for response to an outbreak. The SOPs 
also established release criteria involving timely assessment of the 
trigger event by the independent oversight commission and subse­
quent recommendations regarding release of vaccine by the WHO 
Director-General. 

The process of filling OPV vaccine involves handling live 
polioviruses. In an increasingly susceptible world after OPV ces­
sation, reintroduction of any live poliovirus presents an important 
risk to maintaining a polio-free world [35], To minimize this risk, 
strict biocontainment requirements and the requirement of very 
high population immunity in the area surrounding the production 
facility could substantially increase the production and filling costs. 
In this context, the SOPs recommend physical storage and mainte­
nance of the stockpile at two or more distinct vaccine production 
facilities that comply with these requirements to reduce the risk of 
an inadvertent poliovirus reintroduction [36]. Consequently, some 
current conceptions of the stockpile envision all procurement to 
occur prior to OPV cessation while covering the anticipated needs to 
respond to likely cVDPV outbreaks in the time period immediately 
following OPV cessation. 

While current efforts represent significant progress, many 
issues related to this stockpile remain open, and optimization of the 
stockpile design offers the potential to reduce costs while ensur­
ing preparedness. Developed countries continue their efforts to 
evaluate the adequacy and accessibiUty of the global stockpile for 
domestic needs. Presumably, WHO might also consider the exis­
tence of national vaccine stockpiles in evaluating development of 
the global vaccine stockpile. We previously concluded that inter­
national cooperation represents a key requirement to optimize the 
global use of resources for polio vaccine stockpiles [37]. 

3.2. Polio vaccine stockpile supply chain 

Fig. 2 visualizes the different stocks and flows in a polio vac­
cine stockpile at the highest level. The stocks of mOPV bulk (any 
type) and IPV bulk increase through orders resulting in production 
and decrease either through fllling or loss (wastage). We assume 
that the shelf-life of the vaccine bulk product is inflnite for all prac­
tical purposes [32]. Filling is the only flow into mOPV flnal (any 
type) or IPV flnal, while the outflows from flnal vaccine include 
deployment, loss, and expiry. In a post-OPV cessation context, OPV 
deployment would only result in the event of outbreaks, but for IPV 
some deployment may also result from routine usage in the event 
of routine vaccine shortage. As shown, tOPV does not exist in bulk 
form, but gets fllled from the three mOPV bulk types. In addition. 
Fig. 2 shows two stocks of antiviral drugs, which may become a 
possibility in the future [31 ], 

Fig. 3 shows the stock-and-flow diagram for optimizing fram­
ing 1, focusing on a single mOPV type. We focus on framing 1 for 
the example below and refer to Appendix A.3 for a similar diagram 
reflecting framing 2, and expand on the general model shown in 
Fig. 1 to explicitly distinguish bulk and flnal vaccine components. In 
Fig. 3, both the vaccine in built production pipeline and vaccine in 
fllling pipeline stocks use bold faced box edges to indicate the pos­
sible subdivision into multiple stocks reflecting different stages in 
the production process. The number of subdivided stages depends 
on the actual properties of the bulk production and fllling pro­
cesses, including the number and location of production and fllling 
lines and procedures for virus growth and testing. These proper­
ties determine the appropriate way to model the delay, ranging 
from a simple first-order delay (reflecting no intermediate stages 
and multiple parallel fllling and production lines) and yielding the 
largest variance around the mean of the eventual outflow from the 
process, to a flxed (pipeline) delay yielding no variance around the 
mean [21 ]. In addition, capacity constraints in any of the stages in 
the pipeline can increase the actual duration of the process. Fig. 3 
also explicitly shows the accumulation of vaccine costs from bulk 
production, filling, and maintenance of the stockpile, the accumu­
lation of public health costs due to excess cases and political costs 
associated with unmet vaccine needs, and all the inputs determining 
the flows (e.g., the different wastage rates that determine loss out­
flows). The ordering strategy here determines both bulk production 
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Fig. 3. Stoclt-and-flow diagram for ttie minimization of the total costs with no financial constrainrs (framing 1) for a single serotype stockpile. 

Starts andfiUingstarts and may use information about current levels 
of vaccine bullc and vaccine final as well as the predictable expiry 
of vaccine final. Finally, Fig. 3 explicitly shows the interaction of the 
stockpile supply chain with an outbreak sub-model that determines 
the vaccirie needs and deployment resulting from virus introductions 
as well as the excess paralytic cases in the event of unmet vaccine 
needs. Consistent with the general framings, optimization fram­
ing 1 for this model entails minimizing the total costs (i.e., sum 
of cumulative vaccine costs and cumulative public health costs) 
over all feasible ordering strategies. 

Trade-offs in the model center around the costs of producing and 
fllling bulk vaccine doses vs. the costs associated with excess par­
alytic polio cases that might occur in the event of an outbreak due 
to a delayed or reduced outbreak response [12]. This includes both 
the medical and societal costs of excess cases and the political costs 
of stockpile "failure" (i.e., of facing unmet vaccine needs during an 
outbreak). The number of excess paralytic cases must also include 
cases of VAPP resulting from OPV use, which may increase as the 
fraction of susceptibles in the population increases and protection 
due to maternal antibodies declines [24]. 

4. Hypothetical example for polio 

This section presents an example of solutions for framing 1 
based on hypothetical model inputs to demonstrate the utility of 
the framework. The example focuses on the primary objective of 
the global polio vaccine stockpile to respond to outbreaks during 
the time immediately after OPV cessation. Appendix A includes 
examples for framing 2 and some variations on the assumptions. 
The example'illustrates the key dynamics and raises a number of 
important considerations in the design of an optimal vaccine stock­
pile for polio, although future analyses should address the speciflc 
choices made as the process for developing the poliovirus vaccine 
stockpile evolves. We use an outbreak sub-model that generates 
vaccine needs and excess paralytic cases associated with any unmet 
vaccine needs implemented using IVIathematica™ (see Appendix 
A.l -3 for details of the outbreak sub-model and derivations of the 
solutions to the different framings of the optimization ptoblem 
using linear programming methods). For simplicity, the example 
assumes a deterministic stream of vaccine needs that result from a 
deterministic number of virus introductions over time. For ease of 

presentation, we further assume no wastage or maintenance costs, 
because these only scale the total costs but have essentially no 
impact on the optimization algorithm. Table 2 provides the hypo­
thetical values of constants used in the example for the stockpile 
supply chain model. While we assume flrst-order delay processes 
in the outbreak sub-model, we assume fixed delays in the stockpile 
supply chain. We further consider flrst-order delays in Appendix 
A.2 to explore the possible spectrum of delay types in the stockpile. 

4.1. Illustration of outbreal< sub-model dynamics 

The outbreak sub-model simulates the diffusion of poliovirus 
following an initial introduction through a finite number of popu­
lation blocks. Once infected, population blocks eventually control 
the outbreak by increasing the level of population immunity. This 
occurs due to either natural burnout, which leads to many para­
lytic poUo cases, or due to outbreak response immunization, which 
controls the outbreak more rapidly and requires vaccine from the 
stockpile. Given that population blocks interact dynamically, the 
amount of vaccine available from the stockpile itself determines 
the future vaccine needs. For example, with insufflcient vaccine 
from the stockpile, an outbreak may spread to new population 
blocks and consequentiy genetate additional vaccine needs. Thus, 
the outbreak sub-model requires input from the stockpile supply 
chain model (i.e., vaccine final) and at the same time generates 
output that feeds into the stockpile supply chain model (i.e., distri­
bution as a result of vaccine demand, vaccine needs, and excess 
paralytic cases), as shown in Fig. 3. Virus introductions in this 
simple model consist of exogenously generated increments in the 
numbers of infected populations. To illustrate the dynamics in the 
sub-model, Fig. 4 shows the vaccine needs arising from an expo­
nentially decreasing number of virus introductions starting in year 
3 with a half-life of 2 years and totaling 10 introductions as a sim­
plified scenario roughly consistent with the expected decrease in 
initiating cVDPV events [24,27,38]. Year 3 represents the point in 
time when outbreak response activities would begin using vaccine 
from the stockpile (i.e., OPV cessation), while bulk production and 
filling may already occur before year 3. Fig. 4 shows the vaccine 
demand over time, either with no stockpile or response, or with 
sufficient vaccine in the stockpile to cover all vaccine needs. With 
sufficient vaccine, the response leads to rapid control of all the out-
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Table 2 
Stockpile supply chain model constants used for the demonstrative example (including initial values for vaccine stocks)^ 

Symbol in equations Name in Fig. 3 Value 

K Vaccine in bulk production pipeline 0 doses (initial value) 

v„ Vaccine bulk 0 doses (initial value) 
Vaccine in filling pipeline 0 doses (initial value) 
Vaccine final 0 doses (initial value) 

tb Minimum bulk production time 1S months 
bc Bulk production capacity 100 million doses/month 

tf Minimum filling time 3 months 

fc Filling capacity 10 million doses/month 

ts Shelf-life 60 months 

Wl, W2, W3, W4 Wastage rates 01/month 
r Discount rate 0.0025 1/month (=3% per year) 

Cb Bulk production costs per dose 0.2$/dose 

Cr Filling cost per dose 0.1$/dose 

Cease Cost associated with excess cases 1000$/case 

Cpol Political costs of failure too million $/month with unmet vaccine needs 

Cm Maintenance cost rate OS/month 

' While we emphasize the hypothetical nature of the examples and choices of input values, most values represent informed choices based on prior work [27]. 

breaks. Witl i no stockpile, virus exportations to other populations 
occur over time and outbreaks continue to increase until no more 
at-risk populations remain (i.e., populations with sufficient sus­
ceptibles to sustain outbreaks); correspondingly, vaccine demand 
rises until it eventually plateaus. Thus, if we stop routine vaccina­
tion and do nothing to respond to outbreaks, then any small risk of 
outbreaks results in an eventual return to uncontrolled poliovirus 
circulation. 

4.2. Illustration of optimal solution for framing 1 

Appendix A.2 describes how we obtained an optimal solution 
for framing 1 using standard linear programming methods. The 
solution relies on the plausible assumption that the penalty (i.e., 
costs) associated with each dose of unmet vaccine needs exceeds 
the costs of stockpiling a dose. If this assumption does not hold, then 
no economic justification exists for the stockpile, because the costs 
of the consequences do not exceed the stockpile costs. In addition, 
we ignored expiry by assuming that we use vaccines for outbreak 
response soon aftet they enter the stock of final vaccine, which is 
possible if vaccine demand is deterministic and filling capacity is 
sufficiently high. 

Fig. 5 shows the optimal solution assuming fixed delays for the 
bulk production, filling, and expiry processes. Due to discounting 
in the objective function, the optimal solution delivers vaccine as 
late as possible to incur costs as late as possible. This means that 
it does not start accumulating vaccine final until year 2, although 
it must start filling before the actual vaccine needs arise in year 3 
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because of the filling capacity constraint and delay. Similarly, the 
optimal solution requires that we build the stock of vaccine bulk 
as late as we can and only up to the level required to be able to 
fill at maximum capacity when needed. Once we start bringing 
the outbreak under control, the vaccine needs decrease (Fig. 4), 
deployment of vaccine final diminishes, and as a result filling can 
decrease and both vaccine stocks deplete to (almost) 0. The amount 
of vaccine bulk needed depends on the time period over which we 
plan orders (i.e., the planning period). In the example, the planning 
period equals half a month, so the stock of vaccine bulk at any time 
must hold sufficient vaccine to cover the total filling needed for the 
next half month (e.g., 0.5 months x 10 million doses per month = 5 
million doses when filling occurs at maximum capacity in year 3 
(Table 2)). Thus, the choice of planning period impacts the required 
level of vaccine bulk, which in the case of deterministic demand 
with fixed delays becomes zero as the planning period approaches 
0. The (discounted) cumulative costs reflect the same two waves 
of production and filling activity and in this example amount to 
approximately $55 million over 23 years based on the hypothetical 
model inputs from Table 2. 

5. Variations of the optimization models 

The example in the prior section represents only one of many 
possible variations of the optimization models. These variations 
may reflect different practical realities and we discuss these 

I Vacc ine linal Vaccine bulk Cumulal ive co s l s ( r ight a x l s j j 

Fig. 4. Forecast of the vaccine demand assuming an exponential decay in virus 
introductions, starting in year 3. 

10 15 

Time (years) 

Fig. 5. Vaccine stocks and cumulative costs (discounted) for the optimal solution of 
framing 1 assuming fixed delays in the stockpile supply chain and an exponential 
decay in virus introductions, starting in year 3. 
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Fig. 6. Optimal solution assuming a suilden and permanent doubling of the bulk production and/or filling costs in year 3: (a) only bulk production cost doubled; (b) both 
bulk production and filling costs doubled; (c) both bulk production and filling costs doubled and filling capacity constraint relaxed. 

qualitatively here to expose important issues that need explicit dis­
cussion in the process of designing the poliovirus vaccine stockpile. 

5.1. Risks and costs of vaccine production after OPV cessation 

As mentioned, the risks associated with OPV production after 
OPV cessation might effectively imply an increase in vaccine 
production costs due to constraints on the physical location of pro­
duction facilities as well as containment requirements. To explore 
this possibility. Fig. 6 shows the effect of a sudden and permanent 
doubling of the production costs per dose in year 3. In Fig. 6a, we 
only doubled the bulk production costs, presumably because bulk 
production requires the most stringent and expensive biosafety 
precautions. As a result of the cost increase, in the optimal solution 
all bulk accumulation occurs before year 3, while the vaccine flnal 
levels remain unchanged compared to Fig. 5. In Fig. 6b, we explored 
the effect of simultaneously doubling the fllling costs from year 3 
forward. This results in an optimal solution that acquires all needed 
vaccine flnal before year 3, which due to the capacity constraint 
involves earlier accumulation of vaccine flnal than in Fig. 6a. This 
in turn requires production of most vaccine bulk early on, with one 
last order of vaccine bulk occurring just before year 3. If we relax 
the fllling constraint, then the optimal solution orders as much as 
possible of both bulk and final vaccine just before year 3 (Fig. 6c). 

While the practical effect of the risk associated with producing 
poliovirus after OPV cessation is a sudden increase in production 
costs at OPV cessation, in reality there exists a trade-off between 
the costs of containment measures and the risk associated with 
production after OPV cessation. An extension of the model might 
consider whether the expected excess cases resulting from the 
risk of releases from vaccine production facilities justify the costs 
of containment. Such an extension would explicitly consider geo­
graphical locations of the stockpile to link virus introductions to 
production and would need to consider immunity level in the pop­

ulation surrounding the production facility as it affects the risk of 
new virus introductions and excess cases. 

5.2. Expiry of filled vaccine 

The assumption of a fixed delay process for expiry, as in the 
example, is appropriate if disposal of expired vaccine lots occurs 
on the basis of expiry dates set at the time of filling, which is 
current practice. Alternatively, in the future random tests may pos­
sibly determine the disposal of lots or batches. In that case, a more 
appropriate model would disaggtegate the stock by age, with the 
hazard of expiry increasing with age. In the example, we neglected 
expiry by assuming that we could receive newly filled vaccine only 
a short time before its required use, but this assumption does not 
hold if filling capacity is low relative to vaccine demand, filling and 
production costs increase over time, or vaccine demand is highly 
stochastic. As an extreme departure away from the assumption of a 
fixed delay in expiry. Appendix A.2.1 considers a first-order expiry 
process and shows that this drives up the costs, because a fixed 
fraction of filled vaccine expires before deployment. The expiry 
of vaccine occurs primarily due to the loss of efficacy resulting 
from a decrease in vaccine virus titers over time, and consequently 
one approach to increasing the vaccine shelf-life might include 
beginning with higher initial titers. Modeling this option would 
necessitate including a decision about the desired titer for filling 
in the diagram along with the associated costs, and possibly some 
influence ofthe titers on the risks associated with the vaccine. 

5.3. Nature of production and filling delays 

Like the nature of the expiry process, the technical character­
istics of the bulk production and fllling processes also determine 
the appropriate model for the filling and bulk ptoduction delays 
(see Appendix A.4. From the perspective of the stockpile owner, the 
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production delay might look like a fixed delay, with no distribution 
around the time that doses arrive due to a single time of deliv­
ery. From the manufacturer's perspective, however, a given order 
of bulk vaccine might potentially get produced over time, with 
production of some doses completing before others, which would 
suggest a first- or low-order delay. Filling involves a relatively fixed 
delay associated with testing batches of final product, but if many 
filling lines exist, each line might become available at a different 
point in time such that the delay could look more like a low-order 
delay. Given that the exact time that vaccine becomes available 
plays an important role in the event of potential shortage of vac­
cine, the choice of the delay in the model should reflect the physical 
reality of the process and the relevant perspective of the analy­
sis (i.e., stockpile user vs. manufacturer). We mention it explicitly 
here since different stakeholders involved in discussions about the 
stockpile design might implicitly assume different types of delays, 
and we anticipate that explicit discussions might prove helpful. 

5.4. Productioti and filling capacity over time 

Depending on the implementation of OPV cessation, a "warm 
base" of OPV production may or may not continue to exist (e.g., 
continued routine use of IPV based on Sabin OPV seed strains might 
offer a warm base) [39]. Our model did not explicitiy include the 
cost of maintaining or increasing this capacity, but at the very least 
maintaining capacity to produce and fill a vaccine no longer rou­
tinely used presents economic challenges from the manufacturer's 
perspective. To model the manufacturer's perspective, the costs 
of maintaining capacity would be linked to the expected demand. 
From the stockpile owner's perspective, things could look different. 
While all bulk production may occur before OPV cessation (given 
practical unlimited shelf-life of the bulk product), the only way to 
maintain a long-term OPV stockpile, if so desired, involves filling 
at multiple points after OPV cessation, unless the shelf-life of fllled 
vaccine increases dramatically. Given the substantial societal cost 
of excess cases, the stockpile owner's incentives to maintain some 
fllling capacity remains much stronger than those of the manu­
facturer. The difference in incentives calls for continuing dialogue 
between owners and manufacturers and contractual mechanisms 
to better align the incentives. 

5.5. Forecasting vaccine demand 

The forecast of vaccine demand represents the key driver of 
decisions regarding the stocl<pile. Prior work suggests that the 
likelihood of outbreaks remains greatest immediately after OPV 
cessation [24], but small risks exist of potentially much larger 
outbreaks in the long-term [12,27]. Combined with changes in 
costs and risks of fllling and production, changing vaccine demand 
implies that the optimal allocation policy wi l l also change over 
time (see Appendix A.5. Thus, the optimization problem becomes 
stochastic and dynamic. Moreover, the vaccine demand depends on 
both the stochastic risks and the stock of vaccine flnal, and in two 
different ways. First, if the vaccine demand exceeds the maximum 
output of fllled vaccine, then this wi l l likely create new demand due 
to the natural expansion of the ongoing outbreak. This leads to a 
positive (reinforcing) feedback loop around vaccine demand, since 
the likelihood of unmet vaccine needs lead to more demand which 
leads to greater likelihood of unmet vaccine needs. Second, the use 
of OPV to respond to outbreaks carries a risk of generating new 
cVDPV outbreaks, leading to another positive feedback loop involv­
ing vaccine demand, since more vaccine demand leads to more 
distribution, which leads to a higher probability of virus introduc­
tions, creating new vaccine demand. The strength of this feedback 
increases over time as global population immunity decreases and 
depends on the speciflcs of the outbreak response. This remains a 

topic of further research, including more mathematical modeling 
of poliovirus outbreak spread. 

5.6. Excess paralytic cases 

Realistically estimating the excess paralytic cases associated 
with unmet vaccine needs requires a more detailed dynamic out­
break and response model [12,13]. Such a model requires speciflc 
assumptions about the tesponse strategy, including the time from 
detection until the flrst mass immunization response, target pop­
ulations and coverage of the immunization rounds, and number 
of immunization rounds. The model must include this infotmation 
both for the response strategy when sufflcient vaccine is available 
and for the response strategy in the event of unmet vaccine needs. 
Thus, discussions of the different tesponse strategies in different 
outbreak scenarios remain an important factor that wil l determine 
the ultimate quality ofthe stockpile optimization model. 

5.7. Funding stream 

Framing 2 minimizes the cumulative public health costs over 
possible stteams of the use of funds over time (see example in 
Appendix A.3). Due to the risks mentioned above associated with 
production and filling after OPV cessation, the costs of fllling and 
procurement wi l l likely increase over time. Furthermore, a possi­
ble decreasing number of competitors in the market might also 
reduce supply and increase prices. While this makes upfront fund­
ing appear attractive, the flnite shelf-life of flnished vaccine means 
that filling must occur to facilitate access to vaccine as needed over 
time, which necessitates some funds to replenish the stock of final 
product at a later stage depending on the long-term demand fore­
cast. Under framing 2, the decision maker can flexibly decide when 
to spend funds over time, but the funding stream may not in fact 
come with such flexibility. For example, the situation may arise in 
which the donors of stockpile funds do not provide 100% funding 
upfront but distribute funds over time. At the other extreme, set­
ting aside funds from donors for an extended period of time may 
not represent a feasible option. This situation would require use of 
a minimum use of funds variable in the model that further constrains 
the utilization of funds over time. Moreover, optimizing the utiliza­
tion of some initial funds in practice involves working with a flnite 
time horizon, which means that the stockpile only covers this finite 
time period. In reality, provisions are needed beyond any practical 
time horizon for as long as a risk of virus introductions exists. 

Various mechanisms in the model might influence the avail­
ability of new funds and would involve new feedback loops in the 
model. For example, unusually high vaccine needs due to the occur­
rence of outbreaks might deplete the stocks of vaccine to such low 
levels that replenishment of the stockpile becomes desirable. The 
relationship could be a threshold relationship (i.e., if bulk vaccine 
decreases below a certain level we can raise funds for new vac­
cine) or more continuous (i.e., the lower the stock of bulk the more 
pressure on donors to supply new funds). Alternatively, new funds 
might not actually become available until excess paralytic cases 
actually occur. A reluctance to use OPV in the long term might favor 
the use of IPV for outbreak response. This would impact the demand 
for IPV vs. OPV over time and the availability of new funds. 

5.8. Countiy-dependence 

The formulation of the optimization model does not explic­
itiy include the physical location of the stockpile as an additional 
dimension of the problem. However, the trade-off between costs 
and risks of the stockpile may depend on the location(s) of the facil­
ities. For example, manufacturing facilities in countries of highet 
income wi l l most likely offer better secondary safeguards, such as 
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high IPV coverage [36], but typically produce vaccine at a higher 
cost than lower income countries [40]. The current SOPs place a 
greater weight on safety than on the possibility of less expensive 
vaccine by requiring vaccine storage at manufacturing facilities in 
locations that comply with the secondaty safeguards [32]. Inputs 
that depend on the location of the outbreak include the forecast 
of vaccine needs (since risks vary by country [24]), the excess 
cases associated with unmet vaccine needs (since outbreaks in 
different countries may vary widely in magnitude [13]), and the 
valuation of future outcomes [27]. Given the shared global objec­
tive of the stockpile [37], one approach might first disaggregate 
the models by income level to estimate outcomes for each income 
group and then sum over the income groups to get the totals 
[13,24,27], 

5.9. Serotype dependence 

Different poliovirus serotypes vary with respect to vaccine sero­
conversion, transmission characteristics, and rate of paralysis per 
infection [41,42], This means that the vaccine needs and excess 
paralytic cases depend on serotype, and thus that the optimal con­
tent of mOPV stocks may differ by serotype. Under framing 1, the 
lack of a stockpile cost constraint means that the optimization 
problems for each serotype remain essentially independent. The 
optimal quantity of mOPV over time may vary by serotype, but the 
amount of vaccine of one serotype does not directly impact the 
resources available for the other serotypes. Under framing 2, the 
explicit stockpile cost constraint implies that the problems become 
interdependent and optimal ratios of types 1,2, and 3 wi l l exist over 
time. 

IPV protects against all 3 serotypes, but with different effective­
ness [42]. One approach to optimize an IPV stockpile would base 
the forecast of the needs and excess paralytic cases on typical "aver­
age serotype" behavior [13], or alternatively index by serotype and 
aggregate the total public health and stockpile cost of each serotype 
as the basis for the objective functions. Although tOPV also protects 
against all 3 serotypes, it appears an unlikely candidate for a global 
polio vaccine stockpile because mOPV yields higher seroconversion 
than tOPV [13] and using tOPV to respond against an outbreak of 
one serotype would unnecessarily reintroduce two other serotypes 
of live poliovirus. Thus, the full optimization problem most likely 
involves a combined stockpile of mOPV (all three types) and IPV 
vaccine. For example, with mOPV as the main tool for rapid out­
break response, especially immediately after OPV cessation, IPV 
might play a role in responding at the edges of the mOPV target 
population to stop transmission of OPV-derived viruses, perhaps 
using a form of ring vaccination [43], Projected future routine use 
of IPV wil l also affect outbreak response demands and optimization. 
In this case, what might seem like a relatively expensive use of IPV 
could potentially serve to mitigate possible future increases in the 
needs for more mOPV and IPV, such that the optimization prob­
lem wil l need to determine the optimal balance not only of each 
serotype of mOPV, but also of mOPV and IPV. Similarly, if antivirals 
become available, the models must consider their potential roles 
as well. 

6. Discussion 

We present a framework for optimizing the supply chain of a 
polio vaccine stockpile aimed at facilitating the response to polio 
outbreaks after polio eradication and OPV cessation. This frame­
work helps create a common platform for discussions among the 
various stakeholders and decision makers who must ultimately 
design and implement the stockpile. The risks associated with vac­
cine production after OPV cessation and delays in the production 

and fllling processes necessitate creation and management of the 
stockpile in advance of OPV cessation. We demonstrate with a sim­
ple example how optimization may lead to useful results in terms 
ofthe ordering strategy that minimizes the present value of public 
health and vaccine costs, although we emphasize that these hypo­
thetical results depend on simplifying assumptions in the stockpile 
and outbreak model. 

We emphasize the need to address various issues in order to 
fully optimize the stockpile in the context of all its complexities. 
First, the technical details of the stockpile, such as capacity con­
straints and delays in the production and expiry processes, impact 
the dynamics within the supply chain and require careful consider­
ation. Second, the relationships between vaccine production risks 
and vaccine demand as well as between vaccine demand and finan­
cial constraints lead to additional feedback loops that merit further 
exploration. Third, the perspective (e,g., stockpile owner vs, man­
ufacturers, short term vs. long term) impacts the objectives and 
therefore the optimal policy for a stockpile. Explicit understand­
ing of the perspectives wi l l help discussions. Fourth, the vaccine 
demand is inherently stochastic, which implies some probability 
of unmet vaccine needs even for a very large stockpile. The extent 
to which the stockpile must cover all possible scenarios depends 
on the true costs of excess cases and the political costs of failure. 
Fifth, the serotype dependence and availability of multiple prod­
ucts (mOPVs, IPV, antivirals) add another layer of complexity, as 
does the geogtaphical dimension. Finally, the use of OPV after OPV 
cessation carries its own risk, leading to another feedback loop back 
to the demand. The specifics of the outbreak response remain criti­
cal to the actual use and benefits of the stockpile. Further modeling 
in this area provides an opportunity to better anticipate this risk 
and determine policies that maximize the probability of successful 
control and minimize the probability of generating new outbreaks 
with the response vaccine. We propose a flexible framework that 
can incorporate all of these complexities, although optimization of 
the full stochastic and dynamic problem wi l l most likely require 
heuristics based on simulation rather than relatively straightfor­
ward linear programming (see Appendix A.6). Careful examination 
and discussion of the assumptions and their implications must 
occur before actual optimization of the full stockpile problem. 

We expect that political factots might also play a role in deci­
sions about flnancial investment in a global stockpile. For example, 
although we discussed how the location of the stockpile(s) and 
serotype-variability present additional levels of complexity, we did 
not explore the political issues that arise in the context of national 
or other preferences for vaccine suppliers. Logistics related to distri­
bution of the stockpile resources and campaign operational issues 
also remain an important issue. We implicitly assumed operational 
readiness and global access to the stockpile, but such access may 
require negotiation, which we emphasize, must occur early in the 
process of creating and designing the stockpile. In this regard, we 
note that the current plans for an international stockpile strive to 
"ensure that vaccine can be available, if necessary, to any country 
in the world within 48 hours" [32, p. 2]. 

While this paper focuses on a polio vaccine stockpile, this 
approach might prove useful for the design of future stockpiles 
for eradicated diseases and potentially emerging pathogens. For 
example, in the case of pandemic flu, the stockpile might contain 
antivirals and a prototype pandemic flu vaccine to provide flrst-
response interventions during the time needed to develop a more 
effective vaccine targeting the newly emerged pandemic strain. 
Explicit consideration of the supply chain and transmission dynam­
ics might also provide helpful input to stockpile decisions in this 
context. We anticipate that providing a coherent framework repre­
sents a significant contribution that wi l l facilitate discussions about 
many of the assumptions and numerical estimates for key inputs 
required to perform optimization. 
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Fig. A l . Stock-and-flow diagram of the simplified outbreak sub-model. 
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Appendix A. 

This appendix presents technical details about the outbreak 
sub-model and stockpile supply chain model, derives linear pro­
gramming formulations of the optimization problems where 
possible, presents framing 2 of the optimization problem, provides 
some additional results, and discusses solution strategies for sit­
uations in which a standard linear programming approach is not 
possible. 

A. I . The outbreak sub-model 

Fig. A l shows the structure of the outbreak sub-model, which 
captures the key dynamics at a highly aggregate level but does 
not account for many of the more detailed level dynamics that 
must be considered fot a more realistic and data-based analysis 
[13]. Table A l provides the symbols and hypothetical values of the 
constants we used for the demonstrative examples. 

The input to the sub-model is a given number of virus introduc­
tions over time and the main output is the incidence of paralytic 
polio cases. The sub-model depends on the availability of vac­
cine final in the stockpile supply chain model, but also determines 
the deployment of vaccine final in response to vaccine demand, 
which in turn depends on the diffusion of outbreaks. Unlike a tra­
ditional SIR model, to capture the dynamics of virus transmission 
between populations and vaccine needs at the global level the 
stocks here represent numbers of population blocks rather than 

numbers of individuals. Populations at risk are those in which 
the proportion of susceptibles is high enough to allow significant 
poliovirus transmission. Infected populations are those with an 
ongoing outbreak. Populations not at risk are populations with 
sufficient herd immunity to prevent outbreaks. New births increase 
the number of populations at risk, and populations not at risk can 
again become susceptible through waning of immunity. We assume 
deaths reduce the number of population blocks in each stock at a 
similar rate. 

The rate at which populations at risk become infected popu­
lations depends on the jbrce of importation, which is proportional 

Table A l 
Sub-model constants (including initial values at the top of the table) used for the 
demonstrative examples'. 

Short Name in Fig. A l Value (hypothetical) 
symbol 

p Population blocks (initial value) 600'' (inidal value) 
PAR Populations at risk (initial value) 0 (initial value) 
IP Infected populations (initial value) 0 (initial value) 
PNAR Populations not at risk (initial value) 60 (inidal value) 
DV Deployed vaccine (initial value) 0 (initial value) 
b brate 0.025/12 per month 

drate 0.01/12 per month 

P Importation rate 0.64 per month 

V Needs per block 10 million doses per block 

tdepi Vaccine deployment time 1 month 

tdlst Vaccine distribution time 1 month 

tr Response effect time 4 months 

tb Burnout time 15 months 
VV Waning time 1 million months'' 
fsb Fully susceptibles per block 5 million people 
cfs Cases per fully susceptible exposed 1/200 cases/people 
fse Fraction of fully susceptibles exposed 0.5 

P Relative paralysis risk OPV vs. WPV 200/750,000'' 

' While we emphasize the hypothetical nature of the examples and choices of 
input values, most values represent informed choices based on prior work [27]. 

i" This value implies that the sub-model characterizes the worid as 600 identical 
population blocks with approximately 10 million people. 

" This value essentially ignores waning of immunity in the model. 
Ratio of typical rate of paralysis per WPV infection to typical rate of VAPP per 

first OPV dose [42]. 
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to infected populations, with importation rate as the proportion­
ality constant. In addition, virus introductions move populations 
at risk to the stock of infected populations, and the sum of virus 
introductions and/orce of importation determines the flow infection. 
When infected, populations become more immune and eventually 
become populations not at risk as a result of natural burnout and 
outbreak response. Natural burnout depends on the average burnout 
time (i.e., the average time a population would remain infected in 
the absence of a response before natural infections reduce the pro­
portion susceptible to a sufficiently low level to stop the outbreak 
and become a population not at risk). Similarly, outbreak response 
depends on the average response effect time, which we assume is 
shorter than the natural burnout time. Every infected population 
gives rise to vaccine needs according to an assumed constant (i.e., 
needs per block). 

Ideally, an increase in vaccine needs immediately leads to 
vaccination of the newly infected population blocks. In reality, 
however, detection of the outbreak and subsequent deploy­
ment of vaccine takes time, and to represent this delay in 
the model vaccine resides in a stock deployed vaccine before 
being used for outbreak response. The available amount of vac­
cine final limits the distribution (d) of vaccine, which equals 
d = Min(dmax,d*) = Min(Vf/tdepi,Vn/tdist). where dmax is the maximum 
deployment rate, d* the vaccine demand (or desired deployment 
rate), Vf the amount of vaccine final, Vn the vaccine needs, tdepi 

the vaccine deployment time, and tjist the vaccine distribution time. 
This formulation is consistent with a first-order delay plus a capac­
ity constraint. While the vaccine deployment time represents the 
minimum time to deploy vaccine from the stockpile, the vaccine 
distribution time represents the minimum time to distribute the 
vaccine in the field. If Vn/tdist>Vf/tdepi, then this leads to unmet 
vaccine needs, which trigger political costs of failure in the stock­
pile supply chain model. For simplicity, we assumed that tdist = tdepi 

(Table A l ) so unmet vaccine needs effectively arise whenever vac­
cine needs exceed vaccine final. New paralytic cases occur both due 
to natural burnout {wild cases) and due to OPV infections associated 
with outbreak response (VAPP cases). Even with sufflcient vaccine 
flnal, wild polio cases occur due to the delay in the response and 
VAPP cases due to the vaccine used. A model identical to that in 
Fig. A l , except that d = Min(oo,d*) = Vn/tdist. determines the inci­
dence of paralytic cases given sufflcient vaccine (i.e., new paralytic 
cases 0). The incidence of excess paralytic cases is the difference 
between new paralytic cases and new paralytic cases 0. 

The stock-and-flow diagram in Fig. A l corresponds to the fol­
lowing set of differential equations: 
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Here, we use abbreviations for constants and stocks from Table A l 
and Inc denotes the incidence of paralytic cases (new paralytic cases 
in Fig. A l ) , X denotes the force of infection (the flow infection in 
Fig. Al ) , and a represents an exogenous function that describes the 
rate of virus introductions per population at risk over time {virus 
introductions in Fig. Al ) , appropriately scaled relative to the time 

step of the integration scheme (we use Euler integration with a time 
step of T = 0.5 months for all analyses). 

A.2. Solving framing 3 (no financial constraint) 

We can solve the optimization problem for framing 1 by mak­
ing the realistic and mathematically weak assumption that the 
public health costs associated with each dose of unmet vaccine 
needs exceed the costs of purchasing the vaccine. In other words, 
we assume that the opportunity costs of not having invested in 
a needed dose of vaccine for the stockpile outweigh the costs of 
stockpiling this vaccine dose. If this condition does not hold, then 
justiflcation for the stockpile becomes questionable in the flrst 
place. Thus, we can reformulate the optimization problem as that of 
flnding feasible bulk production and fllling flows that minimize the 
cumulative vaccine costs while avoiding unmet vaccine needs. For 
a given time step r and using Euler integration, the vaccine needs 
vn, at step / follow by solving Eqs. (Al) iteratively, assuming inflnite 
vaccine flnal (note that the solution does not depend on vaccine 
flnal): 

DV,- = DV,_i + T 
V tdist tdist 

PAR,=PARi_,+T ( bPj_-i + ^!^^^^^d=l _ ,xPARi_i - Xi^iPARi_i 

IP i - i DV,_ 
IPi = I P , _ i - h r A i _ i P A R , _ i - / x I P i _ 

tb tr X y 

(A2) 

PNAR,=PNAR,_,+r f i^hl + 2Yl^ _ / , P N A R , . _ , - '-^^ 
V tb tr X y w 

vUi = y X IPj 

As we wil l see below, the requirement that unmet vaccine needs 
be avoided imposes linear constraints on bulk production and flll­
ing, allowing us to formulate linear programming (LP) problems, 
for which well-known iterative solution algorithms exist [44], The 
linear programming problem depends on the formulation of the 
delays in the stockpile supply chain model (Fig. 3). We flrst describe 
the case of flrst-order delays given that it allows the most robust 
formulation (i.e., requiring no further assumptions), although the 
case of flxed-order delays probably most closely matches reality 
and thus appears in the main paper. To simplify equations, we 
drop terms involving wastage, consistent with the assumption that 
Wl = W2 = W3 = W4 = 0 in Table 2. 

A.2.1. Optimal solution for framing 3 assuming first-order delays 
With first-order delays, vaccine in fllling pipeline in Fig. 3 

vanishes and the pipeline vaccine in bulk production pipeline 
consists of one stock. The equations of the stockpile supply chain 
model for optimization problem 1 become: 

dVfit) 

dt 

d V U t ) 

dt 

< ( t ) 

df 

' / ( t ) - d ( t ) -

• b i t ) - f { t ) 

bsit)-b{t) 

ts 

(A3) 

total costs (t) = (b(t) X Cb + / ( t ) X Cf-I- Cpoi x luvn(t) 

X Cease x epc(t))e-rt 

Here, we use abbreviations for constants and stocks from Table 1 
and/denotes/il/ing, b denotes bulk production, ps denotes bulk pro­
duction starts, epc denotes excess paralytic cases, and 1 irvn(t) equals 
1 if unmet vaccine needs >0 and 0 otherwise. Also, d(t) is distribu­
tion which equals deployment. The constants in Eqs. (A3) may also 
change over time without loss of generality (e.g., Cb and Cf). We seek 
to find filling flows {f[t)) and production flow (ö(t)), t= 0, f, 2f 
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where t; denotes the time period over which we plan orders (i.e., 
the planning period). Given first-order delays, any desired fllling 
rate (ƒ) is constrained by the maximum fllling rate (/max), which 
depends on the filling capacity (fc), the minimum filling time (tf), 
and the level of v a c c i n e b u l k (Vt,): 

problem: 

r - 1 ) X c + ƒ (f - 1) X Cf )e-« subject to (for t = 1 T e n d ) : 

fit). Min(fcax(t),r(t)) = M i n ( M i n ( / c , ^ ) , r ( f ) ) (A4) J2[['-Ï:) 1) i 
Vn(t)tdepl ( 1 - ( t / t s ) ) V f ( 0 ) 

tdist r T 

The formulation o f / determines the decision rule for filling, which 
might occur as a result of gaps between a desired level of v a c c i n e 

flnal and the actual level of v a c c i n e flnal, as well as the anticipated 
drawdown of v a c c i n e final due to routine use and expiry (in the 
case of rotating stocks): 

ƒ* = Max ( 0, l l , + e + 
tvf 

where Ur denotes routine usage, e denotes expiry, denotes the 
desired level of v a c c i n e final, and tvf denotes the desired stock 
adjustment time for v a c c i n e final, which determines how quickly 
we respond to gaps between desired and actual v a c c i n e flnal. Sim­
ilarly, we could formulate the desired bulk production rate (b*) as 
follows: 

IVIax 0, i(r-l-e-i-
^ b * - ^ b 

tvh 

where V* denotes the desired level of v a c c i n e b u l k , and tvb denotes 
the desired stock adjustment time for v a c c i n e b u l k . These decision 
rules reflect a stockpile management strategy aimed at avoiding 
steady state error that might arise as a result of predictable out­
flows from the stockpile supply chain. However, since we optimize 
directly to solve for the filling and bulk production flows, the actual 
formulation of desired fllling and desired bulk production rates do 
not influence the solution. Instead, once we obtain a solution for 
filling and bulk production, we could backtrack to determine the 
required minimum desired stock levels V* and V* that would lead 
to the same optimal solution, contingent on the formulation o f f 
and b*. 

To simplify notation, we choose T = f, although we emphasize 
that our results do not depend on the choice ofthe numerical inte­
gration step size T as long as T is sufficiently small. Using Euler 
integration and the requirement that for the optimal policy we 
avoid unmet vaccine needs, we can rewrite Eqs. (A3) as: 

Vr(t)= ( l - ^ j V,(0) + r ^ 

J - I 

Vb(t) = Vt,(0) + r ^ ( / ) Ü - 1) - JÜ - 1)) 

total costs (t) = (li(t) X Cb + f i t ) X Cf )e -" 

1 - ^ 1 ( f ü - D - d ü - D ) 

(A5) 

The requirement that we avoid unmet vaccine needs translates into 
the requirement that disfribut!Oii(=IVIin(Vf/tdepi,Vn/t(ijst)) is not con­
strained by the stockpile, or V f ( t ) > Vn(t) x tjepi/tdist at all times. 
Note that if this condition holds, then d(t) = Vn( t)/tdist- Moreover, per 
Eq. {A4) filling cannot exceed filling capacity (fc) at any time. In addi­
tion, it follows from Eq. (A4) that given a filling ratej^t), we must 
have that Vi,(t) >}[t) x tf. Finally, bulk production cannot exceed bulk 
production capacity {be) at any time. Combining these conditions 
with the Eqs. (A5), we obtain the following linear programming 

• E t, J tdis 

f ( t - t ) < f c 

j=i j . i 

b{t--l)<bc 

We solve the LP problem in Mathematica™ [44] using 
Vf(0) = Vt,(0) = 0, T = f = 0.5 months, and an analytical time horizon 
of 276 months (23 years), yielding solutions f{t) and b{t), for t=0, 
. . . , tend - 1. with tend = 552. To obtain the actual ordering strategy 
from Fig. 3, we must also determine the stock of v a c c i n e i n b u l k 

p r o d u c t i o n and the flow bulk production starts using the constraint 
that V^(t) = b(t) X tt,, where t[, is the minimum bulk production time, 
with an objective function minimizing the total bulk production 
(although technically, this need not be minimized for given that in 
the mode! in Fig. 3, we only associate costs with bulk production 
and not with bulk production starts). However, given our focus on 
presenting the levels of v a c c i n e b u l k and v a c c i n e flnal as the main 
outcome of the optimization, we did not compute the actual bulk 
production starts flow. 

Fig. A2 shows the optimal solution assuming first-order delays 
in the stockpile supply chain. Comparing this result to Fig. 4, which 
assumes fixed delays but is otherwise equal, we find that the first-
order delay assumption entails the need to build more v a c c i n e b u l k 

stock than with fixed delays to meet the filling requirements and 
because the stock of v a c c i n e final continuously loses vaccine due to 
expiry. This leads to somewhat higher cumulative costs, as shown 
in relation to the bulk production andyi//ingfiows and in direct com­
parison with the model with fixed delays in Fig. A3. Thus, although 
the time of otders and the stock levels differ to some extent, the 
optimal solution varies only minimally in terms of costs between 
the extremes ofthe range of possible delay types. 
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Fig. A2. The optimal solution for framing 1 assuming first-order delays in the stock­
pile supply chain and an exponential decay in virus introductions, starting in year 
3. 
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Fig. A3. Comparison of tire cumulative costs and bulk production and filling strategy 
for the optimal solution of framing 1 with fixed delays (solution from Fig. 3) and firs t¬
order delays (solution from Fig. A2) during the first 5 years (no further filling or bulk 
production occurs beyond that time). 

-4.2.2. Optimal solution for framing 1 assumingfixed delays 
In tlie case of fixed delays, we represent the stockpile model as 

a set of difference equations rather than differential equations. The 
following equations describe the stockpile model for optimization 
problem 1 (with T = f to simplify notation): 

v,(t) = V f ( f - i ) + T ( f ( t - i ) - d ( t - i ) ) = V f ( o ) + T ^ ( / ü - i ) - d a - i ) ) 

J . I 

Vb(t) = \/b(f - 1) + T ( h ( t - 1) - / s ( t - 1)) = Vb(0) + T ^ ( f a ü -

(A6) 

i ) - / s a - i ) ) 

Here, in addition to the abbreviations used above,/s(t)=/(t+Tf) 
denotes filling starts and Tf = t f / r (rounded to nearest integer) 
denotes the number of time steps in the minimum filling time. To 
simplify calculations, we omit expiry from Eqs. (A6). This assump­
tion remains vahd if we can deploy vaccine before it expires, 
coiTesponding to a situation in which we fi l l vaccine a short time 
before it is needed for deployment. This in turn is possible only if 
filling capacity is sufficiently large (otherwise we would have to 
stock up vaccine well ahead of its use) and future demand known 
with sufficient certainty. These conditions hold for the hypothet­
ical example in the main paper. If they do not hold, we can no 
longer write the problem as an LP problem and we must model 
the process for expiry in tTiore detail, as discussed in the main 
paper. 

The total costs remain as in Eqs. (A5) and the condition for vac­
cine flnal also remains Vf{t) > Vn(f) x fdepi/tdist. as with first-order 
delays, because we did not alter the delay type for the deployment 
and distribution processes. However, the condition for vaccine 
bulk that it contains sufficient stock to satisfy the outflow trans­
lates into Vb(t) > T xfs{t) for any t. As with flrst-order delays, we 
wiU optimize over ƒ and b (i.e., not fs and bs), allowing us to 
keep the same capacity conditions and prompting us to further 

impose that b(t) = f)s(f - Tb) = 0 for t=0 Tb - 1, where Tb = t^lr 
(rounded to nearest integer) denotes the number of time steps in 
the minimum bulk production time, and t h a t / ( t ) = / s ( t - T f ) = 0 for 
t=0, T f - l . Using all conditions, we obtain the following LP 
ptoblem: 

Minimize ^ ( b ( f - 1) x c t + / ( t - 1) x c,)e-" subject to(fort = l , . . . , T e „ , ) ; 

Vn(t)t| |epl Vf{0) 

tdistt 

V n O ' - l ) 

tdlst 

t+1 

j-1 
/ ( t - l ) < / c 

^ b a - l ) . - M l ) , ^ ; 0 - + r , - l ) 

j=i j=i 
fc(t-l)<hc 
and : 

/ ( t ) = 0 forf = 0, . . . , T f - l 

h(t) = 0 fort = 0 , . . . , T b - l 

In solving the problem, we shall further effectively assume that 
ƒ(t) = 0 for t > Tend by omitting terms of/beyond the analytical time 
horizon as they arise in the third condition above. 

A.3. Formulation offraming2 (with financial constraint) 

Fig. A4 shows a possible model diagram corresponding to fram­
ing 2 of the optimization problem, which seeks to find the feasible 
ordering strategy that minimizes the total public health costs. Fea­
sibility of the ordering strategy here means that orders satisfy the 
production and financial constraints (Fig. 1). Given that the produc­
tion constraints are already embedded in the stockpile supply chain 
model, the problem essentially consists of determining the optimal 
funds allocation strategy given a certain amount of total initial stoclc-
pile funds, the initial value of the stock of stockpile funds. The funds 
allocation strategy determines both the use of funds (i.e., the fraction 
of remaining stockpile funds used for purchase of bulk of filled vac­
cine), and the fraction of funds for bulk production vs. filling. Stock­
pile funds may increase as a result of interest on the funds as well 
as the addition of new funds. In this formulation, the latter remains 
an exogenous variable, although future models might examine the 
dependence of new funds on the levels in the stockpile and pub­
lic health outcomes. The allocation of funds for bulk production 
triggers the start of production, but the funds accumulate flrst in 
the stock of funds for bulk production, before actual spending on 
bulk production as bulk production completes with a delay. A similar 
process occurs for filling, although importantly the flow fiUingstarts 
is constrained by vaccine bulk, and thus new funds for filling and 
the funds allocation strategy must depend on the level of vaccine 
bulk. The remaining structure remains similar to that for framing 
1 (Fig. 3), although the cumulative vaccine costs become obsolete 
as we minimize only over the cumulative public health costs. 

The strategy for solving framing 2 depends on whether sufficient 
funds exist to avoid unmet vaccine needs. If this is the case, then one 
or more solutions exist that minimize the public health costs to 0, 
and we can directly determine an optimal solution by computing 
the funds allocation strategy from the optimal solution of framing 1. 
Using the optimal bs( t) and/s( t) from framing 1, we work backwards 
to get: 

New funds for bulk production : n/h(t) = i)s(t) x Cb 
New funds for filling : n/f(t) = fs{t) x Cf 
Useoffunds: ii/(t) = n/b(t) + n/f{t) 

Fundsforbulkproduction : Fb(t) = Fb(t - 1) + r(n/b(t ^ i ) - (j(f - i ) x Cb) 
Funds for filling : Ff(t) = Ff(t - 1) + T(n/f(t - 1) - / ( t - 1) x Cf) 
stockpile funds; F(t) = F(t - 1) + T(n/(f - i ) - [i/(t - 1)) 

where n/denotes the flow appreciation of funds. The funds allocation 
strategy might consist of a certain utilization rate of the remaining 
stockpile funds and a certain fraction of the use of funds that goes 
to filling vs. bulk production. Thus, with sufficient funds to avoid 
unmet vaccine needs, this solution simply tells managers how to 
spend the funds to accomplish the optimal strategy determined in 
framing 1, as shown in Fig. A5. 
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Fig. A4. Stock-and-flow diagram for the minimization of the total costs with no financial constraints (framing 1) for a single serotype stockpile. 

Any optiinal solution when the stockpile funds remain insuf­
ficient to accommodate the vaccine needs invokes the feedback 
between vaccine final and vaccine needs. As a result, in this case we 
can no longer transform the optimization problem to a linear pro­
gramming problem. Thus, determining the optimal solution in this 
case requires non-linear programming methods or some generic 
global optimization methods (e.g., evolutionary algorithms, simu­
lated annealing, or other sampling-based optimization methods). 
Finding or approaching the optimal solution for this case remains 
beyond the scope of this paper, and we note that the complexity 
of these problems necessitates development of methods to ensure 
that the algorithm finds the true global optimum instead of one of 
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Fig. A5. Solution of framing 2 in the form of required funds, assuming sufficient ini­
tial stockpile funds ($56 million) to avoid unmet vaccine needs, and no appreciation 
of funds. The solution directly follows from the optimal solution of framing 1. 

many local optima. In exploratory analyses that we petformed, we 
found that even with initial stockpile funds well above the thtesh-
old for maintaining zero public hea/th costs, the conventional global 
optimization methods used did not find the global optimum, most 
likely due to the challenges that arise in searching a combination of 
two noisy dynamic functions within a very large space of possible 
functions. 

If the stockpile funds remain only slightly below the threshold, 
intuition suggests that the optimal solution might involve following 
the optimal fund utilization path from the previous section until the 
stockpile funds ate exhausted. This would ensure that unmet vac­
cine needs occur only at the end of the time horizon, and the effect of 
exportations would not kick in within the time horizon. However, 
in reality the stockpile must cover more than a limited time horizon 
(especially if virus introductions may continue to occur). More­
over, given decreasing global population immunity and potentially 
increasing procurement or filling costs per dose over time, lower 
cumulative public health costs may occur by tolerating unmet vac­
cine needs early on and building up a stockpile for later use when 
population immunity becomes lower and the ability to respond 
might prevent more excess paralytic cases. Such a policy obviously 
implies enormous potential political ramifications, with the risk of 
escalating the situation and permanent re-establishment of virus 
transmission. As the latter depends on the dynamics of virus expor­
tations, the dynamics of the sub-model wi l l ultimately determine 
the optimal spending path in a situation of insufficient stockpile 
funds. 

A.4. Possible types of delays in the stockpile supply chain model 

Different types of delays exist in dynamic models, and the nature 
of the delay often significantly impacts results [21]. A fixed delay 
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(a) (b) 

Time (months) Time (months) 

Fig. A6. Kinetics of vaccine bull< and vaccine final in response to an instantaneous infusion of 100 million doses of vaccine bulk at time 2 months, assuming: (a) a first-order 
filling delay with time constant 3 months and (b) a fixed filling delay with time constant 3 months. 

implies that all materials ordered at a given point in time arrive 
at exactly a fixed amount of time later. In contrast, a first-order 
delay spreads out the arrival of the materials exponentially, with 
the mean arrival time equal to the specified delay time. Thus, the 
materials mix in the process such that some arrive before and some 
aftet the average delay time according to an exponential distribu­
tion. Higher-order delays may also occur, which wil l narrow the 
shape of the distribution of the arrival of materials to concentrate 
this increasingly around the average delay time, until the distribu­
tion approaches a fixed delay. Given the importance of delays in 
the supply chain of the stockpile and their impact on the supply 
chain dynamics, we illustrate the difference between first-order 
and fixed (or pipeline) delays. We consider the effect of an instan­
taneous infusion of 100 million doses into the stock of vaccine bullc 
in month 2. We assume that at any given time we order as much 
bulk as available for filling, but that filling occuts with a delay with 
time constant equal to ff = 3 months. Fig. A6a shows that with a 
first-order delay, vaccine final immediately statts to increase as 
soon as bulk becomes available, while the amount of vaccine bulk 
exponentially decreases to zero. In contrast. Fig. A6b shows that 
with the fixed delay, the 100 million doses simply do not get filled 
until 3 months after they enter the stock of vaccine bulk. For both 
delays, the average time at which vaccine gets fllled equals month 
5 (i.e., 3 months after the time of the infusion). 

A.5. Alternative virus introduction scenarios 

For illustrational purposes. Fig. A7 shows the optimal solu­
tion for framing 1, but with a virus introduction scenario that 
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Fig. A7. Optimal solution for framing 1 assuming fixed delays in the stockpile supply 
chain, with an additional single virus introduction assumed in year 15. 

includes one additional introduction in year 15 compared to the 
base case (Fig. 5). However, we note that this solution depends on 
the assumption that we can produce and fill vaccine at any time at 
the same cost. If this is not the case, then we must stock up vaccine 
earlier, and this raises the possibility of expiry before deployment 
of vaccine final. Thus, solving for this scenario under realistic condi­
tions requires an extension on the model used for the hypothetical 
examples (see below). 

A.6. Strategy for full optimization 

As discussed in the main paper, many potential variations and 
extensions exist on the model for the hypothetical examples, 
including additional feedbacks, stochastic variables, and more pre­
cise modeling of the expiry process and delays in the stockpile. In 
addition, the assumption that any optimal policy must avoid unmet 
vaccine needs implies a loss of generality ofthe model, for example 
in the case of stochastic demand or insufficient upfront funding. In 
light of the limitations on existing global optimization methods dis­
cussed above, we suggest the use of safety stocks and heuristics to 
optimize mote general models. A possible heuristic could include: 

(1) Find the optimal solution using the deterministic model for 
framing 1 using linear programming. 

(2) Choose a safety stock level S, either as constant or fraction of 
optimal stockpile level over time. 

(3) Compute the total costs for 1 stochastic iteration of the full , 
stochastic model. 

(4) Repeat step (3) N times to determine the expected total costs 
for given safety stock level S. 

(5) Repeat steps (2)-(4) to find the expected total costs as a function 
ofS. 

(6) Find the value of S that minimizes the total expected costs. 

The heuristically-approximated optimal solution then consists of 
the optimal stockpile levels from the deterministic model plus the 
optimal safety stock. While this represents a very simple heuristic, 
it might offer more robust solutions and be amenable to logical 
extensions, such as distinct safety stocks for bulk and flnal, policies 
using adaptive safety stocks, etc. 
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