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Summary

Over the last decade uncertainty analysis has become more important in the
decision process. It is acknowledged that if decisions are based on math-
ematical models it is wise to investigate the uncertainty associated with
model input parameters, because a slight change in the values of the model
input parameters of may result in a different decision.

In performing uncertainty analysis a distribution on the values of the
uncertain model input parameters is required. Using sampling techniques
this distribution is propagated through the model to obtain a distribution on
the values of the model output parameters. The crucial part in performing
uncertainty analysis is the determination of the distribution on the uncertain
model input parameters. If experimental data on these parameters are
available this may be used to derive the distribution. In case very little or no
experimental data on these parameters are available a different approach is
needed to obtain the distribution. This thesis deals with the latter situation.

Confronted with a situation where very little or no experimental data
are available it is reasonable to consult experts and take account of their
views. Experts will have the best overview of literature, will have access to
mathematical models and are able to discriminate, interpolate and extrapo-
late the experimental data available. In other words it would be helpful if a
methodology could be developed in which experts quantify their degrees of
belief in a structured, open and defensible way. This led to the development
of the Structured Expert Judgment Elicitation Methodology, [12].

In this thesis new mathematical techniques are introduced for the Struc-
tured Expert Judgment Elicitation Methodology. The thesis can be divided
into four parts: a Probabilistic Inversion part, a part which deals with
dependencies in uncertainty analysis, a part which is concerned with per-
formance measures which determine the capability of an expert in how well
he/she is able to quantify their degrees of belief and a part which discusses
the modeling of uncertainty. Examples from the Joint CEC/USNRC Un-
certainty Analysis (Contract F13P-CT92-0023 and 93-ET-001) were used
to illustrate the mathematical techniques developed.



Probabilistic inversion

A key element of the Structured Expert Judgment Elicitation Methodology
is that experts are queried only about potentially measurable quantities.
Hence, it could be that uncertain model input parameters are not suited to
be subjected to expert judgment. However, by querying information on po-
tentially measurable quantities and using probabilistic inversion techniques,
information on the uncertain model input parameters can be obtained. In
Chapter 1 the foundations and implementations of probabilistic inversion
techniques are presented.

Dependencies

In order to perform an uncertainty analysis, a distribution on the uncertain
model input parameters has to be available. Usually this distribution is con-
structed using the marginal distributions of uncertain model input param-
eters and dependency measures among the input parameters. In Chapter 2
a strategy to query dependence from experts is selected which, for reasons
explained, is considered to be the most appropriate. Currently the Struc-
tured Expert Judgment Elicitation Methodology combines the information
of experts for each queried quantity only. Two strategies are introduced
which combine expert information and dependence information. Finally it
is shown that dependencies between quantities can be incorporated easily
in probabilistic inversion.

Calibration with uncertain observations

Under the Structured Expert Judgment Elicitation Methodology, perfor-
mance measures have been developed which assess/quantify (in a statistical
sense) the capability of experts to quantify their degrees of belief. Experts
are asked to quantify their knowledge for quantities for which the outcome
has been measured by an experiment. This outcome is not available to
the expert, but only for the project staff. If a reasonable number of such
questions are available, the performance of an expert can be measured sta-
tistically. Since reproducibility of experimental results is often not possible
and different measurement procedures may result in different outcomes, the
outcome of an experiment is uncertain itself. In Chapter 3 the performance
measures are extended by allowing the outcome of the experiment to be
uncertain as well. The effect of taking account of measurement variability
is shown by making use of examples taken from the Joint CEC/USNRC
Accident Consequence Code Uncertainty Analysis and a study conducted
for the Ministry of Transport, Public Works and Water Management.



Modeling Uncertainty

Modeling uncertainty deals with questions regarding the quantification of
uncertainty of model input parameters and the effect/considerations on how
to reduce the complexity of a mathematical model before performing un-
certainty analysis. Special attention is given to a special class of acyclic
compartmental models (ACMs). ACMs are widely used in environmental
modeling and due to their graphical representation may look easy to use.
However ACMs need special attention when performing uncertainty anal-
ysis. Like ACMs, influence diagrams (IDs) are acyclic graphs as well. In
Chapter 4 the relationship between ACMs and IDs is investigated, which
resulted into a decomposition strategy of complex ACMs. The decomposi-
tion will influence the line of questioning. However, the line of questioning
should be in compliance with the Structured Expert Judgment Elicitation
Methodology at all times.

Application of Results

Each chapter introduces new mathematical techniques to support the Struc-
tured Expert Judgment Elicitation Methodology and the majority of which
have been validated and shown practicable in the Joint CEC/USNRC Un-
certainty Analysis [25], [26], [27], [28], [29], [30], a study for the Ministry
of Transport, Public Works and Water Management [21] and in the PhD
thesis ‘Uncertainty in predictions of thermal comfort in buildings’ [19]. In
performing an uncertainty analysis, these mathematical techniques will be
used in the reverse order as presented. Firstly, one has to think deeply
and possibly use the considerations introduced in Chapter 4 on how the
uncertainty can be modeled satisfactorily. Secondly, if experts are used
to quantify the uncertainty and their performance is measured using ex-
perimental results, it is only fair, for reasons explained in Chapter 3, to
take account of the measurement variability in these experimental results.
Thirdly, the expert’s assessments will be combined using the elicited depen-
dence information and strategies introduced in Chapter 2. And if necessary,
the probabilistic inversion techniques developed in Chapter 1 can be used
to obtain a distribution on target variables.
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Introduction

It is becoming common practice to perform uncertainty analysis on com-
plex models. In an uncertainty analysis one works with a joint probability
distribution over the model input parameters instead of ‘nominal values’
for these parameter. With distributional input, the model does not make
deterministic predictions, rather a distribution over the model outcomes is
obtained. Concepts like model validation, model calibration and sensitiv-
ity of model output to input, take on a new meaning when viewed from
the perspective of uncertainty analysis. A growing field of physicist, en-
gineers, mathematicians and modelers is focusing on this cluster of issues
[36]. The question remains how to determine the distribution on the uncer-
tain model input parameters. In many situations the uncertain model input
parameters do not correspond to physically measurable/observable quanti-
ties. Moreover the uncertainties may exhibit strong dependencies. In case
uncertain model input parameters do not correspond to physically mea-
surable/observable quantities, the model outcome is usually a physically
measurable/observable quantity, however, there may be situations where
the experimental data available on model outcomes are scarce, conflicting
and exhibit wide uncertainty.

A possible way to proceed in this type of situation is to consult ex-
perts in the field. They will have the best overview of the literature, will
have access to mathematical models and are able to discriminate, inter-
polate and extrapolate the experimental results available. In other words,
experts can be used to express/quantify their views in cases where experi-
mental data on model outcomes are scarce or conflicting. In order to make
this process transparent and defensible the Structured Expert Judgment
Elicitation Methodology [12] has been developed. A key element of the
Structured Expert Judgment Elicitation Methodology is that experts can
express their degrees of belief only for quantities which are observable; a
quantity is regarded as observable if there is a physically (not necessarily
practical) procedure for determining its value. The variables for which the
experts quantify their degrees of beliefs are called elicitation variables and
the uncertain model input parameters are termed target variables. In case
the target variables are regarded as non-observable, elicitation variables will
have to be formulated which are related to the target variables and which
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4

are familiar to the experts.
Since experts may have different viewpoints on how to value experimen-

tal results, what model is appropriate etc., it is recommended to have a
number of experts who individually express their degrees of beliefs for the
elicitation variables. By allowing a diversity of viewpoints, a better under-
standing of the ‘true’ uncertainty associated with the elicitation variable
is obtained. Under the Structured Expert Judgment Elicitation Method-
ology the experts’ uncertainty distributions are aggregated to obtain the
uncertainty distribution of the Decision Maker (DM); if Nexp. experts have
assessed elicitation variable Y , the Decision Maker (DM) ’s density is given
by:

fDM,eq,Y =
Nexp.∑
j=1

wj fj,Y (1)

where wj and fj,Y are the weight of expert j and the density associated
with expert j’s assessments for elicitation variable Y , respectively.

This thesis introduces new mathematical techniques for the Structured
Expert Judgment Elicitation Methodology, which have been developed and
applied under the joint CEC/USNRC Accident Consequence Code Uncer-
tainty Analysis using Expert Judgment (Contract F13P-CT92-0023 and 93-
ET-001) [25], [26], [27], [28], [29], [30]. The newly developed mathematical
techniques concern Probabilistic Inversion, the elicitation and application
of dependencies and the development of a special set of weights wj to be
used in Equation 1. Finally, in the course of the Joint CEC/USNRC Un-
certainty Analysis a large variety of models was encountered for which the
uncertainty had to be quantified. The final chapter of this thesis is a discus-
sion on experiences gained and introduces a mathematical technique which
may be applied in the future on how to model uncertainty.

Probabilistic Inversion

Chapter 1 introduces the mathematical technique Probabilistic Inversion
(PI). In short, the objective of PI is to take a distribution representing
the uncertainty on certain observables, and to translate this uncertainty to
uncertainty on the target variables of a certain model. Note that the distri-
bution on certain observables does not have to be obtained from structured
expert judgment but also may be obtained from experimental data. In Sec-
tion 1.1, PI is formulated in terms of a measure theoretical problem. Based
on this formulation, certain approximations are introduced on which the im-
plementation will be based. In sections 1.2.1 and 1.2.2 the implementations
PARFUM (PARameter Fitting for Uncertain Models) and PREJUDICE
(PRocessing Expert JUDgment Into Code paramEters) are introduced, re-
spectively. PARFUM is based on an idea of Cooke [10] and PREJUDICE
is based on an idea proposed by Hora and Young [27] and PARFUM. The
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dispersion coefficient example from [27] will be used to illustrate the differ-
ent steps involved in PI; lateral plume spread σy is modeled as a power law
function of downwind distance z from the source of a release:

σy(z) = AyzBy (2)

where the coefficients Ay and By depend on the stability of the atmosphere
at the time of the release. Clearly there will be more variables, like wind
variation, plume meander, surface roughness and vertical wind profile, which
influence lateral plume spread. Although it hasn’t been derived from un-
derlying physical laws and the coefficients are fit to data from tracer ex-
periments, Expression 2 is recognized to capture the uncertainty associated
with lateral plume spread well enough. In performing uncertainty analysis
on Expression 2, a joint distribution on Ay and By is required; with the
use of this distribution the uncertainty on σy for any desired downwind dis-
tance z can be determined. In the dispersion coefficient example Ay and
By are the target variables. Since the dimension of Ay must be [meters]
1−By , these parameters do not have any obvious physical interpretation, so
that no experimental data are available to directly determine a distribution
on Ay and By. According to the Structured Expert Judgment Elicitation
Methodology, the target variables Ay and By are non observables and can-
not serve as elicitation variables. However, the lateral plume spread σy is
an observable and could be determined from tracer experiments, hence σy

became the elicitation variable. Experts were queried to quantify their un-
certainty on σy(zi) for down wind distances z1, . . . , zn. Note that since the
expert is only asked about uncertainty on observables, he/she may use their
own preferred mathematical model for lateral plume spread if he/she wishes.
The expert data do not rely on any particular model. This way of querying
information from experts is also known as model independent elicitation.
Finally, it is noted that the uncertainty on the target variables, obtained by
PI, will include both parameter uncertainty and model uncertainty.

Summarized, the PI problem for the dispersion coefficient example is to
translate the distributions on σy(zi) into a distribution on (Ay, By) using
Expression 2, such that the push-forward distributions Ayz

By

i comply with
the distributions on σy(zi) for i = 1, . . . , n. To numerically illustrate this
PI problem, the uncertainty distributions for σy(zi) (i = 1, . . . , 5) for the
DM have been taken from [27], see Table 1. The uncertainty distributions
are available in the form of 5%, 50% and 95% quantile points and concern
stability category C according to the Pasquill-Gifford classification scheme1.

1Stability category C of the Pasquill-Gifford classification scheme corresponds to neu-
tral (nor stable, nor unstable) weather conditions.
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Quantile σy(zi)
500 m. 1 km. 3 km. 10 km. 30 km.

5% 3.30e+1 6.48e+1 1.75e+2 4.48e+2 1.10e+3
50% 9.49e+1 1.72e+2 4.46e+2 1.22e+3 2.82e+3
95% 1.95e+2 3.46e+2 1.04e+3 3.37e+3 8.25e+3

Table 1: Dispersion coefficient example (stability class C): Assessments of
Decision Maker for σy.

Dependencies

From PI the distribution on (Ay, By) is obtained. Based on this distribu-
tion different dependence measures between Ay and By can be determined.
Recall that the target variables Ay and By were non observables and hence
could not be elicitation variables. But what to do in case a set of target
variables are observables? Since a joint distribution on the target variables
of the model has to be specified before performing the uncertainty analy-
sis, how shall we obtain the dependence between target variables which are
observable. Chapter 2 starts off with an overview of available dependence
elicitation techniques. Based on the considerations that the dependence elic-
itation technique should be easy understandable to the expert, and should fit
in the Structured Expert Judgment Elicitation Methodology, a dependence
elicitation technique is selected. It is stressed that the selected technique
may not be the most rigorous way of eliciting dependence, but it is satis-
factorily for reasons explained. Experts had little difficulty understanding
the selected of dependence elicitation technique and acknowledged its im-
portance. Next the usage of dependence information in combining expert
assessments and in PI is investigated.

Calibration with uncertain observations

Table 1 lists quantile information of the DM for σy. These quantiles are ob-
tained by combining the uncertainty distributions of the Nexp experts using
equal weights, i.e. the weights wj of Equation 1 are set to wj = 1

Nexp
for

j = 1, . . . , Nexp. At Delft University of Technology procedures have been
developed to assign weights to experts based on statistical performance on
so-called seed variable questions; seed variable questions are questions in
the experts’ field of expertise for which the answer/experimental result is
known to the project staff, but unknown to the expert. Project oversight au-
thorities of the Joint CEC/USNRC project Uncertainty Analysis requested
to investigate the effect of measurement variability in determining the ex-
perimental result on performance based weights. Different experimental
procedures may have different strengths and weaknesses. Since the elicita-
tion does not specify an experimental procedure, the values used to score
the expert’s performance might be contaminated by a measurement vari-
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ability which the experts could not take into account. In Chapter 3 different
methods are presented which take account of measurement variability.

Modeling Uncertainty

As mentioned earlier there are many variables which influence lateral plume
spread, but power law model 2 is regarded to capture the uncertainty asso-
ciated satisfactorily. The focus of Chapter 4 is to provide guidelines in de-
veloping/extracting models which capture the associated uncertainty. The
use of mathematical models to capture uncertainty rather than to make pre-
dictions requires experts and decision makers to think about these models
in a new and different ways. In particular a special class of compartmen-
tal models are studied and a relationship between acyclic compartmental
models and influence diagrams is established.

Application of Results

As mentioned earlier, the aim of this thesis has been the development of
new mathematical techniques which support the Structured Expert Judg-
ment Elicitation Methodology. In performing an uncertainty analysis, these
mathematical techniques have to be used in the reverse order as presented.
Firstly, the model under consideration has to be investigated if it can be
simplified using the considerations of Chapter 4. Based on the simplified
model the target variables are identified, upon which the elicitation vari-
ables will be based. If data are scarce, experts are queried on the marginal
distribution of the elicitation variables and the dependence among them.
Based on these results, the expert’s calibration is scored using the tech-
niques developed in Chapter 3. Based on the expert’s calibration scores the
marginal distributions and dependence information are aggregated using the
strategies of Chapter 2. If necessary, the probabilistic inversion techniques
of Chapter 1 will be used on certain elicitation variables to obtain the dis-
tribution on target variables. The end result will be a joint distribution
on all relevant model input parameters of the model. The final step of the
uncertainty analysis will be the analysis of the model output and to inves-
tigate which uncertain model input parameters influence the model output
uncertainty the most.
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Chapter 1

Probabilistic Inversion

Many scientific applications involve the use of computer modeling to predict
the course of a physical process, such as lateral plume spread. These mod-
els typically contain lots of parameters whose precise values are unknown.
Probabilistic Inversion (PI) is used to establish a subjective probability dis-
tribution over the parameters of such models, and is needed when the model
input parameters do not have a direct physical interpretation. The method
works by taking subjective probability distributions on the observables and
inverting them through the model. Mathematically, PI means that a proba-
bility distribution in the domain of a certain mapping is re-weighted using a
Radon-Nikodym derivative so that its push-forward distribution on the im-
age space of the mapping equals a given required distribution. This chapter
start off with an investigation on the foundations of PI [33], which result in
two implementation schemes [36],[38]. Crucial will be the determination of
the domain on which the measure of the uncertain input parameters will be
determined. To ensure the correctness of the determination of the domain
an iterative version of an implementation has been developed which checks
at each iteration whether or not the domain has to be extended. Finally,
based on a theoretical result an efficient implementation is given which is
able to deal with large problems.

1.1 Foundations

Let (IRm,B, λ) and (IRn,B, ν) be two Borel probability spaces and T :
IRm → IRn a continuous mapping. The mapping T will represent a physical
model that gives an output representing an observable quantity when an
input, specifying the parameters of the physical model, is given; in case of
the dispersion coefficient example (see Introduction); if information on one
downwind distance x is available we might choose T (z) := σy(z) = AyzBy .
Based on practical considerations, a compact subset N ⊂ IRn is identi-

9
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fied as the set of potential observations in the image space. A compact set
M ⊂ IRm (λ(M) > 0) is identified as the set of potential input parameter
values and we say that M is observationally complete if N is in the image
of M , N ⊆ T (M). This means that all potentially observable outputs can
be reproduced by some combination of model input parameter values. Here
it assumed that M is such that it is observationally complete.

The measure λ on M (normalized if necessary, so λ(M) = 1) will be
termed the background measure and the variable µ will be used to denote
another probability measure on M . Furthermore, the measure γ on N is
defined as γ := λ ◦T−1; that is, γ is the push-forward of λ. Finally, assume
that the measure ν on N is given and ν(N) = 1. Intuitively, the background
measure plays a similar role as the prior distribution in Bayesian Analysis.

PI can be expressed mathematically as follows: a measure µ on M is
sought such that

∀ B ∈ B(N) µ ◦ T−1(B) = ν(B) (1.1)

where µ ◦ T−1(B) = µ(T−1(B)) and B(N) is the restriction of the Borel
σ-algebra to N .

Figure 1.1 illustrates the relation between the various objects.

µ

λ

T

ν

γ

NM

Figure 1.1: Graphical illustration of relation between measures.

The following examples illustrate that the uniqueness and existence of
µ are not guaranteed.

Example 1: If µ exists it may not be unique. Suppose T : IR2 → IR,
with T (x1, x2) = x1 − x2 and ν = δ0, then any probability µ supported on
{(x1, x2)|x1 = x2} satisfies µ ◦ T−1(B) = ν(B) for all Borel sets B. See
Figure 1.2.

Example 2: The probability measure µ need not exist. Suppose T :
IR → IR2, with T (x) = (x, 1

2 ) and N = [0, 1]2 with ν being uniform on N .
For any µ on M , µ ◦ T−1 is supported on T (IR) = {(x, 1

2 )|x ∈ IR} which
has ν-measure 0 in N . So Equation 1.1 cannot hold. Note that T is not
surjective onto N . See Figure 1.3.

Example 3: Even if T is surjective onto N , the push-forward of an
arbitrary measure µ need not be absolutely continuous w.r.t. ν. Suppose
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.

T (x1, x2) = x1 − x2

M

N = {0}x1

x2

Figure 1.2: Graphical illustration of Example 1.

T (x) = (x, 1
2 )

M

N

(1, 0)

(0, 1)

(0, 0)

(x, 1
2 )

Figure 1.3: Graphical illustration of Example 2.

T : IR2 → IR2, with T (x, y) = (x, y). Let M = N = [0, 1]2, then M is
observationally complete. Let ν be uniform on the diagonal D = {(x, x)|x ∈
[0, 1]} and µ be uniform on M . Then µ ◦ T−1 is uniformly distributed on
N , and µ ◦ T−1(D) = 0 but ν(D) = 1. See Figure 1.4

T (x, y) = (x, y)

M N

D

(1, 0) (1, 0)

(0, 1) (0, 1)

(0, 0) (0, 0)

Figure 1.4: Graphical illustration of Example 3.

It can be shown that under certain conditions a probability measure µ
can be found solving Equation 1.1. It is assumed that ν � γ, which is
stronger than assuming M is observationally complete. Under these con-
ditions the Radon-Nikodym Theorem [3] (Theorem 32.2 p.443) permits us
to assert the existence of a measurable non-negative function g : N → IR,
unique up to sets of γ-measure 0, such that

ν(B) =
∫

B

g(y)dγ(y) ∀B ∈ B(N). (1.2)
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The function g is γ-integrable, since ν is finite, but it is assumed also that
g is continuous, g(y) > 0 for y ∈ N and

∫
N

g(y) log g(y)dγ(y) < ∞. Define
f̃ : M → IR as f̃ := g ◦ T , and µ̃ = µ̃T,ν,γ as a new probability measure on
(M,B(M)) by f̃ = dµ̃

dλ , that is

µ̃(A) :=
∫

A

f̃(x)dλ(x) ∀A ∈ B(M) (1.3)

so µ̃ � λ. Hence f̃ is a continuous function unique up to sets of λ-measure
0, f̃(x) = f̃(x′) when T (x) = T (x′) and f̃(x) > 0 for x ∈ T−1(N). Since

µ̃ ◦ T−1(B) = µ̃(T−1(B)) =
∫

T−1(B)

f̃(x)dλ(x) =
∫

T−1(B)

g ◦ T (x)dλ(x)

=
∫

B

g(y)dγ(y)

= ν(B)

the induced Borel measure µ̃◦T−1 equals ν. In particular µ̃ is a probability
measure satisfying Equation 1.1.

The measure µ̃ is not necessarily the only measure satisfying Equation
1.1 (see Example 1). However, measure µ̃ is the preferred one in the sense (as
described in [40], p.4-5) that it uniquely minimizes the relative information1

with respect to λ amongst all those measures satisfying Equation 1.1. The
motivation for relative information is briefly recalled. Consider measures µi

(i = 1, 2) satisfying Expression 1.1 and such that µi � λ, and denote the
Radon-Nikodym derivates by fi. As stated in [40], if Hi is the hypothesis
that X is from the statistical population with measure µi, then it follows
from Bayes theorem that

P (Hi|X = x) =
P (Hi)fi(x)

P (H1)f1(x) + P (H2)f2(x)
[λ], i = 1, 2 (1.4)

from which it follows:

log
f1(x)
f2(x)

= log
P (H1|X = x)
P (H2|X = x)

− log
P (H1)
P (H2)

[λ] (1.5)

where [λ] means that the assertion is unique up to sets of λ-measure 0.
Furthermore, P (Hi) (i = 1, 2) is the prior probability of Hi and P (Hi|X =
x) is the posterior probability of Hi, or the conditional probability of Hi

given X = x. The right-hand side of Equation 1.5 can be viewed as a
measure of the difference between the logarithm of the odds in favor of
H1 after observing X = x and before the observation. This difference,
which may be negative or positive, may be considered as the information
resulting from the observation X = x. The relative information is defined

1Relative information is referred to frequently as the Kullback-Leibler divergence.
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as the logarithm of the likelihood ratio, log f1(x)
f2(x) when X = x, for the

discrimination in favor of H1 against H2. The mean relative information
for discrimination in favor of H1 against H2 given x ∈ A ∈ B(M), for µ1, is

I(µ1|µ2) :=

{
1

µ1(A)

∫
A

f1(x) log f1(x)
f2(x)dλ(x) for µ1(A) > 0

0 for µ1(A) = 0.
(1.6)

A necessary, but not sufficient, condition for I(µ1|µ2) to be finite is if µ1

and µ2 are absolutely continuous with respect to one another, i.e. µ1 � µ2

and µ2 � µ1. Furthermore, relative information is non-negative, that is
I(µ1|µ2) ≥ 0, with equality if and only if µ1 = µ2, see [40] (Theorem 3.1 p.
14).

In general, the initial (background) measure λ does not have to satisfy
Equation 1.1,

∀ B ∈ B(N) λ ◦ T−1(B) �= ν(B) (1.7)

Probabilistic inversion is concerned with the determination of a measure
µ̃ on M , which satisfies Equation 1.1. Under the conditions we have imposed
the existence of a solution to Equation 1.1 is guaranteed. A uniqueness
property will be obtained by searching for a minimal relative informative
measure satisfying Equation 1.1.

1.1.1 The measure µ̃

Let (X,S, α1) and (Y, T , βi), i = 1, 2 be probability spaces, where X is
a topological space with S the Borel σ-algebra, (Y, T ) is a Polish space
with T the Borel σ-algebra, and let S be a continuous mapping from X to
Y . These probability spaces are introduced because Theorem 1.1.4 will be
applied to various probability spaces. Suppose β1 = α1 ◦ S−1 and assume
β2 � β1, then a measurable non-negative function sβ exists, such that
β2(B) =

∫
B

sβ(y)dβ1(y) for all B ∈ T . Figure 1.5 illustrates the relation
between the different objects.

α1

S

β1

β2

YX

Figure 1.5: Graphical illustration of relation between α1, β1 and β2.

Additionally it is assumed that sβ is continuous, sβ(y) > 0 for y ∈ Y and∫
Y

sβ log sβdβ1(y) < ∞. Define s̃ := sβ ◦ S (s̃ is continuous and s̃(x) > 0
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for x ∈ X) and α̃(A) :=
∫

A
s̃(x)dα1(x) for all A ∈ S so that α̃ is absolutely

continuous to α1, α̃ � α1.
Let Aα1,β2,S = {α|α � α1, α ◦ S−1 = β2} be the set which contains

measures α which are a solution to

∀ B ∈ T α ◦ S−1(B) = β2(B). (1.8)

Lemma 1.1.1. The set Aα1,β2,S is non-empty and convex.

Proof: To show that Aα1,β2,S is non-empty, we prove that α̃ is an
element. Clearly α̃ � α1 and

α̃ ◦ S−1(B) = α̃(S−1(B)) =
∫

S−1(B)

s̃(x)dα1(x) =
∫

S−1(B)

sβ ◦ S(x)dα(x)

=
∫

B

sβ(y)dβ1(y)

= β2(B).

In order to demonstrate convexity, let α′, α′′ ∈ Aα1,β2,S and δ ∈ [0, 1].
Because α′ � α1 and α′′ � α1 it follows that δα′ + (1 − δ)α′′ � α1. Let
B ∈ T ,

(δα′ + (1 − δ)α′′) ◦ S−1(B) = (δα′ + (1 − δ)α′′)(S−1(B))
= δα′(S−1(B)) + (1 − δ)α′′(S−1(B))
= δβ2(B) + (1 − δ)β2(B) = β2(B).

�

In the remainder assume that Aα1,β2,S contains a measure with finite
relative information with respect to α1. Presently, it is shown that α̃ is the
unique measure in Aα1,β2,S minimizing relative information with respect to
α1, hence I(α̃|α1) < ∞.

Let α ∈ Aα1,β2,S and define α1,y and αy to be the conditional measures
of α1 and α, respectively, on X induced by conditioning on S(x) = y. By
Theorem 10.2.2 (p. 270) from [20], these conditional measures exist for β1

almost all y. Denote the Radon-Nikodym derivative of α with respect to α1

by s. Lemma 1.1.3 will show that αy � α1,y by explicitly giving a version of
dαy

dα1,y
. Theorem 10.2.1 taken from [20] (p. 269) will be used in Lemma 1.1.3:

10.2.1 Theorem Let (X×Y,A, P ) be a probability space where (X,S) and
(Y, T ) are measurable spaces and A is the product σ-algebra. Denote the
points of X × Y by (x, y). Suppose there exist conditional distributions Py

of x for y ∈ Y . Let β :=
∫

X
P (x, y)dx be the projection of P onto Y . Then

for any integrable function g for P ,∫
X×Y

gdP =
∫

X

∫
Y

g(x, y)dPy(x)dβ(y).
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Let P be the push-forward measure of α onto D, and P1 be the push-
forward measure of α1 onto D, where D = {(x, y) ∈ X×Y |S(x) = y}. Note
that for any measurable integrable function g(x, y) and any measure α on
X we have ∫

g(x, y) dα ◦ S−1(x, y) =
∫

g(x, S(x)) dα(x). (1.9)

See Figure 1.6 for a graphical illustration on how the measures, mapping
and set D are connected.

X

Y

D = {(x, y) ∈ X × Y |S(x) = y}

α ◦ S−1(B)

β2(B)

P , P1

Figure 1.6: Illustration of measures, mapping S and set D.

Lemma 1.1.2. The measure P is absolutely continuous with respect to P1,
with Radon-Nikodym derivative

dP

dP1
(x, y) =

{
s(x) if y = S(x)
0 otherwise.

Proof: For any measurable integrable function g,∫
A×B

g(x, y)s(x) dP (x, y) =
∫

(A∩S−1(B))×B

g(x, y)s(x) dP (x, y)

=
∫

A∩S−1(B)

g(x, S(x))s(x) dα(x)

=
∫

A∩S−1(B)

g(x, S(x)) dα1(x)

=
∫

A×B

g(x, y) dP1(x, y).

�
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Lemma 1.1.3. The conditional measure Py is absolute continuous with
respect to P1,y, for β2 almost all y, with Radon-Nikodym derivative

dPy

dP1,y
(x) =

{
s(x)

sβ(S(x)) if y = S(x)
0 otherwise.

Proof: We have∫
g(x, y)

s(x)
sβ(S(x))

dP1,y(x)dβ2(y) =
∫

g(x, y)s(x) dP1,y(x)dβ1(y)

=
∫

g(x, y)s(x) dP1(x, y)

=
∫

g(x, y) dP (x, y)

=
∫

g(x, y) dPy(x)dβ2(y)

for any measurable integrable function g.
�

Finally, remark that since P is the push-forward of α, and P1 of α1, that
Py = αy and P1,y = α1,y.

Theorem 1.1.4. For any α ∈ Aα1,β2,S,

I(α|α1) =
∫

Y

I(αy|α1,y)dβ2(y) + I(β2|β1)

Proof: Recall s = dα
dα1

, then I(α|α1) can be written as

I(α|α1) =
∫

X

log s(x)dα(x)

=
∫

Y

∫
S−1(y)

log s(x)dαy(x)dβ2(y).

Using Lemma 1.1.3 we write

I(α|α1) =
∫

Y

∫
S−1(y)

log
(

dαy

dα1,y
(x)sβ(y)

)
dαy(x)dβ2(y)

=
∫

Y

∫
S−1(y)

log
dαy

dα1,y
(x)dαy(x)dβ2(y) +

∫
Y

log sβ(y)dβ2(y)

=
∫

Y

I(αy|α1,y)dβ2(y) + I(β2|β1).

�
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Corollary 1.1.5. The probability measure α̃ is the unique element of Aα1,β2,S

minimizing relative information w.r.t. α1, I(α̃|α1) = I(β2|β1), and I(α̃|α1) <
∞.

Proof: For α̃, by construction dα̃y

dα1,y
(x) = s̃(x)

sβ(y) = sβ◦S(x)
sβ(y) = sβ(y)

sβ(y) = 1
[α1] almost surely, is constant. Hence α̃y = α1,y [β2] almost surely and
I(α̃y|α1,y) = 0 [β2] almost surely. To show that α̃ is unique, suppose
that the measure α ∈ Aα1,β2,S satisfies I(α|α1) = I(β2|β1). We then have
I(αy|α1,y) = 0 [β2] almost surely. Hence αy = α1,y [β2] almost surely and so
αy = α̃y [β2] almost surely, from which α = α̃ follows. In order to conclude
that I(α̃|α1) < ∞, we remark that I(β2|β1) =

∫
Y

sβ log sβdβ1(y) < ∞.

�

Specializing Theorem 1.1.4 and Corollary 1.1.5 to the setting of prob-
abilistic inversion as introduced in the previous section gives the following
two results.

Corollary 1.1.6. For any µ ∈ Aλ,ν,T ,

I(µ|λ) =
∫

N

I(µy|λy)dν(y) + I(ν|γ)

Corollary 1.1.7. The probability measure µ̃ is the unique element of Aλ,ν,T

minimizing relative information w.r.t. λ, I(µ̃|λ) = I(ν|γ), and I(µ̃|λ) < ∞.

In many applications, only partial information on the measure ν is
available. For example, under the Structured Expert Judgment Elicita-
tion Methodology [12], experts provide information on the measure ν by
specifying a number of quantile points of their distribution. In case of the
dispersion coefficient example, the experts provided the 5%, 50% and 95%
quantile point. Section 1.1.2 discusses the implications of the availability of
partial information νk for ν.

1.1.2 Approximating µ̃ by µ̃k

Let Bk (k = 1, 2, . . .) be a sequence of finite Borel partitions of N such that

σ(∪∞
k=1Bk) = B(N)

and Bk+1 refines Bk . For simplicity, it is assumed that the cardinality of
Bk is equal to k, and max diamBi∈Bk

Bi → 0. We write Bk = {B1, . . . , Bk}.
Clearly Ak = T−1(Bk) is a finite Borel partition of M , Ak = {A1, . . . , Ak}
where Ai = T−1(Bi).

Define φk : N → {1, . . . , k}, by φk(y) := i when y ∈ Bi. Furthermore,
define Tk : M → {1, . . . , k} as the composition Tk(x) := φk ◦ T (x). Let
γk = γ ◦φ−1

k and νk = ν ◦φ−1
k be the push-forwards of γ and ν, respectively,

onto {1, . . . , k}.
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µ

λ

T

ν

γ

φk

νk

γk

NM {1, . . . , k}

Figure 1.7: Graphical illustration of extended relation between measures.

See Figure 1.7 for a graphical illustration of how the different measures
are connected.

This models the situation in which a limited number of probability ‘bins’
are quantified by expert opinion. In principle, this can be refined as much
as required by doing more expert assessments. This corresponds to refining
the partition Bk.

Lemma 1.1.8. The condition ν � γ implies that for all k,

νk � γk.

Proof: Let i ∈ {1, . . . , k} and suppose that γk(i) = 0. Then clearly
γ(Bi) = 0, so that ν(Bi) = 0, and νk(i) = 0.

�

By the Radon-Nikodym theorem, the density gk : {1, . . . , k} → IR
given by gk = dνk

dγk
exists. Define f̃k : M → IR as f̃k := gk ◦ Tk and

µ̃k(A) =
∫

A
f̃k(x)dλ(x).

Corollary 1.1.9. For any µk ∈ Aλ,νk,Tk
,

I(µk|λ) =
k∑

i=1

I(µk|i|λk|i)νk({i}) + I(νk|γk)

Proof: Apply Theorem 1.1.4 with α = µk and S = Tk between (M,B(M), λ)
and ({1, . . . , k},B({1, . . . , k}), γk, νk).

�

Corollary 1.1.10. The probability measure µ̃k is the unique element of
Aλ,νk,Tk

minimizing relative information w.r.t. λ, I(µ̃k|λ) = I(νk|γk), and
I(µ̃k|λ) < ∞.

Since Bk+1 refines Bk, σ(Bk) ⊂ σ(Bk+1) from which follows σ(Ak) ⊂
σ(Ak+1). Hence σ(Ak) is a sub σ-algebra of σ(Ak+1). Our objective is to
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show that the measures µ̃k will converge to µ̃ as k → ∞. To show this it will
be convenient to show that the densities f̃k form a right-closable martingale.

Theorem 1.1.11. The sequence {f̃k, σ(Ak)} is a right-closable martingale.

Proof: Recall the increasing sequence of partitions Bk, and measurable
partitions Ak on M defined by Ak = T−1(Bk) = {Ai|Ai = T−1(Bi), Bi ∈ Bk}.
By construction f̃k is constant on elements on Ak. Hence f̃k is σ(Ak)-
measurable since σ(f̃k) ⊂ σ(Ak). We claim that {f̃k, σ(Ak)} is a right-
closable martingale sequence.

Firstly, f̃k and f̃ are densities, hence L1-functions and σ(Ak) ⊂ σ(Ak+1)
for all k. Secondly for any k, l ≥ k and Ai ∈ Ak

Eλ(f̃l|Ai) =
1

λ(Ai)

∫
Ai

f̃l(x)dλ(x)

=
µ̃l(Ai)
λ(Ai)

=
ν(Bi)
λ(Ai)

=
µ̃k(Ai)
λ(Ai)

= f̃k(x) for any x ∈ Ai

This shows that f̃k = Eλ(f̃l|σ(Ak)). Similarly f̃k = Eλ(f̃ |σ(Ak)). Hence
{f̃k, σ(Ak)} is a right-closable martingale sequence, with extension f̃∞ = f̃
and σ(A∞) = T−1(B(N)).

�

Note that {fk, σ(Ak)}, with fk not constant on elements of Ak, is not a
martingale sequence. By applying a martingale convergence theorem 10.5.1
(p.285) of [20], it follows that f̃k(x) → f̃(x) [λ] almost surely as k →
∞. However a stronger convergence result is needed for Lemma 1.1.15
and Theorems 1.1.13 and 1.1.18, namely that f̃(x)

f̃k(x)
→ 1 [λ] uniformly2 as

k → ∞.

Proposition 1.1.12. limk→∞
f̃(x)

f̃k(x)
= 1 [λ] uniformly.

Proof: N is compact, hence f̃ is uniformly continuous on T−1(N).
Furthermore, since f̃(x) > 0, there must exist an L > 0 such that f̃(x) > 1

L

for all x ∈ T−1(N). Hence we also have f̃k = E(f̃ |Ai) > 1
L . Additionally,

since g is uniformly continuous on N , for any ε > 0 there exists a δ > 0 such
that |g(y1) − g(y2)| < ε

L for all y1, y2 ∈ N ⊂ IRn satisfying ||y1−y2||max < δ,
where ||y1 − y2||max = maxj=1,...,n{|y1,j − y2,j |}.

2∀ε > 0, ∃k1, Mε such that λ(Mε) = 1 and | f̃(x)

f̃k(x)
− 1| < ε ∀x ∈ Mε and k > k1.
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Suppose x ∈ Ai = T−1(Bi) for some Bi ∈ Bk, choose δ > 0 such that
maxy∗∈Bi

|g(y) − g(y∗)| < ε
L for all y ∈ Bi then∣∣∣∣∣ f̃(x)

f̃k(x)
− 1

∣∣∣∣∣ ≤
∣∣∣∣ 1
f̃k(x)

∣∣∣∣ ∣∣∣f̃(x) − f̃k(x)
∣∣∣ (1.10)

< L |f̃(x) − Eλ(f̃ |Ai)|
≤ L max

x∗∈Ai

∣∣∣f̃(x) − f̃(x∗)
∣∣∣

= L max
y∗∈Bi

|g(y) − g(y∗)| < ε.

�

Theorem 1.1.13. limk→∞ µ̃k = µ̃ weakly.

Proof: It is sufficient to prove that
∫

M
h(x) dµ̃k(x) →

∫
M

h(x) dµ̃(x) as
k → ∞ for any continuous bounded function h : M → IR, or equivalently∫

M

h(x)f̃k(x)dλ(x) →
∫

M

h(x)f̃(x)dλ(x).

Since h(x) is bounded, the above is implied by∫
M

|f̃k(x) − f̃(x)|dλ(x) → 0.

We have
∫

M

∣∣∣f̃k(x) − f̃(x)
∣∣∣ dλ(x) ≤

∫
M

∣∣∣∣∣ f̃(x)
f̃k(x)

− 1

∣∣∣∣∣ dλ(x) sup
x∈M

∣∣∣f̃k(x)
∣∣∣

≤
∫

M

∣∣∣∣∣ f̃(x)
f̃k(x)

− 1

∣∣∣∣∣ dλ(x) sup
x∈M

∣∣∣f̃(x)
∣∣∣ → 0

as k → ∞ by Proposition 1.1.12.

�

Lemma 1.1.14. For every k > 0 we have µ̃ � µ̃k.

Proof: It is sufficient to prove that f̃k(x) = 0 ⇒ f̃(x) = 0. By con-
struction, if f̃k(x) = 0 then f̃k(x∗) = 0 for all x∗ ∈ Ai. Hence gk(i) =
gk ◦ Tk(x∗) = f̃k(x∗) = 0. But then νk({i}) = 0 which implies ν(Bi) = 0.
Then g(y) = 0 for all y ∈ Bi, from which is concluded that f̃(x) = 0.

�
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Lemma 1.1.15. limk→∞ I(µ̃|µ̃k) = 0.

Proof: Since limk→∞
f̃(x)

f̃k(x)
= 1 [λ] uniformly, then for all ε > 0, there

exist k1,Mε such that λ(Mε) = 1 and | f̃(x)

f̃k(x)
− 1| < ε for all x ∈ Mε and

k > k1. So

I(µ|µk) =
∫

Mε

f̃(x) log
f̃(x)
f̃k(x)

dλ(x)

≤
∫

Mε

f̃(x) log(1 + ε)dλ(x) k > k1

= log(1 + ε).

Hence I(µ|µk) → 0 as k → ∞.

�

The next lemma shows that the relative information increases when a
partition is refined.

Lemma 1.1.16. For partition Bk and Bl, with k ≥ l, I(νk|γk) ≥ I(νl|γl).

Proof: Recall ({1, . . . , i},B({1, . . . , i}), γi, νi) for i ∈ {k, l} are prob-
ability spaces and define πk,l : {1, . . . , k} → {1, . . . , l} as the projection
map such that πk,l ◦ φk = φl be a projection from elements of Ak to
Al. Application of Theorem 1.1.4 between ({1, . . . , k},B({1, . . . , k}), γk)
and ({1, . . . , l},B({1, . . . , l}), γl, νl), with α = νk and S = πk,l. Since the
first term of the right hand-side will consist of positive terms only, it follows
that I(νk|γk) ≥ I(νl|γl).

�

Lemma 1.1.17. I(µ̃k|λ) ≤ I(µ̃|λ) < ∞.

Proof: By Corollary 1.1.10, I(µ̃k|λ) = I(νk|γk) and Lemma 1.1.16
states I(νk|γk) ≥ I(νl|γl) for k ≥ l, hence I(µ̃k|λ) is an increasing function
in k, which is bounded above by I(µ|λ) since application of Theorem 1.1.4
between (M,B(M), λ) and ({1, . . . , k},B({1, . . . , k}), γk, νk) with α = µ̃ and
S = Tk results in I(µ̃|λ) ≥ I(νk|γk) = I(µ̃k|λ). In particular, it is assumed
that Aλ,ν,T contains a measure with finite relative information with respect
to λ, I(µ̃|λ) < ∞, hence I(µ̃k|λ) is bounded.

�
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Theorem 1.1.18. limk→∞ I(µ̃k|λ) = I(µ̃|λ).

Proof: Write

I(µ̃|λ) =
∫

M

f̃(x) log f̃(x)dλ(x)

=
∫

M

f̃(x) log
f̃(x)
f̃k(x)

dλ(x) +
∫

M

f̃(x) log f̃k(x)dλ(x).

Consider

I(µ̃|λ) − I(µ̃k|λ) =
∫

M

f̃(x) log
f̃(x)
f̃k(x)

dλ(x)+

+
∫

M
(f̃(x) − f̃k(x)) log f̃k(x)dλ(x).

Taking the absolute value of the equation above and applying the triangle
inequality,

|I(µ̃|λ) − I(µ̃k|λ)| ≤
∣∣∣∣∣
∫

M

f̃(x)
f̃k(x)

log
f̃(x)
f̃k(x)

f̃k(x)dλ(x)

∣∣∣∣∣ +

+
∣∣∣∫M

(f̃(x) − f̃k(x)) log f̃k(x)dλ(x)
∣∣∣ .

Since f̃(x)

f̃k(x)
→ 1 [λ] uniformly, it follows for sufficiently large k, there exists

an ε > 0 such that
∣∣∣f̃(x) − f̃k(x)

∣∣∣ < ε
∣∣∣f̃k(x)

∣∣∣
|I(µ̃|λ) − I(µ̃k|λ)| ≤

∣∣∣∣
∫

M

dµ̃

dµ̃k
log

dµ̃

dµ̃k
dµ̃k

∣∣∣∣ + ε

∣∣∣∣
∫

M

f̃k(x) log f̃k(x)dλ(x)
∣∣∣∣

= I(µ̃|µ̃k) + ε I(µ̃k|λ)
≤ I(ũ|ũk) + εI(ũ|λ) (1.11)

by Lemma 1.1.17. It follows from Lemma 1.1.15 that I(µ̃|µ̃k) → 0 as k → ∞.

�

In the implementation of the probabilistic inversion scheme, discrete
probability approximations will be considered. Section 1.1.3 explores the
implications of approximating µ̃k by µ̃′

n,k, where n′ denotes the total number
of samples.

1.1.3 Approximating µ̃k by µ̃n′,k

Assume that {x1, . . . , xn′} ⊂ M is an i.i.d. sample of size n′ from the
background measure λ. Let λn′ be the empirical background measure of the
sample {x1, . . . , xn′}. Recall γk = λ ◦ T−1

k , we now define γn′,k := γn′ ◦ φ−1
k

as the sample push-forward background measure of λn′ .
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Lemma 1.1.19. For fixed k, limn′→∞ γn′,k = γk [λ] almost surely.

Proof: Since Ak is a finite measurable partition of M , the strong law
of large numbers says that, for [λ] almost surely, the sequence X1,X2, . . .

λn′(Ai) =
#{j|Xj ∈ Ai, 1 ≤ j ≤ n′}

n′ → λ(Ai) (1.12)

where i = 1, . . . , k. Hence λn′(Ai) → λ(Ai) for i = 1, . . . , k almost surely,
or equivalently γn′,k({i}) → γk({i}) [λ] almost surely.

�

Since {1, . . . , k} is discrete, a sample of size n′ may be taken for which
γn′,k ≡ γk, i.e. for large n′: γn′,k � γk and γk � γn′,k. Let n′ be large
enough that γn′,k ≡ γk, whence by Lemma 1.1.8, νk � γn′,k. Then gn′,k =

dνk

dγn′,k
exists by the Radon-Nikodym Theorem and define f̃n′,k := gn′,k ◦Tk.

Finally, define µ̃n′,k(A) :=
∫

A
f̃n′,k(x)dλn′(x) for A ⊂ M .

Lemma 1.1.20. For fixed k and i ∈ {1, . . . , k}, limn′→∞
gn′,k(i)

gk(i) = 1 [λ]
almost surely.

Proof: Let k be fixed and choose i ∈ {1, . . . , k}. For all large n′,

gn′,k(i)
gk(i)

=
dνk(i)

dγn′,k(i)
dγk(i)
dνk(i)

=
dγk(i)

dγn′,k(i)
=

γk({i})
γn′,k({i}) .

From Lemma 1.1.19 it follows that gn′,k(i)

gk(i) → 1 [λ] almost surely as n′ → ∞.

�

Theorem 1.1.21. For fixed k, limn′→∞ µ̃n′,k = µ̃k weakly [λ] almost surely.

Proof: Recall µ̃n′,k(A) =
∫

A
f̃n′,k(x)dλn′(x),

µ̃n′,k(A) =
k∑

i=1

µ̃n′,k(A ∩ Ai) Ai ∈ Ak

=
k∑

i=1

∫
A∩Ai

f̃n′,k(x)dλn′(x).

Note that f̃n′,k is constant on A ∩ Ai. For each i choose xi ∈ Ai ∩ A then

µ̃n′,k(A) =
k∑

i=1

f̃n′,k(xi)λn′(A ∩ Ai)

=
k∑

i=1

gn′,k(Tk(xi))λn′(A ∩ Ai).
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The Strong Law of Large Numbers implies that as n′ → ∞ then λn′ → λ
almost surely. Application of Lemma 1.1.20,

µ̃n′,k(A) →
k∑

i=1

gk(Tk(xi))λ(A ∩ Ai)

=
k∑

i=1

f̃k(xi)λ(A ∩ Ai)

= µ̃k(A).

�

Theorem 1.1.22. limk→∞ limn′→∞ µ̃n′,k = µ̃ weakly, [λ] almost surely.

Proof: Follows from applying Theorem 1.1.21 first, followed by apply-
ing Theorem 1.1.13.

�

Proposition 1.1.23. For fixed k, limn′→∞ I(µ̃n′,k|λn′) = I(µ̃k|λ).

Proof: Let Ai ∈ Ak and xi ∈ Ai, then

I(µ̃n′,k|λn′) =
k∑

i=1

f̃n′,k(xi) log f̃n′,k(xi)λn′(Ai)

=
k∑

i=1

gn′,k(Tk(xi)) log gn′,k(Tk(xi))λn′(Ai).

The Strong Law of Large Numbers implies that as n′ → ∞ then λn′ → λ
almost surely. Application of Lemma 1.1.20,

I(µ̃n′,k|λn′) →
k∑

i=1

gk(Tk(xi)) log gk(Tk(xi))λ(Ai)

=
k∑

i=1

f̃k(xi) log f̃k(xi)λ(Ai)

= I(µ̃k|λ).

�

Theorem 1.1.24. limk→∞ limn′→∞ I(µ̃n′,k|λn′) = I(µ̃|λ).

Proof: First apply Proposition 1.1.23, followed by Theorem 1.1.18.

�

Theorem 1.1.24 says that the sequence thus obtained also approximates
µ̃ in terms of relative information.
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1.1.4 Example: revisited

In the dispersion coefficient example, M ⊂ IR2 and N ⊂ IR5; the target
variables X are (Ay, By) and (σy(z1), σy(z2), . . . , σy(zn)) are the elicitation
variables Y. Quantile assessments for the measure ν on N are given in Table
1. Let Ij,l denote the l-th interquantile interval of the lateral plume spread
assessments for the j-th elicitation variable (l = 1, . . . , 4, j = 1, . . . , 5), for
example:

I1,1 = [0, 33]
I4,2 = (448, 1220]

Taking the product of all such interquantile intervals, the partition elements
(‘observable hypercubes’) Bi are defined as,

Bi := I1,l1 × I2,l2 × . . . × I5,l5 Bi ∈ Bk

where j ∈ {1, . . . , 5}, lj ∈ {1, . . . , 4}. The number of partition elements
equals k = 45. The mapping φk of Section 1.1.2, links the interquantile
intervals with the partition element k and is defined here as

φk(y1, . . . , y5) :=
5∑

j=1

4∑
l=1

l 4j−1 1Ij,l
(yj)

and thus associates with each partition element a number in base 4. Note
that experts provided information in terms of information on the interquan-
tile intervals (ν(Ij,lj )) rather than on the partition elements (ν(Bi)); in this
example, an interquantile interval is the union of 4 partition elements. By
asking experts about other quantiles, a sequence of partitions is obtained
as in Section 1.1.2.

1.2 Probabilistic Inversion Implementations

In the implementation of Probabilistic Inversion, the discrete approximation
µ̃n′,k is determined in two steps. Firstly, based on a Monte-Carlo heuristic
a sample set in the target variable space is generated, which is considered
to approximate the i.i.d. sample of size n′ from background measure λ.
The resulting sample set is identified as domain M upon which in Step 2
the measure µ̃k will be determined. The target variables (uncertain input
parameters) are represented by X = (X1, . . . , Xm) with realizations x =
(x1, . . . , xm) and the elicitation variables (observables) are represented by
Y = (Y1, . . . , Yn) with realizations y = (y1, . . . , yn). The two steps of
the implementation are illustrated graphically using the diffusion coefficient
example for 2 observables 3. For notational convenience, the measures µ̃n′,k,
λn′ will be denoted by µ̃k, λ, respectively.

3It must be stressed that the figures illustrating the different steps are used only for
the purpose of illustration and are not based on actual data.
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Two different implementations will be presented; PARFUM and PREJ-
UDICE. Each implementation has advantages and disadvantages which will
be discussed in Section 1.2.3.

1.2.1 PARFUM

The acronym PARFUM stands for PARameter Fitting for Uncertain Models
and is described in [10], [36]. The current computer implementation of
PARFUM is suitable only for linear models, or models that become linear
when transformed, whereas the implementation of PARFUM can be applied
to non-linear models as well.

Step 1 Determination of M : for each elicitation variable Yj (j = 1, . . . , n)
the k∗-th quantile point is chosen (k∗ = 1, . . . , K),

y = (y1,k∗ , . . . , yn,k∗) (1.13)

where y1,1 would represent the 5% quantile point of Y1 and K the total
number of quantile points elicited. Next the vector y is checked if it is
potentially observable. If y is potentially observable, it will be called
a scenario and it will be added to the set of potentially observable
scenarios N .

For each y ∈ N , define xy := (xy,1, . . . , xy,m) as the model inversions
which minimize,

min
n∑

j=1

(
yj,k∗ − T(j)(xy)

)2 (1.14)

where T(j) : IRm → IR is the mapping into j-th dimension of the
observable space4; for example, in case of the dispersion coefficient
example T (2) = Ayz

By

2 .

For each target variable Xi (i = 1, . . . ,m) the minimum and maximum
value, represented by mini and maxi respectively, are determined. The
interval [mini,maxi] is extended with a certain percentage of its range
on both sides to determine the interval Mi on which the distribution
for Xi will be specified. Next Mi is discretized by a number of equally
spaced points. The domain M will be the Cartesian product of the
discretized versions of Mi;

M = M1 × . . . × Mm (1.15)

The domain M is propagated through T(j) to obtain n observable
spaces, see Figure 1.8; in case of the dispersion coefficient example

4The mapping T(j) should not be mistaken by the mapping Tk, since T(j) : IRm → IR
and Tk : IRm → {1, . . . , k} (see Section 1.1.2).
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the realizations of (Ay, By) are represented as (ay, by) and the ‘dots’
in the target variable space represent target variable realizations and
the ‘dots’ above the lines in the observable space represent the push-
forward outcomes of the target variable realizations.
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Figure 1.8: PARFUM: Propagation of samples.

Step 2 Determination of distribution: For each elicitation variable Yj , the
conditional probability mass function fk|j of conditional measure µk|j
for x ∈ M is defined as

fk|j(x|T (x) ∈ Ij,lj ) :=
ν(Ij,lj )∑

x∈M 1T(j)(x)∈Ij,lj
(x)

(1.16)

where lj = 1, . . . , K + 1 and ν(Ij,lj ) has to be interpreted as the
probability of the lj-th interquantile interval of elicitation variable
Yj under measure ν; intuitively the push-forward outcomes receive
probabilities depending on the probability associated with interquan-
tile interval Ij,kj

and the number of push-forward samples contained
in Ij,kj

. These probabilities are ‘pulled-back’ onto the corresponding
target variable realizations.

To summarize, for each elicitation variable Yj , a measure µk|j on M
is obtained. See Figure 1.9.

Next, the measure µ̃k on M has to be determined, which best fits the
measures µk|1, . . . , µk|n. Relative information arguments are used to
solve the problem ([40], for a discussion in this context see [10]): find
the measure µ̃k on M for which

∑n
j=1 I(µk|j |µ̃k) is minimal, where

I(µk|j |µ̃k) =
∑
x∈M

fk|j(x) ln
fk|j(x)

f̃k(x)
. (1.17)
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Figure 1.9: PARFUM: Determination of distribution.

The µ̃k solving the minimization problem is just the average of the
measures µk|j , j = 1, . . . , n. Other solution concepts could be used
leading to other solutions, for details see [10].

1.2.2 PREJUDICE

The solution scheme implemented in PREJUDICE is based on an idea pro-
posed by Hora and Young, [27]. The acronym PREJUDICE stands for
PRocessing Expert JUDgment Into Code paramEters.

Step 1 Determination of M : all possible combinations of quantile points
yj,kj

among the elicitation variable Yj (j = 1, . . . , n) will be generated:

y = (y1,k1 , . . . , yn,kn
) (1.18)

where kj ∈ {1, . . . , K} and K the total number of quantile points
elicited. Next each combination y is checked if it is potentially ob-
servable. If the combination is potentially observable, it will be called
a scenario and it will be added to the set of potentially observable
scenarios N .

For each y ∈ N define xy := (xy,1, . . . , xy,m) as the model inversions
which minimize,

min
n∑

j=1

(
yj,kj

− T(j)(xy)
)2 (1.19)

Expression 1.19 is evaluated for each scenario in N .
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The main difference between PARFUM and PREJUDICE is the di-
mension of the observable space; PARFUM considers an observable
space for each elicitation variable, PREJUDICE considers one observ-
able space which consists of all elicitation variables. Another differ-
ence between PREJUDICE and PARFUM concerns the construction
of domain M . In case the number of target variables is large, the con-
struction of M as done in PARFUM leads to combinatorial problems.
PREJUDICE allows the user to choose from the following schemes:
to illustrate the sampling scheme it is assumed that the set of model
inversions obtained from minimizing Expression 1.19 are the same for
both sampling schemes.

ε-neighborhood : For i = 1, . . . ,m, choose εi > 0 and for each
model inversion xy, y ∈ N , sample randomly from Mxy defined
as:

Mxy := Mxy,1 × . . . × Mxy,m
(1.20)

where Mxy,i
:= [(1− εi)xy,i, (1+ εi)xy,i]. The samples are prop-

agated through T , see Figure 1.10.
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Figure 1.10: PREJUDICE: Propagation of samples (ε-neighborhood).

Bin combinations : for each target variable Xi (i = 1, . . . , m) the
minimum and maximum value are represented by mini and maxi

respectively. The interval [mini,maxi] is extended with a certain
percentage of its range on both sides to determine the interval
Mi on which the distribution for Xi will be specified. For each
target variable Xi, bins Bi,p (p = 1, . . . , Ci) are constructed such
that

∪Ci
p=1Bj,p = [min Mi,max Mi] (1.21)
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and Bi,p ∩ Bi,q = ∅ for p, q = 1, . . . , Ci, p �= q. For each target
variable, the number of bins Ci depends on the spread of the
model inversions xy.
For each xy, it is determined in which bin Bi,pi

(pi ∈ {1, . . . , Ci})
the model inversion xy,i is positioned (i = 1, . . . ,m). The sample
region Mxy is defined as the Cartesian product of the bins Bi,pi

,
in formula

Mxy := B1,p1 × . . . × Bm,pm
(1.22)

Next, samples are drawn randomly from Mxy and propagated
through T . See Figure 1.11.
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Figure 1.11: PREJUDICE: Propagation of samples (bin combinations).

Appendix A illustrates the difference between the ε-neighborhood and
bin-combinations sampling schemes for the dispersion coefficient ex-
ample. The crucial step in the probabilistic inversion implementation
is the determination of M , which depends heavily on the minimization
of Expression 1.19; Appendix B investigates the influence of various
global optimization routines, different characteristics of T and choice
of starting points for 3 cases taken from the Joint CEC/USNRC Un-
certainty Analysis.

Compared to Section 1.1, the sample set is actually the support of λ,
but by the results of Section 1.1 we can approximate M by this set.
For simplicity the sample set of size n′ will be called M .

Step 2 Determination of distribution: briefly, a measure µ̃k (with proba-
bility mass function f̃k ∈ IRn′

) on domain M is determined, which
has minimum relative information with respect to a background mea-
sure λ (with probability mass function fλ ∈ IRn′

) under the condition
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that its push-forward measure complies with the quantile information
available on the elicitation variables Yj , i.e.∑

x∈M

f̃k(x) 1{x|T(j)(x)∈Ij,lj
}(x) = ν(Ij,lj ) j = 1, . . . , n. (1.23)

The probability mass function f̃k can be looked at as the solution of
the Convex Programming (CP) Problem:

min
fk

∑
x∈M fk(x) log fk(x)

fλ(x) (1.24)

s.t. AMfk = b

fk(x) > 0 ∀x ∈ M

where fk ∈ IRn′
and AM ∈ IRn·(K+1)×n′

contains the information
based on the indicator function of Expression 1.23, in case n′ samples
are drawn from M , and b ∈ IRn·(K+1) is defined as

b := (ν(I1,1), . . . , ν(I1,K+1), . . . , ν(In,1), . . . , ν(In,K+1))T .

Note that fk ∈ IRn′
, hence the dimension of fk depends on the samples

drawn from M .
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Figure 1.12: PREJUDICE: determination of probability mass function f̃k.

Looking at Figure 1.12, the sample (ay, by) from the target variable
space maps into (ay z

by

1 , ay z
by

2 ) in the observable space, which is con-
tained in partition element B19 = I1,3 × I2,4. Hence, the assignment
of f̃k(ay, by) is such that the probability of the push-forward samples
contained in I1,3 adds up to 0.45 (the //-area in Figure 1.12) and be
such that the probability of the push-forward samples contained in
I2,4 adds up to 0.05 (the \\-area in Figure 1.12).
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Let PI problem (1.24) be the primal formulation of the PI problem. The
dual formulation of PI problem (1.24) can be obtained by looking at the
Lagrangian, and results is an unconstrained CP problem:

max
yM

yT
Mb − fT

λ exp(AT
MyM − e) (1.25)

where yM ∈ IRn·(K+1) is the dual variable corresponding to the dual for-
mulation of the PI problem (1.24) and e ∈ IRn′

the unit vector. Hence, in
this thesis a PI problem is always a CP problem.

Lemma 1.2.1 and Corollary 1.2.2 list some well-known duality properties
of PI problem (1.24), see [44].

Lemma 1.2.1 (Weak duality). If fk is feasible for PI problem (1.24) and
y is feasible for PI problem (1.25), then

∑
x∈M

fk(x) log
fk(x)
fλ(x)

≥ yT b −
∑
x∈M

fT
λ exp(AT

My − e) (1.26)

with equality if and only if for all x ∈ M ,

fk = fλ · exp(AT
My − e). (1.27)

where · represents the element-wise multiplication of vectors.

Looking at Expression 1.27, the vector exp(AT
My − e) can be looked at

as the vector with which the background probability mass function fλ will
be re-weighted. Let the feasible regions of PI problems (1.24) and (1.25) be
denoted by P and D, respectively.

Corollary 1.2.2. If Expression 1.27 holds for some fk ∈ P and y ∈ D
then they are both optimal and the duality gap5 is zero.

Hence, necessary and sufficient conditions for optimality for PI problem
(1.24) are obtained if fk = fλ · exp(AT

MyM − e). Furthermore, the primal
formulation of PI problem (1.24) always has an optimal solution, if it is
feasible, and the objective function is bounded.

1.2.3 PARFUM versus PREJUDICE

Both implementations, PARFUM and PREJUDICE, were applied to the
dispersion coefficient example. The number of scenarios considered by PAR-
FUM and PREJUDICE were 5 and 50, respectively, and the domain M
consisted in both cases of 900 samples. In order to avoid numerical prob-
lems at fk = 0, the interior point method contained in the commercial

5The duality gap is defined as the difference between the left hand side and right hand
side of Inequality 1.26.
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optimization package MOSEK (www.mosek.com) was used. Quantile infor-
mation and Spearman’s rank correlations of the distribution on the target
variables are given in Table 1.1. The results of PREJUDICE are based
on the uniform background distribution on M . Figure 1.13 presents the
marginal distributions of the target variables, graphically.

Quantile PARFUM PREJUDICE
5% 1.06e-1 2.24e-2

Ay 50% 3.11e-1 4.19e-1
95% 9.86e-1 3.48
5% 8.09e-1 5.87e-1

By 50% 8.84e-1 8.63e-1
95% 9.66e-1 1.19

ρAy,By -6.09e-2 -8.99e-1

Table 1.1: Dispersion coefficient example (stability class C): quantile infor-
mation and Spearman’s rank correlations on target variables from PARFUM
and PREJUDICE.
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Figure 1.13: Dispersion coefficient example (stability class C): graphical
comparison of distributions of Ay (left) and By (right) as determined by
PARFUM (- -) and PREJUDICE (–).

The most important step in the implementation of Probabilistic Inver-
sion is the determination of the domain M in the target variable space. The
Monte Carlo heuristics used in determining M consist of three elements: (i)
the assessments of the Decision Maker (DM), (ii) the mapping T , and (iii)
the physics underlying the problem. These three elements meet in Expres-
sion 1.19 of Step 1 of the implementation. Since the dispersion coefficient
example has two target variables only, it is possible to display the domain
M . Figure 1.14 shows the domain MPARF and MPRED. The domain MPRED

is more spread out than MPARF. This is explained by the manner in which
scenarios are generated in PREJUDICE and PARFUM.
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Figure 1.14: Dispersion coefficient example (stability class C): graphical
comparison of domain M as determined by PARFUM (black area) and
PREJUDICE (·).

To measure the performance of PARFUM and PREJUDICE, their dis-
tributions on M are pushed through the power law function and compared
to the DM distributions. Table 1.2 gives quantile information of the DM
distributions and the push-forward distributions of PARFUM and PREJU-
DICE.

On the basis of comparing quantile information of the DM distribution
and the push-forward distributions, it is concluded that the push-forward
distributions of PREJUDICE resemble the DM distributions very well. The
push-forward of PARFUM has the tendency to slightly overestimate the
uncertainty expressed by the DM, whereas the medians are comparable to
the DM medians.

The differences between the PARFUM and PREJUDICE solution schemes
can be summarized as:

1. Generation of scenarios in PARFUM is based only on a certain quan-
tile of the distribution of the elicitation variables. This way of gener-
ating scenarios is considered to result in a set of potentially observable
scenarios which is too sparse. Taking account of combinations of dif-
ferent quantile points of the distributions of the elicitation variables
leads to a larger set of potentially observable scenarios.

2. The construction of domain M in PARFUM may lead to computa-
tional problems in case of a large number of target variables. Therefore
different sampling schemes were introduced for PREJUDICE.
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Distance σy(zi)
DM PARFUM PREJUDICE

5% 3.30e+1 3.32e+1 3.38e+1
500 m. 50% 9.49e+1 8.72e+1 9.55e+1

95% 1.95e+2 2.09e+2 1.94e+2
5% 6.48e+1 5.92e+1 6.57e+1

1 km. 50% 1.72e+2 1.61e+2 1.74e+2
95% 3.46e+2 3.90e+2 3.41e+2
5% 1.75e+2 1.54e+2 1.77e+2

3 km. 50% 4.46e+2 4.28e+2 4.53e+2
95% 1.04e+3 1.10e+3 1.03e+3
5% 4.48e+2 4.37e+2 4.49e+2

10 km. 50% 1.22e+3 1.20e+3 1.26e+3
95% 3.37e+3 3.20e+3 3.36e+3
5% 1.10e+3 1.10e+3 1.11e+3

30 km. 50% 2.82e+3 3.30e+3 2.83e+3
95% 8.25e+3 8.90e+3 8.17e+3

Table 1.2: Dispersion coefficient example (stability class C): quantile infor-
mation comparison between DM distributions vs. PARFUM and PREJU-
DICE ‘push-forward’ distributions.

3. The optimal fitting for PARFUM is done in the target variable space,
whereas PREJUDICE performs the optimal fitting in the observable
space. As a result of this, the push-forward distributions of PREJ-
UDICE resemble the distributions of the DM better than the push-
forward distributions of PARFUM.

4. PARFUM is easily implemented and nearly always feasible because
each elicitation variable has its own observable space, whereas PREJ-
UDICE is not easily implemented and not always feasible, because the
observable space is constructed of all elicitation variables.

From the above it is concluded that PREJUDICE performs better than
PARFUM, even though it may be hampered by infeasibilities. Hereafter
the attention is focused on PREJUDICE. Special attention will be given to
develop a procedure to check if M is observationally complete and how to
deal with a Probabilistic Inversion problem which is infeasibile.

So far no attention has been given to the background measure λ. Since
the probability mass function f̃k is a re-weighted version of fλ (see Ex-
pression 1.27), it is important to determine a background measure which
is representative. As mentioned earlier the background measure λ plays a
similar role as the prior distribution in Bayesian Analysis. The next section
addresses the determination of background measure λ.
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1.3 Background measure

Recall that the domain M is based on the model inversions, as determined
in the Step 1 of the implementation. In many cases λ is constructed by
combining (dependent or independent) marginal background measures λi

of target variables Xi. Research into the implications of taking dependency
information into account is still ongoing. In the remainder of this thesis the
background measure λ is constructed by combining the marginal measures
λi independently.

The assignment of a marginal background measures λi to a target vari-
able Xi depends on numerous factors; results reported in literature, previous
studies to quantify its uncertainty, spread in its model inversions and the
physics underlying the problem. For certain target variables the spread in
model inversions can be the only information available. For this type of
situation, the following is suggested; if the spread in model inversions for
a target variable covers two orders of magnitude or less, the uniform back-
ground distribution is assigned to the model inversions6. In case the spread
of model inversions covers more than two orders of magnitude, the uniform
background distribution is assigned to the orders of magnitude. Hence,
the (positively oriented) target variable is considered to be log-uniformly
distributed over the area.

1.3.1 Uniform background measure

Besides being a suitable background measure in certain situations, the uni-
form background measure has some useful computational features as well.

Given λ is the uniform background measure, PI problem (1.24) can be
written as

min
fk

∑
x∈M fk(x) log fk(x) (1.28)

s.t. AMfk = b

fk(x) > 0 ∀x ∈ M.

The contribution of the uniform background measure to the objective func-
tion of PI problem (1.28) is omitted as it is a constant (log(n′)). Finally note
that minimizing the objective function of PI problem (1.28) is equivalent
to maximizing the entropy of probability mass function fk; the entropy of
probability mass function fk is defined as H(fk) := −

∑
x∈M fk(x) log fk(x).

Suppose sample x′ �∈ M is added to PI problem (1.28) which satisfies
Tk(x′) ∈ Tk(M), where Tk(M) := ∪x∈MTk(x); x′ maps into a hypercube
which has already been covered by the propagation of M . PI problem (1.28)

6Intuitively, any sample from that area is considered to be as reasonable as any other
sample from the same area. This assumption is reflected by the uniform distribution.



Probabilistic inversion 37

is extended with x′

min
fk

∑
x∈M fk(x) log fk(x) + fk(x′) log fk(x′) (1.29)

s.t. AMfk + Ax′fk(x′) = b

fk ≥ 0.

The column vector Ax′ ∈ IRn·(K+1) contains the information based on the
indicator function of Expression 1.23 for x′. Lemma 1.3.1 is specific for the
uniform background measure.

Lemma 1.3.1. Given λ is uniform, if Tk(x′) = Tk(x) then fk(x′) = fk(x).

Proof: Since λ is uniform, it follows fλ(x′) = fλ(x). Furthermore, if
Tk(x′) = Tk(x) then column vectors Ax′ and Ax are equal. From the above
and Expression 1.27,

fk(x′) = fλ(x′) exp(AT
x′y − 1) =

= fλ(x) exp(AT
xy − 1) = fk(x).

�

Lemma 1.3.1 states that in case of the uniform background measure,
samples whose images are contained in the same hypercube, even though
T(j)(x′) �= T(j)(x) for some or all j (j = 1, . . . , n), receive the same proba-
bility.

The implications of Lemma 1.3.1 to PI problem (1.29) are for the ob-
jective function if for some x∗ ∈ M , Tk(x∗) = Tk(x) then by Lemma 1.3.1,
the objective function of PI problem (1.29) can be written as∑

x∈M\x∗
f∗

k (x) log f∗
k (x) + 2 f∗

k (x′) log f∗
k (x′) (1.30)

The reason f∗
k is written in Expression 1.30 instead of fk is because f∗

k is
not a probability mass function as opposed to fk. A similar analysis can
be conducted for the constraints of PI problem (1.29), which will result in
the entries of the column of Ax′ describing hypercube Tk(x′) being equal
to 2. Since propagated samples in the same hypercube receive the same
probability, it is more convenient to write PI problem (1.29) in terms of
hypercubes: let M := M ∪ x′ then, by Corollary 1.1.7, solving PI problem
(1.29) is equivalent to determining g̃∗k which is the solution of:

min
g∗

k

∑
l∈Tk(M) a(l)g∗k(l) log g∗k(l) (1.31)

s.t. BMk
g∗k = b

g∗k ≥ 0

where a(l) :=
∑

x∈M 1Tk(x)=l(x). Intuitively, a(l) represents the number of
samples in hypercube l and BMk

∈ IRn·(K+1)×#(Tk(M)) represents the con-
straint matrix for this formulation, with #(Tk(M)) representing the number
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of hypercubes covered by Tk(M). The entries of BMk
are positive integers

and not restricted to 0 and 1 like for AM . The probability mass function
f̃k on M is defined as, for each x ∈ M

f̃k(x) := g̃∗k(l) 1Tk(x)∈l(x). (1.32)

Note that the solution of PI problem (1.31) g̃∗k ∈ IR#(Tk(M)), whereas the
solution of PI problem (1.28) f̃k ∈ IRn′

. In case sample size n′ is large, PI
problem (1.31) may involve far less optimization variables than PI problem
(1.28) which is interesting from a computational point of view.

1.3.2 Results

The model inversions, on which the measure µ̃k of Table 1.1 is based, are
given in Figure 1.15. From Figure 1.15 it can be seen that the model
inversions of Ay cover several orders of magnitude.
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Figure 1.15: Dispersion coefficient example (stability class C): model inver-
sions for 50 scenarios.

According to the recommendations for choosing a background measure,
it is ‘reasonable’ to assume that the orders of magnitude of Ay are uniformly
distributed. Table 1.3 compares quantile information on the target variables
using a uniform distribution and a log-uniform background distribution for
Ay. The background distribution for By is uniform. In both cases, the
samples taken from domain M are identical.

The quantiles of the push-forward distributions of the target variables
comply with the quantiles of the DM distributions, see Table 1. Figure
1.16 compares the marginal distributions of Ay and By, graphically. On the
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Quantile Ay uniform Ay log-uniform
5% 2.24e-2 9.85e-3

Ay 50% 4.19e-1 1.65e-1
95% 3.48 2.35
5% 5.87e-1 6.86e-1

By 50% 8.63e-1 9.73e-1
95% 1.19 1.33

ρAy,By -8.99e-1 -8.03e-1

Table 1.3: Dispersion coefficient example (stability class C): quantile in-
formation on marginal distributions of Ay and By, using a uniform and
log-uniform background distribution for Ay and a uniform distribution for
By.

basis of Table 1.3 and Figure 1.16 it is concluded that there is a difference
between the two cases, which, just by eye-balling, is considered significant.

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ay

FAy

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

By

FBy

Figure 1.16: Dispersion coefficient example (stability class C): graphical
comparison of distributions of Ay (left) and By (right) as determined using
a log-uniform background distribution (- -) and uniform background distri-
bution (–) for Ay.

Unless stated otherwise, the target variable Ay is assigned the log-
uniform background distribution in the remainder of this thesis.

Even more important than determining the background measure on M
is the determination of M itself. The most crucial element in the implemen-
tation is the determination of M , such that it is observationally complete.
Since Step 1 of the implementation is conducted for a selection of poten-
tially observable scenarios, it is not clear if the resulting M is observationally
complete. In the next section a heuristic is developed which is capable of
checking if M is observationally complete.
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1.4 Iterative PREJUDICE

Recall that the domain M is observationally complete if every potentially
observable scenario of N can be reproduced using T and M , in notation
N ⊆ T (M). Many times a domain M , as determined in Step 1 of the
PREJUDICE implementation, is based on model inversions which are ob-
tained from a selection of potentially observable scenarios. Because M is
based on a selection, it is not clear if M is observationally complete. To
illustrate this, consider Table 1.4 where results are presented for the disper-
sion coefficient example. For each run, 50 potentially observable scenarios
were randomly selected, which determined the different domains on which
the measure µ̃k are specified. The total number of samples for each run
equaled 900.

Run 1 Run 2 Run 3 Run 4 Run 5
5% 9.85e-3 1.64e-2 1.13e-3 1.11e-2 1.97e-2

Ay 50% 1.65e-1 1.71e-1 2.46e-1 1.68e-1 2.04e-1
95% 2.35 3.88 3.80 1.82 4.63
5% 6.86e-1 6.38e-1 6.16e-1 7.08e-1 5.70e-1

By 50% 9.73e-1 9.34e-1 9.62e-1 9.57e-1 9.12e-1
95% 1.33 1.27 1.30 1.23 1.23

ρAy,By -8.03e-1 -8.96e-1 -8.65e-1 -7.74e-1 -8.22e-1

Relative Information 3.31 3.62 3.34 3.18 2.70

Table 1.4: Dispersion coefficient example (stability class C): 5 independent
runs.

Based on the results presented in Table 1.4 it is concluded that the
marginal distributions among runs are not similar, especially for Ay. Ad-
ditionally, the spread in the relative information values suggests that the
measures on the respective domains are not similar. In case the domains are
considered to be observationally complete, the marginal distributions and
relative information values between runs are expected to be more similar.

The domains obtained from the 5 runs can be regarded as the result of
the first iteration of the probabilistic inversion implementation; in notation,
let M (1) denote the domain obtained after the first iteration. The key
question addressed in this section is:

If domain M (1) were to be extended with a certain set M∗,
would the extension M (1) ∪ M∗ be observationally complete?
And would the marginal distributions and relative information
values between runs be similar?

Starting from scratch, one of the following situations will occur after
propagation of M (1) through T :

Situation A : no distribution on M (1) can be determined.
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Situation B : a distribution on M (1) can be determined, although M (1)

may not be observationally complete.

Before discussing Situation A in terms of extending the domain M (1)

and thus keeping the dimension of the observable space constant, another
strategy is available which reduces the dimension of the observable space.
This technique is known as Reduction of Dimension and is described in
Appendix C.

Dealing with Situation A and Situation B in terms of extending
domain M (1), let M (∞) denote the observationally complete domain. Let
the primal formulation of the observationally complete problem be given
by:

min
f
(∞)
k

∑
x∈M(∞) f

(∞)
k (x) log f

(∞)
k (x)

f
(∞)
λ (x)

(1.33)

s.t. AM(∞)f
(∞)
k = b

f
(∞)
k ≥ 0.

Without specifying the dimension of the vectors and matrices, it is assumed
that the multiplications and equations of PI problem (1.33) are well defined.
The dual formulation of PI problem (1.33) is

max
y

M(∞)
yT

M(∞)b −
(
f

(∞)
λ

)T

exp(AT
M(∞)yM(∞) − e) (1.34)

where yM(∞) is the dual variable for the observationally complete problem.
Note that the observationally complete problem is an artifact. It is intro-

duced here for the purpose of illustration only; in performing probabilistic
inversion the observationally complete problem is unknown, however it is
desired to design criteria which are able to check if a PI problem formulation
is close to the observationally complete problem.

As mentioned before, since domain M (1) is based on model inversions
determined for a selection of potentially observable scenarios N , it is not
unreasonable to assume that M (1) is not observationally complete. Let the
primal formulation of the PI problem formulated on samples after propaga-
tion of M (1) be given by

min
f
(1)
k

∑
x∈M(1) f

(1)
k (x) log f

(1)
k (x)

f
(1)
λ (x)

(1.35)

s.t. AM(1)f
(1)
k = b

f
(1)
k ≥ 0

where f
(1)
k and f

(1)
λ represent the probability mass function and background

probability mass function on the samples in M (1), respectively.
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The dual formulation of PI problem (1.35) is

max
y

M(1)
yT

M(1)b −
(
f

(1)
λ

)T

exp(AT
M(1)yM(1) − e). (1.36)

Note that the constraint matrix A
(∞)
M of the observationally complete prob-

lem can be represented as

AM(∞) = AM(1)∪(M(∞)\M(1)). (1.37)

Using Expression 1.37, the dual formulation of the observationally complete
problem (1.34) can be written as

max
y

M(∞)
yT

M(∞)b −
(
f

(1)
λ

)T

exp(AT
M(1)yM(∞) − e) + (1.38)

−
(
f

(∞)\(1)
λ

)T

exp(AT
M(∞)\M(1)yM(∞) − e)

where f
(∞)\(1)
λ represents the probability mass function of the background

measure on M (∞)\M (1). In case M (1) is not observationally complete, the
contribution of the third term of dual formulation 1.38(

f
(∞)\(1)
λ

)T

exp(AT
M(∞)\M(1)yM(∞) − e) (1.39)

is greater than zero, because M (∞)\M (1) is non-empty. The intuitive un-
derstanding of the criteria to check for observational completeness, is to
extend domain M (1) to M (2) such that Expression 1.39 reduces to zero. In
that case, the dual solution yM(2) will equal the dual solution yM(∞) .

Situation A : Given that PI problem (1.35) is infeasible, its dual formula-
tion (1.36) is unbounded. If the dual formulation (1.36) is unbounded,
then the existence of a y∗ can be shown such that

(y∗)T b > 0 (1.40)
AT

M(1)y∗ ≤ 0. (1.41)

The unboundedness of the dual formulation (1.36) is easily seen, since
αy∗ (α > 0) satisfies Inequalities 1.40 and 1.41 also. In order to
make dual formulation (1.36) bounded, domain M (1) has to be ex-
tended with a set Md ⊆ M (∞)\M (1), such that the third term in dual
formulation (1.38) becomes larger than zero. In order to determine
Md efficiently the following heuristic is proposed: find an observable
hypercube, indexed ld ∈ Tk(M\M (1)), which maximizes eT

l y∗ for all
l ∈ Tk(M\M (1)), where el is the vector with entries 1 on positions
which correspond to the observable hypercube indexed by l. Briefly,
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determine model inversions xyld
based on potentially observable sce-

narios yld
sampled from ld , and generate a domain Mxyld

for each

xyld
. The domain M (1) is extended with the union of Mxyld

. The
stopping criteria for the heuristic would be if no y∗ can be found
which satisfies Inequalities 1.40 and 1.41.

The construction of a feasible PI problem will result most likely in a
PI problem of the type as described under Situation B.

Situation B : As mentioned earlier, note that the objective function of
dual formulation (1.38) contains the objective function of dual formu-
lation (1.36), in case yM(∞)) = yM(1) . Based on this observation it is
concluded that if M (1) is close to being observationally complete then
the third term of dual formulation (1.38) should be close to zero. The
rough idea for the heuristic is to extend M (1) by Md ⊂ M (∞) such that
the contribution of the third term of dual formulation (1.38) reduces
to zero. In order to determine the extension Md efficiently the follow-
ing heuristic is proposed: find observable hypercube, indexed by ld,
which maximizes eT

l yM(1) for all l ∈ Tk(M (∞)), where el is the vector
with entries 1 on positions which correspond to hypercube indexed by
l. Briefly, determine model inversions xyld

based on potentially ob-
servable scenarios yld

sampled from ld, and generate a domain Mxyld

for each xyld
. The domain M (1) is extended with the union of Mxyld

.
Note that the heuristic suggested is similar to the heuristic suggested
for Situation A. A stopping criteria in this situation would be to

stop if the value of
(
f

(i+1)\(i)
λ

)T

exp(AT
M(i+1)\M(i)yM(i+1) − e) at the

i + 1 iteration is close to zero.

In conclusion, the heuristic suggested will extend the domain M (1) based
on the dual solution yM(1) and can be applied both in Situation A and
Situation B.

Since the heuristic suggested can be applied both in Situation A and
Situation B, the derivation of the iterative version of PREJUDICE will be
illustrated for Situation B only. Hence, PI problem (1.35) is considered to
be feasible although M (1) is not observationally complete. The extension of
M (1) is modeled as an iterative process. The extension is illustrated using
one sample but can be extended easily to sets of samples.

Suppose M (1) is extended with sample xd ∈ Mxfjd
. PI problem (1.35)

becomes:

min
f
(1)
k ,fk

∑
x∈M(1) f

(1)
k (x) log f

(1)
k (x)

f
(1)
λ (x)

+ fk(xd) log fk(xd)
fλ(xd) (1.42)

s.t. AM(1)f
(1)
k + Axd

fk(xd) = b

f
(1)
k , fk(xd) ≥ 0
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Depending on the ratio fk(xd)
fλ(xd) , the sign of the last term in the objective

function of PI problem (1.42) will be positive or negative. Hence, it is un-
clear if the value of the objective function in the next iteration will increase
or decrease. However, much more important is that repetitive application
of the heuristic will lead to an observationally complete domain. Obtaining
an observationally complete domain is much more important than the value
of the objective function.

Furthermore, note that the solution of PI problem (1.35) can be used to
construct a solution for PI problem (1.42); assign probability zero to xd and
leave f

(1)
k untouched7. This way of constructing a new measure in the next

iteration should be satisfied by the implementation of the iterative version
of PREJUDICE.

The implementation of the iterative version of PREJUDICE involves the
following steps:

Step 1 Determination of M (1); see Section 1.2.2 and let i = 1.

Step 2 Determination of distribution: Solve

max
y

M(i)
yT

M(i)b −
(
f

(i)
λ

)T

exp(AT
M(i)yM(i) − e). (1.43)

Step 3 N �⊆ T(M (i)): for the i-th iteration, the dual solution yM(i) of
the PI problem is used to determine observable hypercube, indexed
by ld ∈ {1, . . . , k}, which maximizes eT

l yM(i) for all l ∈ {1, . . . , k}. If
eT

ld
yM(i) is less than a certain cutoff, then it is assumed that the i-th PI

problem formulation resembles the observationally complete problem
closely and the algorithm is stopped; if eT

ld
yM(i) is larger than the

cutoff, potentially observable scenarios yld
are sampled randomly from

ld and model inversions xyld
are determined, which in turn determine

Mxyld
. Domain M (i) is extended with the union of Mxyld

to obtain

M (i+1). Next, M (i+1) is propagated through T and the PI problem
for the i + 1-th iteration is obtained. Go to Step 2.

In case the iterative version of PREJUDICE ends at the i-th iteration,
the probability mass function f̃

(i)
k is obtained by element-wise multiplica-

tion:

f̃
(i)
k = f

(i)
λ · exp(AT

M(i) ỹM(i) − e) (1.44)

where ỹM(i) maximizes PI problem (1.43).

7Note that this solution is a solution of PI problem (1.42), however it is likely not to
be the solution which minimizes relative information value.
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1.4.1 Iterative PREJUDICE: Uniform background mea-
sure

Section 1.3.1 discussed the implications of selecting the uniform background
distribution on the target variables. In case of the uniform background
distribution, the number of optimization variables is equal to the number
of hypercubes covered. This observation allowed the PI problem to be
formulated in terms of hypercubes covered. The question put forward here
is: does the heuristic of Section 1.4 to determine if M (i) is observationally
complete, hold for the formulation in terms of hypercubes as well? The
answer to this question is negative.

Dealing with a PI problem formulation depending on hypercubes cov-
ered, domain M will be termed hypercube-complete if φk(N) ⊆ φk(T (M)) =
Tk(M). In case K quantile points are queried and uniform background
distribution is considered, let the primal formulation of the hypercube-
complete problem be given by

min
gk

∑
l∈Tk(M) a(l)gk(l) log gk(l) (1.45)

s.t. BMk
gk = b

gk ≥ 0.

For notational convenience the star superscript, as introduced in the formu-
lation of PI problem (1.31), has been dropped, however it must be stressed
that gk is still not a probability mass function in this section.

The dual formulation of the hypercube-complete problem is given by

max
yMk

yT
Mk

b − aT exp(DT
Mk

yMk
− e)

where a ∈ IR#(Tk(M)) with elements a(l) for l ∈ Tk(M) and DMk
is of the

same dimension as BMk
, but has entries 1 where BMk

has non-zero entries..
At the i-th iteration, let the dual formulation of a PI problem be given

by

max
y

M
(i)
k

yT

M
(i)
k

b −
(
a(i)

)T
exp(DT

M
(i)
k

y
M

(i)
k

− e) (1.46)

Application of the heuristic suggested will lead to the determination of
an observable hypercube, indexed by ld, which maximizes eT

l y
M

(i)
k

for all
l ∈ {1, . . . , k}. Potential observable scenarios yld

are sampled for which
model inversions xyld

will be determined. It is not unreasonable to assume
that propagation of Mext := ∪xyld

Mxyld
will be such that some propagated

samples are contained in ld and some are included in hypercubes already
contained in Tk(M (i)); instead of extending a(i) and B

M
(i)
k

, its entries are

likely to change as well. The changing of entries of a(i) and B
M

(i)
k

in the
i + 1-th iteration has implications.
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A requirement the iterative version of PREJUDICE had to satisfy is
that the solution of the i-th iteration could be used to construct a solution
for the i + 1-th iteration, simply by setting the new optimization variables
equal to 0. Looking at the constraints for the primal formulation of PI
problem (1.46) at the i + 1-th iteration, the following equation should hold
element-wise

B
M

(i+1)
k

(
g
(i)
k

0

)
= b (1.47)

where 0 ∈ IRn∗
with n∗ = #(Tk(M (i+1))) − #(Tk(M (i))), i.e. the ex-

tra number of hypercubes covered by Tk(M (i+1)) compared to Tk(M (i)).
Equation 1.47 cannot hold in general since the entries of B

M
(i+1)
k

are likely
to be different than of B

M
(i)
k

.
PI problem (1.45) can be looked at as a weighted entropy maximization

problem. Roughly, the proposed solution to the problem described above
is to focus first on the un-weighted version of the PI problem (1.45) and
secondly weight the solution to obtain the measure on the domain.

The primal formulation of the un-weighted version of PI problem (1.45)
at the i-th iteration is

min
g
(i)
k

∑
l∈Tk(M(i)) g

(i)
k (l) log g

(i)
k (l) (1.48)

s.t. D
M

(i)
k

g
(i)
k = b

g
(i)
k ≥ 0.

Next probability mass function f̃
(i)
k (x) on M (i) can be determined via

f̃
(i)
k (x) :=

g̃
(i)
k (l)

a(i)(l)
1{x|Tk(x)∈l}(x) (1.49)

PI problem formulation (1.48) in combination with Expression 1.49 bears
strong resemblance with the Hora/Young method8 as described in [27].

The dual formulation of PI problem (1.48) for the i-th iteration is:

max
z

M
(i)
k

zT

M
(i)
k

b − eT exp(DT

M
(i)
k

z
M

(i)
k

− e) (1.50)

8Briefly, the main difference concerns the criteria to assign probability to the samples
in case the assignment is not unique. The Hora/Young method chooses to minimize the

average probability. The probability of an observable hypercube l is just
g
(i)
k

(l)

Vl
, where

Vl is the volume of observable hypercube l. Hence, in determining the minimal average
probability the objective function of PI problem (1.48) is replaced by

min
g
(i)
k

∑
l∈Tk(M) g

(i)
k (l)

g
(i)
k

(l)

Vl
.
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where z
M

(i)
k

∈ IRn·(K+1) is the dual variable. Note, if a(i) = e at the i-th
iteration, PI problem (1.45) and PI problem (1.48) are the same; PI problem
(1.48) can be viewed as a special case of PI problem (1.45). Furthermore, at
each iteration PI problem (1.48) can be extracted from PI problem (1.45).
The iterative version of PREJUDICE in case of the uniform background
distribution will make use of the relationship between the two PI problem
formulations.

Like the dual formulation for the observationally complete problem (1.38),
the dual formulation for the hypercube-complete problem of PI problem
(1.48) can be written as

max
z

M
(∞)
k

(
z

M
(∞)
k

)T

b − eT exp(DT

M
(i)
k

z
M

(∞)
k

− e) + (1.51)

−eT exp(DT

M
(∞)
k \M

(i)
k

z
M

(∞)
k

− e).

Application of the heuristic suggested results in the identification of hy-
percube ld. From hypercube ld, potentially observable scenarios yld

are
sampled randomly. Based on yld the model inversions xyld

are determined,
which are used to determine Mxyld

. Again, it is reasonable to assume that
propagation of ∪xyld

Mxyld
will lead to propagated samples in observable

hypercube ld and hypercubes Tk(M (i)). Since, the vector a(i) is not con-
tained in dual formulation (1.51), the value of the objective function will
increase only if hypercube ld ∈ Tk(M (∞)\M (i)) is covered.

These insights lead to a special iterative version of PREJUDICE in case
of uniform background distribution.

Step 1 Determination of M (1); see Section 1.2.2. For i = 1, derive the dual
formulation (1.46).

Step 2 Determination of distribution: extract dual formulation (1.50) from
dual formulation (1.46). Solve dual formulation (1.50) to obtain z

M
(i)
k

.

Step 3 φK(N) �⊆ Tk(M (i)): in case of the i-th iteration, take dual solution
z

M
(∞)
k

and determine an observable hypercube, indexed by ld which

maximizes eT
l z

M
(∞)
k

for all observable hypercubes, indexed by l. If

eT
ld
z

M
(∞)
k

is less than a certain cutoff, then it is assumed that the i-th
iteration of PI problem formulation resembles the hypercube-complete
problem closely, go to Step 4; if ld can be identified, potentially ob-
servable scenarios fyld

are sampled randomly from ld and model in-
versions xyld

are obtained, which determine Mxyld
. Domain M (i) is

extended with ∪xyld
Mxyld

to obtain M (i+1). Next, M (i+1) is prop-
agated through T and the dual formulation (1.46) for the i + 1-th
iteration is obtained. Go to Step 2.
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Step 4 : Solve dual formulation (1.46) to obtain z
M

(i)
k

from which proba-

bility mass function f̃
(i)
k on M (i) can be determined, via Expression

1.49.

Domain M (i) of Step 4 will be close to hypercube-complete, however
the aim of probabilistic inversion is to determine a domain such that M (i) is
observationally complete. Given the uniform background distribution, it is
has not been investigated at this stage how to extend a hypercube complete
domain to an observationally complete domain.

1.4.2 Results

In this section results of the iterative version of PREJUDICE are given for
the dispersion coefficient example, the systemic retention of Sr in the human
body. No computation times are given as the software is research software,
which at this stage is not optimized.

Dispersion coefficient example (stability class C)

The settings of the iterative version of PREJUDICE for the dispersion co-
efficient example were ε = 0.5, the number of samples taken from the ε-
neighborhood of the model inversions was 18, the number of scenarios to
determine M (1) was 50, the number of scenarios sampled randomly from
an observable hypercube equaled 10. Finally, it was stipulated that an
observable hypercube could not be visited more than once.

In order to investigate the sensitivity of the choice of the cutoff value,
the iterative version of PREJUDICE has been applied to the dispersion
coefficient example when no cutoff was specified; the iterative version will
stop when all observable hypercubes have been visited, which was obtained
after 348 iterations at a relative information value of 4.78. At each iteration
the cutoff value was determined, see Figure 1.17 (left).

Starting from the left and following the graph, the first circle indicates
at how many iterations the iterative version would have stopped if the cutoff
value would have been set to -1, the next circle gives information on how
many iterations if the cutoff value would have been set to -2, etc. The same
holds for the relative information graph of Figure 1.17 (right).

The behavior of relative information tends to increase with iterations,
see Figure 1.17 (right). This is explained as follows: the iterative version
of PREJUDICE searches for a domain M which is close to observationally
complete. At the beginning (small number of iterations) it is likely that
M is not observationally complete (or even such that the corresponding
PI problem is infeasible). The dual solution is used to identify area’s in
the observable space which are not covered, but which need to be covered
for M to be observationally complete. Thus M (i) at the i-th iteration
may be ‘bigger’ than M (i−1), i.e. M (i) may include M (i−1). Since M (i)
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Figure 1.17: Dispersion coefficient example (stability class C): cutoff value
vs. number of iterations (left) and relative information value vs. number of
iterations (right), with ◦ representing different cutoff levels.

is determined by the values of Ay and By, it is interesting to look at the
minimum and maximum values of Ay and By over iterations, see Figure
1.18.
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Figure 1.18: Dispersion coefficient example (stability class C): The maxi-
mum (--) and minimum (–) values of Ay and By versus number of itera-
tions.

It is clear from Figure 1.18 that the domain M (i) ‘grows’ with the number
of iterations, because the difference between the minimum and maximum
values for both Ay and By grows with the number of iterations. The original
domain M (1) and the final domain M (348) are displayed in Figure 1.19,
clearly M (348) contains M (1).

It appears that the growing difference between the minimum and max-
imum values of Ay and By with iterations is the reason why the relative
information value increases with the number of iterations. Intuitively, the
domain M (348) contains domain M (1), which results in a higher relative in-
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Figure 1.19: Dispersion coefficient example (stability class C): graphical
comparison between original domain M (1) (left) and final domain M (348)

(right) for cutoff=-9.

formation value for the distribution on M (348) compared to M (1) since the
distribution on M (348) is more ‘dispersed’ than the distribution on M (1).

Besides the growing difference between minimum and maximum values
of Ay and By with the number of iterations, one may wonder to what
extent the sample size influences the relative information value; at each
iteration a number of samples is added to the problem. Four situations
were distinguished; for each model inversion 1, 4, 9 and 18 samples were
drawn using the ε-neighborhood sampling scheme. Note that the situation
involving 18 samples is equal to the situation considered previously. The
relative information values for the four situations are listed in Table 1.4.2.

Number of samples Total number Relative information value
in ε-neighborhood of samples

1 3520 4.77
4 14080 4.80
9 31680 4.77
18 63360 4.78

Table 1.5: Dispersion coefficient example (stability class C): relative infor-
mation value for different number of samples taken from ε-neighborhood.

From Table 1.4.2 it is observed that sample size has very little influence
on the relative information value.

At this moment no stopping criteria has been formulated; the user spec-
ifies a cutoff value based on the size of the PI problem. A large negative
cutoff value will take longer than a small negative cutoff value. Research is
conducted if a stopping criteria can be formulated which is based on the dif-
ference between the relative information value at cutoff c (c < 0) and c− 1.
Based on Figure 1.17, a cutoff of -9 was chosen for the iterative version of
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PREJUDICE for the dispersion coefficient example.
Next, the iterative version of PREJUDICE was applied 5 times to the

dispersion coefficient example using a cutoff of -9. The setup for these 5
runs was similar to the setup of the 5 runs presented Section 1.4. For each
run, M (1) was determined based on model inversion resulting from a ran-
dom selection of 50 potentially observable scenarios. Hence, it is unlikely
that M (1) for the 5 runs is the same. Table 1.6 lists the quantile infor-
mation of Ay and By together with information on ρAy,By

, the number of
iterations/samples and relative information values.

Run 1 Run 2 Run 3 Run 4 Run 5
5% 2.44e-3 3.02e-3 2.52e-3 2.60e-3 2.68e-3

Ay 50% 2.07e-1 2.01e-1 2.13e-1 2.09e-1 2.04e-1
95% 3.54 3.13 3.00 3.17 3.44
5% 6.15e-1 6.18e-1 6.28e-1 6.23e-1 6.07e-1

By 50% 9.51e-1 9.44e-1 9.43e-1 9.44e-1 9.36e-1
95% 1.40 1.39 1.41 1.43 1.42

ρAy,By -9.07e-1 -8.97e-1 -9.15e-1 -9.10e-1 -9.19e-1

Number of iterations 323 301 303 339 329
Number of samples 57672 54180 54378 60894 58770
Relative Information 4.72 4.69 4.77 4.69 4.71

Table 1.6: Dispersion coefficient example (stability class C): iterative PREJ-
UDICE for 5 runs with a cutoff=-9.

Due to the choice of cutoff and the stipulation of no more than ‘one visit’
to a hypercube, there is some variation in the relative information values and
quantile points of the target variables in Table 1.6, but far less variation than
the relative information values and quantile points as presented in Table 1.4.
Figure 1.20 shows the relative information value as a function of number of
iterations (left) and a close-up of the ‘tail’ of this relationship (right).

Based on the results of Table 1.6 and Figure 1.20 it is observed that
the iterative version of PREJUDICE tends to ‘converge’ to a similar result.
This observation is supported when the dispersion coefficient example of
Section 1.3.2 is extended to look if it ‘converges’ to a similar distribution as
presented in Table 1.6. Table 1.7 presents information of the distribution
if the Original problem is extended to Extension, from which is concluded
that the results under Extension are similar to the results presented in Table
1.6.

Figure 1.21 shows the distribution functions of the target variables for
Original and Extension graphically. Note the difference at the lower and
upper quantile points for both target variables.
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Figure 1.20: Dispersion coefficient example (stability class C): graphical
comparison of relative information values among 5 independent runs for
cutoff=-9. Remark: Figure on the right is a close-up of the ‘tail’ of the
Figure on the left.

Original Extension
5% 9.85e-3 2.74e-3

Ay 50% 1.65e-1 2.10e-1
95% 2.35 3.39
5% 6.86e-1 6.12e-1

By 50% 9.73e-1 9.46e-1
95% 1.33 1.40

ρAy,By -8.03e-1 -9.08e-1

Number of iterations N/A 340
Number of samples 900 62280
Relative Information 3.31 4.61

Table 1.7: Dispersion coefficient example (stability class C): comparison
Original and Extension for cutoff=-9.
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Figure 1.21: Dispersion coefficient example (stability class C): graphical
comparison between marginal distributions of Ay (left) and By (right) from
Original (–) and Extension (- -) for cutoff=-9.

Systemic retention of Sr in the human body

Figure 1.22 shows the acyclic compartmental model which is used to deter-
mine the retention of Sr in various parts of the human body.
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Figure 1.22: Systemic retention of Sr: Compartmental model.

The aim is to determine a distribution on the transfer coefficients kij .
The transfer coefficients are considered to be non-measurable and hence
probabilistic inversion was used to determine the distribution on the transfer
coefficients. For a more detailed description of the Systemic retention of Sr
in the human body see Appendix B.4. This PI problem was considered
to be complex, because the number of target variables and information
on the elicitation variables was large. In order to keep the PI problem
of systemic retention of Sr in the human body computational tractable
the background measure on the target variables kij was set to uniform.
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Given the uniform background measure, determining the minimum relative
information distribution is equivalent to determining the maximum entropy
distribution, see Section 1.3.1. Therefore, in this section the value of the
objective function is expressed in terms of entropy.

The following situations were considered:

Original : The information is based on the PI problem for Sr as described
in Appendix B Section B.4 and is the same as presented in the column
headed by lsqcurvefit of Table B.9. Entropy value 5.03.

Run A : The PI problem for Sr is solved using the iterative version of
PREJUDICE. The number of potentially observable scenarios in Step
1 equaled 1000. In order to keep the problem computationally tractable,
it was stipulated that an observable hypercube cannot be visited more
than once and the cutoff was set to -2. Under these settings, the num-
ber of iterations equaled 179. The total number of samples equaled
1.395e+5. Entropy value 5.49.

Run B : Similar to Run A, however the number of iterations equaled 285.
The reason why Run B takes more iterations than Run A is that the
set of potentially observable scenarios at the first iteration is not the
same for both runs. The total number of samples equaled 1.925e+5
samples. Entropy value 5.47.

Extension : Extension of the PI problem as described under Original.
The results listed under Extension are based on applying the itera-
tive solution scheme to the PI problem as described under Original.
Like for Run A and Run B it was stipulated that a particular hyper-
cubes could not be visited more than once and the cutoff was set to
-2; 488 iterations were needed. The total number of samples equaled
4.40e+5 samples. Entropy value 5.42.

Figure 1.23 presents the relationship between entropy and the number
of hypercubes covered. Based on the horizontal lines the different entropy
values can be compared graphically easily.

Based on the information contained in Figure 1.23 it is observed that
the entropy values of Run A, Run B and Extension are close to each other,
however the number of hypercubes covered by Extension is far more than
the number of hypercubes covered by Run A and Run B. It seems that Run
A and Run B are most efficient; starting with a small number of potentially
observable scenarios and extending it, will result in comparable entropy
values and with fewer hypercubes covered.

Table 1.8 presents quantile information on the target variables for the
situations considered, which is graphically presented in Figure 1.24. Tables
1.9 through 1.11 give the Spearman’s rank correlations matrices.

Comparing the quantile information of marginal distributions headed
by Original and Extension in Table 1.8, it is observed that the 95%-iles of
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Figure 1.23: Systemic retention of Sr: graphical display of entropy versus
the number of hypercubes covered. Original (--), Run A (- -), Run B (–)
and Extension (- · -) .

Quantile Original Run A Run B Extension
5% 1.57e-1 1.76e-1 1.59e-1 1.96e-1

k13 50% 4.23e-1 6.80e-1 6.77e-1 5.12e-1
95% 1.21 2.25 2.58 4.58
5% 1.21e-3 3.60e-3 3.70e-3 1.70e-3

k14 50% 1.19e-2 1.29e-2 1.67e-2 1.72e-2
95% 3.32e-1 1.52e-1 1.19e-1 2.81e-1
5% 2.44e-1 3.07e-1 2.40e-1 2.22e-1

k15 50% 5.59e-1 7.35e-1 7.17e-1 6.13e-1
95% 9.07e-1 2.16 1.76 2.49
5% 5.83e-5 3.40e-4 3.30e-5 7.45e-5

k25 50% 2.49e-3 4.89e-3 6.50e-3 5.79e-3
95% 1.17e-1 7.66e+1 6.60e+1 6.21e+1
5% 4.28e-6 1.06e-5 6.64e-6 4.17e-6

k35 50% 3.08e-5 3.14e-5 3.12e-5 3.38e-5
95% 9.13e-5 8.08e-5 9.00e-5 9.90e-5
5% 1.02e-5 4.43e-12 1.26e-9 5.13e-6

k45 50% 4.47e-5 4.57e-5 4.46e-5 4.47e-5
95% 9.68e-5 9.74e-5 1.05e-4 1.00e-4

Table 1.8: Systemic retention of Sr: quantile information on target variables
for Original, Run A, Run B and Extension (1/d.).

marginal distributions of k13, k15 and k25 have changed. The 5% and 50%-
iles of these marginal distributions hardly changed. The difference among
Original and Extension for the marginal distributions k14, k35 and k45 is
minor.

Comparing the quantile information of marginal distributions headed
by Run A, Run B and Extension in Table 1.8, it is concluded that the



56 Chapter 1

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k13

Fk13

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k14

Fk14

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k15

Fk15

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k25

Fk25

10
−10

10
−8

10
−6

10
−4

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k35

Fk35

0 0.5 1 1.5 2 2.5 3

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k45

Fk45

Figure 1.24: Systemic retention of Sr: graphical display of distribution of
k13(top-left), k14(top-right), k15 (middle-left), k25(middle-right), k35(below-
left) and k45 (below-right). Original (--), Run A (- -), Run B (–) and
Extension (- · -) .

marginal distributions obtained from Run A and Run B are similar, even
though M (1) for Run A is likely to be different from M (1) for Run B. In
comparing the marginal distributions of Run A and Run B to Extension it
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k13

k14

k15

k25

k35

k45

tc




1 −5.21e-1 5.00e-1 4.23e-1 −1.30e-1 −4.08e-1 −2.94e-1

−5.21e-1 1 −2.61e-1 −1.12e-1 9.29e-2 3.41e-1 2.79e-1

5.00e-1 −2.61e-1 1 3.76e-2 −8.30e-2 −1.62e-1 −3.86e-2

4.23e-1 −1.12e-1 3.76e-2 1 5.00e-3 −2.43e-1 −2.09e-1

−1.30e-1 9.29e-2 −8.30e-2 5.00e-3 1 4.58e-1 7.18e-2

−4.08e-1 3.41e-1 −1.62e-1 −2.43e-1 4.58e-1 1 1.65e-1

−2.94e-1 2.79e-1 −3.86e-2 −2.09e-1 7.18e-2 1.65e-1 1




Table 1.9: Systemic retention of Sr: Spearman’s rank correlation matrix
among target variables from Run A.

k13

k14

k15

k25

k35

k45

tc




1 −5.42e-1 4.75e-1 4.11e-1 −8.50e-2 −3.35e-1 −3.04e-1

−5.42e-1 1 −3.51e-1 −2.07e-1 2.03e-2 3.60e-1 9.01e-2

4.75e-1 −3.51e-1 1 −3.33e-2 −1.87e-1 −2.93e-1 −1.00e-1

4.11e-1 −2.07e-1 −3.33e-2 1 1.71e-2 −9.39e-2 −4.29e-2

−8.50e-2 2.03e-2 −1.87e-1 1.71e-2 1 4.79e-1 −1.01e-1

−3.35e-1 3.60e-1 −2.93e-1 −9.39e-2 4.79e-1 1 1.20e-1

−3.04e-1 9.01e-2 −1.00e-1 −4.29e-2 −1.01e-1 1.20e-1 1




Table 1.10: Systemic retention of Sr: Spearman’s rank correlation matrix
among target variables from Run B.

is concluded that the marginal distributions of Extension are quite similar
to the marginal distributions obtained from Run A and Run B.

Except for a few instances the rank correlations between the marginal
distribution of Run A and Run B are similar. Between the rank correlations
of Run A, Run B and Extension the main difference are the rank correlations
among the transfer coefficients (k13, k14) and (k14, k15); the sign of these
rank correlations is different for Extension then for Run A and Run B. The
remaining rank correlations are quite similar.

A number of rank correlations have changed when comparing the rank
correlation matrices of Original (Table B.10) and Extension (Table 1.11);
the rank correlations between (k13, k45), (k13,tc), (k14,tc), (k15, k25), (k15,tc),
(k15, k45), (k25,tc) and (k45,tc) are considered to have changed significant.
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k13

k14

k15

k25

k35

k45

tc




1 3.21e-1 5.92e-1 5.78e-1 −9.09e-2 −2.81e-1 −3.77e-1

3.21e-1 1 2.32e-1 −1.63e-1 −6.82e-2 3.16e-1 1.10e-1

5.92e-1 2.32e-1 1 3.39e-1 −2.80e-1 −3.33e-1 −3.02e-1

5.78e-1 −1.63e-1 3.39e-1 1 −1.75e-1 −4.69e-1 −2.71e-1

−9.09e-2 −6.82e-2 −2.80e-1 −1.75e-1 1 3.80e-1 −1.85e-1

−2.81e-1 3.16e-1 −3.33e-1 −4.69e-1 3.80e-1 1 1.96e-1

−3.77e-1 1.10e-1 −3.02e-1 −2.71e-1 −1.85e-1 1.96e-1 1




Table 1.11: Systemic retention of Sr: Spearman’s rank correlation matrix
among target variables from Extension .

1.5 CP solvers

In this section different optimization solvers are used to solve either the
primal or dual formulations of a PI problem. As stated before, both the
primal and dual formulation are convex optimization problems. A wide
range of optimization solvers are available which are capable of dealing
with convex optimization problems.

Just by looking at any primal formulation of a PI problem, it is obvi-
ous that the solution is near the origin, because the optimization variables
have to be greater than 0 and have to sum up to 1. Searching for the opti-
mal solution along the feasible region will lead to numerical problems, since
the gradient of the relative information function is not defined whenever fk

equals 0. One might argue that this problem could be solved by specifying
a lower bound for fk, but by specifying a lower bound on fk the primal
formulation of the PI problem might become infeasible, although the prob-
lem may be feasible. Searching for the optimal solution from within the
feasible region will avoid such problems. Therefore it is recommended to
use interior point methods whenever solving the primal formulation of a PI
problem. For a detailed description on interior point methods, see [45].

In case of the dual formulation of the PI problem, the number of opti-
mization variables is far less than the optimization variables in the primal
formulation. Even though the number of optimization variables for the dual
formulation is not large, the number of columns contained in the constraint
matrix may be large. Hence, solving the dual formulation may be a time
consuming task after all. Unlike for the optimization variables of the primal
formulation, it is impossible to put restrictions on the range of the optimiza-
tion variables of the dual formulation. Interior point methods may be used
to solve the dual formulation, but non-interior point methods can be used
as well.
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The interior point methods used for solving the primal formulations are:

MOSEK : Commercial software package for large scale convex program-
ming problems using interior point methods developed by Dr E.D.
Andersen. (for more information www.mosek.com).

AFSNCP : Non-commercial interior point solver based on a polynomial
primal-dual affine scaling algorithm for non-complementarity prob-
lems developed by Dr B. Jansen and described in detail in [32].

NUOPT : Extension for the commercial S-Plus statistical and data analy-
sis software, which includes a primal-dual interior point method based
on line search for general CP problems, for details see [48].

The non-interior point method used for solving the dual formulations is:

Minos5 : Activate set based algorithm for general NLP problems in GAMS
and suitable for dealing with unconstrained NLP problems.

No computation times are given as some of the interior point methods are
qualified research software and for others some external processing had to
be done to derive the information as listed in Table 1.12. At this point, the
optimization solvers MOSEK and Minos5 can be applied to PI problem with
a large number of optimization variables, whereas S-Plus and AFSNCP are
capable of dealing with a small number of optimization variables; S-plus and
AFSNCP remain computationally tractable for problems involving around
1000 and 3000 optimization variables respectively.

The optimization routines will be applied to the dispersion coefficient
example (Ay log-uniform), Lung morbidity and Systemic retention of Sr
in the human body. Lung morbidity and Systemic retention of Sr in the
human body are described in more detail in Appendix B.

For the dispersion coefficient example, the PI problem as introduced in
Section 1.3.2 was used. The number of optimization variables equaled 900.

Before presenting the results of the different optimization routines, it
must be stressed that the optimization solver are applied to the same PI
problem, i.e. the samples taken from domain M , which make up the PI
problem, are the same.

The results listed in Table 1.12 indicate that the AFSNCP, S-Plus and
Minos5 routine are very similar and that the MOSEK results are somewhat
out of line with them. Looking at the relative information values for the
Lung morbidity and Systemic retention of Sr in Table 1.13 then MOSEK and
Minos5 perform better than AFSNCP and S-Plus. Furthermore, AFSNCP
and S-plus are suitable for small problems only, i.e. the constraint matrix
consists of a relatively small number of columns. For larger problems, like
the Systemic retention of Sr, these interior point methods are far more time
consuming than MOSEK and Minos5.

In conclusion, for small problems like the dispersion coefficient example
the difference between the optimization routines is considered to be minor.
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Optimization Routines
Quantile MOSEK AFSNCP S-Plus Minos5

5% 9.85e-3 1.01e-2 9.91e-3 9.91e-3
Ay 50% 1.65e-1 1.69e-1 1.69e-1 1.69e-1

95% 2.35 3.33 3.33 3.33
5% 6.86e-1 6.11e-1 6.11e-1 6.11e-1

By 50% 9.73e-1 9.34e-1 9.34e-1 9.34e-1
95% 1.33 1.33 1.33 1.33

ρAy,By -8.03e-1 -8.18e-1 -8.16e-1 -8.13e-1

Relative Information 3.31 3.21 3.20 3.20

Table 1.12: Dispersion coefficient example (stability class C): comparison of
quantile information on marginal distributions of Ay and By for different
optimization solvers.

Number of Relative information
opt. variables MOSEK AFSNCP S-Plus Minos5

Lung morbidity 964 3.98 4.30 4.17 3.97
System Retention of Sr 15725 5.66 N/A N/A 5.67

Table 1.13: Relative information values for Lung morbidity and Systemic
retention of Sr for different NLP solvers.

For PI problems involving more optimization variables, like Lung morbidity,
the difference in relative information value between MOSEK and Minos5 on
the one hand and AFSNCP and S-plus on the other hand, tends to become
apparent. For large PI problems, like the Systemic retention of Sr in the
human body, the relative information values of MOSEK and Minos5 are
still very close.

1.6 Efficient version of PREJUDICE

The main problem in solving the primal formulation of a PI problem con-
cerns the number of optimization variables being equal to number of samples
taken from the domain. As stated previously, the number of optimization
variables in the dual formulation equals the number of interquantile inter-
vals (K + 1) multiplied by the number of elicitation variables n. In general
the number of optimization variables for the dual formulation is far less than
the number of optimization variables for the primal formulation, however,
the number of columns contained in the constraint matrix will be equal to
the number of samples taken from M . Hence, solving the dual formulation
may be a time consuming task after all.

Section 1.3.1 discussed the implications of the uniform background mea-
sure and it turned out that the number of optimization variables was equal
to the number of observable hypercubes covered rather than the total num-
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ber of samples drawn. In this section a PI problem formulation is given
which depend on the number of observable hypercubes covered for any
background measure on the target variables. Corollary 1.1.10 is used to
deal with PI problems involving a large number of samples.

Recall from Section 1.1.2 that νk and γk denote the push-forward mea-
sures of ν and γ onto {1, . . . , k}, respectively, with k = (K + 1)n. Based on
Corollary 1.1.10, the strategy to solve a PI problem is to determine measure
νk which minimizes I(νk|γk) and determine µ̃k based on νk.

The PI problem formulation based on νk and γk is

min
gk

∑
l gk(l) log gk(l)

gγ,k(l) (1.52)

s.t.
∑

x∈M

∑
l gk(l)1A1(x) = ν(Ij,lj ) j = 1, . . . , n

gk ≥ 0.

where A1 = {T(j)(x) ∈ Bl, Bl∩Ij,lj �= ∅}, gγ,k(l) :=
∑

x∈M fλ(x) 1{Tk(x)=l}(x)
and Ij,lj the lj-th interquantile interval of elicitation variable Yj , with
j = 1, . . . , n and lj = 1, . . . , K + 1.

Let probability mass function f̃k on sample x ∈ M be defined as

f̃k(x) := fλ(x)
(K+1)n∑

l=1

gk(l)
gγ,k(l)

1{Tk(x)=l}(x) (1.53)

Corollary 1.1.10 states in case of minimum relative information measure
µ̃k, the relative information value I(µ̃k|λ) in the target variable space equals
the relative information value I(νk|γk) in the observable space. Briefly, the
efficient version of PREJUDICE determines a distribution on the hyper-
cubes covered which has minimum relative informative with respect to the
push-forward of the background measure in the target variable space. This
push-forward background measure is the main difference with PI problem
formulation 1.48; for PI problem formulation 1.48 the background distribu-
tion (i.e. the uniform background distribution) is specified in the observable
space rather than the target variable space.

The difference between PREJUDICE and the efficient version of PREJ-
UDICE is illustrated using the dispersion coefficient example from Section
1.4.2 referred to as Extension. Both PI problem formulations are based on
the same set of samples taken from domain M and the background distribu-
tion for Ay is log-uniform and for By uniform. Table 1.14 lists information
of the distribution on the target variables.

As expected the results are the same, except for the number of optimiza-
tion variables which is reduced dramatically from 62280 to 78. Since the
number of optimization variables has dropped, the optimization routines as
introduced in Section 1.5 (which were qualified as suitable for small prob-
lems only) can be used to determine the distribution as well. There is some
variation in the results, but it is considered to be little.
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Quantile Extension Efficient
5% 2.74e-3 2.74e-3

Ay 50% 2.10e-1 2.10e-1
95% 3.39 3.39
5% 6.12e-1 6.12e-1

By 50% 9.46e-1 9.46e-1
95% 1.40 1.40

ρAy,By -9.08e-1 -9.08e-1

Number of optimization variables 62280 78
Relative Information 4.61 4.61

Table 1.14: Dispersion coefficient example (stability class C): comparison
of quantile information on marginal distributions of Ay and By between
PREJUDICE (Extension) and the efficient version of PREJUDICE.

Optimization Routines
Quantile MOSEK AFSNCP S-Plus Minos5

5% 2.74e-3 2.90e-3 2.74e-3 2.77e-3
Ay 50% 2.10e-1 2.16e-1 2.10e-1 2.10e-1

95% 3.39 3.60 3.39 3.39
5% 6.12e-1 6.02e-1 6.12e-1 6.12e-1

By 50% 9.46e-1 9.42e-1 9.46e-1 9.46e-1
95% 1.40 1.40 1.40 1.40

ρAy,By -9.08e-1 -9.19e-1 -9.08e-1 -9.15e-1

Relative Information 4.61 4.63 4.61 4.61

Table 1.15: Dispersion coefficient example (stability class C): comparison of
quantile information on marginal distributions of Ay and By for different
optimization solvers for the Efficient version of PREJUDICE.

Clearly, the benefits of the efficient version of PREJUDICE are apparent;
solving a PI problem with a ‘suitable’ background distribution on the target
variables and a manageable number of optimization variables is both from
conceptual and computational point of view very attractive. Furthermore
the iterative version of PREJUDICE as described in Section 1.4 applies to
the efficient version as well.

Finally, note that the uncertainty analyst may decide in which space the
background measure is specified; either in the target variable space or ob-
servable space. Here it is recommended to specify the background measure
in the target variable space, since the resulting measure will be minimum
relative informative with respect to the specified background measure. It
is not obvious what the background measure in the target variable space is
when a background measure in the observable space is specified; to which
background measure is the resulting measure minimal relative informative?
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1.7 Conclusions

Due to the Structured Expert Judgment Elicitation Methodology or exper-
imental data it may happen that the information available on variable Y
has to be translated/inverted into information on the variable X using the
mapping T . This translation can be seen as to invert T with respect to
Y to obtain X. Since Y is uncertain, this translation is called probabilistic
inversion.

In cases where partial information is available, the concept of relative
information was used to determine the unspecified information. The unspec-
ified information was determined in such a way that the resulting informa-
tion differed minimally compared to the partial information when measured
using relative information.

It has been shown that probabilistic inversion has a sound theoretical
foundation and that it is practical to implement; two implementations PAR-
FUM and PREJUDICE were discussed. Based on results and conceptual
reasons, PREJUDICE was qualified better than PARFUM (Section 1.2.3).

Roughly, probabilistic inversion involves two steps:

Step 1 Determination of the domain M in the target variable space.

Step 2 Determination of a measure on M .

Step 1 is of crucial importance for the success of probabilistic inversion.
The determination of M is driven largely by heuristics which include the
information on the elicitation variables, mapping T and the physics under-
lying the problem. These three elements meet when minimizing Expression
1.14 or 1.19. The resulting values for the target variables are termed model
inversions. It is recommended that the number of elicitation variables is
larger than the number of target variables. Since more target variables
than elicitation variables will most likely result in multiple combinations of
model inversions which minimize Expression 1.14 or 1.19.

The measure on M will be determined such that it has minimum rel-
ative information with respect to a certain background measure and that
the marginal distributions of its push-forward comply with the marginal
distributions of the DM; a constrained convex optimization problem. Since
the determination of the distribution on M is done with respect to a back-
ground distribution, the specification of this background distribution is very
important. Section 1.3 provides guidelines on how to construct an appro-
priate background measure and reports on the computational advantages of
the uniform background measure.

The aim of probabilistic inversion is to determine a domain M which is
observationally complete, meaning every potentially observable scenario N
can be reproduced by T (M). However, in the implementation a selection of
potentially observable scenarios are used in Step 1 to determine M , which
in turn will make it unlikely that M is observationally complete. An itera-
tive version of PREJUDICE is introduced in Section 1.4, which concentrates
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on checking observable hypercubes which have not been covered so far. The
results between PREJUDICE and the iterative version of PREJUDICE are
compared for two examples, which clearly show the beneficial effect of the
iterative version of PREJUDICE.

The primal and dual formulation of a PI problem are convex optimiza-
tion problems. In Section 1.5 the effect of different optimization solvers
capable of dealing with constrained convex optimization problems are inves-
tigated. When solving the primal formulation, it is strongly recommended
to use interior point methods, since it is clear that the solution is near
the origin and non-interior point methods will search along the feasible re-
gion which most likely will lead to numerical problems since the gradient of
the relative information function is not defined whenever an optimization
variable has a value equal or very close to 0. However, non-interior point
methods may be used in solving the dual formulation of the PI problem.
For problems involving a small number of optimization variables the solu-
tion and computation time of the different solvers are similar. For problems
involving a large number of optimization variables it is recommended to
use MOSEK. MOSEK is capable of solving large problems very quickly and
delivers, besides the primal solution, the dual solution as well, which can
be used in the iterative version of PREJUDICE.

When solving the primal formulation using a non-uniform background
measure, the number of optimization variables is equal to the number of
samples. As indicated in Section 1.5, the dual formulation involves a small
number of optimization variables but still it may be a time consuming task
after all. In Section 1.3.1 it was observed that the number of optimization
variables in case of the uniform background measure was equal to the num-
ber of observable hypercubes covered. However the uniform background
measure may be unsuitable for many problems. Based on Corollary 1.1.10
an efficient version of PREJUDICE has been formulated in Section 1.6 for
which the number of optimization variables is equal to the number of hyper-
cubes covered for any background measure. For the dispersion coefficient
example the efficient version resulted in the same results as the iterative
version, only it used far less optimization variables, which is attractive from
a computational point of view.
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Dependencies

It has long been known that significant errors in uncertainty analysis can
be caused by ignoring dependencies between uncertainties [1],[35]. In this
chapter the use of dependencies in uncertainty analysis is addressed. Section
2.1 discusses different dependence elicitation techniques and considerations
which have to be taken into account when applied in expert judgment stud-
ies. The use of dependencies in combining expert judgments is treated in
Section 2.2. Finally, Section 2.3 investigates the use of dependencies in
probabilistic inversion.

2.1 Dependence elicitation techniques

In the framework of the Structured Expert Judgment Elicitation Methodol-
ogy, the best source of information about dependencies is often the experts
themselves. The most thorough approach would be to elicit directly the ex-
pert’s joint distributions. As stated in [34], one obvious strategy would be to
ask experts directly to assess a (rank) correlation coefficient. Even trained
statisticians have difficulty with this type of assessment [22], however in [5]
it is argued that the most accurate way to obtain subjective dependence is
simply to query experts on the rank correlation between two variables; the
experts in [5] were MBA students who had taken a course in statistics.

2.1.1 Overview literature

It is stated in [6] that we should not ask ourselves whether experts can assess
dependencies accurately, but to question if experts can assess dependencies
well enough to be useful in an analysis. Although the results as presented in
[6] are very preliminary, an affirmative to the latter question is suggested.

Roughly, the dependence elicitation techniques can be subdivided into
three categories:

65
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Statistical Approaches: two approaches are suggested, see [5], [6];

• Strength of relationship: the strength of relationship SY1,Y2 be-
tween elicitation variables Y1 and Y2 is measured on a scale from
1 to 7, where 1 represents ‘very strong negative relationship’, 4
represents ’no relationship’ and 7 represents ‘very strong posi-
tive relationship’. This method to query dependence is the least
rigorous, but may serve as a starting point to think about the
dependence between two variables. In [5] the value of SY1,Y2 is
transformed to a Spearman’s ρY1,Y2 using: ρY1,Y2 = SY1,Y2−4

3

• Spearman’s correlation: the Spearman’s ρY1,Y2 is defined on the
[-1,1] interval, with -1 expressing Y1 and Y2 ‘very strong nega-
tively correlated’, 0 expressing Y1 and Y2 ‘uncorrelated’ and 1
expressing ‘very strong positively correlated’. Assessing ρY1,Y2

requires thorough knowledge of statistics.

Probability: in [5], [6] 3 types of probabilities are introduced which may
be used to query dependence.

• Probability of concordance: The probability of concordance PC

between Y1 and Y2 is defined, based on n samples from (Y1, Y2),
as

PC :=

∑n−1
i=1

∑n
j=i+1 1C∗((y1,i, y2,i), (y1,j , y2,j))(

n
2

)
where C∗ = {(y1,i − y1,j) (y2,i − y2,j) > 0}. A value for PC close
to 0.5 indicates ‘no relationship’, whereas a value of 0 expresses
‘very strong negative relationship’ and 1 expresses ’very strong
positive relationship’. PC relates to Kendall’s τ by

τ = 2PC − 1. (2.1)

In [5] it is assumed that the distribution on Y1 and Y2 can be well
approximated by a bivariate normal distribution, from which the
following relationships between the product moment (Pearson)
correlation ρ∗Y1,Y2

, Spearman’s ρY1,Y2 and Kendall’s τ can be es-
tablished, [39] :

ρ∗Y1,Y2
= 2 sin

(πρY1,Y2

6

)
(2.2)

ρ∗Y1,Y2
= sin

(πτ

2

)
(2.3)

The relationship between ρ∗Y1,Y2
and Spearman’s ρY1,Y2 as given

in Equation 2.2 is studied in some more detail in [8]; given a
Spearman’s rank correlation matrix it is not guaranteed that
the product moment correlation matrix obtained from Equation
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2.2 is positive definite. It must be stressed that there may be
instances that the assumption that the distribution on (Y1, Y2) is
well approximated using a bivariate normal distribution, is not
valid. Another way to construct a joint distribution on (Y1, Y2) is
to determine the minimum relative information distribution with
respect to the product distribution of Y1 and Y2 and Spearman’s
ρY1,Y2 , see [11], [43]. Using this representation of the distribution
on (Y1, Y2), a numerical relationship between Kendall’s τ and
Spearman’s ρY1,Y2 can be derived as well.

• Joint probability: The joint probability distribution is defined as
PJP (y1, y2) := P (Y1 ≤ y1, Y2 ≤ y2). In case the expert regards
Y1 and Y2 as independent, he/she should assign a probability of
PJP = FY1(y1)FY2(y2), where FYi

represents the continuous cu-
mulative distribution function of elicitation variable Yi, i = 1, 2.
A ‘very strong negative relationship’ is expressed by PJP close to
zero, whereas a ‘very strong positive relationship’ is expressed by
PJP = FY1(y1), in the special case FY1(y1) = FY2(y2). Express-
ing dependence by means of PJP is considered to be very difficult
for experts. It requires from the experts reasonable knowledge on
probability theory, which in many situations is not available. By
making assumptions on the distribution of (Y1, Y2), it is possible
to transform PJP into a Spearman’s ρY1,Y2 .

• Conditional probability: The conditional probability distribution
of Y1 given Y2 is defined as PCP (y1, y2) := P (Y1 ≤ y1|Y2 ≤ y2).
In case the expert regards Y1 and Y2 as independent PCP =
P (Y1 ≤ y1), whereas a ‘negative relationship’ between Y1 and
Y2 is expressed through PCP ∈ [0, P (Y1 ≤ y1)) and a ‘positive
relationship’ through PCP ∈ (P (Y1 ≤ y1), 1]. Conditioning on an
interval instead of a fractile or realization, is considered in [6] to
be a potential difficulty in providing assessments for PCP . Like
for the joint probability, it is possible to transform PCP into a
Spearman’s ρY1,Y2 by making assumptions on the distribution of
(Y1, Y2).

Conditional quantile estimates: for this type of dependence elicitation
the experts is given the information that Y2 takes the value y2 which
corresponds to a certain quantile of the distribution of Y2, next the
expert is queried on his/her expected quantile of Y1 which corresponds
to the situation where Y2 = y2; since there may be many realizations
y1 of Y1 possible, the conditional expected quantile estimate required
E(FY1(y1)|Y2 = y2). The conditional quantile estimate is related to
Spearman’s ρY1,Y2 by the standard nonparametric regression represen-
tation

E(FY1(y1)|Y2 = y2) = ρY1,Y2(FY2(y2) − 0.5) + 0.5. (2.4)
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Based on this representation it can be easily seen that the conditional
quantile estimate should satisfy

µmin ≤ E(FY1(y1)|Y2 = y2) ≤ µmax (2.5)

with µmin = min{FY2(y2), 1 − FY2(y2)} and µmax = max{FY2(y2), 1 −
FY2(y2)}; the min and max operations take account of the position
of the percentile of y2 with respect to the median of Y2 and guaran-
tee the validity of Inequality 2.5. In case FY2(y2) > 0.5, values of
E(FY1(y1)|Y2 = y2) close to the left-hand side of Inequality 2.5 ex-
presses a ‘very strong negative relationship’ and values close to the
right-hand side of Inequality 2.5 expresses a ‘very strong positive re-
lationship’ between Y1 and Y2. In case of ’no relationship’ the value
of E(FY1(y1)|Y2 = y2) should be equal to 0.5.

For all techniques, the experts require some training; for strength of
relationship, correlation coefficient and conditional quantile estimates, the
experts need to have a good understanding of statistical concepts; weak vs.
strong relationship, correlation and quantile, respectively. In case of query-
ing probabilities the training seems to be less technical; understanding of the
events and getting a feel of quantifying the dependence in terms of probabil-
ity. Finally, probabilities can easily be interpreted in terms of frequencies in
contrast of strength of relationship, correlation coefficient and conditional
quantile estimates. It is suggested that the frequency interpretation would
make the expert less susceptible to cognitive biases.

Based on these considerations the probability dependence elicitation
technique was chosen for the Structured Expert Judgment Elicitation Method-
ology.

2.1.2 Dependence Elicitation and Structured Expert
Judgment Elicitation Methodology

Under the Structured Expert Judgment Elicitation Methodology, experts
have to quantify their knowledge for events which are potentially measur-
able and with which they are familiar, hence it seems natural to quantify
dependence among similar events as well. Therefore dependence questions
have to be formulated among relevant pairs of events and in line with the
Structured Expert Judgment Elicitation Methodology and, additionally, the
dependence elicitation technique should be easy to understand for the ex-
perts. In performing an expert judgment study, experts will have only a lim-
ited amount of time to quantify their knowledge. They should focus firstly
on the determination of the distributions for the elicitation variables and
secondly on quantifying the dependence among elicitation variables; ignor-
ing dependence may lead to significant errors in doing uncertainty analysis,
but even greater errors will arise in case the distributions over the model
input parameters are inaccurate.
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The elicitation of dependence in the Joint CEC/USNRC Uncertainty
Analysis was done via conditional probability. Querying dependence via
joint probability was considered to be too difficult and specification of the
probability of concordance for among independent samples too technical.
The conditional probability dependence elicitation technique, however, is
flexible, easy to communicate to the experts and the type of dependence
elicitation questions can be easily formulated to satisfy the Structured Ex-
pert Judgment Elicitation Methodology.

Experts assess the marginal distributions for (continuous) elicitation
variables Y1 and Y2 first. Next they are asked the question:

Consider an experiment involving both Y1 and Y2. Suppose Y2

were observed and its value was found to lie above your median
value for Y2; what’s your probability that, in this same experi-
ment, the value for Y1 would also lie above your median value
for Y1?

Experts in the joint CEC/USNRC uncertainty analysis quickly became
comfortable with this assessment technique, acknowledged its importance
and dealt with the questions in terms of possible outcomes of experiments.
Most experts addressed the question in terms of frequency which, as stated
earlier, makes them less susceptible to cognitive biases.

If FY1 and FY2 are the (continuous invertible) cumulative distribution
functions of Y1 and Y2 respectively, the experts thus assess,

π 1
2 , 1

2
(Y1, Y2) := P (FY1(Y1) >

1
2
| FY2(Y2) >

1
2
). (2.6)

In case there are a large number of potential dependencies among elici-
tation variables, not all dependencies will be queried; firstly there would be
too many questions and secondly, in eliciting and combining all dependen-
cies, it is almost impossible to ensure that the resulting Spearman’s rank
correlation matrix is positive definite. Therefore it is better to query the
dependence for a selection of all possible dependencies. If this selection is
such that the resulting dependency graph is acyclic, it is shown in [43] that
a joint distribution can be found for which:

(i) the marginal distributions complies the expert’s distributions,
(ii) Spearman’s rank correlation matrix is positive definite and satisfies

the expert’s information as specified in the dependency structure.

From the set of distributions, which share Properties (i) and (ii), the
distribution is selected which has minimum relative information with respect
to the product distribution1, for details see [11].

1When referring to minimum relative information distribution in this chapter, it is
understood to be minimum with respect to the product distribution.
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2.1.3 π 1
2
, 1
2
(Y1, Y2) and Spearman’s ρY1,Y2

The dependence information over a selection of elicitation variables queried
from the experts is available via conditional probabilities π 1

2 , 1
2
(Y1, Y2). How-

ever, a relationship between π 1
2 , 1

2
(Y1, Y2) and Spearman’s ρY1,Y2 must be

derived in order to ensure that the Spearman rank correlation matrix of the
minimum relative information distribution satisfies the dependency infor-
mation as specified by the experts.

Consider all distributions for (Y1, Y2) having marginals FY1 , FY2 , hav-
ing minimum relative information with respect to the distribution with
independent marginals FY1 , FY2 and having Spearman rank correlation
ρY1,Y2 ∈ [−1, 1]. Based on simulation results the unique relationship be-
tween Spearman’s ρY1,Y2 and π 1

2 , 1
2
(Y1, Y2) is determined, see Figure 2.1.

Hence, the conditional probability π 1
2 , 1

2
(Y1, Y2) may be considered as a char-
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Figure 2.1: Relation between Spearman’s rank correlation ρY1,Y2 and condi-
tional probability π 1

2 , 1
2
(Y1, Y2).

acterization of the minimum relative information distribution with Spear-
man’s ρY1,Y2 .

This characterization is used to determine the unique relationship be-
tween Spearman’s ρY1,Y2 and πr1,r2(Y1, Y2), r1, r2 ∈ (0, 1). The simulation
program UNICORN [11] is used to determine the numerical relationship
between Spearman’s ρY1,Y2 and conditional probability πr1,r2(Y1, Y2). The
resulting table will be referred to as the ρπ-table 2.

2The values of r1 and r2 were taken from the set
{0.0025, 0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95, 0.9975}. The Spearman correlations ρY1,Y2
were taken from the set {−1,−0.9, . . . , 0.9, 1}. The information is stored as
[r1, r2, ρY1,Y2 , πr1,r2 (Y1, Y2)]
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2.2 Combining Expert Judgments

The current strategy for combining experts marginal distribution for elic-
itation variable Y , as described in [27], may be summarized as; let we

represent the weight of the e-th expert (e = 1, . . . , Nexp.) such that we ≥ 0
and

∑
e we = 1. The density of elicitation variable Y of the DM is obtained

from linear pooling the densities of the experts for Y ;

fY,DM =
Nexp.∑
e=1

we fY,e (2.7)

where fY,e is the density associated with the e-th expert assessments for
elicitation variable Y . The combination of the experts’ densities is done
using EXCALIBR [14].

Two strategies will be introduced in this section which combine experts’
marginal distributions and dependence information via linear pooling to
obtain the information for the DM;

Strategy 1 : Information on the marginal distributions and conditional
probabilities for the DM are obtained by combining firstly the ex-
perts’ marginal distributions and secondly conditional probabilities
using linear pooling on both occasions. Based on the information for
the DM a minimum relative information distribution is determined
satisfying Properties (i) and (ii) of Section 2.1.2, see [34].

Strategy 2 : For each expert, determine a minimum relative information
distribution satisfying Properties (i) and (ii) of Section 2.1.2. The dis-
tribution for the DM is obtained by combining the minimum relative
information distributions of experts using linear pooling.

The difference between the two strategies may be characterized as follows:
the dependence information under Strategy 1 is combined after the marginal
distributions are combined, whereas under Strategy 2 the marginal distri-
butions and dependence information are combined at the same time.

2.2.1 Strategy 1

Before discussing Strategy 1 in more detail, consider the following; hav-
ing queried the conditional probabilities from the experts, it is tempting
to pool the conditional probabilities linearly to determine the conditional
probability of the DM. However, in general the medians of the experts will
be different, for this reason one cannot combine the conditional probabilities
π 1

2 , 1
2
(Y1, Y2) via linear pooling; the pooling will not be over the same events.

Let y1,DM,50 and y2,DM,50 denote the medians for the DM’s distribution
for Y1 and Y2. With each expert a minimum relative information distri-
bution on Y1 and Y2 is associated; for each such distribution the condi-
tional probabilities P (Y1 > y1,DM,50 | Y2 > y2,DM,50) are computed. Since
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these conditional probabilities are defined over the same events for all ex-
perts, they can be combined using linear pooling. This yields a value for
πDM

1
2 , 1

2
(Y1, Y2) for DM, for which the corresponding Spearman’s ρDM

Y1,Y2
for the

DM can be found.

Solution scheme

The various steps involved in Strategy 1 are summarized in the solution
scheme below:

Step 1 : For each expert e query πe
1
2 , 1

2
(Y1, Y2) = P (FY1,e(Y1) > 1

2 | FY2,e(Y2) >
1
2 ).

Step 2 : For each expert e, find Spearman’s ρe
Y1,Y2

from the ρπ-table which
passes through ( 1

2 , 1
2 , πe

1
2 , 1

2
(Y1, Y2)).

Step 3 : Take linear pooling of experts’ marginals to determine FY1,DM

and FY2,DM and y1,DM,50, y2,DM,50.

Step 4 : For each expert e;

• Determine P (FY1,e(Y1) > FY1,e(y1,DM,50)) = 1 − FY1,e(y1,DM,50)
and P (FY2,e(Y2) > FY2,e(y2,DM,50)) = 1 − FY2,e(y2,DM,50).

• Based on P (FYl,e(Yl) > FYl,e(yl,DM,50)) with l = 1, 2, determine
for each Spearman’s ρY1,Y2 ∈ {−1,−0.9, . . . , 0.9, 1},

PρY1,Y2
(FY1,e(Y1) > FY1,e(y1,DM,50) | FY2,e(Y2) > FY2,e(y2,DM,50))

using linear interpolation, from the ρπ-table.

• Determine

Pρe
Y1,Y2

(FY1,e(Y1) > FY1,e(y1,DM,50) | FY2,e(Y2) > FY2,e(y2,DM,50))

by linear interpolation from the

PρY1,Y2
(FY1,e(Y1) > FY1,e(y1,DM,50) | FY2,e(Y2) > FY2,e(y2,DM,50))

values.

Step 5 : Take linear pooling of

Pρe
Y1,Y2

(FY1,e(Y1) > FY1,e(y1,DM,50) | FY2,e(Y2) > FY2,e(y2,DM,50))

to find

πDM
1
2 , 1

2
(Y1, Y2) = P (FY1,DM(Y1) >

1
2
| FY2,DM(Y2) >

1
2
).
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Step 6 : Find Spearman’s ρDM
Y1,Y2

from the ρπ table as the value which
passes through ( 1

2 , 1
2 , πDM

1
2 , 1

2
(Y1, Y2)).

Step 7 : Construct a minimum relative information distribution on the
elicitation variables which satisfies Properties (i) and (ii) of Section
2.1.2 for the DM data obtained in Step 3 and Step 6.

2.2.2 Strategy 2

Strategy 2 extends the current strategy of combining experts’ marginal den-
sity (Expression 2.7) to combining experts’ joint densities on the elicitation
variables. Let Y = (Y1, . . . , Yn), then a minimum relative information dis-
tribution satisfying Properties (i) and (ii) of Section 2.1.2 is assigned to
the expert’s assessments of Y. Hence the joint density for each expert is
available. Let fY,e represent the joint density associated with expert e’s
minimum relative information distribution on the elicitation variables Y.
The density of Y of the DM is obtained from

fY,DM =
Nexp.∑
e=1

we fY,e. (2.8)

The combination of the experts’ joint densities is done using the simulation
program UNICORN, [11].

It is assumed here that all experts provided assessments for elicitation
variables Y, the procedure can be adapted in case experts did not provided
assessments for certain elicitation variables.

Solution scheme

The various steps involved in Strategy 2 are summarized in the solution
scheme below:

Step 1 : For each expert e query

πe
1
2 , 1

2
(Y1, Y2) = P (FY1,e(Y1) >

1
2
| FY2,e(Y2) >

1
2
).

Step 2 : For each expert e, find Spearman’s ρe
Y1,Y2

from the ρπ-table which
passes through ( 1

2 , 1
2 , πe

1
2 , 1

2
(Y1, Y2)).

Step 3 : For each expert, construct a minimum relative information dis-
tribution on the elicitation variables which satisfies Properties (i) and
(ii) of Section 2.1.2.

Step 4 : Take linear pooling of experts’ minimum relative information
distributions to obtain the minimum relative information distribution
for the DM.
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2.2.3 Performance based weights

The question put forward in this section is ‘Do the strategies apply in case
of performance based weights as well?’. For an introduction to performance
based weights, see [9],[13]. The application of performance based weights
(global and item) for both strategies, needs some care. In case of global
weights, both Strategy 1 and 2 can be applied. Item weights differ from
item to item, hence Strategy 2 can be applied but Strategy 1 cannot be
applied, since the weights to determine FY1,DM will be different from the
weights to determine FY2,DM, hence it is unclear which set of weights to use
in Step 5 of the solution scheme of Strategy 1.

2.2.4 Examples

The similarities and differences between Strategies 1 and 2 will be illustrated
by two examples. The elicitation variable is a target variable in the first
example, whereas the elicitation variable is not a target variable in the
second example.

Example 1 : Elicitation variable is target variable; the example is taken
from the Foodchain panel [26] and deals with data on the daily intake
of dairy cows (D) and beef cattle (B) for different feedstuff (Pasture
(P), Silage (S) and Cereals (C)) both indoors (I) and outdoors (O); for
example the abbreviation DPO represents the daily intake of pasture
for a dairy cow grazing outside and BCI represents the daily intake of
cereals for a beef cow eating indoors.

The individual expert assessments on conditional probabilities and
corresponding Spearman’s rank correlations are given in Appendix E
in Table E.1 and E.2, respectively. Note the difference between the
conditional probability assessments among some experts, especially
Expert 3 and Expert 4.

The marginal distribution for the DM as determined by Strategy 1
and Strategy 2 are the same. It is more interesting to look at the
Spearman’s rank correlation matrices for the DM, since dependencies
are combined at different stages under both strategies.

The difference among the Spearman’s rank correlation matrices re-
sulting from both strategies is illustrated graphically using so-called
‘radar-plots’, see Figure 2.2. Each radar-plot presents graphically the
Spearman’s rank correlation with respect to a certain variable result-
ing from Strategy 1 (--) and Strategy 2 (- -); the radar-plot in the
upper left corner presents the Spearman’s rank correlations for vari-
ables with respect to variable DPO.

The actual Spearman’s rank correlation matrices are given in Table
E.3 and E.4 of Appendix E. It is clear from the radar-plots that com-
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Figure 2.2: Example 1: radar plots of Spearman’s rank correlations obtained
from Strategy 1 (--) and Strategy 2 (- -).

bining dependencies using Strategy 1 or Strategy 2 result in different
dependencies for the DM.

Example 2 : Elicitation variable is not a target variable. No proba-
bilistic inversion is required, but the distribution on the target vari-
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ables is obtained by simulation. The example is taken from the Late
Health effects panel [30] and deals with data concerning the number of
radiation-induced cancer deaths fatalities following an exposure in a
population of a hunderd million persons (5.0e+7 male, 5.0e+7 female)
each receiving a whole body dose of 1 Gy low LET (=gamma) radi-
ation at a uniform dose rate DR. The information on the elicitation
variables is represented as:

Yi,1 : fraction of radiation induced cancer deaths up to 40 years for
cancer site i following a whole body dose at high dose rate.

Yi,2 : fraction of radiation induced cancer deaths over a lifetime for
cancer site i following a whole body dose at high dose rate.

Yi,3 : fraction of radiation induced cancer deaths up to 40 years for
cancer site i following a whole body dose at low dose rate.

The cancer sites considered were Bone Marrow, Bone, Breast, Lung,
Stomach, Colon, Liver, Pancreas, Thyroid, Skin and Other cancers,
where Other cancers has to be interpreted as a set of cancer sites other
than the ones mentioned3. The target variables Xi were defined as the
fraction of radiation induced cancer deaths over a lifetime for cancer
site i following a whole body dose at low dose rate. The distribution
of Xi has been obtained from the 3 elicitation variables for cancer site
i using the model:

Xi =
Yi,2

Yi,1
Yi,3 (2.9)

The simulation was done conditional on yi,3 ≤ yi,1 ≤ yi,2 and
∑

i xi ≤
1, where yi,1, yi,2, yi,3 and xi represent samples from Yi,1, Yi,2, Yi,3

and Xi, respectively.

The dependency was queried among cancer sites for Yi,2, between
cancer sites of Yi,1 and Yi,2, and between cancer sites for Yi,1 and Yi,3.

As in Example 1, Appendix E lists the information on the condi-
tional probabilities and corresponding Spearman’s rank correlations
for Example 2 via Tables E.5 and E.6. For this example the assessed
conditional probabilities show agreement between experts.

The difference between Example 1 and Example 2 is that the elicita-
tion variable is no target variable in Example 2; model 2.9 is used to
obtain the distribution on the target variables Xi. The implications
of this extra feature to both strategies will be discussed now.

Let Di be defined as

Di := {(yi,1, yi,2, yi,3)|yi,3 ≤ yi,1 ≤ yi,2}. (2.10)

3The index i runs over the set consisting of {Bone Marrow, Bone,. . .,Other Cancers}.
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In case of Strategy 1, the expert assessments and the conditional prob-
ability are aggregated using Strategy 1 which result in a distribution
for the DM on all elicitation variables, denoted by YDM. The dis-
tribution on the target variables X is obtained through correlated
combination of marginal distributions of YDM; for cancer site i, the
density of Xi is obtained by

xi =
yDM,i,2

yDM,i,1
yDM,i,31Di

(yDM,i,1, yDM,i,2, yDM,i,3). (2.11)

and conditional on
∑

i xi ≤ 1. The sample (yDM,i,1, yDM,i,2, yDM,i,3)
in model 2.11 is taken from YDM. In summary, the distribution for
the DM on the target variables is obtained in two steps; firstly the
individual expert assessments are combined into a distribution on the
elicitation variables YDM for the DM and secondly this distribution
is used to determine the minimal relative information distribution on
the target variables X using model 2.11.
For this example, Strategy 2 is modified slightly in order to determine
the distribution for the DM on the target variables in a single step. For
expert e, determine the minimal relative information distribution on
all elicitation variables Ye satisfying Properties (i) and (ii) of Section
2.1.2. The density on the target variables is obtained by linear pooling
the densities resulting from model 2.9; for cancer site i, the density of
Xi is obtained by

xi =
Nexp.∑
e=1

we
ye,i,2

ye,i,1
ye,i,31Di

(ye,i,1, ye,i,2, ye,i,3). (2.12)

and conditional on
∑

i xi ≤ 1. The sample (ye,i,1, ye,i,2, ye,i,3) is taken
from Ye. Because model 2.9 is non-linear, the marginal distributions
on Xi resulting from Strategy 1 and Strategy 2 will be different, since
for Strategy 1 the experts’ assessments were combined prior to apply-
ing model 2.9, whereas for Strategy 2 the experts’ assessments and
application of the model were done at the same time.
Based on the quantile information4 of Table 2.1 the difference between
Strategy 1 and Strategy 2 is observed; most of the 5% quantiles are
roughly the same, but the majority of the 50% and 95% quantiles are
different. This difference is illustrated graphically, see Figure 2.3.
The difference between the Spearman’s rank correlation matrices re-
sulting from Strategy 1 and Strategy 2 is illustrated via ‘radar plots’
in Figure 2.4. The Spearman’s rank correlation matrices based on
Strategy 1 and Strategy 2 are given in Appendix E Tables E.7 and
E.3, respectively.

4The results for Strategy 1 and Strategy 2 for Example 2 are based on 987 and 916
samples, respectively and were determined with respect to a log-uniform background
distribution.
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Xi 5% 50% 95%
Strat.1 Strat.2 Strat.1 Strat.2 Strat.1 Strat.2

Bone Marrow (BM) 8.39e-8 8.77e-8 1.41e-4 2.98e-3 1.61e-2 1.31e-2
Bone (Bo) 2.82e-8 1.93e-8 3.21e-5 1.47e-5 3.56e-3 1.08e-3
Breast (Br) 1.07e-7 8.05e-8 2.11e-4 2.48e-3 1.90e-2 8.01e-3
Lung (Lu) 1.96e-8 1.66e-8 2.26e-4 1.77e-6 4.17e-2 1.76e-2
Stomach (St) 3.62e-8 1.92e-8 2.04e-4 8.56e-6 1.74e-2 6.23e-3
Colon (Co) 4.47e-8 1.97e-8 3.09e-4 2.40e-6 1.96e-2 1.16e-2
Liver (Li) 3.84e-8 2.13e-8 9.37e-5 5.63e-6 1.06e-2 1.35e-3
Pancreas (Pa) 4.32e-8 2.19e-8 3.00e-4 5.24e-6 7.75e-3 2.48e-3
Thyroid (Th) 3.29e-8 1.78e-8 1.22e-4 8.57e-7 3.53e-3 1.04e-3
Skin (Sk) 4.35e-8 5.59e-7 1.16e-4 1.36e-4 2.13e-3 6.96e-4
Other Cancers (OC) 5.51e-8 2.04e-8 1.29e-3 2.29e-5 6.41e-2 2.29e-2

Table 2.1: Example 2: quantile information comparison of marginal distri-
butions of DM using Strategy 1 and Strategy 2 for the target variables.
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Figure 2.3: Example 2: graphical display of marginal distributions of Xi for
cancer site i resulting from Strategy 1 (- -) and Strategy 2 (–).
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Figure 2.4: Example 2: radar plots of Spearman’s rank correlations obtained
from Strategy 1 (--) and Strategy 2 (- -).
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2.3 Dependencies and Probabilistic inversion

As a result of the Structured Expert Judgment Elicitation Methodology,
dependencies may have been queried among elicitation variables which are
not target variables. For example, the distribution on the target variables
for Example 2 was determined by simulation. But what if the distribution
on the target variables has to be determined by probabilistic inversion. Is
it possible to use dependency information among the elicitation variables in
the probabilistic inversion solution scheme? The answer to this question is
affirmative.

Suppose the dependency between elicitation variables Y1 and Y2 is avail-
able for the DM as a conditional probability πDM

1
2 , 1

2
(Y1, Y2). This conditional

probability and measure νk (with density gk), as determined using the effi-
cient version of PREJUDICE (Section 1.6), are related by

πDM
1
2 , 1

2
(Y1, Y2) = 2

∑
x∈M

∑
l

gk(l) 1A2(x) (2.13)

where A2 = {T(1)(x) > y1,DM,50%, T(2)(x) > y2,DM,50%, Tk(x) = l}. The
inclusion of Expression 2.13 in the efficient version of PREJUDICE (Section
1.6) is best explained as the addition of constraints to the PI problem; in
notation

min
gk

∑
l gk(l) log gk(l)

gγ,k(l) (2.14)

s.t.
∑

x∈M

∑
l gk(l)1A1(x) = ν(Ij,lj )∑

x∈M

∑
l gk(l) 1A2(x) = 1

2πDM
1
2 , 1

2
(Y1, Y2).

gk ≥ 0.

with A1 = {T(j)(x) ∈ Bl, Bl ∩ Ij,lj �= ∅}, j = 1, . . . , n and lj = 1, . . . , K + 1.
Including dependence information in a PI problem by the addition of con-
straints will most likely result in a smaller set of feasible solutions. Cur-
rently, the issue on what to do if the set of feasible solutions for PI problem
(2.14) is empty has not been investigated. Consequently, the implications
to the iterative version of PREJUDICE are unclear at this moment. At this
moment the recommended strategy would be to determine a distribution
µ̃(1) on M using the iterative version of the efficient version of PREJUDICE
and next determine a distribution µ̃(2) on M which has minimum relative
information with respect to µ̃(1) and which also satisfies the dependence
information.

2.3.1 Example

To illustrate the effect of taking dependencies into account in probabilistic
inversion, the dispersion coefficient example of Section 1.6 is considered. No
dependencies were elicited among the elicitation variables for the Dispersion
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& Deposition panel, however, in order to illustrate the process, the condi-
tional probabilities for the DM, as given in Table 2.2, are assumed to be
representative: The conditional probabilities express a strong dependence

Elicitation variables πDM
1
2 , 1

2
(Yi, Yj)

Y1, Y2 0.90
Y2, Y3 0.85
Y3, Y4 0.75
Y4, Y5 0.60

Table 2.2: Dispersion coefficient example (stability class C): conditional
probabilities between elicitation variables.

between the elicitation variables Y1 and Y2, the lateral plume spreads at
500 m. and 1 km. downwind, respectively, and decreases as the difference
between the downwind distances of the elicitation variables increases. In
Section 1.6, the distribution on the samples, taking no dependency infor-
mation into account, was determined, i.e. µ̃(1). Here, a distribution on the
same samples will be determined taking the dependence information into
account, i.e. µ̃(2); the intuitive understanding is that the probabilities on
the propagated samples in the ‘independent’ situation are ‘re-weighted’ such
that the conditional probabilities are also satisfied5.

Table 2.3 compares quantile information of the target variables for the
‘independent’ case and ‘dependent’ case.

Quantile Extension
independent case dependent case

5% 2.74e-3 2.31e-3
Ay 50% 2.10e-1 2.36e-1

95% 3.39 5.85
5% 6.12e-1 5.73e-1

By 50% 9.46e-1 8.91e-1
95% 1.40 1.47

ρAy,By -9.08e-1 -9.63e-1

Relative Information 4.61 5.62

Table 2.3: Dispersion coefficient example (stability class C): quantile infor-
mation and rank correlations for target variables for independent case and
dependent case.

The results of Table 2.3 show that the 5%-95% quantile intervals for
dependent case are wider and the rank correlation has become more negative

5Here the background distribution for the ‘dependent’ case is taken the same as the
background distribution in the ‘independent’ case. However, another interesting back-
ground distribution for the ’dependent’ case would be the distribution on the samples of
the ’independent’ case.
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compared to the results for independent case. A graphical comparison of
the marginal distributions on the target variables is presented in Figure 2.5.
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Figure 2.5: Dispersion coefficient example (stability class C): graphical il-
lustration of distribution of Ay (left), By (right) for the independent case
(-) and dependent case (--).

The 5%, 50% and 95%-iles of the marginal distributions of the push-
forward distributions of the two cases are not given as they agree with
the 5%, 50% and 95%-iles of the marginal distributions of the DM , see
Table 1. For the dependent case, the conditional probabilities inherent in
the push-forward distribution agree with the initial conditional probabilities
πDM

1
2 , 1

2
(Yi, Yj), see Table 2.2.

The Spearman’s rank correlation matrices for target variables and elici-
tation variables for the independent and dependent case are given in Table
2.4 and Table 2.5, respectively. Based on comparing Spearman’s rank cor-
relations between the correlation matrices, the effect of taking dependencies
into account in the probabilistic inversion becomes clear, see Figure 2.6.

Based on the ρπ-table, it is possible to convert the rank correlations
ρYi,Yj

into conditional probabilities π 1
2 , 1

2
(Yi, Yj) which can be compared to

the conditional probabilities πDM
1
2 , 1

2
(Yi, Yj) of Table 2.2. Table 2.6 shows that

the ‘converted’ conditional probabilities π 1
2 , 1

2
(Yi, Yj) differ significantly from

the ‘input’ conditional probabilities πDM
1
2 , 1

2
(Yi, Yj). This observation arouses

the suspicion that the dependence structure contained in the distribution
on the target variables cannot be represented satisfactorily by a Spearman’s
rank correlation matrix.

Hence the push-forward results of the joint distribution based on marginal
distribution and Spearman’s rank correlation matrix may not represent the
DM results. See Table 2.7 for a comparison between DM quantiles and
quantiles from the push-forward distributions of the dependent and inde-
pendent case

From Table 2.7 the effect of representing the distribution as marginal
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Figure 2.6: Dispersion coefficient example (stability class C): graphical com-
parison of Spearman’s rank correlations resulting from the independent case
(--) and the dependent case (- -).

distributions and Spearman’s rank correlation becomes evident; the results
of the correlated propagation do not represent the DM well at all.

Based on the above it is questionable to represent the joint distribution
resulting from PI as marginal distributions and a Spearman’s rank corre-
lation matrix. Isn’t it possible to make use of a special sampling scheme
which will generate a file of realizations based on the joint distribution on
the target variables which can be fed into the computer code? In the future
more research will be done to develop sampling techniques which do not
violate the dependency structure as much as the marginal distributions and
Spearman’s rank correlation representation.

2.4 Conclusions

This section started with a review of the existing dependence elicitation
techniques. It is concluded that the conditional probability dependence
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Ay

By

Y1

Y2

Y3

Y4

Y5




1 −9.08e-1 6.58e-1 5.09e-1 2.41e-1 −7.96e-2 −3.14e-1

−9.08e-1 1 −4.08e-1 −2.18e-1 9.60e-2 4.21e-1 6.27e-1

6.58e-1 −4.08e-1 1 9.68e-1 8.22e-1 5.69e-1 3.37e-1

5.09e-1 −2.18e-1 9.68e-1 1 9.28e-1 7.32e-1 5.26e-1

2.41e-1 9.60e-1 8.22e-1 9.28e-1 1 9.23e-1 7.81e-1

−7.96e-2 4.21e-1 5.69e-1 7.32e-1 9.23e-1 1 9.56e-1

−3.14e-1 6.27e-1 3.37e-1 5.26e-1 7.81e-1 9.56e-1 1




Table 2.4: Dispersion coefficient example (stability class C): Spearman’s
rank correlations for target variables and elicitation variables for the ‘inde-
pendent’ case.

Ay

By

Y1

Y2

Y3

Y4

Y5




1 −9.63e-1 8.25e-1 6.84e-1 3.97e-1 −2.14e-1 −6.21e-1

−9.63e-1 1 −7.32e-1 −5.73e-1 −2.48e-1 3.86e-1 7.67e-1

8.25e-1 −7.32e-1 1 9.66e-1 7.84e-1 2.07e-1 −2.75e-1

6.84e-1 −5.73e-1 9.66e-1 1 8.95e-1 3.85e-1 −9.10e-2

3.97e-1 −2.48e-1 7.84e-1 8.95e-1 1 7.11e-1 2.72e-1

−2.14e-1 3.86e-1 2.07e-1 3.85e-1 7.11e-1 1 8.03e-1

−6.21e-1 7.67e-1 −2.75e-1 −9.10e-2 2.72e-1 8.03e-1 1




Table 2.5: Dispersion coefficient example (stability class C): Spearman’s
rank correlations for target variables and elicitation variables for the ‘de-
pendent’ case.

elicitation technique is most suitable in the context of expert judgment.
This type of dependence elicitation has a sound foundation in probabil-
ity theory and is in line with the Structured Expert Judgment Elicitation
Methodology. It is not claimed to be the best way to elicit dependence, but
experts with different backgrounds understood the technique and type of
questioning fairly easily and acknowledged its importance. Furthermore, it
was pointed out that it is more important to get the marginal distributions
‘right’ compared to getting the dependence between the elicitation variables
‘right’.

Next the attention was focused on the aggregation experts’ assessments
on marginal distributions and dependence into a joint distribution on the
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Elicitation Cond. prob. Independent case Dependent case
variables from experts

πDM
1
2 , 1

2
(Yi, Yj) ρYi,Yj

π 1
2 , 1

2
(Yi, Yj) ρYi,Yj

π 1
2 , 1

2
(Yi, Yj)

Y1, Y2 9.00e-1 9.68e-1 9.94e-1 9.66e-1 9.93e-1
Y2, Y3 8.50e-1 9.27e-1 9.51e-1 8.95e-1 9.03e-1
Y3, Y4 7.50e-1 9.23e-1 9.45e-1 7.11e-1 8.09e-1
Y4, Y5 6.00e-1 9.56e-1 9.91e-1 8.03e-1 8.50e-1

Table 2.6: Dispersion coefficient example (stability class C): comparison
between conditional probabilities from experts and ‘converted’ conditional
probabilities based on the ρπ table.

σy(zi)
Distance (zi) Quantiles DM UNICORN

Dependent case Independent case
ρAy,By = −0.963 ρAy,By = −0.908

5% 3.30e+1 7.95 4.37
500 m. 50% 9.49e+1 6.52e+1 6.58e+1

95% 1.95e+2 2.40e+2 3.18e+2
5% 6.48e+1 1.89e+1 9.14

1 km. 50% 1.72e+2 1.25e+2 1.24e+2
95% 3.46e+2 4.17e+2 6.03e+2
5% 1.75e+2 5.24e+1 2.86e+1

3 km 50% 4.46e+2 3.34e+2 3.38e+2
95% 1.04e+3 1.11e+3 1.79e+3
5% 4.48e+2 1.52e+2 9.34e+1

10 km. 50% 1.22e+3 9.93e+2 1.02e+3
95% 3.37e+3 4.03e+3 6.42e+3
5% 1.10e+3 3.75e+2 2.38e+2

30 km. 50% 2.82e+3 2.40e+3 2.78e+3
95% 8.25e+3 1.42e+4 2.30e+4

Table 2.7: Dispersion coefficient example (stability class C): comparison of
quantile information of DM and UNICORN for the independent and depen-
dent case.

elicitation variables. Two strategies based on linear pooling were intro-
duced. Roughly, Strategy 1 combines the experts’ assessments on marginal
distributions and dependence separately, whereas Strategy 2 combines the
experts’ assessments on marginal distributions and dependence together.
Looking at how the assessments of the expert on marginal distributions and
dependence are treated by both strategies, it is concluded that Strategy
2 treats the experts’assessments in a more ’natural’ way than Strategy 1;
currently the marginal distributions of the experts are combined, in case de-
pendency information is available it would be ‘natural’ to combine the joint
distributions of the experts. Additionally, Strategy 2 is able to deal with
situations where the structure of the acyclic dependency trees of experts are
not identical. In this situation Strategy 1 may result in a cyclic dependence
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tree for the DM, which may result in a Spearman’s rank correlation matrix
which is not positive definite. In case of Strategy 2, a minimal relative in-
formation distribution satisfying Properties (i) and (ii) of Section 2.1.2 is
fitted to the experts’ assessments, hence the structure of the experts acyclic
dependency trees do not have to be identical.

Both strategies were applied to two examples: Example 1 (elicitation
variable is target variable) and Example 2 (elicitation variable is not a tar-
get variable). For Example 1 the marginal distributions resulting from the
strategies were the same but the Spearman’s rank correlation matrices dif-
fered significantly. Due to the non-linearity of the model, both the marginal
distributions and Spearman’s rank correlation matrices obtained from Strat-
egy 1 and Strategy 2 differed.

Section 2.3 focused on using dependence information among the elicita-
tion variables in probabilistic inversion. It was shown that it is very easy to
extend the probabilistic inversion solution scheme with information on de-
pendence between elicitation variables. For the dispersion coefficient exam-
ple, the difference between taking and not taking dependence into account
in determining the distribution on the target variables became apparent. At
this moment it is unclear what the implications of taking account of depen-
dence information are for the iterative version of PREJUDICE. Therefore
it is suggested to apply first the iterative version of PREJUDICE taking no
account of dependence information in order to determine a domain M such
that it is observationally or hypercube complete. The final distribution on
the target variables will be a re-weighted version of this distribution, such
that the dependence structure of its push-forward will also comply with the
elicited dependence information and such that the difference between the
distribution obtained in the first step will be minimal, when measured using
relative information.

In doing uncertainty analysis, the distribution on the target variables is
often represented by marginal distributions and Spearman’s rank correlation
matrix, see [37], [38]. For many situations, this type of representation of a
distribution on the target variables will result in push-forward results which
will resemble the distribution of the DM poorly. It seems that the depen-
dence structures inherent in the distribution on target variables, obtained
using probabilistic inversion, are difficult to capture using a dependence
measure, like the Spearman’s rank correlation. Therefore, future research
will focus on application/development of new sampling schemes which can
deal with more complex dependence structures.
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Chapter 3

Calibration with
Uncertain Observations

Classical references for calibration of subjective probabilities ([41],[42] for
an update), treat calibration as a measure of ‘correspondence with reality’
but do not deal with the problem of the stochastic nature of numerical mea-
sures of calibration. Asymptotic definitions of well-calibrated were proposed
in [16],[17], and a definition in terms of statistical likelihood was introduced
in [7],[9],[13],[24]. In [9], the statement that an expert is well calibrated is
interpreted as the statistical hypothesis that the uncertain quantities are
independent and identically distributed with the appropriate distribution.
This hypothesis is tested against observations/experimental results using
the distribution of an appropriate scoring variable. In the most common
implementation, experts assess K quantiles of their subjective distributions
for continuous quantities Yj . Let probability vector q = (q1, . . . , qK+1)
contain the probabilities of the K + 1 interquantile intervals, and probabil-
ity vector p = (p1, . . . , pK+1) be defined as the proportion of observations
contained in the interquantile intervals and n be the total number of ob-
servations. Calibration is scored as the upper tail probability (UTR) of the
variable R

R = 2n I(p|q) (3.1)

with I(p|q) =
∑K+1

l=1 pl ln pl

ql
. If the observations are drawn independently

from distributions with interquantile probabilities ql, l = 1, . . . ,K +1, then
R is asymptotically χ2

K distributed, as n → ∞. Figure 3.1 shows the density
of the χ2

3 distribution, where the calibration score is equal to the shaded
area and equals P (R > r) = 1 − χ2

3(r).
Evaluation of probabilistic forecasters in terms of scoring rules was in-

troduced in [47]. [18] studied quantities similar to R, though in a slightly
different context. The evaluation of sets of assessments against sets of ob-
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Figure 3.1: Density of χ2
3 distribution.

servations was undertaken in [9], and R and UTR were shown to be strictly
proper in an appropriately generalized sense.

All of the developments sketched above assume that ‘crisp’ values of
uncertain quantities Yj can be observed. In the Joint CEC/USNRC Un-
certainty Analysis, the question was raised by project oversight authorities
to what extent ‘measurement variability’ might affect the calibration scores
of experts. For example, experts were asked to assess quantiles for lateral
plume spread at various downwind distances under various atmospheric con-
ditions. In some cases experimental values were available, and these were
used to calibrate experts. Since lateral plume spread is a very complex
physical process and relevant physical variables cannot all be controlled in
any given experimental procedure, hence the reproducibility of experimental
results is not high. Different experimental procedures for measuring lateral
plume spread may have different strengths and weaknesses. Since the elici-
tation did not specify an experimental procedure, the values used to score
calibration might be contaminated by a measurement variability which the
experts could not take into account. It is assumed throughout that the dis-
tribution of measurement variability is known and is independent of other
measurement variabilities and elicited quantities.

Let the observed variables be Z = (Z1, . . . , Zn) and Y = (Y1, . . . , Yn)
the elicitation variable, which are related via

Zj = Yj + εj . (3.2)

The measurement variability εj is independent of εj∗ (j �= j∗) and indepen-
dent of the observed and elicitation variables. Because of physical consider-
ations it could be that the observed variables may take positive values only.
If the additive model 3.2 yield negative values, it will be replaced by the
multiplicative version

Zj = Yj εj . (3.3)
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Taking the logarithm of multiplicative model 3.3 results in an additive model
among the logarithms of the random variables;

log(Zj) = log(Yj) + log(εj). (3.4)

Roughly, scoring calibration taking account of measurement variability
involves 2 steps

Step 1 : The distribution of Zj is obtained by folding the measurement
variability εj into the distribution of Yj , via model 3.2 or 3.4.

Step 2 : Determination of the calibration score based on the distribution
of Zj .

3.1 Step 1: The distribution of Zj

If the entire distribution function for Yj is available and the distribution of
εj is known and independent of Yj , then the distribution for each expert for
Zj is computed by simply taking the convolution of the density functions fYj

and fεj
. However, it is assumed here that the entire distribution of Yj , and

consequently Zj , is not known. For reasons explained in Section 1.1, the
distribution with minimum relative information with respect to a certain
background distribution1 under the constraint that the 5%, 50% and 95%
quantiles agree with the expert’s assessments, is determined. The question
which remains to be answered is: should the minimum relative information
arguments be applied to elicitation variables Yj or to observed variables Zj?

The following numerical example illustrates the differences between the
application of minimum relative information arguments to either Yj or Zj .
The 5%, 50% and 95% quantile assessments for Y are y5 = 11.5, y50 = 13,
y95 = 14. Additionally the 0% and 100% quantile assessments were chosen
as y0 = 10 and y100 = 15. The vector of interquantile probabilities is

b = (0.05, 0.45, 0.45, 0.05)T . (3.5)

The measurement variability was chosen to be normal distributed on the
interval [-4,4], such that P (ε ≤ −4) = P (ε > 4) = 10−3, see Figure 3.2
(the method is not restricted to the measurement variability being normal
distributed).

In the next sections the methods of applying minimum relative informa-
tion arguments on Y and Z, referred to as Relinf Y and Relinf Z respec-
tively, are introduced and illustrated using an the above example. In the
implementation of the methods, discrete approximations of the respective
densities will be determined.

1Consideration for the choice of the appropriate background distribution are given in
Section 1.3.
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Figure 3.2: Probability density function of measurement variability ε on [-
4,4].

3.1.1 Relinf Y : Minimum relative information for Y

Determining the minimum relative information density function fY with
respect to background density fλ, under the constraint that the sum of
probabilities of realizations contained in the respective interquantile inter-
vals equals b, can be written as a CP problem. Let the primal formulation
of the CP problem be given by

minfY

∑NY

l=1 fY (yl) ln fY (yl)
fλ(yl)

s.t. AfY = b
(3.6)

The matrix A ∈ IR(K+1)×NY , with NY the number of discretization points
for Y . The i-th column of A consists of zeros, except on the entry which
corresponds to the interquantile interval in which yi is contained

al,i := 1Il
(yi) (3.7)

where Il is the l-th interquantile interval of Y . Corollary 1.2.2 of Section
1.2.2 stated that if

fY = fλ · exp(AT y − e). (3.8)

holds for some feasible primal solution fY and feasible dual solution y ∈
IRK+1, then fY is the optimal solution of primal formulation (3.6) and y the
optimal solution of the dual formulation of CP problem (3.6). The vector
e ∈ IRK+1 represents the unit vector of dimension K + 1.

In case the background density fλ is uniform, it can be seen easily that
fY (y1) = fY (y2) for all y1, y2 ∈ Il. Hence, fY is a piece-wise uniform
density, see Figure 3.3 (left), with NY = 500.

The final step is to convolute the densities of Y and ε to obtain the
density fZ of Z, see Figure 3.3 (right). The relative information of fZ with
respect to its background density fγ is equal to 6.94e-1.
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Figure 3.3: Relinf Y : probability density functions of Y and Z.

3.1.2 Relinf Z: Minimum relative information for Zj

Instead of applying the minimum relative information argument to Yj , it
may also be applied to Zj . Relinf Z determines the minimum relative infor-
mation distribution of Zj under the constraints that the sum of probabilities
of realizations contained in the respective interquantile intervals of Yj equals
b, and that the density of Z is the convolution of the densities of Yj and ε;

minfZ

∑NZ

l=1 fZ(zl) ln fZ(zl)
fγ(zl)

s.t. AfY = b
fZ(zl) =

∑NY

m=1 fY (ym) fε(zl − ym)1[−4,4](zl − ym)

(3.9)

where NZ represent the number of discretization points for Z. NLP prob-
lem 3.9 is also a convex programming problem2, for the same reasons as de-
scribed in Section 1.5 is optimization package MOSEK (www.mosek.com) has
been used. The example was calculated based on Relinf Z (NZ = NY = 500)
and resulted in a density of Z with a relative information value of 5.08e-1,
see Figure 3.4 (Right).

Note that the relative information value for the density of Z based on
Relinf Y is greater than based on Relinf Z. But the density of Y based
on Relinf Z is highly informative, see Figure 3.4 (Left). It seems that
minimizing the relative information of Z given the constraints, results in a
density of fY with probability on or close to the 0%, 5%, 95% and 100%
percentiles only.

3.1.3 Limiting behavior

In case of no measurement variability it is easy to see that the Relinf Y
and Relinf Z approaches are the same. Figure B.7 illustrates the effect

2The constraint describing the convolution may look non-linear, however fY is the
optimization variable and fε is known.
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Figure 3.4: Relinf Z: probability density functions of Y and Z.

on the densities of Z based on Relinf Y (left) and densities of Y (middle)
and Z (right) based on Relinf Z for different measurement variabilities. The
density for Y based on Relinf Y remains the same in all instances, see Figure
3.3. The numbers of discretization points are NY = NZ = 1000. The ‘wild’
behavior for ε ∈ [−0.01, 0.01] is due to the discretization.

3.2 Step 2: Scoring calibration based on Zj

The calibration score introduced at the beginning of the Chapter is de-
scribed in detail in [9], [13]. However, this calibration score is not capable
of dealing with measurement variability. In this section the calibration score
is generalized such that assessments can be scored with respect to sampling
distributions of variables rather than with individual values of the variables.

This section starts off with a more mathematical description of scoring
calibration with individual values and is followed by the description of the
extension which scores calibration using sampling distributions over the
values. Clearly, both scoring techniques can be used in combination with
Relinf Y and Relinf Z.

3.2.1 Scoring with individual values

For the purpose of illustration, suppose that for each elicitation variable Yj

(j = 1, . . . , n), the 5%, 50% and 95% quantiles are assessed using expert
judgment. The vector of interquantile probabilities b is given by Expression
3.5. Let I∗j,lj represent the k-th interquantile interval of Zj , such that the
probability of I∗j,lj is equal to the lj-th entry of b.

When observations/experimental results z∗ = (z∗1 , . . . , z∗n) are available,
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Figure 3.5: Probability density functions of Y and Z based on Relinf Y and
Relinf Z for various measurement variabilities ε.
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the sample distribution is

pz∗(n) := (pz∗,1(n), . . . , pz∗,4(n))

pz∗,k(n) =

∑n
i=1 1I∗

j,lj
(z∗j )

n
for lj = 1, . . . , 4.

Based on pz∗(n) and b, the value of R is calculated using Expression 3.1,
from which the calibration score is determined.

3.2.2 Scoring with sampling distributions

Given z∗ = (z∗1 , . . . , z∗n), let qj,lj denote the probability that the unobserved
yj falls in the k-th interquantile interval Ij,lj of Yj ; the conditional proba-
bility qj,lj can be written as

qj,lj = P (yj ∈ Ij,lj | Zj = z∗j ) =

=
∑

yj∈Ij,lj

pε(z∗j − yj) pYj
(yj)

pZj
(z∗j )

1Aε
(z∗j − yj) (3.10)

where Aε is the support of ε; a measurable set such that P (Aε) = 1. The
set of possible interquantile intervals for yj is a subset of {1, . . . , K + 1}.
In words, there may be many unobserved realizations yj from different in-
terquantile intervals Ij,lj which in combination with a possible value of
εj result in observation z∗j . The likelihood that unobserved realizations
yj ∈ Ij,lj in combination with the measurement variability result in z∗j is
given by qj,lj .

Let π = (π1, . . . , πn) be a vector of length n whose entries take values in
the set {1, . . . , K + 1}, i.e. πj := k if yj ∈ Ij,lj . Given (z∗1 , . . . , z∗n), let the
probability mass function of the sample distributions pπ, generated by all
possible interquantile interval combinations π, be proportional to

P (pπ) ∝
n∏

j=1

qj,πj
. (3.11)

Given the probability mass function of pπ, we compute UTR(π) from the
χ2 approximation as in the previous section, for n sufficiently large. The
calibration is obtained by computing the expected value over all possible
interquantile interval combinations π

E(UTR) =
∑

π

UTR(π)P (pπ). (3.12)

Theoretically, such computations may give rise to computational problems
on current platforms for problems involving a large number of observa-
tions/experimental results. However, the next section will list some results.
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3.3 Examples

In this section the methods for determining the distribution on Zj (i.e. Re-
linf Y and Relinf Z) and to score calibration are tested on two examples.
The first example is taken from the Joint CEC/USNRC Uncertainty Anal-
ysis [27] and the second example is taken from an expert judgment study
for an uncertainty analysis for the inundation probability conducted for the
Ministry of Transport, Public Works and Water Management [21].

3.3.1 Dispersion example

For this example the quantile assessments for the DM are given in Ap-
pendix F; the density of the DM has been constructed based on an equal
weighted combination of experts densities. In total 10 seed variable ques-
tions, i.e. questions for which the answers are known to the project staff
but not to the experts, are considered. The reader is referred to [27] for
descriptions of the experiments which measured the seed variables. Con-
sidering no measurement variability, the calibration score based on the DM
quantile assessments and measurements equaled 6.83e-1. This calibration
score will be compared to the calibration scores resulting from the possible
combinations of determining the distribution on Zj and scoring calibration.

Information on the measurement variability was specified by the author,
in terms of medians and error factor EF95

3. Instead of considering one
measurement variability, three measurement variabilities were considered;
the median values were fixed but the error factor EF95 was multiplied by c,
the value of c considered are 1, 1.5 and 2. The multiplicative model 3.3 was
used to avoid negative realizations of Zj , except for question B-5-600 sig-y
for which the additive version was used. The number of discretization points
are NY = NZ = 1000. In general, the distributions for the Zj ’s obtained
from Relinf Y are ‘less informative/more dispersed’ than the distributions
obtained from Relinf Z, see Table 3.1 for the relative information values
and Table 3.2 for the assessments for c = 1, where Y represents the DM
assessments.

Figure 3.6 presents the densities of Y and Z for seed variable question
B-1-220 chi/Q for c = 1. Note that the probability density function for Y
was determined relative to a log-uniform background distribution.

Looking closer at Table 3.2, some counter intuitive results surface; by
‘folding’ the measurement variability into the assessments intuitively one
would think that the resulting 5%-95% quantile interval of Relinf Y and
Relinf Z would contain the 5%-95% quantile interval of the original assess-
ments Y . This does not hold for most questions, especially the resulting
95% quantiles are smaller than the original 95% quantiles. At this moment

3The error factor EF95 is defined as EF95 :=
z95%
z50%

, where z50 and z95 are the median

and 95% quantiles of the distribution of Z, respectively.
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Seed variable Relinf Y Relinf Z
c = 1 2.84 2.52

B-1-220 chi/Q c = 1.5 3.48 3.17
c = 2 3.99 3.36
c = 1 1.34 1.28

B-1-315 chi/Q c = 1.5 1.88 1.57
c = 2 2.29 1.82
c = 1 2.58 2.48

B-2-220 chi/Q c = 1.5 3.29 2.99
c = 2 3.66 3.17
c = 1 1.53 1.47

B-2-315 chi/Q c = 1.5 2.23 1.95
c = 2 2.58 2.15
c = 1 1.13 1.09

B-3-300 chi/Q c = 1.5 1.85 1.60
c = 2 2.13 1.87
c = 1 1.02 9.84e-1

B-3-600 chi/Q c = 1.5 1.75 1.45
c = 2 2.07 1.72
c = 1 1.68 1.55

B-4-300 chi/Q c = 1.5 2.19 1.93
c = 2 2.73 2.44
c = 1 9.85e-1 9.41e-1

B-4-600 chi/Q c = 1.5 1.63 1.32
c = 2 2.18 1.78
c = 1 7.73e-1 6.83e-1

B-5-600 sig-y c = 1.5 7.55e-1 6.76e-1
c = 2 7.40e-1 6.52e-1
c = 1 5.56e-1 4.55e-1

B-5-600 sig-z c = 1.5 1.02 7.09e-1
c = 2 1.30 9.83e-1

Table 3.1: Dispersion example: overview of relative information values of
the p.d.f. of Z as determined using Relinf Y and Relinf Z.

no explanation has been found for this, but it may be due to the way of
discretization.

Based on the seed variable questions the calibration scores, based on
scoring with individual values (for this example the median values) and
sampling distributions, are given in Table 3.3 for B-1-220 chi/Q in case
c = 1.

The calibration scores in Table 3.3 for c = 1 are similar, which is not
surprising since the measurement variability in this case is not large (see
Table F.1); this will result in similar distributions for Y and Z (see Section
3.1.3), which in turn will result in similar calibration scores. Next the
measurement variability is changed; keeping the median values fixed, the
error factors EF95 are multiplied by c = 1.5 and c = 2. The results presented
in Table 3.3 show that the calibration scores with sampling distributions are
decreasing both for Relinf Y and Relinf Z. The rate is different for Relinf Y
than for Relinf Z; the difference between the calibration scores for c = 1.5
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Seed variable Method Quantile assessments for DM
y5% y50% y95%

Y 5.28e-7 3.46e-5 2.79e-4
B-1-220 chi/Q Relinf Y 4.19e-7 2.20e-5 2.77e-4

Relinf Z 3.14e-7 1.43e-5 2.00e-4
Y 3.31e-6 3.57e-5 1.60e-4

B-1-315 chi/Q Relinf Y 3.19e-6 3.43e-5 1.61e-4
Relinf Z 2.97e-6 3.21e-5 1.69e-4

Y 3.56e-7 4.31e-5 2.39e-4
B-2-220 chi/Q Relinf Y 3.33e-7 3.73e-5 2.40e-4

Relinf Z 2.94e-7 3.39e-5 2.32e-4
Y 2.10e-6 3.44e-5 1.55e-4

B-2-315 chi/Q Relinf Y 2.02e-6 3.29e-5 1.56e-4
Relinf Z 1.89e-6 3.09e-5 1.64e-4

Y 2.15e-6 1.62e-5 9.44e-5
B-3-300 chi/Q Relinf Y 2.10e-6 1.59e-5 9.41e-5

Relinf Z 2.01e-6 1.52e-5 9.17e-5
Y 1.05e-6 6.22e-6 4.95e-5

B-3-600 chi/Q Relinf Y 1.02e-6 6.11e-6 4.92e-5
Relinf Z 9.77e-7 5.82e-6 4.73e-5

Y 3.05e-6 5.15e-5 3.71e-4
B-4-300 chi/Q Relinf Y 2.80e-6 4.60e-5 3.67e-4

Relinf Z 2.37e-6 3.89e-5 3.25e-4
Y 5.30e-6 2.78e-5 1.85e-4

B-4-600 chi/Q Relinf Y 5.14e-6 2.72e-5 1.84e-4
Relinf Z 4.89e-6 2.58e-5 1.77e-4

Y 1.51e+1 3.85e+1 1.33e+2
B-5-600 sig-y Relinf Y 1.43e+1 3.86e+1 1.33e+2

Relinf Z 1.30e+1 4.07e+1 1.35e+2
Y 4.04 1.22e+1 2.91e+1

B-5-600 sig-z Relinf Y 5.46 1.93e+1 4.83e+1
Relinf Z 5.03 2.00e+1 5.66e+1

Table 3.2: Dispersion example: overview of quantiles for DM for the differ-
ent methods (c=1).

c ∗ EF95 Calibration score Y Relinf Y Relinf Z
c = 1 Scoring with median values 6.83e-1 6.83e-1 6.83e-1

Scoring with sampling distributions N/A 6.76e-1 6.83e-1
c = 1.5 Scoring with median values 6.83e-1 6.83e-1 6.83e-1

Scoring with sampling distributions N/A 4.17e-1 2.96e-1
c = 2 Scoring with median values 6.83e-1 6.83e-1 6.83e-1

Scoring with sampling distributions N/A 3.98e-1 1.56e-1

Table 3.3: Dispersion example: overview of calibration scores for B-1-220
chi/Q for different error factors EF95.

and c = 2 is 5% for Relinf Y and 47% for Relinf Z. A possible explanation
is that the support for unobserved variable Y remains the same for c = 1.5
and c = 2, however, the support of Z changes since it depends on the
measurement variability ε, see model 3.2. Additionally, the distributions
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Figure 3.6: Dispersion example: probability density functions of Y and Z
based on Relinf Y and Relinf Z for B-1-220 chi/Q (c=1).

for Z obtained via Relinf Z are more informative than Relinf Y , see Table
3.1. These factors will influence the calibration score.

At this moment it is difficult to draw general conclusions, however it
seems that the distributions obtained from Relinf Y are less sensitive to
scoring calibration with sampling distributions compared to Relinf Z. This
may be because the distributions obtained from Relinf Y are more ‘disperse’
than the distributions obtained from Relinf Z.

Table 3.4 gives an overview of interquantile intervals and conditional
probabilities qj,lj for c = 1, 1.5 and 2.

Since the measurement variability for c = 1 was small, it is observed
from Table 3.4 that the majority of the uncertain observations are contained
in a single interquantile interval, except B-1-220 chi/Q and B-3-600 chi/Q.
However, it is observed for c = 1.5 and c = 2 that the uncertain observations
may be contained in different interquantile intervals. Note the change in
conditional probabilities between c = 1.5 and c = 2; the qj,lj ’s for c = 2
are not as ‘peaked’ as for c = 1.5. This is in compliance with the intuition;
a small qj,lj for c = 1.5 gets larger for c = 2 since it is likely that more
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Seed variable Interquantile intervals and qj,lj for Relinf Y and Relinf Z

Relinf Y Relinf Z

c = 1
[I1,2, I1,3]

[1.60e-1, 8.40e-1]
I1,3

1

B-1-220 chi/Q c = 1.5
[I1,2, I1,3]

[8.84e-2, 9.12e-1]
I1,3

1

c = 2
[I1,2, I1,3]

[9.52e-2, 9.05e-1]
I1,3

1

c = 1
I2,3

1

I2,3

1

B-1-315 chi/Q c = 1.5
[I2,2, I2,3]

[4.45e-2, 9.56e-1]
I2,3

1

c = 2
[I2,2, I2,3, I2,4]

[7.18e-2, 9.28e-1, 3.50e-4]
[I2,3, I2.4]

[9.99e-1, 1.00e-3]

c = 1
I3,2

1

I3,2

1

B-2-220 chi/Q c = 1.5
[I3,2, I3,3]

[6.00e-2, 9.40e-1 ]
I3,3

1

c = 2
[I3,2, I3,3]

[4.70e-2, 9.53e-1 ]
I3,3

1

c = 1
I4,3

1

I4,3

1

B-2-315 chi/Q c = 1.5
[I4,2, I4,3]

[7.00e-3, 9.93e-1]
I4,3

1

c = 2
[I4,2, I4,3, I4,4]

[2.12e-2, 9.76e-1, 2.91e-3]
[I4,3, I4,4]

[9.88e-1, 1.20e-2]

c = 1
I5,3

1

I5,3

1

B-3-300 chi/Q c = 1.5
[I5,3, I5,4]

[9.92e-1, 8.00e-3]
[I5,3, I5,4]

[9.74e-1, 2.60e-2]

c = 2
[I5,2, I5,3, I5,4]

[1.39e-3, 9.55e-1, 4.40e-2]
[I5,3, I5,4]

[8.43e-1, 1.57e-1]

c = 1
[I6,3, I6,4]

[3.40e-2, 9.66e-1]
I6,4

1

B-3-600 chi/Q c = 1.5
[I6,3, I6,4]

[4.56e-1, 5.44e-1]
[I6,3, I6,4]

[4.80e-2, 9.52e-1]

c = 2
[I6,3, I6,4]

[5.49e-1, 4.51e-1]
[I6,3, I6,4]

[7.23e-1, 2.77e-1]

c = 1
I7,2

1

I7,2

1

B-4-300 chi/Q c = 1.5
[I7,2, I7,3]

[9.62e-1, 3.80e-2]
[I7,2, I7,3]

[5.81e-1, 4.19e-1]

c = 2
[I7,2, I7,3]

[7.94e-1, 2.06e-1]
[I7,2, I7,3]

[3.31e-1, 6.69e-1]

c = 1
I8,3

1

I8,3

1

B-4-600 chi/Q c = 1.5
[I8,2, I8,3]

[4.72e-2, 9.53e-1]
I8,3

1

c = 2
[I8,2, I8,3]

[1.39e-1, 8.61e-1]
[I8,2, I8,3]

[4.00e-3, 9.96e-1]

c = 1
I9,2

1

I9,2

1

B-5-600 sig-y c = 1.5
I9,2

1

I9,2

1

c = 2
I9,2

1

I9,2

1

c = 1
I10,2

1

I10,2

1

B-5-600 sig-z c = 1.5
[I10,1, I10,2, I10,3]

[1.00e-3, 9.17e-1, 8.20e-2]
[I10,2, I10,3]

[ 6.67e-1, 3.26e-1]

c = 2
[I10,1, I10,2, I10,3, I10,4]

[1.09e-2, 7.70e-1, 2.19e-1, 3.80e-4]
[I10,1, I10,2, I10,3]

[ 1.84e-3, 5.46e-1, 4.53e-1]

Table 3.4: Dispersion example: overview of interquantile intervals informa-
tion and conditional probabilities for c = 1, 1.5 and 2.
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realizations in Ij,lj will satisfy the indicator function in Expression 3.10,
likewise a large qj,lj is likely to get smaller.

3.3.2 Ministry of Transport, Public Works and Water
Management

The Public Works and Water Management example involves 8 seed vari-
able questions, for a detailed description see [21]. For this example multi-
ple observations/experimental results were available for each seed variable
questions, see Table F.2 for experimental results and information on mea-
surement variability distributions.

In total 17 experts were involved in [21]. Results for only 3 experts will
be presented: Expert 1, Expert 6 and Expert 10. The quantile assessments
of these experts are listed in Table F.3. From this table it is observed that
the assessments of Expert 1 express more confidence than the assessments
of Expert 6, Expert 10. The effect of folding measurement variability into
the distributions of Expert 1 is shown in Tables 3.5 and 3.6: the Y -rows give
the quantile assessments of the expert, the Relinf Y and Relinf Z rows give
the quantile assessments of Expert 1 when measurement variability is folded
in using the Relinf Y and Relinf Z approach, respectively. It is observed
that the majority of the 5%-95% quantile intervals of Relinf Y include the
5%-95% quantile intervals of Y (except for HS and TS) and the majority
of the 5%-95% quantile intervals of Relinf Z include the 5%-95% quantile
intervals of Relinf Y and Y (except for mod1 and mod2).

Seed variable Expert 1
Relinf Y Relinf Z

ZR 1.35 1.13
ZG 1.33 1.11
ZD 1.34 1.12
HS 9.77e-1 7.61e-1
TS 9.19e-1 7.75e-1
mod1 1.87 1.57
mod2 1.76 1.48
mod3 1.02 9.63e-1

Table 3.5: Public Works and Water Management example: overview of
relative information values for Relinf Y and Relinf Z for Expert 1.

Next, the use of the two techniques to score calibration of Section 3.2 is
explained.

Scoring with individual values

Suppose nj observations/experimental results are available for the j-th seed
variable question, then nj independent realizations of the j-th seed variable
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Seed variable Method Quantile assessments for Expert 1
y5% y25% y50% y75% y95%

Y 9.20e-1 1.03 1.10 1.17 1.28
ZR Relinf Y 8.38e-1 1.01 1.14 1.29 1.92

Relinf Z 8.06e-1 9.86e-1 1.13 1.32 2.57
Y 9.20e-1 1.03 1.10 1.17 1.28

ZG Relinf Y 7.96e-1 9.99e-1 1.16 1.36 1.96
Relinf Z 7.63e-1 9.80e-1 1.15 1.39 2.72

Y 9.20e-1 1.03 1.10 1.17 1.28
ZD Relinf Y 8.28e-1 1 1.14 1.31 1.92

Relinf Z 7.95e-1 9.86e-1 1.14 1.34 2.60
Y 6.50e-1 8.50e-1 1 1.20 1.50

HS Relinf Y 6.90e-1 9.13e-1 1.10 1.34 2.41
Relinf Z 6.29e-1 8.63e-1 1.14 1.49 2.91

Y 6.50e-1 8.50e-1 1 1.20 1.50
TS Relinf Y 6.94e-1 9.14e-1 1.10 1.34 2.41

Relinf Z 6.48e-1 8.75e-1 1.12 1.44 2.74
Y 1.00e-1 3.00e-1 5.00e-1 1 3

mod1 Relinf Y 8.46e-2 2.54e-1 5.02e-1 1.02 3.13
Relinf Z 6.26e-2 1.71e-1 3.87e-1 7.51e-1 2.96

Y 1 3 5 1.00e+1 3.00e+1
mod2 Relinf Y 8.62e-1 2.54 5 1.01e+1 3.10e+1

Relinf Z 6.41e-1 1.72 3.90 7.48 2.90e+1
Y 1.00e+1 3.00e+1 5.00e+1 1.00e+2 3.00e+2

mod3 Relinf Y 4.68 3.24e+1 5.12e+1 1.13e+2 3.20e+2
Relinf Z 3.08 3.36e+1 6.56e+1 1.56e+2 4.32e+2

Table 3.6: Public Works and Water Management example: overview of
quantiles for Expert 1 for the different methods.

will be available. In this way for each observation a copy of the seed variable
question can be associated and the calibration is scored with the nj observed
values. For example, if 10 and 15 observations are available for seed variable
question Y1 and Y2 respectively, then 10 copies of seed variable question Y1

will be generated and 15 copies for Y2. The 10 observations will be scored
against the 10 copies of Y1 and likewise the 15 observations will be scored
against the 15 copies of Y2. Hence, the calibration score can be considered
to be determined on 25 seed variable questions.

Table 3.7 gives the calibration scores for the 3 experts for different situa-
tions: the column headed by Y presents the calibration scores as determined
in [21], whereas the columns headed by Relinf Y and Relinf Z give the cal-
ibration scores when folding the measurement variability into the expert’s
assessment of elicitation variables Y . In total 47 seed variable questions
were generated. Looking at the calibration scores it is observed that the
ranking of experts under Relinf Y and Relinf Z has changed with respect
to the original ranking under Y ; Expert 1 (the confident expert) is ranked
first for Relinf Y and Relinf Z whereas he/she is ranked third for Y . Fur-
thermore, note the difference between calibration scores based on Relinf Y
and Relinf Z for Expert 6 and Expert 10.



104 Chapter 3

Experts Y Relinf Y Relinf Z
Expert 1 1.47e-5 2.69e-1 2.41e-1
Expert 6 3.41e-2 1.64e-6 4.37e-10
Expert 10 3.96e-1 2.06e-2 1.65e-5

Table 3.7: Public Works and Water Management example: overview of
calibration scores for 47 observations.

Scoring with sampling distributions

Suppose nj observations are available for the j-th seed variable question,
then a distribution is determined based on the observations which will repre-
sent the measurement variability. For example, suppose 10, 15 observations
are available for seed variable question Y1, Y2 respectively. Based on the 10
observations available for Y1 a distribution will be determined which will
represent the measurement variability, similarly based on the 15 observa-
tions for Y2 a measurement variability distribution will be determined. Note
that the number of seed variable questions remains the same.

Calibration scores are determined based on the original expert assess-
ments Y and based on Relinf Y and Relinf Z in combination with scoring
calibration with median values and with sampling distributions.

Experts Calibration scores Y Relinf Y Relinf Z
Expert 1 Scoring with median values 8.56e-2 8.56e-2 8.56e-2

Scoring with sampling distributions N/A 2.85e-1 2.42e-1
Expert 6 Scoring with median values 3.01e-1 3.01e-1 3.01e-1

Scoring with sampling distributions N/A 4.99e-1 3.93e-1
Expert 10 Scoring with median values 7.94e-1 7.94e-1 7.94e-1

Scoring with sampling distributions N/A 6.36e-1 3.98e-1

Table 3.8: Public Works and Water Management example: overview of
calibration scores for 8 seed variable questions.

The results in Table 3.8 when scoring with median values are identical
for Y , Relinf Y and Relinf Z. Hence, for this example no effect of ‘folding’
measurement variability into the expert assessments is observed when scor-
ing calibration with median values. Looking at the results for scoring with
sampling distributions, it is observed that the spread in calibration scores
among experts based on Relinf Z is less than the spread based on Relinf
Y ; based on Relinf Z the experts are almost equally weighted. The rank-
ing among experts under Y remains the same under Relinf Y and Relinf
Z. Furthermore the difference between the calibration scores for Expert 1
determined using the two calibration scores is noted; as mentioned the as-
sessments of Expert 1 were regarded as confident and this resulted in a low
calibration score (8.56e-2), however by folding in measurement variability
and take it into account when scoring calibration his/her calibration score
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has improved and is close to the calibration scores of the other experts. To
some extent the reverse holds for Expert 6 and Expert 10. This shows the
effect of taking measurement variability into account.

See Tables 3.9 for an overview of interquantile intervals and qj,lj when
scoring calibration with sampling distributions. See Tables F.5 and F.6 for
a similar overview of experts 6 and 10.

Scoring with individual values versus Scoring with sample distri-
butions

In scoring calibration, both scoring rules use the information on multiple
observations directly or indirectly. Scoring with individual values uses the
multiple observations directly to score calibration, whereas scoring calibra-
tion with sampling distributions, the observations are used to determine the
sampling distribution. Clearly the main difference between the two tech-
niques is the number of seed variable questions; the number of seed variable
questions was 47 for scoring with individual values and 8 for scoring with
sampling distributions. In order to compare the two techniques, the power
of the test 4 should be reduced such that the effective number of samples
taken from the sampling distributions equals the total number of seed vari-
able questions when scoring with individual values.

A disadvantage of scoring calibration with sampling distributions can
be the determination of the sampling distributions. For this example, the
number of observation/experimental results available for the seed variable
questions ranged from 3 to 8. Hence, it is questionable if a sampling distri-
bution should be determined based on 3 observations/experimental results.

3.4 Conclusion

At this moment it is very difficult to draw any final conclusions. However,
it is clear that taking measurement variability into account can make a
difference when scoring calibration.

In the dispersion example, the measurement variability ranged from
small to large. In case of a small measurement variability, all calibration

4In [14]: the power of a statistical test is the ability to distinguish between rival
hypotheses, and increases with the number of independent samples. Calibration power
may be chosen from the interval [0.1,1], and determines the effective number of samples.
Choosing 50% power means reducing the resolution of the significance test to that of a
test with half the number of samples.

Instead of calculating experts calibration with the formula

P (R > r) = 1 − χ2
K(2 n I(p|q))

the following formula is used:

P (R > r) = 1 − χ2
K(2Power n I(p|q))

where Power ∈ [0.1,1].
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Expert 1
Seed variable Interquantile intervals which may contain observation and qi,k

for Relinf Y and Relinf Z
Relinf Y

[I1,1, I1,2, I1,3, I1,4, I1,5, I1,6]
[1.13e-3, 1.08e-1, 2.68e-1, 3.41e-1, 2.72e-1, 9.61e-3]

ZR Relinf Z
[I1,2, I1,3, I1,4, I1,5]

[6.49e-2, 2.64e-1, 3.80e-1, 2.91e-1]
Relinf Y

[I2,1, I2,2, I2,3, I2,4, I2,5, I2,6]
[1.46e-3, 9.54e-2, 2.29e-1, 3.19e-1, 3.23e-1, 3.17e-2]

ZG Relinf Z
[I2,2, I2,3, I2,4, I2,5]

[6.42e-2, 2.20e-1, 3.30e-1, 3.86e-1]
Relinf Y

[I3,1, I3,2, I3,3, I3,4, I3,5, I3,6]
[1.31e-4, 3.86e-2, 1.59e-1, 3.11e-1, 4.35e-1, 5.63e-2]

ZD Relinf Z
[I3,2, I3,3, I3,4, I3,5, I3,6]

[1.43e-2, 1.16e-1, 2.58e-1, 6.09e-1, 2.41e-3]
Relinf Y

[I4,3, I4,4, I4,5]
[1.19e-1, 8.28e-1, 5.36e-2]

HS Relinf Z
[I4,4, I4,5]

[9.69e-1, 3.1e-2]
Relinf Y

[I5,3, I5,4]
[4.31e-1, 5.69e-1]

TS Relinf Z
[I5,3, I5,4]

[9.8e-2, 9.02e-1]
Relinf Y

[I6,2, I6,3, I6,4]
[1.50e-1, 7.66e-1, 8.41e-2]

mod1 Relinf Z
[I6,3, I6,4]

[7.53e-1, 2.47e-1]
Relinf Y

[I7,3, I7,4, I7,5]
[1.30e-1, 8.18e-1, 5.26e-2]

mod2 Relinf Z
[I7,4, I7,5]

[7.34e-1, 2.66e-1]
Relinf Y

I8,4

1

mod3 Relinf Z
I8,4

1

Table 3.9: Public Works and Water Management example: overview of
interquantile information for Expert 1.
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scores were similar. For larger measurement variabilities the effect between
scoring calibration with median values and sampling distributions was ob-
served. In the Public Works and Water Management example the effect
of measurement variability was also observed. The calibration score of the
expert, regarded as confident, increased by a few orders of magnitude and
the ranking of the expert calibration scores changed.

In conclusion, the effect of folding measurement variability into expert
assessments is apparent. However it is difficult at this stage to recommend
Relinf Y or Relinf Z in combination with the scoring calibration using in-
dividual values or sampling distributions. However, the difference between
the distribution of the (unobserved) variable Y from Relinf Y and Relinf Z
is very significant and in case of Relinf Z points a weakness of the relative
information principle. Furthermore, the observations/experimental results
available may be very scarce that it is questionable if an ‘appropriate’ sam-
pling distribution, reflecting measurement variability, can be determined.
These observations may be reasons to prefer Relinf Y above Relinf Z and
to score calibration with individual values above scoring it with sampling
distributions. However, more research needs to be done to give better rec-
ommendations.
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Chapter 4

Modeling Uncertainty

Enough real data will eventually prove that any physical model, with any
particular choice of model input parameters, will be incorrect and thus in-
consistent with reality. Usage of models in this way does not deal with the
uncertainty associated with the physical process. Hence, instead of devel-
oping physical models which produce predictions, it is better to focus on
developing models which are able to capture the uncertainty. The use of
mathematical models to capture uncertainty rather than to make predic-
tions requires experts and decision makers to think about these models in
new and different ways, see [38].

Modeling uncertainty is the topic of this chapter, with special attention
to the capture of uncertainty in acyclic compartmental models (ACMs). The
attention will be restricted to ACMs encountered in the Joint CEC/USNRC
Uncertainty Analysis and therefore some remarks/conclusions will not hold
in general. The type of ACMs addressed in this chapter may be char-
acterized as ACMs with constant transfer coefficients, for which very lit-
tle/imprecise data on the transfer coefficients are available and which can
be represented by a set of first order linear differential equations. The ACM
of the systemic retention of Sr in the human body is used to illustrate dif-
ferent concepts/features. Finally, since ACMs bear great resemblance to
influence diagrams, the relationship between them is investigated.

4.1 How to quantify uncertainties?

The Sr model of Figure 4.1 is a typical example of an ACM used by interna-
tional bodies charged with setting standards for radiation exposure for the
general public and for radiological workers [31]. The reader is referred to [2]
for a detailed description of this problem. This ACM is used to compute Sr
dose-coefficients for certain organs which express risk from being exposed
to Sr.

109
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Figure 4.1: Systemic retention of Sr: acyclic compartmental model.

The compartmental models discussed here make strong assumptions, in
particular,

1. The compartments and only these compartments are involved in the
transfer of material.

2. The rates of transfer from ‘source’-compartment to a ‘sink’-compartment
are proportional to the amount of material in the ‘source’-compartment,
and independent of all other physical variables.

The compartmental model itself is not derived from underlying physical
laws, nor can it be verified by direct observation. Most of the transfer
coefficients cannot be measured directly by experiments. The uncertainty
analyst is tasked with quantifying the uncertainty attending the use of such
models in a traceable and defensible way. If compartmental models were
derived from accepted physical laws, and if the transfer coefficients could
be measured, subject to measurement variability, then the quantification
of uncertainty would be straightforward. The transfer coefficients would
be regarded as drawn from a sampling distribution reflecting measurement
variability and the uncertainty attending the use of such models would be
obtained by propagating the sampling distribution through the model.

The above remarks make it clear that this straightforward method of
quantifying uncertainty is not available for compartmental models. The
method by which these models are chosen and quantified cannot form the
basis of a quantification of uncertainty. Indeed, no generic method was
encountered for choosing and subsequently quantifying such models. The
type of arguments leading to a choice of a given model are peculiar to the
species in question. Once a compartmental model is chosen, the method for
determining the values of the transfer coefficients is also highly specific to
the problem at hand and involves a great deal of qualitative reasoning.

The absence of direct physical measurements of transfer coefficients
means that the uncertainty cannot be determined by objective statistical
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methods, rather the relevant uncertainty takes the form of subjective un-
certainty of experts. The uncertainty must be quantified using Structured
Expert Judgment Elicitation Methodology. At the same time, the lack of
validation for the models themselves entails that it is not possible to simply
ask the experts ‘express your uncertainty in transfer coefficient k25 of the
Sr compartmental model’, as no assumption should be made regarding the
model the experts use.

4.2 Uncertainty Capture

Physical models like ACMs are traditionally used with ‘best estimates’ of the
transfer coefficients to predict phenomena. When models cannot be inferred
from accepted laws and the values of the transfer coefficients cannot be mea-
sured, then the predictions of models are uncertain. Straightforward use of
the model with ‘best estimates’ does not give any picture of the uncertainty
attending model predictions. It is suggested here that these models can be
employed legitimately to capture uncertainty. This employment differs in
fundamental ways from straightforward prediction.

Capturing uncertainty in observable phenomena via a distribution over
transfer coefficient involves: (i) using Structured Expert Judgment Elici-
tation Methodology to quantify uncertainty on measurable quantities pre-
dicted by the model; (ii) performing probabilistic inversion to pull this
uncertainty back onto transfer coefficients of the model; (iii) comparing the
uncertainty pushed through the model with the uncertainty expressed by
the experts.

If there is an imperfect fit in Step (iii), the conclusion is not that the
model is wrong, rather the conclusion is that the expert’s uncertainty cannot
be captured via a distribution over its transfer coefficients. Here, three
reasons for this will be discussed.

Firstly, although experts believe that the model is ‘roughly right’, their
uncertainty may involve departures from the assumptions of the model.
Thus with regard to Figure 4.1, experts may believe recirculation may occur
from, for example compartments Cortical Bone to Blood: under certain
circumstances, a portion of material in the compartment Cortical Bone may
be transferred back to the compartment Blood. In this case the amount
transferred to the compartment Cortical Bone in a unit time would not be
proportional to the amount in the blood. It may be impossible to capture
the experts’ uncertainty via a distribution over the transfer coefficients of
Figure 4.1.

Secondly, although the experts each represent their uncertainties via
distributions over the parameters of the ICRP-67 model for Sr [31], it may
be impossible to represent their combined distribution in this way, taking
account of physical constraints. For example, suppose each expert believes
in the ACM of Figure 4.1 and believes that the assumption between random
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variables k12 and k13, for some constant tc,

k12 = tc ∗ k13 (4.1)

is correct, but they do not agree on the value of tc. If Equation 4.1 is
interpreted as a physical constraint with tc a constant, then it may be
impossible to capture the combined expert distribution via a distribution
over transfer coefficients satisfying Equation 4.1, even though this is possible
for each expert individually.

Thirdly, the mathematical processing itself may impose simplifications
which cause a discrepancy in Step (iii). From Table 4.1 it can be seen
that representing the distribution over transfer coefficients as a minimum
relative information distribution with respect to the product distribution
under marginal distribution and Spearman’s rank correlation constraints
introduces significant discrepancies; the assessments in the column DM are
the combined expert assessments based on equal weights and the informa-
tion in the column PREJUDICE is the push-forward of the distribution
on the transfer coefficients as determined by PREJUDICE. Finally the col-
umn headed by Marg. Rank contains information on the push-forward of
the distribution over transfer coefficients represented as a minimum rela-
tive information distribution with respect to the product distribution under
marginal distribution and Spearman’s rank correlation constraints.

Assuming that the fit in Step (iii) is good, the use of ACMs to cap-
ture uncertainty may involve features which are unfamiliar to experts and
decision makers alike, and which deserve special attention.

First of all, the distribution for the DM will not agree in general with
the distribution of any one expert. Typically, the uncertainty in the distri-
butions are obtained by linear pooling the uncertainties of several experts,
will be larger than the uncertainties of each individual expert.

Secondly, the distribution on transfer coefficients may involve strong
correlations, either positive or negative, which complicate the ways experts
traditionally think about the models. Thus experts tend to think of trans-
fer coefficients in terms of retention half-times; looking at Figure 4.1, if the
compartments Cortical Bone and ULI are considered in isolation, then the
time at which half of a unit deposit to Cortical Bone is transferred to ULI is
equal to log 2

k35
, and is called the retention half-time for Cortical Bone. Sim-

ilarly, log 2
k45

is the retention half-time for Liver. These expressions suggest
that k35 and k45 have a meaning independent of the model in which they are
considered. This is not the case however as may become glaringly evident
when k35 and k45 are assigned distributions as given in Table 1.8 under the
columns Run A, Run B and Extension. Note that from Tables 1.9 through
1.11 these variables have a relatively strong positive correlation. A ‘repre-
sentative value’ for k35 (e.g. the median) together with a ‘representative
value’ for k45 may not yield representative values for simple functions of
(k35, k45). Consider the following simple example: X and Y are uniformly
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Time Skel+Liver
DM PREJUDICE Marg. Rank

5% 1.70e-1 1.30e-1 1.20e-1
1 day 50% 3.24e-1 3.24e-1 3.10e-1

95% 5.76e-1 5.76e-1 5.30e-1
5% 1.17e-1 1.17e-1 1.10e-1

1 week 50% 2.29e-1 2.29e-1 2.60e-1
95% 4.76e-1 4.76e-1 5.50e-1
5% 1.04e-1 1.04e-1 5.80e-2

1 month 50% 2.11e-1 2.11e-1 2.00e-1
95% 3.51e-1 3.51e-1 4.90e-1
5% 6.74e-2 6.65e-2 1.10e-2

1 year 50% 1.38e-1 1.38e-1 1.80e-1
95% 2.43e-1 2.43e-1 4.30e-1
5% 1.81e-2 1.80e-2 4.80e-3

10 years 50% 6.45e-2 6.45e-2 1.10e-1
95% 1.37e-1 1.37e-1 2.50e-1
5% 1.11e-3 1.10e-3 2.10e-4

50 years 50% 1.85e-2 1.85e-2 1.30e-2
95% 8.88e-2 8.87e-2 7.40e-2

Time Skel
Skel+Liver

DM Pred. Marg. Rank
5% 8.46e-1 8.45e-1 7.70e-1

1 day 50% 9.56e-1 9.56e-1 9.80e-1
95% 9.98e-1 9.98e-1 9.99e-1
5% 8.22e-1 8.20e-1 6.70e-1

1 week 50% 9.57e-1 9.56e-1 9.70e-1
95% 9.98e-1 9.98e-1 9.98e-1
5% 8.51e-1 8.16e-1 8.50e-1

1 month 50% 9.84e-1 9.56e-1 9.58e-1
95% 9.99e-1 9.98e-1 9.99e-1
5% 7.70e-1 7.70e-1 7.70e-1

1 year 50% 9.94e-1 9.60e-1 9.60e-1
95% 9.99e-1 9.98e-1 9.99e-1
5% 6.79e-1 6.77e-1 6.89e-1

10 years 50% 9.95e-1 9.87e-1 9.79e-1
95% 9.99e-1 9.99e-1 9.99e-1
5% 6.39e-1 6.40e-1 6.40e-1

50 years 50% 9.96e-1 9.90e-1 9.90e-1
95% 9.99e-1 9.99e-1 9.99e-1

Table 4.1: Systemic retention of Sr: Quantile information comparison of
distributions of DM vs. push-forward distributions based on PREJUDICE
and marginal distributions and Spearman’s rank correlation matrix.

distributed on [0,2] and completely negative correlated, so that Y = 2−X.
The median of X and Y is 1. Hence the product of the medians is 1, but 1
is also the maximum of XY ; in other words the product of the medians is
not the median of the product.

And finally, if uncertainty over observable phenomena can be captured
via a distribution over transfer coefficients, then this can in general be cap-
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tured in more than one way. In other words, if the probabilistic inverse of a
distribution over observables exists, then it is generally not unique; two un-
certainty analysts using different search algorithms, different heuristics and
a measure other than the relative information measure might come up with
different distributions over the transfer coefficients in Figure 4.1, both of
them adequately reproducing the uncertainty over observable phenomena.

4.3 ACMs and influence diagrams

The complexity of some compartmental models is sometimes formidable.
This necessitated the development of new techniques to enable tractable
probabilistic inversion. Influence diagrams are helpful in extracting condi-
tional dependency structures embedded in ACMs. The main assumption
linking ACMs to influence diagrams is that functional conditional inde-
pendence entails statistical conditional independence. At this moment no
numerical results are available, however the technique will be illustrated
qualitatively.

4.3.1 Example

Consider acyclic compartmental model ACM-I as shown in Figure 4.2.
ACM-I will be used to illustrate the different steps which led to the new
solution scheme.

1

2 3

4

k12 k13

k24 k34

Figure 4.2: Acyclic compartmental model ACM-I.

For ACM-I, the target variables are the transfer coefficients kij which
describe the movement of material from compartment i to compartment j,
and which is considered to be constant within a short time period. Based on
Figure 4.2, a set of first order linear differential equations can be constructed
which, with the appropriate initial conditions, fully specifies the movement
between compartments. Let mi(t) represent the amount of material con-
tained in compartment i at time t, furthermore let k = (k12, . . . , k34) and Fk

represent the distribution on k. The aim is to determine Fk. Note that the
uncertain quantities in Figure 4.2 are m1(t), . . . ,m4(t) and k12, . . . , k34. As
explained before, almost all transfer coefficients do not satisfy the criteria



Modeling uncertainty 115

which an elicitation variable has to satisfy, and therefore in many cases the
elicitation variables will be formulated on the amount of material retained
at different times in various compartments.

Like influence diagrams, ACMs are directed acyclic graphs, but ACMs
are not influence diagrams. For example, if ACM-I were an influence dia-
gram the following statement would be true (⊥ denotes statistical indepen-
dence).

m2(t) ⊥ m3(t) given m1(t)

However, based on the equations describing ACM-I it is easy to see this
statement is false. Briefly, the relevant equations for compartments 1, 2 and
3 are, starting at t = 0 with a unit deposit in compartment 1:

m1(t) = e−(k12+k13) t (4.2)

m2(t) = k12
e−k24 t − e−(k12+k13) t

k12 + k13 − k24
(4.3)

m3(t) = k13
e−k34 t − e−(k12+k13) t

k12 + k13 − k34
. (4.4)

Since the equations describing m2(t) and m3(t) are not functionally inde-
pendent given m1(t), they cannot be statistically conditional independent;
any choice of k12 fully specifies k13, because the sum k12 + k13 is given.

However, for fixed t0, t1 > 0 it follows from Equations 4.2,. . .,4.4 that
m2(t)
m2(t0)

and m3(t)
m3(t1)

given m1(t) are functionally independent. Assuming that
functional conditional independence entails statistical conditional indepen-
dence, the conditional independence statement among elicitation variables
can be formulated

m2(t)
m2(t0)

⊥ m3(t)
m3(t1)

given m1(t).

Proposition 4.3.1 relates the conditional independence statement among
elicitation variables to a conditional independence statement among target
variables.

Proposition 4.3.1. Considering compartmental model ACM-I. For all t0, t1 >
0 (though fixed), the conditional independence statement among elicitation
variables

m2(t)
m2(t0)

⊥ m3(t)
m3(t1)

given m1(t) for all t

implies the conditional independence statement among target variables

k24 ⊥ k34 given k12 + k13.
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Proof: It suffices to show the existence of monotone mappings f and g,
such that k24 = f−1

(
m2(t)
m2(t0)

)
and k34 = g−1

(
m3(t)
m3(t1)

)
, respectively. Hence

it is sufficient to prove that the derivatives of m2(t)
m2(t0)

with respect to k24 and
m3(t)
m3(t1)

with respect to k34 are either strictly positive or negative.
The proof will focus on showing strict positivity for the derivative for

m2(t)
m2(t0)

with respect to k24 only, since the same line of reasoning can be

applied for showing strict positivity or negativity for the derivative for m3(t)
m3(t1)

with respect to k34.
Since the denominator of d

dk24

(
m2(t)
m2(t0)

)
is always positive, the attention

is focused on the numerator. Let α = e−k24 and β = e−(k12+k13)

α , then the

numerator of d
dk24

(
m2(t)
m2(t0)

)
can be written as

d

dk24

(
m2(t)
m2(t0)

)
numerator

= αt0+t
(
(t0 − t) −

(
t0(β)t − t(β)t0

))
(4.5)

Because of d
dk24

(
m2(t)
m2(t0)

)
numerator

= − d
dk24

(
m2(t0)
m2(t)

)
numerator

, the case t0 > t

is considered only. Since β = 1 causes the numerator of Equation 4.3 to be
zero, it will not be considered 1.

It will be shown that d
dk24

(
m2(t)
m2(t0)

)
> 0 for all β > 0, β �= 1. Since

αt0+t > 0 always holds, it suffices to show

h(β) := (t0 − t) −
(
t0β

t − tβt0
)

> 0.

Write

h(β) = (t0 − t) − (t0 exp(t log β) − t exp(t0 log β))

and take the derivative dh(β)
dk24

:

dh(β)
dk24

= − t0 t

β
βt +

t0 t

β
βt0

=
t0 t

β
βt

(
βt0−t − 1

)
. (4.6)

Since t0 − t > 0, it can be concluded from Equation 4.6 that if β > 1 then
dh(β)
dk24

(β) > 0 and if β < 1 then dh(β)
dk24

(β) < 0. This result in combination
with h(1) = 0, it is concluded that h(β) > 0 for all β > 0, β �= 1.

Since the derivative d
dk24

(
m2(t)
m2(t0)

)
attains strictly positive values in case

β �= 1, a mapping f exists such that k24 = f−1
(

m2(t)
m2(t0)

)
. The above

1If β = 1 it means that the rate with which material is exiting box 1, k12 + k13, is
equal to the rate with which the material is leaving box 2, k24. This situation is regarded
as non-realistic.
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analysis can be performed on m3(t)
m3(t1)

as well in order to prove the existence

of a mapping g such that k34 = g−1
(

m3(t)
m3(t1)

)
. The existence of f and g

enable us to formulate the conditional independence statements among the
target variables

k24 ⊥ k34 given k12 + k13.

�

Proposition 4.3.1 leads to relating ACMs and influence diagrams. The
influence diagram of compartmental model ACM-I is given in Figure 4.3.

k12, k13

k24 k34

Figure 4.3: The influence diagram of ACM-I.

The influence diagram of ACM-I can be used to infer conditional inde-
pendence statements among the target variables k. From Figure 4.3, it is
easy to see conditional independence between (sets of) transfer coefficients.
Using these conditional independence relationships, Fk can be written as

Fk = Fk24|k12,k13 Fk34|k12,k13 Fk12,k13 (4.7)

By making use of the conditional independence embedded in the ACM the
original problem of determining a four-dimensional distribution is reduced
to determining 2 three-dimensional distributions and one two-dimensional
problem. The conditional independence statements are helpful in reducing
the dimension of the original probabilistic inversion problem.

In case of ACM-I, the following solution scheme is suggested for deter-
mining the distribution on k:

Step 1 Construct the influence diagram of ACM-I.

Step 2 Determine distribution Fk12,k13 .

Step 3 Determine distribution Fk24,k12,k13 with marginal Fk12,k13 .

Step 4 Determine distribution Fk34,k12,k13 with marginal Fk12,k13 .

Step 5 Combine the distributions Fk12,k13 , Fk24,k12,k13 and Fk34,k12,k13 to
obtain Fk.
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It is recommended to determine the distributions in Step 2 through Step
4 using the iterative version of PREJUDICE as described in Section 1.4.

4.3.2 Systemic retention of Pu in the human body

The ACM given in Figure 4.4 describes the systemic retention of Pu in the
human body and was encountered in the Internal Dosimetry Panel of the
Joint CEC/USNRC Uncertainty Analysis [28]. For a detailed description

1

2 3 4

6 7 8 9

b f

k1b k1f

k12 k13 k14

k26 k27
k38 k39

k7b k7fk8b k8f k4b

k4f

k67 k98

Blood

TrabecularTrabecular

Trabecular

MarrowMarrow VolumeVolume

SurfaceSurface
Liver

Cortical Cortical

Cortical

U.L.I.Bladder

Figure 4.4: Systemic retention of Pu: acyclic compartmental model.

on this probabilistic inversion problem, see [2]. This ACM was simplified
even more by assuming that the transfer coefficient to the Bladder can be
written as

kib = UF pu ∗ kif with i ∈ {1, 4, 7, 8} (4.8)

where UFpu represents the ‘Bladder to ULI’-ratio for PU. Hence, the tar-
get variable space of the probabilistic inversion problem for the systemic
retention in the Human Body consists of 13 dimensions.

Using Proposition 4.3.1 the influence diagram based on Figure 4.4 is
given in Figure 4.5. Based on this influence diagram the distribution Fkpu

can be written as

Fkpu = Fk26,k27,k67,k7f |k12,k13,k14,k1f
Fk38,k39,k98,k8f |k12,k13,k14,k1f

Fk12,k13,k14,k1f ,k4f

Note that the original problem of determining a distribution on 13 target
variables has been reduced to finding two 8 dimensional problems and one 5
dimensional problem. The solution scheme based on the influence diagram,
would be similar to the solution scheme as presented for the example.
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k12, k13, k14, k1f , k4f

k26, k27, k67, k7f k38, k39, k98, k8f

Figure 4.5: The influence diagram of Pu-model.

4.4 Cyclic Compartmental Models

Compartmental models are widely used in different fields. Most of these
compartmental models are not acyclic, they include recirculation processes.
In performing an uncertainty analysis, the aim is not to predict the amount
of a quantity in different compartments, but to predict the uncertainty in
these amounts. By definition, models are simplified representations of real-
ity, hence it may be that an acyclic compartmental model may predict the
uncertainty as well as a cyclic compartmental model. Hence, in perform-
ing uncertainty analysis on compartmental models it may be worthwhile
to explore the possibility to perform the uncertainty analysis on an acyclic
compartmental model closely related to the original cyclic compartmental
model.

4.5 Implications to Methodology

Set in an expert judgment context, the relation between acyclic compart-
mental models and influence diagrams will determine the structuring of
questioning to a large extent. It could very well determine the choice of
elicitation variables as well. However, it should not be the driving force.
The driving force in determining elicitation variables should be the extent
to which the elicitation variable satisfies the criteria of being potentially
observable. Recall that under the Structured Expert Judgment Elicitation
Methodology, the experts are selected, among other issues, to allow for a
diversity of viewpoints. A consequence of this selection procedure could be
that some experts use different models. Designing the elicitation solely on
the influence diagram of the ACM could result in elicitation questions which
are specific for the ACM. This approach may lead to a situation in which
the expert doesn’t feel comfortable; he is being queried on specific model
quantities which are not familiar to him. In performing an expert judgment
study, situations in which the expert feels uncomfortable have to be avoided
at any time.

For these reasons, the uncertainty analyst has to design the elicitation
in such a way that he obtains information on quantities which can be con-
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sidered as potentially measurable and model independent, and such that he
can use the information in all steps of the solution scheme.

4.6 Conclusions

The use of models to capture uncertainty involves mathematical and concep-
tual problems. Experts and decision makers need to consider what purpose
a model serves. If enough experimental data are available, any model can
be qualified, with any particular choice of model input parameters, as in-
correct. A more relevant question is to investigate the extent to which a
model is able to capture the uncertainty associated.

In performing an uncertainty analysis over a model, the first question
an uncertainty analyst should answer is to what extent the model can be
simplified and still capture the uncertainty. Unless the uncertainty analyst
is a competent modeler, this task should performed in close cooperation
with users/developers of the model on which the uncertainty analysis will
be conducted. The uncertainty analysis will then be performed on the sim-
plified model. In this chapter the attention is focused on ACMs; two ACMs
were used to illustrate the construction of a simplified model. In case the
simplified model requires probabilistic inversion, the current probabilistic
inversion techniques cannot handle models much larger than the compart-
mental model describing the systemic retention of Pu in the human body, see
Figure 4.4. Future research will focus on developing new solution algorithms
(like the relationship between acyclic compartmental models and influence
diagrams) and new heuristics for dealing with more complex models. To
date the choice of elicitation variables has been driven by the Structured
Expert Judgment Elicitation Methodology and model, but in the future may
be driven also by specific solution schemes. However, elicitation variables
must be always familiar quantities to the experts, model independent and
their number must remain relatively small.



Chapter 5

Conclusions

The aim of this thesis has been the development of new mathematical tech-
niques which support the Structured Expert Judgment Elicitation Method-
ology. The mathematical techniques Probabilistic Inversion and the elicita-
tion of dependencies have been successfully applied in the Joint CEC/USNRC
Uncertainty Analysis, [19] and [21], whereas more research is needed on the
scoring of calibration when confronted with measurement variability and
the effect of the relationship between acyclic compartmental models and
influence diagrams. Results for the latter 2 research areas are preliminary
at this stage, however encouraging and promising.

The reader is referred to the conclusions section at the end of each chap-
ter for conclusions for the respective chapters. Here possible improvements
and connections between the different subjects will be discussed.

Probabilistic inversion

It is common that given a model and some experimental results, values
for model input parameters are sought which would minimize the Sum of
Squares distance between model outcome and experimental results. Prob-
abilistic inversion can be seen as an extension of this approach; the exper-
imental results are considered uncertain, which results in a distribution on
the model input parameters.

A quote concerning the use of probabilistic inversion is given in Chapter
7 of [19]:

”..probabilistic inversion is described as a powerful tool to quan-
titatively verify whether the selected model refinement is ade-
quate in view of uncertainty in the process, which the model
aims to describe. However it is costly in terms of computation
time and in its current form it requires a skilled operator. Hence
the technique is not suitable in the context of design practice.”

121
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The quote is valid, however in [19] the version of PREJUDICE was used
in which every sample is an optimization variable was used. At the time
neither the iterative and/or efficient version of PREJUDICE were avail-
able. The efficient version of PREJUDICE requires less computation time,
however probabilistic inversion remains a time consuming task. If models
of similar complexity as the dispersion coefficient example (with a relative
small number of target variables) are used in the design practice, then prob-
abilistic inversion is suitable. If the computer implementation of PREJU-
DICE is done professionally, then solving the dispersion coefficient example
using the iterative, efficient version of PREJUDICE can be done within 30
minutes.

Another point of criticism in Section 5.9 of [19] concerns the generation
of physically acceptable scenarios. For example, in case of the dispersion
coefficient example for stability class C the scenario

y = (33, 64.8, 175, 448, 8250) (5.1)

is physically acceptable. At first glance this scenario may seem reasonable;
the lateral plume spreads are increasing with down wind distance. However
it consists of the 5%-iles for 500 m. through 10 km and the 95%-ile of
30 km. This means that within stability class C, plumes exists which are
narrow up to 10 km and then expand dramatically up to 30 km. It may
be questioned whether scenarios with similar extreme behavior should be
included in the set of potentially observable scenarios, hence the potentially
observable scenarios should be checked to what extent they are realistic. A
way to reduce the number of extreme scenarios is to account for dependence
among the different elicitation variables. So far this has not been done, but
it is not difficult to imagine, that if a strong positive correlation would have
been specified among the lateral plume spreads at the down wind distances,
scenario 5.1 could not occur.

Currently the implementation of Probabilistic inversion requires an inte-
rior point method in order to determine the minimum relative information
distribution on the target variables, however in [8] a procedure based on the
Iterative Proportional Fitting (IPF) procedure has been developed, which
converges to the maximum entropy distribution if the PI problem formu-
lation is feasible. See [15],[46] for details on iterative proportional fitting
procedures. In case of infeasibility a ‘PARFUMized’ version of IPF can
be shown to converge to a distribution minimizing (see Expression 1.17 for
notation)

nH(µ̃k) −
n∑

j=1

H(µk|j) (5.2)

where H(µ) represents the entropy of µ.
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Dependencies

The chosen dependence elicitation technique (conditional probability), proved
to be easily understandable by the experts and they acknowledged its im-
portance. Understanding the dependence elicitation technique in terms of
frequency allows the experts to think of it in terms of scenarios. During an
elicitation session it is easy to assist the expert without explaining mathe-
matical concepts.

Currently, the treatment of dependencies inherent in the distribution
on the target variables obtained from probabilistic inversion in an uncer-
tainty analysis is considered to be crude. Usually the distribution over the
model input parameters used in an uncertainty analysis is represented as
marginal distributions with a rank correlation matrix. However, as seen
in Section 2.3 it may be difficult to capture the dependence structure re-
sulting from the probabilistic inversion in terms of rank correlations. It
seems counter-intuitive to spend a large portion of time in the determi-
nation of a high dimensional distribution and then summarize it crudely
by marginal distributions and a rank correlation matrix. A consequence is
that the push-forward results based on the marginal distributions and rank
correlation are not as good as the push-forward results of the high dimen-
sional distribution, see Table 2.7. It is recommended to use/develop more
advanced sampling techniques which are capable of sampling from a high
dimensional distributions. For example the Acceptance-Rejection sampling
scheme. A disadvantage of the Acceptance-Rejection sampling scheme is
that it is not optimal in case the difference between the largest and smallest
probability assigned to the sample vectors is large.

Calibration with uncertain observations

In [4] it is stated in the Sponsor Perspective that:

However, if an outlier interpretation persists, it is our firm belief
- in agreement with the SSHAC1 - that the approaches outlined
will allow for essential down-weighting of that interpretation.
This is preferable to the stiff adherence to an equal weighting
scheme, which can result in final seismic hazard being driven by
a single outlier input

Under the Structured Expert Judgment Elicitation Methodology all experts
are considered as sources of data. Based on seed variable questions the
expert’s capacity to quantify uncertainty is measured, which will be used to
assign weights to the experts. In this way experimental results determine
if an expert’s opinion should be down-weighted instead of the uncertainty
analyst, which may not be as objective.

1Senior Seismic Hazard Analysis Committee
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Project staff of the joint CEC/USNRC questioned to what extent mea-
surement variability might affect the capacity of experts to quantify the
uncertainty. Eventhough more research is needed it was concluded that
measurement variability makes a difference compared to not taking it into
account. Still the number, quality and variety of seed variable questions
and quantification of measurement variability are issues which have to be
addressed for each study involving expert judgment.

Modeling Uncertainty

The intention of this chapter was to show the effect and considerations on
how to reduce the complexity of a model before performing uncertainty
analysis. A special class of compartmental models were used to illustrate
this process. Based on compartmental models it may be possible to obtain a
acyclic version which describes the uncertainty associated with the physical
process as well. Since acyclic compartmental models and influence diagrams
show great resemblance, it may be investigated whether conditional inde-
pendence statements may be inferred to reduce the complexity even more.
It has been shown that by formulating elicitation questions which describe
the retention relative to the retention at a certain time point t, conditional
independence among elicitation variables leads to conditional independence
among target variables. The time point t to which the retention is consid-
ered may be tmax; the time point at which the maximum level of retention
is attained, in formula m(tmax) = maxt m(t).

Application of results

Finally, in performing an uncertainty analysis the mathematical techniques
developed in this thesis have to be used in the reverse order as presented.
Firstly, the model on which the uncertainty analysis will be performed has
to be investigated if it can be simplified using the considerations of Chapter
4. Based on the simplified model the target variables are identified, upon
which the elicitation variables will be based. If data are scarce, experts
are queried on the marginal distribution of the elicitation variables and the
dependence among them. Based on these results, the expert’s calibration is
scored using the techniques developed in Chapter 3, thus, if available, tak-
ing account of measurement variability. Based on the expert’s calibration
scores the marginal distributions and dependence information are aggre-
gated using Strategy 2 of Chapter 2. If necessary, probabilistic inversion is
performed on certain elicitation variables to obtain the distribution on tar-
get variables. The iterative, efficient version of PREJUDICE, introduced in
Chapter 1 taking account of dependence is recommended and in generating
the set of potentially observable scenarios the dependencies among the elic-
itation variables are used to avoid physically unrealistic scenarios. The final
result will be a joint distribution on all relevant model input parameters
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of the model, which will be propagated through the model using a certain
representation of the joint distribution or a more sophisticated sampling
scheme. The final step of the uncertainty analysis will be the analysis of the
model output and to investigate which uncertain model input parameters
influence the model output uncertainty the most.
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Appendix A

ε-neighborhood vs. Bin
combinations

In this appendix the sensitivity of ε for the ε-neighborhood sampling scheme
and the number of bins for the Bin-combination sampling scheme of PREJ-
UDICE is investigated.

For all examples discussed in this appendix the set of 50 model inversions
for Ay and By are equal to the model inversions of the dispersion coefficient
example of Section 1.2.3. The number of samples equals 900.

A.1 ε-neighborhood sampling scheme

In Step 1: ε-neighborhood of Section 1.2.2, an εi may be chosen for each
target variable Xi, i ∈ {1, . . . , m}. In this section, the choice of εi is the
same for all target variables Xi. The ε-neighborhood sampling scheme has
been applied to the dispersion coefficient example for ε = 0.05, 0.1, 0.25, 0.5.

Table A.1 gives information on the distribution on the target variables
for the different ε’s.

The column headed by ε = 0.05 contains N/A, because no distribution
on the propagated samples, which complies with the DM distribution, could
be determined, i.e. this PI problem was infeasible. The relative information
value increases when ε increases, which is in accordance with the intuitive
understanding of relative information; with respect to the same background
density, a density which is concentrated on an area A receives a smaller
relative information value compared to a density concentrated on an area
B, when A ⊂ B. No results on the push-forward distributions are given since
they agreed with the quantile information of DM distributions, as presented
in Table 1, perfectly. Figure A.1 compares the marginal distributions of Ay

and By graphically.
For particular choices of ε, certain regions of the target variables space
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ε-neighborhood
Quantile ε = 0.05 ε = 0.10 ε = 0.25 ε = 0.50

5% N/A 1.66e-2 1.54e-2 2.24e-2
Ay 50% N/A 5.35e-1 3.83e-1 4.19e-1

95% N/A 5.63e+1 5.61 3.48
5% N/A 5.84e-1 5.56e-1 5.87e-1

By 50% N/A 8.33e-1 8.75e-1 8.63e-1
95% N/A 1.27 1.27 1.19

ρAy,By N/A -9.57e-1 -9.74e-1 -8.99e-1

Relative Information N/A 3.76e-1 7.82e-1 1.44

Table A.1: Dispersion coefficient example (stability class C): quantile infor-
mation, Spearman’s rank correlations for different ε’s.
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Figure A.1: Dispersion coefficient example (stability class C): graphical com-
parison of marginal distributions of Ay (left) and By (right) for ε = 0.1 (--),
ε = 0.25 (–) and ε = 0.5 (- -).

will not be considered. Looking at Figure A.1, flat or nearly flat sections
of the distribution function may/can reflect no or very few samples are
contained in the corresponding interval of the target variable. This effect
is clear for target variable Ay for ε = 0.1 and becomes less as ε becomes
larger.

Loosely speaking, from Figure A.2 it can be observed that Mε=0.1 ⊂
Mε=0.25 ⊂ Mε=0.5. This observation is reflected by an increasing relative
information value for increasing ε.

In conclusion, small values of ε could result in unsuccessful probabilistic
inversion (see ε = 0.05). In case of successful probabilistic inversion larger
values of ε tend to result in more ‘smooth’ distribution function for the
target variables.
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Figure A.2: Dispersion coefficient example (stability class C): graphical com-
parison of domain M for ε = 0.1 (∗), ε = 0.25 (+) and ε = 0.5 (·).

A.2 Bin-combination sampling scheme

In Step 1: Bin combinations of Section 1.2.2, the number of bins Ci

considered for each target variable Xi may be different. Similar to the
ε-neighborhood sampling scheme, the number of bins considered for each
target variable were the same. The bin combination sampling scheme has
been applied to the dispersion coefficient example for C=10, 25, 50.

In general, the sizes of the bins will be different. At this moment, the
determination of the sizes of the bins is ad-hoc; the size of a bin is based
on grouping model inversions. Figure A.3 presents samples and bins for
C = 10 and C = 25.

Table A.2 contains information on the distribution on the target vari-
ables for the different C’s.

The relative information of the distribution on the target variables shows
a tendency to increase when the number of bins decrease. Figure A.4 com-
pares the marginal distributions for Ay and By graphically. Note the dif-
ference between the marginal distributions for Ay and By for the different
C’s. This difference may be due to MC=50 �⊂ MC=25 �⊂ MC=10 for the bin
combination sampling scheme, see Figure A.5.

In conclusion; at this moment the determination of the size of a bin is
done in an ad-hoc manner. It is shown that the bin combination sampling
scheme is sensitive to the size and number of bins for each target variable,
see Figure A.4.
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Figure A.3: Dispersion coefficient example (stability class C): graphical rep-
resentation of samples and bins for C = 10 (left) and C = 25 (right).

Bin combinations
Quantile C = 10 C = 25 C = 50

5% 5.72e-2 2.93e-2 1.32e-2
Ay 50% 7.12e-1 4.09e-1 3.71e-1

95% 5.32 7.77 1.17e+1
5% 5.46e-1 4.99e-1 4.43e-1

By 50% 8.17e-1 8.53e-1 8.66e-1
95% 1.11 1.24 1.46

ρAy,By -9.22e-1 -9.63e-1 -9.76e-1

Relative Information 7.23e-1 1.55e-1 2.06e-1

Table A.2: Dispersion coefficient example (stability class C): quantile infor-
mation, Spearman’s rank correlations for different bin combinations.

A.3 Conclusion

The differences between the two sampling scheme can be summarized as:
(i) using the ε-neighborhood sampling scheme, the sample regions1 depend
on the individual model inversions and ε, whereas in case of the bin com-
binations sampling scheme the sample regions depend on the spread of all
model inversions; (ii) for particular choices of ε’s, certain regions of the tar-
get variable space will not be considered, whereas they are considered using
the bin combinations sampling scheme.

It is recommended to use the ε-neighborhood sampling scheme instead
of the bin combination sampling scheme for two reasons:

1. The results on the distributions based on ε-neighborhood sampling
1By sample region, the Cartesian product of intervals, obtained from the sampling

schemes, in the target variable space is meant.
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Figure A.4: Dispersion coefficient example (stability class C): graphical com-
parison of marginal distributions of Ay (left) and By (right) for C = 10 (- -),
C = 25 (–) and C = 50 (--).
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Figure A.5: Dispersion coefficient example (stability class C): graphical com-
parison of domain M for C = 10 (∗), C = 25 (+) and C = 50 (·).

scheme (provided that the corresponding PI problem is feasible) sug-
gest they are less sensitive to the choice of ε compared to the dis-
tributions based on the bin combination sampling scheme, which are
regarded to be sensitive regarding the choice on the size and number
of bins.

2. The intuitive understanding of the ε-neighborhood sampling scheme
is easier compared to the bin combination solution scheme; the size of
the sample region for a model inversion is given by ε, whereas the size
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of sample regions in the bin-combination sampling scheme depends on
the spread of all model inversions. At this moment there is no rule on
how to select the ‘optimal’ size of bins for each target variable.
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Determination of M .

The crucial step in probabilistic inversion is the determination of domain M .
Since mapping T is not to be assumed invertible, the determination of M
is based on determining model inversions xy, for which the Sum of Squares
distance between the corresponding model reproducible observations and
potential observations is minimal, see Expression 1.19. The mapping T un-
der consideration may be very complex (non-linear, non-convex etc.), hence
the optimization routines used to minimize the Sum of Squares distance
may influence the determination of M .

The results in [2] have been derived using the minimax optimization
routine of the optimization toolbox of Matlab4.2c; at the time, the most
convenient optimization routine available. Since then new versions of Mat-
lab have been released with new optimization toolboxes, whose performance
is better than the optimization toolbox of Matlab4.2c. Besides using the
optimization routine lsqcurvefit of the Matlab5.3 version 11 optimization
toolbox, the Minos5 solver1 of GAMS (General Algebraic Modeling System)
was used.

Three problems from the Joint CEC/USNRC Uncertainty Analysis are
considered; the dispersion coefficient example taken from the Dispersion &
Deposition panel, lung morbidity from the Early Health Effects panel and
systemic retention of Sr in the human body from the Internal Dosimetry
panel. For each problem, for the same set of potentially observable scenarios,
the model inversions xy are determined twice; once using lsqcurvefit
and once using Minos5. Next, for both optimization routines the marginal
distributions and rank correlation matrices are determined and compared to
each other and to the results derived using Matlab 4.2c using the minimax
optimization routine.

1The Minos5 solver was chosen because it is considered to perform the best in case of
non-constraint nonlinear optimization problems.
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B.1 Dispersion coefficient example

For a description of the model, identification of target variables and formu-
lation of elicitation variables the reader is referred to the Introduction or
[2].

B.2 Results: Step 1

Based on the quantile information of the DM and physical considerations,
the set of potentially observable scenarios N was determined. Next 50
scenarios were selected randomly from N . Using lsqcurvefit and Minos5,
these 50 scenarios were used to determine model inversions Ay and By; the
starting values for Ay and By were the same for both optimization routines
for all scenarios. Figure B.1 presents the model inversions Ay and By as
determined using lsqcurvefit (+) and Minos5 (◦), for all scenarios; the
model inversions for both optimization routines are identical2.
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Figure B.1: Dispersion coefficient example (stability class C): model inver-
sions for 50 scenarios, lsqcurvefit (+) and Minos5 (◦).

Figure B.2 compares the Sum of Squares distances resulting from the
two optimization routines; every dot can be related to a scenario for which
the Sum of Squares distance has been calculated based on model inversions
determined using lsqcurvefit and Minos5.

2The symbol ⊕ corresponds to same model inversions for lsqcurvefit and Minos5.
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Figure B.2: Dispersion coefficient example (stability class C): Sum of
Squares distance comparison between lsqcurvefit and Minos5 for 50 sce-
narios.

B.2.1 Results: Step 2

From Figure B.1 it is observed that the model inversions for the 50 scenarios
are the same. Hence, the distribution on (Ay, By) based on lsqcurvefit
should be similar to the distribution based on Minos5. Table B.2.1 contains
quantile information and Spearman’s rank correlations of the distributions
on Ay and By based on 900 samples. Due to the small number of samples
there is some variation in the marginal distributions. The dispersion coeffi-
cient example was no probabilistic inversion problem itself for the Dispersion
& Deposition panel, it was part of a larger and more complex probabilistic
inversion problem see [2]; the information in the column minimax of Table
B.2.1 is based on 1.19e+5 samples. Comparing the marginal distributions
of Ay and By based on minimax to the two optimization routines, it is ob-
served that the marginal distributions for Ay and By based on minimax are
a little wider and Spearman’s rank correlation somewhat more negative.

A graphical comparison between distributions of Ay and By for the three
optimizing routines is given in Figure B.3: lsqcurvefit (- -), Minos5 (–)
and minimax (--).

Since the dispersion coefficient example involves two target variables
only, the domain M based on lsqcurvefit and Minos5 can be presented
graphically, see Figure B.4. It is observed that both domains are specified
roughly on the same region in the target variable space.

Table B.2.1 contains quantile information of the DM for the elicitation
variables, the push-forward distributions based on lsqcurvefit, Minos5
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Quantile lsqcurvefit Minos5 minimax

5% 2.24e-2 1.86e-2 1.68e-2
Ay 50% 4.19e-1 5.12e-1 2.39e-1

95% 3.48 4.57 1.08e+1
5% 5.87e-1 5.43e-1 4.67e-1

By 50% 8.63e-1 8.58e-1 9.08e-1
95% 1.19 1.22 1.24

ρAy,By -8.99e-1 -8.69e-1 -9.67e-1

Table B.1: Dispersion coefficient example (stability class C): quantile in-
formation and Spearman’s rank correlations on target variables for three
optimization routines.
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Figure B.3: Dispersion coefficient example: graphical display of distribution
of Ay (left), By (right). lsqcurvefit (- -), Minos5 (–) and minimax (--).

and minimax. The push-forward distributions based on lsqcurvefit and
Minos5 are based on 900 samples, whereas the push-forward distribution
based on minimax is determined using 1.19+5 samples. Even with a small
sample size of 900, the push-forward distributions based on lsqcurvefit
and Minos5 are considered to agree with the DM distributions rather well.
The push-forward distributions based on minimax agree with the DM dis-
tributions very well also.

B.2.2 Discussion of results

The influence of optimization routines in determining the domain M for the
dispersion coefficient example is considered to be very small. This proba-
bilistic inversion problem is qualified as simple, since the powerlaw function
can be transformed to a log-linear model. The model inversions for 50
scenarios were the same for both optimizing routines, which resulted in dis-
tributions on (Ay, By) being quite similar. Compared to the results used
in the uncertainty analysis of COSYMA, it was concluded that these re-
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Figure B.4: Dispersion coefficient example (stability class C): graphical com-
parison between domain M as determined using lsqcurvefit (+) and Mi-
nos5 (◦).

Distance σy(zi)
DM lsqcurvefit Minos5 minimax

5% 3.30e+1 3.38e+1 3.34e+1 3.30e+1
500 m. 50% 9.49e+1 9.55e+1 9.18e+1 9.49e+1

95% 1.95e+2 1.94e+2 1.94e+2 1.95e+2
5% 6.48e+1 6.57e+1 6.58e+1 6.48e+1

1 km. 50% 1.72e+2 1.74e+2 1.71e+2 1.72e+2
95% 3.46e+2 3.41e+2 3.44e+2 3.46e+2
5% 1.75e+2 1.77e+2 1.78e+2 1.75e+2

3 km. 50% 4.46e+2 4.53e+2 4.47e+2 4.46e+2
95% 1.04e+3 1.03e+3 1.03e+3 1.04e+3
5% 4.48e+2 4.49e+2 4.53e+2 4.48e+2

10 km. 50% 1.22e+3 1.26e+3 1.24e+3 1.22e+3
95% 3.37e+3 3.36e+3 3.33e+3 2.89e+3
5% 1.10e+3 1.11e+3 1.11e+3 1.10e+3

30 km. 50% 2.82e+3 2.83e+3 2.88e+3 2.82e+3
95% 8.25e+3 8.17e+3 8.16e+3 8.25e+3

Table B.2: Dispersion coefficient example (stability class C): quantile infor-
mation comparison between DM distributions vs. push-forward distributions
based on lsqcurvefit, Minos5 and minimax [m.].

sults are in-line with the results as presented in this section. Finally, the
push-forward distributions of all optimization routines agreed with the DM
distributions rather to very well.
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B.3 Lung morbidity

For a more detailed description on the probabilistic inversion problem for
lung morbidity, the reader is referred to [2].

B.3.1 Model

In case a population is exposed to an external gamma dose ED [Gy], re-
ceived with dose rate DR [Gy/hr], the percentage of the exposed population
which will suffer respiratory-functional morbidity, represented by RLung,MB,
is modeled in COSYMA3 as

RLung,MB = 1 − e
−

(
ln(2)

(
ED

D∞,Lung,MB+
D0,Lung,MB

DR

)νLung,MB
)

(B.1)

for ED ≥ ED thr,Lung and where D0,Lung,MB [Gy2/hr], D∞,Lung,MB [Gy]
and νLung,MB are the model parameters, and ED thr,Lung the threshold dose.
Note, model B.1 is non-linear and strictly increasing in ED .

B.3.2 Target variables & Elicitation variables

The target variables are (D0,Lung,MB,D∞,Lung,MB, νLung,MB). The target
variables could not serve as elicitation variables, as they are model depen-
dent and some are not physically observable. Instead, external gamma ray
doses ED i,j were elicited which would lead to i-% of the exposed population
to suffer respiratory-functional morbidity after receiving it with dose rate
j. The percentages of exposed population considered are i={10, 50, 90},
the dose rates [Gy/hr] considered are j={0.2, 1, 10, 100} and assumed to
be constant during the exposure period. The exposed population to suffer
from lung morbidity is assumed to consists of persons over 40 years old and
receiving supportive medical treatment.

B.3.3 Results: Step 1

Based on the quantile information of the DM and physical considerations
the set of potentially observable scenarios N was determined. The set N
for this problem consisted of many scenarios, a random selection of 2000
scenarios from N was taken. These 2000 scenarios were used to determine
model inversions for the target variables using lsqcurvefit and Minos5;
the starting values were the same for all scenarios for both optimization rou-
tines. Figure B.5 compares the model inversions for pairs of target variables
graphically, lsqcurvefit (+) and Minos5 (◦) 4. Like the dispersion coeffi-
cient example, the majority of the model inversions are the same, although
for certain scenarios lsqcurvefit tends to assign small values to D0,Lung,MB

3COSYMA is the acronym of the accident consequence code of the CEC.
4The symbol ⊕ corresponds to same model inversions for lsqcurvefit and Minos5.
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unlike Minos5. Figure B.9 shows graphically the Sum of Squares distances
for the 2000 scenarios resulting from lsqcurvefit and Minos5; every dot
can be related to a scenario for which the Sum of Squares distance has been
calculated based on model inversions determined using lsqcurvefit and
Minos5. The straight line in Figure B.6 shows where the Sum of Squares
distances of the optimization routines would be equal; for 74.1% of the sce-
narios the Sum of Squares distance using Minos5 was less than the Sum of
Squares distance using lsqcurvefit.
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Figure B.5: Lung morbidity (supportive medical treatment, persons over 40
years old): model inversions for pairs of target variables for 2000 scenarios,
lsqcurvefit (+) and Minos5 (◦).
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Figure B.6: Lung morbidity (supportive medical treatment, persons over 40
years old): Sum of Squares distance comparison between lsqcurvefit and
Minos5 for 2000 scenarios.
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B.3.4 Results: Step 2

The domains M , as determined using lsqcurvefit and Minos5, turned out
to be such that a distribution could be determined, based on all information
available on the elicitation variables. No distribution could be specified on
the domain, as determined using minimax, using all elicitation variables,
see [2]. Hence, a solution scheme based on reducing the dimension of the
observable space was constructed, see Appendix C. The solution scheme is
based on decomposing the probabilistic inversion problem using all elicita-
tion variables into probabilistic inversion problems of lower complexity, i.e.
the observable space associated with the probabilistic inversion problems
of lower complexity consists of a selection of elicitation variables. For each
problem of lower complexity a distribution on the target variables was deter-
mined, these distributions were combined to get an overall distribution on
the target variables. Table B.3 gives quantile information of the marginal
distributions on the target variables based on lsqcurvefit, Minos5 and
minimax.

Quantile lsqcurvefit Minos5 minimax

5% 9.93e-7 3.45e-4 5.51e-1
D0,Lung,MB 50% 7.54 7.52 7

95% 2.50e+1 2.45e+1 2.70e+1
5% 2.74 2.91 2.96

D∞,Lung,MB 50% 5.40 5.43 6.40
95% 7.53e+1 7.52e+1 5.82e+1
5% 1.85 1.88 3.04

νLung,MB 50% 4.08 4.18 6.40
95% 8.07 7.05 9.57

Table B.3: Lung morbidity (supportive medical treatment, persons over 40
years old): quantile information of marginal distributions for three opti-
mization routines.

D0,Lung,MB

D∞,Lung,MB

νLung,MB




1 −5.98e-1 1.86e-1

−5.98e-1 1 −5.30e-1

1.86e-1 −5.30e-1 1




Table B.4: Lung morbidity (supportive medical treatment, persons over 40
years old): Spearman’s rank correlation matrix among target variables using
lsqcurvefit.

Since the majority of the model inversions for lsqcurvefit and Mi-
nos5 were the same, the distribution on the domain should be similar too.
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D0,Lung,MB

D∞,Lung,MB

νLung,MB




1 −5.55e-1 1.53e-1

−5.55e-1 1 −5.73e-1

1.53e-1 −5.73e-1 1




Table B.5: Lung morbidity (supportive medical treatment, persons over 40
years old): Spearman’s rank correlation matrix among target variables using
Minos5.

D0,Lung,MB

D∞,Lung,MB

νLung,MB




1 2.83e-1 −3.73e-1

2.83e-1 1 −1.95e-1

−3.73e-1 1.95e-1 1




Table B.6: Lung morbidity (supportive medical treatment, persons over 40
years old): Spearman’s rank correlation matrix among target variables using
minimax.

This observation is supported by the results as presented in Tables B.3, B.4
and B.5; the marginal distributions and rank correlation matrices based on
lsqcurvefit and Minos5 are quite similar. The effect of random sampling
is less than in the dispersion coefficient example as the number of samples
equaled 5.00e+5. The results of minimax in Tables B.3 and B.6 are based
on 5.1e+4 samples. Compared to the lsqcurvefit and Minos5 results on
the marginal distributions, the results of minimax are somewhat different.
A large difference is identified in comparing the Spearman’s rank correla-
tion matrices. The reason could be due to the solution scheme which had
to be constructed for minimax. Figure B.7 compares the marginal distribu-
tions on the target variables as determined by the three optimization rou-
tines graphically: lsqcurvefit (- -), Minos5 (–) and minimax (--). Loosely
speaking, for D∞,Lung,MB the marginal distributions are not too different,
for D0,Lung,MB the marginal distribution based on minimax is considered to
be different below the 25%-level and above the 95%-level compared to the
marginal distributions based on lsqcurvefit and Minos5 and the marginal
distribution νLung,MB based on minimax is considered to be different from
the marginal distributions based on lsqcurvefit and Minos5.

The push-forward distributions of the three optimization routines are
compared to the DM distributions in Table B.7. It is concluded that the
push-forward distributions of lsqcurvefit and Minos5 resemble the DM
distributions very well. The push-forward distributions of minimax are con-



148 Appendix B

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D0,Lung,MB

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D∞,Lung,MB

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

νLung,MB

Figure B.7: Lung morbidity (supportive medical treatment, persons over
40 years old): graphical comparison of distribution of D0,Lung,MB (left),
D∞,Lung,MB (middle), νLung,MB (right); lsqcurvefit (- -), Minos5 (–) and
minimax (--).

sidered to resemble the DM distributions reasonably well; the differences
occur at the 5%-iles for low dose rates (0.2 and 1 Gy/hr) and the 95%-iles
for all dose-rates. Again, it is likely that these differences are due to the
solution scheme which had to be constructed for minimax.

B.3.5 Discussion of results

A comparison between lsqcurvefit and Minos5 was conducted for the
probabilistic inversion problem for lung morbidity. The lung morbidity
problem is regarded more ‘complicated’ than the dispersion coefficient exam-
ple; (i) the non-linear model could not be transformed into a linear model,
however it is strictly increasing in ED, (ii) the number of target variables
was considered to be small, but the amount of information available on the
elicitation variables was considered to be very large. The influence of the
optimization routines in determining the domain M for this problem turned
out to be insignificant. The domain M for both optimization routines were
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Quantile DM. lsqcurvefit Minos5 minimax

5% 1.12e+1 1.05e+1 1.02e+1 8.75
ED10,0.2 50% 3.10e+1 3.10e+1 3.10e+1 3.00e+1

95% 9.33e+1 9.33e+1 9.33e+1 1.22e+2
5% 1.34e+1 1.30e+1 1.43e+1 1.14e+1

ED50,0.2 50% 4.93e+1 4.93e+1 4.93e+1 4.50e+1
95% 1.49e+2 1.35e+2 1.35e+2 1.49e+2
5% 1.54e+1 1.65e+1 1.65e+1 1.36e+1

ED90,0.2 50% 6.64e+1 6.64e+1 6.64e+1 5.79e+1
95% 1.74e+2 1.74e+2 1.74e+2 2.40e+2
5% 6.85 6.71 5.69 4.43

ED10,1 50% 1.39e+1 1.39e+1 1.39e+1 1.21e+1
95% 6.05e+1 5.39e+1 5.04e+1 6.18e+1
5% 8.24 8.29 7.71 5.94

ED50,1 50% 1.79e+1 1.79e+1 1.79e+1 1.80e+1
95% 7.55e+1 7.55e+1 7.55e+1 7.58e+1
5% 9.56 1.01e+1 9.56 6.98

ED90,1 50% 2.13e+1 2.13e+1 2.13e+1 2.28e+1
95% 1.29e+2 1.29e+2 1.29e+2 9.04e+1
5% 3.00 2.92 3.00 2.43

ED10,10 50% 7.05 7.05 6.75 5.25
95% 6.04e+1 5.14e+1 5.33e+1 4.97e+1
5% 3.80 3.67 3.77 3.32

ED50,10 50% 8.80 8.80 8.80 7.42
95% 7.53e+1 7.53e+1 7.51e+1 6.03e+1
5% 4.36 4.35 4.36 4.02

ED90,10 50% 1.03e+1 1.03e+1 1.03e+1 9.50
95% 1.29e+2 1.29e+2 1.29e+2 7.30e+1
5% 2.13 2.13 2.13 2.15

ED10,100 50% 4.14 4.14 4.10 4.66
95% 6.04e+1 5.14e+1 5.33e+1 4.85e+1
5% 3.11 2.79 3.11 3.00

ED50,100 50% 5.49 5.49 5.49 6.48
95% 7.53e+1 7.53e+1 7.53e+1 5.94e+1
5% 3.73 3.70 3.73 3.73

ED90,100 50% 7.02 7.00 7.00 8.36
95% 1.29e+2 1.29e+2 1.29e+2 7.19e+1

Table B.7: Lung morbidity (supportive medical treatment, persons over 40
years old): quantile information of marginal distributions of elicitation vari-
ables [Gy].

almost identical, which resulted in similar distributions on the target vari-
ables with relative information values of 3.97 and 3.98 for lsqcurvefit
and Minos5 respectively. The information used in the uncertainty analysis
of COSYMA was determined using minimax. The probabilistic inversion
problem based on minimax turned out to be such that no distribution could
be determined using all information available on the elicitation variables. A
solution scheme was constructed which decomposed the problem into prob-
lems of lower complexity. A consequence of applying such a solution scheme
is that the push-forward distributions of the ‘overall’ distribution on the tar-
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get variables will resemble the DM distributions not to well. However, the
differences between the results for the marginal distributions on the tar-
get variables as determined using minimax and the marginal distributions
on the target variables as determined using lsqcurvefit and Minos5 were
regarded to be insignificant, furthermore the push-forward distributions of
minimax did resemble the DM distributions reasonably well. However, the
difference between the marginal distributions for νLung,MB and the lower
and upper percentiles of the marginal distributions for D0,Lung,MB was ac-
knowledged.

B.4 Systemic retention of Sr in the Human
body

For a more detailed description on the probabilistic inversion problem for
the systemic retention of Sr in the human body, the reader is referred to [2].

B.4.1 Compartmental model

Roughly, systemic retention of Sr in the human body in COSYMA is de-
scribed by the compartmental model shown in Figure B.8. The parameters
kij [1/d] are termed transfer coefficients and express the rate at which Sr
is transferred from compartment i to compartment j. This rate is assumed
to be constant within a short time interval. Based on this assumption and
Figure B.8, a set of first order linear differential equations, which, together
with appropriate initial conditions5, fully specifies the systemic retention of
Sr in the human body.

1

2 3 4

5 6

k12 k13 k14k15 k16

k25

k26

k35

k36

k45

k46

Blood

Trabecular
Bone Bone

LiverCortical

U.L.I. Bladder

Figure B.8: Systemic retention of Sr: Compartmental model.

5m1(t = 0) = 1 and mj(t = 0) = 0 for j = 2, . . . , 6, where mi(t) represents the
retention of Sr in compartment i at time t.
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Although the transfer coefficients cannot be measured directly, the fol-
lowing relationships are assumed to hold on the basis of physical consider-
ations:

1. The transfer coefficients from compartment i to Bladder are modeled
as

ki6 = U:F ∗ ki5 (B.2)

with i ∈ {1,. . .,4} and U:F represents the Urine-to-Faeces ratio for Sr.
The project staff set the U:F-ratio for Sr to 3.3.

2. It was assumed that the transfer coefficient from Blood to Trabecu-
lar Bone, k12 is correlated to the transfer coefficient from Blood to
Cortical Bone, k13 in the following manner:

k12 = tc ∗ k13 (B.3)

where tc is the Trabecular-to-Cortical factor. The project staff as-
signed a lognormal distribution to the tc-factor, with 5% and 95%
quantile of 0.6 and 2.

B.4.2 Target variables & Elicitation variables

The transfer coefficients (k13, k14, k15, k25, k35, k45) are the model input pa-
rameters which are regarded uncertain, hence they are the target variables.
These transfer coefficients cannot be measured directly and are regarded as
model dependent, hence the target variables could not serve as elicitation
variables. Elictation variables were formulated on the amount of Sr retained
in certain regions of the human body at certain times6 after being admin-
istered intravenously as a single injection. The regions of the human body
for which the experts were queried were Skeleton+Liver (Skel+Liver) and
Skeleton as a percentage of Skeleton+Liver ( Skel

Skel+Liver ), where Skeleton is
the sum of Trabecular Bone and Cortical Bone. The functions describing
the elicitation variables turned out to be non-linear and non-monotone.

B.4.3 Results: Step 1

The quantile information of the DM together with the information on tc
and physical considerations were used to determine the set of potentially
observable scenarios N . Like the lung morbidity example, the set N for
this problem consisted of many scenarios. A random selection of 2000 sce-
narios from N was taken. These 2000 scenarios were used to determine
model inversions for the target variables (k13, k14, k15, k25, k35, k45) using
lsqcurvefit and Minos5. Note, each scenario in N contains a realization

6The timepoints t are t ∈ {1 day, 1 week, 1 month, 1 year, 10 years, 50 years}.
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of tc as well, hence the model inversions for the target variables are deter-
mined conditional on this realization of tc. The starting values for the target
variables are the same for lsqcurvefit and Minos5 for all 2000 scenarios.

Figure B.9 shows graphically the Sum of Squares distance for the 2000
scenarios resulting from lsqcurvefit and Minos5; every dot can be related
to a scenario for which the Sum of Squares distance has been calculated
based on model inversions determined using lsqcurvefit and Minos5. The
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Figure B.9: Systemic retention of Sr: Sum of Squares distance comparison
between lsqcurvefit and Minos5 for 2000 scenarios.

straight line in Figure B.9 shows where the Sum of Squares distances of the
optimization routines would be equal. Based on the 2000 scenarios selected,
the Sum of Squares distance resulting from Minos5 was less than the Sum
of Squares distance resulting from lsqcurvefit in 62.1% of the scenarios.
Looking at Figure B.9 somewhat closer, a cluster of points for which the
Sum of Squares distance resulting from Minos5 is roughly more than one
order of magnitude larger than the Sum of Squares distance resulting from
lsqcurvefit. It is difficult to give an explanation for this, but it may be
due to the functions describing the elicitation variables being non-linear
and non-monotone, which may cause Minos5 to end its search in a point
which is a local minimum. Dealing with functions which is non-linear and
non-monotone, it is recommended to perform the minimization of the Sum
of Squares distance using different starting values. For each target variable
10 different starting values were selected randomly from the interval [ 1

10 ·
k∗

ij , 10 · k∗
ij ], where k∗

ij represents the initial starting value.
Here, the selection of the 10 different starting values is ad-hoc, however

the choice of the starting values may be less ad-hoc if they could be based on
the certain characteristics of the model, expert assessments and/or physical
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k13 k14 k15 k25 k35 k45

sv.1 4.42e-1 1.94e-3 5.43e-1 5.56e-2 1.11e-4 8.29e-5
sv.2 4.33e-1 1.90e-3 5.33e-1 5.45e-2 1.09e-4 8.13e-5
sv.3 1.32 5.78e-3 1.62 1.65e-1 3.31e-4 2.47e-4
sv.4 5.93e-1 2.60e-3 7.29e-1 7.46e-2 1.49e-4 1.11e-4
sv.5 3.92e-1 1.30e-3 6.23e-1 3.45e-2 1.69e-4 2.13e-5
sv.6 3.33e-2 1.46e-4 4.09e-2 4.19e-3 8.37e-6 6.25e-6
sv.7 1.63 7.15e-3 2.00 2.05e-1 4.09e-4 3.05e-4
sv.8 9.70e-1 4.26e-3 1.19 1.22e-1 2.44e-4 1.82e-4
sv.9 2.03 8.92e-3 2.50 2.55e-1 5.11e-4 3.81e-4
sv.10 1.02 4.46e-3 1.25 1.28e-1 2.55e-4 1.91e-4

Table B.8: Systemic retention of Sr: 10 different starting values (sv.) for
transfer coefficients kij (1/d).

insights. Nonetheless, the cluster of points identified in Figure B.9 has
disappeared in Figure B.10. Furthermore the Sum of Squares distances in
Figure B.10 are concentrated more around the straight line. This shows the
value of performing the minimization of the Sum of Squares distance using
multiple starting values, in case of a non-linear and non-monotone model
predictor.
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Figure B.10: Systemic retention of Sr: Sum of Squares distance comparison
between lsqcurvefit and Minos5 for Sr-problem using 10 different starting
values for 2000 scenarios.

Figures B.11 and B.12 compare graphically the model inversions for the
15 pairs of target variables. Unlike the dispersion coefficient and Lung
morbidity example, the majority of the model inversions are not the same;
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it is observed that for certain combinations of target variables the model
inversions from Minos5 (◦) are very different from the model inversions from
lsqcurvefit (+).
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Figure B.11: Systemic retention of Sr: model inversions for 12 pairs of
target variables for 2000 scenarios, lsqcurvefit (+) and Minos5 (◦).



Determination of M 155

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

k25

k35

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k25

k45

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k35

k45

Figure B.12: Systemic retention of Sr: model inversions for 3 pairs of target
variables for 2000 scenarios, lsqcurvefit (+) and Minos5 (◦).

B.4.4 Results: Step 2

For each domain M , samples were propagated through the functions describ-
ing the elicitation variables to obtain a set of points in the observable space.
The observable space consisted of 13 dimensions: the elicitation variables
and the Trabecular-to-Cortical factor tc. Based on quantile information
presented in Table B.9, it is concluded that the marginal distributions as
determined using lsqcurvefit, Minos5 and minimax are quite different.
Figure B.13 presents the similarities/differences of the various marginal dis-
tributions graphically; lsqcurvefit (- -), Minos5 (–) and minimax (--).

The Spearman’s rank correlation matrices determined from the distri-
butions using lsqcurvefit, Minos5 and minimax are given in Tables B.10,
B.11 and B.12, respectively. Looking at these correlation matrices, it is
observed that the correlation matrices are very different.

The push-forward distributions of the distributions on the target vari-
ables are compared to the DM distributions in Table B.4.4. The push-
forward distributions based on lsqcurvefit and Minos5 are based on 2.00e+5
samples, whereas the push-forward distributions based on minimax is based
on 1.27e+6 samples; it is concluded that the push-forward distributions
of lsqcurvefit, Minos5 and minimax resemble the DM distributions very
well.

B.4.5 Discussion of results

A comparison between lsqcurvefit and Minos5 was conducted for the
probabilistic inversion problem for systemic retention of Sr in the human
body. The systemic retention of Sr is regarded as a ‘complex’ probabilistic
inversion problem; (i) non-linear, non-monotone functions describing the
elicitation variables, (ii) the number of target variables is large, and the
amount of information available on the elicitation variables is very large also.
The influence of the optimization routines in determining the domain M for
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Quantile lsqcurvefit Minos5 minimax

5% 1.57e-1 1.02e-1 6.89e-2
k13 50% 4.23e-1 1.02 2.18e-1

95% 1.21 3.24e+1 6.97e-1

5% 1.21e-3 2.44e-3 7.70e-4
k14 50% 1.19e-2 5.17e-2 9.57e-3

95% 3.32e-1 6.55e-1 7.25e-2

5% 2.44e-1 1.39e-1 5.54e-2
k15 50% 5.59e-1 1.14 2.68e-1

95% 9.07e-1 3.84e+1 3.53e-1

5% 5.83e-5 3.19e-5 1.45e-5
k25 50% 2.49e-3 2.09e-3 2.74e-2

95% 1.17e-1 1.15e-1 1.22e-1

5% 4.28e-6 1.24e-5 2.63e-5
k35 50% 3.08e-5 4.61e-5 5.48e-5

95% 9.13e-5 5.66e-3 7.41e-2

5% 1.02e-5 1.07e-5 7.33e-6
k45 50% 4.47e-5 5.33e-5 4.09e-5

95% 9.68e-5 1.45e-4 9.58e-5

Table B.9: Systemic retention of Sr: quantile information on target vari-
ables based on lsqcurvefit, Minos5 and minimax (1/d).

k13

k14

k15

k25

k35

k45

tc




1 4.47e-1 4.31e-1 3.01e-1 −5.03e-2 8.02e-2 −5.53e-2

4.47e-1 1 2.58e-1 −2.13e-1 −8.80e-3 4.49e-1 3.14e-1

4.31e-1 2.58e-1 1 −2.60e-3 −3.74e-1 −1.45e-2 −1.13e-1

3.01e-1 −2.13e-1 −2.60e-3 1 −1.96e-1 −2.91e-1 1.78e-2

−5.03e-2 −8.80e-3 −3.74e-1 −1.96e-1 1 4.02e-1 −2.04e-1

8.02e-2 4.49e-1 −1.45e-1 −2.91e-1 4.02e-1 1 2.80e-3

−5.53e-2 3.14e-1 −1.13e-1 1.78e-2 −2.04e-1 2.80e-3 1




Table B.10: Systemic retention of Sr: Spearman’s rank correlation matrix
resulting from lsqcurvefit.

this problem turned out to be significant. Some observations; firstly, dealing
with functions which are non-linear and non-monotone it is recommended
to perform the minimization of the Sum of Squares distance using a multiple
starting values. Secondly, unlike for the dispersion coefficient example and
lung morbidity, the majority of the model inversions obtained from the
optimization routines were not the same. This resulted in distributions on
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Figure B.13: Systemic retention of Sr: graphical comparison of distribution
of k13(top-left), k14(top-middle), k15 (top-right), k25(below-left), k35(below-
middle) and k45 (below-right). lsqcurvefit (- -), Minos5 (–) and minimax
(--).

the target variables which were different, which is confirmed by the relative
information values: 5.66 and 5.06 for lsqcurvefit and Minos5, respectively.
Furthermore the distribution based on minimax was regarded to be different
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k13

k14

k15

k25

k35

k45

tc




1 6.75e-1 8.70e-1 −1.42e-1 −4.33e-2 −2.96e-2 −1.17e-1

6.75e-1 1 6.52e-1 −2.19e-1 −1.38e-1 2.44e-1 1.94e-2

8.70e-1 6.52e-1 1 −1.82e-1 −1.68e-1 1.32e-2 −2.63e-2

−1.42e-1 −2.19e-1 −1.82e-1 1 −2.15e-1 −7.05e-2 2.40e-1

−4.33e-2 −1.38e-1 −1.68e-1 −2.15e-1 1 1.94e-1 −3.29e-1

−2.96e-2 2.44e-1 1.32e-2 −7.05e-2 1.94e-1 1 9.19e-2

−1.17e-1 1.94e-2 −2.63e-2 2.40e-1 −3.29e-1 9.19e-2 1




Table B.11: Systemic retention of Sr: Spearman’s rank correlation matrix
resulting from Minos5.

k13

k14

k15

k25

k35

k45

tc




1 −3.99e-2 4.15e-1 −6.15e-1 4.60e-1 −4.46e-1 −6.19e-1

−3.99e-2 1 −4.51e-1 1.19e-1 −2.73e-1 −2.61e-2 4.28e-2

4.15e-1 −4.51e-1 1 −2.02e-1 2.70e-1 1.67e-1 −2.51e-1

−6.15e-1 1.19e-1 −2.02e-1 1 −8.45e-1 1.15e-1 6.03e-1

4.60e-1 −2.73e-1 2.70e-1 −8.45e-1 1 1.35e-2 −8.75e-1

−4.46e-1 −2.61e-2 1.67e-1 1.15e-1 1.35e-2 1 −2.03e-2

−6.19e-1 4.28e-2 −2.51e-1 6.03e-1 −8.75e-1 −2.03e-2 1




Table B.12: Systemic retention of Sr: Spearman’s rank correlation matrix result-
ing from minimax.

from the distributions obtained using lsqcurvefit and Minos5 as well.
However, the push-forward distributions of the three distributions on the
target variables did resemble the DM distributions very well.

B.5 Conclusion

The most important step in a probabilistic inversion solution scheme is the
determination of the domain M in the target variable space. The heuristics
used in determining M consist of three elements: (i) the assessments of the
experts, (ii) the mapping T , and (iii) the physics underlying the problem.
These three elements meet when minimizing the Sum of Squares distance
between potentially observable scenarios based on expert assessments, and
T , which is a function of the target variables. Minimization of the Sum
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Time Skel+Liver
DM. lsqcurvefit Minos5 minimax

5% 1.70e-1 1.30e-1 1.69e-1 1.70e-1
1 day 50% 3.24e-1 3.24e-1 3.24e-1 3.24e-1

95% 5.76e-1 5.76e-1 5.76e-1 5.76e-1

5% 1.17e-1 1.17e-1 1.17e-1 1.17e-1
1 week 50% 2.29e-1 2.29e-1 2.29e-1 2.29e-1

95% 4.76e-1 4.76e-1 4.76e-1 4.76e-1

5% 1.04e-1 1.04e-1 1.04e-1 1.04e-1
1 month 50% 2.11e-1 2.11e-1 2.11e-1 2.11e-1

95% 3.51e-1 3.51e-1 3.51e-1 3.51e-1

5% 6.74e-2 6.65e-2 6.74e-2 6.74e-2
1 year 50% 1.38e-1 1.38e-1 1.38e-1 1.38e-1

95% 2.43e-1 2.43e-1 2.43e-1 2.43e-1

5% 1.81e-2 1.80e-2 1.80e-2 1.80e-2
10 years 50% 6.45e-2 6.45e-2 6.45e-2 6.45e-2

95% 1.37e-1 1.37e-1 1.37e-1 1.37e-1

5% 1.11e-3 1.10e-3 1.10e-3 1.10e-3
50 years 50% 1.85e-2 1.85e-2 1.85e-2 1.85e-2

95% 8.88e-2 8.87e-2 8.88e-2 8.86e-2

Time Skel
Skel+Liver

DM. lsqcurvefit Minos5 minimax

5% 8.46e-1 8.45e-1 8.49e-1 8.46e-1
1 day 50% 9.56e-1 9.56e-1 9.56e-1 9.56e-1

95% 9.98e-1 9.98e-1 9.98e-1 9.98e-1

5% 8.22e-1 8.20e-1 8.29e-1 8.20e-1
1 week 50% 9.57e-1 9.56e-1 9.58e-1 9.58e-1

95% 9.98e-1 9.98e-1 9.98e-1 9.98e-1

5% 8.51e-1 8.16e-1 8.50e-1 8.50e-1
1 month 50% 9.84e-1 9.56e-1 9.58e-1 9.80e-1

95% 9.99e-1 9.98e-1 9.99e-1 9.99e-1

5% 7.70e-1 7.70e-1 7.70e-1 7.77e-1
1 year 50% 9.94e-1 9.60e-1 9.60e-1 9.90e-1

95% 9.99e-1 9.98e-1 9.99e-1 9.99e-1

5% 6.79e-1 6.77e-1 6.89e-1 6.80e-1
10 years 50% 9.95e-1 9.87e-1 9.79e-1 9.90e-1

95% 9.99e-1 9.99e-1 9.99e-1 9.99e-1

5% 6.39e-1 6.40e-1 6.40e-1 6.40e-1
50 years 50% 9.96e-1 9.90e-1 9.90e-1 9.90e-1

95% 9.99e-1 9.99e-1 9.99e-1 9.99e-1

Table B.13: Systemic retention of Sr: Quantile information comparison of
distributions of DM vs. push-forward distributions based on lsqcurvefit,
Minos5 and minimax.
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of Squares distance is a global minimization problem. In this appendix
the effect of different optimization programs capable of dealing with global
minimization problems has been investigated.

The optimization routines considered were the lsqcurvefit function of
the Matlab5.3 version 11 optimization toolbox, the Minos5 solver of GAMS.
It is concluded that the influence of optimization programs is negligible in
case of non-linear but monotone model predictors (dispersion coefficient
example and lung morbidity). However, a difference between the optimiza-
tion programs was identified in dealing with non-linear and non-monotone
functions describing the elicitation variables (systemic retention of Sr in
the human body). Functions which are non-monotone may result in opti-
mization routines to end its search in the target variable space in a local
minimum instead of a global minimum. The following is recommended; try
to avoid non-monotone functions in doing probabilistic inversion, if this is
not possible be sure to minimize the Sum of Squares distance a number to
times, each time using different starting values.

The distributions used in the uncertainty analysis of COSYMA were
based on the minimization of the Sum of Squares distance using the minimax
optimization routine of the Matlab4.2 optimization toolbox. The distri-
butions on the target variables based on minimax were compared to the
distributions based on lsqcurvefit and Minos5, i.e. the marginal distri-
butions and Spearman’s rank correlation matrices were compared. For the
dispersion coefficient example and lung morbidity, the comparison was con-
sidered to be reasonably good. The comparison for the systemic retention
of Sr was considered to be poor, although the push-forward distributions of
all three distributions available on the target variables resembled the DM
distributions rather well.
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Reduction of Dimension

The reduction of dimension technique reduces the dimension of the observ-
able space. In this way (i) probabilistic inversion problems which were infea-
sible considering all dimensions may become feasible and (ii) probabilistic
inversion problems with an observable space consisting of a large number of
dimensions may be broken down in probabilistic inversion problems which
are computationally tractable.

Consider n elicitation variables and suppose the corresponding PI prob-
lem is infeasible. The reduction of dimension strategy looks at all problems
involving n − 1 elicitation variables, i.e.

(
n

n−1

)
problems with observable

space dimension n − 1. For each of the
(

n
n−1

)
problems, the respective do-

mains are determined in Step 1. Next, let MRD,n−1 be the union of the(
n

n−1

)
search grids. Samples from MRD,n−1 are propagated through map-

ping T . For each
(

n
n−1

)
observable space, select the push-forward samples

of mapping T corresponding to the elicitation variables which make up the
respective observable space. In this way

(
n

n−1

)
PI problems are constructed.

Let n∗ (n∗ ≤
(

n
n−1

)
) denote the number of PI problems for which a distri-

bution on MRD,n−1 in Step 2 can be determined; assume n∗ (n∗ > 0)
distributions on MRD,n−1 are obtained. The problem of finding a distri-
bution over the target variables which ‘best fits’ these n∗ distributions is
described in Step 2 of the PARFUM solution scheme (see Section 1.2.1).

If n∗ = 0, the dimension of the observable space is reduced once more,
and Step 1 and Step 2 of the PREJUDICE solution scheme are performed
for

(
n

n−2

)
problems with observable space dimension n − 2 in order to de-

termine a distribution on MRD,n−2.
Note, if the dimension of the observable space is 2 and its corresponding

PI-problem is infeasible, then reduction of dimension results in a solution
scheme which resembles the PARFUM solution scheme closely.
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Minimal solution

Consider the following example; 5%, 50% and 95% quantile points are avail-
able for elicitation variables Yj (j ∈ {1, 2}), and domain Mmin is such that
T (Mmin) ⊂ ∪4

k=1I1,k × I2,k (Figure D.1), where Ij,k represents the k-th
interquantile interval of the j-th elicitation variable.

Y2

Y1
y1,50%y1,5% y1,95%

y2,50%

y2,5%

y2,95%

Figure D.1: The shaded area visualizes T (Mmin).

Clearly, the quantile constraints are satisfied in this case; 5% probability
mass is assigned to samples in hypercubes (1,1) and (4,4) and 45% prob-
ability mass is assigned to the samples in hypercubes (2,2) and (3,3). In
principle, this problem could be solved if Mmin consisted of 4 samples; for
example the k-th sample maps into each I1,k×I2,k (k = 1, . . . , 4) and assign-
ing these samples 0.05, 0.45, 0.45, 0.05 respectively. Propagation of domains
resulting in a coverage of hypercubes as depicted in Figure D.2 could also be
solved using 4 samples only. Generally speaking, any probabilistic inversion
problem with information on the elicitation variables available as k quantile
points can be solved using k+1 points only. This type of solution is referred
to as a minimal solution of a probabilistic inversion problem. Clearly, any
convex combination of minimal solutions is a solution to the probabilistic
inversion problem as well.
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Y2
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y1,50%y1,5% y1,95%

y2,50%

y2,5%

y2,95%
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y2,50%
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Figure D.2: Visualization of coverage of hypercubes which could be solved
using a minimal number of samples.
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Dependencies:
assessments and results.

In this appendix, the ρπ-table is presented graphically together with the
expert assessments and results of Example 1 and 2 of Chapter 2.

E.1 The ρπ-table

Figures E.1 through E.6 illustrate graphically the ρπ-tables for values r2 =
0.05 through r2 = 0.95, respectively, where

πr1,r2(Y1, Y2) := P (FY1(Y1) > r1 | FY2(Y2) > r2). (E.1)
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Figure E.1: Graphical illustration of ρπ-table for r2 = 0.05 (left) and r2 =
0.10 (right).
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Figure E.2: Graphical illustration of ρπ-table for r2 = 0.20 (left) and r2 =
0.30 (right).
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Figure E.3: Graphical illustration of ρπ-table for r2 = 0.40 (left) and r2 =
0.50 (right).
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Figure E.4: Graphical illustration of ρπ-table for r2 = 0.60 (left) and r2 =
0.70 (right).
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Figure E.5: Graphical illustration of ρπ-table for r2 = 0.80 (left) and r2 =
0.90 (right).
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Figure E.6: Graphical illustration of ρπ-table for r2 = 0.95.

E.2 Example 1

Table E.1 presents the conditional probabilities among elicitation variables
obtained from the experts. The abbreviation N/A refers to no assess-
ments provided by the expert for the pair of elicitation variables. Table E.2
presents the Spearman’s rank correlations based on the conditional proba-
bilities using ρπ-table. From Tables E.1 and E.2 it is concluded that the
expert assessments are not the same. Obviously experts did not agree on
the sign and strength of the dependence.

Tables E.3 and E.4 present the Spearman’s rank correlation resulting
from Strategy 1 and Strategy 2, respectively.
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Elic. questions π 1
2 , 1

2
(Y1, Y2)

Y1 Y2 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8
DCO DPO 0.85 0.25 1 0.5 0.52 0.7 N/A N/A
DPO DSO N/A N/A 1 0.1 N/A 0.7 N/A N/A
DSI DCI 0.85 0.7 1 0.1 0.4 0.7 N/A N/A
DCO DCI 0.90 0.5 1 0.6 0.6 0.54 N/A N/A
BPO BSO 0.5 N/A 1 0.5 0.4 0.7 N/A N/A
BPO BCO 0.5 0.84 1 0.1 0.52 0.7 N/A N/A
BSI BCI 0.5 0.84 1 0.1 0.4 0.7 N/A N/A
BCI BCO 0.99 0.84 1 0.6 0.6 0.54 N/A N/A
BPO DPO 0.95 0.75 0.75 0.6 0.5 0.90 0.90 N/A

Table E.1: Example 1: conditional probability assessments π 1
2 , 1

2
(Y1, Y2)

given by 8 experts from the Animal expert panel.

Elic. questions Spearman’s ρY1,Y2
Y1 Y2 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8

DCO DPO 0.79 -0.62 1 0 0.06 0.45 N/A N/A
DPO DSO N/A N/A 1 -0.91 N/A 0.45 N/A N/A
DSI DCI 0.79 0.45 1 -0.91 -0.27 0.45 N/A N/A
DCO DCI 0.88 0 1 0.24 0.24 0.12 N/A N/A
BPO BSO 0 N/A 1 0 -0.27 0.45 N/A N/A
BPO BCO 0 0.78 1 -0.91 0.06 0.45 N/A N/A
BSI BCI 0 0.78 1 -0.91 -0.27 0.45 N/A N/A
BCI BCO 0.99 0.78 1 0.24 0.24 0.12 N/A N/A
BPO DPO 0.94 0.61 0.61 0.24 0 0.88 0.88 N/A

Table E.2: Example 1: Spearman’s rank correlations ρ(Y1, Y2) for 8 experts
from the Animal expert panel.
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Table E.3: Example 1: Spearman’s rank correlation matrix for input param-
eters using Strategy 1.
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Table E.4: Example 1: Spearman’s rank correlation matrix for input param-
eters using Strategy 2.
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E.3 Example 2

Table E.5 presents the conditional probabilities among elicitation variables
obtained from the experts.

From Table E.5 it is observed that for some questions some experts ex-
press a positive correlation whereas other experts are indifferent. Overall,
most of the assessments of the experts are in line with each other. Ta-
ble E.6 presents the Spearman’s rank correlations based on the conditional
probabilities using the ρπ-table.

Comparing the Spearman’s rank correlation matrices resulting from Strat-
egy 1 (Table E.7) and Strategy 2 (Table E.3), a large difference is observed;
the Spearman’s rank correlations for Strategy 1 are very close too zero,
whereas the majority of the Spearman’s rank correlations resulting from
Strategy 2 are not.
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Table E.5: Example 2: conditional probability assessments π 1
2 , 1

2
(Y1, Y2)

given by 9 experts from the Late Health expert panel.
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Table E.6: Example 2: Spearman’s ρ(Y1, Y2) for 9 experts from the Late
Health effects panel.
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Table E.7: Example 2: Spearman’s rank correlation matrix among target
variables using Strategy 1.
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Table E.8: Example 2: Spearman’s rank correlation matrix among target
variables using Strategy 2.
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Appendix F

Calibration with
Uncertain observations:
data

In this appendix the data used in Chapter 3 are presented together with
figures displaying the various probability density functions.

F.1 Dispersion example

The quantile assessments of the DM in Table F.1 are taken from [23],[27].
The reader is referred to these references for a detailed explanation of the
abbreviations/seed variables and descriptions of the various experiments. It
is assumed that the variability of the measurement is represented adequately
via a log-normal distribution, specified by median and error factor EF95.
The medians listed in Table F.1 resulted from the various experiments and
the information contained on the error factor EF95 are specified by the
author; the abbreviations L and U in the column Background density denote
the log-uniform and uniform background density, respectively.

The figures show the various probability density functions (p.d.f.) for
the different elicitation variables resulting from the Relinf Y and Relinf Z
approach for c = 1, see Section 3.3.1.
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Seed var. Quantile assessments for the DM Meas. variability Background
Questions y5% y50% y95% Median EF95 density

B-1-220 chi/Q 5.28e-7 3.46e-5 2.79e-4 2.39e-5 1.67 L
B-1-315 chi/Q 3.31e-6 3.57e-5 1.60e-4 4.19e-5 1.07 L
B-2-220 chi/Q 3.56e-7 4.31e-5 2.39e-4 3.07e-5 1.14 L
B-2-315 chi/Q 2.10e-6 3.44e-5 1.55e-4 5.38e-5 1.07 L
B-3-300 chi/Q 2.15e-6 1.62e-5 9.44e-5 5.26e-5 1.05 L
B-3-600 chi/Q 1.05e-6 6.22e-6 4.95e-5 5.19e-5 1.05 L
B-4-300 chi/Q 3.05e-6 5.15e-5 3.71e-4 2.10e-5 1.19 L
B-4-600 chi/Q 5.30e-6 2.78e-5 1.85e-4 3.79e-5 1.06 L
B-5-600 sig-y 1.51e+1 3.85e+1 1.33e+2 2.80e+1 1.07 U
B-5-600 sig-z 4.04 1.22e+1 2.91e+1 8.36 1.08 U

Table F.1: Quantile assessments for the DM and measurement variability.
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F.2 Public Works and Water Management ex-
ample

Experimental results Median EF95

ZR [0.92,1.39,1.20,1.18,1.35,0.97,1] 1.18 1.25
ZG [1.14,1.29,1.55,1.49,0.98,1.34,1.68,1.06] 1.31 1.35
ZD [1.31,1.17,1.57,1.46,1.50,0.99] 1.38 1.27
HS [1.1,0.94,1.09,0.99,1.19,1.09,1.12] 1.09 1.12
TS [0.95,1.03,1.02,0.88,0.89,1.01,1.01] 1.01 1.07

mod1 [0.35,0.18,0.32,0.22,0.44] 3.20e-1 1.63
mod2 [6.4,3.6,7.3,7.5] 6.85 1.53
mod3 [9.30e+1,7.70e+1,6.40e+1] 7.70e+1 1.36

Table F.2: Overview of experimental results, median and EF95 for each seed
variable question.

Seed var. Quantile assessments for Expert 1 Measurement
Questions y5% y25% y50% y75% y95% Median EF95

ZR 9.20e-1 1.03 1.10 1.17 1.28 1.18 1.25
ZG 9.20e-1 1.03 1.10 1.17 1.28 1.31 1.35
ZD 9.20e-1 1.03 1.10 1.17 1.28 1.38 1.27
HS 6.50e-1 8.50e-1 1 1.20 1.50 1.09 1.12
TS 6.50e-1 8.50e-1 1 1.20 1.50 1.01 1.07

mod1 1.00e-1 3.00e-1 5.00e-1 1 3 3.20e-1 1.63
mod2 1 3 5 1.00e+1 3.00e+1 6.85 1.53
mod3 1.00e+1 3.00e+1 5.00e+1 1.00e+2 3.00e+2 7.70e+1 1.36

Seed var. Quantile assessments for Expert 6 Measurement
Questions y5% y25% y50% y75% y95% Median EF95

ZR 2.00e-1 7.00e-1 1 1.30 1.80 1.18 1.25
ZG 2.00e-1 7.00e-1 1 1.30 1.80 1.31 1.35
ZD 2.00e-1 7.00e-1 1 1.30 1.80 1.38 1.27
HS 4.00e-1 7.50e-1 1 1.25 1.60 1.09 1.12
TS 5.00e-1 7.50e-1 1 1.50 2 1.01 1.07

mod1 5.00e-1 8.00e-1 1 1.50 2.50 3.20e-1 1.63
mod2 5 8 1.00e+1 1.50e+1 2.50e+1 6.85 1.53
mod3 5.00e+1 8.00e+1 1.00e+2 1.50e+2 2.50e+2 7.70e+1 1.36

Seed var. Quantile assessments for Expert 10 Measurement
Questions y5% y25% y50% y75% y95% Median EF95

ZR 5.00e-1 8.00e-1 1 1.20 1.50 1.18 1.25
ZG 5.00e-1 8.00e-1 1 1.20 1.50 1.31 1.35
ZD 5.00e-1 8.00e-1 1 1.20 1.50 1.38 1.27
HS 6.00e-1 8.50e-1 1 1.15 1.40 1.09 1.12
TS 7.00e-1 8.50e-1 1 1.15 1.30 1.01 1.07

mod1 1.00e-1 5.00e-1 1 4 6 3.20e-1 1.63
mod2 4 6 1.00e+1 2.00e+1 3.00e+1 6.85 1.53
mod3 3.00e+1 6.00e+1 1.00e+2 1.50e+2 2.00e+2 7.70e+1 1.36

Table F.3: Overview of expert quantile assessments and measurement vari-
ability.

The figures below show the resulting probability density functions (p.d.f.)
for the seed variable questions for Expert 1 only.
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Expert 1
Seed variable Interquantile intervals which may contain observation and qj,lj

question for Relinf Y and Relinf Z
Relinf Y

[I1,1, I1,2, I1,3, I1,4, I1,5, I1,6]
[1.13e-3, 1.08e-1, 2.68e-1, 3.41e-1, 2.72e-1, 9.61e-3]

ZR Relinf Z
[I1,2, I1,3, I1,4, I1,5]

[6.49e-2, 2.64e-1, 3.80e-1, 2.91e-1]
Relinf Y

[I2,1, I2,2, I2,3, I2,4, I2,5, I2,6]
[1.46e-3, 9.54e-2, 2.29e-1, 3.19e-1, 3.23e-1, 3.17e-2]

ZG Relinf Z
[I2,2, I2,3, I2,4, I2,5]

[6.42e-2, 2.20e-1, 3.30e-1, 3.86e-1]
Relinf Y

[I3,1, I3,2, I3,3, I3,4, I3,5, I3,6]
[1.31e-4, 3.86e-2, 1.59e-1, 3.11e-1, 4.35e-1, 5.63e-2]

ZD Relinf Z
[I3,2, I3,3, I3,4, I3,5, I3,6]

[1.43e-2, 1.16e-1, 2.58e-1, 6.09e-1, 2.41e-3]
Relinf Y

[I4,3, I4,4, I4,5]
[1.19e-1, 8.28e-1, 5.36e-2]

HS Relinf Z
[I4,4, I4,5]

[9.69e-1, 3.1e-2]
Relinf Y

[I5,3, I5,4]
[4.31e-1, 5.69e-1]

TS Relinf Z
[I5,3, I5,4]

[9.8e-2, 9.02e-1]
Relinf Y

[I6,2, I6,3, I6,4]
[1.50e-1, 7.66e-1, 8.41e-2]

mod1 Relinf Z
[I6,3, I6,4]

[7.53e-1, 2.47e-1]
Relinf Y

[I7,3, I7,4, I7,5]
[1.30e-1, 8.18e-1, 5.26e-2]

mod2 Relinf Z
[I7,4, I7,5]

[7.34e-1, 2.66e-1]
Relinf Y

I8,4

1

mod3 Relinf Z
I8,4

1

Table F.4: Public Works and Water Management example: overview of
interquantile intervals and likelihoods for Expert 1.



190 Appendix F

Expert 6
Seed variable Interquantile intervals which may contain observation and qj,lj

question for Relinf Y and Relinf Z
Relinf Y

[I1,3, I1,4, I1,5]
[9.10e-2, 7.36e-1, 1.73e-1]

ZR Relinf Z
[I1,4, I1,5]

[7.99e-1, 2.01e-1]
Relinf Y

[I2,3, I2,4, I2,5, I2,6]
[6.47e-2, 5.34e-1, 3.98e-1, 3.92e-3]

ZG Relinf Z
[I2,4, I2,5]

[6.22e-1, 3.78e-1]
Relinf Y

[I3,3, I3,4, I3,5, I3,6]
[1.21e-2, 4.39e-1, 5.45e-1, 3.38e-3]

ZD Relinf Z
[I3,4, I3,5]

[4.69e-1, 5.31e-1]
Relinf Y

[I4,3, I4,4, I4,5]
[8.33e-2, 9.00e-1, 1.66e-2]

HS Relinf Z
[I4,4, I4,5]

[9.98e-1, 1.73e-3]
Relinf Y

[I5,3, I5,4]
[4.97e-1, 5.03e-1]

TS Relinf Z
[I5,3, I5,4]

[1.66e-1, 8.34e-1]
Relinf Y

[I6,1, I6,2, I6,3]
[6.38e-1, 3.62e-1, 3.32e-4]

mod1 Relinf Z
[I6,1, I6,2, I6,3]

[3.48e-1, 6.31e-1, 2.09e-2]
Relinf Y

[I7,1, I7,2, I7,3, I7,4, I7,5]
[1.17e-2, 4.74e-1, 4.26e-1, 8.77e-2, 1.84e-4]

mod2 Relinf Z
[I7,2, I7,3, I7,4]

[2.60e-1, 5.63e-1, 1.77e-1]
Relinf Y

[I8,2, I8,3]
[9.70e-1, 3.0e-2]

mod3 Relinf Z
[I8,2, I8,3]

[8.48e-1, 1.52e-1]

Table F.5: Public Works and Water Management example: overview of
interquantile intervals and likelihoods for Expert 6.
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Expert 10
Seed variable Interquantile intervals which may contain observation and qj,lj

question for Relinf Y and Relinf Z
Relinf Y

[I1,2, I1,3, I1,4, I1,5, I1,6]
[4.36e-4, 1.11e-1, 5.48e-1, 3.38e-1, 2.47e-3]

ZR Relinf Z
[I1,3, I1,4, I1,5]

[2.13e-2, 7.67e-1, 2.12e-1]
Relinf Y

[I2,2, I2,3, I2,4, I2,5, I2,6]
[1.26e-3, 8.83e-2, 4.02e-1, 4.89e-1, 1.97e-2]

ZG Relinf Z
[I2,3, I2,4, I2,5]

[2.49e-2, 4.01e-1, 5.74e-1]
Relinf Y

[I3,3, I3,4, I3,5, I3,6]
[1.86e-2, 2.86e-1, 6.67e-1, 2.76e-2]

ZD Relinf Z
[I3,4, I3,5]

[1.94e-1, 8.06e-1]
Relinf Y

[I4,3, I4,4, I4,5]
[1.01e-1, 7.60e-1, 1.39e-1]

HS Relinf Z
[I4,3, I4,4]

[6.20e-1, 9.38e-1]
Relinf Y

[I5,3, I5,4]
[3.72e-1, 6.28e-1]

TS Relinf Z
[I5,3, I5,4]

[7.93e-2, 9.21e-1]
Relinf Y

[I6,2, I6,3]
[7.30e-1, 2.70e-1]

mod1 Relinf Z
[I6,2, I6,3]

[7.93e-2, 9.21e-1]
Relinf Y

[I7,1, I7,2, I7,3, I7,4]
[1.99e-3, 2.75e-1, 6.57e-1, 6.64e-2]

mod2 Relinf Z
[I7,2, I7,3, I7,4]

[7.06e-2, 6.72e-1, 2.57e-1]
Relinf Y

I8,3

1

mod3 Relinf Z
I8,3

1

Table F.6: Public Works and Water Management example: overview of
interquantile intervals and likelihoods for Expert 10.
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Samenvatting

In het laatste decennia heeft onzekerheidsanalyse een steeds prominentere
rol binnen de beslissingsanalyse ingenomen. Het is algemeen erkend dat
als beslissingen genomen worden op basis van wiskundige modellen dat het
verstandig is om de onzekerheid in de model invoer parameters te onder-
zoeken. Immers, een kleine verandering van de model invoer parameter kan
resulteren in een andere beslissing.

Om een onzekerheidsanalyse uit te voeren is het noodzakelijk om een
gemeenschappelijke verdeling over de onzekere model invoer parameters
te specificeren. Gebruikmakend van Monte-Carlo technieken wordt deze
verdeling door het model gepropageerd en een verdeling over de waarden van
de model uitvoer parameters verkregen, die nader wordt geanalyseerd. Der-
halve is het bepalen van de gemeenschappelijke verdeling over de onzekere
model invoer parameters cruciaal in het doen van een onzekerheidsanal-
yse. Als experimentele gegevens over de onzekere model invoer parameters
beschikbaar zijn, dan kunnen die gebruikt worden om een gemeenschap-
pelijke verdeling te bepalen. Als er weinig of geen experimentele gegevens
beschikbaar zijn, is een andere aanpak nodig. In dit proefschrift wordt
de situatie waarin weinig of geen experimentele gegevens beschikbaar zijn
beschouwd.

In het geval dat er weinig of geen experimentele gegevens beschikbaar
zijn, is het benaderen van experts op het betreffende gebied een natuurlijke
stap. Experts zijn bij uitstek diegenen die het beste overzicht over de liter-
atuur hebben, de beschikking over wiskundige modellen hebben en in staat
zijn om de beschikbare data naar waarde te schatten en te gebruiken voor
interpolatie en extrapolatie. Om op een gestructureerde, open en verdedig-
bare manier gebruik te maken van de kennis/vaardigheden van experts is
de gestructureerde Expert Meningen Methodologie ontwikkeld, [12].

In dit proefschrift worden nieuwe wiskundige technieken gëıntroduceerd
ter ondersteuning van de gestructureerde Expert Meningen Methodologie.
Ruwweg kan het proefschrift in 4 delen onderverdeeld worden: een deel
wat probabilistische inversie behandeld, een deel waarin de rol van afhanke-
lijkheden in onzekerheidsanalyse besproken wordt, een deel wat aandacht
besteedt aan het ontwikkelen van grootheden die de capaciteit van de expert
meten in hoe goed een expert zijn/haar kennis kan kwantificeren en een deel
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die het modeleren van onzekerheid behandeld. Voorbeelden om de verschil-
lende wiskundige technieken te illustreren zijn van de Joint CEC/USNRC
Uncertainty Analysis (Contract F13P-CT092-0023 en 93-ET-001) genomen.

Probabilistische inversie

Een van de belangrijkste elementen in de gestructureerde Expert Menin-
gen Methodologie is dat experts hun kennis kwantificeren voor (potentieel)
meetbare grootheden. Derhalve kan het zijn dat de onzekere model invoer
parameters niet geschikt zijn om aan een expert voor te leggen. Probabilis-
tische inversie biedt uitkomst. Als experts hun onzekerheid kwantificeren
voor (potentieel) meetbare grootheden dan kan, door probabilistische inver-
sie toe te passen, deze kennis ‘terugvertaald’ worden naar informatie over
de onzekere model invoer parameters. In Hoofdstuk 1 worden de beginselen
en implementaties van probabilistische inversie technieken besproken.

Afhankelijkheden

Om een onzekerheidsanalyse te kunnen uitvoeren is het nodig om een gemeen-
schappelijke verdeling over de onzekere model invoer parameters te speci-
ficeren. Vaak is deze gemeenschappelijke verdeling opgebouwd uit de af-
zonderlijke verdelingen van, en afhankelijkheden tussen de onzekere model
invoer parameters. In Hoofdstuk 2 wordt er allereerst een strategie ges-
electeerd die het meest geschikt is om afhankelijkheidsinformatie van ex-
perts te eliciteren. Op dit moment worden binnen de gestructureerde Ex-
pert Meningen Methodologie alleen de meningen van experts gecombineerd.
Twee strategiën worden gëıntroduceerd die zowel de meningen van experts
als afhankelijkheidsinformatie combineren. Als afsluiting wordt het gebruik
van afhankelijkheidsinformatie in probabilistische inversie besproken.

Calibratie met onzekere waarnemingen

Onder de gestructureerde Expert Meningen Methodologie zijn er grootheden
ontwikkeld die, in statistische zin, de capaciteit van een expert meten hoe
‘goed’ een expert is in het kwantificeren van zijn onzekerheid. Experts wordt
gevraagd om hun onzekerheid te kwantificeren voor (potentieel) meetbare
grootheden waarvoor een meetwaarde ter beschikking is; deze meetwaarde
is alleen bekend bij het team wat de onzekerheidsanalyse uitvoert en niet bij
de expert. Als er een redelijke hoeveelheid van dit soort vragen beschikbaar
zijn, dan kan, in statistische zin, de capaciteit van een expert in hoe ‘goed’
hij/zij is in het kwantificeren van onzekerheid gemeten worden. Omdat het
reproduceren van meetwaarden vaak niet mogelijk is en ook omdat andere
meetopstellingen andere meetwaarden kunnen opleveren, is de meetwaarde
van een experiment ook onzeker. In Hoofdstuk 3 worden de grootheden
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die de capaciteit van een expert in het kwantificeren van zijn/haar onzeker-
heid uitgebreid door ook de meetwaarde van een experiment als onzeker te
beschouwen. Het effect van meetvariabiliteit is aangetoond gebruikmakend
van voorbeelden uit het Joint CEC/USNRC Uncertainty Analysis project
en een studie voor Rijkswaterstaat.

Modeleren van onzekerheid

In dit hoofdstuk worden overwegingen in het kwantificeren van de onzeker-
heid voor onzekere model invoer parameters en effect/overwegingen in het
reduceren van de complexiteit van wiskundige modellen voor het uitvoeren
van de onzekerheidsanalyse besproken. Speciale aandacht gaat uit naar een
speciale klasse van acyclische compartiment modellen (ACMs). ACMs wor-
den veel gebruikt in milieu-modelering en worden, vanwege hun grafische
voorstelling, als makkelijk in het gebruik gezien. Maar ACMs verdienen
speciale aandacht als ze gebruikt worden in een onzekerheidsanalyse. Net
als ACMs zijn Invloeds Diagrammen (IDs) ook acyclische grafen. De re-
latie tussen ACMs en IDs wordt onderzocht, wat leidt tot een decompositie
strategie voor complexe ACM’s. De decompositie zal invloed hebben op
de vraagstelling richting de experts. Maar de vraagstelling dient ten allen
tijden in overeenstemming te zijn met de gestructureerde Expert Meningen
Methodologie.

Toepassing van resultaten

In ieder hoofdstuk is een nieuwe wiskundige techniek gëıntroduceerd ter
ondersteuning van de gestructureerde Expert Meningen Methodologie. De
meerderheid van deze technieken zijn al gevalideerd en praktisch gebleken
in de Joint CEC/USNRC Uncertainty Analysis [25], [26], [27], [28], [29],
[30], een studie voor Rijkswaterstaat [21] en in het proefschrift ‘Uncertainty
in predictions of thermal comfort inbuildings’ [19]. De wiskundige tech-
nieken van dit proefschrift dienen in omgekeerde volgorde van presentatie
gebruikt te worden in het uitvoeren van een onzekerheidsanalyse. Allereerst
dient er nagedacht te worden over de overwegingen zoals gepresenteerd in
Hoofdstuk 4. Ten tweede, als experts gebruikt worden om de onzekerheid
te kwantificeren en hun capaciteit daarin gemeten wordt, dan kunnen de
technieken zoals beschreven in Hoofdstuk 3 gebruikt worden. Ten derde,
de expert meningen kunnen worden gecombineerd gebruikmakend van de
geeliciteerde afhankelijkheidsinformatie en strategiën zoals in Hoofdstuk 2
gëıntroduceerd. En indien noodzakelijk, kan probabilistische inversie uit
Hoofdstuk 1 gebruikt worden om een verdeling over de onzekere model in-
voer parameters te verkrijgen.
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Dankwoord

Vaak heb ik het schrijven van een proefschrift vergeleken met een solo zeil-
tocht rond de wereld. Er zijn tijden dat het je voor de wind gaat en er veel
progressie geboekt wordt, maar er zijn ook tijden dat je in een windstilte
gebied ligt en er geen tot weinig progressie wordt geboekt. Een kaart van
de route is niet beschikbaar en soms kies je een koers waarvan je naderhand
merkt dat het niet het gewenste resultaat oplevert en dan kan het lastig zijn
om weer op koers te komen. Daarom is het goed om bakens/vuurtorens te
hebben waarop je kunt varen, mensen met wie je radiocontact hebt en die
je kunt vragen welke koers te varen. Dat maakt het schrijven van een proef-
schrift niet helemaal een solo-activiteit. Veel mensen staan je (gelukkig)
met raad en daad bij, wat zeker op momenten van windstilte of slecht weer
een stimulans is. Aan het einde van de tocht komt dan eindelijk de haven
in zicht, wat betekent dat de reis voltooid is en in het geval van een pro-
motieonderzoek, dat er een proefschrift ligt. Persoonlijk had ik het gevoel
dat ik al een heel tijdje voor de haven lag, maar dat ik geen wind in de
zeilen had (of dat ik de zeilen niet gehesen had!).

Nu ik aangekomen ben in de haven wil ik graag de mensen bedanken
met wie ik veel radiocontact had tijdens mijn reis.

Allereerst wil ik Roger Cooke bedanken. Zonder zijn steun, motivatie,
inzet en enthousiasme had ik dit proefschrift nooit tot een einde kunnen
brengen. Wij hebben veel meegemaakt en ik ben ervan overtuigd dat we nog
veel mee zullen meemaken. Ik heb veel van je navigatie- en zeilkwaliteiten
opgestoken en overgenomen. Ik ben je zeer dankbaar voor alles wat je voor
me gedaan hebt.

Louis Goossens, europees projectleider van het Joint CEC/USNRC Un-
certainty Analysis project, heeft voor mij een rol binnen het project gecreërd
die zeer belangrijk is geweest voor mijn ontwikkeling. Zijn vertrouwen in
mij gaf mij de vrijheid om me verder te ontwikkelen. Vanuit België heeft
Neale Kelly, opdrachtgever van het Joint CEC/USNRC Uncertainty Analy-
sis project, er grotendeels voor gezorgd dat ik überhaupt aan een dergelijke
onderneming kon beginnen. Zijn analyserend vermogen en scherpe vra-
gen hebben er altijd voor gezorgd dat je wel twee keer nadacht voordat je
iets zegt of opschrijft. Verder zijn er nog een aantal amerikaanse naviga-
tors/zeilers waarvan ik op verschillende vlakken veel geleerd heb, zo zijn

197



198

daar Steve Hora die mij gëıntroduceerd heeft in de wereld van het eliciteren
van experts en mij inspiratie gaf voor het ontwikkelen van PREJUDICE,
Mike McKay wiens filosofie in hoe om te gaan met wiskundige problemen
mij zeer heeft gëınspireerd en Fred Harper, die als amerikaans projectleider,
samen met Louis op een zeer professionele, objectieve manier het project
leidde.

Binnen de academische wereld is daar Tim Bedford. Tim Bedford heeft
me op sleeptouw genomen in de woeste wateren van de maattheorie en
persoonlijk vind ik het nog steeds spijtig dat hij naar Glasgow, Schotland
vertrokken is.

Andere solo-zeezeilers: Sten de Wit, Jan van Noortwijk, Benjamin Jansen,
Etienne de Klerk en Erling Andersen. Veel koersinformatie hebben wij in
de loop der tijd uitgewisseld. Vaak heb ik gekeken watvoor koers zij vaar-
den. Vaak moest ik tegenover hun mijn koers verantwoorden. Sten en Jan
hebben mij vooral bijgestaan in het ontwikkelen van PREJUDICE. Door
hun inzichten is PREJUDICE geëvolueerd tot een wiskundig gereedschap
dat van practische waarde is. Benjamin, Etienne en Erling zijn vooral de
mensen geweest die mij wegwijs maakte in verschillende optimaliserings-
technieken/programmatuur.

Frank Härte en Nicole van Elst hebben als verkenners gefungeerd voor
Hoofdstuk 3. De verkenning die zijn gedaan hebben en het rapport wat
daarna geschreven is was zodanig dat het de moeite waard was om die
richting/koers verder te verkennen.

En natuurlijk is daar het secretariaat, het logistiek centrum met Cindy
Bosman, Diana Droog en Netty Zuidervaart. Geen verzoek is teveel, staan
altijd klaar en voeren een goed georganiseerde administratie die het werken
met ze zeer plezierig en makkelijk maakt.

Praten over welke koers te varen is belangrijk, maar net zo belangrijk
is dat je je gedachten even op iets anders kan richten. Door afstand te
nemen kom je vaak tot betere inzichten. Vrienden zijn hierin heel erg be-
langrijk. Daarom dank ik speciaal mijn vrienden Fred, Menno, Gert-Jan en
Michiel. Vriendschap wat zolang terug gaat (in sommige gevallen meer dan
30 jaar) is schaars goed en iets waar ik zeer zuinig op ben. De weekenden,
activiteiten etc. die altijd georganiseerd worden waren prima gelegenheden
om de aandacht op andere dingen te richten.

Behalve nederlandse vrienden ben ik op mijn reis ook amerikaanse vrien-
den tegengekomen. Allereerst zijn daar Andy en Christine Reiter wiens
gastvrijheid, flexibiliteit en vriendschap mij zeer dierbaar is, Pete and Lisa
Easton hebben een nieuwe dimensie gecreërd in mijn fietsplezier door Velo-
Classic Tours op te richten (www.veloclassic.com).

Dan zijn er nog twee vrienden, c.q. zeer prominente bakens/vuurtorens,
die ik zeker niet mag en wil vergeten. Het zijn Ronald ‘CooZ’ Cozijn en
Bas Meyberg. Met CooZ en Bas heb ik veel gepraat over welke koers te
nemen, en niet alleen qua promotieonderzoek. Bas pakte het op een gegeven
moment zeer gestructureerd aan met het DIRECT project plan. De vele
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ontmoetingen, lunches etc. hebben mij enorm gesteund.
Verder wil ik Annette Moelker en Ronald Cozijn hartelijk bedanken voor

het prachtige ontwerp van de omslag.
Mijn broer Pieter, zus Marisa, zwager Ibbel en nichtjes Nadine en Merle

wil ik bedanken voor hun steun en het steeds maar weer herinneren aan het
feit dat ik wel mijn proefschrift moet afmaken.

En als laatste zijn daar de mensen die mij ‘opgeleid’ hebben: Pa en Ma.
Mijn GPS systeem. Zij stonden in de haven bij mijn vertrek en zijn er
ook weer op het moment dat ik de haven binnenvaar. Alhoewel zij niet de
gehele reis mij fysiek hebben vergezeld, heb ik altijd hun steun en toewijding
gevoeld. Dat is iets wat niet meetbaar is, maar wat ongeloofelijk belangrijk
voor mij is geweest en zeker een, zoniet de, beslissende factor is geweest in
het afronden van dit proefschrift.
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