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Chapter 1

Introduction

1.1 History and concept approach

Recently, a study of manuscripts in the Israeli National Library brought to light

some unknown theories of Sir Isaac Newton on the Apocalypse. This dread event

he predicted for the year 2060, based on his attempts to decode the Bible. Perhaps

this is the event of human existence that has been prophesized most often troughout

history, from the Delphic Oracle to Nostradamus to present day sooth-sayers. Some

”visionaries” have proposed the year 2000 as the end of life on Earth, while others

pushed the date further away. Take a young scientist who survived the year 2000

and the neighbouring time points. What can he expect for the year 2060? Should

he wait and play the role of observer, if Karma is indulgent to him, or should he try

to predict another time limit given the facts and the time history? Waiting will give

him nothing: dead or a failed carrier, but is he certain that his work will not be in

vain?

Predicting the time at which a particular event will occur. This is what reli-

ability theory is all about. As human generally try to avoid unpleasant surprises

rather than pleasant ones, they rather try to predict the first than the second, which

is reflected in the application of the reliability theory. Of course reliability theory

and its applications developed especially in the 20th century, side by side with the

technological revolution. This revolution was significantly accelerated by the Second

World War, the Korean War, the Cold War, the First Gulf War, and the permanent

stress on military preparedness. These developments were also reflected in the civil-

ian market, at the beginning by the car industry and then by areas (as the nuclear

7
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and chemical industry) with greater consequences in cost, time wasted, psychologi-

cal effect of inconvenience, and in certain instances personal and national security.

The implications of the complexity are extensive. In order to estimate the success-

ful operation of a complex system at a certain time, one must be sure that all its

subsystems, components and parts shall function successfully. This interdependency

introduces probability theory, which in its simplest form states that the probability

of a successful operation of the system is the probability that a sufficient number of

its subsystems operate successfully.

One of the most important parts of reliability analysis is the availability of a

well-organized system for reliability data collection, processing and reporting. When

setting up any form of data base, we are faced with considerations as the following:

What king of data are to be collected and why do we want them? Or perhaps a

better way of putting the question is: What types of data are meaningful and how

do we intend to analyze the data? The answers to these questions must be governed

by the cost and difficulty of gathering the information versus the risk. Data can be

selected and sorted both automatically and by hand. Reducing or sorting data by

hand is important to limit its coverage considerably, and even greater care must be

taken when judging what pertinent data should be collected.

The next step is to analyze data. Modern Reliability Data Bases (RDBs) are

designed to meet the needs of diverse users, including component designers, reliability

analysts and maintenance engineers. To meet these needs, RDBs distinguish a variety

of ways in which a component’s service sojourn may be terminated. Until quite

recently, this data was analyzed from the viewpoint of independent competing risks.

Such independence is often quite implausible, for example when degraded failures

related to preventive maintenance compete with critical failure. The maintenance

crew tries to prevent critical failures and to lose as little useful service time as possible;

hence it creates a dependence between these competing risks. We have recently

learned how to use simple models of dependent competing risks to identify survival

functions and hence to analyze competing risk data. This type of analysis requires

new statistical tests, and/or adaptations of existing tests. Competing risk theory is

introduced in this thesis to model this behavior of reliability data.

The first competing risks reliability data bases can be traced back to the beginning

of the 17th century, when city halls around England started to keep weekly registers on

the number of human deaths and their causes. However, the theory of competing risk

was developed later in the 18th century, and is related to Daniel Bernoullis’ attempt
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to separate the risk of dying from smallpox from that of other causes. Returning to

the present, the theory of competing risks finds its main applicability in statistical

inference, medicine and reliability theory and even in politics and social science. For

example, members of parliament can retire, be defeated, run for higher office, or die

in office; Supreme Court members can either die or retire; marriages can end in death,

separation or divorce.

Assume we have k competing risks, X1, ..., Xk, and denote by ∧Xi the mini-

mum of X1, ..., Xk. In a competing risk context, we observe the shortest of Xi, and

observe which it is. In other words we observe Z = (∧Xi, 1∧Xi=Xj
, j = 1, ..., k).

We say that risk Xj is cured if it is eliminated without disturbing the distribu-

tions of the others risks. Mathematically, curing risk j corresponds to observing

Z(j) = (∧i6=jXi, 1∧Xi=Xh
, h = 1, ..., k, h 6= j), where the distribution of Z(j) is obtained

from the distribution of Z by integrating out over variable Xj.

In many cases we can reduce the problem to the analysis of two competing risk

classes, described by two random variables X and Y , where we call Y the censoring

variable. Usually X will be the minimum of several variables which compete to

terminate a service sojourn of the component. Hence we observed the least of X and

Y ,

Z = [min(X, Y ), 1{X<Y }]

and observe which it is.

Figure 1. Competing risks representation
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Competing risks data may be described as a colored point process, where each

point event is described by a number of properties, and where a coloring is a group-

ing of properties into mutually exclusive and exhaustive classes. For example, a

maintenance engineer is interested in degraded and incipient failures, as they are as-

sociated with preventive maintenance. He also wants to choose the least expensive

maintenance action: repair actions and adjustment actions are favored over replace

actions. Critical failures are of primary interest in risk and reliability calculations and

a component designer is interested in the particular component function that will be

lost, and in the failure mechanisms as he wishes to prevent the failure of the most

expensive components of the system.

Let’s consider the case of the maintenance engineer. A very good maintenance

team will try to minimize the repair (replacement) cost over a long time interval.

Since the repair (replacement) cost of a critical failure (corresponding to X corrective

maintenance) is much higher than the cost of a degraded failure (corresponding to Y

preventive maintenance), the maintenance team will try to avoid critical failure. Also,

the maintenance team will try not to lose too much of the lifetime of the component

because of the increased number of repairs (cost) over a long time interval. This

entails that preventive maintenance should be highly correlated to failure (Figure

1). Ideally, the component is preventively maintained at time t if and only if it

would otherwise have failed shortly after time t. This situation is captured in the

Random Signs Model developed by Cooke (1996 [20]): consider a component subject

to right censoring, where X denotes the time at which a component would expire if

not censored, then the event that the component’s life be censored is independent of

the age of X at which the component would expire, but given that the component

is censored, the time at which it is censored may depend on X. Not every set of

censored observations is consistent with a random signs model. Cooke (1996 [20])

proved that if the random signs model holds, then the conditional subsurvival function

for X dominates the conditional subsurvival function of preventive maintenance and

they are equal for independent exponential model and the conditionally independent

model.

Cooke and Bedford (2002 [21]) presented different models of dependent compet-

ing risks with an application for pressure relief valves data from one Swedish nuclear

station operating two identical reactors. Like most modern RDBs, this data base was

designed to serve the interest of at least three types of engineers: the maintenance

engineer interested in measuring and optimising maintenance performance, the design
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engineer interested in optimising component performance, and the risk analyst wish-

ing to predict the reliability of the complex system in which the component operates.

They showed that models of dependent competing risks made it easier to meet the

needs of these users. This involves selecting an appropriate competing risk model

on the basis of empirical subsurvival functions. In Cooke and Bedford (2002 [21])

this selection was simply made graphically. An example is shown in Figure 1., where

“alarm” and “unintended discovery” are events that maintenance personnel would try

to avoid. There are 4 such events and 248 other events. The conditional subsurvival

function of “alarm” and “unintended discovery” [CSSF1] dominates the conditional

subsurvival function of “other” [CSSF2], hence a random signs model seems to de-

scribe the data, but no evidence is given that this model or another one actually fits

the data.

Figure 2. Graphical interpretation of data on pressure relief valves

In addition to this, two other main operations may be performed on the data:

superposition and pooling. Time histories having the same beginning and end points

may be superposed. The set of event times of the superposition is the union of

the times of the superposed processes. In general, data are superposed in order to

obtain a renewal process. If the maintenance team returns components to service

as good as new, then all time histories of the components should be superposed.

The pooled data are considered multiple realizations of the same random variable

or stochastic process. When time histories are pooled, these are considered to be

realizations of the same (colored) point process. In general, pooling is performed on
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identical independent point processes in order to obtain better statistical estimates of

the inter-event distribution. To perform these operations on data, a set of questions

should be used that can only be answered by statistical test:

1. Are the time histories homogeneous and independent? Independence will fail if

the events for the time histories of the components tend to cluster in calendar

time. If homogeneity fails, the uncolored events should not be considered to be

realizations of the same point process. If homogeneity holds, then the number

of events up to time t for the components should not differ significantly.

2. Is the coloring stationary? The pooled process is now considered to be colored.

The coloring is stationary if the proportion of “red” and “green” points does

not vary significantly over calendar time.

3. Is the process a ”color blind” competing risk? The process is color blind if

the distribution of the i-th event is independent of the color of the previous

event. Color blindness implies that the processes obtained by splicing together

all inter-event times beginning with color j, j = 1, ...n are homogeneous.

4. Is the uncolored process a stationary competing risk?

5. Is the uncolored process a renewal competing risk?

1.2 Outline of the thesis

This Ph.D. thesis deals with both aspects of competing risk analysis: probabilistic

and statistic analysis. The second chapter introduces the basic concepts of the theory

of competing risks from the probability point of view, and presents a number of

independent and dependent competing risk models (see Paulsen et al. [62], Bedford

and Cooke [7], Bunea et al. [15]).

For risk and reliability analysis we ultimately need life distributions and the esti-

mation of the life distribution from time histories calls for renewal processes. How-

ever, we are also interested in trends, types of failure, failure modes, failure effects,

maintenance operations, etc., and this leads us to competing risk renewal processes.

Chapter 3 presents a set of statistical tests used to validate the analysis scheme of

the data. An analysis scheme is needed in order to build the reliability model. This
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scheme consists of a structured set of assumptions about the data set, together with

statistical sets to validate these assumptions. Typically, each assumption must be

validated with ”accepted” before the next assumption can be dealt with (see Bunea

et al. [16], Dorrepaal [32]).

The next chapter presents the modality of rejecting a particular independent

model (exponential) against the alternative of a dependent model (random signs

model), even when a small number of events is available (see Bunea et al. [14]).

An algorithm for calculating the test statistic is also given. The performance of the

probabilistic model we propose is illustrated with the Gas Generator data used by

Langseth (1999 [52]). This is a subset of Phase IV of the Gas Turbine data set from

the Offshore Reliability Database (OREDA 1997 [61]). Only the Gas Generator sub-

system was included in the study. We chose to analyze data from a single offshore

installation only to ensure maximum homogeneity of the data sample.

Further, to check the performance of different probabilistic models, we discuss a

data set from two identical compressor units at an ammonia plant of Norsk Hydro,

covering the observation period from 1968 to 1989 (Erlingsen[34]). The competing risk

models available in the reliability literature are especially developed for the nuclear

sector, where strict regulations are imposed. Consequently these models are often not

appropriate for the various fields of the compressor unit data. Due to the fact that

the compressor unit consists of several heterogeneous sub-components, we therefore

introduce another competing risk model, called the “mixture of exponentials model”,

to interpret the competing risks of different failure modes (see Bunea et al. [15]). In

order to increase the available observation for the theoretical processes, and hence to

reduce the uncertainty in model estimation, we also performed the statistical analysis

on this data (see Bunea et al [16]).

Chapter 5 is based on (Bunea and Bedford [13]). In this chapter, we test the effect

of model uncertainty on the problem of optimizing maintenance. We assume that data

is available which contains censors from an existing preventive maintenance (PM)

program, and use this data to estimate an optimal age replacement PM program. We

take three model classes of competing risks. The independent model is used as the

most extreme pessimistic model of existing PM. The other extreme model is used for

the most optimistic model of existing PM. The dependent competing risk model is

used for the general case and the dependence between competing risks is given by a

copula. The minimally informative copula with respect to the uniform distribution

and Archimedean copula are studied. The latter will be used to approximate the
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first, as there are numerical difficulties in working with the minimally informative

copula when there is strong dependence between risks. The results show that model

uncertainty leads to substantial uncertainty in the estimation of optimal maintenance

intervals and to excessive costs. The results also show little difference among different

families of copulas, regarding the optimal replacement time (see Bunea and Bedford

[12]).

A well-known mathematical tool to analyze data from nuclear power facilities is

the 2-stage Bayesian model. In Chapter 6, we review this mathematical model, its

underlying assumptions and supporting arguments. Furthermore, we will verify the

software implementations of the major German effort to collect data from nuclear

facilities - the ZEDB database - and compare the results. Lastly, the relevance of

new developments is assessed, and the viability of the two-stage Bayesian approach

is discussed (see Cooke et al. [23]).



Chapter 2

Competing risk
theory-probabilistic approach

2.1 Introduction

The first competing risk reliability data bases can be traced back in the beginning

of the 17th century, when city halls around England kept the weekly registers with the

number of human deaths and the causes which generate them. However, the theory

of competing risk has its origins later in the 18th century, and it is related to Daniel

Bernoullis’ attempt to separate the risk of dying from smallpox and other causes.

Back to the present days, the competing risk theory finds its main applicability in

statistical inference, medicine and reliability theory and even in politics and social

science. E.g., members of parliament can retire, be defeated, run for higher office, or

die in office; Supreme Court members can either die or retire; marriages can end in

death, separation or divorce.

In this chapter we introduce the basic mathematical formalism for describing com-

peting risks. The goal is to extract information about the failure rates of competing

risks, sometimes called naked failure rates. The theory of independent and dependent

competing risks is developed in ([28] [21] [31] [70]).

15
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2.2 Concepts and Identifiability

Assume we have k competing risks, X1, ..., Xk, and denote by ∧Xi the mini-

mum of X1, ..., Xk. In a competing risk context, we observe the shortest of Xi, and

observe which it is. In other words we observe Z = (∧Xi, 1∧Xi=Xj
, j = 1, ..., k).

We say that risk Xj is cured, if it is eliminated without disturbing the distribu-

tions of the others risks. Mathematically, curing risk j corresponds to observing

Z(j) = (∧i6=jXi, 1∧Xi=Xh
, h = 1, ..., k, h 6= j), where the distribution of Z(j) is obtained

from the distribution of Z by integrating out over variable Xj.

In many cases we can reduce the problem to the analysis of two competing risks

classes, describe by two random variables X and Y , and we call Y the censoring

variable. Usually X will be the minimum of several variables which compete to

terminate a service sojourn of the component. Hence we observed the least of X and

Y ,

Z = [min(X, Y ), 1{X<Y }]

and observe which it is. For simplicity we assume that P (X = Y ) = 0.

If FX = Pr{X < t} is the cumulative distribution of X, then SX = 1 − FX is

called the survival or reliability function of X. If FX has a density then the failure

rate of X is

rX(t) = fX(t)/SX(t) = −(dSX(t)/dt)/SX(t).

Since

d[log(SX)] = dSX/SX ,

we have

SX(t) = exp{−
∫ t

0

rX(s)ds}.

Competing risk data will only allow us to estimate the sub-survival functions

(Peterson 1976 [63]),

S∗X(t) = Pr{X > t, X < Y }

and

S∗Y (t) = Pr{Y > t, Y < X}

but not the true survival functions of X and Y . Hence we are not able to estimate the

underlying failure distribution for X without making additional, non-testable, model
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assumptions. If S∗X(t) and S∗Y (t) are continuous at 0 then S∗X(0) = Pr{X < Y } and

S∗Y (0) = Pr{Y < X}.

Definition 2.2.1. Real functions S∗1 and S∗2 on [0,∞) for a (continuous) subsurvival

pair if:

1. S∗1 and S∗2 are non-negative, non-increasing (continuous, continuous from the

right of zero), S1(t)
∗ < 1, S∗2(t) < 1

2. limt→∞ S∗1(t) = 0, limt→∞ S∗2(t) = 0

3. S∗1(0) + S∗2(0) = 1

Clearly, S∗X(t) and S∗Y (t) form a subsurvival pair. If limt→∞ S∗X(t) > 0, then we

say that X has an atom at infinity. This means that there is a nonzero probability

that a component with life distribution X never expires.

The conditional subsurvival function is the subsurvival function, conditioned on

the event that the failure mode in question is manifested. Assuming continuity of S∗X
and S∗Y at zero:

CS∗X(t) = Pr{X > t, X < Y |X < Y } = S∗X(t)/S∗X(0),

CS∗Y (t) = Pr{Y > t, Y < X|Y < X} = S∗Y (t)/S∗Y (0).

Closely related to the notion of the subsurvival functions is the probability of censoring

beyond time t,

Φ(t) = Pr{Y < X|Y ∧X > t} =
S∗Y (t)

S∗X(t) + S∗Y (t)
.

This function seems to have some diagnostic value, enabling us to choose the com-

peting risk model which fits the data. Note that for continuous subsurvival functions

Φ(0) = Pr{Y < X} = S∗Y (0).

If we have data from Z, then we can calculate the empirical subsurvival functions;

these contain all the information in the data, that means, any parameter that can

be estimated from the data can be written as a function of the empirical subsur-

vival functions. The empirical subsurvival functions and the conditional subsurvival

functions are defined as (Dorrepaal 1996 [32]):
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Ŝ∗X(t) = number of X events after time t
total number of events

Ŝ∗Y (t) = number of Y events after time t
total number of events

ĈS
∗
X(t) = number of X events after time t

total number of X events

ĈS
∗
Y (t) = number of Y events after time t

total number of Y events

The subdistribution functions for X and Y are defined as:

F ∗
X(t) = Pr{X ≤ t,X ≤ Y } = S∗X(0)− S∗X(t),

F ∗
Y (t) = Pr{Y ≤ t, Y ≤ X} = S∗Y (0)− S∗Y (t).

Peterson (1976 [63]) derived bounds on the survival function SX by noting that

Pr{X ≤ t,X ≤ Y } ≤ Pr{X < t} ≤ Pr{X ∧ Y ≤ t},

which entails

1− F ∗
X(t) ≥ SX(t) ≥ S∗X(t) + S∗Y (t).

Note that the quantities on the left and the right sides are observable.

Deshpande (1990 [30]), Aras and Deshpande (1992 [1]) and others have emphasized

an alternative approach of competing risk in terms of the observable random pair

(Z, δ), where Z is the minimum of several lifetime distributions and δ identifies the

minimum. Simplifying to the case of two competing risks, we have the equivalent

definitions of the subsurvival and subdistribution functions: Si(t) = Pr{Z > t, δ =

i}, i = 0, 1 and Fi(t) = Pr{Z ≤ t, δ = i}, i = 0, 1. The survival function of Z is given

by

SZ(t) = S0(t) + S1(t)

and the distribution function is given by

FZ(t) = F0(t) + F1(t).

This approach introduces diagnostic functions:

Φ1(t) = Pr{δ = 1|Z ≥ t} = S1(t−)/S(t−)

and

Φ∗
0(t) = Pr{δ = 0|Z < t} = F0(t−)/F (t−),

whenever S(t−) > 0 and F (t−) > 0. Equivalently, we can define

Φ0(t) = Pr{δ = 0|Z ≥ t} = 1− Φ1(t),
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and

Φ∗
1(t) = Pr{δ = 1|Z < t} = 1− Φ∗

0(t).

Note that Φ1(t) is identical with Φ(t) used in the previous competing risk approach.

One can easy verify that Φ1(t) = Φ∗
1(t) = Φ for all t > 0 is equivalent to the indepen-

dence of Z and δ. This simplifies the study of the competing risks considerably. If Z

and δ are independent then Si(t) = S(t)Pr{δ = i}. Hence, the failure time and the

failure types or the risk of failure can be studied separately.

The following definitions present some dependence structures that can be used for

Z and δ.

Definition 2.2.2. X2 is Right Tail Increasing in X1, RTI(X2|X1), if Pr{X2 >

t2|X1 > t1} is increasing in t1 for all t2.

Definition 2.2.3. X2 is Left Tail Decreasing in X1, LTD(X2|X1), if Pr{X2 ≤

t2|X1 ≤ t1} is decreasing in t1 for all t2.

Definition 2.2.4. X1 and X2 are Positively Quadrant Dependent, PQD(X1, X2),

if Pr{X1 > t1, X2 > t2} ≥ Pr{X1 > t1}Pr{X2 > t2}, for all t1, t2 or equivalently

Pr{X1 ≤ t1, X2 ≤ t2} ≤ Pr{X1 ≤ t1}Pr{X2 ≤ t2}, for all t1, t2.

Definition 2.2.5. A function K(s, t) is Totally Positive of Order 2, TP2, if

K(s1, t1)K(s2, t2) ≥ K(s2, t1)K(s1, t2)

for all s1 < s2, t1 < t2.

Note that, RTI(X2|X1) and LTD(X2|X1) both imply PQD(X1, X2) but there is

no hierarchy between RTI(X2|X1) and LTD(X2|X1).

Dewan et all (2002 [31]) presented the following relations between the monotonic-

ity of Φ1(t) and Φ∗
0(t), and the dependence stucture of Z and δ:

1. Independence of Z and δ is equivalent to

(a) Φ1(t) = φ = Pr{δ = 1}, for all t > 0, a constant
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(b) Φ∗
0(t) = 1− δ = Pr{δ = 0}, for all t > 0, a constant.

2. PQD(δ, Z) is equivalent to

(a) Φ1(t) ≥ Φ1(0) = Φ, for all t > 0,

(b) Φ∗
0(t) ≥ Φ∗

0(∞), for all t > 0.

3. RTI(δ|Z) is equivalent to Φ1(t) is increasing for all t > 0

4. Subsurvival functions Si(t) being TP2 is equivalent to Φ1(t)t is increasing for

all t > 0

5. LTD(δ|Z) is equivalent to Φ∗
0(t) is decreasing for all t > 0

6. Subdistribution functions Fi(t) being TP2 is equivalent to Φ1(t) is decreasing

for all t > 0

Note that (3) and (4) are equivalent and both imply (2). Similary, (5) and (6) are

equivalent and both imply (2), but there is no relantionship between (3) and (5).

The above results bring out the fact that the various kinds of dependence structure

between Z and δ can be expressed in terms of various shapes of Φ1(t) and Φ∗
0(t), which

are observable from the data.

2.3 Naked and Observed failure rates

In this section we revert to k competing risks, X1, ...Xk. Recall that in a com-

peting risk context we observed Z = [min(X1, ...Xk), 1min(X1,...Xk)=Xj
, j = 1, ...k]. The

marginal failure rate of Xi, rXi
, is the rate which would be observed if we could ob-

served Xi without the observation being censored by earlier occurrences of Xj, j 6= i.

We say that risk Xj is cured, if it is eliminated without disturbing the distributions

of the other risks. Mathematically, curing risk j corresponds to integrating out over

variable Xj. If we could cure all risks other then i, the we should observed the failure

rate rXi
. This is what we call the naked failure rate for Xi.

When the competing risks are not removed, we observe a different rate of failure

for Xi. The observed failure rate for Xi is defined as:

obri =
Pr{min(X1, ...Xk) = Xi, Xi ∈ (t, t + dt)|min(X1, ...Xk) > t}

dt
=

−dS∗
i (t)

dt∑k
j=1 S∗j (t)

.
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If the competing risks are independent, then

Pr{min(X1, ...Xk) > t} =
k∏

i=1

Si(t) =
k∑

i=1

S∗i (t).

This is the basis of the identity of observed and naked failure rates for independent

competing risks:

Theorem 2.3.1. (Cooke 1996 [20]) If competing risks X1, ...Xk are independent, with

differentiable (sub)survival functions, then

rXi
(t) = obri(t), i = 1, ...k.

The most import result for the observed processes when we use the observed failure

rates is (Paulsen et al 1996 [62]):

Theorem 2.3.2. The subsurvival functions of a competing risk variable with k com-

peting risks may be expressed in terms of the observed failure rates:

S∗i (t) =

∫ ∞

t

obri(u)exp{−
∫ u

0

k∑
j=1

obrj(v)dv}du

Let Z be the competing risk renewal process generated by independent copies of

Z = [min(X1, ...Xk), 1min(X1,...Xk)=Xj
, j = 1, ...k],

where the inception of observation is random, Pr{Z = 0} = 0 and E(min(X1, ...Xk))

exists. Then the equilibrium observed rate of occurrence of failure type j is defined

as:

obrocofj =
Pr{Xj = min(X1, ...Xk)}

E(min(X1, ...Xk))
.

Using the results of the previous theorems we can write this as

obrocofj =
S∗j (0)∑k

j=1

∫∞
0

S∗i (u)du
=

∫∞
0

obrj(u)exp{−
∫ u

0

∑k
i=1 obri(v)dv}du∫∞

0
exp{−

∫ u

0

∑k
j=1 obrj(v)dv}du

.

Remark 2.3.1. If obrj(t) = λj (constant) for j = 1, ...k, then:
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1. S∗j (t) =
λj∑k

i=1 λi
exp{−

∑k
i=1 λit}

2. Pr{Xj = min(X1, ...Xk)} = S∗j (0) =
λj∑k

i=1 λi

3.
∫∞

0
S∗j (t) =

λj

{
∑k

i=1 λi}2

4. obrocofj = λj

The above formulas are known for independent exponential competing risks.

In the case of two competing risks the following results is obtained:

Theorem 2.3.3. Let Zi be i.i.d. copies of Z = [min(X, Y ), 1{X<Y }], then

1. obrX(t) =
S∗

X(t)

S∗
Y (t)

obrY (t) +
S∗

X(t)

S∗
X(t)+S∗

Y (t)

d(S∗
X(t)/S∗

Y (t))

dt

2. obrX(t) =
dS∗

X(t)

S∗
X(t)+S∗

Y (t)
=

S∗
X(0)

S∗
X(t)+S∗

Y (t)

dS∗
X(t)

S∗
X(0)

From the above we see that if the subsurvival functions are proportional S∗X(t)/S∗Y (t) =

α, α independent of time, then obrX(t) = obrY (t) = α. If the risks are independent,

then this result is transferred to the naked failure rates. The second statement relates

the failure rate of the conditional subsurvival function to the observed failure rate.

2.4 Independent Competing risk models

The most frequently made assumption in the literature is that of probabilistic

independence between X and Y . We have

S∗X(t) + S∗Y (t) = Pr{X > t, Y > t} = Pr{X > t}Pr{Y > t} = SX(t)SY (t),

hence

S∗X(t) =

∫
SY (t)dSX(t) and S∗Y (t) =

∫
SX(t)dSY (t).

Using the above results Cooke (1996 [20]) showed that if the competing risks X and

Y are independent with differentiable survival functions, then the failure rate is equal

with the observed failure rate

rX(t) = obrX(t).
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Now, the underlying marginal distributions of X and Y can be identified in terms of

the observable subsurvival functions,

SX(t) = exp(

∫ t

0

dS∗X(s)

S∗X(s) + S∗Y (s)
). (2.4.1)

Tsiatis (1975 [72]), Peterson (1977 [64]) and later Weide and Bedford (1998 [74])

stated the main result for independent competing risks. This theorem generalizes for

k competing modes.

Theorem 2.4.1.

1. Let X and Y be independent life variables, with FX and FY continuous. Let X ′

and Y ′ be independent life variables such that S∗X = S∗X′ and S∗Y = S∗Y ′; then

FX = FX′ and FY = FY ′.

2. If S∗1 and S∗2 are a subsurvival pair and are continuous, then there exist inde-

pendent life variables X and Y such that S∗X = S∗1 and S∗Y = S∗2 , and at most

one of X, Y has an atom at infinity.

Assuming independence of X and Y we can determine uniquely the survival func-

tions; X and Y are said to be identifiable from the censored data. Of course, X and

Y may not actually be independent, and in this case the survival function given by

the above theorem would not be correct. Moreover, the independence assumption can

never be tested by the censored observation since any censored observation can be

explained by an independent model. However, we can test for a specific independent

model as independent exponential model, which will be presented in next section.

2.4.1 Independent exponential model

Although competing risk data can always be explained by an independent model,

this does not mean that any censored observations can be explained by a model

with exponential life variables. Cooke (1996 [20]) derived a very sharp criterion for

independence and exponentiality in terms of the subsurvival functions:
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Theorem 2.4.2. Let X and Y be independent life variables, then any two of the

following imply the others:

• SX(t) = exp(−λt)

• SY (t) = exp(−γt)

• S∗X(t) = λ
λ+γ

exp(−(λ + γ)t)

• S∗Y (t) = γ
λ+γ

exp(−(λ + γ)t)

Remark 2.4.1. If X and Y are independent exponential life variables with failure

rates λ and γ, then the conditional subsurvival functions of X and Y are equal and

exponential distributed with failure rate λ+γ and the probability of censoring beyond

time t is constant:

S∗X(t)/S∗X(0) = S∗Y (t)/S∗Y (0) = exp(−(λ + γ)t)

Φ(t) =
γ

λ + γ
.

A few results are known for independent competing risks when only one of the

variables is exponential.

Theorem 2.4.3 (Zheng and Klein 1994 [75], Bedford and Meilijson 1995 [8]).

Let (S∗X(t), S∗Y (t)) be a subsurvival pair, and suppose that in the (unique) independent

model determined by (S∗X(t), S∗Y (t)), X is exponentially distributed with failure rate

λI . Consider the set of all joint distributions consistent with (S∗X(t), S∗Y (t)) in which

X is exponentially distributed, and let Λ denote the set of all corresponding failure

rates. Then λI = min{Λ}.
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Proof. Let Pr{X = Y } = 0. Then the first order derivative of the subdistribution

function of X is:

[F ∗
X(t)]′ =

dF ∗
X(t)

dt
=

Pr{X ∈ [t, t + δ], X < Y }
δ

=
Pr{X ∈ [t, t + δ], Y > t}+ 0(δ)

δ
.

Assuming independence between X and Y , we have:

[F ∗
X(t)]′ =

Pr{X ∈ [t, t + δ]}
δ

Pr{Y > t} = [F I
X(t)]′SY (t),

hence

[F ∗
X(t)]′|t=0 = [F I

X(t)]′|t=0.

Given that FX(t)− F ∗
X(t) is increasing in t (see Theorem 2.7.1), hence

[FX(t)]′ − [F ∗
X(t)]′ ≥ 0,

and

[FX(t)]′|t=0 − [F ∗
X(t)]′|t=0 ≥ 0.

For every possible distribution of X, we have

[F I
X(t)]′|t=0 ≤ [FX(t)]′|t=0,

which gives

λI = min{Λ}

Theorem 2.4.4 (Cooke 1993 [18]). Let X and Y be independent with subsurvival

functions S∗X(t) and S∗Y (t) respectively, strictly decreasing. Let SX(t) = exp(−λt),

and let SY be continuous and strictly monotone. If Y has a decreasing failure rate

(increasing failure rate) - rY (t) and d
dt

SX(t)
SX(0)

|0 ≥ (≤) d
dt

SY (t)
SY (0)

|0 then

SX(t)

SX(0)
≥ (≤)

SY (t)

SY (0)
.
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Proof. Let gX = d
dt

SX(t)
SX(0)

and gY = d
dt

SY (t)
SY (0)

be the density functions of conditional

distribution functions of X and Y . By assuming independence, the failure rates of

both risks are equal to the observed failure rates. Hence

λ = −dSX

SX

= − dS∗X
S∗X + S∗Y

and

rY = −dSY

SY

= − dS∗Y
S∗X + S∗Y

= λ
dS∗Y
dS∗X

= λ
gY

gX

.

Hence rY ↘ (↗) ⇔ gY

gX
↘ (↗). For t > 0

gY

gX

↘ (↗) ⇔ dgX/dt

gX

> (<)
dgY /dt

gY

.

Given gX < 0 and gY < 0 we get

rY ↘ (↗) ⇔ d ln(gX) > (<)d ln(gY ).

But also gX(0) ≥ (≤)gY (0) and the proof is completed.

2.4.2 Conditional independent model

Another model from which we have identifiability is conditional independent

model. This model considers the competing risk variables, X and Y , as sharing a

common quantity V , and as being independent given V :

X = V + W, Y = V + U,

where V, U,W are mutually independent. Hokstadt (1997 [33]) derived explicit ex-

pressions for the case that V, U,W are exponential distributed:

Theorem 2.4.5. Let V, U,W be independent with SV (t) = e−λV t, SU(t) = e−λU t, SW (t) =

e−λW t, then

• S∗X(t) = λV λW e−(λU +λW )t

(λU+λW )(λV −λW−λU )
− λW e−λV t

λV −λW−λU
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• S∗Y (t) = λV λUe−(λU +λW )t

(λU+λW )(λV −λW−λU )
− λUe−λV t

λV −λW−λU

• S∗X(t) + S∗Y (t) = λV e−(λU +λW )t

λV −λW−λU
− (λW +λU )e−λV t

λV −λW−λU

• S∗X(t)/S∗X(0) = S∗Y (t)/S∗Y (0) = S∗X(t) + S∗Y (t)

• If V has an arbitrary distribution such that P (V ≥ 0) = 1, and V is independent

of U and W , then

S∗X(t)/S∗X(0) = S∗Y (t)/S∗Y (0)

As in the case of Independent Exponential Competing Risks we have equal condi-

tional subsurvival functions and the probability of censoring beyond time t is constant:

Φ(t) = λU

λU+λW
.

Further, it is easy to see that X ∧ Y is the sum of the V and U ∧W . Hence the

expectation of X ∧ Y is:

1/λV + 1/(λU + λW ).

A calculation gives the variance of X ∧ Y :

1/λ2
V + 1/(λU + λW )2.

The ratio of the naked over the observed rocof’s for for X is found to be:

(λV + λU + λW )/(λV + λW ).

Together with S∗X(0), these give three equations for estimating the three parameters

λV , λU , λW , from which the model is identifiable from the subsurvival functions.

2.4.3 Mixture of exponentials model

Let the survival function of the life time - SX(t) be a mixture of two exponential

distributions with parameters λ1, λ2 and the mixing coefficient p, and the censoring

survival function - SY (t) is an exponential with parameter λy,

SX(t) = p exp{−λ1t}+ (1− p) exp{−λ2t},

and

SY (t) = exp{−λyt}.
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Theorem 2.4.6 (Bunea et all 2002 [15]). Let X and Y be independent life vari-

ables with the above distributions, then:

• S∗X(t) = p λ1

λy+λ1
exp{−(λy + λ1)t}+ (1− p) λ2

λy+λ2
exp{−(λy + λ2)t}

• S∗Y (t) = p λy

λy+λ1
exp{−(λy + λ1)t}+ (1− p) λy

λy+λ2
exp{−(λy + λ2)t}

• S∗
X(t)

S∗
X(0)

=
exp{−(λy+λ1)t}+ 1−p

p
λ2
λ1

λy+λ1
λy+λ2

exp{−(λy+λ2)t}

1+ 1−p
p

λ2
λ1

λy+λ1
λy+λ2

• S∗
Z(t)

S∗
Y (0)

=
exp{−(λy+λ1)t}+ 1−p

p

λy+λ1
λy+λ2

exp{−(λy+λ2)t}

1+ 1−p
p

λy+λ1
λy+λ2

• S∗
X(t)

S∗
X(0)

≤ S∗
Y (t)

S∗
Y (0)

• Φ(t) is minimum at the origin, and is continuously increasing

Proof. The first four statements follow directly from the assumption of independence

and the functional form of the distribution functions for X and Y . Given indepen-

dence of X and Y , we have:

S∗X(t) + S∗Y (t) = Pr{X > t, Y > t} = Pr{X > t}Pr{Y > t} = SX(t)SY (t),

hence

S∗X(t) =

∫
SY (t)dSX(t) and S∗Y (t) =

∫
SX(t)dSY (t).

After integration the desired formulas are obtained.

To prove the fifth statement, we can rewrite the conditional subsurvival functions

in compact form:

S∗X(t)

S∗X(0)
=

A + λ2

λ1
BC

1 + λ2

λ1
B

and
S∗Y (t)

S∗Y (0)
=

A + BC

1 + B
.

Hence,

S∗X(t)

S∗X(0)
vs

S∗Y (t)

S∗Y (0)
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is equivalent with
A + λ2

λ1
BC

1 + λ2

λ1
B

vs
A + BC

1 + B
,

A(1− λ2

λ1

) vs C(1− λ2

λ1

),

exp{−λ1t}(λ1 − λ2) vs exp{−λ2t}(λ1 − λ2).

If λ1 ≥ λ2 then,

exp{−λ1t}(λ1 − λ2) ≤ exp{−λ2t}(λ1 − λ2).

If λ1 < λ2 then,

exp{−λ1t}(λ1 − λ2) < exp{−λ2t}(λ1 − λ2).

Hence,

S∗X(t)

S∗X(0)
≤ S∗Y (t)

S∗Y (0)
.

One can verify that S∗X(0) + S∗Y (0) = 1. Indeed,

S∗X(0) = p
λ1

λy + λ1

+ (1− p)
λ2

λy + λ2

,

and

S∗Y (0) = p
λy

λy + λ1

+ (1− p)
λy

λy + λ2

,

and the equality required can be easily obtained.

Using the fact that S∗X(0) + S∗Y (0) = 1 and
S∗

X(t)

S∗
X(0)

≤ S∗
Y (t)

S∗
Y (0)

it follows immediately

that Φ(t) is minimum at the origin. More it can be shown, after some arduous

calculations, that Φ(t) is continuously increasing.

The derivative of Φ(t) is:

ϕ(t) =
dΦ(t)

dt
= C

pS1(t) · (1− p)S2(t)

(pS1(t) + (1− p)S2(t))2
,
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where C = λy(λ1−λ2)2

(λy+λ1)(λy+λ2)
and S1 = exp{−λ1t}, S2 = exp{−λ2t}.

The value of ϕ at the origin is:

ϕ(0) = p(1− p)
λy(λ1 − λ2)

2

(λy + λ1)(λy + λ2)
.

Recalling that Z is the minimum of two variables and the indicator of which

variable is smaller, the survival function of Z becomes:

P (Z > t) = P (min(X,Y ) > t) = P (X > t, Y > T ) = P (X > t)P (Y > t) =

= p exp{−(λ1 + λy)t}+ (1− p) exp{−(λ2 + λy)t},

which is also a mixture of two exponential distributions with parameters λ1 + λy,

respectively λ2 + λy.

The expectation and variance of Z are:

E(Z) =

∫ ∞

0

zfz(z)dz =

∫ ∞

0

P (Z > t)dt =

= p
1

λy + λ1

+ (1− p)
1

λy + λ2

,

respectively

1

(λy + λ2)2
+ 2p

1

λy + λ1

(
1

λy + λ1

− 1

λy + λ2

)− p2(
1

λy + λ1

− 1

λy + λ2

)2

Using the above equations and S∗Y (0) we can obtain an estimation for the unknown

parameters. For example λy = S∗Y (0)/E(Z) and the values of p, λ1 and λ2 can

be obtained numerically. Note that the same solution for λy is obtained using the

maximum likelihood method.

2.5 Dependent competing risk models

2.5.1 Random Signs model

Perhaps the simplest dependent competing risk model which leads to identifiable

marginal distributions is random sign censoring (Cooke 1996 [20]). Consider a com-

ponent subject to right censoring, where X denotes the time at which a component
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would expire if not censored. Suppose that the event that the life of the component

be censored is independent of the age X at which the component would expire, but

given that the component is censored, the time at which it is censored may depend

on X. This might arise, if a component emits warning before expiring; if the warning

is seen then the component is taken out, thus censoring its life, otherwise it fails. The

random signs model assumes that the probability of seeing the warning is independent

of the component’s age. This situation is captured in the following definition:

Definition 2.5.1. Let X and Y be life variables with Y = X − Wδ, where W,

0 < W < X, is a random variable and δ is a random variable taking values {1,−1},

with X and δ independent. The variable Z ≡ [min(X, Y ), I(X < Y )] is called a

random sign censoring of X by Y .

Note that

S∗X(t) = Pr{X > t, δ = −1} = Pr{X > t}Pr{δ = −1} =

= SX(t)Pr{Y > X} = SX(t)S∗X(0).

Note also that Pr{Y > X} and S∗X(t) can be estimated from observing inde-

pendent copies of Z and that under random signs censoring SX(t) is equal to the

conditional subsurvival function of X.

Cooke (1996 [20]) proved that the random signs model is consistent given subsur-

vival functions if and only if the conditional subsurvival function of X is greater than

the conditional subsurvival function of Y for all t > 0. In this case the probability

of censoring beyond time t is maximum at the origin. This result suggests that if

the random signs model holds then the independent exponential model is difficult to

characterize data.

If extra information about the relationship between X and W is known, then more

may be said about the form of Φ(t). For example,

1. Suppose that for sufficiently large X, W = a, where a is a positive constant.

Then writing α = S∗X(0)/S∗Y (0), we have

Φ(t) =
1

1 + α SX(t)
SX(t+a)
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for t sufficiently large. If additionally we assume that X is exponential with

parameter λ, then

Φ(t) =
1

1 + αexp(λa)

for t sufficiently large.

2. If W = aX for a positive constant a < 1, then

Φ(t) =
1

1 + α SX(t)
SX(t/(1−a))

For a large class of distributions, including the exponential, SX(t)
SX(t/(1−a))

→∞ as

t →∞, so that in this case Φ(t) → 0 as t →∞.

A special case of random signs model will be presented in Chapter 4 as the “Highly

Correlated Model”.

2.5.2 The Lanseth-Bedford-Lindqvist model

In order to find the joint distribution for {Z = min(X < Y ), δ = 1{X<Y }} the

following assumptions are done in (Langseth 1999 [52]) and (Lindqvist 2001 [54]):

1. Random signs censoring, that is δ = 1{X<Y } is independent of X

2. Pr{Y ≤ y|Y < X,X = x} = H(y)
H(x)

, 0 ≤ y ≤ x,

where H(t) =
∫ t

0
rX(u)du. Assumption 2 says that conditional density for Y , given

censoring and given the potential failure time, is proportional to the intensity of the

underlying failure process. Let q = Pr{Y < X} be the probability of catching a

critical failure by censoring.

The joint density of Y and X, conditional on Y < X is

f(y, x|Y < X) = f(x|Y < X)f(y|Y < X,X = x) = f(x)
rX(y)

H(x)
= rX(x)e−H(x) rX(y)

H(x)

The marginal density of Y conditional on {Y < X} is:

f(y|Y < X) =

∫ ∞

y

rX(x)e−H(x) rX(y)

H(x)
dx = rX(y)

∫ ∞

H(y)

1

u
e−udu = rX(y)Ie(H(y)),
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where Ie(.) is the exponential integral. The joint distribution of (Z, δ) can be found

from,

Pr{z ≤ Z ≤ z + ∆z, δ = 1} = Pr{z ≤ Z ≤ z + ∆z, X < Y } =

= Pr{z ≤ min(X, Y ) ≤ z + ∆z, X < Y } =

= Pr{z ≤ X ≤ z + ∆z, X < Y } =

= Pr{z ≤ X ≤ z + ∆z}Pr{X < Y } =

= rX(z)e−H(z)(1− q)∆z.

Similar for δ = 0, we have:

Pr{z ≤ Z ≤ z + ∆z, δ = 0} = Pr{z ≤ Z ≤ z + ∆z, Y < X} =

= Pr{z ≤ Y ≤ z + ∆z, Y < X} =

= Pr{z ≤ Y ≤ z + ∆z|Y < X}Pr{Y < X} =

= rX(z)Ie(H(z))q∆z.

The above equations give essentially the joint distribution for (Z, δ). These two

equations give also the likelihood function, by inserting the observed data and taking

the product between them. Thus, the parameters of the density function of X, fX(x)

and q can be found.

Note that the marginal distribution function of Z is

fZ(z) = qrX(z)Ie(H(z)) + (1− q)rX(z)e−H(z).

This function is actually a mixture of the to distributions for {Y |Y < X} and {X|X <

Y }.
A more general model, called “Repair Alert Model”, is proposed in (Støve 2002

[70]), by considering a more general distribution for {Y |X = t, Y < X}. If G(t) is an

arbitrary increasing function with derivative g(t) the assumption 2 becomes:

Pr{Y ≤ y|Y < X,X = x} =
G(y)

G(x)
, 0 ≤ y ≤ x.

2.5.3 Random Clipping

Perhaps the simplest model which makes the transition from exponential models

to dependent models is gotten by assuming that X is always censored by a random
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variable Y = X − W (Cooke 1996 [20]). More specifically, we assume that X is

exponential distributed and for some positive random variable W independent of X,

we observe X − W . Of course W may be greater than X, which we interpret as

censors at birth.

Let us suppose that censors at birth are simply not recorded. Suppose in other

words, that components emitting warnings at birth are simply repaired until the

warning disappears, and that the false start is not recorded as an incipient failure at

time 0. We call the variable X −W given X −W > 0 a random clipping of X.

The following theorem says that, regardless of the distribution of W , the distri-

bution of X −W given X −W > 0, is identical to that of X.

Theorem 2.5.1. Let X be exponential with parameter λ, let W > 0 be a random

variable independent of X, and U = X −W . Then, conditional on U > 0, U has the

same distribution as X.

2.6 Colored Poisson representation of competing

risk

We consider the process Z = Z1, Z2..., where Zi are independent copies of Z =

[min{F, M}, 1{F<M}], and imagine data by instantly replenishing a component socket

as good as new components whenever a component exit service. The components exit

service either because of failure (F) or because of a preventive maintenance (M). Think

of min{F, M} as the uncolored process and think of the M’s as colored magneta and

the F’s colored fuchsia. The coloring theorem for Poisson processes says:

Theorem 2.6.1. (coloring theorem for Poisson processes): If the uncolored process

is a Poisson process with intensity ν, and if the coloring of a point is determined by

the outcome of an independent coin toss: heads for magneta, tails for fuchisa with

Pr{heads} = p, then the magneta points are a Poisson process with intensity νp, the

fuchisa points are a Poisson process with intensity ν(1 − p), and the magneta and
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fuchisa processes are independent. Conversly, the superposition of two independent

Poisson processes is a Poisson process whose intensity is the sum of the intensity of

the superposed processes.

A colored Poisson process is equivalent to independent exponential competing

risks. A colored Poisson process may be represented as γ = {M1, M2....; µ, F1, F2...; φ},
where {Mi} and {Fi} are the inter-arrival times of two independent processes starting

at t = 0, with intensities µ and φ; the uncolored process has the intensity ν = µ + φ.

γ may be associated with a subsurvival pair as follows: l etting SU(t) = exp(−(µ+

φ)t), S∗M(t) = SU(t)µ/(µ + φ); S∗F (t) = SU(t)φ/(µ + φ). µ/(µ + φ) is the probability

for magneta and φ/(µ + φ) is the probability for fuchisa.

Theorem 2.6.2 (Cooke 1996 [20]).

1. Let γ = {M1, M2.; µ, F1, F2; φ} be a colored Poisson process. Then is a unique

independent competing risk process Z = [min{F, M}, 1{F<M}] associated with γ.

Moreover, M and F are exponential distributed with survival function exp(−µt)

and exp(−φt)

2. Let Zi be independent copies of [min{F, M}, 1{F<M}] where M and F are in-

dependent and exponential distributed with survival functions exp(−µt) and

exp(−φt) and let Z = Z1, Z2... be the competing risk renewal process associ-

ated with Z. Then Z is a colored Poisson process with intensities µ and φ for

the M and F processes.

Remark 2.6.1. Consider the distance between an uncolored point Pi and the previous

uncolored point Pi−1. This distance follows an exponential distribution with failure

rate µ + φ. Hence, the distance between a maintenance point and its nearest pre-

decessor has the same distribution as the distance between a failure point and its
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nearest predecessor. In other words, given that a service sojourn terminates in pre-

ventive maintenance, the distribution of length of that sojourn is the same as the

distribution for the length of sojourn given termination in failure.

2.7 Uncertainty

Uncertainty bounds convey the restriction on the possible choices of reliability pa-

rameters arising from the observable data. It is convenient to distinguish uncertainty

due to non-identifiability from uncertainty due to sampling fluctuations. To exclude

the effect of sampling fluctuations it is useful to consider how we should proceed if

we actually had infinetely many observations of censored life process.

2.7.1 Uncertainty due to non-identifiability: Bounds in the

absence of sampling fluctuations

Considering the problem of non-identifiability, Peterson (1976 [63]) presents

bounds for the joint distribution of X and Y as well as for its marginals, assuming

that Pr{X = Y } = 0. Peterson further proves that these bounds are sharp. However,

this statement and its proofs hold only under the assumption (not stated by Peterson)

of continuity of the two subsurvival functions (Bedford and Meilijson 1997 [9]).

Peterson derived lower and upper bounds on the subsurvival function SX by ob-

servable quantities by noting that:

Pr{X ≤ t,X ≤ Y } ≤ Pr{X ≤ t} ≤ Pr{X ∧ Y ≤ t}

Proof. Let A and B be two sets defined as

A = {X ≤ t,X ≤ Y },

B = {X ≤ t} = {X ≤ t,X ≤ Y } ∪ {X ≤ t,X > Y }
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and using the fact that if A ⊂ B ⇒ Pr{A} ≤ Pr{B} we obtain the left hand side

inequality

Pr{X ≤ t,X ≤ Y } ≤ Pr{X ≤ t}.

We van write the set {X ≤ t} as a union of two sets

{X ≤ t,X ≤ Y } ∪ {X ≤ t,X > Y }

and using the property of probabilities Pr{∪Ai} ≤
∑

Pr{Ai} we get

Pr{X ≤ t} ≤ Pr{X ≤ t,X ≤ Y }+ Pr{X ≤ t,X > Y }.

But Pr{X ≤ t,X > Y } ≤ Pr{Y ≤ t,X > Y } when X > Y , and the right hand side

inequality is obtained.

If FZ is the cumulative distribution function of Z, these bounds can also be written

as:

F ∗
X(t) ≤ FX(t) ≤ F ∗

X(t) + F ∗
Y (t) = FZ(t).

Through any point between the functions F ∗
X and FZ there pass a (non-unique) dis-

tribution function for X which is consistent with the censored data. This does not

say that any distribution function between F ∗
X and FZ is a possible distribution for

X. A more general result is given in (Crowder 1994 [28], Bedford and Meijlison 1997

[9]), by the following theorem:

Theorem 2.7.1. If F is a cumulative distribution function satisfying

F ∗(t) ≤ F (t) ≤ Fmin(t),

then there is a joint distribution for (X, Y ) with F as marginal distribution for X if

and only if for all t1, t2, with t1 < t2,

F (t1)− F ∗(t1) ≤ F (t2)− F ∗(t2).
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In other words, the distance between F (t) and F ∗(t) must be increasing in t.

There may be a large number of cumulative distribution function passing through

F (t) and F ∗(t), but the data can not support all of them. A restriction to the families

of cumulative distribution functions can be obtained by considering bounds to time

average failure rates. Recall that the failure rate rX(t) for X is given by

rX(t) =
fX(t)

SX(t)
= −d(ln(SX(t)))

dt

so that the time average failure rate is

− ln(SX(t))

t
=

∫ t

0
rX(u)

t
du.

Applying this transformation the Peterson bounds become

lmin(t) = − ln(S∗X(t) + S∗Y (0))

t
≤
∫ 1

0
rX(u)du

t
≤ − ln(S∗X(t) + S∗Y (t))

t
= lmax(t).

At each time t, the set of numbers between lmax(t) and lmin(t) corresponds to the

time average failure rates at time t which are consistent with the data up to time

t. As t → ∞, F ∗
X(t) → Pr{X ≤ Y } < 1, so that lmin(t) → 0. Hence the lower

bound on the admissible values of the time average failure rate decreases as the time

becomes larger. Taking sup on the LHS and inf on the RHS of the above equation,

we obtain the bounds

[λl, λu] =
∞⋂

t=1

[lmax(t), lmin(t)].

2.7.2 Uncertainty due to sampling fluctuations

The bounds developed in the previous paragraph reflect a lack of knowledge due

to non-identifiability of the distribution of X caused by censoring. This uncertainty

can not be removed by observations unless the censoring is suspended. In practice

we have to deal with another lack of knowledge, namely that caused by a limited

observations of realization of Z.

The Peterson bounds may be used to obtain classical confidence bounds depending

on time t, which we call “time-wise” bounds. We write the Peterson bounds as:

lmin(t) = − ln(1− F ∗
X(t))

t
≤
∫ 1

0
rX(u)du

t
≤ − ln(1− FZ(t))

t
= lmax(t)
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For each t the probabilities F ∗
X(t) and F ∗

Z(t) can be estimated from the data. If in

n(t) of N independent observations of (X ∧ Y, 1X<Y ) the event (X ≤ t,X ≤ Y ) is

observed, then the quantity
n(t)−NF ∗

X(t)√
Nσ

is approximately standard normal distributed, where σ2 = F ∗
X(t)(1 − F ∗

X(t)) may

be estimated as (nN − n2)/N2. Hence the classical 5% lower confidence bound for

− ln(1− F ∗
X(t))/t can be written as

λl(t) = − ln[1− (n(t)/N − 1.65σ(t)/
√

N)]/t.

Similarly, if m(t) is the number of observation of the event (X ∧ Y ≤ t) in N inde-

pendent observation of (X ∧ Y, 1X<Y ) then an upper 95% classical confidence bound

for − ln(1− FZ(t))/t is

λu(t) = − ln[1− (m(t)/N − 1.65σ′(t)/
√

N)]/t,

where now σ′2 is estimated as (mN −m2)/N2. The curves λl(t) and λu(t) have the

following interpretation. If we repeatedly draw samples of size N from the distribution

of (X ∧ Y, 1X<Y ), then for each t, in 95% of the N samples the empirical version of

lmin(t) is greater than λl(t) and in 95% of the N samples the empirical version of

lmax(t) is less than λu(t). This does not mean that 95% of the N samples lie above

λl(t) (below λu(t)) for all t.

2.8 Model selection

The probability of censoring after time t seems to have an important role in

model selection, via graphical interpretation. Let cX(t) and cY (t) be the failure rates

of the conditional subsurvival functions of X and Y respectively. Then, the following

statements follow from the theorems presented in the previous sections:

1. If the risks are exponential and independent, then the conditional subsurvival

functions are equal and exponential distributed, and Φ(t) is constant

2. If Φ(t) is constant then the observed failure rates are proportional

3. If Φ(t) is constant and the risks are independent, then the naked failure rates

are proportional
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4. If the risks are independent, rY is constant, and rX is increasing; then Φ(0) >

Φ(t); if rX is decreasing then Φ(0) < Φ(t); t > 0

5. If the risks are independent, then rY (t) = Φ(t)cY (t) and rX(t) = (1−Φ(t))cX(t)

6. If the random signs model holds, then Φ(0) > Φ(t), t ≥ 0

7. If the conditional independence model holds with exponential marginals, then

the conditional subsurvival functions are equal and Φ(t) is constant

8. If the mixture of exponentials model holds, then Φ(t) is increasing for all t ≥ 0

If Φ(t) changes its monotonicity over the time of observation, and has no maximum

or minimum at the origin, then we have no plausible model for coupling X and Y

and we will regard them as independent.



Chapter 3

Competing risk theory-statistical
approach

3.1 Introduction

Modern Reliability Data Bases (RDB’s) are designed to meet the needs of diverse

users, including component designers, reliability analysts and maintenance engineers.

To meet these needs RDB’s distinguish a variety of ways in which a component’s

service sojourn may be terminated. Up until quite recently, this data was analyzed

from the viewpoint of independent competing risk. Independence is often quite im-

plausible, as eg when degraded failures related to preventive maintenance compete

with critical failure. The maintenance crew is trying to prevent critical failures while

losing as little useful service time as possible; and hence is creating dependence be-

tween these competing risks. We have recently learned how to use simple models for

dependent competing risk to identify survival functions and hence to analyze compet-

ing risk data. This type of analysis requires new statistical tests, and/or adaptations

of existing tests. Competing risk models are described in Chapter 1. In this chapter

we present a number of tests to support the analysis of competing risk data.

Competing risk data may be described as a colored point process, where each point

event is described by a number of properties, and where a coloring is a grouping of

properties into mutually exclusive and exhaustive classes. For example, a maintenance

engineer is interested in degraded and incipient failures, as they are associated with

preventive maintenance. He is trying also to take the least expensive maintenance

action: repair action or adjustment action are favored above replace action. Critical

41
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failures are of primary interest in risk and reliability calculations and a component

designer is interested in the particular component function that is lost, in the failure

mechanisms and he wishes to prevent the failure of the most expensive components

of the system.

In addition to this, two other main operations may be performed on the data:

superposition, pooling. Time histories having the same begin and end points may be

superposed. The set of event times of the superposition is the union of the times of

the superposed processes. In general, superposition is performed in order to obtain

a renewal process. If the maintenance team returns components to service as good

as new, then all time histories of the components should be superposed. The pooled

data are considered as multiple realizations of the same random variable or stochastic

process. When time histories are pooled, these are considered as realizations of the

same (colored) point process. In general, pooling is performed on identical indepen-

dent point processes in order to obtain better statistical estimates of the inter-event

distribution. To perform these operations on data, a set of assumptions must be

made, requiring statistical tests to validate them.

3.2 Model Assumptions

For risk and reliability analysis we ultimately need life distributions and the

estimation of the life distribution from time histories calls for renewal processes.

However, we are also interested in trends, types of failure, failure modes, failure

effects, maintenance operations, etc., and this leads us to competing risk renewal

processes.

An analysis scheme is needed in order to build the reliability model. This scheme

consists of a structured set of assumption (see Figure 1) directed to the data set, to-

gether with statistical sets to validate these assumptions. Typically, each assumption

must be validated with “accepted” before proceeding to the next assumption. The

assumptions are as follows:

Model assumption 1: The stratum of n sockets is homogeneous

Homogeneity within a group of component can be assumed in the case that the

components are similar in design, operating circumstances and maintenance regime.
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Nevertheless, this assumption should always be checked with the failure data.

Model assumption 2: The processes are independent

We assume that there are no clusters of failures in the stratum of sockets. In

the extreme case all the sockets in the stratum could fail together in a small interval

on the calendar time. This would indicate a strong dependency between the sockets

and a possible common external cause of the failures in the sockets. This assumption

should therefore always be checked.

Model assumption 3: The colored process is stationary

The coloring is stationary if the proportion of, say, ”red” and ”green” points does

not vary significantly with calendar time.

Model assumption 4: The process is ”color blind competing risk”

The competing risk processes is describe by a n-tuple of risk or colors, and a count-

able set of n-tuples of random variables (X11, ..X1n), (X21, ..X2n), (X31, ..X3n).... After

the (i−1)−th event, the next event occurs at time min{Xi1, ..Xin} and is assigned the

color of the index realizing the minimum. Hence, we observe (min{Xi1, ..Xin}, C(i)),

where C(i) is the color of the i− th event.

The process is colored blind if the distribution of (min{Xi1, ..Xin}, C(i)) is inde-

pendent of the color of the (i − 1) − th event. Ignoring time dependence of a scale

which is small relative to the expected inter-event times, color blindness implies that

the processes gotten by splicing together all inter-event times beginning with color

j, j = 1, ...n, are homogeneous.

Model assumption 5: The process is stationary competing risk

In mathematical terms a stationary series of events is defined by the following

requirements:

1. the distribution of the number of events in a fixed interval (t′1, t
′′
1] is an invariant

under translation, i.e. is the same for (t′1 + h, t′′1 + h] for all h;
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2. the joint distribution of the numbers of events in fixed intervals (t′1, t
′′
1], (t

′
2, t

′′
2] is

invariant under translation, i.e. is the same for the pair of intervals (t′1 +h, t′′1 +

h], (t′2 + h, t′′2 + h] for all h;

3. generally the same invariance property must hold for the joint distribution of

the number of events in s set of k fixed intervals, for all k = 1, 2, ...

Characteristics of a stationary series of events of importance to this work are:

• the distribution of the number of events in an interval of the time window

depends only on the length of the interval;

• the expected number of events in a interval of the time window is proportional

to the length of the interval;

• there exist no trend in the mean rate of occurrence of failure events throughout

the length of the time window.

In our case this means that the process (min{Xi1, ..Xin}, C(i)), i = 1, 2, ..., is sta-

tionary. Since the coloring has already been found to be stationary, this is equivalent

to asking whether the uncolored process is stationary.

Model assumption 6: The process is renewal competing risk

This assumption implies that a socket is completely or perfectly repaired, similar

to replacement to a new one. The plausibility of this assumption can be easily ques-

tioned. Yet, we have a major modeling benefit of this assumption by the fact that

the series of events is now a renewal process. A renewal process is a process in which

the intervals between events are independently and identically distributed.

Model assumption 7: The process is Poisson competing risk

Consider events occurring along the time axis. Let λ be a constant with dimension

of reciprocal of time. It will measure the mean rate of occurrence of failure events

over the period of time covered in the time window chosen by the user and will be

called the probability rate of occurrence. Denoted by Nt,t+h, the random variable

defined as the number of events occurring in (t, t + h]. The conditions for a Poisson

process of rate λ are that as h → 0
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1. Pr{Nt,t+h = 0} = 1− λh + o(h)

2. Pr{Nt, t + h = 1} = λh + o(h)

3. And that the random variable Nt,t+h is statistically independent of the number

and positions of the events in (0, t]

Model building and assumptions validation are presented in Figure 1.
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Figure 1. Model assumptions scheme



47

3.3 Statistical tests

3.3.1 Model assumption 1: The stratum of w sockets (units)

is homogeneous

Suppose we have w processes {Ni(t)}, i = 1, ...w, where Ni is the counting process

with intensity Ii(t).

We shall test the hypothesis:

H0 : I1(t) = ... = Iw(t).

Cox and Lewis (1966 [26]) proposed the following statistic when all the processes are

defined over the same interval:

D(N) =
w∑

i=1

(Ni(t)−N∗(t))2

N∗(t)
,

where

N∗(t) =

∑w
i=1 Ni(t)

w
.

We reject H0 when D > χw−1,α, where χw−1,α is the α quantile of the χ2 dis-

tribution with w − 1 degrees of freedom. This test is designed to detect if the w

processes have the same intensity I(t) under the assumption of Poisson processes

(non-homogeneous). It is no designed to detect if their intensity is constant in time

(homogeneous Poisson process). To avoid the assumption that {Ni(t)} are Poisson

processes, the following approach is recommended by Paulsen et all (1997 [62]): Di-

vide the interval [0, t] in two equal pieces, giving the processes: Ni,1(s), 0 ≤ s ≤ t/2

and Ni,2(s), t/2 < s ≤ t, i = 1, ..., w.

Let π ∈ w! be a permutation of (1, 2, ...w) and let

Nπ = {Nπ(i),1 ⊗Ni,2}; i = 1, 2, ...w

be the π process, where

Nπ(i),1 ⊗Ni,2 =

{
Nπ(i),1(s); 0 ≤ s ≤ t/2

Nπ(i),1 + Ni,2(s)−Ni,2(t/2); t/2 ≤ s ≤ t

We reject H0 if D(Nπ) is in the upper or lower 2,5% quantile.
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3.3.2 Model assumption 2: The processes are independent

We want a test to detect ’clustering’ of failure events from the various processes,

that is, the tendency of events in the different processes to occur close in time. Such

a clustering means either that there are common peaks in the intensities Ii(t) of the

processes or that the processes are stochastically dependent.

H0 : ”No clustering across processes”

We choose one of the w processes Ni(t), with a medium or large number of events.

For simplicity we choose the process N1 and let the events of this process occur at

times T1, ...Tk. Define intervals (Ti −∆, Ti + ∆) covering these events. There is thus

defined a set S1(2∆) on the time axis, namely the union of the intervals of length 2∆;

let this set have length T1(2∆). If there are N1(T ) events then T1(2∆) < N1(T )2∆,

with equality if and only if two events do not occur in 2∆ and no events occur in

(T −∆, T ] where T is the end of the period of observation.

Let n = N(T ) = Σw
k=2Nk(t) is the total number of events of the processes and

N∗(T ) =
∑w

k=2 N∗
k (t) is the total number of events falling in any interval of length

2∆.

For this analysis we consider the approximation in which N1(T )2∆ << T and

T1(2∆) = N1(T )2∆. Then under the null hypothesis N∗(T ) has a binomial distribu-

tion with index n and parameter T (2∆)/T . If T (2∆)/T = N1(T )2∆/T = pT (2∆)

is the probability of any observation of the process Ni(t), i > 2 falling in one of the

intervals with length 2∆, then the expectation and variance of N∗(T ) are:

E(N∗(T )) = npT (2∆),

V ar(N∗(T )) = npT (2∆)(1− pT (2∆)).

Using a Normal approximation, we reject H0 when

N∗(T )− npT (2∆)√
npT (2∆)(1− pT (2∆))

> Uα,

where Uα is the α quantile of N(0, 1).

If N∗(T ) is small (less than 5) we should use the binomial or Poisson distribution

rather than N(0, 1). It is suggested that ∆ be chosen so that pT (∆) ≈ 0.1.
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3.3.3 Model assumption 3: The colored process is stationary

We construct a test to detect whether the ratio of colored events (R and G)

is constant over time. Let PR(t) be the probability of event occurring at time t is

colored R and PG(t) be the probability of event occurring at time t is colored G.

We test the hypothesis

H0 : PR(t) = pR (independent of time)

We test H0 by dividing the interval (0, T ) in two. Let NR,1 be the number of R

events in (0, T/2] and NR,2 be the number of R events in (T/2, T ). Given the total

number of events n1 = N(T/2) and n2 = N(T ) − N(T/2), we have that NR,1 and

NR,2 under H0 are independent and binomial distributed with probability pR. Using

a normal approximation and the result that if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2)

then X − Y ∼ N(µ1 − µ2, σ
2
1 + σ2

2), we reject H0 when

|NR,1/n1 −NR,2/n2|√
(1/n1 + 1/n2)(1−NR/n)NR/n

,

where n = n1 + n2, NR = NR,1 + NR,2.

3.3.4 Model assumption 4: The process is ”color blind com-

peting risk”

Is the colored process ’renewed’ to the same degree by R events and G events? If

not, the colored process might be a superposition of R and G processes (which could

be renewal).

Let, {XR,k}k=1,2,... be the R process - the sequence of intervals starting with R

event and {XG,k}k=1,2,... be the G process - the sequence of intervals starting with G

event.

We test

H0 : {XR,k} and {XG,k} are realization of identical processes

We reduce H0 to two ’subhypotheses’:

1. H0,1 : IR(t) = IG(t) (the uncolored R and G processes have the same intensity)
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2. H0,2 : PR(R) = PG(R) (the fraction of R events in the R process and G process

are the same)

1) We consider the comparison of k Poisson processes (k > 2) and we test for equal-

ity the parameters λ1, ...λk, no special type of alternative being specified. Suppose

that in fixed time periods t0(1), ...t0(k), the number of events observed are n1, ..., nk,

where ni is the observed value of a Poisson variable Ni, of mean µi = λit0(i). Under

the null hypothesis λi = λ, where λ is unknown. Then, following the general result

that n =
∑k

1 ni is a sufficient statistic for λ and the significance test should be based

on the conditional distribution

Pr{Ni = ni; i = 1, ...k|
k∑

i=1

Ni =
k∑

i=1

ni = n} =
exp(−

∑k
i=1 λit0(i))

∏k
i=1

(λit0(i))
ni

ni!

exp(−λt0)
(λt0)n

n!

=

= n!
k∏

i=1

{
t0(i)
t0
}ni

1

ni!
,

where t0 =
∑k

i=1 t0(i) is the total time of observation.

We used the general result that
∑

Ni has a Poisson distribution of mean λt0.

The above equation is equivalent to the statement that the n events are multinomial

distributed among k cells with cell probabilities t0(i)/t0. For k = 2 we obtain the

binomial distribution.

The best known test is based on the index of dispersion, i.e. on the statistic

d =
k∑

i=1

(ni − t0(i)λ
∗)2

t0(i)λ∗
,

where λ∗ = n/t0. d tends to a chi-square distribution with k − 1 degrees of freedom

(Cramer 1946, Chapter 30 [27]).

In our case, we reject H0,1 if:

D =
(NR(TR)− TRλ∗)2

TRλ∗
+

(NG(TG)− TGλ∗)2

TGλ∗
> χ2

1,α,

where λ∗ = NR(TR)+NR(TG)
TR+TG

and NR(TR) is the number of red events in the red process

and NR(TG) is the number of red events in the green process.

An alternative test of Lindqvist (1993 [53]) could be applied to test identity within

the class of homogeneous Poisson, nonhomogeneous Poisson and Weibull trend re-

newal process.

This test holds only under the assumption of having renewal process:
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H∗
0,1 : {XR,k} and {XG,k} have same distribution

Using Kolmogorov-Smirnov statistic, we reject H∗
0,1 if

Sup|F ∗
R(t)− F ∗

G(t)| > k(nR, nG)

2) We test for

H0,2 : PR(R) = PG(R)

Is identical with the test used for ’stationary coloring’ (see above). Let the R process

have nR events and let NRR of these be R. Let the G process have nG events and let

NGR of these be R.

We reject H0,2 if:

|NRR/nR −NGR/nG|√
(1/nR + 1/nG)(1−NR/n)NR/n

,

where NR = NRR + NGR, n = nG + nR.

3.3.5 Model assumption 5: The process is stationary com-

peting risk

Since the coloring has already been found to be stationary, this is equivalent to

asking whether the uncolored process is stationary.

We test for trend in the rate of occurrence. The uncolored process has inter-event

times T1, T2, ...Tn

1) Laplace test (Cox and Lewis 1966 [26])

Suppose first that we consider a trend in the rate of occurrence represented by a

smooth change in time

λ(t) = eα+βt.

It is sensible to start by using the above relation rather than a linear one λ(t) = α+βt

because for α > 0 the latter is non-negative only for restricted values of t and β.

Locally, near β = 0 the exponential relation is equivalent to a linear trend. The

probability density that in the interval (0, T ] events occur at T1 ≤ T2 ≤ ... ≤ Tn is

λ(T1) exp{−
∫ T1

0

λ(u)du}λ(T2) exp{−
∫ T1

T2

λ(u)du}...λ(Tn) exp{−
∫ Tn

Tn−1

λ(u)du}
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exp{−
∫ T

Tn

λ(u)du} = {
n∏

i=1

λ(Ti)} exp{−
∫ T

0

λ(u)du} = exp{nα+β
n∑

i=1

Ti−
eα

β
(eβT−1)}.

n and
∑

Ti are sufficient statistics. Further for given β, the sufficient statistic for α

is the number n of events. Hence the distribution for inference about β, when α is a

nuisance parameter, is the conditional distribution of
∑

Ti given n. This conditional

p.d.f. of the observation, given n events, is

n!βn

(eβT − 1)n
eβ

∑n
i=1 Ti .

The conditional likelihood is

L(β) = n ln(β)− n ln(eβT − 1) + β
n∑

i=1

Ti + ln(n!)

so that

L′(β) = n/β − nT/(eβT − 1) +
n∑

i=1

Ti

and the information function is

I(β) = E{−L′′(β)} = n(1/β2 − T 2eβT /(eβT − 1)2).

To test the null hypothesis β = β0 we can use the statistic

L′(β)√
I(β)

.

This has mean zero and unit variance and an asymptotic normal distribution.

If we test the null hypothesis β = 0 the conditional p.d.f is

n!

T n
, 0 ≤ T1 ≤ T2 ≤ ... ≤ Tn.

To interpret this relation consider n random variables U1, ...Un independently uni-

formly distributed over (0, T ], each having the p.d.f. 1/T . The joint p.d.f. is 1/T n.

Now examine the corresponding order statistics U(1) ≤ ... ≤ U(n). To calculate their

p.d.f. at argument T1, T2, ...Tn, note that n! different original sequences U1, ...Un each

with the same p.d.f. lead to the same sequence U(1) ≤ ... ≤ U(n). That is, condition-

ally on n, the positions of the events in a Poisson process are independently uniformly
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distributed over the period of observation T with mean T/2 and variance T 2/12. And

from central limit theorem we have∑n
i=1 Ti − nT/2

T
√

n/12
→ N(0, 1) as n →∞.

We reject H0 when ∑n
i=1 Ti − nT/2

T
√

n/12
> Uα.

2) The above test depends on taking the Poisson process as null hypothesis. We

present now a test in which the intervals X1, ...Xn are independent and identically

distributed, not necessarily exponentially distributed (Cox and Lewis 1966 [26]). If

a plausible functional form can be chosen for the distribution of the Xi’s, a special

test can be constructed by taking the alternative hypothesis a model in which the

parameters in the distribution are suitably chosen functions of the zi’s. We arrange

the Xi’s in increasing order X(1), X(2), ...X(n). Let r(i) be the rank of Xi and define

the score for Xi:

Si = 1/n + 1/(n− r(i) + 1).

We can use an asymptotic normal distribution for

n∑
i=1

Si(zi − z)

with mean zero (by symmetry) and variance
∑n

i=1(zi−z[1− (1/n+ ...+1/2)/(n−1)].

We take zi = i and reject H0 when:

|V | > Uα/2

where V =
∑n

i=1 Si(i− (n + 1)/2)/σ2 and σ2 =
∑n

i=1(i− (n + 1)/2)2[1− (1/n + ... +

1/2)/(n− 1)].

3.3.6 Model assumption 6: The process is renewal competing

risk

It remains to test for independence of inter-event times Xi. Let ρi = corr(Xk, Xk+i).

Then if (Xk, Xk+i) are independent ρi = 0. But the converse is not always true 1.
1If Xk follow a N(0, 1) distribution and Xk+i = X2

k then ρi = corr(Xk, Xk+i) = 0 because
cov(Xk, Xk+i) = M(X3

k)−M(Xk)M(X2
k) = 0 (M(Xk) = 0 and M(X3

k) = 0)
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H0 : {Xi} are independent (ρ1 = 0)

From (Cox and Lewis 1966 [26]) the most useful result is for large sample:

var(ρ∗j) ≈
1

n− j

∞∑
−∞

ρ2
i =

1

n− j
(1 + 2

∞∑
i=1

ρ2
i ).

For a renewal process var(ρ∗j) = 1
n−j

.

ρ∗1
√

n− 1 will have a unit normal distribution if n is large and ρ1 = 0, so that we

reject H0 when

|ρ∗1/
√

n− 1| > Uα/2,

where ρ∗1 =
∑n−1

i=1 (Xi−X∗)(Xi+1−X∗)∑n
i=1(Xi−X∗)2

and X∗ =
∑n

i=1 Xi

n
.

3.3.7 Model assumption 7: The process is Poisson competing

risk

Given that the Xi’s are iid, we may test whether these are exponential (thus giving

the homogeneous Poisson process). We test for independent exponentially distributed

times between events against the alternative of independent times between events with

a Gamma distribution.

Recall that the gamma distribution function has the form:

f(x) = (k/µ)k xk−1e−kx/µ

Γ(k)
,

where Γ(k) is gamma function.

We are testing k = 1 against k 6= 1. This is

H0 : Poisson process

H1 : Renewal process

Cox and Lewis (1966 [26]) suggest two tests:

1) The likelihood function for the n observed times between events is, in this case,

L(X; k, µ) = (k/µ)nk(
n∏

i=1

Xk−1
i )e−k

∑n
i=1 Xi/µ/{Γ(k)}n.

The maximum likelihood estimators of k and µ are the solution of the equations:
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∂ ln L(X;k,µ)
∂k

= 0
∂ ln L(X;k,µ)

∂µ
= 0

Hence the maximum likelihood estimator of k is the solution of:

Ψ(k)− ln(k) = − ln X∗ +
1

n

n∑
i=1

ln Xi,

where Ψ(k) = ∂ ln Γ(k)
∂k

is the digamma function. The left-hand side of this equation is

a monotonic function of k in the neighborhood of k = 1, so that we can write

k = ϕ(− ln X∗ +
1

n

n∑
i=1

ln Xi),

where ϕ is a monotonic function of its argument.

A test based on the statistic which appears as the argument of ϕ will then be

an asymptotically most powerful test of our hypothesis. This test was derived by

Moran(1951). We reject H0 if

ln =
2n(ln X∗ − 1

n

∑n
i=1 ln Xi)

1 + n+1
6n

> χ2
n−1,α.

Under the null hypothesis ln has approximately a chi-squared distribution with

n− 1 degrees of freedom. The divisor was introduced by Bartlett (1937) to improve

this approximation.

2) This test is based on a statistic proposed by Sherman [1950]. This statistic

in its original form is a distribution free statistic; the expected values of the order

statistics U(i) = Ti/T0 if N(T0) = n else U(i) = Ti/Tn+1 are E(U(i)) = i/(n + 1), so

that E(U(i) − U(i− 1)) = 1/(n + 1). The Sherman statistic measures the deviations

from these expected values as:

w∗
n =

1

2

n+1∑
i=1

|U(i) − U(i− 1)− 1/(n + 1)| =
∑n+1

i=1 |Xi −X∗|
2(n + 1)X∗ > constant,

where under H0, E(w∗
n) ≈ 1/e = 0.368 and var(w∗

n) = 0.05908/n − 0.07145/n, and

the normalized statistic has asymptotically a N(0, 1) distribution.





Chapter 4

Reliability Data Analysis

The problem of competing risk data is considered with an application to Offshore

Reliability Data Base (OREDA). Different models for preventive maintenance are

discussed which make the failure rate identifiable, as there are more general bound-

ing methods. A statistical test is used for the concordance of the results of the data

interpretation and the theoretical models proposed. The results indicate the way to

avoid inappropriate models for data analyzing.

4.1 Introduction

Maintenance study requires the use of many modelling assumptions. We focus

on issues related to reliability data bases (RDB’s) interpretation, and in particular

to dependent competing risk. Competing risk models are used to interpret data and

a statistical test is used to find the appropriate competing risk model for RDB in

question.

Modern RDB’s may distinguish ten or more failure modes (ways of ending a service

sojourn), often grouped in critical failures, degraded failures and incipient failures.

The latter two are usually associated with preventive maintenance, whereas critical

failures are of primary interest in risk and reliability calculations. A component exits

a service sojourn due to the occurrence of one of its possible failure modes. The

failure modes are competing each other to ‘kill‘ the component, hence each failure

mode censors the others.

57
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Independent competing risks models have been studied for some time. By observ-

ing independent copies of competing risks we can estimate the subsurvival functions.

Assuming independence of competing risks we can determine the underlying marginal

distributions. In this case we have identifiability. The assumption of independence

is questionable when failures are censored by preventive maintenance. The assump-

tion of independence would imply that maintenance engineers take no account of the

state of a component when taking the decision to preventively maintain. It is more

reasonable to make a dependence assumption between the censoring processes.

In this chapter, we will present the one sided Kolmogorov-Smirnov test for a

two sample problem in order to test the exponential independent model against the

alternative random signs model. Hence, we are going to test whether the conditional

subsurvival function are coming from the same population against the alternative

that the conditional subsurvival function of the censoring variable lies entirely below

the conditional subsurvival of the censored variable. An algorithm how to calculate

the one sided KS statistic is also given.

The performance of the probabilistic model we propose, is illustrated on the Gas

Genenrator data used by Langseth (1999 [52]). This is a subset of Phase IV of the

Gas Turbine dataset from the Offshore Reliability Database (OREDA 1997 [61]). We

have 22 failures in this dataset, out of which 8 are classified as critical and 14 as

degraded. The main results coming out from this dataset is that even for a small

sample population we can say that the conditionally subsurvival functions are not

from the same population and a random signs model is appropriate to interpret this

data.

4.2 Gas Turbine Data - OREDA

A number of offshore platforms had been in operating in Europe for a significant

length of time, and the Offshore Reliability Data (OREDA) handbook project was

established to compile a comprehensive basis of reliability information from failure

and repair records already existing in company files and records.

For the purpose of our study, we use Phase IV of the Gas Turbine data set from

Offshore Reliability Database (OREDA 1997). Only the Gas Generator subsystem

was included in the study. We chose to analyze data from a single offshore installation

only to ensure maximum homogeneity of the data sample. The data set consists of
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the 23 mechanical units, which are followed over a total of 536.403 operating hours.

We have 83 inspections in this data set and 22 failures, out of which 8 are classified as

critical and 14 as degraded. Degraded failures can be associated to a preventive main-

tenance action and critical failure to a corrective maintenance action. The failures

are distributed over four different failure mechanisms, namely deformation, leakage,

breakage and other mechanical failure.

Figure 1. Phase IV of the Gas Turbine data set from Offshore Reliability Database

(OREDA 1997)

Figure 2. Empirical subsurvival functions
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Figure 3. Conditional subsurvival functions and Φ(t) function

Figure 3 shows that the function Φ(t) [ 2
1+2

] is minimum at the origin and the

conditional subsurvival function of critical failure dominates the conditional subsur-

vival function of degraded failure, as predicted by random signs model. Hence, an

independent exponential model is not appropriate for this data. (Stove 2002 [70])

used several models in his attempt to model the failure mechanism of Gas Turbine

data. The Repair Alert model seems to explain data, but since we have quite few

observation of X and Y , the assumption for the conditional subsurvival for Y may

be dubious. He proposed as an alternative the Langseth-Bedford-Lindqvist model or

the Random Sings model.

Further we will present a statistical test for testing if the independent exponential

model fits this data.

4.3 Two-sample Kolmogorov-Smirnov Test

If an independent exponential model holds then the conditional subsurvival

functions are equal and the probability of censoring beyond time t is constant. Hence,

we want to test if the empirical estimation of the conditional subsurvival functions

are from the same population.

Our data consists of two independent random samples drawn independently from

each of two population. Let U and V be random variables with survival functions



61

SU(t) and SV (t) equal to the condtional subsurvial functions of X respectively Y .

From Gas Turbine Data we have two samples U1, U2, ..., U8 of size m = 8, drawn from

the U population and V1, V2, ..., V14 of size n = 14, drawn from the V population.

The hypothesis of interest in the two-sample problem is that the two-samples are

drawn from identical populations,

H0 : SU(t) = SV (t) for all t.

The one-sided Kolmogorov-Smirnov two sample test criteria, denoted by D+
m,n is the

maximum difference between the empirical functions of SU(t) and SV (t):

D+
m,n = max[Sm

U (t)− Sn
V (t)].

Since here the directional differences are considered, D+
m,n is appropriate for a general

one-sided alternative:

H1 : SU(t) ≥ SV (t) for all t.

The null hypothesis H0 is rejected at the significance level α if

D+
m,n > dα,

where

Pr{D+
m,n > dα} = α.

The asymptotic distribution of
√

mn
m+n

D+
m,n is:

lim
m,n→∞

Pr{D+
m,n ≤ dα} = 1− e−2d2

α .

If the size of the samples are bigger than 50 then the asymptotic formula can

be used to determine the significance level at which the null hypothesis is rejected,

otherwise tables should be use. Further we will present an algorithm how to calculate

the tail probability for small samples, necessary for programing implementation.

Let U(1), U(2), ..., U(m) and V(1), V(2), ..., V(n) be the order statics of the two samples

of size m = 8 and n = 14 from continuous populations SU(t) and SV (t). To compute

Pr{D+
m,n ≤ dα}, where D+

m,n = max[Sm
U (t) − Sn

V (t)], we first arrange the combined

sample of m + n observation in increasing order of magnitude (Table 1).
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Sample v v v v u

v v v u u u

v v v v u v

u u v v u

Table 1. Failure times of Gas Turbine data set

The arrangement can be plotted on a Cartesian coordinate system by a path

which stars at the origin and moves one step up for a u observation and one step to

the right for a v observation, ending at (n, m). The observed values of mSm
U (t) and

nSn
V (t) are the coordinates of all points (i, j) on the path, where i and j are integers.

The number dα is the largest of the difference

i

m
− j

n
=

ni−mj

mn
.

The vertical distance from any point (i, j) on the path to the line nu−mv = 0 and

situated below it is max[j − ni
m

]. Hence, ndα for the observed sample is the distance

from the diagonal to that point on the path which is farthest from the diagonal line

and is situated below it.

Figure 4. Cartesian representation of the combine sample

For our case the farthest point is Q and dα = 0.554. The total number of arrange-

ments of mU and nV r.v. is Cm
m+n, and under H0 each of the corresponding paths is
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equally likely. The probability of an observable value of Dm,n not less than dα then

is the number of paths which have points at a below distance from the diagonal not

less than ndα, divided by Cm
m+n. We mark off a line at vertical distance ndα from the

diagonal, below it, as in Figure 4. Denote by A(m, n) the number of paths from (0, 0)

to (m, n) which lie entirely above this line. Then

Pr{D+
m,n ≤ dα} =

A(m, n)

Cm
m+n

.

A(i, j) at any intersection (i, j) satisfies the recursion relation:

A(i, j) = A(i− 1, j) + A(i, j − 1),

with boundary conditions A(0, j) = A(i, 0) = 1. Thus A(i, j) is the sum of the

numbers at the intersection where the previous point on the path could have been

while it still was within the boundaries. Since A(8, 14) = 310, 751, we have:

Pr{D+
8,14 ≤ dα} = 0.0282

Hence we reject the null hypothesis that the conditional subsurvival functions are

coming from the same population at the significant level α = 0.0282.

4.4 Conclusions

Figure 3 shows that the conditional subsurvival function for critical failures

dominates the conditional subsurvival function for degraded failures, as predicted by

random signs model.

The statistical test rejected the null hypothesis that the exponential independent

model is appropriate for this data at the significance level α = 0.0282, indicating

that the random signs model might be indicated to interpret data. The algorithm of

calculating the tail probability for small samples can be implemented also to other

sets of data with a small number of events. We mention also the example of the

pressure relief valves data from a Swedish nuclear station. The Kolmogorov-Smirnov-

test can be applied to test if the exponential independent model describes data. The

null hypothesis (exponential independent model) is rejected at the significance level

α = 0.0209. It is worth mentioning that this test can yield important conclusions

even if one or both of the competing risks are scarce. The test is powerful in spite
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of having only 4 “alarm” and “unintended discovery” events, because there are then

a large number of events of competing risk. Thus, although the estimate of the

conditinal subsurvival function of “alarm“ and “unintended discovery” is very noisy,

the estimate of the competing conditional subsurvival function is not.

Given the Glivenko-Cantelli theorem that the estimated distribution function con-

verges with probability one to the real distribution function when the number of ob-

servation increase, this mean that the quality of estimating the parameters of the

distribution is increasing but the population from which the sample is drawn remains

the same. Hence, we can conclude that the conditional subsurvival functions are

not coming from the same population and even for a small number of samples, the

exponential independent model is not appropriate for this data.

4.5 Competing risk perspective on reliability data

bases

This section considers competing risk models suitable for analysis of modern

reliability databases. Commonly used models are reviewed and a new simple and

attractive model is developed. This model grew out of a study of real failure data

from an ammonia plant. The use of graphical methods as an aid in model choice is

advocated in this section.

4.5.1 Introduction

Since Daniel Bernoulli’s attempt in the 18th century to separate the risk of dying

due to smallpox from other causes, the competing risk theory has spread through

various fields of science such as statistics, medicine and reliability analysis.

The competing risk approach in reliability is closely related to the development of

modern reliability databases (RDB’s) in the second half of the last century. RDB’s

consist of several data fields containing information on failure modes, failure causes,

maintenance/repair actions, severity of failure, component characteristics and oper-

ating circumstances. For every specific field we can often distinguish ten or more

competing risks, which compete to terminate a service sojourn of the component.
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The general theory of competing risk is advanced here as a proper mathematical

language for modeling reliability data.

To check the performance of different probabilistic models, we discuss a dataset

coming from two identical compressor units at an ammonia plant of Norsk Hydro,

covering an observation period from 1968 to 1989 (Erlingsen[34]). The competing risk

models available in the reliability literature are especially developed for the nuclear

sector, where strict regulations are imposed. Consequently these models are often not

appropriate for the various fields of the compressor unit data. Due to the fact that

the compressor unit consists of several heterogeneous sub-components, we therefore

introduce another competing risk model, called the “mixture of exponentials model”,

to interpret the competing risks between different failure modes.

4.5.2 Analysis of Norsk Hydro Data Sets

The data set proposed to discuss different competing risk models comes from

one Norsk Hydro ammonia plant operating two identical compressor units, for the

period of observation 2-10-68 up to 25-6-89. This yields 21 years of observation and

more than 370 events. As every modern reliability data base, this data base has the

following compressor unit history:

• Time of component failure

• Failure mode: leakage, no start, unwanted start, vibration, warming, overhaul,

little gas stream, great gas stream, others

• Degree of failure: critical, non-critical

• Down time of the component

• Failure at the compressor unit: 1 - first unit failed, 2 - second unit failed, 3 -

both units failed

• System and Sub-System Failure

• Action taken: immediate reparation, immediate replacement, adjustment, planned

overhaul, modification, others

• Revision periods: 18 revision periods with a duration from 4 to 84 days



66

Figure 5. Compressor units data

The analysis performed on data is both statistical and probabilistic. Nevertheless,

the most time consuming operation is ”cleaning data”. Experience showed that 2/3 of

the time is spent on extracting the most relevant information from the huge amount

of information gathered in a reliability data base. The main operation on data and

the statistical analysis is presented in (Bunea 2002 [15]). Further the probabilistic

analysis is studied.

A software tool was developed in the higher order programming languages Visual

Basic and Excel. The operator can choose two exhaustive classes of competing risks

(corresponding to the X and Y in Section 2) for the four fields of interest: failure

mode, degree of failure, action taken, system. The analysis may be performed for the

complete observation period or for a certain time window by specifying the limiting

dates of interest.
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Figure 6. User interface

Figures 7-10 illustrate the different field analyses performed on the data. The

upper graphs show the empirical subsurvival functions, Ŝ∗X(t), Ŝ∗Y (t), empirical condi-

tional subsurvival functions, ĈS
∗
X(t), ĈS

∗
Y (t), and the estimated probability of cen-

soring beyond time t, Φ̂(t). The bottom graphs show the estimated Peterson bounds

for the average failure rate, for both classes of risk, as given in Section 2. Cooke and

Bedford[21] explained how to use such graphical displays to choose an appropriate

competing risk model. In Bunea et al.[14] we proposed a statistical test to check

whether an independent exponential model is appropriate for the data, against the

alternative of the random signs model or the mixture of exponentials model. The one

sided Kolmogorov-Smirnov (KS) test was used to test the null hypothesis that the two

empirical conditional subsurvival functions are drawn from two identical populations,

against the alternative that one conditional subsurvival function is larger than the

other. If the null hypothesis is not rejected at the chosen significance level, then the

empirical conditional subsurvival functions may come from two identical populations,

and the independent exponential model or the conditional independence model may

be appropriate.

Failure Mode

The risk engineer tries to avoid a functional failure of the system. Discussions with

maintenance personnel indicate that the most dangerous failure modes among the

listed failure mechanism are ”leakage”, ”no start”, ”unwanted start” and ”vibration”.
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We let this be the risk class corresponding to X. These risks are censored by the other

failure modes, which together correspond to Y . The total number of failures is 359

out of which 166 are censoring events and 193 are events that we want to prevent.

The large number of unwanted events can be explained by a poor maintenance policy.

Figure 7 shows a slightly increasing probability of censoring after time t, which is not

consistent with previously used models. The bottom graphs indicate that a constant

time average failure rate is not reasonable for the distribution of the first competing

risk class. Hence, the independent exponential model is not appropriate in this case.

In fact, choosing the significance level α = 0.05, gives the critical value of the KS

statistic dα = 1.2230. The empirical KS statistic calculated from data is 1.24783,

and hence the null hypothesis is rejected at the level α = 0.05. The graphs seem to

indicate that the mixture of exponentials model may be appropriate in this case.

Figure 7. Analysis of “failure effect” field
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Action Taken

The maintenance engineer is mainly interested in this field. His goal is to avoid the

most expensive maintenance operation, immediate replacement, which corresponds to

X in the model. He will prefer every other maintenance operation, together corre-

sponding to Y , to this one. 85 replacements and 274 other maintenance actions are

found. The empirical conditional subsurvival functions are crossing once and the es-

timated probability of censoring after time t has an inflexion point (Figure 8). Thus,

the graphical interpretation of data might suggest that the independent exponential

model does not hold. However, the Kolmogorov-Smirnov test does not reject the

hypothesis that the empirical conditional subsurvival functions are coming from the

same population. Thus, the independent exponential model might be applied. Given

the uncertainty involved in the graphical visualization and the fact that no model is

available in the literature for this case, we regard these risks as independent.

Figure 8. Analysis of “action taken” field

Degree of Failure

The risk engineer and the maintenance engineer are both interested in this field.

Obviously, they want to prevent a ”critical” failure. From the risk point of view this

is the event with major consequences on the state of the system. On the other hand a
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critical failure is usually associated with a corrective maintenance and a non-critical

with a preventive maintenance. To keep the maintenance costs lower a corrective

maintenance should be avoided. 92 critical failures (X) and 267 non-critical failures

(Y ) are recorded in the database. The empirical conditional subsurvival functions are

more or less equal and the estimated probability of censoring after time t is roughly

constant (Figure 9). The exponential independence model seems to be appropriate

to fit the data, but the estimated Peterson bounds seem to be inconsistent with an

exponential distribution for the critical failure. The KS-test does not reject the hy-

pothesis that the empirical conditional subsurvival functions are equal. Recalling that

the conditional independence model provides equal conditional subsurvival functions,

this model seems most compliant with the graphical and statistical analyses.

Figure 9. Analysis of “degree of failure” field

System

A third type of engineer is interested in this field: the designer. He is concerned

with avoiding the failure of an expensive component. Since the electrical components

are more expensive than mechanical components, their failure should be considered

as the X, while the mechanical components correspond to Y . 208 failures of electrical

components and 151 failures of mechanical components are detected. The empirical

conditional subsurvival of the censoring variable dominates the one of the unwanted
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event and the probability of censoring after time t is increasing (Figure 10). This is

the opposite case of the random signs model, which models the behaviour of a very

competent maintenance team. For the X-related risk, the exponential distribution is

not compatible with the Peterson bounds in Figure 10. The KS-test also rejects the

exponential independent model at the significance level α = 0.05343.

Figure 10. Analysis of “system” field

Based on this we used the mixture of exponentials model of Section 1.3.3. The

following estimates were obtained by the moment method: failure rate of the censoring

variable, λy = 0.0015; failure rates of the mixture, λ1 = 0.03757, λ2 = 0.00936, mixing

coefficient, p = 0.59. Estimated parametric (continuous line) and nonparametric

(dotted line) curves are presented in Figure 11. The figure indicates very good model

fit for these data.
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Figure 11. Model validation

The good fit of the mixture of exponentials model can be explained by hetero-

geneity. The compressor unit is vast and the component histories constituting the

data come from pumps, valves, electro-motors, etc., which are expected to have very

different failure characteristics. The Peterson bounds suggest a mixture of a few com-

ponents with very high average failure rates and other components with low average

failure rates. A similar behavior of data has been found in the pressure relief data

from Swedish nuclear facilities (Cooke et al.[22]).

4.5.3 Conclusions

A new simple and attractive model has been developed for the case when the

conditional subsurvival functions of the censoring variable dominates the conditional

subsurvival functions of the other risks. The model agrees with empirical findings for

the “Failure Mode” and “System” fields, where we observe a decreasing time average

failure rate for X and a roughly constant one for Y . Such simple data analyses

should be performed routinely by engineers. A suitable model may then be fit after

this primary analysis of the data.

For future work, it remains to find a model appropriate for the “action taken”

analysis case, when the conditional subsurvival functions are crossing eachothers (see

Figure 8).
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4.5.4 Statistical analysis of Norsk Hydro Data Base

In order to increase the available observations for the theoretical processes, hence

to reduce the uncertainty in model estimation, one may pool the data obtained from

unit 1 and 2. This operation has to take into account the assumptions 1 and 2. The

assumption of homogeneity within the 2 units data is accepted at the level α = 0.1931

under the assumption of non-homogeneous Poisson processes and it is rejected at the

level α = 0.0328 using the approach proposed by Paulsen et all (1996 [62]). The

assumption of independence is also accepted at level of significance α = 0.95.

Assum. 3 Assum. 4-1 Assum. 4-2

IR(t) = IG(t) PR(R) = PG(R)

Failure Mode

Class I: LEK,IST,UST,VIB 0.6312 rejected 0.7889

Class II: LIG,STG,VAR,OVH,ANN

Action taken

Class I: AKU 0.8969 rejected 0.5616

Class II: AKR,JUS,OVH,MOD,ANN

Degree of failure

Class I: Critical 0.9813 rejected 0.9977

Class II: Non-critical

System

Class I: SPE,ELM,GEA 0.9195 rejected 0.9427

Class II: SMO,KOM,INS

Sub-system

Class I: PUM,TAN,FOR 0.0783 rejected 0.7152

Class II: ROR,TRY,,ANN

Table 2. Significance levels of rejection the null hypothesis for model assumptions 3

(the colored process is stationary) and model assumption 4 (the process is color

blind competing risk)

Having the assumptions of homogeneity and independence validated, the next step

can be approach: the statistical analysis of competing risk concept (assumptions 3
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and 4). Following the choice of competing risk classes proposed in (Bunea et all 2002

[15]) for different fields of interest, one can obtain the significance levels for rejection

the null hypothesis of assumptions 3 and 4 (Table 2).

Since the “color blind” assumption has been rejected, it is not necessary to check

whether the uncolored process is stationary competing risk (Figure 12). However

for the state of the art, one can ask whether the uncolored process is stationary.

Due to the fact that the homogeneity was accepted under the assumption of Poisson

processes, Laplace’s test is used. The null hypothesis is not rejected (significance level

α = 0.3957).

The most important assumption of this analysis, the process is renewal competing

risk, is not rejected at the level of significance α = 0.5067.

At this point we have to find the competing risk model, which is appropriate to

interpret data. In literature one can find two methods: via graphical interpretation

(Bunea et all [15], Cooke and Bedford 2002 [21]) and via statistical testing (Bunea

et all [14], Dewan et all [31]). We propose here to test if the renewal competing risk

process is Poisson. The assumption is rejected at the significance level α = 0.00128.

4.5.5 Conclusions

Figure 12 shows the main assumptions that have been made through this present

work. The validation/invalidation of the assumptions is marked on the graph. The

analysis is not complete due to the fact that no tests are available in the literature

to test the independence of the colors. One attempt of testing independent exponen-

tial distributions, can be found in (Bunea et all 2002 [14]). At this point of color

“independence” a probabilistic interpretation of data has been developed in a new

type of analysis (Cooke 1996 [20]). One can see that if the independence assumption

holds then a constant hazard rate is characteristic for our process, hence we have to

deal with a Poisson process. Nevertheless, the probabilistic analysis performed on

this data (Bunea et all 2002 [15]), indicates that independent model might hold but

exponential distribution not.
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Figure 12. Model assumptions scheme





Chapter 5

The effect of model uncertainty on
maintenance optimization

Much operational reliability data available, for example in the nuclear indus-

try, is heavily right censored by preventive maintenance. The standard methods for

dealing with right censored data (Total Time on Test statistic, Kaplan–Meier esti-

mator, adjusted rank methods) assume the independent competing risk model for

the underlying failure process and the censoring process, even though there are many

dependent competing risk models that can also interpret the data. It is not possi-

ble to identify the “correct” competing risk model from censored data. A natural

question is whether this model uncertainty is of practical importance. In this paper

we consider the impact of this model uncertainty on maintenance optimization and

show that it can be substantial. We present three competing risk model classes which

can be used to model the data, and determine an optimal maintenance policy. Given

these models, we consider the error that is made when optimizing costs using the

wrong model. It is shown that model uncertainty can be expressed in terms of the

dependence between competing risks, which can be quantified by expert judgement.

This enables us to reformulate the maintenance optimization problem to take into

account model uncertainty.

77
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5.1 Introduction

Acronyms

PM preventive maintenance

RC replacement cost

RT replacement time

The standard methods, assuming independent censoring, used to treat right cen-

sored data are non-conservative, in the sense that other dependent censoring mod-

els estimate the underlying failure process more pessimistically (see [8]). Without

making non-testable assumptions (such as independence of the failure and censoring

processes), the true distribution function is not identifiable from the data. Hence, in

addition to the usual uncertainty caused by sampling fluctuation we have the extra

problem of model uncertainty.

In this chapter we test the effect of model uncertainty on the problem of optimiz-

ing maintenance. We assume that data is available which contains censors from an

existing PM program, and use this data to estimate an optimal age replacement PM

program.

In Section 3, we take three model classes of competing risk. The independent

model is used as the most extreme pessimistic model of existing PM. The other ex-

treme model is used for the most optimistic model of existing PM. The dependent

competing risk model is used for the general case and the dependence between com-

peting risks is given by a copula. The minimally informative copula with respect to

the uniform distribution and Archimedean copula are studied - the later will be use to

approximate the first one, due to numerical difficulties in working with the minimally

informative copula for strong dependence between risks. We present a method by

which expert judgement may be used to quantify model uncertainty. In Section 4 we

recall the theory of optimal age replacement policies and in Section 5 we will present

three numerical examples to determine the error that is made when optimizing costs

using the wrong model. The last section shows that model uncertainty does lead to

substantial uncertainty in the estimation of optimal maintenance intervals and to ex-

cessive costs. This chapter extends and develops results given in (Bedford and Mesina

2000 [10]), in particular by showing how expert judgement may be used to quantify

model uncertainty.
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5.2 Three Models for Competing Risk

In this section we present three competing risk models in which the marginal

distribution functions are identifiable. Two of them are the “extreme” cases - inde-

pendent model and high correlated censoring model and the third one assumes that

the dependence between competing risks is given by a copula.

5.2.1 Model 1: Independent competing risks

If FX has a density function fX(t), then the failure rate rX(t) of X is

rX(t) = fX(t)/SX(t) = −(dSX(t)/dt)/SX(t).

Since

d[log(SX)] = dSX/SX ,

we have

SX(t) = exp{−
∫ t

0

rX(s)ds}.

But from competing risk data we observe a different rate of failure for X. The

observed failure rate for X is defined as

obrX(t) = lim
δ→0

Pr{X > t, X < Y,X ∈ (t, t + δ)|Z > t}/δ = − dS∗X(t)/dt

S∗X(t) + S∗Y (t)
.

For the most frequently made assumption in the literature, that of probabilistic in-

dependence between X and Y , we have

S∗X(t) + S∗Y (t) = Pr{X > t, Y > t} = Pr{X > t}Pr{Y > t} = SX(t)SY (t).

Using the above results Cooke [20] showed that if the competing risks X and Y are

independent with differentiable survival functions, then the failure rate is equal with

the observed failure rate

rX(s) = obrX(s).
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Now, the underlying marginal distributions of X and Y can be identified in terms of

the observable sub-survivor functions,

SX(t) = exp(

∫ t

0

dS∗X(s)

S∗X(s) + S∗Y (s)
). (5.2.1)

5.2.2 Model 2: Highly Correlated Censoring

Clearly, independent censoring does not capture the notion that preventive main-

tenance is carried out when the equipment has given some sign of future failure.

The most extreme case is described as follows: Preventive maintenance aims to

prevent the failure of the component at a time immediately before failure. If that aim

is not achieved then the PM action is applied immediately after failure. The PM is

unsuccessful with probability p and successful with probability 1− p, independently

of the time at which the failure occurs. We model this by taking Y = X + δε, where

ε > 0 is very small but depends on X, and δ = {1,−1} with probability p respectively

1− p is independent of X. For very small ε Model 2 gives the following relationships:

S∗X(t) = Pr{X > t, X < Y } = Pr{X > t, δ = 1} = Pr{δ = 1}Pr{X > t} = pSX(t),

and

S∗Y (t) = Pr{Y > t, Y < X} = Pr{δ = −1}Pr{Y > t} ≈ (1−p)Pr{X > t} = (1−p)SX(t).

Hence the normalized subsurvivor functions (normalized so that they take that

value 1 at t = 0) are approximately equal,

S∗X(t)

p
≈ S∗Y (t)

1− p
, (5.2.2)

and both are equal to SX(t). Now, this condition can be checked from the data. If it

does not hold then Model 2 is not correct. An example is shown in Figure 1 where

we have taken

SX(t) = exp(−t0.5).

We took a sample 1000 times for the model above with p = 1/3 and then we plot the

empirical functions
Ŝ∗

X(t)

p
,

Ŝ∗
Y (t)

1−p
and the theoretical SX(t).
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Figure 1. Highly correlated censoring

If Equation 5.2.2 does hold then the model might be correct, but the independent

model might also hold with the same observable data. Assuming Model 1 (indepen-

dence) when Model 2 holds would lead to an incorrect assessment of the marginals.

The following proposition is obtained by using Equation 5.2.1 [10]:

Proposition 5.2.1. Suppose X and Y have a joint distribution described by Model

2. Let X̃ and Ỹ be independent with

S∗X(t) = S∗
X̃

(t) and S∗Y (t) = S∗
Ỹ
(t).

Then

SX̃(t) = [SX(t)]p and SỸ (t) = [SX(t)]1−p.

Model 2 is a special case of the random signs model of Cooke [18]. This model

can be used when the subsurvivor functions satisfy the inequality

S∗X(t)

p
≥ S∗Y (t)

1− p
. (5.2.3)
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5.2.3 Model 3: Dependent Competing risks

In this model we assume that the dependence structure between X and Y

is given by a copula. As defined by Schweizer and Wolff [69] the copula of two

random variables X and Y is the distribution C on the unit square [0, 1]2 of the pair

(FX(X), FY (Y )) (recall that for a continuous random variable X with pdf FX , the

random variable FX(X) is always uniformly distributed on [0, 1]). The functional

form of C : [0, 1]2 → R is

C(u, v) ≡ H(F−1
X (u), F−1

Y (v)),

where H is the joint distribution function of (X, Y ) and F−1
X and F−1

Y are the right-

continuous inverses of FX and FY . Under independence of X and Y the copula

is C(u, v) = uv ≡ Π, and any copula must fall between M(u, v) ≡ min(u, v) and

W (u, v) ≡ max(u+ v− 1, 0), the copulas of the upper and lower Fréchet bounds [59].

As we saw in the first model, under the assumption of independence of X and Y ,

the marginal distribution functions of X and Y are uniquely determined by the sub-

survival functions of X and Y . Zheng and Klein [75] showed the more general result

that, if the copula of (X, Y ) is known, then the marginal distributions functions of X

and Y are uniquely determined by the competing risk data. This result is captured

in the following theorem:

Theorem 5.2.2. Suppose the marginal distribution functions of (X, Y ) are continu-

ous and strictly increasing in (0,∞). Suppose the copula C is known and the corre-

sponding probability measure for any open set of the unit square is positive. Then FX

and FY , the marginal distribution functions of X and Y , are uniquely determined by

the subdistribution functions.

In the Appendix 4.6.1 we show briefly why the marginals are identifiable when

the densities and subdensities exist.

We now discuss the problem of choosing a copula. There are many measures of

association for the pair (X, Y ), which are symmetric in X and Y . The best known

measures of association are Kendall’s tau and Spearman’s rho (we will use the more

modern term “measure of association” instead of the term “correlation coefficient”

for a measure of dependence between random variables).
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Kendall’s tau for a vector (X, Y ) of continuous random variables with joint dis-

tribution function H is defined as follows: Let (X1, Y1) and (X2, Y2) be i.i.d. random

vectors, each with joint distribution H, then Kendall’s tau is defined as the probability

of concordance minus the probability of discordance:

τ(X, Y ) = Pr{(X1 −X2)(Y1 − Y2) > 0} − Pr{(X1 −X2)(Y1 − Y2) < 0}

or

τ(X, Y ) = Pr{sgn(X1 −X2) = sgn(Y1 − Y2)} − Pr{sgn(X1 −X2) 6= sgn(Y1 − Y2)}.

The other measure of association (Spearman’s rho) is defined as follows: Let X

and Y be continuous random variables then the Spearman’s rho is defined as the

product moment correlation of FX(X) and FY (Y ):

ρr(x, y) = ρ(FX(X), FY (Y )) =
Cov{FX(X), FY (Y )}√

V ar{FX(X)}V ar{FY (Y )}
.

Simple formulae relating the measures of association to copula density are given

in the Appendix 4.6.2.

Since the measure of association is to be treated as a primary parameter, it is

necessary to choose a family of copulae which are as “smooth” as possible and which

model all possible measures of association in a simple way. Meeuwissen and Bedford

(1997 [57]) proposed using the unique copula with the given Spearman’s rho that

has minimum information with respect to the independent distribution, and also he

gave a method to calculate numerical this copula. Now, due to the difficulty of

the interpretation of Spearman’s rho by a non-specialist and due to the difficulty of

quantifying it, we will use as a primary parameter Kendal’s tau. Kendall’s tau has

the advantage of a definition which can be explained to a non-specialist, but the value

can not be estimated using only the competing risk data , because of “identifiability

problem”. Thus we need to use some prior knowledge or subjective information to

obtain information about the value of tau. To model the uncertainty over tau we will

use expert judgement. This will be discuss later in this paper, but for now it remains

to clarify the way that we obtain the copula.

Work of Zheng and Klein [75] suggests that the important factor for an estimate of

the marginal survival function is a reasonable guess at the strength of the association

between competing risks and not the functional form of the copula. For this reason

we will choose a class of copula with which it is easy to work from the mathematical
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point of view. A such class is Archimedean copula. First, we recall some definitions

about the Archimedean copula and some properties of Kendall’s tau for a certain

Archimedean family of copula.

Let X and Y be continuous random variables with joint distribution H and

marginal distribution FX and FY . When X and Y are independent, we have H(x, y) =

FX(x)FY (y), and this is the only case when the joint distribution is write into a

product of FX and FY . But, there are some families of distributions in which we

have λ(H(x, y)) = λ(FX(x))λ(FY (y)), see [59]. Using the function ϕ(t) = − log λ(t)

(λ must be positive on the interval (0,1)), we can also write H as a sum of the

marginals FX and FY , ϕ(H(x, y)) = ϕ(FX(x)) + ϕ(FY (y)), or in terms of copula

ϕ(C(u, v)) = ϕ(u) + ϕ(v). Copulas of this form are called Archimedean copulas. The

function ϕ is called an additive generator of the copula. If ϕ(0) = ∞, ϕ is a strict

generator and C(u, v) = ϕ−1(ϕ(u) + ϕ(v)) is a strict Archimedean copula. For our

goal we choose an one-parameter family of copulae which has a strict generator. The

Gumbel family is defined as follows:

Cα(u, v) ≡ exp(−[(− log u)α + (− log v)α]1/α)

for

α ∈ [1,∞).

The generator is the function ϕα(t) = (− log t)α.

As shown in the Appendix 4.6.2, we can directly write α as a function of Kendall’s

tau,

ατ = 1/(1− τ).

It remains now to quantify the uncertainty in Kendall’s tau using expert opinion.

Experts can not be directly asked to quantify their uncertainty over tau, instead they

are asked to give uncertainties over physically realizable quantities [7]. Consider two

sockets with failure times X1 and X2 and the PM times Y1 and Y2. The expert can be

asked for the probability that an attempt to preventively maintain socket one would

occur before the PM for socket two, given that the failure of socket one occurs before

the failure of socket two. Let this probability be q. By symmetry we have the same

probability for the occurrence of the PM for socket two before the PM for socket one

if the failure time of socket one is greater than the failure time of socket two. Also
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we get that the probability of occurrence of the PM for socket two before the PM for

socket one if the failure time of socket one is smaller than the failure time of socket

two is equal to 1− q.

If the experts can give a distribution over q ≡ Pr{Y1 > Y2|X1 > X2}, then we

can this translate to a distribution over Kendall’s tau. Indeed, after a little simple

algebra we have:

Pr{(X1 −X2)(Y1 − Y2) > 0} =

= Pr{(X1 > X2) ∩ (Y1 > Y2)}+ Pr{(X1 < X2) ∩ (Y1 < Y2)} =

= Pr{X1 > X2}Pr{Y1 > Y2|X1 > X2}+ Pr{X1 < X2}Pr{Y1 < Y2|X1 < X2} = q.

Similarly we find:

Pr{(X1 −X2)(Y1 − Y2) < 0} = 1− q

and so

τ = 2q − 1.

Note that q can be considered an observable quantity because q is the approximate

average rate for which {Y (n)
1 > Y

(n)
2 |X(n)

1 > X
(n)
2 } holds when a large sample of pairs

(X
(n)
1 , Y

(n)
1 ), (X

(n)
2 , Y

(n)
2 ) is observed.

Now for each replacement time θ and measure of association τ we can calculate

the long term specific cost and furthermore we can optimize this replacement cost

finding the minimal one. This is discussed in the next section.

5.3 Maintenance Optimization

We consider the effect of uncertainty about the underlying lifetime distribution

on the selection of the maintenance policy. To keep things simple we just consider

the age replacement policies. Recall that an age replacement policy is one for which

replacement occurs at failure or at age θ, whichever occurs first. Unless otherwise

specified, θ is taken to be a constant.

In the finite time span replacement model we will try to minimize expected cost

C(t) experienced during [0, t], where cost may be computed in money units, time, or

some appropriate combination. For an infinite time span, an appropriate objective

function is expected cost per unit of time, expressed as

γ(θ) ≡ lim
t→∞

C(t)

t
.
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Letting N1(t) denote the number of failures during [0, t] and N2(t) denote the number

of planned preventive maintenance during [0, t], we may express the expected cost

during [0, t] as

C(t) ≡ c1E{N1(t)}+ c2E{N2(t)},

where c1 is the cost of critical failure and c2 is the cost for planned replacement.

We only consider non-random age replacement in seeking the policy minimizing the

specific cost γ(θ) for an infinite time span.

Starting from the definition of the specific cost

γ(θ) ≡ lim
t→∞

[c1
E{N1(t)}

t
+ c2

E{N2(t)}
t

]

Barlow and Proschan [2] showed that

γ(θ) ≡ c1F (θ) + c2S(θ)∫ θ

0
S(t) dt

,

where F and S are the lifetime distribution function respectively the lifetime survival

function.

Then γ(0) = ∞ and γ(∞) = c1/
∫ θ

0
S(t) dt. Differentiating γ to find the optimum,

dγ(θ)
dθ

= 0, we obtain the equation

r(θ)

∫ θ

0

S(t) dt− F (θ) =
c2

c1 − c2

.

When FX(x) has an increasing failure rate, the optimal replacement time θ0 is the

unique solution of the above equation. For a r.v. with constant failure rate or

decreasing failure rate the specific cost has not an optimum (sign(dγ(θ)
dθ

) is constant),

thus this type of maintenance policy is not appropriate for a such r.v.

When we have as primary parameter Kendall’s tau and the information over τ is

given by a distribution function Fτ (τ) with density fτ (τ), the specific cost is dependent

on τ and θ:

γ(τ, θ) ≡ c1F (τ, θ) + c2S(τ, θ)∫ θ

0
S(τ, t) dt

.

So the long term specific cost given θ is

γ(θ) =

∫ 1

0

γ(τ, θ)fτ (τ)dτ

and the optimal replacement time θ0 is obtaining minimizing γ(θ).
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5.4 Numerical Examples

We now give the results of three sets of numerical experiments to show the effect of

using Model 1 when Model 2 actually holds, to show the dependence of replacement

cost with the measure of association (Kendall’s tau) and finally to find the optimal

replacement time of the average specific cost.

For the first part of numerical computations, we consider two underlying distri-

butions for X. The first, Distribution 1, is that X has failure rate rX(t) = t3/2.

The second, Distribution 2, assumes a failure rate of rX(t) = t2, while Distribution 3

assumes a failure rate rX(t) = t3. Both failure rates are continuous and increasing,

and correspond to Weibull distributions.

Since the costs of critical failure can be much higher than those of planned main-

tenance (because of other consequences to the system beyond the need simply to

replace the failed unit), we assume that c1 is much larger than c2. Since actual plant

data shows a considerable number of preventive maintenance actions we assume that

p is small. Specifically we take c1/c2 = 10 and c1/c2 = 20, and also p = 0.3 and

p = 0.1, thus giving us 4 different cases on which the two models are compared. Both

replacement times (RT) and replacement costs (RC) are given in Table 5.1. The re-

placement times are the optimal replacement times calculated under the assumption

that the model under consideration is correct. For Model 2 the replacement costs

are equal to the optimal replacement costs. For Model 1 they are equal to the re-

placement costs of Model 2 (which is actually the correct model), evaluated with the

optimal replacement time calculated for Model 1. Hence the costs given for Model 1

are always higher than those of the true Model 2. Table 5.2 gives the ratio of the two

model outcomes (Model 1 divided by Model 2) for the time and costs of each of the

distributions.

For the second part, we consider three sub-survival functions for X which for the

extreme cases (independence and high correlation) take the same failure rates for X

as in the first part, and for every sub-survival function of X, we take other three

sub-survival functions Y in such a way that Inequality 5.2.3 is satisfied (for Weibull

distributions with the same shape parameter of S∗X and S∗Y , the scale parameter of

S∗Y , aY , must be greater then the scale parameter of S∗X , aX). Specifically we take

aX/aY = 1/2, aX/aY = 1/4, aX/aY = 1/8 and for p and c1/c2 we take the same

values as in the first numerical example.

Figure 2, 3 and 4 show the way in which the RC (normalized by RC for the
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c1/c2 10 20
p 0.3 0.1 0.3 0.1

RT RC RT RC RT RC RT RC

Dist 1, Mod 1 0.8280 10.922 1.2849 9.8756 0.6127 18.885 0.9508 21.699
Dist 1, Mod 2 0.3860 7.5921 0.3860 7.5921 0.2574 9.9433 0.2574 9.9433
Dist 2, Mod 1 0.8687 4.9674 1.5047 6.5283 0.5950 7.2682 1.0305 10.102
Dist 2, Mod 2 0.4758 4.2823 0.4758 4.2823 0.3259 6.1916 0.3259 6.1916
Dist 3, Mod 1 0.3393 3.3011 0.3353 3.3280 0.2322 4.6522 0.2303 4.6821
Dist 3, Mod 2 0.3556 3.2006 0.3556 3.2006 0.2393 4.5459 0.2393 4.5459

Table 5.1: Optimal maintenance times and costs

c1/c2 10 20
p 0.3 0.1 0.3 0.1

RT RC RT RC RT RC RT RC

Dist 1 2.15 1.44 3.33 1.3 2.38 1.9 3.69 2.18
Dist 2 1.83 1.16 3.16 1.52 1.83 1.17 3.16 1.63
Dist 3 0.95 1.03 0.94 1.04 0.97 1.02 0.96 1.03

Table 5.2: Ratio’s of maintenance times and costs

independent case) depends on Kendall’s tau.

To obtain a distribution for Kendall’s tau we ask an expert to give quantiles for

the probability q defined in the previous section. If the expert gives 5% and 95%

quantiles then we can fit a beta distribution. Specifically if Pr{q ≤ 0.7} = 0.05 and

Pr{q ≤ 0.95} = 0.95, then the 5% and 95% quantiles for τ are Pr{τ ≤ 0.4} = 0.05

and P{τ ≤ 0.9} = 0.95. Taking the beta distribution as appropriate for τ , we

easily obtain the parameters of this distribution a and b given the above quantiles by

Newton’s method as: a = 5.6705 and b = 2.7322.

The specific costs for different values of Kendall’s tau are shown in Figure 5 and

the average specific cost with optimal replacement time are shown in Figure 6.
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Figure 2. Dependence between RC and the measure of association for the pairs of

the sub-survivals for X and Y given by the first sub-survival for X and the other

three for Y ; a) p = 0.3 and c2/c1 = 0.1; b) p = 0.3 and c2/c1 = 0.05; c) p = 0.1 and

c2/c1 = 0.1; d) p = 0.1 and c2/c1 = 0.05;

Figure 3. Dependence between RC and the measure of association for the pairs of

the sub-survivals for X and Y given by the second sub-survival for X and the other

three for Y ; a) p = 0.3 and c2/c1 = 0.1; b) p = 0.3 and c2/c1 = 0.05; c) p = 0.1 and

c2/c1 = 0.1; d) p = 0.1 and c2/c1 = 0.05;
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Figure 4. Dependence between RC and the measure of association for the pairs of

the sub-survivals for X and Y given by the third sub-survival for X and the other

three for Y ; a) p = 0.3 and c2/c1 = 0.1; b) p = 0.3 and c2/c1 = 0.05; c) p = 0.1 and

c2/c1 = 0.1; d) p = 0.1 and c2/c1 = 0.05;

Figure 5. Specific cost for three values of Kendall’s tau: 0.1, 0.5 and 0.9
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Figure 6. Average specific cost and optimal replacement time

5.5 Robustness of optimal replacement time with

respect to choice of the copula

Work of Zheng and Klein [75] suggests that the important factor for an estimate of

the marginal survival function is a reasonable guess at the strength of the association

between competing risks and not the functional form of the copula. For this reason we

chose [13] Archimedean copula with which it is easy to work from the mathematical

point of view and we calculated for one family of Archimedean copula the average

specific cost with optimal replacement time. Now we introduce other two classes of

copula and another family of Archimedean copula.

5.5.1 Three families of copulae

Minimally informative copula

This copula was originally introduce to knowledge dependence in uncertainty

analysis [19]. Minimally informative copula has minimal information (taken with
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respect to the uniform distribution) with the given correlation among all candidate

distributions. The relative information function of a continuous distribution function

with density fX(x) with respect to the continuous distribution function with density

fY (y) is:

I(fX |fY ) =

∫
log(

fX(t)

fY (t)
)fX(t)dt.

Then the information function of minimally informative copula taken with respect

to the uniform distribution is:

I(c|u) =

∫ ∫
I2

c(x, y) log{c(x, y)}dxdy,

where is the copula density. Meeuwissen and Bedford [57] showed how the minimally

informative copula with given correlation coefficient could be determined. This copula

has density of the form:

c(x, y) = k(x, θ)k(y, θ) expθ(x−0.5)(y−0.5),

where θ = θ(ρ) is a certain monotone increasing function of the correlation coefficient

ρ, and the function k(·, θ) is determined as the solution to an integral equation:

k(x, θ) = [

∫ 1

0

k(y, θ) expθ(x−0.5)(y−0.5) dy]−1.

Meeuwissen and Bedford proposed in 1997 [57] a discrete approximation to the

density of minimally informative copula. This method is based on a so-called DAD

algorithm. This algorithm works because we know the general form taken by the

copula, but relies on the fact that the correlation is determined by the mean of the

symetric function FX(t)FY (t). In order to have asimmetric specifications, Bedford

(2002 [6]) developed a D1AD2 algorithm, to show how non-symetric functions can be

used to determine the unique joint distribution (copula) with given uniform marginals

and rank correlation.
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Figure 7. The density of minimally informative copula with correlation 0.7

Diagonal band distribution

Definition 5.5.1. For positive measures of association the density of the diagonal

band distribution, bα(x, y) has a mass in a band around the diagonal y = x. The

bandwidth β equals 1− α; i.e.

P{X − β < Y < X + β} = 1.

The density bα(x, y) takes values 0, 1/2β and 1/β on the five regions it divides the

unit square into,

bα(x, y) =
1/2

1− α
(1{α−1≤x−y≤1−α} + 1{1−x−y≥α} + 1{1−x−y≤−α}),

with 0 ≤ α ≤ 1 and 0 ≤ x, y ≤ 1.
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Figure 8. The density of diagonal band distribution with correlation 0.7

Zheng and Klein assumed a copula with positive probability measure on any open

set in order to to get identifiability, so just using diagonal band distribution is not

possible. Hence, we will consider mixtures of diagonal band distribution with relative

information with respect to the uniform density given a correlation.

Definition 5.5.2. Let 0 ≤ p ≤ 1. A probability distribution M(α), M : [−1, 1] →

[0, 1] is called a mixing function if its probability density function consists of an

absolutely continuous part m(α) ≥ 0 with
∫ 1

−1
m(α)dα = p and a discrete part with

atoms pj > 0 at αj, −1 ≤ αj−1 ≤ αj ≤ 1, ∪j{αj} = A and
∑

j pj = 1− p. A may be

the empty set.

Definition 5.5.3. Let M(α) be a mixing function. A mixture fM(x, y) of diagonal

band densities bα(x, y) is defined as

fM(x, y) =

∫ 1

−1

bα(x, y)dM(α).

Meeuwissen [56] proved that mixtures fM with correlation ρ have less relative in-

formation with respect to the uniform distribution I(fM |u) than the diagonal band



95

density with the same correlation. This is another reason to consider mixture of

diagonal band distributions to model an incompletely specified joint probability dis-

tribution. Using the results of Meeuwissen we can approximate the mixing densities

that give mixture with minimal relative information with respect to the uniform den-

sity very well with a mixture of the uniform density and a beta density. Thus we

can determine directly that mixing measure in the class of beta densities that gives

a mixture of diagonal band densities with minimal relative information with respect

to the uniform density given correlation.

Archimedean copula

We considered in Section 4.2.3 only the Gumbel family of copulae:

Cα(u, v) = exp(−[(ln
1

u
)α + (ln

1

v
)α]

1
α

ϕα(t) = (− ln t)α with α ∈ [1,∞) and C1 = Π, C∞ = M.

For this study we will take into account another family of Archimedean copula.

Cα(u, v) = exp(1− [(1− ln u)α + (1− ln v)α − 1]
1
α )

ϕα(t) = (1− ln t)α − 1 with α ∈ [0,∞) and C1 = Π, C∞ = M.

Using Theorem 4.6.3, we obtain the following relation between Kendall’s tau and

the parameter α:

τ(α) = exp(2) ∗ (gamma(2− α, 2) ∗ 2α + α− 3)/α.
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Figure 9. The densities of two Archimedean families of copula with correlation 0.8

Using the same simulation study presented in section 4.4, one can obtain the

average specific cost and optimal replacement time for different families of copula.

(Figure 10)

Figure 10. The average specific cost with optimal replacement time
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5.6 Discussion

The results presented in Table 1 and 2 show that the “optimal replacement in-

terval” and “optimal replacement costs” can be dramatically non-optimal when the

wrong model is used to estimate the underlying failure distribution from censor data.

The difference is least when the failure rate increases quickly. when the failure rate

increase more slowly, the difference is larger. For one case calculated here the specific

costs obtained by using the independent model would be more than twice the best

possible specific costs using the correct model. In the second part we consider the

effect of model uncertainty due to impossibility of identifying the “correct” competing

risk model from censored data. Using the expert judgement to quantify the depen-

dence between competing risks , we have shown that the replacement cost is highly

sensitive to the measure of association Kendall’s tau. Figure 1, 2 and 3 show that

sensitivity is higher for the first model and for a certain case RC can be twice than

RC for independent case. Figure 4 shows also that the difference between optimal

replacement costs and optimal replacement time can be more than twice and Figure

5 presents the long term specific cost and the optimal replacement time.

The work carried out here demonstrates the importance of using good expert

judgement from experts with insight into the maintenance process. If the experts are

able to select the correct correlation level then this will aid model selection consider-

ably.

The results show little difference among the four different families of copula, re-

garding the optimal replacement time. Figure 10 suggests that the important factor

for determine the optimal replacement time is the measure of association between

risks X and Y and not the functional form of the copula. This results confirm Zheng

and Klein study over the robustness of copula-graphic estimator.

The results also show that the optimal replacement times for all families of copula

studied can be found in a small interval. This is most important since it suggests that

we can robustly determine the optimal replacement time even without being certain

about the optimal costs.



98

5.7 Appendix

5.7.1 Part 1

We show briefly why the marginals are identifiable in the case that densities and

subdensities exist. By definition we have that the subdistribution function of X is

F ∗
X(t) ≡ P{X ≤ t,X < Y }.

After a straightforward calculation we get:

F ∗
X(t) =

∫ t

0

∫ ∞

x

h(x, y)dxdy =

∫ t

0

HX(x,∞)−HX(x, x)dx =

= FX(t)−
∫ t

0

HX(x, x)dx = FX(t)−
∫ t

0

Cu(FX(x), FY (x))fX(x)dx,

where h(x, y) is the joint density function of X and Y and HX(x,∞) respectively

HX(x, x) denote the first order partial derivative δ
δx

H(x, y) calculated in (x,∞) re-

spectively in (x, x). We obtain an analogous formula for F ∗
Y . From this formula

it follows that the marginal distributions functions FX and FY are solutions of the

following system of ordinary differential equations:

{
{1− Cu(FX(t), FY (t))}F ′

X(t) = F ∗′
X (t)

{1− Cv(FX(t), FY (t))}F ′
Y (t) = F ∗′

Y (t)

with initial conditions FX(0) = FY (0) = 0, where Cu(FX(t), FY (t)) and Cv(FX(t), FY (t))

denote the first order partial derivatives δ
δu

C(u, v) and δ
δv

C(u, v) calculated in (FX(t), FY (t)).

5.7.2 Part 2

To see which are the relations between the measures of association and copula we

will recall three theorems (see [59]).

Theorem 5.7.1. Let X and Y be continuous random variables whose copula is C.

Then Kendall’s tau for X and Y (which we will denote by either τ(X, Y ) or τC) is

given by

τ(X, Y ) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1.
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Theorem 5.7.2. Let X and Y be continuous random variables with copula C. Then

Spearman’s rho for X and Y (which we will denote by either ρ(X, Y ) or ρC) is given

by

ρ(X, Y ) = 12

∫ 1

0

∫ 1

0

uvdC(u, v)− 3,

ρ(X, Y ) = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3.

Recall also from [59] the following theorem which enables us to determine the

parameter α (and implicitly the copula) when we know Kendall’s tau.

Theorem 5.7.3. Let X and Y be random variables with an Archimedean copula C

generated by ϕ ∈ Ω. Kendall’s tau for X and Y is given by

τC = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.

If Cα is a member of the Gumbel family, then for α ≥ 1,

ϕ(t)

ϕ′(t)
dt =

t log t

α
,

so that τ(α) = 1− 1/α. Now it is easy to see that

ατ = 1/(1− τ).





Chapter 6

Two-Stage Bayesian Models -
Application to ZEDB project

6.1 Introduction

ZEDB is the major German effort to collect data from nuclear facilities. The

goal of the project is to create a reliability data base which contains all major plant

events: failure events, operational experience, maintenance actions. In this respect

ZEDB is the German equivalent for the Nordic t-book project. As mathematical tool

to analyse ZEDB data, a 2-stage Bayesian model was chosen. The first evaluation of

ZEDB, in order to obtain estimates of failure rates or failure probabilities per demand

for groups of components (as generators and pumps), was performed in 1998.

The standard two stage model, applied to the problem of assimilating failure data

from other plants was developed in [ Kaplan, 1983, Iman and Hora, 1987,1989, 1990,

Prn 1990]. The SKI data bank [1987] uses a two stage model developed by Pörn

[1990]. This model was reviewed in [Cooke et al, 1995], and further discussed in

[Meyer and Hennings, 1999].

First we identify the standard conditional independence assumptions and derive

the general form of the posterior distribution for failure rate λ0 at plant of interest 0,

given failures and observation times at plants 0, 1, ...n. Any departure for the derived

mathematical form necessarily entails a departure from the conditional independence

assumptions. Vaurio’s one stage empirical Bayes model is discussed as an alternative

to the two stage model [Vaurio, 1987]. Hofer [Hofer et al 1997, Hofer and Peschke,

101
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1999, Hofer, 1999] has criticized the standard two-stage model and proposed an alter-

native, which is also discussed. Finally, the methods of Pörn and Jeffrey for choosing

a non-informative prior distribution are discussed.

The ZEDB software verification is accomplished by independently coding the

model in a higher order programming language and comparing results. This effort is

based on the published information over the models and their implementation. No

appeal is made to unpublished information regarding the details of the numerical

implementation. Hence the differences which arise may be taken to represent those

which any independent calculation based on public information might produce.

The following conclusions are drawn:

1. Two stage models provide a valid method for assimilating data from other

plants. The conditional independence assumptions, as also used in ZEDB, are

reasonable and yield a tractable and mathematically valid form for the failure

rate a plant of interest, given failures and operational times at other plants in

the population.

2. Choice of hyperprior must be defensible. Non-informativeness is not a good

defense if it leads to improper distributions. The influence of the hyperpriors

does not decay as observation times get longer, if the number of plants in the

population remains fixed.

3. Improper hyperpriors do not always become proper after observations. Im-

proper hyperpriors should be avoided if propriety after observations cannot be

demonstrated.

4. The present implementation produced for verification of the implementation of

the ZEDB results yields agreement with the gamma model of ZEDB which is

consistent with previously noted variations due to truncation of the hyperpa-

rameters.

5. This present implementation produces good agreement with the lognormal model

of ZEDB.

6. The lognormal model, as used in standard ZEDB evaluations, enjoys a signifi-

cant advantage over the gamma model in that, as observation time increases, a

natural truncation of the hyperparameters m,s is possible.
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7. In the context of a literature survey, Vaurio’s one-stage empirical Bayes model

has been investigated. It is elegant and simple. It will not work with zero

observed failures or with a population of two plants.

8. In the context of a literature survey, Hofer’s criticism for the normal two-stage

model and his own variant have been investigated. The latter appears to rest on

shifting viewpoints involving conflicting assumptions. Consistent application of

the standard conditional assumptions collapses his model into the same form

(equation 4) which he criticizes as a ’wrong chance model’. Further discussion

should wait until the conditional independence assumptions and mathematical

derivation are clarified.

6.2 Bayesian Two Stage Hierarchical Models

Bayesian two stage or hierarchical models are widely employed in a number of areas.

The common theme of these applications is the assimilation of data from different

sources, as illustrated in Figure 1. Agents producing failure data in this case are

component types at nuclear power plants, but it could also be hospitals / treatments

producing deceased patients [Mashall and Spiegelhalter 2000], factories producing

pollution, or units of any kind producing malfunctions, etc [Richardson and Green,

1997, Clayton et al, 2000] . The data from agent i is characterized by an exposure

Ti and a number of events Xi. The exposure Ti is not considered stochastic, as it

can usually be observed with certainty. The number of events for a given exposure

follows a fixed distribution type, in this case Poisson. The parameter(s) of this fixed

distribution type are uncertain, and are drawn from a prior distribution. The prior

distribution is also of a fixed type, yet with uncertain parameters. In other words, the

prior distribution itself is uncertain. This uncertainty is characterized by a hyperprior

distribution over the parameter(s) of the prior.
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Figure 1. Bayesian Two Stage Hierarchical model

In Figure 1, the hyperprior is a distribution P (Q) over the parameters Q of the

prior distribution from which the Poisson intensities λ1, ...λn are drawn. In sum, our

model is characterized by a joint distribution:

P (X1, ...Xn, λ1, ...λn, Q) (1)

A two-stage model is really nothing more than a joint distribution (1). To be useful,

however, we must derive conditional distributions. Typically we want to use data

from ”other plants” to make predictions about a given plant. This is very attractive

in cases where the data from the given plant is sparse.

To yield tractable models, such models must make two types of assumptions. First,

conditional independence assumptions [Pörn, Iman and Hora] are made to factor (1).

Second, assumptions must be made regarding the fixed distribution types and the

hyperprior distribution P (Q). The conditional independence assumptions may be

read from Figure 1, by treating this figure as a ”belief net”. In particular, this figure

says:
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CI.1 Given Q, λi is independent of {Xj, λj}j 6=i,

CI.2 Given λi, Xi is independent of {Q, λj, Xj}j 6=i.

The expression ”Xi is independent of {Q, λj, Xj}j 6=i” entails that Xi is independent

of Q, and Xi is independent of λj, which we sometimes write as Xi⊥λj.

Virtually all 2-stage Bayesian models make the above conditional independence

assumptions, with one possible exception (see below). Their plausibility in the present

context is discussed in [Cooke et al. 1995]. With these assumptions we can derive the

conditional probability P (λ0|X0, ...Xn) for the failure rate at plant 0, given Xi failures

observed at plant i, i = 0, ...n. This is sometimes called the posterior probability for

λ0.

6.2.1 Derivation of Posterior Probability for λ0

Certain features are common to all two stage Bayesian models, at least those

subscribing to CI.1 and CI.2. We derive these features characterizing the posterior

probability of λ0 in this section.

We assume throughout that the plant of interest is plant 0. Since the observation

times T0, ...Tn are not stochastic, we suppress them in the notation. We seek an

expression for

P (λ0|X0, ...Xn) (2)

We step through this derivation, giving the justification for each step. A more

detailed exposition is found in [Cooke et al 1995]. ” ∝ ” denotes proportionality,

”CI.i” means that conditional independence assumption i is invoked, i = 1, 2; and

”TP” denotes the law of total probability; and ”FB” denotes Fubini theorem. The

Fubini theorem authorizes switching the order of integration if the integrals are finite
1 [Royden 1968, p269],

P (λ0|X0, ...Xn) ∝ (Bayes theorem) P (X0|λ0, X1, ...Xn)P (λ0|X1, ...Xn)
1The Fubini theorem says that if f(x, y) is (Lebesgue) integrable with respect to the product mea-

sure, dx×dy, over some domain X×Y , then
∫

f(x, y)dx×dy =
∫

[
∫

f(x, y)dx]dy =
∫

[
∫

f(x, y)dy]dx.
A function f over X×Y is integrable if supαi<f(Ai){

∑
i=1..m αiµ(Ai)} < ∞, where the sup is taken

over all finite partitions {Ai} of X × Y and αi ∈ R; and where µ(Ai) is the Lebesgue measure of
Ai. There are examples in which

∫
f(x, y)dx× dy 6=

∫
[
∫

f(x, y)dx]dy =
∫

[
∫

f(x, y)dy]dx, but then
of course the product integral does not exist [De Barra, 1974, p. 202].
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∝ (CI.2) P (X0|λ0)P (λ0|X1, ...Xn)

∝ (TP, Bayes theorem)

P (X0|λ0)

∫
λ1..λn

∫
q

P (λ0|λ1, ..λn, q,X1, ...Xn)P (q, λ1, ...λn|X1, ...Xn)dqdλ1..dλn

∝ (CI.1) P (X0|λ0)

∫
λ1..λn

∫
q

P (λ0|q)P (q, λ1, ...λn|X1, ...Xn)dqdλ1..dλn

∝ (Bayes theorem)

∝ P (X0|λ0)

∫
λ1..λn

∫
q

P (λ0|q)P (X1, ...Xn|q, λ1, ...λn)P (q, λ1, ...λn)dqdλ1..dλn (3)

∝ (CI.1, 2; Fubini theorem)

P (X0|λ0)

∫
q

P (λ0|q)
∫

λ1..λn

[
∏

i=1..n

P (Xi|λi)P (λi|q)dλ1..dλn]P (q)dq

∝ P (X0|λ0)

∫
q

P (λ0|q)
∏

i=1..n

∫
[P (Xi|λi)P (λi|q)dλi]P (q)dq (4)

Expression (4) is normalized by integrating over all λ0.

6.2.2 Summary of Significant Features

If conditional independence assumptions CI.1, CI.2 hold, then necessarily the

posterior probability of λ0 given (X0, ...Xn) has the form (4). Equivalently, if the

posterior probability does not have the form (4), then necessarily CI.1, CI.2 do not

both hold.

1. If Q = q0 is known with certainty, then there is no influence from X1, ...Xn on

λ0. Indeed, in this case the posterior density in λ0 is simply proportional to

P (X0|λ0)P (λ0|q).



107

2. As the numbers Xi, Ti, i = 1...n get large, Xi/Ti → λi, then the Poisson like-

lihood P (Xi|λi) converges to a Dirac measure concentrating mass at the point

Xi = Tiλi. In the limit the ”hyperposterior”

∏
i=1..n

[

∫
P (Xi|λi)P (λi|q)dλi]P (q) (5)

becomes

[
∏

i=1..n

P (λi = Xi/Ti|q)]P (q) (6)

(6) corresponds to the situation where P (q) is updated with observations λ1, ...λn.

Note that as the observation time increases, the number n does not change. If

n is only modest (say in the order 10) then the effect of the hyperprior will

never be dominated by the effect of observations2. We say that the hyperprior

persists in the posterior distribution P (λ0|X0, ...Xn).

3. The persistence of the hyperprior is a very significant feature of the two stage

Bayesian models which practioners have not always fully appreciated. For one

thing, it means that the choice of hyperprior must be very defensible, as it will

never be overruled by observational data.

4. It is shown in [Cooke et al 1995], [Hennings and Meyer, 1999] that improper hy-

perpriors P (q) do not always become proper when multiplied by [
∏

i=1..n P (λi =

Xi/Ti|q)]P (q). In other words, the hyperposterior may well remain improper.

This is very serious, as posterior expectations may then be infinite, and nu-

merical results will essentially depend on the method of truncation. Hence,

”non-informativeness” does not yield defensible hyperpriors, unless the propri-

ety after observations can be demonstrated.

2The following thumbnail calculation illustrates this point. Suppose λ is drawn from a
Gamma(α, β) distribution with α fixed and with β following a prior Gamma(h, s). The prior
variance is hs−2. After updating the prior with observations λ1..λn, the variance of G(h, s|λ1..λn)
is (nα + h)(

∑
λi + s)−2. Assuming that α is order h and λi is order s, we see that the observations

reduce the variance with a factor (n + 1). The Bayesian confidence bounds are roughly linear in the
standard deviation, and hence are shrinking by a factor (n + 1)1/2. Hence, for n = 10, the 5%, 95%
confidence band in β is shrunk by a factor 3.3.
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The conclusion from the above general discussion is that the Bayesian two stage

hierarchical model is sensitive to the choice of hyperprior, and that improper hyper-

priors should be avoided unless propriety of the posterior can be proved.

6.2.3 Selected Literature Review

We restrict to two stage models implemented in the present context of assimilating

data from other plants. Two stage Bayesian models have been implemented by various

authors. Perhaps one of the first to propose these models in the context of assimilating

data from different plants was [Kaplan, 1983 ]. Kaplan used a log normal prior with

a Poisson likelihood, which of course is not a natural conjugate. This method has

been implemented by ZEDB. [Iman and Hora, 1989, 1990] and [Hora and Iman, 1987]

proposed a natural conjugate gamma prior. [Vaurio, 1987] proposed a one-stage

empirical Bayes approach, using other plants to determine the prior. [Frhner, 1985]

proposed a method of choosing a hyperprior for two stage models. The SKI data bank

[1987] uses a two stage model developed by Pörn [1990]. This model was reviewed in

[Cooke et al, 1995], and further discussed in [Meyer and Hennings, 1999]. Recently

[Hofer et al 1997], [Hofer and Peschke, 1999] and [Hofer, 1999] have suggested that

an incorrect chance mechanism underlies the two-stage models, and have proposed

their own model. In this section we briefly review these developments.

In the two stage Bayesian models considered here (Figure 1) use a Poisson likeli-

hood. The prior is usually gamma or log normal. The second stage places a hyperprior

distribution over the parameters of the prior gamma or log normal distribution. We

briefly recall the definitions and elementary facts of the Poission, Gamma, and log

normal distributions in Table 1 below:

Name Density Expectation Variance

Poisson P (X|T, λ) = (λT )X

X!
e−λT , λ > 0, T > 0 λT λT

Gamma f(λ|α, β) = λα

Γ(α)
βαe−βλ, α > 0 α/β α/β2

Lognormal f(λ|µ, σ) = 1√
2πσλ

e−
(ln λ−µ)2

2σ2 , σ > 0 eµ+σ2/2 e2µ+σ2
(eσ2 − 1)

Table 1

Using a gamma prior with parameters as above, the term in (4):∏
i=1..n

∫
P (Xi|λi)P (λi|q)dλi
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becomes after carrying out the integration:

n∏
i=1

Γ(Xi + α)

Γ(Xi + 1)Γ(α)
(

β

β + Ti

)α(
Ti

β + Ti

)Xi =
n∏

i=1

(
Xi + α− 1

Xi

)
(

β

β + Ti

)α(
Ti

β + Ti

)Xi (7)

where (
Xi + α− 1

Xi

)
=

(Xi + α− 1)!

Xi!(α− 1)!

Further calculation to solve equation (4) must be performed numerically. It is

shown in [Cooke et al. 1995] that improper hyperpriors may remain improper after

assimilating observations. The asymptotic behavior of the ”hyperposterior”

P (α, β|X1...Xn, T1...Tn) ∝ P (X1...Xn, T1...Tn|α, β)P (α, β)

will essentially be determined by the maximum of P (X1...Xn, T1...Tn|α, β). The sig-

nificant fact is that P (X1...Xn, T1...Tn|α, β) has no maximum; it is asymptotically

maximal along a ridge, see (Figure 2).

Vaurio

[Vaurio, 1987] proposed an analytic empirical Bayes approach to the problem

of assimilating data from other plants. A simple one-stage Bayesian model for one

plant would use a Poisson likelihood with intensity λ, and a Gamma(λ|α, β) prior.

Updating the prior with Xi failures in time Ti yields a Gamma(λ|α + Xi, β + Ti)

posterior. Vaurio proposes to use data from the population of plants to choose the

Gamma(λ|α, β) prior by moment fitting. Any other two moment prior could be used

as well. Data from other plants are not used in updating, hence, this is a one-stage

model.

We sketch Vaurio’s model in the simple case that the observation times at all n+1

plants are equal to T . The population mean and (unbiased) variance are estimated

as:

m = (
∑

i=0..n

Xi/T )/(n + 1) (8)
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v = (
∑

i=0..n

(Xi/T −m)2)/n. (9)

A shifted variance estimate, which is positive when at least one of the Xi > 0, i =

0, ..n; is defined as:

V = v + m/nT. (10)

V and m are used to solve for the shape α and scale β of a gamma prior G(λi|α, β):

α = m2/V (11)

β = m/V. (12)

Using the familiar gamma-Poisson one stage model, the posterior mean and vari-

ance for λi after observing Xi failures in time T , are:

E(λi|Xi, T ) = (α + Xi)/(β + T ), (13)

V ar(λi|Xi, T ) = (α + Xi)/(β + T )2. (14)

The model is consistent, in the sense that as Xi, Ti → ∞, with Xi/Ti → λi,

his model does entail that E(λi|Xi, Ti) → λi. Elegance and simplicity are its main

advantages. Disadvantages are that it cannot be applied if all Xi = 0, or if the

population consists of only 2 plants. Further, numerical results in section 4 indicate

that the model is non-conservative when the empirical failure rate at plant 0 is low

and the empirical failure rates at other plants are high. A final criticism, which

applies to most empirical Bayes models is that the data for the plant of interest is

used twice, once to estimate the prior and once again in the Poisson likelihood. Thus,

Xi occurs in (13) twice, once as Xi, and again in the estimate of α and β. This may

contribute to the non-conservativism noted in section 4.

Fröhner

[Fröhner, 1985] proposed a two stage model in which the hyperprior is a mixture of

the gamma posteriors at each plant. Fröhner explicitly states that this model is useful
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when the gamma posteriors are sufficiently smooth, a point that was emphasized in a

discussion with [Kaplan, 1985]. This condition will not hold as the observation times

at each plant get large, as the gamma posteriors converge to Dirac distributions.

Because of this limitation, the model will not be treated further in this report.

Hofer

Hofer has published a number of articles [Hofer et al, 1997][Hofer, 1999] and

[Hofer and Peschke, 1999] in which the two-stage models are faulted for using a

‘wrong chance mechanism‘, and a new model is proposed. He does not explicitly

formulate conditional independence assumptions, and does not derive the posterior by

conditionalizing the joint as done above. Rather, the model is developed by shifting

between the point of view of ‘observing λi‘ and ‘observing (Xi, Ti)‘. [Hofer 1997]

criticizes [Hora and Iman 1990] for using the wrong order of integration of improper

integrals 3. In later publications, a “deeper“ reason is found to reside in the use of a

“wrong chance mechanism“. Hofer’s model appears 4 to result in a posterior of the

following form:

P (λ0|X0..Xn) ∝ P (X0|λ0)

∫
(q)

P (λ0|q)
∫ ∫

∀λ1..n

[
∏

i=1..n P (λi|q)]P (q)∫
(q)

[
∏

i=1..n P (λi|q′)]P (q′)dq′

[
∏

i=1..n

P (λi|q)]P (λ1...λn)dλ1...dλndq (15)

Notice that this does not appear to have the form of (4).

Although Hofer does not explicitly formulate his conditional independence as-

sumptions, he does use them. E.g. he uses CI.1 to derive the expression in the

3An improper integral is an integral with one or more infinite bounds, or an integral with finite
bounds where the integrand is unbounded at one or more points between (≤,≥) the integration
limits. As noted in the footnote in section 5.2.1, the order of integration over X × Y can only make
a difference if the function in question is not integrable with respect to the product measure. Even
stronger is the following statement (De Barra 1974, p 202): if a function of two variables is non
negative, then if one of the iterated integrals is finite, so is the other and the order of integration
makes no difference. Even so, the integral with respect to the product measure may not exist.
Further, whenever the variables’ ranges are truncated to a domain of finite measure in which the
integrand is bounded, then the function is integrable with respect to the product measure and the
order of integration is immaterial.

4This represents our, admittedly uncertain, conjecture as to the intended posterior distribution.
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denominator (see equation (4) of [Becker and Hofer, 2001]). If CI.1 holds, then nec-

essarily

∫
(q)

[
∏

i=1..n

P (λi|q′)]P (q′)dq′ =

∫
(q)

P (λ1...λn|q)P (q)dq = P (λ1...λn) (16)

and (15) reduces to (4). If CI.1 does not hold, then the origin of the prod-

uct
∏

P (λi|q) is unclear. Hofer says that P (λ1...λn) =
∏

r(λi), where r(λi) is a

noninformative prior, which he takes to be constant. This entails that the λi are

unconditionally independent. It is not difficult to show that if λi are unconditionally

independent, and independent given q, that then λi is independent of q 5. This would

make the entire two stage model quite senseless. If P (λ1...λn) =
∏

r(λi) = constant

in the numerator of (15), but not in the denominator, then (15) is not equivalent to

(4), but rests on conflicting assumptions.

In any event, if (15) does not reduce to (4) then the assumptions CI.1, CI.2 do not

both hold. Hofer does not say which assumptions are used to derive (15), in fact (15)

is not derived mathematically, but is “woven together” from shifting points of view.

The danger of such an approach is that conflicting assumptions may be inadvertently

introduced. This appears to be the case, as the λi are at one point assumed to be

independent, and at another point are assumed to be conditionally independent given

q. A consistent application of Hofer’s (implicit) conditional independence assumptions

would reduce (15) to (4), which of course is the model Hofer faults for using a “wrong

chance mechanism“.

A standard mathematical derivation of this model would easily remove all unclar-

ity. This involves:

1. Clearly stating the modeling assumptions

2. Writing down the joint distribution, and

3. Derivingthe posterior distribution via conditionalization.

5Independence implies that for all λi, P (λ1, ...λn) =
∏

P (λi) =
∏∫

P (λi|q)P (q)dq. By condi-
tional independence; P (λ1, ...λn) =

∫
P (λ1, ...λn|q)P (q)dq =

∫ ∏
P (λi|q)P (q)dq. The λi are identi-

cally distributed given q; take λi = λ; i = 1, ...n. These two statements imply [
∫

P (λ|q)nP (q)dq]1/n =∫
P (λ|q)P (q)dq. Since the integrand is non-negative, this implies that P (λ|q) = constant = P (λ)

(Hardy Littlewood and Polya 1983, p 143].
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The gravity of the of ”wrong chance mechanism” charge warrants such a derivation.

This would also clarify the order of integration issue: if the order of integration is not

material, it would be helpful to acknowledge this directly. Further discussion of this

model should be deferred, pending a mathematical derivation.

Pörn

Pörn (1990) introduces a two stage model with a gamma prior for λ, similar

to (Hora and Iman 1990). He provides an argument for choosing the following non-

informative (improper) densities for the parameters ν, µ′:

g(ν) =
1

ν
, ν > 0, k(µ′) =

1√
µ′(1 + µ′)

, µ′ > 0 (17)

where ν = 1
α

is the coefficient of variation and µ′ = Tα
β

is the expected number of

failures at time T , given α and β. Assuming independence between these parameters

and transforming back to the hyperparameters α and β, α = 1
ν2 β = T

ν2µ
, a joint

(improper) hyperprior density for α and β is obtained proportional to:

1

β
√

α(α + β/T )
(18)

Jeffrey’s rule

Another frequently used principle, called Jeffrey’s rule, is to choose the non-

informative prior P (q) for a set of parameters q proportional to the square root of

the determinant of the information matrix Φn(q):

P (q) ∝
√
|Φn(q)|, where Φn(q) = E{ ∂2L

∂qi∂qj

} (19)

and L is the log-likelihood function for the set of the parameters.

Hora and Iman (1990) apply this rule to the two-dimensional parameter vector

(α, β) for the Gamma distribution of the failure rate λ. They get the (approximate)

improper hyperprior:

1

α1/2β
, α, β > 0.



114

Heuristic interpretation of hyperparameters

In view of the importance attaching to the method of truncation, it is important

to have a heuristic interpretation of the hyperparameters. Pörn suggests a heuristic

for µ′: µ′ =
∑n

i=1 Ti

n
(the number of expected failures in time T).

No heuristic is indicated for ν, beyond saying that it is the coefficient of variation

of prior distribution for λ. Hence, the heuristic for µ′ suggests that µ′ is of the same

order as the xi, which is of order λiT . The coefficient of variation is the standard

deviation of λi divided by the expectation of λi. Further, the order of ν, α and β is

given by:

ν ∼ 1√
µ′
∼ 1
√

xi

;

α =
1

ν2
∼ xi;

β =
αT

µ′
∼ xiT

λiT
∼ T.

Note also that the order relation ν ∼ 1/
√

µ′ would suggest a strong negative

correlation between the uncertainty distribution over ν and µ′.

6.2.4 Conclusions

1. Two stage models provide a valid method for assimilating data from other

plants. The conditional assumptions are reasonable and yield a tractable and

mathematically valid form for the failure rate a plant of interest, given failures

and operational times at other plants in the population.

2. Choice of hyperprior must be defensible. Non-informativeness is not a good

defense if it leads to improper distributions. The influence of the hyperpriors

does not decay as observation times get longer, if the number of plants in the

population remains fixed.

3. Improper hyperpriors do not always become proper after observations. Im-

proper hyperpriors should be avoided if propriety after observations cannot be

demonstrated.
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4. Vaurio’s one-stage empirical Bayes model is elegant and simple. It will not work

with zero observed failures or with a population of two plants.

5. Hofer’s two-stage model appears to rest on shifting viewpoints involving con-

flicting assumptions. Consistent application of the standard conditional as-

sumptions collapses his model into the form (4), which he criticizes as a ’wrong

chance model’. Further discussion should wait until the conditional indepen-

dence assumptions and mathematical derivation are clarified.

6. Pörn and Jeffrey give rules for choosing distributions overhyperparameters.

These typically yield improper distributions are subject to the reservations men-

tioned above.

6.3 ZEBD Software Verification

To perform the verification tasks associated with the theoretical models presented

above, a software implementation in the higher order programming language MAT-

LAB is presented. We have not attempted to replicate the ZEDB results exactly, as

that would require using the same step sizes and truncation bounds. Rather, we have

used such information as is available in the published literature, using our own judg-

ment regarding numerical implementation. Differences between our results and those

of ZEDB reflect differences that may arise from an independent implementation based

on public information. Although ZEDB recommends the lognormal model, both the

lognormal and gamma models are supported, and both are benchmarked here 6.

Three data sets are used to check the concordance with the results from [Becker

and Hofer, 2001] (2001). These are:

Data Set 1 (4 in [Becker and Hofer, 2001]):

Number of failures 7 1 3 2 1 2 0

Time of observation 24000 24000 24000 24000 24000 24000 24000

# failures cont’d 0 2 0 0 0

Time of observation 24000 24000 24000 24000 24000
6The ZEDB results for the lognormal model are published in [Becker and Hofer, 2001, with-

out details on numerical procedures; the results for the gamma model were not made available
beforehand.
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Data Set 2 (2 in [Becker and Hofer, 2001]):

Number of failures 1 0 0 0 1 2

Time of observation 20000 2000 4000 6000 10000 12000

Data Set 3 (3 in [Becker and Hofer, 2001]):

Number of failures 0 0 1

Time of observation 12000 2000 3000

Remark: The underlined field is the plant of interest.

The ZEDB results are presented in Table 2. Also shown are the results of Vaurio’s

model as computed by a spreadsheet provided by ZEDB.

Dataset 1 Dataset 2 Dataset 3

Lognormal Model

Mean 6.7518E-5 9.1360E-05 1.0456E-4

Std.dev 3.9866E-5 5.9964E-05 1.2892E-4

5% 2.0140E-5 2.5387E-05 1.1200E-5

50% 5.9078E-5 7.7103E-05 6.2277E-5

95% 1.4403E-4 2.0576E-04 3.3980E-4

Gamma Model

Mean 7.4138E-05 2.0364E-04 3.2123E-04

Std.dev 3.0598E-05 7.4684E-05 2.1575E-04

5% 3.2518E-05 1.2220E-04 1.2141E-04

50% 6.9926E-05 1.7247E-04 2.5766E-04

95% 1.3044E-04 3.4473E-04 7.4076E-04

Vaurio’s Model

Mean 7.84E-5 1.29E-4 2.84E-4

Std.dev 4.91E-5 7.64E-5 2.43E-4

5% 1.83E-5 3.34E-5 2.84E-5

50% 6.84E-5 1.14E-4 2.19E-4

95% 1.73E-4 2.74E-4 7.64E-4

Table 2 ZEDB results with Lognormal and Gamma models.
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We first discuss the Gamma model, then the lognormal model.

6.3.1 Gamma model

The computation may be broken into three steps:

1. Truncate the range of (α, β) to a finite rectangle.

2. Identify a range for λ0 which contains all the ”plausible” values.

3. For every ”plausible” value of λ0, evaluate numerically the integrals over α and

β, and interpolate to find the 5%,50% and 95% quantiles.

Running the code for 100 values of l0 with a high degree of numerically accuracy may

take 1 hour, but rough results (40 values) may be obtained in 20 minutes.

The likelihood P (X1, ...Xn, T1, ...Tn|α, β) as a function of α and β (2.7) is pre-

sented in Figure 2. Values for (X1, ...Xn, T1, ...Tn) are taken from data set 1. For

uniform hyperpriors, this likelihood is proportional to the hyperposterior distribution

P (α, β|X, T ). Note that P (α, β|X, T ) does not peak but ”ridges”. This means that

a ”natural” truncation for α and β cannot be defined; that is, we cannot define a

finite rectangle for α and β which contains most of the hyperposterior mass. In our

simulations, these ranges were chosen in a manner similar to [Cooke et al 1995], using

Pörn’s heuristic. The inability to localize the hyperposterior mass for (α, β) means

that we cannot localize the posterior mass

P (λ0|X0, ...Xn) ∝

∝ P (X0|λ0)

∫ ∫
α,β

P (λ0|α, β)
∏

i=1..n

[

∫
P (Xi|λi)P (λi|α, β)dλi]P (α, β)dαdβ

For each finite rectangle for α, β, the mass in λ0 will be localized, but other choices

for α, β could significantly shift the region in which λ0 is localized. This means, of

course, that the method of truncation in step 1 will influence the plausible values in

step 2, and can have a significant effect on the results.

Figure 3 and 4 represent the hyperposterior distribution for Pörn’s approach and

Jeffrey’s hyperpriors; also with (X1, ...Xn, T1, ...Tn) from data set 1 below. The pos-

terior density and cumulative distribution of λ0 are presented in Figure 5 and 6.
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Figure 2

Figure 3
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Figure 4

Figure 5
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Figure 6

Tables 3 - 5 compare our results for the uniform, Pörn and Jeffrey prior, and give

the integration ranges for α and β for our computation and for the ZEDB results.

Table 6 compares the TUD and ZEDB results. Note that the 5% quantile for dataset

3 is a more than a factor three lower in the TUD results. In dataset 1 the agreement

is better, as there are more plants, more operational hours and more failures.

These differences are consistent with the results reported in [Cooke et al 1995],

where ’stress-testing’ the gamma model by exploring the range of plausible choices

for α, β resulted in differences up to a factor 5.

Uniform Pörn Jeffrey Ranges α, β

5% 2.3971 E-5 2.8429 E-5 2.8665 E-5 TUD ZEDB

50% 8.0511 E-5 8.4990 E-5 8.5678 E-5 α: 0.033..1 α: 0.002..351

95% 2.0012 E-4 2.0598 E-4 2.0670 E-4 β: 50..5000 β: 582..232,219

Table 3. The 5%, 50% and 95% quantiles of the posterior distribution of λ0 for data

set 1

Uniform Pörn Jeffrey Ranges α, β

5% 4.2371 E-5 3.9306 E-5 4.3845 E-5 TUD ZEDB

50% 1.4603 E-4 1.4278 E-4 1.4908 E-4 α: 0.03..1.2 α: 0.01..1926

95% 2.0012 E-4 2.0598 E-4 2.0670 E-4 β: 50..5000 β: 789..350,098
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Table 4. The 5%, 50% and 95% quantiles of the posterior distribution of λ0 for data

set 2

Uniform Pörn Jeffrey Ranges α, β

5% 3.3976 E-5 3.6503 E-5 3.6394 E-5 TUD ZEDB

50% 1.7514 E-4 2.1247 E-4 2.0711 E-4 α: 0.0154..0.3846 α: 0.01..503

95% 5.8914 E-4 6.6524 E-4 6.5640 E-4 β: 50..5000 β: 126..91385

Table 5. The 5%, 50% and 95% quantiles of the posterior distribution of λ0 for data

set 3

Gamma Model TUD (Pörn) Gamma Model ZEDB

Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

5% 2.8429 E-5 3.9306 E-5 3.6503 E-5 3.2518E-05 1.2220E-04 1.2141E-04

50% 8.4990 E-5 1.4278 E-4 2.1247 E-4 6.9926E-05 1.7247E-04 2.5766E-04

95% 2.0598 E-4 3.3217 E-4 6.6524 E-4 1.3044E-04 3.4473E-04 7.4076E-04

Table 6 Comparison TUD (Pörn) and ZEDB for gamma model.

6.3.2 Lognormal model

ZEDB adopted the lognormal distribution as a prior, based on the maximum

entropy principle invoked by [Jaynes, 1968].

The lognormal density is:

f(λ|µ, σ) =
1√

2πσλ
e−

(ln λ−µ)2

2σ2 , with −∞ < µ < +∞ and σ > 0 (20)

The uncertainty over parameters µ and σ is expressed by hyperpriors. [Becker

2001] takes into account four types of hyperprior distribution based on Jeffrey’s rule.

[Becker 2001] proposes four different implementations of Jeffrey’s rule. We caution

against the multivariate implementation and version of the Jeffrey’s rule when pa-

rameters of different kind e.g. location and scale parameters, are considered. In this

case, as [Box and Tiao, 1974] suggested, it is wiser to choose parameters, which can
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be assumed independent and then apply the one parameter version of the rule. This is

done only in the first and the fourth case below. The higher order language MAPLE

was used for the verification of the codes and the results obtained in all cases; case 1

is used by ZEDB.

1st case

Jeffrey’s rule is applied to the parameters µ and σ: In this case the hyperprior

has the well-known form f(µ, σ) ∝ 1/σ2. The same result is obtained, if µ and σ are

assumed to be independent, and Jeffrey’s rule is applied twice. This corresponds to

the model implemented by ZEDB.

2nd case

Jeffrey’s rule is applied to the parameters α = E(X) and CF =

√
V AR(X)

E(X)

(coefficient of variation). We recall that α = e(µ+σ2/2) and CF =
√

eσ2 . Solving for

the parameters µ and σ we obtain:

f(x|α, v) =
1√

2πx
√

ln(v2 + 1)
e
− ln α+1/2 ln(1+v2)+ln x

2 ln(1+v2) .

The resulting hyperprior in terms of µ and σ has the form

f(µ, σ) ∝
√

2e−2µ−3σ2(eσ2 − 1)

σ6
.

We note that in [Becker and Hofer, 2001], the resulting hyperprior in the second

case was used as being proportional to the expression obtained above without the

square root. Of course this approach is false since the Jeffrey’s rule is not correctly

applied.

3rd case

Jeffrey’s rule is applied to the parameters α = E(X) and b =
√

V AR(X). We

recall that V AR(X) = CF 2α2. The distribution of X in terms of α and b now has

the form
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f(x|α, b) =
1

√
2πx

√
ln(1 + b2

α2 )
e
−

ln α+1/2 ln(1+ b2

α2 )+ln x

2 ln(1+ b2

α2 ) .

Just as above, the resulting hyperprior in terms of µ and σ has the form

f(µ, σ) ∝
√

2e−4(µ+σ2)(eσ2 − 1)

σ6
.

As in case 2, the square root has been omitted in [Becker and Hofer, 2001].

4th case

Jeffrey”s rule is applied to the parameters α = E(X) and σ, assuming independence

between them. In this case has the following form

f(x|α, σ) =
1

√
2πx

√
ln(eσ2)

e
− ln α+1/2 ln(eσ2

)+ln x

2 ln(eσ2
) .

Applying Jeffrey’s rule twice, one time for each parameter we arrive at the hyper-

prior

f(µ, σ) =

√
e−2µ−σ2(2 + 4σ2)

σ4
.

For each case the steps in the calculation are similar to those for the gamma

model, except that in step 1, truncation is applied to the parameters of the lognormal

density.

The likelihood P (X1, ...Xn, T1, ...Tn|µ, σ) as a function of µ and σ (7) is presented

in Figure 7, with values for (X1, ...Xn, T1, ...Tn) taken from case 1. For uniform hyper-

priors, this likelihood is proportional to the hyperposterior distribution P (µ, σ|X, T ).

Note that, in contrast to Figure 2, P (µ, σ|X, T ) does peak. This means that a ”natu-

ral” truncation for µ and σ can be defined as any rectangle containing the peak. The

choice which such rectangle will have negligible influence on the results.

Figure 8 shows the hyperposterior distribution. Again, the contrast with Figures 3

and 4 is striking. The mass is captured within the µ, σ rectangle containing the peak

in Figure 7. Figures 9 and 10 show the posterior density and posterior cumulative

distribution function.



124

The results are presented in Table 7, Table 8 and Table 9 for each hyperprior

distribution discussed. For case 1 we include the effect of omitting the square root

in the Jeffrey prior. The corresponding ZEDB results are shown in each table. The

differences are smaller than with the gamma model the differences noted above.

Figure 7
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Figure 8

Figure 9
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Figure 10

Hyperprior Quantiles 5% 50% 95%

1st case 2.3671 E-5 6.1333 E-5 1.2171 E-4

2nd case w.o.sqrt 3.5021 E-5 5.5355 E-5 8.3108 E-5

2nd case w. sqrt. 2.8031 E-5 5.8052 E-5 1.0671 E-4

3rd case w.o. sqrt 2.9692 E-5 4.8409 E-5 7.4464 E-5

3rd case w. sqrt. 2.5477 E-5 5.4498 E-5 1.0220 E-4

4th case 2.2738 E-5 5.7508 E-5 1.2220 E-4

ZEDB (1rst case) 2.01 E-5 5.91 E-5 1.44 E-4

Table 7. The 5%, 50% and 95% quantiles of the posterior distribution of λ0 for data

set 1.
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Hyperprior Quantiles 5% 50% 95%

1st case 2.6037 E-5 7.7139 E-5 1.3811 E-4

2nd case w. sqrt. 7.838 E-6 4.8169 E-5 1.2464 E-4

3rd case w. sqrt. 3.0166 E-6 1.9669 E-5 8.2809 E-5

4th case 8.5411 E-6 4.8516 E-5 1.2635 E-4

ZEDB (1rst case) 2.5387 E-5 7.7103 E-5 2.0576 E-4

Table 8. The 5%, 50% and 95% quantiles of the posterior distribution of λ0 for data

set 2.

Hyperprior Quantiles 5% 50% 95%

1st case 2.4142 E-5 6.9354 E-5 2.5011 E-4

2nd case w. sqrt. 2.1794 E-5 3.7944 E-5 1.3568 E-4

3rd case w. sqrt. 2.1261 E-5 3.2612 E-5 7.8947 E-5

4th case 2.186 E-5 3.8602 E-5 1.4675 E-4

ZEDB (1rst case) 1.12 E-5 6.2277 E-5 3.398 E-4

Table 9. The 5%, 50% and 95% quantiles of the posterior distribution of λ0 for data

set 3.

6.4 Truncation

Using a gamma prior, the method of truncation seems to have a large influence on

the posterior distribution of λ. It has been shown in section 5.2.3 that the likelihood in

α and β has no maximum, but it is asymptotically maximal along a ridge. This behav-

ior can cause a persistence of impropriety of hyperpriors after observing data. [Cooke

et al 1995] showed that different choices of truncation ranges can affect the median

and the 95% quantile by a factor 5. In (4), the term
∏

i=1..n

∫
[P (Xi|λi)P (λi|q)dλi]

cannot be calculated analytically when we have a lognormal distribution as prior for

λ. Hence, we cannot study the asymptotic behavior of the ”hyperposterior”

P (µ, σ|X1...Xn, T1...Tn) ∝ P (X1...Xn, T1...Tn|µ, σ)P (µ, σ)
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analytically. Performing numerical integration (Figure 10), one can see that a maxi-

mum occurs in the likelihood in µ and σ. Hence, if the parameters of the lognormal

distribution µ and σ are truncated in a way that includes the bulk of mass around

the maximum, then how they are truncated will not make a significant difference To

save time in the computation process, truncation is performed around the significant

values of likelihood in µ and σ (Figure 7). Figure 11 shows this same likelihood, but a

larger integration rectangle for µ and σ; integration over the larger rectangle produces

effectively the same result. The intervals for integration over λ, were determined as

in [Niemann, 1996]. One remark can be made: if the domains of integration are not

large enough the posterior cumulative distribution of λ will not go to one. Using an

iterative loop in software implementation, the natural interval of integration can be

found.

The possibility of truncating the domains of integration so as to include the bulk

of mass around the maximum of the prior is a significant argument in favor of the

lognormal prior over the gamma prior. This possibility must be verified in each

given dataset. Indeed, problems can arise if the number of failures is very small.

The Poisson term will concentrate mass at λ = 0 if no failures are observed in long

observation times. This will drive the likelihood,
∏

P (Xi|λi)P (λi|q) as a function

of q, to values which concentrate mass of λ near zero. From Table 1 we see that

if the variance of a gamma distribution is proportional to the mean, hence they go

to zero at the same rate. For the lognormal the variance is proportional to the

square of the mean, and hence the variance goes to zero faster than the mean. We

can anticipate concentration of mass near σ = 0 in such cases. In any event, with

sufficient observation times failures will be observed and the lognormal prior will peak

away from zero and hence admit a good truncation heuristic 7. For the gamma this

is not the case. Figure 12 shows the likelihood of µ, σ for dataset 3. Here a peak is

not visible at all, but mass seems to concentrate at σ = 0. These figures also give the

integration ranges for µ, σ, and λ.

7The ZEDB code uses a method based on the mean and standard deviation of the sample of raw
data in order to achieve this [Software documentation Bayes20].
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Figure 11 Likelihood µ, σ dataset 1; µ = −17.5...−3, σ = 0.1...4, λ = 2∗10−6...3∗10−4.

Figure 12 Likelihood µ, σ dataset 3: µ = −15.5...− 6, σ = −0.1...4, λ = 2 ∗ 10−5...3 ∗
10−3.
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6.5 Conclusions

1. Two stage models provide a valid method for assimilating data from other

plants. The conditional independence assumptions, as also used in ZEDB, are

reasonable and yield a tractable and mathematically valid form for the failure

rate a plant of interest, given failures and operational times at other plants in

the population.

2. Choice of hyperprior must be defensible. Non-informativeness is not a good

defense if it leads to improper distributions. The influence of the hyperpriors

does not decay as observation times get longer, if the number of plants in the

population remains fixed.

3. Improper hyperpriors do not always become proper after observations. Im-

proper hyperpriors should be avoided if propriety after observations cannot be

demonstrated.

4. The present implementation produced for verification of the implementation of

the ZEDB results in agreement with the gamma model of ZEDB which is consis-

tent with previously noted variations due to truncation of the hyperparameters.

5. This present implementation produces good agreement with the lognormal model

of ZEDB.

6. The lognormal model, as used in standard ZEDB evaluations, enjoys a signifi-

cant advantage over the gamma model in that, as observation time increases, a

natural truncation of the hyperparameters µ, σ is possible.

7. In the context of a literature survey, Vaurio’s one-stage empirical Bayes model

has been investigated. It is elegant and simple. It will not work with zero

observed failures or with a population of two plants.

8. In the context of a literature survey, Hofer’s criticism for the normal two-stage

model and his own variant have been investigated. The latter appears to rest

on shifting viewpoints involving conflicting assumptions. Consistent application

of the standard conditional assumptions collapses his model into the form (4),

which he criticizes as a ’wrong chance model’. Further discussion should wait

until the conditional independence assumptions and mathematical derivation

are clarified.
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1 2 3.01 5 8.02 11 17 22 31 40 54.56 81
1 2 3.01 5 8.02 12 17 22.42 31 40 55 83.03
1 2 3.04 5.08 8.02 12 17 22.42 31 41 55 84.69
1 2 3.17 5.08 8.63 12 17 23 31 41 55.02 85
1 2 3.40 5.63 8.63 12 17 23 32 41 56 85
1 2 3.48 6 9 12 17 25 32 41.01 58 86
1 2 3.96 6 9 12 17 25 32 42 59 86
1 2 4 7 9 12 18 26 32 42.25 59.4 86
1 2 4 7 9 13 18 26 33 43 60 86
1 2 4 7 9 13 18 26 33.67 43 61.29 87
1 2 4 7 9 13 18 26 34 43 62 91
1 2 4 7 9 13 18 26 34 44 62 91
1 2 4 7 9 13 18 26 34 44 63 91
1 2.63 4 7 9 13.25 18 26 34 44 63 91
1.01 3 4 7 9.08 13.35 19 26.38 34 45.71 63 100
1.01 3 4 7 9.42 14 19 27 34 46 65 100
1.01 3 4.01 7 10 14 19 27 35 48 65 101
1.04 3 4.02 7.83 10 14.01 19 27 35 48 67 105
1.08 3 4.07 8 10 15 19 28 35.04 48.35 70 110
1.17 3 4.19 8 10 15 19.21 28 36 49 72 127
1.21 3 4.25 8 10 15 19.48 28 36 50 72 128
1.21 3 4.63 8 10 15 19.67 28 36 50 72 128
1.35 3 4.75 8 10 15 20 28.01 36 50 73 128
1.71 3 5 8 10 15 20 28.56 37 50 73.06 128
2 3 5 8 10 15.07 20 29 38 50.18 75 135
2 3 5 8 10 15.09 20.10 29.02 38 50.18 77 142.6
2 3 5 8 11 15.09 20.10 30 38 51 77 168
2 3 5 8 11 16.23 21 30 38 51 77 182
2 3 5 8 11 16.42 22 31 40 51 78 203
2 3 5 8.02 11 16.5 22 31 40 52.58 81

Table 1. Compressor Unit Data without competing risk
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1 2 3.01 5 8.02 11 17 22 31 40 54.56 81
1 2 3.01 5 8.02 12 17 22.42 31 40 55 83.03
1 2 3.04 5.08 8.02 12 17 22.42 31 41 55 84.69
1 2 3.17 5.08 8.63 12 17 23 31 41 55.02 85
1 2 3.40 5.63 8.63 12 17 23 32 41 56 85
1 2 3.48 6 9 12 17 25 32 41.01 58 86
1 2 3.96 6 9 12 17 25 32 42 59 86
1 2 4 7 9 12 18 26 32 42.25 59.4 86
1 2 4 7 9 13 18 26 33 43 60 86
1 2 4 7 9 13 18 26 33.67 43 61.29 87
1 2 4 7 9 13 18 26 34 43 62 91
1 2 4 7 9 13 18 26 34 44 62 91
1 2 4 7 9 13 18 26 34 44 63 91
1 2.63 4 7 9 13.25 18 26 34 44 63 91
1.01 3 4 7 9.08 13.35 19 26.38 34 45.71 63 100
1.01 3 4 7 9.42 14 19 27 34 46 65 100
1.01 3 4.01 7 10 14 19 27 35 48 65 101
1.04 3 4.02 7.83 10 14.01 19 27 35 48 67 105
1.08 3 4.07 8 10 15 19 28 35.04 48.35 70 110
1.17 3 4.19 8 10 15 19.21 28 36 49 72 127
1.21 3 4.25 8 10 15 19.48 28 36 50 72 128
1.21 3 4.63 8 10 15 19.67 28 36 50 72 128
1.35 3 4.75 8 10 15 20 28.01 36 50 73 128
1.71 3 5 8 10 15 20 28.56 37 50 73.06 128
2 3 5 8 10 15.07 20 29 38 50.18 75 135
2 3 5 8 10 15.09 20.10 29.02 38 50.18 77 142.6
2 3 5 8 11 15.09 20.10 30 38 51 77 168
2 3 5 8 11 16.23 21 30 38 51 77 182
2 3 5 8 11 16.42 22 31 40 51 78 203
2 3 5 8.02 11 16.5 22 31 40 52.58 81

Table 2 Competing risk data for “Failure Mode” field; Risk1: LEK, IST, UST, VIB, Risk2:
LIG, STG, VAR, OVH, ANN (Risk2 is underlined)
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1 2 3.01 5 8 11 17 22 31 40 54.56 81
1 2 3.01 5 8.02 12 17 22.42 31 40 55 83.03
1 2 3.04 5.08 8.02 12 17 22.42 31 41 55 84.69
1 2 3.17 5.08 8.63 12 17 23 31 41 55.02 85
1 2 3.40 5.63 8.63 12 17 23 32 41 56 85
1 2 3.48 6 9 12 17 25 32 41.01 58 86
1 2 3.96 6 9 12 17 25 32 42 59 86
1 2 4 7 9 12 18 26 32 42.25 59.4 86
1 2 4 7 9 13 18 26 33 43 60 86
1 2 4 7 9 13 18 26 33.67 43 61.29 87
1 2 4 7 9 13 18 26 34 43 62 91
1 2 4 7 9 13 18 26 34 44 62 91
1 2 4 7 9 13 18 26 34 44 63 91
1 2.63 4 7 9 13.25 18 26 34 44 63 91
1.01 3 4 7 9.08 13.35 19 26.38 34 45.71 63 100
1.01 3 4 7 9.42 14 19 27 34 46 65 100
1.01 3 4.01 7 10 14 19 27 35 48 65 101
1.04 3 4.02 7.83 10 14.01 19 27 35 48 67 105
1.08 3 4.07 8 10 15 19 28 35.04 48.35 70 110
1.17 3 4.19 8 10 15 19.21 28 36 49 72 127
1.21 3 4.25 8 10 15 19.48 28 36 50 72 128
1.21 3 4.63 8 10 15 19.67 28 36 50 72 128
1.35 3 4.75 8 10 15 20 28.01 36 50 73 128
1.71 3 5 8 10 15 20 28.56 37 50 73.06 128
2 3 5 8 10 15.07 20 29 38 50.18 75 135
2 3 5 8 10 15.09 20.10 29.02 38 50.18 77 142.6
2 3 5 8 11 15.09 20.10 30 38 51 77 168
2 3 5 8 11 16.23 21 30 38 51 77 182
2 3 5 8 11 16.42 22 31 40 51 78 203
2 3 5 8 11 16.5 22 31 40 52.58 81

Table 3 Competing risk data for “Action Taken” field; Risk1: AKU, Risk2: AKR, JUS,
OVH, MOD, ANN (Risk2 is underlined)



134

1 2 3.01 5 8.02 11 17 22 31 40 54.56 81
1 2 3.01 5 8.02 12 17 22.42 31 40 55 83.03
1 2 3.04 5.08 8.02 12 17 22.42 31 41 55 84.69
1 2 3.17 5.08 8.63 12 17 23 31 41 55.02 85
1 2 3.40 5.63 8.63 12 17 23 32 41 56 85
1 2 3.48 6 9 12 17 25 32 41.01 58 86
1 2 3.96 6 9 12 17 25 32 42 59 86
1 2 4 7 9 12 18 26 32 42.25 59.4 86
1 2 4 7 9 13 18 26 33 43 60 86
1 2 4 7 9 13 18 26 33.67 43 61.29 87
1 2 4 7 9 13 18 26 34 43 62 91
1 2 4 7 9 13 18 26 34 44 62 91
1 2 4 7 9 13 18 26 34 44 63 91
1 2.63 4 7 9 13.25 18 26 34 44 63 91
1.01 3 4 7 9.08 13.35 19 26.38 34 45.71 63 100
1.01 3 4 7 9.42 14 19 27 34 46 65 100
1.01 3 4.01 7 10 14 19 27 35 48 65 101
1.04 3 4.02 7.83 10 14.01 19 27 35 48 67 105
1.08 3 4.07 8 10 15 19 28 35.04 48.35 70 110
1.17 3 4.19 8 10 15 19.21 28 36 49 72 127
1.21 3 4.25 8 10 15 19.48 28 36 50 72 128
1.21 3 4.63 8 10 15 19.67 28 36 50 72 128
1.35 3 4.75 8 10 15 20 28.01 36 50 73 128
1.71 3 5 8 10 15 20 28.56 37 50 73.06 128
2 3 5 8 10 15.07 20 29 38 50.18 75 135
2 3 5 8 10 15.09 20.10 29.02 38 50.18 77 142.6
2 3 5 8 11 15.09 20.10 30 38 51 77 168
2 3 5 8 11 16.23 21 30 38 51 77 182
2 3 5 8 11 16.42 22 31 40 51 78 203
2 3 5 8.02 11 16.5 22 31 40 52.58 81

Table 4 Competing risk data for “Degree of Failure” field; Risk1: critical failure, Risk2:
non-critical failure (Risk2 is underlined)
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1 2 3.01 5 8.02 11 17 22 31 40 54.56 81
1 2 3.01 5 8.02 12 17 22.42 31 40 55 83.03
1 2 3.04 5.08 8.02 12 17 22.42 31 41 55 84.69
1 2 3.17 5.08 8.63 12 17 23 31 41 55.02 85
1 2 3.40 5.63 8.63 12 17 23 32 41 56 85
1 2 3.48 6 9 12 17 25 32 41.01 58 86
1 2 3.96 6 9 12 17 25 32 42 59 86
1 2 4 7 9 12 18 26 32 42.25 59.4 86
1 2 4 7 9 13 18 26 33 43 60 86
1 2 4 7 9 13 18 26 33.67 43 61.29 87
1 2 4 7 9 13 18 26 34 43 62 91
1 2 4 7 9 13 18 26 34 44 62 91
1 2 4 7 9 13 18 26 34 44 63 91
1 2.63 4 7 9 13.25 18 26 34 44 63 91
1.01 3 4 7 9.08 13.35 19 26.38 34 45.71 63 100
1.01 3 4 7 9.42 14 19 27 34 46 65 100
1.01 3 4.01 7 10 14 19 27 35 48 65 101
1.04 3 4.02 7.83 10 14.01 19 27 35 48 67 105
1.08 3 4.07 8 10 15 19 28 35.04 48.35 70 110
1.17 3 4.19 8 10 15 19.21 28 36 49 72 127
1.21 3 4.25 8 10 15 19.48 28 36 50 72 128
1.21 3 4.63 8 10 15 19.67 28 36 50 72 128
1.35 3 4.75 8 10 15 20 28.01 36 50 73 128
1.71 3 5 8 10 15 20 28.56 37 50 73.06 128
2 3 5 8 10 15.07 20 29 38 50.18 75 135
2 3 5 8 10 15.09 20.10 29.02 38 50.18 77 142.6
2 3 5 8 11 15.09 20.10 30 38 51 77 168
2 3 5 8 11 16.23 21 30 38 51 77 182
2 3 5 8 11 16.42 22 31 40 51 78 203
2 3 5 8.02 11 16.5 22 31 40 52.58 81

Table 5 Competing risk data for “System” field; Risk1: SPE, ELM, GEA, Risk2: SMO,
KOM, INS (Risk2 is underlined)
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1 2 3.01 5 8.02 11 17 22 31 40 54.56 81
1 2 3.01 5 8.02 12 17 22.42 31 40 55 83.03
1 2 3.04 5.08 8.02 12 17 22.42 31 41 55 84.69
1 2 3.17 5.08 8.63 12 17 23 31 41 55.02 85
1 2 3.40 5.63 8.63 12 17 23 32 41 56 85
1 2 3.48 6 9 12 17 25 32 41.01 58 86
1 2 3.96 6 9 12 17 25 32 42 59 86
1 2 4 7 9 12 18 26 32 42.25 59.4 86
1 2 4 7 9 13 18 26 33 43 60 86
1 2 4 7 9 13 18 26 33.67 43 61.29 87
1 2 4 7 9 13 18 26 34 43 62 91
1 2 4 7 9 13 18 26 34 44 62 91
1 2 4 7 9 13 18 26 34 44 63 91
1 2.63 4 7 9 13.25 18 26 34 44 63 91
1.01 3 4 7 9.08 13.35 19 26.38 34 45.71 63 100
1.01 3 4 7 9.42 14 19 27 34 46 65 100
1.01 3 4.01 7 10 14 19 27 35 48 65 101
1.04 3 4.02 7.83 10 14.01 19 27 35 48 67 105
1.08 3 4.07 8 10 15 19 28 35.04 48.35 70 110
1.17 3 4.19 8 10 15 19.21 28 36 49 72 127
1.21 3 4.25 8 10 15 19.48 28 36 50 72 128
1.21 3 4.63 8 10 15 19.67 28 36 50 72 128
1.35 3 4.75 8 10 15 20 28.01 36 50 73 128
1.71 3 5 8 10 15 20 28.56 37 50 73.06 128
2 3 5 8 10 15.07 20 29 38 50.18 75 135
2 3 5 8 10 15.09 20.10 29.02 38 50.18 77 142.6
2 3 5 8 11 15.09 20.10 30 38 51 77 168
2 3 5 8 11 16.23 21 30 38 51 77 182
2 3 5 8 11 16.42 22 31 40 51 78 203
2 3 5 8.02 11 16.5 22 31 40 52.58 81

Table 6 Competing risk data for “Failure Mode” field; Risk1: LEK, Risk2: VIB, IST, UST,
LIG, STG, VAR, OVH, ANN (Risk2 is underlined)
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GLOSSARY

Alternative hypothesis - It assumes the opposite of the null hypothesis. It is given

the symbol H1. It is impossible to locate the sampling distribution for the alternative

hypothesis.

Central limit theorem - basic law of statistics that relates different probability

distributions to each other. It comprises three basic statements concerning sampling

from populations:

(i) As sample size increases, the distribution of scores tends more and more towards

the theoretical distribution of the population being sampled.

(ii) As sample size increases, the sampling distribution of any statistic becomes

more Normally distributed.

(iii) Given we have a large enough sample size, we can use one probability dis-

tribution to model another. There are ”pathways” connecting different probability

distributions. In particular, we can model virtually any other type of distribution

using the Normal distribution.

Competing risk - a failure time is observed together with a cause or risk, the latter

being one of several possibilities. In the basic approach only one cause is responsible

for the failure, but in complex situation multiple causes are possible.

Component - the smallest partition of a system that is necessary and sufficient to

be considered for system analysis.

Copula - the copula of two random variables X and Y with cumulative density func-

tions FX(X) and FY (Y ), is the distribution C on the unit square [0, 1]2 of the pair

(FX(X), FY (Y )). The functional form of C : [0, 1]2 → R is

C(u, v) ≡ H(F−1
X (u), F−1

Y (v)),

where H is the joint distribution function of (X, Y ) and F−1
X and F−1

Y are the right-

continuous inverse functions of FX and FY .

Covariance - the covariance of two random variable X and Y is the real number, if

it exists, defined by:

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])],

where E[X] is the expectation of X

Critical event - The system looses one or more essential functions and important
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damages to the system and its environment are caused.

Distribution function - Let X be a random variable. The distribution function of

X is:

FX(x) = Pr{X ≤ x}

Down time - The component is not capable to accomplish the required function

during this period of time

Expectation, mean (of a random variable) - The real number, if it exists, defined:

1. for a discrete random variable X taking values xi with probability pi, by the

sum

E[X] =
∑

i

pixi

2. for a continuous random variable X with density function f(x), by the integral

E[X] =

∫
xf(x)dx

Failure mode - the effect by which a failure is observed

Failure rate - The rate at which failures occur as a function of time. If T denotes

the time to failure of an item, the failure rate r(t) is defined as

r(t) = lim
4t→∞

Pr{t < T ≤ t +4t|T > t

4t

Hypothesis - a measurable aspect of a theory: see null hypothesis; alternative hy-

pothesis.

Item - All element, component, sub-system, system, socket, equipment, unit, which

can be considered individually

Kendall’s tau - Let (X1, Y1) and (X2, Y2) be i.i.d. random copies of the vector

(X, Y ), each with joint distribution H, then Kendall’s tau is defined as the probabil-

ity of concordance minus the probability of discordance:

τ(X, Y ) = Pr{(X1 −X2)(Y1 − Y2) > 0} − Pr{(X1 −X2)(Y1 − Y2) < 0}



139

or

τ(X, Y ) = Pr{sgn(X1 −X2) = sgn(Y1 − Y2)} − Pr{sgn(X1 −X2) 6= sgn(Y1 − Y2)}.

Maintenance - combination of all related technical and administrative actions, in-

cluding supervision and check operations, performed in order to maintain or to put

back an item in a state allowing it to accomplish a required function

• Corrective maintenance - Maintenance performed after failure detection and

destined to restore an item in a state allowing it to accomplish a required

function

• Preventive maintenance - Maintenance performed at regular intervals or follow-

ing specified criteria and destined to reduce the probability of failure or the

degradation of an item

• Scheduled maintenance - Preventive maintenance performed based on a calendar

time

• Unscheduled maintenance - Preventive maintenance performed not based on a

calendar time, but based on the relative information over the state of the item

Null hypothesis - the hypothesis to be tested by a statistical test. It assumes the

opposite of the alternative hypothesis. It is given the symbol H0. Only the null

hypothesis can be tested statistically because one can only specify the sampling dis-

tribution for a statistic assuming a particular value for its location - in most cases, 0

for the null hypothesis.

One-tailed test - a statistical test in which the statistic to be tested is assumed

to be either positive or negative, but not both. Hence, the direction of a relation-

ship between variables (or a difference between groups) is specified. The alternative

hypothesis sampling distribution is present only on one side of the null hypothesis

sampling distribution; hence the region of rejection of H0 is placed on only one tail

of the null hypothesis sampling distribution.

Operating time - The component accomplishes the required function during this

period of time
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Percentile - Let X be a random variable with distribution function F (x). The upper

100α% percentile xα of the distribution F (x) is defined as:

Pr{X > xα} = α

Probability - the likelihood or chance of an event occurring. It generally ranges

from 0 (an impossible event that can never occur) to 1 (a certain event that must

always occur). There are four specific definitions of probability:

(i) Subjective probability. This is a rating of the likelihood of an event based on

personal experience and opinion, and sometimes on personal knowledge. Example:

how likely am I to successfully hail a taxi at 3 a.m. on Stockton High Street?

(ii) Empirical probability. This is an estimate of the likelihood of an event based

on experiment. Example: toss a coin 20 times and get 12 heads. The probability of

a head is then 12/20 = 0.6.

(iii) Logical probability. This is calculating the likelihood of an event based on the

logical structure of the situation. Example: there are six sides to a die and each one

is assumed to have an equal probability of occurrence. Hence, there are six events,

each of which has a probability value of 1/6.

(iv) Axiomatic probability. This is calculating the likelihood of an event by setting

up an event space. It uses set theory to represent events and their conjunctions.

Probability density function - Let X be a random variable. The probability

density function fX(x) of X is:

fX(x) =
dFX(x)

dx

Reliability (performance) - aptitude of an item (system) to accomplish a required

function, in given conditions, during a given period of time

Reliability (measure) - probability of an item (system) to accomplish a required

function, in given conditions, during a given period of time

Repair - the part of corrective maintenance in which manual actions are performed

on the item

Risk - Risk is the potential of loss or damage resulting from exposure to a hazard.

Safety - Safety represents an acceptable level of risk relative to the benefits derived

from the hazards-causing activity.
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Significance - an arbitrary criterion set by consensus and expressed in terms of a

probability value. It tells us how ”uncertain” we want to be in conducting statistical

analysis.

Spearman’s rho - Let X and Y be continuous random variables then the Spearman’s

rho is defined as the product moment correlation of FX(X) and FY (Y ):

ρr(x, y) = ρ(FX(X), FY (Y )) =
Cov{FX(X), FY (Y )}√

V ar{FX(X)}V ar{FY (Y )}
.

Two-tailed test - a statistical test in which no assumption about the sign of the

statistic to be tested is made. Hence, no direction is specified in the relationship

between variables (or the difference between groups). The alternative hypothesis

sampling distribution is present on both sides of the null hypothesis sampling distri-

bution; hence the region of rejection of H0 is placed on both tails of the null hypothesis

sampling distribution.

Type I error - the error made in a statistical test when the null hypothesis is rejected

even though it is true. Hence, we think we have found support for the alternative

hypothesis (i.e. a significant result) when in fact the hypothesis is not true. It is

given the symbol α and is equivalent to the significance level we set (i.e. the size of

the region of rejection).

Type II error - the error made in a statistical test when the null hypothesis is

accepted even though it is false. Hence, we find no support for the alternative hy-

pothesis (i.e. fail to get a significant result) when in fact the hypothesis is true. It is

given the symbol β.

Up time - The component is capable to accomplish the required function during this

period of time

Variance - Expected value of the square difference between a random variable and

its expected value
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