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Overview 
 
This aim of this master’s thesis is to calculate the height of a wave that only 
occurs once in 10,000 years.  Chapter 1, the introduction, briefly describes the 
stations where the data comes from.  Chapter 2 gives a bit of background.  It 
explains what a wave is and how it is measured.  The next chapter describes a 
bit of the history about our environment of interest – the North Sea.   
 
After all the background information, the methods used are described.  This 
begins in chapter 4, methods.  This starts with a bit of background on the 
distribution used.  Then it continues out onto the two different methods used.  
First the regression method, which does not go into much detail and secondly, 
the Bayesian method.  This method begins with an equation which is needed to 
reach the desired wave height.  This equation in then transformed using two 
conditional independence assumptions.  Solving this equation in described in 
detail in chapter 4.  Then, a few fits and the corresponding wave heights are 
shown.  Finally, chapter 5 concludes the paper.   
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Introduction 
 
The Netherlands is one of the lowest lying countries in the world.  Bordered by 
the North Sea, the Netherlands needs a thorough flood protection system to 
protect its people and its land.  To get a better idea of the degree of protection 
required, the frequency of extreme heights of waves that occur during storms 
should be known.  The data comprises of twenty four years of wave heights that 
have been measured at nine different stations in the North Sea. From this, one 
can extrapolate to get the height of the wave that occurs only once in 10,000   
years.   

 
Locations’ of Stations 

 
Figure 1 

 
The data for the stations in figure 1 is obtained from www.golfklimaat.nl.  The 
exact locations are in appendix A.1.  The data used are wave heights that have 
been recorded at each of these stations, every three hours from January 1st, 
1979 to December 31st, 2002.  This means that there are 2,920 measurements 
for each station each year, making a total of 70,128 data points for each of the 
nine stations.  More data exists, but it is not used as the measurements for the 
other times and stations, are much more sporadic.   
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I have used the following abbreviations for the stations: 
 

Station Abbreviations 

Station Abbreviation 

1. Eierlandse Gat ELD 

2. Euro Platform EUR 

3. K13A Platform K13 

4. Lichteleiland Goeree LEG 

5. Noordwijk Meetpost MPN 

6. Scheur West SCW 

7. Schiermonnikoog Noord SON 

8. Schouwenbank SWB 

9. Ijmuiden Munitie Stortplaats YM6 
Table 1 

             

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Poorwa Singh                                                                                                                                                 
1242326 

5  

Background 
 
To better comprehend the objective of this project, understanding the definition 
and the causes of waves are helpful.  Waves are undulations in the surface of the 
ocean, which are caused by the wind.  The faster the wind, the longer the wind 
blows, and the bigger the area over which the wind blows, the bigger the waves.  
The height of a wave is the vertical distance between the bottom of a trough and 
the top of a nearby crest.  The trough is the part of the ocean wave that is 
displaced below the still water line and the crest is the portion that is displaced 
above the still water line.  This is often used to refer to the highest point of the 
wave.  See Figure 2 from “On Tides and Weather”  

 
How the Height of a Wave is Measured 

 
Figure 2 

 
The data used is from www.golfklimaat.nl.  There are many 
techniques for measuring wave heights.  Wave height data from 
golfklimaat “are measured in the North Sea using three different 
types of measuring instruments, namely:  
 
- rods (step-gauges)  
- buoys (waverider, wavec, directional waverider)  
- radar (radar)  
 
 
Step gauges are large tubes on which electrodes are placed at 
regular intervals. These gauges are mounted on platforms or 
measuring poles. Using electronics, a continuous record is kept of 
the highest electrode that is just under water. In this way, it is 
possible to establish the changes in the surface of the sea during a 
certain period of time and thereby draw conclusions about the 
characteristics of the wave movements. It is only wave heights and 
periods that are measured with a step gauge, not the direction of the 
waves.  
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Of the three buoys listed above, the waverider is the oldest, and it 
does not measure direction. The buoy is convex in shape, a little 
under a meter in diameter. The buoy measures accelerations in a 
vertical direction caused by the force of waves against the buoy. 
From this it is possible to calculate changes in height of the surface 
of the sea and thereby the characteristics of the wave movement.  
The wavec buoy is the oldest buoy that can measure wave direction. 
This buoy, with a diameter of 2.5 m, is much bigger than the 
waverider. In addition to vertical accelerations, the buoy also 
measures its own inclinations caused by the movements of the 
waves. This makes it possible, not only to measure wave heights and 
periods, but also to gain information on the direction to which the 
waves move.  
The directional waverider is the modern version of the wavec, but is 
the size of a normal waverider and it and basically works in the same 
way. 
 
Wave radar is a modern version of the step gauge. The radar is 
mounted on a platform or on a measuring pole. The radar bundle is 
pointed vertically downwards. The distance between the radar and 
the surface of the sea is measured by reflection and, in this way, the 
state of the sea is recorded.” Golfklimaat.nl .   
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History 
 
The area of interest, in our case, is the North Sea, specifically, the southern part 
of the North Sea.  In this environment, the wave heights are no more than one 
meter in calm conditions. The wave period (the time between one wave and the 
next) is 3 to 4 seconds in calm conditions, and increases to between 10 and 15 
seconds during storms.  
 
Sometimes, even though there is neither storm nor strong wind, waves that occur 
can be quite large.  These waves that generated elsewhere, in a distant wind 
field, and have subsequently moved on, outside this field. As the distance grows 
from the source of its energy, the wave height gradually decreases and the 
period of the wave lengthens. This is known as the swell.  
 
On the open sea, the swell can move forward for days on end, and may come 
from all directions. In the considered region, though, swell can only come from 
the North.  It can only be  from the northern reaches of the North Sea or the 
Atlantic Ocean, hence it is rarely more than a day old.  
 
The waves that are measured in the southern part of the North Sea are always a 
mixture of wind-generated waves and swell. Under calm conditions, the influence 
of the swell is often visible, especially in the wave period. During storms, 
however, it is always the wind-generated waves that are dominant. (golfklimaat). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Poorwa Singh                                                                                                                                                 
1242326 

8  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Poorwa Singh                                                                                                                                                 
1242326 

9  

Methods 
 
The goal of this paper is to find a method that best predicts the one in 10,000 
year wave in the North Sea.  The data used are from nine stations located on the 
North Sea, collected over 24 years. (golfklimaat.nl)  Two different methods are 
tried to get a good estimate of this wave.  The first of the two methods is based 
on extreme value theory.  Extreme value theory deals with the maximum and 
minimum of independent, identically distributed (i.i.d.) random variables.  The 
properties of the distribution of extremes (maximum or minimum), extreme order 
statistics, and exceedances over or below thresholds are determined by the tails 
of the distribution. Focusing on the tails is advantageous as there are certain 
distributions that are designed specifically for the end of the distribution. 
 
Of the possible extreme value distributions, here we will use the Generalized 
Pareto distribution (GPD) to estimate the tail of our wave height data.  GPD is 
used because it allows a continuous range of possible shapes that includes both 
the exponential and Pareto distributions as special cases, both of which are used 
to model exceedances.  The probability density function for the generalized 
Pareto distribution used in Matlab is from the Mathworks site.  It has shape 
parameter k ≠ 0, scale parameter σ, and threshold parameter θ, is 

 
 

for θ < x, when k > 0, or for x
k

σ
θ θ< < − when k < 0. 

In the limit for k = 0, the density is     

 

for θ < x. 

If the shape parameter, k is greater than 0, equal to 0, or less than 0, then the 
cases “correspond respectively to the extreme value type II (Frechet), extreme 
value type I (Gumbel), and reverse Weibull domains of attraction.”  Also, “for k < 

0, the distribution has zero probability density for x
k

σ
θ> − , while for k ≥ 0, there is 

no upper bound.” 
 
This first method is regression analysis.  This method is often used in analyzing 
extreme data.  The aim of regression analysis is to construct mathematical 
models that describe or explain relationships that may exist between the waves 
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of the stations.  Hence, a given advantage with this procedure is that it includes 
the information from all the stations.  To see the relationship between the 
stations, first, 1000, one in 10,000 year waves are generated.  The intent is to 
see the effect of the 1000 waves, from stations two to nine, on the first station.   
Method 1 is located in Appendix, A.2. 
  
The second method is based on Bayesian theory.  This is not often used in 
analyzing extreme data.  It is advantageous in this case because, it incorporates 
all available data, allowing us to use the wave heights from all the stations, over a 
threshold, instead of focusing on only one station.  The Bayesian method then 
uses this information to get an idea about the prior distributions of the 
parameters. Then updates the prior and gets the posterior, which in turn will help 
predict the wanted wave.  
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Method 2 
 
Background 
  
The second method tried is one that is not often seen in extreme value theory – 
Hierarchical Bayes.  The advantage of the Bayesian model is that it assimilates 
data from difference sources.  “the Bayesian [model] requires a sampling model 
(the likelihood) and, in addition, a prior distribution on parameters.  Unknown 
parameters are considered random and all inferences are based on their 
distribution conditional on observed data (the posterior distribution).” (Carlin and 
Louis, p. 6).K  Also, prediction is naturally incorporated when using Bayes. “The 
concept of posterior prediction matches with the fact that the principal inferential 
objective of an extreme values analysis is of predictive nature.”(Beirlant et al., p. 
429).  But a disadvantage of the Bayes approach is that the problem of prior 
elicitation leads to subjectiveness.   
 
As an example, take the case of a one stage model.  Let y be the observed data 
of a random variable, Y, where the density function of Y is f(y | θ).  θ represents 
the vector of parameters.  Let π(θ) denote the density of the prior distribution of 

θ.  The likelihood of θ is f(y | θ) , which equals ∏ =

m

i iyf
1

)|( θ  if independent.  

According to Bayes’ theorem,  

)()|(
)()|(

)()|(
)|( θπθ

θθπθ

θπθ
θπ yf

dyf

yf
y ∝=

∫
Ω

 

where Ω is the parameter space.  This allows us to update our initial beliefs about 
θ, represented by the prior π(θ), to be converted into the posterior distribution, 
π(θ|y).(Beirlant et al., p 430).  
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Used Model 
 
In this case, a two stage Bayesian model is used.  A diagram for this model is 
shown below in Figure 3: 
 
 

                         
 
 
 
 

 

                     ....  

 
 

             
Figure 3: Bayesian Two Stage Hierarchical Model 

 
Where the information from station i is characterized by an exposure Ti and the 
events Xi. (Cooke et al.) In this case, the Ti is always the same at 24 years, or 
70,128 time measurements.  The Xi’s follow a Generalized Pareto distribution, 
the parameters of which are uncertain, and drawn from a prior distribution.   The 
parameters of the prior distribution are also uncertain.  “This uncertainty is 
characterized by a hyperprior distribution over the parameters of the prior…the 
hyperprior is a distribution P(Q) over the parameters Q of the prior distribution 
from which the [generalized Pareto] intensities [k1,…,k9] are drawn”(Cooke et al., 
p. 4)  The advantage of using this model is that the information from the other 
stations is also taken into account when calculating the parameters for one 
station, even though the parameters and the prior distributions can be calculated 
separately.  The model is characterized by: 
 
                                                f(X1,…,X9,k1,…,k9,Q)                                       Equation 1 
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This model is simplified by the following  conditional independence assumptions: 
 
CI.1   Given Q, ki is independent of {Xj, kj}j≠i 

CI.2   Given ki, Xi is independent of {Q, kj, Xj}j≠I  (Cooke et al.) 
Expression CI.1 means that if we know the hyperprior Q, the parameter for 
station i is independent of the events, Xj, and the parameters, kj, of the other 
stations.  Expression CI.2 means that if we know the parameter, k, for station i, 
then the events for station i, Xi, is independent of the hyperprior, Q, of the 
parameters of the other stations, kj, and of the number of events of the other 
stations, Xj. 
 
We need: 
f(k1|X11,…,X1n(1),…,X91,…,X9,n(9))                                                                    Equation 2 

 
Using Bayes’ Theorem: 
 
=    f(k1, X11,…,X1n(1),…,X91,…,X9,n(9)) 
       f(X11,…,X1n(1),…,X91,…,X9,n(9))                 
 
= f(X11,…,X1n(1)|k1, X21,…,X2n(2),…,X91,…,X9,n(9)) f(k1, X21,…,X2n(2),…,X91,…,X9,n(9)) 
                                  f(X11,…,X1n(1),…,X91,…,X9,n(9)) 
 

• f(X11,…,X1n(1)|k1,X21,…,X2n(2),…,X91,…,X9,n(9))  
 

• f(k1| X21,…,X2n(2),…,X91,…,X9,n(9)) 
 
using from CI.2 this becomes:  
 
f(X11,…,X1n(1)|k1) f(k1| X21,…,X2n(2),…,X91,…,X9,n(9)) 
 
Now, a threshold that is high enough must be chosen.  That is, a height, in cm, 
must be chosen, such that the peaks above it are far enough apart that they do 
not influence each other—the peaks are independent.  This is needed so that 
CI.2 the Xi’s can be taken as independent, given ki, is realistic. Then, the 
equation becomes: 
 

 Πj=1
n(1)f(X1j | k1) f(k1| X21,…,X2n(2),…,X91,…,X9,n(9))                                   Equation 3 
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Part 1, Equation 3 
 
Now, the two parts of Equation 3 need to be calculated separately.  First, the bold 
part of Equation 3, f(X1j | k1), can be calculated using the following: 
 
To calculate f(X1j | k1), first a k1 is needed.  k1 is drawn from some prior, q.  The 
k’s are needed to help interpreting and choosing this prior, q. 
 
The k’s for the data can be calculated using P(X > xθ | X > θ) where θ is the 
predetermined threshold. This is because using P(X > xθ | X > θ), x > 1, the scale 
parameter, k, can be calculated, and then using that, f(X1j | k1) can be calculated. 
 
P(X > xθ | X > θ) =  P(X > xθ)  = 1 – F(xθ)                                               Equation 4 

                                                 P(X > θ)        1 – F(θ) 
 

Here, F is a function such that the second moment is infinite, ∫ ∞=)(2 xdFx  but 

there exists an ε > 0 such that ∞<∫ dFx
ε

.  Then there exists )2,0(∈α  such that 

)(1 xKxF α−≈−  where K is a slowly varying function at ∞, that is, c
K

xK
→

)(

)(

θ

θ
, 

some constant.  Choose θ such that for ),,1( Mx ∈  the observed interval area 

being (θ, Mθ), δ
θ

θ
<

)(

)(

k

xk
(small). 

 

So from 
1 ( ) ( ) ( ) ( )

1 ( ) ( ) ( )

F x x k x k x
x x c

F k k

α
α α

α

θ θ θ θ

θ θ θ θ

−
− −

−

−
≈ = ≈

−
                                     Equation 5 

 

)(1

)(1

~

θ

θ

xXZ

XY

FX

ii

ii

i

>=

>=  

 
To calculate out k: 

1

1

1
1

1/ ( ) ( )

1/ ( ) ( ) 1
1

i i

i i

k k

n Z E Z P X x

n Y E Y P X kx kx

α α

α α

θ

θ σ θ σ

θ θ

σ θ σ

   
+ +   >    = = = =

>    
+ +   

   

∑
∑

. 

Then, as θ � ∞, this becomes: 

α

α

α

σ

σ −=



















x

x
k

k

. 
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For α:   

)(

)(

i

i

YE

ZE
cx =−α  

( )( ) ( )( )ii YEZEcx loglogloglog −=+−α  

 
In this case, -α = -1/k, so α = 1/k and c = 1. 
 
 
Part 2, Equation 3 
 
The second part of Equation 3, f(k1| X21,…,X2n(2),…,X91,…,X9,n(9)), is: 

== ∫ )(),...,,|(),...,|( )9(,91,21)9(,91,21 qdPXXqkfXXkf
q

nn

∫ ∫
q kk

X

nnn

n

dqkdXXqfXXkkqkf
,...,

~

)9(,92)9(,91,221

2

~
),...,,(),...,,,...,,|(

4484476
 

 
CI.2 

∝ dqkdkqfkqXfqkf
q k

~
)

~
,()

~
,|

~
()|(

~
1∫ ∫ , where ),...,(

~
92 kkk =  

∝

44 844 76
)()|(

~
1

9

2

)(
~

)|
~

()
~

,|
~

()|(

qdFdkqkf

q k

i

i

i

qdFkdqkfkqXfqkf

∏
=

∫ ∫  

 

∫ ∫ ∏∏ ∏
= = =q k j

qn

i j

jjji qdfkdqkfkXfqkf
~

9

2

)(

1

9

2

,1 )(
~

)|()|()|(  

 
Combining both the parts of Equation 3, f(k1| X11,…,X1n(1),…,X91,…,X9,n(9)) is equal 
to 

∫ ∫ ∏∏ ∏∏
= = == q k j

n

i j
part

j

part

jji

part

n

j
part

j qdFkdqkfkXfqkfkXf
~

9

2

)9(

1

9

2
43

,

2

1

)1(

1
1

11 )(
~

)|()|()|()|(
43421434214342143421

               Equation 6 

Equation 6 can now be solved in parts.  Parts 1 and 3 are likelihood functions 
distributed according to the GPD, with shape parameter k and scale parameter σ.  
Parts 2 and 4 are also similar to each other.  Let f(ki | q) be distributed according 
to some distribution, which will be discussed later.  The distributions of the wave 
heights can be used to get a heuristic prior, q, from estimates of k1, … , k9.  Once 
we have the distribution of the wave heights we need to get the height at the 
appropriate quantile.  This quantile is : 

Start with the inverse function of the GPD: 
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θ
σ

θσ +
−−

=−

k

x
kxF

k ))1(1(
),,|(1  

 
X1,…Xn separated maxima 
 
P(X > c) = 1 – F(c),  
 
Or Nt ~ Poisson(λ), where Nt is the total number of observations 
up to time t.  In our case, t = 24 years. 
 
E(Nt) = λt => λ ≈ E(Nt)/t 
 
For t = 24, let nt = m.   
 
E(nt) = nt = λt =>nt/t = m/24 
 

We know that 1 1
1nX F

n

−  
= − 

 
 

In our case: 

( )10 ,000

1 1

( )

10,000

1

1 1
1 1

10,000
24

24
1

10,000

E NX F F
mE N

F
m

− −

−

 
   

= − = −    
   ⋅
 

 
= − ⋅ 

 

 
 

N is Poisson because, as the number of observations is bigger than 50, the 
binomial distribution is approximated by Poisson. it simply counting the number of 
Xi’s above the value, c.  Here, m is the number of events, that is, it is the number 
of peaks above the threshold. 
 
Before applying hierarchical Bayes, appropriate thresholds must be chosen.  We 
would like a threshold that results in an average of around two storms per year, 
but are still independent.  The peaks are a minimum of 24 hours apart for 
independence.  Below are the thresholds and corresponding peaks for each 
station. 

 
Threshold and Peaks for Each Station 

Station ELD EUR K13 LEG MPN SCW SON SWB YM6 

Number of 

Peaks(m) 

57 64 61 57 60 56 58 60 59 

Threshold, 

θ [cm] 

539 459 529 459 439 349 504 414 499 

Table 2 
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Using the Data to get a Heuristic  k 
 
The first and third parts of Equation 6 need an estimate for k. 
From Equation 3, we know that to calculate P(X1j | k1)  
 
P(X > xθ | X > θ) = P(X > xθ)  =  1 – F(xθ) 

                                                 P(X > θ)         1 – F(θ)    
 

Let  
)(

)(

i

i

YE

ZE
 where 

)(1

)(1

θ

θ

xXZ

XY

ii

ii

>=

>=
 , so 

)(

)(

)(

)(

i

i

YE

ZE

xXP

xXP
=

>

> θ
, and from Equation 6 

this equals 
( )

( )

log log log( ( )) log ( )

i

i

i i

E Z
x c

E Y

x c E Z E Y

α

α

− =

− + = −

                             Equation 7                               

 
Where c = 1 and k = 1/α.   
 
 
Approach 1:  Direct Fitting 
 

From above, we will try and fit an α to x-α = 
)(

)(

i

i

YE

ZE
 directly thereby getting a 

solution for k. Yi, the total number of Xi that is above the threshold is 57 out of a 
total of 4,965 peaks over threshold.  This makes E(Yi) = 57/4,965 = 0.0115.  E(Zi) 
is not so simple as it depends on x.  Since, for each x there is a different answer, 
E(Zi) is a function that is dependent on x, shown below in Figure 4:  
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Figure 4 

 

 
From above we have the following equations: 

( )

( )

log log log( ( )) log ( )

i

i

i i

E Z
x c

E Y

x c E Z E Y

α

α

− =

− + = −

 

Since c = 1, the points can be linearly fitted directly for an α. 
 
-α log x = log E(Zi) – log E(Yi) = log E(Zi) + 4.4671. 
 
Below is the plot of log x against log E(Zi) – log E(Yi). 
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log(x) vs. log (EZi) – log (EYi) 

 
Figure 5 

 
To find the best α, a line is fitted to the above to Figure 5. For a linear polynomial, 
the following formula is used: f(x) = p1*x + p2.  In this case, x is our log(x) and p2 
is forced to be zero.  The equation we used is: f(log(x)) = -α log(x).  Using the 
best fit, the p1 is -10.63 = -α, hence α is 10.63.  See appendix A.6.    
To see how well this fits, a QQ-plot is drawn.  See Figure 6 below: 

 
QQ-Plot of -10.63log x vs. log(EZ) – log(EY) 

 
Figure 6 
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This plot shows that the quantiles are very similar, especially after the first part, of  
plot Figure 5. One can see this, as the QQ-plot quickly goes towards y = x. 
 
Appendix A.7 shows fits for the other stations.  The α and k values are listed 
below in Table 3.   
 

Estimates of k and their R-squared values 

-α log x = log(EZ) – log(EY) Station 
α k = 1/α R-square 

ELD 10.63 0.09 0.98 

EUR 11.27 0.09 0.98 

K13 9.68 0.10 0.92 

LEG 10.05 0.10 0.98 

MPN 11.08 0.09 0.90 

SCW 11.53 0.09 0.88 

SON 8.227 0.12 0.96 

SWB 12.15 0.08 0.92 

YM6 9.57 0.10 0.94 
Table 3 

 
With these k’s, calculating the σ’s of the GPD is now possible.  Where W = X – θ, 
for X > θ. 
 
The expected value of W is: 
 

1 1/

0

1
1

1

k
w

EW w k dw
k

σ

σ σ

− −∞
 

= ⋅ + = 
− 

∫  

 

We also know that ( )
iW

E W
n

=
∑

, which can be approximated using the data.  

Estimates of k and their R-squared values 
 

 

θ 

-α log x = log(EZ) – 

log(EY) 
 

Station 

 

 

µ ≈ 

1/n∑Wi  k = 1/α σ 

ELD 61.96 539 0.09 56.13 

EUR 45.38 459 0.09 41.35 

K13 67.75 529 0.10 60.75 

LEG 56.74 459 0.10 51.09 

MPN 53.78 439 0.09 48.93 

SCW 37 349 0.09 33.79 

SON 74.53 504 0.12 65.47 

SWB 40.07 414 0.08 36.77 

YM6 61.59 499 0.10 55.15 
Table 4 
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To check to see if these k’s and σ’s are close to our data, the empirical cdf, using 
the peaks, is plotted against the theoretical cdf, using the above k’s and σ’s.  In 
Figure 7 there is an example of such a plot.  Notice that these parameters are a 
pretty good fit.  The other stations are in appendix A.8 

.

 
Figure 7 
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The above figures show that the GPDs using the fitted k’s and σ’s look pretty 
good. The other stations are in A.8. To make sure, the Kolmogorov-Smirnov (KS) 
goodness of fit test is performed for each station.  See Table 5. 
 

Goodness of Fit 

 ELD EUR K13 LEG MPN SCW SON SWB YM6 

h 0 0 0 0 0 0 0 0 0 

p-value 0.26 0.94 0.57 0.31 0.36 0.39 0.26 0.25 0.53 

ks-stat 0.13 0.06 0.10 0.13 0.12 0.12 0.13 0.13 0.10 

crit.val 0.18 0.17 0.17 0.18 0.17 0.18 0.18 0.17 0.17 
Table 5 

 
Table 5 shows the goodness of fit values for these k’s and σ’s.  Most of the fits 
are good.  h tells us whether or not to reject the null hypothesis that the empirical 
distribution is drawn from the corresponding theoretical GP distribution.  If h = 0, 
then we do not reject the null hypothesis at significance level alpha, and if h = 1, 
then we reject the null hypothesis at significance level alpha. All but one of the p-
values is above the 5% level.  This means that the null hypothesis, the empirical 
distribution is drawn from the theoretical distribution with the respective k’s and 
σ’s, is true all the time, except for station SCW. 
 
Below are the predicted one in 10,000 year waves for each of the stations using 
only the respective GPDs. 
 

 
 

Predicted Wave Heights for Each Station 

 ELD EUR K13 LEG MPN SCW SON SW

B 

YM6 

Height, 

above θ 

[cm] 

942.79 685.16 1088.81 885.86 809.99 542.50 1298.22 581.39 990.21 

Complete 

Height[cm] 

1481.79 1144.16 1617.81 1344.86 1248.99 891.50 1802.22 995.39 1489.21

Table 6 

 
 

 
Approach 2: Maximum Likelihood Approach 
 
As the direct fitting approach did not give a good parameter estimates all the 
stations, another method to get better k’s and σ’s should be tried.  A different way 
to calculate k and σ is using the maximum likelihood method: 
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The density of the Generalized Pareto distribution is: 
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Let wi = xi – θ.  After multiplying 
σ∂

∂ Lln
 by σ and 

k

L

∂

∂ ln
by k: 

                          
1

1 1

( 1) 0

1
ln 1 ( 1) 0

n
i

i i

n n
i i

i i i

w
n k

kw

w w
k k

k kw

σ

σ σ

=

= =

− + + =
+

 
+ − + = 

+ 

∑

∑ ∑
                                          Equation 8 

 
From the first of the above two equations 9: 
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From both of the above equations 9 and equation 10: 
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From equation 10 
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Let a = k/σ and b = k, then equation 12 becomes 
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From equations 13 and 14: 
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Since w1,…,wn are known, we must find an a such that G – H = 0. Using that, k 
and σ can be calculated. The results are below in Table 7 
 

. 
 

Estimates of k and σ using MLE 

 ELD EUR K13 LEG MPN SCW SON SWB YM6 

θ 

[cm] 

539 459 529 459 439 349 504 414 499 

k̂  -0.15 -0.06 -0.29 -0.17 -0.33 -0.27 -0.09 -0.18 -0.11 

σ̂  71.40 47.98 88.26 66.25 72.15 47.34 81.32 47.12 68.45 

θ-σ/k 1003.23 1301.35 836.71 854.16 654.93 525.65 1404.94 679.62 1124.24 
Table 7 
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Table 8 shows the results of the Kolmogorov-Smirnov test to see how well these 
parameters actually fit. 

 
Goodness of fit of MLE 

 ELD EUR K13 LEG MPN SCW SON SWB YM6 

p-val 0.69 0.99 0.56 0.91 0.71 0.42 0.72 0.76 0.76 

KS-

stat 

0.09 0.05 0.10 0.07 0.09 0.12 0.09 0.08 0.09 

Table 8 

 
Notice the p-values in table 8, are all well above the 5 % level, meaning that the 
empirical cdf is likely from the theoretical cdf.  
 

Predicted Wave Heights [cm] for Each Station 

 ELD EUR K13 LEG MPN SCW SON SWB YM6 

Height, 

above θ 

[cm] 

365.66 370.95 290.94 322.19 208.61 164.73 538.64 221.56 418.54 

 

 

Complete 

Height [cm] 

904.66 829.95 819.94 781.19 647.61 513.73 1042.64 635.56 917.54 

Table 9 

 
Below, in Figure 8, is an example of the empirical and theoretical distributions.   
See appendix A.9 for all the figures from all the stations. 

 
Figure 8 
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Approach 3: Method of Moments 
 
The MLE method works well, but one more method is tried to see if a better fit 
can be achieved.  This is the Method of Moments(MOM).The method of moments 
(MOM) for the GPD were introduced by Hosking and Wallis(1987).  This 
method’s basic idea is that estimators for unknown parameters can be derived 
from the expressions for the population moments.  The r-th moments of the GPD 
exists if k < 1/r.  Provided that they exist, the mean and variance of the GPD are 
given by: (Beirlant et al., p. 150). 
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A sample of Y1,…YNt i.i.d. GP random variables is available.  Where Yi = (Xi – θ) 
= (original height of peak minus the threshold) The order statistics associated 

with Y1,…YNt are denoted by Y1,Nt ≤…≤ YNt,Nt.  Replace E(Y) with ∑ =
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Using these equations gets the following k’s and σ’s: 
 

Estimates of k and σ using MOM 
 ELD EUR K13 LEG MPN SCW SON SWB YM6 

k̂  -0.18 -0.03 -0.16 -0.16 -0.28 -0.18 -0.07 -0.19 -0.07 

σ̂  72.81 46.88 78.75 66.01 68.77 43.80 79.41 47.80 42.74 

θ-σ/k 943.5 2021.67 1021.19 871.56 684.61 592.33 1638.43 665.58 1109.57 
Table 10 

 
Then, using these k’s and σ’s as the parameters in the theoretical equation, the 
empirical vs. theoretical distributions are plotted. Figure 9 is a plot of station 
K13’s empirical and theoretical distributions.  The other stations are in appendix 
A.10.  
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Figure 9 

 

Again, this seems to fit pretty well.  Since we cannot tell with simply the plot, the 
KS-test is done.  Results are shown below in table 11.   
 

Goodness of Fit of MOM 

 ELD EUR K13 LEG MPN SCW SON SWB YM6 

h 0 0 0 0 0 0 0 0 0 

p-value 0.7261 0.99 0.84 0.90 0.84 0.61 0.67 0.76 0.86 

ks-stat 0.0899 0.44 0.08 0.07 0.08 0.10 0.09 0.09 0.08 

Crit.val 0.18 0.17 0.17 0.18 0.17 0.18 0.18 0.17 0.17 
Table 11 

 

Notice that the parameters do not fit as well as the MLE ones.  So of the three 
methods, MLE is the best estimator of the k’s and σ’s.  Also, the heights of the 
desired one in 10,000 year wave, predicted simply using one station, are below in 
Table 12. 

Predicted Wave Heights for Each Station 

 ELD EUR K13 LEG MPN SCW SON SWB YM6 

Height, 

above θ 

[cm] 

344.62 405.40 391.76 326.02 232.11 200.79 586.56 212.54 483.25 

 

Complete 

Height 

[cm] 

883.62 864.4 920.76 785.02 671.11 549.79 1090.56 626.54 982.25 

Table 12 
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The hyperprior, q 
 
After calculating a good estimate for k, the next part of equation 6 must be 
calculated.   
 

∫ ∫ ∏∏ ∏∏
= = == q k j
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To do this, a hyperprior distribution, q, must first be determined.  Usually, a 
hyperprior is estimated by a conjugate class, unfortunately, there is no conjugate 
class for GPD’s.   
 
Using the few data points we have, we check to see which distribution fits k the 
best. 
 
As all k’s are negative, they must be modified slightly to be able to use certain 
distributions. 

 
Figure 10 
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Results from KS-Test for different distribution fits 

Distribution fits for k 

  h p-value ks-statistic critical value 

Normal 1 0.01 0.51 0.43 k 

Ext. value 1 0.00 0.55 0.43 

Exponential 0 0.42 0.28 0.43 

Gamma 1 0.00 0.99 0.43 

Normal 1 0.01 0.51 0.43 

Negative 

k 

Ext. value 0 0.22 0.33 0.43 

Exponential 0 0.29 0.31 0.43 

Normal 1 0.01 0.51 0.43 

k minus 

minimum 

Ext. value 1 0.00 0.55 0.43 
Table 13 

 
The data with the best fit is the negative of the original k’s. Let G = -K, the best fit 
to G is the exponential distribution.  To give the exponential distribution more 
flexibility, the gamma distribution will be used. Recall, when α of the gamma 
distribution is equal to 1, it is the exponential distribution. Let α = 1/v2  and β = 
v2q.  Let G be distributed according to a gamma distribution, with parameters α 
and β. 

βα

α αβ
βα

g

eggf
−−

Γ
= 1

)(

1
),|( , α > 0, 

Where E(G) = αβ = q  
And Var (G) = αβ2 = qv2 

We need to calculate α and β.  We know that the expected value of G, E(G) = -

E(K) and the average of the MLE fits of k1,…,k9 is 

9

1 0.1827
9

i

i

k
= = −
∑

.  This value 

gives us an idea of a range for the q’s to be in—that is if G ~ exponential, then 
E(G) = q, where q has a wide range, namely 0 to 10. 
  
Now, Equation 7 is calculated for q  ~ U[0,3], q ~ U[0,10] and q ~ U[3,7].  These 
q’s are used to randomly generate many values of g’s, for v = 0.1, 0.3, 0.5, 0.7, 
0.9, 1, and 2.   For each range of q and each v, Equation 7 is calculated.  
Recall that: 

f(k1|X11,…,X1n(1),…,X91,…,X9,n(9)) = 
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The distribution of the (-)k1’s derived is then used to calculate the predictive 
distribution 
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                                                 ( )( )
1 1( ) , ,kF X E GPD X k σ=                               Equation 15 

 

The fact that ( ) ( )* 1E X kσ θ= − −  is used to get the appropriate σ’s. Let 

( )
1

E X
k

σ
θ µ θ− = = −

−
, so ( ) ( ) ( ) ( )* 1 * 1E X k E kσ θ µ θ= − − = − − . 

Here we run into a numerical problem, there are so many wave heights that 
product of f( Xi,j | kj ) is almost zero. One modification that can be made is when 

calculating the product, ∏
=

)(

1

, )|(
jn

i

jji kXf  directly does not work, take the log of it, 

sum the f(Xi,j | kj) and then convert it back using the exponential function. This 
gives better results.  Below, in figures 11, 12, and 13, are the outcomes of this 
approach. 

 
Figure 11 
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Figure 12 

 
Figure 13 



Poorwa Singh                                                                                                                                                 
1242326 

32  

 

Figure 11 shows that the prior k’s are not very good, but the posterior k’s are 
between 0 and 0.3, which is where the most of the (absolute) k’s from the data 
are.  The wave heights of the prior and posterior in Figure 12 ,do not look much 
different from each other, but the difference can be seen in the log ccdf, Figure 
13.  Notice the prior is smaller than the posterior at the beginning, until x-θ is 
around 300, then it abruptly becomes bigger and stays that way.  The data, on 
the other hand, does not increase with the prior, showing us that the posterior is 
indeed an improvement of the prior.  Other stations are in A.12 

 
1 in 10,000 Year Wave Heights [cm], using all the Data from each Station 

 q~U[0,0.5] 

 

q~U[0,3] 

 
v =  prior posterior prior posterior 

0.0005 1008.93 1149.65 601.29 1051.42 

0.001 1040.49 1158.27 618.32 1086.03 

0.02 960.13 1126.55 700.65 1266.39 

0.04 989.58 1141.76 627.71 1120.58 

0.06 975.42 1133.8 635.2 1128.68 

0.08 988.34 1139.05 638.12 1139.27 

0.1 985.12 1134.87 632.61 1128.55 

0.2 977.58 1134.88 637.23 1135.74 

0.5 1028.87 1169.93 669.41 1159.29 

0.8 1081.65 1213.18 718.81 1186.43 
Table 14 

 
Table 14 shows the wanted wave heights, using all the data from each station.  
Notice that posteriors are much closer to each other than the priors, which are 
completely different.  For q ~ U[0,0.5], this can be seen in Figure 13, where 
towards the end, the posterior is much lower than the prior.  These wave heights 
are higher than the wave heights from just one station, using the MLE fit for the 
GPD, Table 9.  This seems logical as this method uses the information from the 
other stations as well.  The desired wave that would occur only once in 10,000 
years is between eleven and twelve meters in height. 
 

 
Conclusion 
 
The Hierarchical Bayes model is an interesting approach to extreme value theory 
problems.  Basically, first a threshold is decided for each station.  The threshold 
should be high enough that it only allows for around two storms a year and 
makes the point independent of each other by disregarding all close points below 
the threshold.  This results in our data of nine stations.  Then, a GPD is fitted to 
each station by the MLE.  This gives us the parameters, k and σ.  Now, we have 
an idea about k (prior) and also an idea about the hyperprior q.  Using these little 
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bits of information,  we try solving equation 6 for several k’s and q’s.  This 
procedure updates our initial inference, giving us a better estimate of the actual 
distribution of X.  A few distributions of X are calculated and from these, the 1 in 
10,000 year waves are determined.   
 

Another Trial 
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Using Hierarchical Bayes, try a Beta(α,β) distribution for k instead of the Gamma.  
An advantage of the beta is that it is defined on a bounded interval.  One 
adjustment has to be made to the Beta distribution.  Since its range is [0,1] and 
we want it to be from [-0.5,0.5], let k ~ Beta(α,β) – 0.5.  Also, α and β have to be 
greater than one, α > 1 and β > 1, because  this makes the beta density  
concave, meaning that the k’s are spread more in the middle.  If α and β are less 
than one, then the beta density would be convex, implying the k’s are 
accumulated at the ends.  
 

  α and β are determined by the fact that E(k) = q =  
α

α β+
(expected value of a 

beta distribution), and let v =Var(k) = 
( ) ( )

2
1

αβ

α β α β+ + +
. Then,  

2 2*( ) ( 1 )*( )q q q v q q q v
and

v v
α β

− − + + − + − + +
= =                                  Equation 16 

 
The q is the uniformly distributed hyperprior.  The v affects the range of q.  Since 
α >1 and β >1, so using the α’s and β’s from Equation 16 we get the following 
relationship: 
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Figure 14 

The relationship between v and q from α > 1, α: 
2q (1 )
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 and the relationship 

between v and q from β > 1, β: 
( )2q q 2 1
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.  The minimum of (α,β) 

determines the bounds for q.  v has to be less than 1/12.  Hence, 
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Then for the GPD part of the equation, we already have a distribution for the k’s.  

We also know that E(X-θ | k) =
1 k

σ

−
, where X | k ~GPD.  Using the k’s from the 

distribution, the σ’s corresponding to them can be calculated by the following: 

( )( )ˆ 1 kσ µ θ= − − .  

 This method uses the same hyperprior, q ~ Uniformly, and different priors, 

k | q ~ Beta (α, β).  σ is related to the k’s using ( )( )ˆ 1 kσ µ θ= − − .  As a beginning, 

shown below are two trials of this method. 
 
 
 
 
Two Examples 
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The examples of this method are shown below in figures 15-20 for v = 0.0005 
and  v = 0.001.  Notice figures 15 and 16.  The posterior accumulates around the 
MLE k’s. Also, in figures 19 and 20, see how close the posteriors are to the data 
collected from the station.  This shows the fit is indeed quite good.  v = 0.0005 
gives  a prediction for the one in 10,000 year wave to be 410 cm over the 
threshold of 539 cm and v = 0.001 gives the prediction to be 420 cm above the 
threshold. 
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Figure 15 
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Figure 19 
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Conclusion 
 
The objective of the thesis was to predict the height of the 1 in 10,000 year wave 
using twenty four years of data collected from the North Sea.  Hence, extreme 
value statistics should be used.  For this reason, normal regression was tried 
first.  This resulted in a badly fitted model.  The reasons could be that GPD only 
fit the data for the first station, ELD.  It could also be that the 1000 predicted 
waves were not distributed normally, throwing off the regression analysis.  This 
made most the β’s insignificant (close to zero).  Logically, this did not make 
sense as the correlations between the stations were relatively high. 
 
Since the regression method did not work, a new method was tried—the two 
stage Bayes.  This model takes all the information into account.  It starts with the 
wave height data, which is used to estimate the k’s, the shape parameters of the 
GPD.  One step up, the priors of the k’s, given q, were distributed according to  
the gamma distribution, and one more step up, the q’s were distributed uniformly.  
Using all this information, the 1 in 10,000 year wave heights are predicted.  The 
results seem reasonable because the distribution of the estimated wave heights, 
look like the distributions from the data of the stations.   
 
Overall, the hierarchical Bayes method, although computationally intensive, 
worked better than traditional regression. 
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Appendix 

 

A.1 

www.golfklimaat.nl 

uitgebreide 

stationsnaam  meetnet  RD   x  RD  y  

geografisch 

NB  

geografisch 

OL  

water-  

diepte  

m MSL 

Aukfield platform  Noordzee -  -  56°23’59”  02º03’56”  85  

K13a platform  Noordzee 10.176  583.334 53º13’04”  03º13’13”  30  

Schiermonnikoog 

noord  

Noordzee 206.527 623.483 53º35’44”  06º10’00”  19  

Eierlandse Gat  Noordzee 106.514 587.985 53º16’37”  04º39’42”  26  

Ijmuiden 

mun.stortplaats  

Noordzee 64.779  507.673 52º33’00”  04º03’30”  21  

Noordwijk 

meetpost  

Noordzee 80.443  476.683 52º16’26”  04º17’46”  18  

Euro platform  Noordzee 9.963  447.601 51º59’55”  03º16’35”  32  

Lichteiland Goeree  Noordzee 36.779  438.793 51º55’33”  03º40’11”  21  

Schouwenbank  ZEGE  11.244  419.519 51º44’48”  03º18’24”  20  

Scheur west 

Wandelaar 

ZEGE  -7.797  380.645 51º23’32”  03º02’57”  15  

 
 

A.2 
 

Method 1 
 
Procedure 
 
The first method is the well-tried method of regression.  The procedure for this is: 
 

1. The peaks over threshold of one station must be selected 
a. This is done by first storing all peaks, regardless of height. A 

peak is defined by a point which is higher than the points 
immediately before and after it. 

b. A threshold is put in and all peaks below the threshold are 
removed.   
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c. If there are two or more peaks within 24 hours of each other, the 
highest is taken.   

2. Wave heights of the other stations at corresponding times, with time 
differences taken into account, must also be recorded 

3. Using the peaks from the first station and the wave heights of the 
corresponding times from the other station, a rank correlation matrix 
and conditional correlation matrices are generated 

4. With these correlations, generate Uniform data  
5. Convert the Uniform data to the generalized Pareto (GP) distribution.  x 

= F(U), where U is the Uniform data and F is the GP distribution. 
 

Then, use this information to: 
6. Sample for additional 24 years from each of the stations 
7. Estimate the  parameters of the GP  
8. Compute one in 10,000 year wave for locations 1,..,k  

a. The prediction of the height of the one in 10,000 year wave: 
Start with the inverse function of the GPD: 

θ
σ

θσ +
−−

=−

k

x
kxF

k ))1(1(
),,|(1  

 
X1,…Xn separated maxima 
 
P(X > c) = 1 – F(c),  
 
Or Nt ~ Poisson(λ), where Nt is the total number of observations 
up to time t.  In our case, t = 24 years. 
 
E(Nt) = λt => λ ≈ E(Nt)/t 
 
For t = 24, let nt = m.   
 
E(nt) = nt = λt =>nt/t = m/24 
 

We know that 1 1
1nX F

n

−  
= − 

 
 

In our case: 

( )10 ,000

1 1

( )

10,000

1

1 1
1 1

10,000
24

24
1

10,000

E NX F F
mE N

F
m

− −

−

 
   

= − = −    
   ⋅
 

 
= − ⋅ 
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N is Poisson because, as the number of observations is bigger than 
50, the binomial distribution is approximated by Poisson.   Here, m is 
the number of events, that is, it is the number of points above the 
threshold.   The result of Equation 1 is, given a number of events m, in 
24 years, that is the 1 in 10,000 year wave. 

 

9. Calculate β’s using regression analysis:  ∑=
i

iiTRUE XY ,10000β (samples) 

Where YTRUE is the extrapolated height of the one in 10,000 year wave 
from the simulated waves, for the base station, and X10000,i’s are the 
extrapolated waves from the simulated data, for all the other stations. 

10. Repeat 1000 times to get a distribution for the one in 10,000 year 
wave, for each station. 

 
 

Background: Regression Analysis 
 
Regression analysis is “the study of the analysis of data aimed at discovering 
how one or more variables (called independent variables, predictor variables, or 
regressors) affect other variables (called dependent variables or response 
variables).”(golfklimaat.nl, p.1) 

 
Basically, it is used when there is a lot of data and a model must be fitted to it to 
summarize the data more affectively.  The regression model looks like: 

εβ += Xy  where  
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 (p.28)
 

 

Here, n=10,000 and m=8, so y, ε, and β are columns of 9 and X is a 10,000 by 9 
matrix. 
The y column is the response column, the x’s are the regressor variables, β’s are 
the weights of the regressor variables, and ε’s are the residuals.  The residuals 
are the differences between the actual data, y’s and the model, Xβ. ε =y – Xβ. 
 
When using regression analysis, it is not only important to fit the data, but also to 
see how good your model actually is.  Two different such measures are the R2-
statistic and the p-value of the F-statistic.  Where 

( )
2

11

22 1 ∑∑
==

−−=
n

i

i

n

i

i yyR ε  This value always “lies between 0 and 1 and the 

closer it is to 1, the better the fit.”(p.14) 
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The second statistic is the p-value of a t-test, which tests the null hypothesis that 
βj = 0.  If the p-value is less than the given significance level, then it is significant 
and we assume βj ≠ 0. 
 

 
 
 
 
 
Application 
 
According to the above procedure, steps 1 and 2 – peaks from station 1 and the 
corresponding wave heights from other stations are recorded.  We now need to 
generate more data using the data we already have.  This is most accurately 
done if the relationship between stations is also noted.  This relationship is 
captured by the correlations and conditional correlations of the data.  Hence, 
these correlations are calculated to generate more accurate uniformly distributed 
data.  See below for these correlations 

     
Product Moment Correlation Matrix for Actual Data, Threshold 449 cm 

    1.00    0.52    0.62    0.63    0.61    0.49    0.42    0.50    0.69 

    0.52    1.00    0.66    0.83    0.76    0.81    0.06    0.91    0.72 

    0.62    0.66    1.00    0.61    0.59    0.55    0.14    0.61    0.62 

    0.63    0.83    0.61    1.00    0.74    0.80    0.21    0.83    0.76 

    0.61    0.76    0.59    0.74    1.00    0.69    0.26    0.77    0.71 

    0.49    0.81    0.55    0.80    0.69    1.00    0.23    0.90    0.66 

    0.42    0.06    0.14    0.21    0.26    0.23    1.00    0.11    0.27 

    0.50    0.91    0.61    0.83    0.77    0.90    0.11    1.00    0.68 

    0.69    0.72    0.62    0.76    0.71    0.66    0.27    0.68    1.00 
Table 1 

 
Rank Correlation Matrix for Actual Data, Threshold 449 cm 

    1.00    0.48    0.56    0.56    0.57    0.46    0.36    0.47   0.60 

    0.48    1.00    0.63    0.84    0.77    0.80    0.07    0.90    0.70 

    0.56    0.63    1.00    0.57    0.54    0.55    0.12   0.62    0.59 

    0.56    0.84    0.57    1.00    0.74    0.80    0.22    0.83    0.72 

    0.57    0.77    0.54    0.74    1.00    0.69    0.18    0.77    0.70 

    0.46    0.80    0.55    0.80    0.69    1.00    0.24    0.89    0.65 

    0.37    0.07    0.12    0.22    0.18    0.24    1.00    0.12    0.21 

    0.47    0.90    0.62    0.83    0.77    0.89    0.12    1.00    0.67 

    0.60    0.70    0.59    0.72    0.70    0.65    0.21    0.67    1.00 
Table 2 
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Notice that the product moment and rank correlations, from tables 1 and 2 
respectively, are quite high.  This means that given a point from set A, one would 
be able to predict a relatively narrow bound for where a point from set B(or any 
other set) would be. The product moment correlation matrix has higher values 
than the rank correlation matrix.  Thus, when the data is ordered, it is less 
correlated than when it is not.  If the data is not ordered the band for the 
prediction of one point given another point is more accurate. This seems 
reasonable, as the waves at the stations are more likely to be similar to each 
other according to the times the wave peaks occur, and not as similar to each 
other at just the heights of the peaks. Conditional correlations are in A.3. 
 
Using these correlations and conditional correlations, 1000 sets of data are 
generated.  Then, to make sure that the generated data are in fact as similarly 
related to each other as the actual data is, the rank correlation of the actual data 
and the rank correlation of the simulated data are compared.  The relationship 
between stations of the original data and one of the generated data sets are quite 
similar. They are in A.4   
 
This new data is then transformed into the GPD for its own station.  That is, say 
for station A, a Uniform data, U, set is created.  This set is transformed into the 
GPD with parameters k and σ, best fitted to the original data for station A.  The 
new data,x, is distributed according to the GPD, x = F(U), where F ~ 
GP(kA,,σA,θA). 
 
Then, from each set of data, the one in 10,000 year wave is calculated using 
equation 1.  The 1000 wave heights simulated for station ELD with a threshold of 
449 look like Figure 1. 
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1000 predictions of a 1 in 10,000 year wave for station ELD 

 
Figure 1 

 
A Normal distribution is fitted to the 1000 simulated 1 in 10,000 year wave 
heights.  The Normal distribution is chosen because we are no longer looking at 
peaks, but the height from a quantile of the distribution.  This yields a mean of 
860.41 cm and a standard error of 78.51cm.  Unfortunately, this is not a good fit 
because it results in an unacceptable p-value from the Kolomogorov-Smirnov 
goodness of fit test of 9.4678e-004.  The mean, standard deviations and p-values 
of the 1/10,000 year wave heights are below in Table 3.  Recall, the p-value for 
the F-test tells us the chance one distribution comes from another.  In this case, 
the chance the distribution of the data has a 0.09 % chance of coming from 
Normal(860.41, 78.51). 
 

Simulations for a threshold of 449cm, 1000 trials, each with 160 peaks 

Station Mean St. Error p-value 

ELD 860.41 78.51 9.47E-04 

EUR 829.4 5.61 4.35E-06 

K13 859.8 11.99 0.024 

LEG 880.34 10.88 1.44E-05 

MPN 830.24 16.44 0.14 

SCW* 756.35 8.8 3.91E-05 

SON* 1030.3 19.76 0 

SWB* 838.03 10.83 0 

YM6* 879.83 25.02 0.2 
Table 3 

*based on 999 trials. 
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Now, we must check the influence of each station on the first.  This is done 
through the following regression analysis.  In this case, y is a column of heights 
of the one in 10,000 year waves, from the simulations for station ELD.  X is 
matrix where the first column is simply ones, for the β0, and every column after 
that is a column of heights of the one in 10,000 year waves, from simulations, 
corresponding to stations EUR to YM6.  Cross terms are not taken into account.  
 
For a threshold of 449cm, the weights for stations, or β is: 
 

Weights for Each Station for a Threshold of 449cm 

1, β0 EUR,β1 K13,β2 LEG,β3 MPN,β4 SCW,β5 SON,β6 SWB,β7 YM6,β8 

-573.7 -0.68 -0.00 0.37 0.47 0.47 0.27 0.78 0.09 
Table 4 

 
This gives the regression equation: 

6,000,10,000,10,000,10,000,10,000,10

,000,1013,000,10,000,10,000,10

0907.07175.02653.04394.04698.0

3728.00045.06836.07582.573

YMSWBSONSCWMPN

LEGKEURELD

yyyyy

yyyy

+++++

+−−−=

 
 

The biggest influence on station ELD is station SWB, which has a small, positive 
influence, and EUR which has a small negative influence.  The fact that these 
two stations seem to influence ELD, the most seems a bit odd as neither SWB 
nor EUR are not close to station to ELD.  The reason for this could be that the R2 
value for this analysis is 0.0379.   This means that the fit is not good.  R2 always 
lies between 0 and 1, and the closer it is to 1 the better the fit.  The p-value is 
6.2228e-006. If the p-value is below 0.05, the null hypothesis can be rejected, 
implying a significant influence. Again, this is very small and supports the 
conclusion of this being a bad fit. 
 
This analysis is performed for other thresholds to see other possible fits. 

 
Simulations for a threshold of 509cm, 1000 trials, each with 82 peaks 

Station Mean St. 
Error 

p-value 

ELD 865.14 103.16 5.36E-08 

EUR 847.78 7.5 5.33E-18 

K13 853.39 17.91 3.86E-04 

LEG 889.4 13.11 4.29E-04 

MPN 848.89 16.44 8.36E-04 

SCW 808.41 7.86 6.08E-10 

SON 1059 20.9 2.51E-04 

SWB 821.48 7.87 3.10E-11 

YM6 893.46 28.33 0.01 

Table 5 
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Notice again that even with this higher threshold, the distribution of the 1 in 
10,000 year wave for each station, fits quite badly.  The best fit is for station YM6, 
with a p-value of 0.6 %. 
 
For a threshold of 509cm, the weights for stations, or β is: 
 

 
 
 

Weights for Each Station for a Threshold of 509cm 

1, β0 EUR,β1 K13,β2 LEG,β3 MPN,β4 SCW,β5 SON,β6 SWB,β7 YM6,β8 

-466.22 -0.08 0.23 0.55 0.33 0.28 -0.00 0.13 0.11 
Table 6 

 

The station most influential on ELD this time is station LEG. 
The R2-statistic for this threshold is 0.0135. Again, this is not very good. 
The p-value is 0.0962, which means that all the stations are insignificant, their β’s 
can be taken as zero. The chart with all the β’s, except β0, is below in Figure 2. 
 

β values, Threshold 509cm
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Figure 2 

 
 

Notice that this time, no stations should be significant, but one is, β3 (LEG).  This 
implies that something is now wrong. 
 
Now, a threshold of 529 cm is used. 
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Simulations for a threshold of 529cm, 1000 trials, each with 68 peaks 

Station Mean St. Error p-value 

ELD 917 152.759 2.89E-09 

EUR 852.8 7.24 9.31E-15 

K13 870.8 16.38 3.41E-04 

LEG 893.87 12.67 5.05E-07 

MPN 867.35 14.55 1.70E-05 

SCW 827.54 7.62 5.51E-12 

SON 1076.9 23.23 2.50 e-004 

SWB 840.4 7.06 5.85E-14 

YM6 908.74 25.09 0.023 

Table 7 

 
Again, the p-values are very small, implying a bad fit. 
 
For a threshold of 529cm, the weights for stations, or β is: 
 

Weights for Each Station for a Threshold of 529cm 

1, β0 EUR,β1 K13,β2 LEG,β3 MPN,β4 SCW,β5 SON,β6 SWB,β7 YM6,β8 

-1534.62 -0.11 0.77 0.52 0.34 0.07 0.29 0.58 0.28 
Table 8 

 
The most influential station this time is K13.  This actually makes sense as K13 is 
quite close to ELD, in location, compared to the other stations. 
The R2-statistic for this threshold is 0.0173 which is also not very good.  The p-
value is 0.0262, again this means that at least one station has a significant effect 
on station ELD. 
 
The chart with all the β’s, except β0, is below in Figure 3. 
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β values, Threshold 529cm
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Figure 3 

 
This time only one station is relevant, β2(K13).  
 
Threshold: 549 cm. 
 

Simulations for a threshold of 549cm, 1000 trials, each with 52 peaks 

Station Mean St. Error p-value 

ELD 1011 269.22 4.79E-14 

EUR 871.02 8.25 4.93E-16 

K13 858.28 20.13 0.01 

LEG 911.62 11.69 3.08E-05 

MPN 884.55 13.71 8.11E-05 

SCW 845.66 8.27 4.67E-12 

SON 1039.4 40.55 0 

SWB 858.59 8.09 4.86E-15 

YM6 923.24 22.37 0.02 

Table 9 

 

Notice that the p-values are increasing, but they still are not above the 5 % level.  
They could be increasing because the number of points is decreasing, allowing 
more room for error. 
 
For a threshold of 549cm, the weights for stations, or β is: 
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Weights for Each Station for a Threshold of 549cm 

1, β0 EUR,β1 K13,β2 LEG,β3 MPN,β4 SCW,β5 SON,β6 SWB,β7 YM6,β8 

-2824.737 -0.62 1.05 1.69 0.52 0.19 -0.10 1.18 0.44 
Table 10 

 
Same as before, the most influential station is LEG.   
The R2-statistic for this threshold is 0.0179, not such a good fit again.  The p-
value is 0.0216.  The chart with all the β’s, except β0, is below in Figure 4. 
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Figure 4 

 
 

Notice that again only two stations are relevant, β2(K13) and β3(LEG).  
 

Conclusion 
 
For this set of data, the regression method does not work well.  This could be the 
result of a few factors.  One of these could be that although the GPD fits the first 
station, when used on the wave heights of the corresponding times of the other 
stations, it does not.  This is the first cause of a bad result.  Another problem 
could be that the normal distribution does not fit the distribution of the  simulated, 
1 in 10,000 year waves.  As a result, when the β’s are calculated, most are 
insignificant.  As this seems a bit odd, as the stations are highly correlated, more 
of them should have an influence (a higher β value).  Hence, this method is not a 
good one for estimating extreme wave heights in the North Sea. 
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A.3 

Conditional correlations for data based on the peaks of station ELD for a 
threshold    of 449.  condcorr1 is the conditional correlation of 2 of the 
stations given station 1 (ELD), condcorr12 is the conditional correlation of 2 
of the stations given station 1 and 2 (ELD&EUR). 

 
Condcorr1 = 

    2              3             4            5              6             7              8             9 

 1.0000    0.4917    0.7830    0.6824    0.7494   -0.1273    0.8711    0.5897 

 0.4917    1.0000    0.3693    0.3208    0.3917   -0.1069    0.4846    0.3880 

 0.7830    0.3693    1.0000    0.6217    0.7336    0.0330    0.7805    0.5799 

 0.6824    0.3208    0.6217    1.0000    0.5881   -0.0315    0.6909    0.5430 

 0.7494    0.3917    0.7336    0.5881    1.0000    0.0892    0.8622    0.5312 

-0.1273   -0.1069    0.0330   -0.0315    0.0892    1.0000   -0.0584   -0.0124 

 0.8711    0.4846    0.7805    0.6909    0.8622   -0.0584    1.0000    0.5528 

 0.5897    0.3880    0.5799    0.5430    0.5312   -0.0124    0.5528    1.0000 

 

ans = 

   3             4            5              6             7              8             9 

 1.0000   -0.0289   -0.0231    0.0403   -0.0513    0.1315    0.1395 

 0.0289    1.0000    0.1922    0.3566    0.2151    0.3224    0.2353 

-0.0231    0.1922    1.0000    0.1586    0.0763    0.2687    0.2382 

 0.0403    0.3566    0.1586    1.0000    0.2811    0.6439    0.1671 

-0.0513    0.2151    0.0763    0.2811    1.0000    0.1077    0.0782 

 0.1315    0.3224    0.2687    0.6439    0.1077    1.0000    0.0987 

 0.1395    0.2353    0.2382    0.1671    0.0782    0.0987    1.0000 

 

ans = 

     4            5              6             7              8             9 

1.0000    0.1917     0.3582    0.2139      0.3292    0.2418          

0.1917    1.0000     0.1597    0.0753      0.2742    0.2439          

0.3582    0.1597     1.0000    0.2837      0.6447    0.1632          

0.2139    0.0753     0.2837    1.0000      0.1156    0.0863          

0.3292    0.2742     0.6447    0.1156      1.0000    0.0818           

0.2418    0.2439     0.1632    0.0863      0.0818    1.0000      

 

 

ans = 

         5            6             7              8             9 

1.0000      0.0993     0.0357     0.2277     0.2074  

0.0993      1.0000     0.2271     0.5976     0.0845 

0.0357      0.2271     1.0000     0.0490     0.0365 

0.2277     0.5976      0.0490     1.0000     0.0024 

0.2074     0.0845      0.0365     0.0024     1.0000 
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ans = 

         6             7              8             9 

   1.0000    0.2248    0.5934    0.0657 

   0.2248    1.0000    0.0420    0.0298 

   0.5934    0.0420    1.0000   -0.0471 

   0.0657    0.0298   -0.0471    1.0000 

 

ans = 

     7              8             9 

1.0000            0.1166             0.0154          

0.1166       1.0000            0.1071          

 0.0154            0.1071             1.0000      

 

ans = 

 

        8             9 

1.0000    -0.1060 

-0.1060 1.0000 

 

A.4 

One example of rank correlation of simulated variables: 

Trial 616: 

    

1.0000    0.5420    0.6264    0.6170    0.7158    0.5148    0.5724    0.5254    0.7557 

    0.5420    1.0000    0.6273    0.8201    0.7420    0.7470    0.1110    0.9051    0.7672 

    0.6264    0.6273    1.0000    0.5828    0.6227    0.6038    0.3709    0.6209    0.6531 

    0.6170    0.8201    0.5828    1.0000    0.8121    0.8087    0.3308    0.8584    0.7998 

    0.7158    0.7420    0.6227    0.8121    1.0000    0.7382    0.3682    0.7810    0.8310 

    0.5148    0.7470    0.6038    0.8087    0.7382    1.0000    0.3494    0.8821    0.6918 

    0.5724    0.1110    0.3709    0.3308    0.3682    0.3494    1.0000    0.1904    0.3715 

    0.5254    0.9051    0.6209    0.8584    0.7810    0.8821    0.1904    1.0000    0.7633 

    0.7557    0.7672    0.6531    0.7998    0.8310    0.6918    0.3715    0.7633    1.0000 

 

The differences are: 

diffrankcorreld(:,:,616) = 

 

         0   -0.0151   -0.0081    0.0087   -0.0076   -0.0112    0.0084    0.0067   -0.0275 

   -0.0151         0    0.0077    0.0193    0.0039    0.0047   -0.0072    0.0034    0.0106 

   -0.0081    0.0077         0    0.0250   -0.0167    0.0054   -0.0045    0.0065    0.0021 

    0.0087    0.0193    0.0250         0    0.0016   -0.0014   -0.0204    0.0092    0.0071 

   -0.0076    0.0039   -0.0167    0.0016         0   -0.0366   -0.0289   -0.0049   -0.0021 

   -0.0112    0.0047    0.0054   -0.0014   -0.0366         0    0.0061   -0.0047   -0.0224 

    0.0084   -0.0072   -0.0045   -0.0204   -0.0289    0.0061         0    0.0036   -0.0408 

    0.0067    0.0034    0.0065    0.0092   -0.0049   -0.0047    0.0036         0   -0.0043 

   -0.0275    0.0106    0.0021    0.0071   -0.0021   -0.0224   -0.0408   -0.0043         0 
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The max difference for this trial is 0.0408. The maximum difference for all 1000 of the 

trials is: 0.1632 

 

 

A.5 

 

Threshold 449cm: 

 

Bint = 

 

   
-1601.203 453.687 

-1.542 0.175 

-0.408 0.399 

-0.076 0.821 

0.174 0.765 

-0.112 0.991 

0.022 0.509 

0.270 1.165 

-0.105 0.286 

 

 

 

Rsquared = 

    0.0379 

Fstat = 

    4.8853 

pval = 

  6.2228e-006 

 

Threshold 469cm: 

 

Bint = 

 

   
-1169.308 1112.352 

-2.048 -0.257 

-0.085 0.884 

0.063 1.064 

0.216 0.855 

-0.686 0.637 

-0.126 0.354 

-0.123 0.911 
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-0.088 0.355 

 

Rsquared = 

    0.0317 

Fstat = 

    4.0511 

pval = 

  9.3662e-005 

 

 

 

Threshold 489cm: 

 

Bint = 

 

   
-1278.729 739.650 

-0.869 0.608 

-0.069 0.701 

-0.083 0.719 

-0.017 0.582 

-0.543 0.822 

-0.316 0.202 

-0.429 0.998 

-0.038 0.421 

 

 

 

Rsquared = 

 

    0.0162 

 

 

Fstat = 

 

    2.0383 

 

 

pval = 

 

    0.0393 

 

 

Threshold 509cm: 

 

Bint = 
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-1672.206 739.762 

-0.936 0.782 

-0.136 0.586 

0.057 1.046 

-0.069 0.725 

-0.550 1.113 

-0.307 0.306 

-0.703 0.963 

-0.114 0.343 

 

 

Rsquared = 

 

    0.0135 

 

 

Fstat = 

 

    1.6920 

 

 

pval = 

 

    0.0962 

 

 

Threshold 529cm: 

 

 

Bint = 

 

   
-3467.514 398.279 

-1.427 1.211 

0.186 1.352 

-0.242 1.283 

-0.318 1.000 

-1.193 1.338 

-0.113 0.700 

-0.796 1.947 

-0.101 0.660 

 

 

Rsquared = 

    0.0173 

Fstat = 

    2.1871 

pval = 



Poorwa Singh                                                                                                                                                 
1242326 

59  

    0.0262 

 

 

Threshold 549cm: 

 

Bint = 

 

   
-5873.940 224.465 

-2.671 1.431 

0.213 1.877 

0.248 3.136 

-0.707 1.745 

-1.895 2.280 

-0.512 0.312 

-0.954 3.314 

-0.308 1.186 

 

 

Rsquared = 

    0.0179 

Fstat = 

    2.2570 

pval = 

    0.0216 

 

A.6 

 

Fit 1:  

Fit for –α log x = log (EZ) – log (EY) 

Linear model Poly1: 

f(x) = p1*x + p2 

Coefficients (with 95% confidence bounds): 

p1 = -10.63  (-10.72, -10.54) 

p2 =   0  (fixed at bound) 

 

Goodness of fit: 

  SSE: 8.06 

  R-square: 0.9811 

  Adjusted R-square: 0.9811 

  RMSE: 0.1771 

Fit 2: 

Fit for
( )

( )

i

i

E Z
x

E Y

α− =  

General model Power1: 
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       f(x) = a*x^b 

Coefficients (with 95% confidence bounds): 

       a =           1  (fixed at bound) 

       b =      -9.213  (-9.395, -9.031) 

 

Goodness of fit: 

  SSE: 0.4335 

  R-square: 0.9783 

  Adjusted R-square: 0.9783 

  RMSE: 0.04107 

 

 

A.7 

 

Station Fit 1: -α log x = log(EZ) – log(EY) 

ELD f(x) = p1*x + p2 

Coefficients (with 95% confidence 

bounds): 

p1 = -10.63  (-10.72, -10.54) 

p2 =   0  (fixed at bound) 

 

Goodness of fit: 

  SSE: 8.06 

  R-square: 0.9811 

  Adjusted R-square: 0.9811 

  RMSE: 0.1771 

 

EUR fit1(x) = -a*x   (x is log x) 

Coefficients (with 95% confidence 

bounds): 

a =   11.27  (11.16, 11.38) 

 

Goodness of fit: 

sse: 4.8924 

rsquare: 0.9817 

dfe: 189 

adjrsquare: 0.9817 

rmse: 0.1609 

 

K13        fit1(x) = -a*x 

     Coefficients (with 95% 

confidence bounds): 

       a =       9.682  (9.476, 9.888) 

 

Goodness of fit: 
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sse: 25.2691 

rsquare: 0.9176 

dfe: 224 

adjrsquare: 0.9176 

rmse: 0.3359 

LEG fit1(x) = -a*x  (x is log x) 

     Coefficients (with 95% 

confidence bounds): 

       a =       10.05  (9.948, 10.16) 

 

Goodness of Fit 

 

sse: 8.9380 

rsquare: 0.9767 

dfe: 228 

adjrsquare: 0.9767 

rmse: 0.1980 

MPN fit1(x) = -a*x (x is log x) 

     Coefficients (with 95% 

confidence bounds): 

       a =       11.08  (10.78, 11.39) 

 

Goodness of fit:  

 

sse: 33.3148 

rsquare: 0.9000 

dfe: 179 

adjrsquare: 0.9000 

rmse: 0.4314 

SCW fit1(x) = -a*x (x is log x) 

Coefficients (with 95% confidence 

bounds): 

       a =       11.53  (11.12, 11.94) 

 

Goodness of fit 

 

sse: 22.2969 

rsquare: 0.8817 

dfe: 124 

adjrsquare: 0.8817 

rmse: 0.4240 

SON fit1(x) = -a*x  (x is log x) 

     Coefficients (with 95% 

confidence bounds): 

       a =       8.217  (8.123, 8.312) 
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Goodness of fit: 

 

sse: 19.0645 

rsquare: 0.9603 

dfe: 309 

adjrsquare: 0.9603 

rmse: 0.2484 

SWB fit1(x) = -a*x  (x is log x) 

     Coefficients (with 95% 

confidence bounds): 

       a =       12.15  (11.86, 12.44) 

 

Goodness of fit: 

 

sse: 16.5318 

rsquare: 0.9168 

dfe: 149 

adjrsquare: 0.9168 

rmse: 0.3331 

YM6 fit1(x) = -a*x  (x is log x) 

     Coefficients (with 95% 

confidence bounds): 

       a =       9.565  (9.405, 9.725) 

 

Goodness of fit: 

 

sse: 21.2543 

rsquare: 0.9391 

dfe: 238 

adjrsquare: 0.9391 

rmse: 0.2988 

  

Corresponding QQ-plots: 

 

EUR Fit 1: 
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K13 Fit 1: 
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LEG Fit 1: 

 
 

 

MPN Fit 1: 
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SCW Fit 1: 

 
 

SON Fit 1: 
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SWB Fit 1: 
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YM6 Fit 1: 
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A.8 Comparing the empirical cdf of the peaks over threshold against the theoretical cdf, 

using parameters, k and σ from method 1 

 
x-θ 
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x-θ 
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x-θ 
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x-θ 
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x-θ 

 

 



Poorwa Singh                                                                                                                                                 
1242326 

73  
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x-θ 
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x-θ 
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x-θ 
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A.9 Comparing the empirical cdf of the peaks over threshold against  the theoretical cdf, 

using parameters, k and σ from method 2—Maximum Likelihood  

 

 ELD EUR K13 LEG MPN SCW SON SWB YM6 

p-val 0.6891 0.9973 0.5633 0.9080 0.7078 0.4177 0.7199 0.7614 0.7558 

KS-

stat 

0.0928 0.0490 0.0992 0.0734 0.0891 0.1158 0.0896 0.0849 0.0861 

 
x-θ 
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x-θ 

 
x-θ 

 



Poorwa Singh                                                                                                                                                 
1242326 

79  

 
x-θ 

 

 
x-θ 
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x-θ 

 

 
x-θ 
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x-θ 

 

 
x-θ 

 



Poorwa Singh                                                                                                                                                 
1242326 

82  

A.10 Comparing the empirical cdf of the peaks over threshold against  the theoretical cdf, 

using parameters, k and σ from method – Method of Moments 

 
x-θ 

 
x-θ 
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x-θ 

 
x-θ 
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x-θ 

 
x-θ 
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x-θ 

 

 
x-θ 
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x-θ 

 

 

 ELD EUR K13 LEG MPN SCW SON SWB YM6 

h 0 1 0 0 0 1 0 1 1 

p-value 0.7261 0.0238 0.7255 0.5155 0.5789 0.0022 0.3701 0.0124 0.0035 

ks-stat 0.0899 0.1937 0.0900 0.1064 0.1014 0.2398 0.1193 0.2075 0.2316 

crit.val 0.1767 0.1767 0.1767 0.1767 0.1767 0.1767 0.1767 0.1767 0.1767 

� h returns a 0 or 1, 0 means the populations are equal 
� p returns the p-value: the probability that the one of populations is 
� drawn from the other, higher means populations are the same 
� ksstat is the maximum different at one point between the two cdf's 
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A.11: Histograms of Wave Heights, above θ 
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A.12   f(k1| X1, … ,X9), wave heights, and log (1-F)  

 

1 in 10,000 Year Wave Heights (above threshold) [cm], using all the Data 
from each Station 

 q~U[0,0.5] 

 

q~U[0,3] 

 
v =  prior posterior prior posterior 

0.0005 469.93 610.65 62.29 512.42 

0.001 501.49 619.27 79.32 547.03 

0.02 421.13 587.55 161.65 727.39 

0.04 450.58 602.76 88.71 581.58 

0.06 436.42 594.80 96.20 589.68 

0.08 449.34 600.05 99.12 600.27 

0.1 446.12 595.87 93.61 589.55 

0.2 438.58 595.88 98.23 596.74 

0.5 489.87 630.93 130.41 620.29 

0.8 542.65 674.18 179.81 647.43 

 

1 in 10,000 Year Wave Heights [cm], using all the Data from each Station 

 q~U[0,0.5] 

 

q~U[0,3] 

 
v =  prior posterior prior posterior 

0.0005 1008.93 1149.65 601.29 1051.42 

0.001 1040.49 1158.27 618.32 1086.03 

0.02 960.13 1126.55 700.65 1266.39 

0.04 989.58 1141.76 627.71 1120.58 

0.06 975.42 1133.8 635.2 1128.68 

0.08 988.34 1139.05 638.12 1139.27 

0.1 985.12 1134.87 632.61 1128.55 

0.2 977.58 1134.88 637.23 1135.74 

0.5 1028.87 1169.93 669.41 1159.29 

0.8 1081.65 1213.18 718.81 1186.43 
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q ~ U[0,3] 
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