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ABSTRACT: Reservoir simulation models are used both in the development of new fields, and in developed
fields where production forecasts are needed for investment decisions. When simulating a reservoir one must
account for the physical and chemical processes taking place in the subsurface. Rock and fluid properties are
crucial when describing the flow in porous media. In this paper the authors are concerned with estimating the
permeability field of a reservoir. The problem of estimating model parameters such as permeability is often
referred to as a history matching problem in reservoir engineering. Currently one of the most widely used
methodologies which address the history matching problem is the Ensemble Kalman filter (EnKF) (Evensen
et al. 2007, Aanonsen et al. 2009). EnKF is a Monte-Carlo implementation of the Bayesian update problem.
Nevertheless, the EnKF methodology has certain limitations. For this reason a new approach based on graphical
models is proposed and studied. In particular, the graphical model chosen for this purpose is a dynamic non-
parametric Bayesian network (NPBN) (Hanea 2009, Gheorghe 2010). The NPBN based approach is compared
with the EnKF method. A two phase, 2D flow model was implemented for a synthetic reservoir simulation
exercise and the results of both methods for the history matching process of estimating the permeability field
are illustrated and compared.

1 INTRODUCTION

The objective of reservoir engineering is to opti-
mise hydrocarbon recovery. Oil and gas are generally
found in sandstones or limestones. There are several
stages of the oil recovery process. In a primary recov-
ery stage, reservoir drive comes from a number of nat-
ural mechanisms. Primary oil recovery is the process
of pumping out the oil that flows naturally to the bot-
tom of the well due to gravity and the pressure of the
reservoir. Primary recovery ends when the pressure
becomes too low. After that, one of the most com-
mon and efficient secondary recovery processes is the
injection of water into an oil well, in order to force
out some of the remaining thicker crude oil. As the
water is forced into the reservoir, it spreads out from
the injection well and pushes some of the remaining
oil towards the producing wells 1. The properties of
the rock, e.g. porosity and permeability, are therefore

1In the secondary recovery process the water can be replaced
by gas. Steam, carbon dioxide, and other substances can be in-
jected into an oil-producing unit in order to maintain reservoir
pressure. This is known as tertiary recovery.

important for oil extraction since they influence the
ability of fluids to flow through the reservoir.

In this paper the authors are concerned with esti-
mating the permeability field of a reservoir. The prob-
lem of estimating model parameters such as perme-
ability is often referred to as a history matching prob-
lem in reservoir engineering.

To characterise the fluid flow into the reservoir we
use a two phase (oil-water), 2D flow model which can
be represented as a system of coupled nonlinear par-
tial differential equations that cannot be solved ana-
lytically. Consequently, we build a state-space model
for the reservoir.

2 DYNAMIC NON - PARAMETRIC BAYESIAN
NETWORKS & KALMAN FILTER METHODS
– DESCRIPTION & CONNECTION

In a state-space model, an underlying (hidden) state of
the world that generates observations is assumed. This
hidden state is represented by a vector of variables
that we cannot measure, but whose state we would
like to estimate. This hidden state vector evolves in



time. The goal of many applications is to infer the
hidden state given the observations up to the current
time.

Let Xt represent the hidden state at time t, and
y1, .., yt the observations up to time t. The goal is to
compute P (Xt|y1, ..yt), called the belief state. We can
update the belief state recursively using Bayes’ rule,
and obtain a probability distribution over the hidden
state.

A state-space model starts with a prior, P (X1), a
state-transition function, P (Xt|Xt−1), and an obser-
vation function, P (Yt|Xt)

2. We assume that the model
is first-order Markov, i.e., P (Xt|X1, ..,Xt−1) =
P (Xt|Xt−1). Similarly, we can assume that the ob-
servations are conditionally independent given the
model, i.e. P (Yt|Yt−1,Xt) = P (Yt|Xt). There are
many ways of representing state-space models, one
of the most common being the Kalman Filter (KF)
model. KF assumes that Xt is a vector of continuous
random variables, and that X1, ..,XT and Y1, .., YT are
joint normally distributed. The KF model was intro-
duced by R. E. Kalman in 1960 (Kalman 1960). The
author proposes a recursive procedure for inference
about Xt:

Xt = GtXt−1 + wt;

Yt = FtXt + vt. (1)

The random variables wt and vt represent the pro-
cess and measurement noise, respectively. They are
assumed to be independent, white, and normally dis-
tributed. In practice, the process noise covariance and
measurement noise covariance matrices can change
with each time step or measurement, however here
they are assumed constant. Gt is a matrix that relates
the state at the previous time step to the current step;
Ft in the second equation of (1) relates the state to the
measurements. The KF model assumes that the sys-
tem is joint normal. This means the belief state must
be unimodal, which is inappropriate for many prob-
lems, especially those involving discrete variables.
The KF will recursively calculate the state vector Xt

along with its covariance matrix, conditioned on the
available measurements up to time t, under the crite-
rion that the estimated error covariance is minimum.
Conditioning on the measurements is referred to as
the assimilation step of the procedure. The KF method
becomes computationally expensive for large scale
systems and it is not suitable for non linear systems.
There are several algorithms developed in order to
overcome these limitations. An example of such algo-
rithm is the ensemble Kalman filter (EnKF) (Evensen
1994). EnKF represents the distribution of the sys-
tem state using a collection of state vectors, called an
ensemble, and replaces the covariance matrix by the

2We can also consider input variables Ut. Then, the condi-
tional probabilities become P (Xt|Xt−1,Ut) and P (Yt|Xt,Ut).
In this paper Ut will not be considered.

sample covariance computed from the ensemble. Ad-
vancing the probability distribution function in time
is achieved by simply advancing each member of the
ensemble. The main advantage of the EnKF is that
it approximates the covariance matrix from a finite
number of ensemble members, thus becoming suit-
able for large non linear problems. Nevertheless, very
often the number of variables to be estimated is much
larger than the number of ensemble members. There
are typically millions of state variables and less than
a hundred ensemble members (e.g. Li et al. (2003)).
In these situations the ensemble covariance is rank
deficient, hence it contains large terms for pairs of
points that are spatially distant. These are called spu-
rious correlations, and since they are not physically
accurate, there are algorithms that try to correct them
(e.g. Anderson (2007),Hamill et al. (2001)). Unfortu-
nately these algorithms introduce other inconsisten-
cies in the system. Moreover, EnKF relays on the nor-
mality assumption although it is often used in practice
for nonlinear problems, where this assumption may
not be satisfied.

Because of these limitations we introduce a more
general model, namely a dynamic Bayesian network
(Dean and Kanazawa 1989, Dean and Wellman 1991).
Dynamic Bayesian networks provide a much more
expressive language for representing state-space mod-
els. They can be interpreted as instances of a static
Bayesian networks (BNs) (Pearl 1988) connected in
discrete slices of time3.

At this point, a brief description of static BNs is
appropriate. A static BN is a directed acyclic graph
(DAG) whose nodes represent univariate random vari-
ables, which can be discrete or continuous, and the
arcs represent direct influences. The BN stipulates
that each variable is conditionally independent of all
predecessors in an (non-unique) ordering of the vari-
ables, given its direct predecessors. The direct pre-
decessors of a node i, corresponding to variable Xi

are called parents and the set of all i’s parents is de-
noted Pa(i), or Pa(Xi). Since uncertainty distribu-
tions need not conform to any parametric form, algo-
rithms for specifying, sampling and analysing them
should be non-parametric. Therefore we shall use
non parametric Bayesian networks (NPBNs) (Hanea
2008). NPBNs associate nodes with random vari-
ables for which no marginal distribution assumption
is made, and arcs with conditional copulae (Joe 1997,
Nelsen 1999). These conditional copulae, together
with the one-dimensional marginal distributions and
the conditional independence statements implied by
the graph uniquely determine the joint distribution,
and every such specification is consistent (Hanea et al.
2006). The marginal distributions can be obtained
from data or experts (Cooke 1991). Even though
the empirical marginal distributions are used in most
cases, parametric forms can be also fitted. The (condi-

3We only consider discrete-time stochastic processes.



Figure 1: The KF model as a dynamic BN

tional) copulae used in this method are parametrised
by (conditional) rank correlations that can be calcu-
lated from data or elicited from experts (Morales,
Kurowicka, & Roelen 2007). The name NPBN is
somewhat inappropriate but it is used to stress the fact
that the joint distribution is specified via marginal dis-
tributions, upon which no restrictions are placed, and
the dependence structure given in terms of a non para-
metric measure of dependence.

A dynamic NPBN is a way to extend a static NPBN
to model probability distributions of collections of
random variables, Z1,Z2, ..,ZT . The variables can
be partitioned in Zt = (Xt, Yt) to represent the hid-
den and output variables of a state-space model. A
dynamic NPBN is defined to be a pair, (B1,B→),
where B1 is a NPBN which defines the prior P (Z1),
and B→ is a two-slice temporal NPBN which defines
P (Zt|Zt−1) as follows:

P (Zt|Zt−1) =
∏

i

P (Zi
t |Pa(Zi

t)), (2)

where Zi
t is the ith node at time t, which could be a

component of Xt, or of Yt.
The parents Pa(Zi

t) can be either in the same time
slice or in the previous time slice4.The arcs between
slices are from left to right, reflecting the flow of time.

The difference between a dynamic NPBN and a
KF model is that the latter requires joint normality,
whereas a dynamic NPBN allows arbitrary marginal
distributions. In addition, a dynamic NPBN allows
for a much more general graph structure. Figure 1
presents a general KF model as a dynamic BN.

3 CASE STUDY

We construct a synthetic example by simulating
a five-spot injection-production strategy. In other
words, the reservoir has an injector in the middle of
the field (where water is injected) and 4 producers,
one in each corner (where oil is pumped out from).
The true permeability field is randomly chosen from
an ensemble of possible models (see Figure 2) and
the synthetic production data is generated using this
true model. Synthetic measurements are obtained by
adding normally distributed errors to the production
data.

4We assume the model is first-order Markov, for a fair com-
parison with the ENKF method.
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Figure 2: The true permeability field.

3.1 Experimental setup

The reservoir model considered here is a 2D square
with a uniform Cartesian grid consisting of 21 grid
cells in each direction. The reservoir is considered a
closed space where liquid gets in and out only through
the drilled wells. Therefore, the drilled wells become
the reservoir’s boundaries. A well model is available
for the injection and extraction of fluids through the
drilled wells. The flow is specified at the wells by
bottom hole pressure (bhp) and fluid flow rates (q).
The well model imposes that either the bottom hole
pressure or the fluid flow rates must be prescribed.
We consider the case where the injection well is con-
strained by prescribed flow rates and production wells
are constrained by bottom hole pressure. The two
phase flow model is combined with the well model
and implemented in a simple in-house simulator.

The state vector contains pressures (p) correspond-
ing to each grid cell. Since we want to perform a pa-
rameter estimation, the state vector is augmented with
the parameter of interest, i.e. the natural logarithm of
the permeability5 (log(k)). Given the well model con-
straints, we measure bottom hole pressure at the in-
jector and total flow rates at the producers. The final
form of the vector Zt is:

Zt =




logk(t)
p(t)

bhp(t)
q(t)




The reservoir is initialized with pressure equal to 3 ·
107[Pa] in every grid cell. We perform simulations for
420 days, considering measurements every 60 days.

For the NPBN based approach we build a DAG
on the variables defined in the state vector, hence the
DAG should contain 1328 nodes. Given the incipient
stage of modelling a petroleum engineering problem
with a NPBN, a simplification of the model is in or-
der. Based on expert’s opinions we decided to exclude
the variables representing saturations and how to set
the arc directionality amongst remaining variables. A

5We consider the log(k) instead of k because the values of the
permeability are of order 10−13[m2].



Figure 3: The DAG of the NPBN.

schematic representation of a potential BN is shown
in Figure 3.

3.2 Results & comparisons

We will first estimate the permeabilities in a reduced
number of grid cells. The initial goal of this study
was to estimate the entire permeability field with both
methods and compare results. Unfortunately, at this
stage of the research, the NPBN approach cannot han-
dle more than 500 variables, so we shall restrict our
analysis to parts of the grid, rather than the entire
reservoir.

We arbitrarily choose 4 different locations. We
measure bottom hole pressure (bhp) at the injector
well and the total flow rates (q) denoted now by to-
tal rate i, i = 1, ..,4, at each producer. Any loca-
tion that is not a well has its corresponding pressure
and permeability. We denote them by p j, and k j,
j = 6, ..,9, respectively. Therefore, we are interested
in the joint distribution of 13 variables. We run the
simulator for the first 60 days, and obtain their joint
distribution (in form of a data set). We can now rep-
resent the joint distribution using a static NPBN. Us-
ing a saturated NPBN6 translates into representing all
possible dependencies present in the data set, includ-
ing the noisy ones. Moreover, the visual advantage of
the graphical model vanishes since a saturated graph
is dense and un-intuitive. Another choice is to learn
a validated NPBN from data. A learning algorithm is
introduced in Hanea et al. (2010). The only assump-
tion of the algorithm is that of a joint normal copula.
This means that we model the data as if it were trans-
formed from a joint normal distribution. The marginal
distributions are taken directly from data and the em-
pirical rank correlation matrix is calculated. The algo-
rithm assigns arcs between strongly correlated vari-
ables. Missing arcs will correspond to (conditional)
independent statements. A joint distribution that ap-
proximates the distribution given by the simulator is

6In a saturated NPBN all nodes are connected.

Figure 4: The learned NPBN after 60 days.

therefore obtained. For details we refer to Hanea et al.
(2010). The learning procedure involves validation.
First, we validate that the joint normal copula ade-
quately represents the multivariate data. If this is the
case we then learn a model and validate that it is an
adequate model of the saturated graph.

After 60 days, the normal copula assumption is val-
idated, hence we learn the NPBN presented in Fig-
ure 4. The NPBN model is build using the software
Uninet (Morales-Napoles et al. 2007). Nodes of an
NPBN can be visualised as ellipses or histograms.
The mean and standard deviation of each variable are
shown on the graph.

The static NPBN can now be used to perform
the conditionalization/assimilation step. Given the ob-
served values of measurements at the wells, we can
calculate the joint conditional distribution of the other
variables7. It is worth noting that the observable vari-
ables are not normally distributed. Nevertheless, nor-
mally distributed noise is added when generating
measurements for a fair comparison with the EnKF
method. After conditioning, we stipulate the condi-
tional distribution by sampling it. Further, we intro-
duce the updated distribution in the simulator, and we
run it for another 60 days. In this way we obtain the
distribution of the variables after 120 days (with 1 as-
similation step after 60 days). The new joint distribu-
tion will be modelled with another static NPBN. The
2 NPBNs connected through the simulator are basi-
cally a dynamic NPBN with changed structure and
parameters over time, and with functional temporal
relationships. We repeat the above steps for a period
of 420 days. Every time step we validate the nor-
mal copula and the model. We thus build a dynamic
NPBN for 7 discrete times.

The results of estimating the permeabilities for the
chosen locations using a saturated NPBN, a learned
NPBN, and the EnKF method are further presented.
To measure the quality of the estimation we compare
it with the truth. A measure of discrepancy is the root

7The normal copula assumption facilitates analytical condi-
tioning (Hanea et al. 2006).
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Figure 5: RMSE for each location using EnKF vs. NPBN.

mean square error (RMSE), that is computed by tak-
ing the sum of the squares of the errors (difference
between the predicted and actual values), computing
the average and then taking the square root.

Figure 5 shows the RMSE for each location, at each
time step. For locations 6, 8 and 9 both the saturated
and the learned NPBN give better estimations than the
EnKF method. However, EnKF performs better than
the NPBN for location 7. A possible explanation is
that the EnKF algorithm incorporates the information
from all the grid points in the calculations, whereas
the NPBN works only with the information given by
the variables represented in the DAG. The saturated
NPBN performs better then the learned one in most
of the cases. That would suggest that the correlations
present in the data are significant even if small.

Let us now consider a 7 × 7 and a 13 × 13 grid.
For estimating the 49 permeabilities we use a NPBN
on 103 variables. When estimating the permeabilities
for the 13× 13 grid we have 423 variables. The val-
idation steps involved in the learning procedure for
NPBNs become inconclusive for such a large num-
ber of variables (Gheorghe 2010). Hence, we perform
experiments using only the saturated graph.

Figure 6 shows the true permeabilities, the initial
ensemble, and the estimated permeabilities after 480
days using the EnKF and using the saturated NPBN.
A visual comparison would suggest that the saturated
NPBN gives a better estimate than the EnKF for this
grid. This conclusion is supported by comparing the
RMSE values as well (see Figure 7).

The behavior of the RMSE is quite different for
the 2 methods. For the EnKF, the RMSE decreases
at the 1st time step and then has an oscillating behav-
ior with a tendency to stabilize around the 4th time
step to a value of 0.7. The RMSE for the NPBN has
an increase after the 1st time step and afterwards is
decreasing for every time step reaching a value of 0.5
by the 8th time step. The RMSE should, theoretically,
decrease for every time step. However, in practice this
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Figure 6: The true (top-left), the initial (top-right), the EnKF es-
timated (bottom-left), and the NPBN estimated (bottom-right)
permeability field of a 7× 7 grid.
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Figure 7: RMSE for the estimated permeability field of a 7× 7
grid using EnKF vs. NPBN.

is not always the case. The NPBN method uses cop-
ulae parametrised by rank correlations. The estima-
tion of the rank correlation matrix is very sensitive
to noise, i.e, a wrong input can be amplified and re-
sult in wrong estimates. This could be a possible ex-
planation for the RMSE behaviour after the 1st time
step when using the NPBN. As expected, incorporat-
ing more measurements improves the performance of
the NPBN based approach. On the other hand it seems
that after the 4th time step the EnKF method does not
benefit from more information.

In the case of a 13× 13 grid, Figure 8 only indi-
cates that the 2 methods are comparable. One could
say that the two fields look equally well or even that
the estimate using the saturated NPBN looks slightly
better than the field estimated using EnKF. However,
the RMSE from Figure 9 contradicts the visual anal-
ysis. The RMSE for the entire field is clearly smaller
and more stable for the EnKF than for the saturated
NPBN. The RMSE for EnKF has a considerable de-
crease after the 1st time step and then an almost con-
stant behavior. It stabilizes around the value of 0.5.
Note that the RMSE for EnKF shows that after the
1st time step the EnKF does not really assimilate any
new information. It is worth stressing that the RMSE
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Figure 8: The true (top-left), the initial (top-right), the EnKF es-
timated (bottom-left), and the NPBN estimated (bottom-right)
permeability field of a 13× 13 grid.
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Figure 9: RMSE for the estimated permeability field of a 13× 13
grid using EnKF vs. NPBN.

shows only a certain general/average behavior of an
estimated filed, and it can often be misleading. In Fig-
ure 9 the simulation is performed for one extra time
step in order to check if the RMSE for the NPBN
continues to decrease. Unfortunately this is not the
case. One possible explanation of this unstable behav-
ior could be that estimating the joint distribution of
423 variables requires more ensemble members than
used here (i.e., 900).

4 CONCLUSIONS

To our knowledge this is the first attempt to approach
a history matching problem in reservoir simulation
using a NPBN based approach. Comparisons have
been made between the results of applying the new
method and those obtained with the EnKF method.
The results, just like the theory behind, indicate that
the 2 methods are comparable. Unfortunately we can-
not say yet that one method outperforms the other.
However we would like to point out the differences
between them.

The NPBN method uses parameters whose esti-
mates are more sensitive to the number of ensemble
members used. A larger ensemble is needed when

working with an NPBN. However, this requirement
does not interfere with the speed of the calculations.

The measurements are generated by adding nor-
mally distributed noise to the truth. Looking at the
histograms of the variables we notice that neither bot-
tom hole pressure, nor the total flow rate are normally
distributed. Since the assumption of normality is used
in the EnKF method, we used the same setting for
the NPBN based approach. Nevertheless, the NPBN
based approach affords adding errors with closer dis-
tributions to the true ones. An improvement of the es-
timates is then expected.

One of the most important assumptions made by
the EnKF method is that the conditional joint distri-
bution is joint normal. When the NPBN model was
built for 4 locations we observed that the margins of
the assumed Gaussian distribution were far from be-
ing normally distributed. Note that no validation of
the assumption of joint normality is performed in the
EnKF method. On the other hand, the NPBN based
approach uses the assumption of the joint normal cop-
ula, and no assumption about the marginal distribu-
tions. In contrast with the EnKF, 2 validation steps
are performed for the NPBN based method. However,
as the number of variables in the graph increases, the
validation steps become unpractical. Different, more
meaningful statistical tests are being investigated at
the moment of writing this paper.

We presented results of estimating the permeabil-
ities for: 4 different, randomly chosen locations, a
7× 7 grid block and a 13× 13 grid. For 3 out of 4
locations, the estimates obtained with the NPBN ap-
proach were closer to the truth than those obtained
with the EnKF. Better results were also obtained with
the NPBN when estimating the permeabilities for a
7× 7 grid. However, for a 13× 13 grid, the 2 methods
showed undistinguishable performance. One could ar-
gue that the RMSE for the NPBN method shows an
worse estimate. It is worth mentioning that the RMSE
is only an average measure of performance. The vi-
sual inspection of the estimated permeability fields
can sometimes offer a better insight into the perfor-
mance of the methods. In this particular case, the im-
ages of the fields show that the NPBN based approach
gives similar results to those obtained with the EnKF
method.

Our goal was to estimate the permeabilities for the
entire field using both methods. However building a
saturated NPBN for a larger grid becomes compu-
tationally infeasible. The maximum number of per-
meabilities that we could estimate was 169 out of
441. This constitutes a considerable limitation of the
NPBN based approach. Nevertheless, interpolation
methods could be employed for estimating the per-
meabilities in larger fields.

A definite conclusion about which approach per-
forms better is premature. There are reasons to believe
that further research is worthwhile.
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