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Figure 4.5: Graphical user interface of MATLAB program for interactive expert elicita-
tion.

dealing with this problem, although there is plenty of other possibilities that can
be successfully applied.

4.5.1 Algorithm searching for feasible values

A solver of non-linear equations is necessary for use in this elicitation method.
Many results will depend on the quality of this solver and its ability to find the
optimal solution, ie. for any given set of expectations find corresponding La-
grange multipliers A’s. Suppose an expectation elicited by expert is given and
we know that there is a corresponding A, but the solver does not converge. This
particular value of expectation will be considered as not feasible in such situ-
ations. It may not be a problem if we deal with only one expectation to elicit.
One can always derive the relationship between A and the resulting expectation
and numerically invert it. But the situation becomes complicated when dealing
with a k-dimensional problem (assessment of k expectations). Now each of the
k Lagrange multipliers depends on all of the specified expectations. Hence in or-
der to determine the multipliers (solve the system of equations (4.4)), one has to
apply a solver of a system of non-linear equations, such as, for instance, FSOLVE
implemented in MATLAB. Therefore it useful to incorporate the solver in the pro-
cess of searching for the bounds on the achievable values of expectations, because
then only the value of the i-th observable is sampled and combined with all the
previously assessed ¢ — 1 observables. Next, the system of non-linear equations
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(4.4) of k variables is solved for the corresponding vector of X’s. If the solver
converges, then we have found one of the achievable values of the i-th observable
quantity. In the simplest case, one can just sample a number of values of this i-th
observable and check, for which values the algorithm converges. The presented
MATLAB script implements a more efficient procedure, based on the bisection me-
thod, which starts from some initial value, solves (4.4) for Lagrange multipliers,
checks the resulting expectations, and then based on some specified criteria alters
the initial value by A and repeats these steps. The magnitude of the step A
decreases by half with each iteration, hence the maximum error of the estimation
of the lower and upper bound is 27"(b — a), where [a, b] is the domain of the i-th
observable and n is the total number of iterations.

4,52 Example: Several observables

Consider expectations of various types of observable quantities (functions h;’s).
The DyDyD3A approach allows to explore the set of simultaneously achievable
values that may be taken by the expectations of these observables, under different
minimally informative distributions.

We illustrate the above approach with an example. Suppose we want to mo-
del relationships between three random variables. Let the variables be gamma
distributed independent random variables X, Y and Z with different parameters,
ie. X ~T(1,2),Y ~T(2,3) and Z ~ I'(1,1). We ask experts to give us their
judgement on expectations of three functions of X, Y and Z. These bits of infor-
mation are used to build a copula for the joint of the gamma distributions. The
copula is given in a discretized form over a grid of size n = 20 per variable.

We start with asking the expert to asses the median percentile of the distri-
bution of X + Y. The bounds on achievable values of this percentile have been
found to be [4.85,10.45], which is a considerably smaller interval than the whole
domain of X +Y, namely [0.7773,24.0927]. Suppose, that the expert assessed the
value of the median to be rather conservative in the middle of the feasible values
interval as ¢; = 8. The corresponding value of A\; is Ay = —1.336. The relative
information of the resulting joint distribution with respect to the independent
copula is R = 0.0514, which means that the expert’s assessment indeed added
some information to the joint distribution of X, Y and Z. It can be shown, that
the relative information would not increase if the expert had assessed the median
of X +Y to be 7.0645. By the construction of the minimally informative copula,
the bivariate margin fiv|7(u,v) of the constructed joint copula f(u,v,t) does
not depend on 7', hence the conditional density firv|7(u,v) stays the same for all
values of T and is presented in Figure 4.6.

Next we ask the expert to assess the median of the distribution of Y+ Z. The
interval of achievable values for the median is given the bounds [4.8397,8.3805].
This time the expert is less conservative and assesses the median of X + Y to be
co = 5, closer to the lower bound of achievable values. We should expect a signifi-
cant increase in the relative information coefficient. Given the expert’s estimate,
the problem is solved for a pair of A’s, which are Ay = —1.366, A\ = 10.4849.
Notice, that A; did not change by introducing the additional information on the
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Minimally informative copula given the experts’ assessments

Figure 4.6: Minimally informative copula given the expert’s assessment on the median

of X+Y.

distribution of Y + Z. This is because both assessments concern functions which
share only one variable, namely Y, and as such they can be assessed independently.
The relative information increases to R = 0.2464. Since the copula density de-
pends now on all of the variables, it is impossible to show the whole 3-dimensional
distribution in one plot. We present only two conditional densities of f(u,v,t) in
Figure 4.7, for t = 0.225 (22.5-th percentile of Z) and t = 0.725 (72.5-th percentile
of 7).

Finally, the expert has to assess the median of X + Y — Z. The domain
of the distribution of X +Y — Z is interval [—2.9116,24.0674]. The bounds on
achievable values of the median of this distribution are [2.99,10.2354]. Suppose,
that the expert assess the median to be c3 = 8.5. Then the corresponding \’s are:
A1 = 11.9673, Ao = 15.6774, A3 = —15.5675. Now A; and A, changed their values,
because the assessment of the median of X +Y — Z affects the previously assessed
quantities of interest. The relative information with respect to the independent
3-dimensional copula increases again and now its value achieves R = 0.57239.
Again we show only two conditional densities of f(u,v,t) in Figure 4.8.

4.6 Implementation issues

Most problems with practical implementations of various algorithms in computer
software are related to the limitations of representing floating-point numbers. The
most common representation of floating-point numbers in computers is so-called
double-precision format, which means that the minimum and maximum positive
values that one can represent are 2.22507 - 1073%% and 1.79769 - 103°8, respecti-
vely. If we take the logarithm of these numbers that we obtain the minimum
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Figure 4.7: Conditional densities fyvr.
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Figure 4.8: Conditional densities fyvr.

(~ —708.3964) and maximum (= 709.7827) values for equation
Athi(u,v) + - 4+ Aphg(u,v), (4.6)

which is part of the kernel function (4.3). It turns out, that while searching for
achievable values of our quantity of interest (see section 4.5.1), we encounter this
situation quite often, especially when dealing with multidimensional optimization
problems. A simple solution is to constantly monitor the value of eq.(4.6) and
change it to, say 700, if it is greater than 700, before the value of kernel function
(4.3) is computed. Otherwise, this number will be treated as either 0 or infinity
and the DAD algorithm will not converge and will not give any sensible results.

Furthermore, a very important requirement for the elicitation method intro-
duced in this paper to work is ensuring proper performance of a solver of a system
of nonlinear equations. As most of modern mathematical software packages (MA-
TLAB, MAPLE, MS EXCEL, etc.) include such optimization routines, the choice
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of the implementation platform becomes rather an issue of personal preferences.
The solver FSOLVE implemented in MATLAB did not cause any problems in our
implementation and was giving good results without any need to interfere with
the optimization process. Much of attention should also be concentrated on the
convergence of the DAD algorithm to ensure, that the density (4.3) has indeed
uniform marginal distributions.

At last we would like to point out an issue that may not be a big problem
in general, nevertheless can cause serious numerical errors. Namely empirical
results show, that choosing values close to boundaries of the range of allowable
values results in copula densities that have rather irregular shapes (high peaks,
many areas with the density being equal zero). Similar situation takes place
when several observables (3 or more) are being assessed by experts. Algorithms
generating samples can be susceptible to numerical errors during sampling from
such densities, and in result produce samples that don’t reflect the information
given by experts.

4.7 Conclusions

One of the most frequently employed method of experts elicitation is to ask them
to assess median values of some quantities of interest. Then based on those asses-
sments, the rank correlation between pairs of the variables is estimated. This rank
correlation can be treated as a parameter of some predetermined copula (mostly
centrally-symmetric) and samples are generated from this copula. For experts,
who are not trained in statistics, the notion of correlation may be problematic
to understand. A more natural approach to the problem of the elicitation is to
ask experts questions, that occur in their professional work on a daily basis. We
propose the approach which complies with this recommendation.

We have introduced the D;Ds;D3A algorithm to show how non-symmetric
functions can be used for the subjective specification of copulae. A key difference
with earlier work using the rank correlation is that the set of allowable values for
observable expectations depends on the full set of observables under discussion.
Hence an interactive system is needed for the expert in ensuring that such values
are chosen coherently. A software programme has been written for this purpose
and presented with simulation results. We show step by step how additional
information can be nested and used for constructing minimally informative copula
with respect to the uniform background measure. The copula method can be
easily employed for generating dependent samples of the variables of interest.
We show that the achieved results proved the method to be useful, tractable
and intuitive. Future research may include implementations of other measures of
dependence as, for example, Kendall’s tau.



CHAPTER 5

Generating random correlation matrices
with vines and Onion method

Whenever you are asked if you can do a job, tell
’em, ’Certainly I can!” Then get busy and find
out how to do it.

Theodore Roosevelt

5.1 Introduction

In his recent work Joe [2006] introduced a new method for generating random cor-
relation matrices uniformly from the space of positive definite correlation matrices.
The method is based on an appropriate transformation of partial correlations to
ordinary product moment correlations. The partial correlations can be assigned
to edges of a regular vine — an extension of the concept of Markov dependence
trees. Joe based his method on the so-called D-vine. We show that his metho-
dology can be applied to any regular vine and argue that another type of regular
vine, namely the C-vine, is more suitable for generating random correlation ma-
trices. They require less computational time since the transformation of a set of
partial correlations on a C-vine to a corresponding set of unconditional correla-
tions operates only on partial correlations that are already specified on that vine.
Please see [Bedford and Cooke, 2002] for more details on dependence vines.

An alternative method of sampling correlation matrices called onion method
has been proposed by Ghosh and Henderson [Ghosh and Henderson, 2003]. This
method can be explained in terms of elliptical distributions, and it does not involve

4This chapter is based on the manuscript Generating random correlation matrices based on
vines and extended Onion method by Daniel Lewandowski, Dorota Kurowicka, and Harry Joe
accepted for publication in Journal of Multivariate Analysis.
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partial correlations. We extend it to allow generating random correlation matrices
with the joint density of the correlations being proportional to a power of the
determinant of the correlation matrix.

The chapter is organized as follows. Section 5.2 generalizes the method of
generating correlation matrices proposed by Joe. In section 5.3 we extend the
onion method. We carry out a computational time analysis of both methods in
section 5.4. This is followed by the conclusions in section 5.5.

5.2 Generating random correlation matrices with partial cor-
relations regular vines

The main idea of Joe’s method [see Joe, 2006] to generate a correlation matrix
of size d x d is to sample values of (g) appropriately chosen partial correlations.
The distribution of a given partial correlation is a Beta(%, dg—k) distribution on
(—1,1), where the value k is the cardinality of the set of conditioning variables
for the partial correlation. For a 4-dimensional correlation matrix Joe’s choice of

partial correlations become the following

P12, P23, P34, P13;25 P24;35 P14;23- (5-1)

However we extend the method to allow different choices for (g) partial correla-
tions. All choices of sets of partial correlations required for the method to work
can be described using the notion of the partial correlation regular vine [Bedford
and Cooke, 2002].

A vine V on d variables is a nested set of connected trees V = {T1,...,Ty_1}
where the edges of tree T; are the nodes of tree T; 1,7 =1,...,d —2. We denote
the set of all edges in tree T; by F;. A regular vine is a vine in which two edges in
tree T; are joined by an edge in tree T;, 1 only if these edges share a common node,
i1=1,...,d—2. Figure 5.1b shows an example of a regular vine on five variables.
According to the regularity condition edges {1,2} and {4,5} of this vine cannot
be joined by an edge in tree T, however this is possible for edges {2,3} and
{2,4}. For each edge e of a vine we define the constraint set U,, the conditioned
set {C1e, Cac} and the conditioning set D, of this edge as follows: the variables
reachable from e are called the constraint set of this edge. When two edges are
joined by an edge of the next tree, the intersection of the respective constraint
sets form the conditioning set, and the symmetric difference of the constraint sets
is the conditioned set. The regularity condition ensures the conditioned set to
be a doubleton. In Figure 5.1 a symbol of the general form {L|K} denotes a
constraint set with conditioned set L and conditioning set K. The degree of node
e is #D..

Two distinct subtypes of regular vines are so-called C-vines (each tree T; has
a unique node of degree d — i; see Figure 5.1¢) and D-vines (each node in T; has
degree at most 2, see Figure 5.1d). This chapter aims on employing the C-vine
in further analysis to generate random correlation matrices. Theorems presented
here will be illustrated on an example of a regular vine V5 shown in Fig. 5.1b.

We define two concepts allowing expressing some properties of regular vines.
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Figure 5.1: Examples of various vines types.

Definition 5.2.1 (m-child, m-descendent). If node e of a regular vine is an
element of node f, we say that e is an m-child of f; similarly, if e is reachable
from f wvia the membership relation: e € ey € ... € f, we say that e is an
m-descendent of f.

A few of the properties of regular vines are [see Kurowicka and Cooke, 2006a:
Property 1 There are (g) edges in a regular vine on d variables.

Property 2 If V is a regular vine on d variables, then for all : = 1,...,d — 1
and all e € E;, the conditioned set associated with e is a doubleton and

#D,=1—1.

Property 3. If the conditioned sets of nodes e and f in a regular vine are equal,
then e = f.

Property 4. For any node e in one of the trees T5,...,Ty_1 in a regular vine, if

variable i is a member of the conditioned set of e, then 7 is a member of the
conditioned set of exactly one of the m-children of e, and the conditioning
set of an m-child of e is a subset of the conditioning set of e.
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We add to this list one more property.

Lemma 5.2.1. Let e € E;, i > 1, be the node with constraint set {1,...,i+ 1}
and {s,t} C D.. There exists f € Ej, j <1, such that {C1f,Car} = {s,t}.

Proof. Node f is an m-descendent of e. The cardinality of the constraint set U, of
e is i+ 1, thus there are ("gl) distinct doubletons in this set. Note also that there
are (’ng) edges in the subvine on nodes {1,...,i+ 1} by Property 1. By Property
4 the conditioned sets of all m-descendants of e are subsets of the constraint set
of e and by Property 3 these conditioned sets are all different. Therefore one of

the m-descendants of e must have the conditioned set {s,t}. ]

As an example, Property 4 means that for node {35;124} of vine Vs, variable
3 or 5 can occur only in the conditioned set of one of the m-children of this node,
that is in either {34;12} or {15;24}, never in both at the same time. According
to Lemma 5.2.1 there should be three m-descendants of node {35;124} with con-
ditioned sets being doubleton subsets of its conditioning set {124}. These are
nodes {12}, {24} and {14;2}.

5.2.1 Partial and multiple correlations

One can notice that Joe’s choice of partial correlations in eq.(5.1) corresponds to a
partial correlation specification on the D-vine (compare with Fig. 5.1d). However
the best choice for computing ordinary product moment correlations from partial
correlations is a C-vine. For example, determining p34 from ps4.12 in the C-vine
in Fig. 5.1c can be done recursively in two steps with eq.(2.1) solved for p;;., as
follows:

step 1:  p3a1 = P34;12\/(1 — p33.0) (1 = p34.1) + paziap2ai,

step 2: P31 = P34;1\/(1 — p33)(1 = p3,) + p13p1a-

Notice that only partial correlations specified in the vine appear in the formulae.
This is not the case with the partial correlations specified on a D-vine.

We adopt the notation D({L}) for the determinant of the correlation matrix
with random variables indexed by the set L.

Definition 5.2.2 (Multiple correlation). The multiple correlation Ryga—1,..1y of
variable X4 with respect to Xq_1,...,X1 is given by:

D({1,...,d})
1—Riy 1 1y = — Cw

where D({1,...,d}) is the determinant of the correlation matriz R and Cgq is
the (d,d) cofactor of R. By permuting indices, other multiple correlations in d
variables are defined.
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The multiple correlation satisfies [see Kendall and Stuart, 1961]:

..........

= (1- 03,1)(1 - 03,2;1)(1 - p3,3;2,1) (= p?l,dfl;d72 ,,,,, 1)-

The determinant of a correlation matrix for d random variables can be expressed
as a product of terms involving multiple correlations [Kendall and Stuart, 1961]:

D({l, cndb) = (1 R?j{d—l,.“,l})(l - Rz—l{d—Q,“.,l}) (1= R§{1})
= (1= Rig-1,..1p)DUL,....d = 1}). (5.3)
Lemma 5.2.2. Leti,j ¢ L.
|, = DULLIDDAL).
~ D({i, L})D({j, L})
Proof. From eq.(5.2) with permuted indices we have

2
» 1Ry
PP T TR

R
i{L}

Use eq.(5.3) to simplify the terms on the right hand side to obtain the result.
This simplifies the proof of Lemma 2 in [Joe, 2006]. ]

5.2.2 Jacobian of the transformation from unconditional correlations to
the set of partial correlations

We investigate the Jacobian matrix for the transform T of a vector of ordinary
product moment correlations Q (all cells of the upper triangle part of a correlation
matrix R arranged in a row vector form) to a vector P of partial correlations on
a regular vine. Both of these vectors have the same length by the construction of
a regular vine. The elements of P are

. d
P = pcy,,conpis 1=1,.0, (2> .

Let the partial correlations in P be ordered lexicographically as follows: first
order partial correlations in the top tree 17 lexicographically, then order partial
correlations in the tree T, lexicographically, and so on. Reorder the product
moment correlations in Q correspondingly simply by removing the conditioning
sets from the partial correlations. Hence for the partial correlation specification on
the regular vine in Figure 5.1b we have defined subsets P(Y) and Q™ i = 1,2, 3,4,
of P and Q respectively as

P(l) = {p127p233p24ap45}7 Q(l) = {p12a P23, P247P45}a
P — {p13;2, pr4;2, p25iat, Q(g) = {p13, P14, P25},
P®) = {p15:04, p3aia}, Q® = {p15, paa},

PW = {035;124}, Q(4) = {035}-
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This order will be advantageous for deriving the Jacobian of the transformation T
in a simple form. In the following pages we derive the appropriate conditions for
this transformation to ensure the joint density of product moment correlations to
be proportional to a power of det(R) with the uniform distribution as a special
case.

We show the relationship between the form of the determinant of the correla-
tion matrix and the determinant of the Jacobian [Kurowicka and Cooke, 2006b)].

Theorem 5.2.3. Let R be a d-dimensional correlation matriz and P the corre-
sponding vector of partial correlations on a regular vine. One has then

) (%)
det(R) = [[(1 - P2) = [](1 - o2, conm))- (5.4)

i=1 i=1

This is an important theorem as it allows us to express the determinant of
a product moment correlation matrix as a product of 1 minus squared partial
correlations on any regular vine. Joe [2006] provides the special case of this
formula for D-vines. We show that the Jacobian of the transformation T also
includes the same partial correlations as in eq.(5.4).

Lemma 5.2.4. Let p;;.1, be a partial correlation of order |L|. There is no other
partial correlation psi.p., of order |L| in the regular vine, such that

apst;Dst
Ipij 70
Proof. The partial derivative Opg.p,,/Opi; # 0 if and only if set {4, j} is in the
constraint set {s,t¢, Ds}. By Property 3, {s,t} # {i,j}, thus either one of the
elements, ¢ or j, must be in {s,t} and the other in Dy, or both {i,j} C Dg. In
case of the first situation assume without loss of generality that s =i and j € Dg;.
That means that one of the m-children of py.p,, has constraint set {7, j, Ds;\{j} }.
This cannot happen because of Lemma 5.2.1. The second situation when {i,j} C
Dy, also cannot happen because of Property 3 and Lemma 5.2.1. |

Theorem 5.2.5. The Jacobian matriz J of the transform from Q to P has the

form
I 0
e
where I is the identity matriz of size (d—1) x (d—1), 0 is the matriz of 0’s of size

(d—1)x(d—1)(d—2)/2, A is a rectangular matriz of size (d—1)(d—2)/2x (d—1)
and B is a square lower triangular matriz of size (d—1)(d—2)/2x (d—1)(d—2)/2.

Proof. Let J;; denote the partial derivative of P; with respect to ;. The elements
P; and Q; are equal, i = 1,...,d — 1, and are not functions of any correlations
other than themselves, and hence for i =1,...,d—1and j=1,...,d(d—1)/1

if i = j;
Jij =13 j.’
0, otherwise.



Generating random correlation matrices with vines and Onion method 69

This gives the identity matrix I and the matrix of zeros 0 as the upper parts of the
Jacobian matrix. By Definition 2.2.1 an element of P is a function of product
moment correlations in UkSiQ(k) only. Combining this result with Lemma 5.2.4
gives matrices A and B, and B is lower triangular. |

Corollary 5.2.6. The determinant det(J) of the Jacobian matriz J is

det(J H 5 Qz (5.5)

The proof follows from B being lower triangular. For ¢ = 1,...,d — 1 the
partial derivative P;/0Q); = 1, hence the product in eq.(5.5) can start from
1=d.

5.2.3 Partial derivatives

We derive the expression for the partial derivative of partial correlation p;j,;, with
respect to its corresponding unconditional correlation p;;.

Lemma 5.2.7. Let L be a nonempty set with indices distinct from {i,j}. Then
Opigir, _ 1
Ipij B — R? _
Pii \JL-RY\/1-R

Proof. The lemma will be proved by induction. If L = {I} then from (2.1) we
have

(5.6)

8pij;l o 0 Pij — PilPjl
Or O\ \Ja - ph) (- )
1 1

VA= —p2) /0= RY )0 - RY)

and the lemma holds. Assume that eq.(5.6) holds for the conditioning set L
containing d nodes. Extend now the conditioning set to include d + 1 nodes, ie.
{k,L}. The corresponding partial derivative thanks to the Chain Rule and the
recursive formula (2.1) can be expressed as

OpijikL _ Opijikr OpijiL =
dpij Opij.. Opij \/1 - P%k;L \/1 - p?k;L \/1 - Riz{L} \/1 B RJZ{L}

This can be expanded further by using Lemma 5.2.2

2
Opijer | Ly 1 - RJ{L}

) )
Opij 1 Ri{kL} 1- ]{kL} \/1— {L}\/l
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Simplifying this equation yields
Opijikr _ 1
opij _ 2 — 2
P 1= Ry 1 R

Joe [2006] published a similar result:

8P1d;2...d—1 _
Op1a
D({2,...,d—1}) 1

VDL =D d) iR, TR .

.....

for one specific ordering of nodes using the properties of partial correlations on
a D-vine. We gave a more general proof with no reference to any specific type
of vine. This lemma shows that the partial derivative 0pss5,124/0p35 in case of Vs
can be expressed as

ap35~124 2 2 2
—— = ((1—- R 1-R
dpss (( 3{124})( 5{124}))

= ((1 - P§4;12)(1 - )0%3;2)(1 - 033) (11— /-)%5;24)(1 - 035;4)(1 - ,035))

Only partial correlations specified in V5 appear in this product.

1

Lemma 5.2.8. Suppose variable d is in the conditioned set of the top node of a
regqular vine. Then there is a permutation (ji,...,ja—1) of (1,...,d—1) such that
the product of all partial derivatives involving variable d is equal to

D({d—-1,...,1}) dﬁ (1 - sz{j“,.u,jl}ﬂ _

=2

Nl

Proof. Let {d,ji—1;Jd—2,.--,j1} be the constraint set of the single node e of
the top most tree Ty_;. Collect all m-descendants of e containing variable d.
By Property 4, d occurs only in the conditioned set of m-descendent nodes of
e and the conditioning set of a m-child is a subset of the conditioning set of
its m-parent. By Property 3, variable d occurs exactly once with every other
variable {d — 1,...,1} in the conditioned set of some node. Hence there is some
permutation (j1,...,Jq—1) of (1,...,d —1), such that in tree T; (i =1,...,d—1)
there is a partial correlation associated with one of the edges of the tree with
the constraint set {d, j;; ji—1,.-.,7J1}. By Lemma 5.2.7 the product of all partial
derivatives of partial correlations involving node d can be expressed as

d—1 d—1 d—1

apdji;ji_ o1 ) -1 ,
H 871 = H |:1 - Rd{jq‘,_l,,..,jl}:| : H |:1 - Rji{ji_1,...,j1}:|
Pdj;

=2 =2 =2

SIS

[N

rl:[1 (1= B3, ) DUA= 1., 1})] _ ,

=2
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where the last equality follows from the definition of the multiple correlation
coefficient via 1-R? .. .+ = D({ji,ji-1,--,j1})/D{ji-1,- ., 51}). i=1,
then 0pgj,.j;_1,....j1/Opaj; = 1 and therefore there is no need to include this term
in the above product. |

The determinant D({d —1,...,1}) does not depend in any particular way on
the indexing of the nodes {d — 1,...,1}. Let |J4| denote the determinant of the
Jacobian of the transform of Q to P for a regular vine on d nodes.

Lemma 5.2.9. Suppose variable d is in the conditioned set of the top node of a
reqular vine. Then there is a permutation (j1,...,ja—1) of (1,...,d—1) such that
the recursive formula for the determinant |J4| of the Jacobian for the transform

of Q to P 1is:

[N

=2

d—1 -
Jal = [Ja—a| | DHd—1,.... 1) [ (1 - Rfi{ju,.“,jl})]

Proof. By Corollary 5.2.6

= Han 1.Ha@z Han

where A is the set of all partial correlations on a regular vine without node d
in the constraint set, and B is the set of all partial correlations with d in the
conditioned set. By Corollary 5.2.6, the first product is |J4—1|. By Lemma 5.2.8,
the second product simplifies and the claimed result is obtained. |

Next is the main theorem of this chapter.

Theorem 5.2.10. The determinant |J4| of the Jacobian for the transform of Q
to P is

(@1 ~4
Jal = | T] (0= rerconp) P72 (5.7)

i=1

Proof. Without loss of generality, assume variable d is in the conditioned set of
the top node. Let (j1,...,J4—1) be the permutation of (1,...,d—1) from Lemma
5.2.8.

The proof goes by induction. For d = 3, the P; for ¢ = 1,2,3 are pj;,;,, p3j,
and p3j,.;, , respectively. We have by Lemma 5.2.9

[J2] _ 1
\/l_p?ué\/l_p?ﬁ’) \/1_,0?1j2\/1_P?13

and the theorem is satisfied. Assume that eq.(5.7) holds for d — 1. Then again by
Lemma 5.2.9 for d we have

d—1
Tal = [Taa) [D({d— LT (- Rﬁ{jil,._i,ﬁ})]

=2

T3] =

[N
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However with Theorem 5.2.3 and induction,

Nl
Il

Jg—1|D({d—1,...,1})"
_(dgl)_l (dgl)
= H (1 - p%1i7CQi;Di)d7#Di73 ’ H (1 o pzcl'i’CM;Di)

i=1 i=1

=

[(%3Y)
= | [ Q=02 conp)#P2 (5.8)
=1

(NI

The above product contains all terms with partial correlation from the vine on
nodes {d — 1,...,1} raised to the appropriate power. There are d — 2 terms
missing in order to obtain the claimed result. These are the terms involving
all partial correlations with d in the conditioned set. They are obtained from

d—1
L= (1 — Rﬁ{jiil)‘_wh}). By eq.(5.2)

d

|
—

d—1
2 2 d—(i—2)—2
(1 h Rd{jiflww.jl}') = H(l N pdvjifl§ji—27~"yj1) (=22, (5.9)

2 =2

.

Notice that ¢ — 2 in the exponent is the cardinality of the conditioning set. Hence
by combining eq.(5.8) with (5.9) we prove the theorem. |

The product in eq.(5.7) contains terms with all the partial correlations assigned
to the edges of a regular vine taken to the appropriate power depending on the
cardinality of the conditioning set. It does not explicitly include the term with
the top most partial correlation with the highest cardinality of the conditioning
set, i.e., for i = (g), but its exponent according to the formula would be 0 anyway,
hence index ¢ can go safely from 1 to (g) in eq.(5.7).

The above calculations can also be carried out in a simplified form for C-vines.
Let V be a C-vine on d nodes with node 1 as the root of the vine. Then one can
introduce a partial correlation specification on the nodes of this vine and present
them in the form of a matrix:

1 p12 p13 ... pra-1 P1,d
1 p231 ... p2a—1;1 P2.,d;1
R o= |
1 Pd—1,d;1...d—2
1

The partial derivative of pg—1 4;1...a—2 With respect to pg—1 4 is
d—2

MH

apdq,d

Opd—1,d;1...i
Opa- 1,d;1...i—1

H [(1 - 03,1;1...1—1)(1 - 03—1,1‘;14..1—1)] )

=
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where we assume the conditioning set {1,...,i— 1} for i = 1 to be the empty set.
For the lower order partial correlations one has

i—1

Opjjtnil..j—1 3 -

R H [(1 - p?,i;l...ifl)(l - P?+n,i;1...if1)]
i=1

[N

9pj,j+n

forl<j<d-land2<j+n<d.
The determinant |J4| of the Jacobian for the transform of Q to P for the
partial correlations on a C-vine is

d—2 d
al =T T - )™ (5.10)

k=11i=k+1

N|=

All partial correlations from the correlation matrix R except pg—1,4:1,....d—2
appear in the expression (5.10). However this term can also be added safely
because its exponent would be 0 (d — k — 1, where k = d — 1). Therefore k in the
first product in (5.10) can increase up to d — 1 instead of d — 2. We make this
adjustment in the subsequent calculations.

5.2.4 Algorithm for generating correlation matrices with vines

We show how to use the theorems to generate random correlation matrices such
that the density of the random correlation matrix is invariant under the choice of
partial correlation vine. Following the calculations of Joe [2006] we employ the
linearly transformed Beta(a, ) distribution on the interval (—1,1) to simulate
partial correlations. The density g of this random variable is

272a+1 1 272a+11'\(2a)
B(a, @) B I'?(a) (
where B is the beta function.

Suppose pcy;.c..:D; has a Beta(8;,5;) density on (—1,1) and its realization
is denoted by pc,; c,::p;- Similarly, let the realization of an ordinary product
moment correlation pc,, c,; be denoted by gc,,.c,;- Then the joint density f of
ordinary product moment correlations in R is proportional to

f(qclichi; I<i< d(d - 1)/2) X
(2)

g(z;a) = (1- xz)o‘* — xz)afl, (5.11)

(2)

_ i
H g(pC1j,C2J;DJ ) BJ) : |‘]d| = H(l - pcl_7'7C2j§Dj)BJ 2 (5'12)
j=1 j=1
The exponent 3; — d_ﬁD" is a function of #D; = n for a given d. In order to

make this exponent equal to a constant n — 1, 8; will be replaced by «,, so that
oy, — (d—n)/2 =n—1; thus o, = 5+ <=2=2. We replace ; with a,, in eq.(5.12)
and use Theorem 5.2.3 to obtain

—~
N oA

)
f(qclzxc2i; I<i< d(d - 1)/2) =C4q (1 - pClj;C2j§Dj)n_1 =Cd det(R)n_la
j=1

(5.13)
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where ¢4 is the normalizing constant depending on the dimension d. The uniform
density is obtained for n = 1, which means that the marginal densities for partial

correlations pe,;.cy;:D; are Beta(#, #) on (—1,1), fori=1,...,d(d —
1)/2,

For the C-vine the above reasoning has the following implications. By eq.(5.10)
the joint density f of the ordinary product moment correlations is

d—1 d
i . ap g1 d=k=1
flagi<i<j<d)=ca[[ T[] Q=pha s)™ 772 (5.14)
k=11l=k+1

The exponent ap_1 — 1 — % is of the form 3; — dié’&D" as in eq.(5.12) with
#D; = k—1. Thus the density (5.14) is uniform if ag_; = % and the marginal
densities for partial correlations pg1,. k-1 (1 <k <d—1land k+1<7<d)in
the matrix R are Beta(9=k+l d=Ftl) on (—1,1).

The normalizing constant ¢4 for eq.(5.13) and (5.14) has the same formula as
the one derived in [Joe, 2006] since it does not depend on the specific vine used
in the calculations

cqg = 9oXKIi@n-2+d=k)(d—k)

d—1
< [[[Bo+4d—k—1),n+id—k-1))]"" (515
k=1

If n = 1 this equation simplifies to
d—1 k
1 E+1 k+1
o ik I | (X - EFT )
' Pt 2 72

We denote the realization of random matrix R by r. Elements of r are r;j;,
1 < 4,57 < d. The algorithm for generating correlation matrices with density
proportional to [det(r)]"~1, n > 1 is quite simple using the vine method based on
a C-vine.

Algorithm 5.2.1 (Generating random correlation matrices with C-vines).
1. Initialization 5 =n+ (d —1)/2.
2. Loop for k=1,...,d— 1.
a) B 6 —3;
b) Loop fori =k+1,...,d;

i) generate py ;1. k-1 ~ Beta(3,3) on (—1,1);
ii) use recursive formula (2.1) on pg:1,.. k—1 t0 g€t Qi = Tk = T k-

)

3. Return r, a d x d correlation matrix.
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AT '
=seetseston Ui,

Figure 5.2: Boundary of the set of all triples (pi2, p13, p23) leading to semi-positive
definite 3-dimensional correlation matrices.

Because the partial correlations in a regular vine can independently take va-
lues in the interval (—1,1), one could more generally assign an arbitrary density
i, supported on (—1,1), to pcy, cy,:0:» and get a joint density for the correlation

d

matrix by multiplying ]_[Z(i)1 9i(Pcyi.Cyiip;) by the Jacobian. This density in ge-
neral is not invariant under the choice of partial correlation vine, but by choosing
the vine and the g; appropriately, one could get random correlation matrices that
have larger correlations at a few particular pairs.

5.3 Onion method

Another interesting method of sampling uniformly from the set of correlation
matrices was the method proposed in [Ghosh and Henderson, 2003]. We give
a simpler explanation of their method, together with an extension to random
correlation matrices with density proportional to [det(r)]7~! for n > 0. With the
derivation, we check that the normalization constant is the same as that given in
[Joe, 2006].

5.3.1 Background results

We start with some background results on the elliptically contoured distributions
[see Joe, 1997]. Consider the spherical density c¢(1 — w/w)f~! for w € R¥,
w!w < 1, where ¢ is the normalizing constant. If W has this density, then it
has the stochastic representation W = VU where V? ~ Beta(k/2,3) and U is
uniform on the surface of the k-dimensional hypersphere. If Z = AW, where A
is a k X k non-singular matrix, then the density of Z is

cldet(AAT)]7V2(1 — 2T [AAT|12)P !
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over z such that z7 [ATA] 'z < 1.

Lemma 5.3.1. The normalization constant c of the spherically contoured density
c(1—wlw)B=1 s
c=T(B+k/2)m"?/T(B).

Proof. From known results on elliptical densities, the density of the radial direc-
tion V is
eSp(1 —v?)P~ k1 0 <w <1,

where Sy = 27%/2/T'(k/2). The density of Y = V2 is
cSp(1—y)? tyB =2 Ly 2 = LeS gt P 1 —y)PTh, o<y <1,
This is a Beta(k/2, 3) density, so that

_TGEEY TR
- T(k/2)T(B) ECENC

1
§CS]€

The onion method is based on the fact that any correlation matrix of size
(k+1) x (k+ 1) can be partitioned as

T z
Tp41 = ZT 1]

where ry is an k x k correlation matrix and z is a k-vector of correlations. From
standard results we have det(ryy1) = det(rg) - (1 — z”r;'z). Let the upper
case letter of ry, z, rpy1 denote random vectors and matrices and let 3, 8, >
0 be two known parameters. If Ry has density proportional to [det(ry)]?* 1,
and Z given Ry, = rj, has density proportional to [det(ry)]"*/2(1 — z"r, 'z)’!
(hence it is elliptically contoured), then the density of Ry is proportional to
[det(ry,)]?*=3/2(1 —27r; 'z)P~1. If one sets B, = B+ 3, then the density of Ri1
is proportional to [det(ry,1)]? L.

Because the density in eq.(5.11) is proportional to (1 — u?)*~1, which is a

power of det (11L Y

1) = 1 — w2, it can be used to generate r;.

5.3.2 Algorithm for generating random correlation matrices

Combining the above results yields the following algorithm for the extended onion
method to get random correlation matrices in dimension d with density propor-
tional to [det(r)]"" 1, n > 1

Algorithm 5.3.1 (Generating random correlation matrices with the Onion me-
thod).

1. Initialization. 8 = n+ (d — 2)/2, r12 < 2u — 1, where u ~ Beta(s, 3),

1 T12
H( 1).
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2. Loop for k=2,...,d—1.

a) f—f— 3
b) generate y ~ Beta(k/2, 3)

T

¢) generate u = (uq,...,ug)" uniform on the surface of k-dimensional

hypersphere;

d) w «— y'/?u, obtain A such that AA” =r, set z — Aw;
Jre |5 E
e ZT 1 .
3. Return r, a d x d correlation matrix.

In step c), it should be numerically faster to use A from the Cholesky decom-
position of r rather than r'/? based on the singular value decomposition. The
latter is indicated in [Ghosh and Henderson, 2003].

5.3.3 Derivation of the normalizing constant

As in case of the vine method, every off-diagonal element of the random correlation
matrix R has a marginal density Beta(n+ [d —2]/2, n+[d—2]/2) on (—1,1). For
the special case of = 1 leading to uniform over the space of correlation matrices,
the marginal density of every correlation is Beta(d/2,d/2) on (—1,1).

In the kth step of the algorithm, § = n + [d — 1 — k]/2. Using Lemma 5.3.1
and eq.(5.11), the reciprocal normalizing constant is

d—1 _k 1
ef = 22n+d—3r2(n+g_l) m:l(n+ =5=*)
L@2p+d-2) 1 T(n+ =k 4+ 5)
2 d d—1 __k d—1—k
L@y +d-2) L1+ 4t

We show that the expressions for the normalizing constants (5.15) and (5.16)
are equivalent. The proof makes use of the duplication formula relation [see
Abramowitz and Stegun, 1964, Duplication formula, pp. 256]

1

I'(2t) _ 2(2t71)]‘—‘(t +3) (1) 92t—1 _ mzI(t)

0 riy T T(t+ 1)

(5.17)

Proof. We start with eq.(5.15). By the duplication formula (5.17) with t = n +
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(d—1—-k)/2 we have

d1 g pdk
l22(n+(d1k)/2)1 2+ =74)
)

R T2n+d—1—k
L Ay + d=Lk) d=k
o [T+ ==t +3)

_ pamt ﬁrd—k< d—l—k:)
Pt (n+ 454 o5 2
N S
k=2

Start the indexing in the second product from 1 instead of 2 and increase k by 1.
The upper limit can stay d — 1 because —(d — k) +1 =0 for k =d — 1.

Hk 17T2 — d—k d*l*k
Cd:F“w“HF 2 >

k

This is the expression for ¢, with

1
o2n+d— ST+ 4 —1) ~w2l(n
(%+d 2) T+

where k = 1. =

The expression for the normalizing constant can be further simplified for n = 1.

Theorem 5.3.2. Ifn =1 then the normalizing constant cq can be expressed as

§ (d—1)/2
d>—1)/4 _ I, I'(2k) g .
7l )/ ST Fai (2 if d is odd;

Cq =
3d2 —4d)/4 d (d— 2)/2
d(d—2)/4 2 /AT (4) 52 r(2k)
Td-1(d) )

if d is even.

Proof. We rearrange terms in eq.(5.16) with = 1:

J qd(d—1)/4 dl_[lr (korl) pdd—1)/4 d=1 <k . 1>
d = —— = —_ - .
Fd 1(d;1 2 Fd—l(d;rl)

5+ (5.18)
k=1
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If d is odd then by using the duplication formula (5.17) we obtain
d—1 k (d—1)/2
IIr (2 ) H r(k +1)
k=1
(d—1)/2 1 _ (d—1)/2
I(2k) 72 m(d=1)/4
= H I(k r( 2T = e kli[l '(2k).  (5.19)

Substituting eq.(5.19) in to eq.(5.18) yields the claimed result. If d is even then

T (@-2)/2 d\ (d—2)/4 (d=2)/2
kil T () a2
EF<2+2> () H Lk )—W IT rewx.

k=1
(5.20)
Substitute eq.(5.20) in to eq.(5.18) gives
(d®=2)/4 (g (d—2)/2
/ 4 2
Cd d 2)2/4Fd 1 (d+ ) H F(2k)
k=1

Apply the duplication formula to I'4~1 (%) and cancel common terms to obtain
the final result. ]

All arguments of the gamma functions in the formulae presented in The-
orem 5.3.2 are integers and hence can be replaced with factorials. Note that
the exponent of 7 in Theorem 5.3.2 for an odd number d is the same as that
for the next largest even number; for d = 3,4, ..., the exponents are respectively
2,2,6,6,12,12, 20, 20,.. ..

5.4 Computational time analysis

Both the vine method and the onion method have been implemented in compu-
ter software and compared in terms of time required to generate a given number
of random correlation matrices. Two different software platforms were used for
this task, namely the scripting language of MATLAB and a low level programming
language C. We used the built-in functions of MATLAB to generate Beta and Gaus-
sian distributed random variables and to compute the Cholesky decomposition of
correlation matrices required by the onion method. These functions of MATLAB
are compiled and cannot be edited. The onion method implemented in MATLAB
computes the full Cholesky decomposition at each iteration of the generating pro-
cedure. However the amount of calculations can be limited by implementing a
Cholesky decomposition computed incrementally — that is a new row is added
at each stage when a new z is generated. We took this approach when implemen-
ting the onion method in C; without the incremental Cholesky decomposition,
the onion method was much slower than the vine method in the C programming
language. It does not save any computational time in MATLAB compared to the
built-in Cholesky decomposition function because the advantage of having fewer
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Table 5.1: Time in seconds required to gemerate 5000 correlation matrices of given
dimension.

Dimension || compiled C code with | m-script in Matlab 2007b

full optimization enabled

(/0x)

onion C-vine D-vine | onion C-vine D-vine
5 0.015 0.016 0.031 1.422 0.775 1.281
10 0.047  0.078 0.172 | 3.356 1.806 6.067
15 0.109 0.234 0.547 | 5.346 3.075 15.523
20 0.187 0.406 1.438 | 7.397  4.679 30.835
25 0.281 0.687 3.250 | 9.591 6.798 53.444
30 0.437 1.078 6.625 | 11.856 9.348 84.958
35 0.609 1.562 12.344 | 14.411 12.564 127.388
40 0.813 2.203 21.438 | 17.035 16.718 182.578
45 1.063 4.125 35.312 | 19.868 21.493 252.862
50 1.344 3.891 55.515 | 22.839 27.222 340.846
60 2.094 6.266 124.203 | 29.530 41.767 577.313
70 3.078 9.375 246.656 | 47.140 84.795 918.209
80 4.328 13.406 451.422 | 82.422 46.374 1404.285

operations is wasted on executing a non-compiled code. The programs have been
run on a desktop PC with Intel Core 2 Duo (2 x 3.2 GHz) processor, 3GB of
RAM memory and Windows XP SP3 operating system. The source code of the
software used for the analysis is available from the authors upon request.

Table 5.1 lists times necessary to complete the task of generating 5000 random
correlation matrices of given dimension. The compiled code is faster as expected
and the incremental Cholesky decomposition routine allows the onion method to
be the clear winner in this case. The difference between the onion method and the
vine method in terms of the required calculation time gets bigger as the dimension
increases. We can see a different picture on the Matlab 2007b platform. The
vine method is faster than the onion method for lower dimensions of correlation
matrices (d < 44), but our tests showed that this also depends on the processor
used for calculations. We have included the results for the vine method based
on the D-vine for reference. The C-vine based method of generating correlation
matrices performs better in terms of the execution time by a large margin.

5.5 Conclusions

The main goal of this paper was to study and improve existing methods of genera-
ting random correlation matrices. Two of such methods include the onion method
of Ghosh and Henderson [2003] and the vine method recently proposed by Joe
[2006]. Originally the vine method was based on the so-called D-vine. We extend
this methodology to any regular vine by studying the relationship between the
multiple correlation and partial correlations on a regular vine. The C-vine exhi-
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bits computational advantage for generating random correlation matrices, since
the recursive formula (2.1) operates only on partial correlations that are already
specified on a vine. It is the only vine with this property. This simplifies the
generating algorithm and limits the number of calculations.

We also give a simpler explanation of the onion method in terms of elliptical
distributions. The generalization of this method yields a procedure to sample from
the set of positive definite correlation matrices with joint densities of correlations
proportional to det(r)?~! with > 0. This allows the choice of the method suited
to the need. The efficiency of the algorithms for generating random correlation
matrices depends heavily on the programming language used for implementation.
Preferably both methods would be implemented and benchmarked before the final
decision is made on the usage of one or another, however the onion method with
some heavy optimizations (like incremental Cholesky decomposition) seems to
have an edge in this regard.

For the vine method, a particular regular vine should be used if the partial
correlations associated with this vine are of main interest (i.e., the sequence of
conditioning is most natural for the variables) and they are needed as part of the
generation of the random correlation matrix.
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CHAPTER 6

Sample-based estimation of correlation
ratio with polynomial approximation

There are in fact two things, science and opinion;
the former begets knowledge, the latter
ignorance.

Hippocrates

6.1 Introduction

Suppose a model is defined as a function G = G(X1,Xs,...,X,). The aim
of sensitivity analysis is to investigate how much the uncertainty in X;’s, ¢ =
1,2,...,n, or combinations thereof, contributes to the uncertainty in G. In this
paper we concentrate on the notion of the so-called correlation ratio — a variance
based measure.

The correlation ratio (CR) of random variable G with respect to random
variable X is defined as

Var(E(G\X)).

n°(G|X) = Var(G)

Evidently, this is not a correlation coefficient of random variables; it is not sym-
metric and it is always non-negative.

Thanks largely to the work of McKay [1997] the correlation ratio is becoming
recognized as a key notion in global sensitivity analysis. Other authors have

5This chapter is based on the publication Sample-based estimation of correlation ratio with
polynomial approximation by Daniel Lewandowski, Roger M. Cooke and Radboud J. Duintjer
Tebbens published in ACM Transactions on Modeling and Computer Simulation (TOMACS),
Volume 18, Issue 1, pages 1-17, 2007.
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studied this subject as well [e.g. Chan et al., 1997, Ishigami and Homma, 1990,
Cooke and Lewandowski, 2001]. Saltelli et al. [2000a] offer an extensive overview of
sensitivity analysis methods, including variance-based approaches. Recently the
correlation ratio has been applied and compared with other sensitivity measures in
[Duintjer Tebbens et al., 2008]. Theoretically, the correlation ratio is an attractive
tool for quantifying importance because it represents the fraction of the variance
of G that can be attributed to variation of X. However, there is an evident
problem with computing it in a simple and accurate manner — estimation of the
conditional expectation E(G|X) is the real challenge. A number of algorithms
have been developed to overcome this difficulty, some more successful than others.
Instructive among the lesser successful are the methods proposed by Kendall and
Stuart [1961] and Sobol’ [1993]. The first relies on a user-selected parameter (the
number of bins for discretizing the model) which fully controls the value of the
estimates. The second leads to very large deviations in the results and possible
negative values although some may consider this as a strength of this method as
it gives unbiased estimates. In general there is no need to approximate E(G|X) in
order to estimate the correlation ratio (methods like FAST and Sobol’ explained
in [Saltelli et al., 2000b] do not deal with that at all, for instance). However the
regression curve E(G|X) arises naturally in sensitivity analysis and having that
determined is a useful byproduct.

Recognizing the drawbacks of the standard estimation methods, we look for
methods which:

1. are based only on samples and do not require additional simulation and/or
special simulation methods,

2. give an approximation of E(G|X) in analytical form,

3. do not require any input from the user, as this could control the result,
4. are generic, ie. not model specific,

5. are easy to implement in computer code,

6. have accuracy at least on par with other known methods.

7. have little computational cost.

The first point really means that we are interested in methods of estimating the
correlation ratio from pseudo random or fully random samples only. The Bay-
esian method of Oakley and O’Hagan [2004], described in section 6.5.1, performs
best if the samples for input variables are carefully chosen and therefore needs a
special sampling algorithm. However, it also works with pseudo random samples
very well, and therefore we include this method in our comparison. Theorems
introduced in this paper help develop a new method of estimating correlation ra-
tios complying with this specification. The main objective therefore is to present
and compare 3 variants of this new method and decide which one performs best.
The best adaptation of the method will be compared with two already known
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state-of-the-art methods of estimating the correlation ratio on an example of a
multivariate model.

This chapter is organized as follows. Section 6.2 places the correlation ra-
tio into a broader context of global sensitivity measures. Section 6.3 presents a
general definition of the correlation ratio and section 6.4 list properties of the cor-
relation ratio. Next, in section 6.5 we describe methods proposed by Oakley and
O’Hagan [2004] and Li et al. [2002]. Section 6.6 introduces 3 variations of the new
method of estimating the correlation ratio. The performance of this method is
investigated in section 6.7 with conclusions and discussion following in section 6.8.

6.2 Global sensitivity measures

The correlation ratio belongs to a family of global quantitative measures of im-
portance of input factors for a given model; it is a variance-based non-parametric
method closely related to Sobol” indices [Sobol’, 1993, Chan et al., 2000b]. Sobol’s
method relies on decomposing the model function G(U) into orthogonal sum-
mands of increasing dimensionality with zero mean, where U = (Uy,Us,...,U,)
is a vector of length n of statistically independent uniform random variables on
[0,1] with realizations u:

i=1 1<i<j<n
where Gy denotes the expectation of G(U) and

Gz(uz) = E(G‘ui)—Go;
Gij(ui,uj) = E(G\ui,uj) — Gl(ul) — Gj(uj) — GQ; etc.

Similarly, higher—order terms can be obtained. This is the starting point for
the high-dimensional model representations (HDMR), tools for estimating G;’s.
HDMR expresses the model output G as a function expansion as given in eq.(6.1).
It can be generalized to non-uniform and correlated inputs as it is done in (see [Li
et al., 2006, Bedford, 1998]). Li et al. [2002] approximate the HDMR component
functions analytically by orthonormal polynomials, polynomial spline functions
and ordinary polynomials (formulae exist for determining coefficients of ortho-
normal polynomials), as well as numerically by using kernel smoothers. They do
not, however, consider the problem of overfitting which is evidently possible if the
order of the polynomial is too high.

With the assumption of independence of inputs and given eq.(6.1) the variance
of G may be written:

Var(G(U)) = E:’L:l Var(Gi(X;)) + Zl§i<j§n Var(Gij(Xi, Xj))+ (6.2)
+~--+VGT(GI,Q,...,7L(X13X27'")X’n))' '
The Sobol’” k-th order sensitivity index is defined as

S o Var(GihA..,ik(Uil)---ank))
Var(G) '
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Sobol’ indices sum up to unity. The first order Sobol’ indices were used already
by Pearson [1903].

The role of the correlation ratio in quantifying importance is based on the
well-known relation (which does not require {U;} to be independent):

Var(G) = E(Var(G|U;)) + Var(E(G|U;)),

If the expected reduction in variance of G with U; fixed is small, then the variance
Var(E(G|U;)) is large. Normalizing by Var(G), %%U)) represents the fraction
of the variance of G which is ”explained” by U;. The use of Sobol’ indices as a
sensitivity measure is then motivated by the fact that they explain all the variance,
according to eq.(6.2). For a more detailed overview of Sobol” indices see [Chan
et al., 2000a]. The following section suggests another motivation of the correlation

ratio, not based on variance reduction, but on optimal prediction.

6.3 Definition of correlation ratio

Building on the concept of Sobol’” indices, we more generally define for any random
vector X = (X1, Xs,...,X,) and any subset X(*) of k& components of X, (1 <
kE<n):

Definition 6.3.1. The correlation ratio n* of G = G(X) with respect a to random
vector X*) s
772 (G|X(k)) — Var (E (G|X(k))) . (6.3)
Var(G)
The correlation ratio can be motivated in terms of optimal prediction. One
may ask for which function f : R¥ — R with U)%( ) < oo is the correlation

X (k)
p*(G, f(X*))) maximal? The answer is given by the generalized result of Cooke
and Lewandowski [2001] (similar to a result of Whittle [1992]).

Theorem 6.3.1. Let X*), G and and f(X*)) have finite variance. Then

_ Var(E(G|X*)))

Var(G) = n*(GIx®).

max p? (G, f(XM)) = p*(G@, B(GIXY))

Proof. Let §(X®*)) be any function with finite variance and write f(X®*)) =
E(GX®) + §(XW). Put A = 0f gixm ), B = Cov(B(GIXW),6(XW)) =

Cov(G,5(XM)), C = 0%, and D = o2. Then

A+ B)?
(G, E(GIXM) 4+ 5(X*®) (AT BS
Tm@x®) A
O'é e
2
(A+B) <4 < B?< AD.

C(A+D+2B) — C
The latter inequality follows from the Cauchy-Schwarz inequality. ]
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If k£ = 1 then the conditioning set of variables X(*) contains only one element
which we denote by X. If the optimal regression of G on X®*) = {X} is linear,
that is, E(G|X) = aX + b, then

Var(E(G|X)) = Var(aX +b) =
Cov’(aX +b,X) Cov’(E(G|X),X) Cov’(G,X)
Var(X) B Var(X) - Var(X)

and eq.(6.3) becomes the product moment correlation squared p?(G, X).

Sobol’ indices coincide with the correlation ratio when the explanatory va-
riables are independent uniforms. However, when the variables are not inde-
pendent, the motivation of Sobol” indices in terms of variance decomposition,
as in eq.(6.2) is lost. It suffices to consider G = X +Y with X = Y. Then
n*(G|X) = n*(G|Y) = n*(G|(X,Y)) = 1, and they obviously do not sum to one.
The correlation ratio admits a more general motivation in terms of prediction,
according to Theorem 6.3.1.

Remark. We know from Theorem 6.3.1 that (G| X) = p?(G, X) if the regression
curve F(G|X) is linear. Hence the notion of correlation ratio can be used for
testing the linearity of the regression. Kendall and Stuart [1961] test the linearity
of the regression with statistic

k= 12(GIX) - p*(G, X). (6.4)
The statistic 0 < k < 1, with £ = 0 if E(G|X) is a linear function of X.

6.4 Properties of correlation ratios

The first lemma is straightforward and uses the linearity property of covariance.
We consider a partition of X into s disjoint subsets X! of its components such
that X = (X}, X2,...,X%) (X?#0,i=1,...,s; s > 1). The components of a
given subset do not have to be independent. If the {X‘} are independent, then
their correlation ratio’s explain all of the variance.

Lemma 6.4.1. Let G = G(X); X = (X}, X2,....X%) (XP #0,i=1,...,s;
s> 1), then:

Cov <G,iE(G|X")> = iVar (E(GIX")).

i=1

The next proposition is straightforward, and Proposition 6.4.3 uses Lemma
6.4.1.

Proposition 6.4.2. Let g; : R¥ — R where k; is the length of vector X*, i =
1,...,s. Let {X*};_, be mutually independent, and let G = 377 g;(X*) with o2, <
00, such that 0% > 0. Then

> n@Ex) =1
1=1
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Proof.

E(GX) =E (Z gj(Xj)Xi) =g:i(X") + ) E(g;(X)),

j=1 i

so that Var(E(G|X")) = Var(g;(X7?)). Since :

Var(G) =Y Var(g:i(X")

i=1

we have:

- > Var(B(GIXY))
; (G X,) = Var ) ~ 1.

The additive form of G is essential. Let G =X Y, X 1Y, E(X)=E(Y) =0.
Then Var(E(G|X)) =Var(X - E(Y)) =0 = Var(E(G|Y)). Without additivity
we can get only:

Proposition 6.4.3. Let G = G(X', X2, ..., X*) with Cov(E(G|X?), E(G|XY)) =
0, i # j; then

Yo PEX) <1

i=1

Proof. Lemma 6.4.1 and the zero covariance assumption imply

Cov (G,iE(Gp{Z) ZVaT (GIX")) = Var (i:E(G|Xi)>. (6.5)

i=1 i=1

On the other hand by the properties of variance

ar (G - iE(Gp{i)) =
i=2
Var(G)+ Var (i E(G|Xl)> —2Cov (G, zs: E(GXi)>

=2 =2

= Var(G)—Var <Z E(G|Xi)> > 0. (6.6)

=2

Then, by eq.(6.5) and (6.6) we have:

p (E(G|X1), G- ZE(GW)) =

Cov(E(GIX'), G — ZfzzE(G|Xi))
VVar(E(GIX1Y))\/Var(G) — Var (3.;_, E(G]X?))
Var(E(G |X1))
VVar(G) = Var (7, B(GIXT)) ~
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Thus
Var(E(G|XY)) + Var <Z E(G|Xi)> < Var(Q).
i=2
|
Proposition 6.4.4. Ifk =1 (thus X*) = (X)), then
(G, X)
2(1X) = p(—7
TR = X Barx))
Proof. Since Cov(G, X) = Cov(E(G|X), X),
(G, X) Cov(E(G|X),X) Var(E(G|X))
’ Var(G)Var(X) Var(E(G|X))
B Cov(E(G|X),X)  Var(E(G|X))
Var(E(G|X))Var(X) Var(G)
= p(B(G|X),X) p*(G, B(G|X)).
However p?(G, E(G|X)) = n*(G|X). [ ]
Proposition 6.4.5. Let h: R¥ — R™, m < k, with 0}21(X<k)) < 00. Then

n?(GIX®) = n?(GIWX®)).

Proof. Consider quantities max; p?(G, f(X*))) and max, p?(G, g(h(X*)))). The
maximization procedure over all fs maximizes over all possible goh as well. Hence

max P(GIF (X)) > max P*(Glg(h(XM))).

6.5 Standard methods of estimating correlation ratio

State-of-the-art methods for computing the correlation ratio include the Bayesian
approach of Oakley and O’Hagan [2004] and State Dependent Parameter (SDP)
model by Ratto et al. [2006]. We describe them both briefly here. The HDMR
method of Li et al. [2002] stops where we start. It approximates the component
functions but does not deal with the prevention of overfitting. It must be noted
that a variety of other approaches exist for carrying out this task, like FAST
[see Saltelli et al., 1999]. We do not consider these in this paper in view of the
requirements formulated in section 6.1.

It is assumed from now on that the sample size is m. Symbol x; denotes the
Jj-th vector of realizations of X and x; ; is the j-th realization of Xj.
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6.5.1 Bayesian approach

The first method employs the Bayesian paradigm by emulating G as a Gaussian
process whose parameters are assigned hyper prior distributions and updating
using model evaluations G(x;), j = 1,...,m. For further reading on this method
please refer to the article of Oakley and O’Hagan [2004].

The biggest advantage of this approach is that it does not require a large num-
ber of simulations and therefore it is best suited for applications when computing
the model evaluations is rather complicated and time consuming. On the other
hand it requires the user to specify many parameters and to implement routines
for numerical integration. The sensitivity of this method to various specifications
of the input parameters is yet to be determined as there is no study on this subject
(the choice of samples for instance).

6.5.2 State Dependent Parameter models

The State Dependent Parameter modelling developed in [Ratto et al., 2006], in
turn, can be applied to any Monte Carlo sample and can be seen as one of the
postprocessing methods, ie. the analysis is done after the creation of the sample.
The idea is to extract the signal (E(G|X;)) from noisy data (G(X;)). In order
to prepare simulation data, which does not need to exhibit any temporal order,
for smoothing with this method one has to sort the values of X; in an increasing
order (with Y = G(X;) sorted accordingly) and pretend that this ordered statistic
specifies a time series. The change in Y as X; changes its value from z;; to
Z; j+1 is modelled as a random walk process. The forward filtering algorithm
has been coupled with backward recursive smoothing in this case Fixed Interval
Smoothing algorithm since the data is available for the whole range and does not
come sequentially.

Unfortunately, there is no computer implementation of this method available
at the time of this writing. Therefore a full comparison of the new method with
the SDP approach is not possible although it clearly has potential.

6.5.3 Sobol’ method

Sobol’ [1993] introduced a method using Monte—Carlo simulation. Let X., =
(X1,...,Xi—1, Xit1,...,Xn). If we can sample X/, from the conditional distri-
bution (X.;|X;) independently of X.;, and if the evaluation of G is not too
expensive, then the following simple algorithm may be applied:

Algorithm 6.5.1 (Estimation of correlation ratio with Sobol’s method).
1. Sample x from X

Compute G = G(x);

Sample x/_, from (X.;|X; = ;) independent of X ; = x.;;

Compute G' = G((z4,x.;));

Store Z = G - G';

RANEE- o B
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6. Repeat.
The average value of Z will approximate E(E?(G|X;)), from which the esti-

mation of the correlation ratio 7%(G|X;) may be computed as
E(E*(G|X;)) — B*(G)

2
GX; ~
r(GIX)) o

If X.; and X; are independent, then this algorithm poses no problems. If X ; and
X, are not independent, then it may be difficult to sample from (X.;|X;). The
biggest weakness of this method is the high variance of the estimates, especially
for small samples. It is not unusual to obtain negative values of the estimation if
the true value is close to 0.

It could be more reasonable to choose one of the postprocessing methods of
estimating the correlation ratio, i.e. estimate Var(E(G|X;)) based only on a large
sample generated before the analysis.

6.5.4 Kendall-Stuart method

Kendall and Stuart [1961] propose a method that might be described as “pede-
strian”. Let m be the number of samples per variable.

Algorithm 6.5.2 (Estimation of correlation ratio with Kendall-Stuart method).
1. Collect m samples of (G, X);

2. Order the X; values x;(1), ..., Tj(m) from smallest to largest;

3. Divide the samples into M cells C1, ..., Cys, where C; contains the samples
with the m; smallest X; values, C> contains samples with the mo smallest
X; values which are bigger than those in C1, etc.;

4. Compute éj =EGX,€Cj),j=1,..,M;

5. Compute the unbiased variance of these conditional expectations, weighted
by the number of samples, as

M -~

Var(B(G|X) ~ Var(@) = Y w

This is an intuitive transliteration of the mathematical definition. The good
news is that its badness is illuminating. The problem lies in the choice of M and
m;. If M is sufficiently large, then m; is either 0 or 1. Take only those Cj;’s
with m; = 1. Then C; contains exactly one sample, say (¢',x’) and E(G|X; €
C;) = ¢ for all j’s. Taking the variance of these numbers will simply return the
unconditional variance of G. On the other hand, if we take M = 1, then all sample
values (¢, x") will satisfy a; € Cy and E(G|X; € C1) = E(G), so the variance of
the conditional expectation will be zero. Appropriately choosing the size and
number of the cells C; we traverse the values between Var(G) and 0. Variations
on the pedestrian method using kernel estimators are discussed in [Kurowicka and
Cooke, 2006a], and experience the same issues.
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6.6 Polynomial approximation methods

The problems of estimating the correlation ratio are, for the most part, cau-
sed by the recurring issue of estimating the regression curve E(G|X) based on
data. There is a great deal of literature on the latter [Draper and Smith, 1998,
Kleinbaum et al., 1998]; but we propose a simpler strategy that can be easily
implemented.

For simplicity, we restrict attention to the case, where the explanandum X is
a one-dimensional random variable rather then a vector.

The method we propose assumes that the regression function is analytic, that is
it can be approximated as a Taylor expansion, i.e., a polynomial function. Having
said that one can immediately observe that Theorem 6.3.1 gives a good instrument
for estimating E(G|X). Intuitively, since the regression curve is a function that
maximizes p?(G, f(X)) over all possible f(X), then under the above assumption
of smoothness we are searching for a polynomial g4(X) of degree d that maximizes
p%(G, ga(X)). Optimization methods can be implemented with the coefficients of
the polynomial as independent variables.

6.6.1 Polynomial fit
For fixed d the optimization problem can be formulated as:

maximize p*(G, po + p1X + ... + paX?) (6.7)

Optimization routines are time consuming, however. The following theorem
states that equivalent results can be obtained by simply applying the least—squares
error method to fit the polynomial.

Theorem 6.6.1. Let G = G(X) with 0% < oo and X € X. Then
argmin E(G — f(X))? = E(G|X).
f

Proof. Decompose the variance of G — f(X;) in order to obtain
E(G — f(X))? = Var(G - f(X)) + E*(G — f(X)).

Minimizing the right hand side of the above equation implies setting E(G) =
E(f(X)) (hence E2(G — f(X)) = 0). Express f as

f(X) = E(GX) +4(X),
where E(§(X)) = 0, and note that

E(G E(G|X)) = E(E(GIX)?)
E(5(X) - E(GIX)) = B(E(GS(X)[X)) = B(G - 5(X)).
Then
E(G — (B(GIX) + 6(X)))* = B(G? + 6(X)?) — B(E(G|X)?)
attains its minimum when 6(X) = 0 and hence f(X) = E(G|X). |
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Henceforth we use the least squares error method to fit a polynomial to data.
If one still prefers to apply the optimization problem (6.7) then consider the
following. The solution of (6.7) is unique up to positive affine transformation
(since the correlation is invariant under positive affine transformations). It is very
likely that the approximation v(z) of the regression curve E(G|X = x) obtained in
that way will not even pass through the scatter plot of G vs X. On the other hand
the least-squares error approach always leads to a regression approximation v’(x)
that has this feature. Hence there exists a linear transformation a v(z)+b = v'(z),
where @ > 0 and b are real constants.

The next proposition gives formulae for calculating a and b in case E(G|X = x)
takes the form of a polynomial.

Proposition 6.6.2. Let p = (po,p1,-.-,pa), X = (1, X, X2 ..., X?%) and
* 2 <1 / . <7\ 2
p* = argmaxp (G,pX ), P zargmlnE<G—pX ) .
P P

Let v(X) = p*XT and v'(X) = p'XT. Then there exist real constants a # 0 and
b such that

where
Cov(G,v(X))
Var(v(X)) ’
b = E(G)—aE(w(X)).
Proof. Assume A to represent one of the p;’s, i = 1,2,...,d. Then let d/d\ denote
the operator of differentiation with respect to one of the coefficients of v = v(X).

Function v as a solution of the optimization problem (6.7) satisfies the following
equation

d 24 Cov(G,v) 2Lo

— log(p*(G,v)) = & — — @A _, 6.8

d\ og(p"(G,v)) Cov(G,v) o (68)
Note that % Oy = %ﬂﬁv) Substituting % 0, into (6.8) and simplifying yields

% Cov(G,v) _ Cov(v, d%\v)
Cov(G,v) o2

and therefore
4 Cov(G,v) _ Cov(G,v) _ Cov (G, LE(G|X) - 2)
Cov(v, %v) o2 Var (1E(G|X) - 2)

a

= a. (6.9)

The latter equality follows from Lemma 6.4.1. In order to obtain the formula for
b note that

a

E(v)=E (iE(GX) - Z) - EE(G) _b

and hence
b= E(G) — aE(v).
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The above theorem can be illustrated by applying both the least—squares error
and the optimization methods in order to determine v and v’. Simply determine
coefficients a and b by formulating a minimization problem of the sum of squared
differences between av(X) + b and G as a function of @ and b. Then compare
them with those obtained by using the formulae given by Proposition 6.6.2.

6.6.2 Prevention of overfitting

Fitting a polynomial to data introduces a problem of overfitting. The challenge
is not to fit (in the least-squares error sense) a function that predicts perfectly
values of the fitted sample, but a function that will be representative for the
whole population from which the samples were drawn. Therefore there is a need
for introducing a mechanism to prevent overfitting. Since it has been assumed that
the model is a polynomial, the only parameter that can be used for controlling the
overfitting is the degree of the polynomial. Once the degree is fixed the coefficients
are uniquely determined by applying the least-squares error method.

Ideally, the number of independent samples from the same joint distribution
is unlimited. How can we escape from the trap of overfitting then? One can use
the algorithm given below:

Algorithm 6.6.1 (Overfitting prevention).
1. Split the sample into test and validations samples.
2. Fit a polynomial of degree d to the test sample,

3. Calculate the test correlation ratio using this polynomial as the regression
curve,

4. Calculate correlation ratios for the remaining validation data sets using
the same polynomial as the regression curve (build up a distribution of
correlation ratios),

5. Check if the correlation ratio for the test sample is significantly higher than
the other ones.

Clearly, if the polynomial fit is representative only for the test sample, then
its correlation ratio will be in the tail of the distribution of remaining validation
correlation ratios and we can reject the null hypothesis that this given polynomial
is a good approximation to the regression curve. Otherwise, the correlation ratio
of the test sample will be somewhere closer to the median of the distribution and
gives no evidence to reject the null hypothesis.

This method can be applied only if evaluating a model is not computationally
intensive and a large number of data sets can be produced. If this is not the case
a different method can be applied.

In order to experimentally determine the distribution of correlation ratios
given only one data set, one may be tempted to use resampling methods. We give
an equal importance to the test part (polynomial fit, test correlation ratio) and the
validation part (determining the distribution of validation correlation ratios given
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Approximated density of correlation ratio
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Figure 6.1: FEmpirical distribution of correlation ratio obtained using the jackknife
method and the value of the original correlation ratio (red line).

the polynomial fit), thus we split the whole sample into two data sets of the same
size and fit a polynomial only to the test part of the sample. Then one can apply
various resampling methods (like bootstrap or jackknife) to the entire sample in
order to use as much data as possible and to create validation samples needed to
determine the distribution of correlation ratios. However this method does not
give satisfactory results because the created validation samples contain, among
others, samples used to obtain the fit. Experimenting with these resampling
methods showed that the test correlation ratio is always equal (jackknife) or close
(bootstrap) to the average of the empirical distribution of validation correlation
ratios. Figure 6.1 shows one example of such case. Validation samples are created
with the jackknife method and the test correlation ratio is exactly equal to the
average of the validation CR’s.

Therefore we consider three other methods for determining the optimal degree
of the polynomial estimation of the regression curve:

Adjusted R? This statistic is a rather standard tool used in regression analy-
sis for evaluating impact of additional variables on a model’s performance.
The multiple correlation R? can be computed as the squared correlation
p?(G,g4(X)). The adjusted R?, accounting for the number of parameters
in the model, is

n—1

P2 11 p2
adjR==1—(1 R)n—d—l

The adjusted R? can decrease if increasing the polynomial degree d is not
associated with a sufficient increase in R?. Choose the degree d maximizing
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the adjusted R2.

Early stopping This idea is based on an approach applied in machine learning
models such as neural networks. The sample is split into two subsets: a
test sample and a validation sample. A polynomial of degree d is fitted to
the test sample and used to estimate the correlation ratio for the validation
sample. Choose the lowest d such that the correlation ratio with polynomial
of degree d on the validation set is greater than with d + 1.

Wilcoxon rank sum test The one-sided Wilcoxon rank sum test also compares
two data sets of estimates of correlation ratio based on the test sample (data
set 1) and the validation sample (data set 2) and tries to detect the shift
in their distributions. The null hypothesis is that both distributions are
equal. The alternative is that data set 1 is statistically larger than data set
2. The test statistic is the sum of ranks of the test observations among all
combined and sorted test and validation observations. Its distribution can
be easily tabulated or approximated by the normal distribution [Hodges and
Lehmann, 1970].

Our specific application of this test relies on the following reasoning. First
split a given sample into two equally sized subsets (T — test sample and V'
— validation sample), then fit a polynomial of degree d to the test sample.
Now divide both T"and V into 10 smaller data sets of equal size and calculate
the approximate correlation ratios for each of these based on the polynomial
fitted on the test sample. In the end 10 values of correlation ratio for the test
sample and 10 corresponding values of correlation ratio for the validation
sample are obtained. They form two sets that will be compared with the
help of the Wilcoxon rank sum test. The sum of the ranks Wy of the test
group is expected to be larger than this sum Wy, for the validation group.
We use the following p-value as an indication of overfitting

PWr > wr) = pw,

where wr is the realization of the rank sum of the test sample correlation
ratios. Small p-value indicates overfitting. For the calculations presented
next, we choose degree d for which the p-value is closest to 0.05 from above.

6.7 Simulations and Results

The performance of all of the variations of the polynomial method introduced in
section 6.6.2 is compared in terms of their ability to estimate the true correlation
ratio. The search algorithm is restricted to polynomials of degree from 1 to 20, as
the fitting algorithms in generally available programs (eg. MATLAB) experience
numerical instabilities for degrees greater than 20. The sample sizes that expose
sensitivity for overfitting are therefore also relatively small. Of course, if higher
degree polynomials can be reliably fitted, the overfitting issues will apply to larger
sample sizes. The synthetic benchmark model used for simulations is chosen such
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Model G = 1/8(63X°~70X3+15X)+Y

- data

E(GIX)

Figure 6.2: Scatter plot of 500 samples generated given model G = é(GSX5 —70X°3 +
15X)+Y.

Model G = 1/8(63X°-70X>+15X)+Y
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Figure 6.3: Convergence of the estimation of correlation ratio 7°(G|X) as a function
of sample size n.

that the true n?(G|X) can be easily calculated analytically (X is the explaining
variable and Y is added noise). Let G = f(X)+Y = $(63X° —70X®+15X)+Y
where X ~ U[—1,1] and Y ~ N(0, \/W), E(Y|X) = 0. Thus the true regression
function E(G|X) = f(X) is known. This highly non-linear model presented in
Figure 6.2 exhibits heteroscedasity in error variance, n*(G|X) ~ 0.1538.

6.7.1 Influence of sample size

The sample size is a crucial factor in estimating any statistical quantity, therefore
we study its influence on the accuracy of the estimations. It can be observed in
Figure 6.3 that small sample sizes cause problems in estimating the correlation
ratio accurately, as expected. The estimations of the correlation ratio are compa-
red against the sample correlation ratio computed on the whole data set rather
than the true n? in order to avoid penalizing the estimator for features of the
data. Since the regression function is given the sample correlation ratio can be
computed as the ratio of the sample variances Var(f(X)) and Var(G). The po-



98 Chapter 6

0.9

0.16
i
0.8 RIS
0.14 N +
. 0.7
+
0.12 0.6F +
‘&
., « 05T 4
E © oal ++
=1 - +
< +
0.08 03t ++
+ TestCR
o2r  + 1t  Validation CR
0.06 i .
* 0.1t *
.
0.04 L L L 0 L L ® e 4 o e o
0 5 10 15 20 0 5 10 15 20
Degree d Degree d
(a) Adjusted R? (b) Early stopping
0.7
0.6
0.5
204
=
]
T
a 03
0.2
0.1
0 . . . .
0 5 10 15 20
Degree d

(e) Wilcoxon rank sum test

Figure 6.4: Various statistics vs degree of polynomial approximation for 60 samples.

lynomial approximation of degree 4 badly underestimates the sample correlation
ratio of 0.155. It simply does not exhibit enough variability. On the other hand
polynomial approximations of degree 5 (the degree of the model polynomial) and
15 yield good estimates for sample sizes greater than 400, indicating little sensi-
tivity to the polynomial degree once it is at least equal to the degree of the true
regression polynomial.

6.7.2 Overfitting

As it has been already mentioned an important issue for the polynomial methods
of estimating the correlation ratio is the prevention of overfitting. Figure 6.4
shows a typical picture of what one may expect from the values of the adjusted
R2, the test and the validation CR’s and p-values versus the degree of the fitted
polynomial approximation for a small sample size, in this case 60. In this situation
the adjusted R? statistic is rather unstable.

We proposed two other techniques for preventing overfitting designed with
this specific issue in mind. Early stopping trains the polynomial approximation
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Figure 6.5: Various statistics vs degree of polynomial approzimation for 200 samples.

first on test data and then checks its performance on validation data. Figure 6.4b
shows values of the estimates of the correlation ratio both on the test data and
the validation data against the degree of the polynomial approximation. The
validation-set correlation ratio gradually increases as the degree increases and
eventually starts decreasing when the degree of the approximation becomes too
high. We stop when the correlation ratio on the validation set starts to decrease.
This method is more eager to penalize data overfitting by reducing the optimal
degree of the polynomial approximation.

The Wilcoxon rank sum test for preventing overfitting is much more forgiving
in a sense that it rejects the hypothesis of overfitting only after there is a clear
evidence to do so. This evidence is the p-value being as close to 0.05 as possible,
but not lower. The threshold value (0.05 in our case) should reflect analyst’s
particular risk attitude. The example we present in Figure 6.4c shows the p-values
to be very noisy for this small sample but a general tendency for decreasing value
as the degree increases can be observed.

Things become clearer with a larger data set of 200 samples (see Figure 6.5).
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There is a clear jump of the adjusted R? statistics when the degree of the ap-
proximation polynomial changes from 4 to 5. This jump can be explained by the
fact that the true model is also a fifth order polynomial in X. The early stopping
method also correctly detects the underlying model as the fifth order polynomial.
The maximum of the validation-set correlation ratio is attained for degree equal
to 5 and gradually decreases when the polynomial degree increases giving some
evidence for overfitting. The behavior of the p-value of the Wilcoxon rank sum
test is also much more stable than with only 200 samples. The degree with the
p-value closest to 0.05 from the top is 5 as well.

6.7.3 Robustness

The robustness of the estimation methods will be studied given three sample
sizes — 60, 200 and 1000 samples. We estimate the statistical fluctuation of the
estimation by iterating the estimation process 500 times. One iteration consists
of the following steps:

1. Generate n samples of X, Y and compute G = G(X,Y);

2. Fit polynomials of degree 1 to 20 to the whole sample and calculate the
adjusted R? for each polynomial (Adjusted R? method);

3. Fit polynomials of degree 1 to 20 to the first half of the sample and calculate
the estimated correlation ratio on the other half of the sample for each
polynomial (Early stopping method);

4. Fit polynomials of degree 1 to 20 to the first half of the sample, then split
each half into 10 subsamples and calculate the p-value of the Wilcoxon rank
sum test statistics for each polynomial (Wilcoxon rank sum test method).

Figure 6.6a shows the box plots of the estimates of correlation ratio calculated
based on 60 samples using various polynomial methods presented in this paper.
The lower and upper lines of the boxes are the 25! and 75" percentiles of the
sample and the whiskers are the 5" and 95" percentiles. The lines in the middle
of the box plots show the medians. The first box plot (denoted as Samp. CR in
Figure 6.6) represents the distribution of the estimates calculated using the true
regression function, ie. the error of the estimates occurs only due to statistical
fluctuation in samples. The remaining distributions contain variability also due to
the model approximation. Selecting an optimal polynomial based on the adjusted
R? tends to overestimate CR (data overfitting) compared to the early stopping and
Wilcoxon methods. The best performing method both in terms of the accuracy
and low variability is the early stopping algorithm.

Figure 6.6b shows the box plots of the distribution of estimates given 200
samples. Quick comparison with Figure 6.6a shows that now the variability in
the estimates is considerably smaller (maximal standard error of the order of 0.1
compared to 0.16). All methods perform better with larger number of samples
providing more accurate estimates. Again, the best version of the polynomial
method was early stopping. The Wilcoxon rank sum test starts to exhibit an
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Figure 6.6: Box plots of the estimates of the correlation ratio.

undesirable feature — the erratic nature of the p-value causes in some cases to
choose 4 or less as the optimal polynomial degree. The value of the correlation
ratio is more heavily underestimated then (for example in Figure 6.3), making the
box plots look very stretched. Figures 6.6b and 6.6¢ confirm these observations.

The same model has been used for initial comparison of the Bayesian method
with early stopping. The Bayesian method has been implemented in GEM-SA
— Gaussian Emulation Machine for Sensitivity Analysis software and we use it
in the analysis. 50 sets of samples were generated with 100 samples of X, Y and
G per set. The estimates were converted to percentages and compared in this
form in Table 6.1. The Bayesian method underestimated the value of n?(G|X)
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Table 6.1: Estimates of the correlation ratio - Bayesian and Early stopping methods

Method H Mean RMSE

Bayesian 3.78 1.71
Early stop || 18.97 10.11

(15.38) with estimates tightly concentrated around value 3.78. Increasing the
number of samples to 400 (maximum supported by GEM-SA) did not cure this
problem. This suggests that the Bayesian method may have problems with non-
normal models and should be further explored. The early stopping algorithm on
the other hand produced a more sensible average estimate.

6.7.4 The analytic function of Oakley and O’Hagan

This model for benchmarks has been proposed by Oakley and O’Hagan [2004]. Tt
is a multivariate model with 15 inputs

G(X) = a] X + a sin(X) + al cos(X) + X' MX, (6.10)

where X is a vector of independent standard normal random variables. Scalar
vectors aj, as, az and matrix M are chosen such that the importance of the
inputs can be classified into 3 categories based on the appropriate values of the
correlation ratio. The same model has also been studied in [Ratto et al., 2006].
The full analysis of methods described in section 6.5 is not viable at this
moment as the authors of the SDP method could not supply the code with the
implementation. Therefore we base our findings on the comments of the authors
in [Ratto et al., 2006]. On the other hand, the method of Oakley and O’Hagan
[2004] has been implemented in GEM-SA and we use this software in our analysis.
Note that the estimates of the correlation ratio are presented on the percentage
scale rather than fractions and all the results are calculated based on percentages.
Oakley and O’Hagan [2004] report that given 250 evaluations of eq.(6.10) at ca-
refully chosen design points for X the standard deviations for the correlation ratio
estimates of X1,..., X5 is about 0.2, for Xg,..., X710 is 0.5 and for Xiq,..., X15
is about 1. Since our method does not require any specific methods of generating
the sample we compare it with O’Hagan’s method using pseudo random samples
produced in MATLAB. This is of course the situation less favorable for the Bay-
esian method, but it complies with the desiderata declared in section 6.1. The
decisive factor when we chose to limit the number of runs to 24 was long execution
time of GEM-SA software. Also, out of these 24 runs only 10 distinct vectors of
15 estimates (for each input variable) were returned by GEM-SA. This suggests
that the maximum likelihood optimization routine for the hyperparameters of the
Bayesian method gets stuck at some fixed points quite often. This may give a
misleading picture of the mean and RMSE of the estimates.
Figure 6.7 shows the mean estimates of the correlation ratios for this model
based on 24 iterations, 250 samples per variable each. The estimates produced by
the Bayesian method are much closer to the true values despite the fact that the
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Figure 6.7: Mean estimates of the correlation ratio based on 24 iterations and 250
samples per variable.

input sample was not chosen optimally. The early stopping algorithm tends to
overestimate the correlation ratios, especially if the true value is close to 0. The
power of the prevention of overfitting is limited for a small sample size like this.
The RMSE’s of the results are also smaller for the Bayesian method (0.5, 1.5 and
2.5 for each of the three groups of input variables respectively) although not on
a par with the results reported by Oakley and O’Hagan [2004] if the sample is
carefully selected (0.2, 0.5 and 1). In order to achieve a comparable RMSE with
the early stopping method the number of samples would have to be increased
to about 750 as Table 6.2 shows. This, however, is not enough to have similar
mean estimates — for this 1000 samples have to be generated. Overall the early
stopping method needs substantially more samples than the Bayesian approach.
It will definitely not beat the SDP method either, which seems to perform very
well in terms of determining values of the correlation ratios given 1000 samples
per variable.

6.8 Conclusions and discussion

There are many ways to quantify sensitivity. We have argued that the correlation
ratio 2(G|X) is particularly attractive in this regard, although it cannot always
be computed on-the-fly, and may be difficult to compute analytically.

The correlation ratio can be accurately estimated if the regression E(G|X) of
G on X is determined with sufficient accuracy. This paper develops a benchmark
for testing candidates for good estimates of E(G|X). The polynomial method
assumes that the underlying model is sufficiently smooth and can be accurately
approximated with a polynomial. In order to prevent overfitting we employ three
well motivated techniques based on: the adjusted R?, early stopping algorithm,
and Wilcoxon rank sum test. The early stopping method is most resistant to over-
fitting, has no “tweakable” parameters, is easy to implement and gave the best
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Table 6.2: Mean and standard deviations of the estimates of the correlation ratio obta-
ined with the early stopping method (750 and 1000 samples per variable, 100 iterations).

Analytical Mean Standard deviation

750 samples 1000 samples | 750 samples 1000 samples
X4 0.1560 1.0499 0.7591 0.9011 0.6797
X5 0.0186 1.0346 0.5218 0.8172 0.4934
X3 0.1307 1.0311 0.6731 0.7570 0.5236
Xy 0.3045 1.1800 0.9251 1.1149 0.6570
X5 0.2905 0.9849 0.7772 0.8972 0.6373
Xs 2.3035 2.9734 2.8181 1.2959 0.9932
Xy 2.4151 3.1584 2.9750 1.4744 1.2283
Xs 2.6517 2.8456 3.0997 1.3179 1.3230
Xy 4.6036 5.3172 5.5461 1.7640 1.6890
X0 1.4945 2.0598 2.0152 1.0798 1.1111
X1 10.1823 10.4025 10.7995 2.0375 2.1275
X 13.5708 13.9139 13.8106 2.3893 2.0873
Xi3 10.1989 10.0289 10.3519 2.2431 1.9953
X4 10.5169 11.0706 10.4579 2.4762 2.1103
X5 12.2818 12.4564 12.4932 2.3133 2.0299

results. Therefore we used this specific algorithm for further comparison with the
Bayesian method. The Bayesian method performed very well on the benchmark
model proposed by Oakley and O’Hagan [2004], but experienced difficulties with
the model in section 6.7. Without questioning the advantages of Bayesian me-
thods for calculating the correlation ratio, there is a need for a simple generic
method that works for a wide variety of models and sample sizes. Polynomial ap-
proximations perform decently in this regard, with early stopping as front runner
and are very cheap to run when implemented in computer code. Obviously there
is a trade-off here between the cost of needing a lot of samples (depends on how
expensive the model is to run), and the cost of the algorithm itself. It should be
noted that one run of GEM-SA takes 5 minutes to complete one calculation of
estimates of (G, X;) for the model described in section 6.7.4 on the current top-
of-the-line dual core Intel processor (Intel Core 2 Extreme X6800) with only the
option to calculate main effects selected and all the remaining program options
set to default.

Polynomial approximation methods can also be extended for estimation of jo-
int effects of 2 or more random variables on the output. One dimensional polyno-
mial functions would simply be replaced by their multidimensional counterparts.
Possible future research can look more into the robustness of various methods of
estimating the correlation ratio for different models as the choice of benchmark
models mattered quite a lot in this study.
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Conclusions

The point of quotations is that one can use
another’s words to be insulting.

Amanda Cross

This thesis aims at approaching the problem of statistical dependence model-
ling from many different angles to show the complexity of the issue and show
ways of dealing with it. Chapter 2 forms the point of reference for the remaining
papers incorporated into this thesis. It describes the standard tools for modelling
high dimensional data with some parametric families of multidimensional copulae.
We also study various dependence concepts and measures expressing interactions
between random variables in a quantitative way. Pearson’s product moment and
Spearman’s rank correlations in their unconditional and conditional forms are
among the best known concepts of dependence. However, they capture only li-
near (product moment correlation) or monotonic (rank correlation) dependence
between random variables. This often is not satisfactory, as more complicated
dependence structures can be observed and these must be properly modelled as
well. Tail dependence concepts allow for more accurate modelling of tails of mul-
tivariate distributions and this is crucial in applications to financial and insurance
markets, where risks are found to be extremes of analyzed distributions. This is
the reason for the increasing popularity of tail dependent distributions, like Stu-
dent’s ¢, Clayton or Gumbel, in actuarial science. We also introduce an entirely
new Dirichlet-type copula. It has been constructed without applying Sklar’s the-
orem as it is a special case of the generalized Dirichlet distribution. Unfortunately
the correlation structure of this copula is fixed and depends on its dimension only.
This limits the number of possible applications significantly. The above mentio-
ned distributions are examples of families of multivariate distributions. However,
another way of constructing multivariate distributions is to couple bivariate pieces
in a systemized manner, and a tool for this is the vine-copula method.

105
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The dependence vine is build on the concept of dependence tree. Here con-
ditional independence statements existing implicitly in a dependence tree, have
been replaced with conditional dependence statements, quantified with condi-
tional rank correlations and modelled with conditional bivariate copulae. De-
pendence modelling with vines requires a copula for which the conditional and
inverse conditional cumulative distribution functions can be efficiently computed,
and preferably are given in a closed form. Chapter 3 shows some examples of co-
pulae satisfying this requirement. They are members of a broad class of copulae
called generalized diagonal band (GDB) copulae. This class is a product of a very
intuitive geometrical method of construction. The whole copula density is gene-
rated from the density put on one of the boundaries of the copula domain. Future
work should concentrate on studying links between this generating density and
the properties of the resulting copula. We also extend and in some places correct
the work of Meeuwissen [1993] on a subclass of GDB copula, that is obtainable
through mixing of ordinary diagonal band copulae.

Chapter 4 of the thesis describes the use of the DAD algorithm to construct
discretized minimally informative copulae with respect to the independent copula
given some moment constraints. It extends the minimally informative copula
developed by Bedford and Meeuwissen [1997]. Their copula has been constructed
with just one constraint, namely E[X Y], where X and Y are uniformly distributed
on interval [— %, %] In order to simplify calculations the copula itself is also defined
on a square [f%, %]2 and its density has the form

f(@,y) = k(2)K(y) exp(Azy).

From the set up of this copula we see that it must be centrally symmetric. Since
the exponent term is a symmetric function, it follows that the product of the
kappa functions is a symmetric function too. Hence k is an even function on
[—%, %] The D1 ADs approach presented in chapter 4 generalizes this copula.
Vectors Dy and Dy are simply discretized counterparts of the kappa function in
the 2-dimensional case. The algorithm for determining these vectors is extremely
simple and consists of projecting an initial density for the copula on each margin
successively to impose uniform marginals for the final copula density. The resul-
ting minimally informative copula with respect to the independent copula under
the given moment constraints that has been fit to the World Bank data produces
a good overall fit to the data, and realizes the lowest possible level of information.
Frank’s copula with the maximum likelihood parameter estimate achieved higher
likelihood (at the expense of higher information).

The use of the minimum information principle makes the D1 ADs approach
attractive for expert elicitation applications. Experts are asked their opinion
on expectations of some functions of variables of interest and this is translated
into a minimally informative copula density given the assessments. We show
an example of running such a procedure in which a 3-dimensional discretized
minimally informative copula is being constructed.

The next chapter departures from copula modelling and concentrates on ano-
ther application of vines — generating random correlation matrices of size d x d
from the joint density of all correlation matrices of the same size. The matrices
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can be drawn from the joint density being proportional to a power of the deter-
minant of the correlation matrix. The uniform distribution is a special case. The
idea was introduced by Joe [2006] and was based on the D-vine. The method
however is not limited to the use of this one type of copula. We argued that the
C-vine is less computationally demanding and can successfully applied as well.
In fact, we extend the method to be applicable to any regular vine. This brings
new applications of this method of generating random correlation matrices. For
instance, we can generate correlation matrices conditional on correlation values in
an arbitrary tree. The Onion method proves to be very efficient computationally,
however in some setups the C-vine method shows better performance. The Onion
method has also been extended to allow generating random correlation matrices
non-uniformly from the set of semi-positive definite correlation matrices.

An essential step in statistical modelling is sensitivity analysis and chapter 6
is dedicated to this subject. The chapter concentrates on the notion of correlation
ratio, a variance based global sensitivity measure. We show some properties of
the correlation ratio and its links to other concepts used in sensitivity analysis,
namely Sobol’ indices, high dimensional model representations (HDMR) and state
dependent parameter models (SDP). Calculations of the correlation ratio can
be very tedious and quite often analytical solutions do not exist. Therefore we
concentrated our efforts on developing a numerical method of estimating this
quantity based on samples. We estimate the regression curve via a simple least-
squares error fit of a polynomial. However there are two dangers in doing so
without any control mechanism. Fitting a polynomial of too low degree may result
in a very bad fit, which does not correspond well to the true regression curve. On
the other hand, a polynomial of a very high degree exhibits a very good fit to
this specific sample, but cannot be seen as a good estimator of the regression for
the whole population. Therefore we introduced an overfitting prevention method
to overcome this problem. Three different criteria have been tested for detecting
the overfitting and the best performing algorithm is based on an early stopping
approach. The whole method of estimating the correlation ratio from a sample is
very easy to implement and performs well even with moderate sample size.
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APPENDIX A

More examples of GDB copulae

We present here more examples of GDB copulae generated by various distributions
defined on the interval [0, 1] and a formulation of the relative information of the
GDB copula in terms of its generating function.

A.1 Beta distribution as the generating function

Let the generating function g be in the class of beta distributions.

Definition A.1.1. Random variable X is beta distributed with parameters s and
q (denoted Beta(q, s)) if its probability density function has the form

29711 — )7t
B(q, s)

Explicit formula for the parameters of the beta distributions, ¢ and s, as a
function of the product moment correlation p are needed. We have

q(g+1)

fz) = (A.1)

B(X®) = G+rs)(1+qts)
E(X?) = q(g+1)(a+2) ’
(g+s)(1+q+s)(s+q+2)
and thus
p:1_2q(3qs+q2+3q+3s+2)

(g+s)(A1+qg+s)(s+q+2)

This problem can be solved analytically and the solution is given below
s = s,

g = [H (s, p)]7 + (65> + 65+ p+ 1) [H(s, p)]

ol

—s—1,
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(a) Beta(1,2) (b) Beta(1.5506, 3)

Figure A.1: GDB copulae realizing correlation p = 0.4 generated by the beta distribu-
tions with different parameters.

where

H(s,p) = —(p+1)*[27s+81s* +54s°] —
—(p+1)3V3[1 + 185 + 995% + 270s® + 4055 + 324s° + 108s°+
+p (3 +36s + 1175 + 54s® — 243s* — 3245° — 1085°) +
+p? (3 + 18s + 1852) — p3] .
For any p € (—1,1) there exist an entire family of beta distributions generating a

GDB copula with this given correlation. The optimal choice of parameters ¢ and
s should allow to generate a copula with minimal relative information.

Remark. By the construction of the GDB copula and the properties of the beta
distribution one can notice, that if the beta distribution with parameters ¢ = a
and s = b generates a copula with correlation p, then the beta distribution with
parameters ¢ = b and s = a generates a copula with correlation —p.

A.2 Distribution based on cosine function as the generating
function

Let the generating function g(z) with parameters ¢ and p be given by the formula
g(z)=p+ 1x€[0,§](1 —p)q (cos(gmx) +1). (A.2)

where p € [0,1] and ¢ > 1. This generating function ensures smoothness of
the generated copula along the diagonals, and hence, lower relative information
compare to the truncated exponential density function for instance. It can be
shown that the relationship between the correlation realized by this copula and
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its parameters is given as follows

1- 6 —n° 4 — 72
p— q3p<q3+2q( ™) Lt +1>

T 4

and solving this formula for ¢ allows to find the analytical solution

a = g
-1
q (6 —n? 4 — 72
p = 1—pq3<q3—|—2 ( 5 >+12 1 +1 ,
s ™
One can notice, that for lower correlations ¢ = 1 and for higher correlations

p = 0 and there is only one value of p for which ¢ = 1 and p = 0 (this is for
p ~ 0.4927). Hence in fact, the generating function (A.2) can be controlled only
by one parameter at the time simplifying further calculations.

Assume that p = 1 first. Then

g(x) =p+ (1 —p)(cos(mx) +1).

Employing eq.(3.8) allows to find the bivariate cdf for ¢ < y, x + y < 1 and its
derivatives

a2y + (1 — p) sin (y7) sin (a7)

F(z,y) = s |
flz,y) = 1+(1—p) cos. (ym) cos (zm),
Fyx(y) = Yrt-psin(ym)cos(em)

™

Note that the density f(z,y) is given by the same formula everywhere on the
unit square, not only for x < y, z +y < 1. The same holds for the conditional
cumulative distribution function Fy|x (y).

Now assume p =0 and ¢ > 1. Then for y < z and x + y < 1 we have

q (1 + cos (xpm) cos (y qm)) , if y < —z+ 1
flay) = § ditestmm ey tsmEam v ity > —p 4+ and y > o — 1

0, elsewhere.

Then the conditional cdf for any x,y € [0, 1] is given as the following

0, y<z-—1/g
ygm+cos(zqm) sin(yqm) z<2Land y<—z+ 1
T .7 . = q Y= q’
Fyix(y) = Tr(yq—q+1)+005(wq7r7)rsm(yq7r)+5 sm(2q7r)7 r>1— %andy > _p49_ é;
1, x<1—%andy>x+%;
ygr—xgm+m+sin(gr(y—=))
o , elsewhere.

Unfortunately, the conditional cdf’s are not analytically invertible.
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A.3 Relative information of the GDB copula in terms of its ge-
nerating function

The following corollary allows to express the relative information of a GDB copula

in terms of its generating density g.

Corollary A.3.1. The relative information of a GDB copula with density f(x,y)
generated by the generating function g with respect to the uniform distribution is

151w = | () log(g(v) + / | e I i~ og2).

Proof. Since the GDB copula is symmetric along both dlagonals, we can calculate
the relative information only for one of the regions bounded by the diagonals and
multiply it by 4
1/2 pl—y
1 =4 [ [ ) 0a(s @) ey
Yy

1/2 pl-y
B 2/0 / (9(z +y) +g(z — ) log (g(x +y) + gla — y)) — log(2)] dady

1/2 pl—y
2/ /y (9(x +y) +g(x —y))log (9(x +y) + g(x — y)) dedy — log(2).

The last equality follows from the fact that

1/2 pl—y 1/2 pl—y
4/ / f(z,y)dzdy = 2/ / gz +y) + g(z — y)dedy = 1.
0 0 y

Let = 1(t +v), y = 3(—t + v). Then the Jacobian is 1/2 and

I(flu) = / / ) log (g(v) + g(t)) dtdv — log(2)
= — log(2
I = / / ) log (g(v) + (1)) dtdo

_ / o(v) / log (g(v) + g(t)) dedv + / olt) / log (g(v) + g(t)) dvdt
1 v 1 1
- / o(v) / log (g(v) + g(t)) dtdv + / o(v) / log (g(v) + g(¢)) dido

= [ o) [ 108 a(0) + g(0)) dra:

Integrating fol log (g(v) + g(t)) dt gives

1 dg(t) tg(v)

/0 log (g(v) +g(t)dt = log(g(v)+g(t))|0_/0 m
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Hence

1 dg(t)

1 1ol da(t)y o0
11510 = [ a)onts(e) + gyt~ [ [ 20D s —10g(2)
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APPENDIX B

Mixtures of diagonal band copulae with
discontinuous mixing measures

Mixtures of diagonal band copulae described in chapter 3.3 allow for only one
point with discrete mass, that is at the origin. We extend this class of mixtures
to include discrete mass at any finite set of points in the interval [—1,1].

B.1 Introduction

Let us define a more general mixing measure first
Definition B.1.1. Let 0 < p < 1. A probability distribution M(0), M) :
[—1,1] — [0,1] is called a mizing measure if its derivative with respect to 0 consists
of an absolutely continuous part m(0) > 0 with fil m(0)df = p and a discrete part
with mass p; > 0 at 0;, =1 < 6,1 < 0; <1, Ui{0;} = Aand ) ,p;=1—-p. A
may be empty.

The mixture of diagonal band copulae is defined then as in Definition 3.3.1.
For any two mixing measures M; and Ms and any A € [0,1], AMy + (1 — A\) My is
a mixing measure as well, and

CAMy +(1-3) My = Acar, (2,Y) + (1 — Near, (2, y).

The mixing measure M (6) can be determined as follows. By Definition 3.3.1
a conditional density cps(z,0) is a mixture of diagonal bands, thus cps(z,0) =

f_ll do(z,0)dM(0). Let us rewrite it as follows

01 11
{0€[—=,0]} {0€(0,1—=]}
= —————2dM (0 ————2 dM(6
ex(@,0) / s <>+A ()
= —— dM(0 —— dM(0). B.1
[t [ rame @

121



122 Appendiz B

Note that

o1
/_1 T dM(6) >0 (B.2)

is a nondecreasing, nonegative function of x, whereas

1—x
/ L) >0 (B.3)
0 1-90

is a nonincreasing, nonnegative function of x. Now we shall decompose density
ey (z,0) into two nonnegative components, g+ (z) and g~ (x) that we could relate
to (B.2) and (B.3) respectively. We introduce two functions ¢g¥(z) and g~ (z)
differentiable almost everywhere, with the derivatives with respect to x defined
in (B.4) and (B.5), and set cp(x,0) = g(z) = g*(z) + g(0) — g~ (2).

fot@ = max{ g0}, 470 =0 (B.4)
%gf(x) = max{—dig(a:),()}, g (0)=0 (B.5)

The nondecreasing component g*(z) of the conditional density cps(z,0) corre-
sponds to mixing step functions given in (3.10). Similarly, the nonincreasing
component ¢(0,0) — g~ (z) corresponds to mixing step functions given in (3.11).

B.2 Determining the continuous part of the mixing measure

The continuous part m(6) of the mixing measure M can be determined by diffe-
rentiating eq.(B.1)

Do) = gt 4 ((0) g (@) = gt (@)~ g (@)
_ mln) mi-a)
1—=x xr

The last equality emerges from substituting dM (8) with m(0)d6 in eq.(B.1) and
noticing that § = z if # < 0 and § = 1 — z when 6 > 0. By the construction of
eq.(B.4) and eq.(B.5) there is no z € [0,1] such that - g~ (z) are - g¥(z) are
both nonzero. This implies that the step functions (3.11) do not contribute to the
mixture at point z if <= g¥(x) = 0, thus m(—=z) = 0. Similar reasoning justifies
setting m(1 — z) = 0 where 4 g~ (z) = 0. Eventually we have

@) =" — )= (4 0)L g7 (-0), 6 <0,
f%g*( ):f@ — m(o):(ye)%g*ufe), 6> 0.
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B.3 Determining the discontinuous part of the mixing measure

The discontinuities of g(z) correspond to the discontinuities of M in the following
way. Let x;, 1 = 1,2,...,n, be the locations of discontinuities of g(z). Let A and
B be two disjoint subsets of the set of indices i € {1,2,...,n} such that

o if g(z) > g(x;) then i € A,
e if g(x]) < g(x;) then i € B,

where g(z]) = lim, _+ g(z) is the limit from above, and g(z; ) = lim__ - g(z)
is the limit from below. The following holds then '

Proposition B.3.1. M has a jump of size p; at —x; if i € A, or at 1 — x; if
i€ B.

b= [ A2 () —gap), ific4,
b (9 —a(e), if i € B,

Proof. A single diagonal band copula is also a mixture of diagonal band copulae
with a discrete mixing measure assigning weight 1 to the parameter of that copula.
Hence if we consider a conditional density dg(x,0) of a diagonal band density
do(z,y), where 8 > 0, as a conditional density of a mixture of diagonal bands,
then the jump p of the mixing measure M at point 6 is 1. In order to reflect the
fact that p1 depends on the difference of the both limits of dy(z,0) at x =1 — 6,
we assume that

p1=a(dg(z",0) — dg(z~,0))

where a is a monotonic, real function of z. We determine a with the following

calculations a

1=a(dg(z",0) — dy(z~,0)) = =

Hence a = —x. Similar reasoning holds for determining a = 1—z when 6§ < 0. B

a
€T

Combining both the information on the continuous and the discontinuous part
of the mixing measure full expressions for g*(z) and g~ (z) can be determined

@) = [ @dst X (o) -ate).

i€A, x; <z

/Of d% g (s)ds— > (g(z) —g(x))).

i€B,z; <z

Q|
—~
8
S~—
I

B.4 Formulation of the theorem

We already know that mixtures of diagonal band copulae are in the class of GDB
copulae. In this chapter we show what conditions have to be imposed on the
generating density g of the GDB copula to allow this copula to be represented as
a mixture of diagonal band copulae. We do this by showing that for a generating
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density g satisfying the conditions specified in Theorem B.4.2 below, there exist
a mixing measure M (), such that

g(u) = /1d9(u70) dM(9).

It follows from the fact that if the conditional density is a mixture of diagonal
bands, than the entire density over the unit square is a mixture of diagonal bands
as well. We introduce the following lemma first

Lemma B.4.1. For any bounded function g : [a,b] — R with finite number n of
discontinuities at x;, 1 =1,2,...,n,

n

S (b - ) (9(2F) - 9(a7)) = / S (o(af) - gap)) do. (B6)

=1 @ gi<wm

Proof. The right hand side of eq.(B.6) can be expressed as

/b > (9@ - g(@)) do = Z/b (o) @) da = D2 (b= ) (a(a?) - a(a7)
i=1"Ti i=1

@ z;<x
|

We formulate the main theorem.

Theorem B.4.2. Let ¢(x,y) be the density of a generalized diagonal band copula
generated with generating density g(u), v € [0,1]. If g is bounded on [0,1], has
finite number of discontinuities and

9(0) =g~ (1) =0 (B.7)
then c(x,y) is a density of a mizture of diagonal bands.
Proof. Start with constructing the mixing measure M (6)

/t”ﬂﬁ)dﬂﬁ—im=/Olm(—x)dx+/01m(1_x)dx+§;pi

1

- A(l—x)iﬂgﬂx)dm—&—/o x%g‘(m)dw—i—

+ Y (=) (9a) —g(ay) = > i (9(a) — g(=)))

i€A i€EB

= [ [ o (- @) we

3 (9laf) — g(a7) =Y i (glzh) — glay)

i€A i=1

= gt~ ( | o o@ o+ Y (olat) - g(xn))

i=1
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Solving fol JZ% g(z) dx by parts gives

/0 x% g(x)dx =
B { =z 0= g(z) — S oo (o) — g(a7)) - G(O) } B
v=Fgl@) W =1
= g(1) =Y (9() — g(z;)) — 9(0) -
1
- / 6@) - 3 (9aF) - 9(a7)) —g<o>} dz
= g 1= (o) — g(ar)) + / S (o) — gla7)) da
i=1 z; <x

By Lemma B.4.1
n 1
=Y (e — s+ [ X (o)~ o(e7)) do == Yo (ol — 9(a7))-

Hence

1 n
/1 m(0) dé + Zpi =g (x)—g(1) + 1.

However g(1) = g7 (1) + g(0) — g~ (1). Thus

1 n
/1 m(0)do+ Y pi=g (1) +1-g"(1) = g(0) +¢7(1) =1—g(0) + ¢ (1).
i=1

By the assumption ¢g(0)—g~ (1) is nonnegative and we have f_ll m(0) do+> "1, pi <
1. The weight m(0) assigned to the uniform density is determined by the fact that
M (6) must be a mixing measure, thus

m(0) +/1m(0)d9+2pi =1
- =1

We call g~ (1) > 0 the total decrement of function g.
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APPENDIX C

Computer source code for generating
random correlation matrices

We list the source code of MATLAB scripts used to generate random correlation
matrices uniformly from the set of semi-positive definite correlation matrices with
the onion and the vine methods.

Listing C.1: Vine method with C-vine

function y = GenerateCorMatrixCVine(d)

1
2
3 % GENERATECORMATRIXCVINE generates a correlation matriz
4

% of size d z d with the wvine method (C-vine wused).

%

% ’d’ — [in] Dimension of the generated correlation matric.
% 'y’ — [out] Correlation matriz of dimension d z d.

% Initialization speeds up calculations
10 y = eye(d);

12 % row = 1
13 alp = 14+(d—2)/2;
14 y(1,2:d) 2xbetarnd (alp ,alp ,1,d—1)—1;

15 prr(1l,:) y(1,:);

16

17 % row > 1

18 for m = 2:d-1

19 alp = 1+4+(d—1-m)/2;

20 prr(m,m+1:d) = 2xbetarnd(alp,alp,1,d—m)—1;
21 for i = m+1:d

22 tem = prr(m,i);

23 for k = m—1:—-1:1

24 tem = prr(k,m)*prr(k,i) + ...

25 tem*sqrt((1—prr (k,m)*prr (k,m))*(1—prr(k,i)*xprr(k,i)));
26 end

27 y(m,i) = tem;

28 end

29 end

30 y = yty —eye(d);
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Listing C.2: Vine method with D-vine
function y = GenerateCorMatrixDVine(d)

% GENERATECORMATRIXDVINE generates a correlation matriz
% of size d = d with the wvine method (D-vine used).

% ’d’ — [in] Dimension of the generated correlation matriz.
% 'y’ — [out] Correlation matriz of dimension d z d.

© W N U AW N e
X

% Initialization

10 y = eye(d);

11 alp = d/2;

12

13 % First off—diagonal

14 prr = 2xbetarnd(alp,alp,1,d—1)—1;

15 for i = 1:d-1

16 y(i,i+1) = prr(i);

17 y(i4+1,i) = prr(i);

18  end

19

20 % Remaining off—diagonals

21 for m = 2:d-1

22 alp = alp — 0.5;

23 prr = 2xbetarnd(alp,alp,1,d—-m)—1;

24 for i = 1:d-m

25 y(i,i+m) = PartCorr2Corr(y,i,i+m,prr(i));
26 y(i+m,i) = y(i,i+m);

27 end

28 end

29

30 % Helper functions for GenerateCorMatrizD Vine
31

32  function y = PartCorr2Corr(mat, jstart , jend, prr)
33

34 % PARTCORR2CORR calculates the product moment correlation based on

35 % already filled positions in the correlation matriz and the corresponding
36 % partial correlation.

37 %

38 % 'mat’ — [in] Partially generated correlation matrizc.
39 % ’jstart’ — [in] Row index of the computed correlation.
40 % ’jend’ — [in] Column index of the computed correlation.
41 5 'prr’ — [in] Value of the partial correlation with conditioned set
2 % [istart , jend].

43

44 nrow = jend — jstart — 1;

45 a = zeros(nrow,nrow);

46 b = zeros(nrow,2);

47 for i = jstart+4+1l:jend—1

48 ii =1 — jstart;

49 for j = jstart+1:jend—1

50 jj =] — Jjstart;

51 a(ii,jj) = mat(i,j);

52 end

53 b(ii,1) = mat(i,jstart);

54 b(ii ,2) = mat(i,jend);

55 end

56

57 x = a\b;

58

59 temll = O0;

60 for ii = l:nrow

61 temll = temll + x(ii,1)*mat(ii + jstart , jstart);

62 end

63

64 teml3 = 0;

65 for ii = l:nrow

66 tem13 = teml13 + x(ii,2)*mat(ii + jstart , jstart);

67 end



68
69
70
71
72
73
74

=
= O © XN TR WN =

Computer source code for generating random correlation matrices

tem33 = 0;
for ii = l:nrow

tem33 = tem33 + x(ii,2)*mat(ii + jstart ,jend);
end

y = teml13 + prrxsqrt((1—teml1l)*(1—tem33));
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Listing C.3: Onion method

function y = GenerateCorMatrixOnion (d)

% GENERATECORMATRIXONION generates a correlation matriz
% of size d z d with the onion method.

%
% ’d’ — [in] Dimension of the generated correlation matriz.
% 'y’ — [out] Correlation matriz of dimension d z d.

y = eye(d, d); % initialize

% row = 1

b = sqrt(betarnd(1/2,d/2,1,1));

u = 2xunidrnd(2,1,1) —3;

q = bxu;

y(1, 2) = q;

v(2, 1) = q;

% row > 2

c = eye(d,d);

for k = 2:d-1
c(1l:k,1:k) = IncrementalChol(y(1:k,1:k),c(1:k—1,1:k—1));
b = sqrt(betarnd(k/2,(d-k+1)/2,1,1));
u = GenerateSphereUnif(k);
q = c(l:k,1l:k)xbx*u;
y(1:k,k+1) = q;
y(k+1,1:k) = q’;

end

% Helper functions for GenerateCorMatrizOnion
function y = GenerateSphereUnif(n)

% GENERATESPHEREUNIF generates 1 sample of n—dimensional

% uniform distribution on a sphere in R™n.

%

% 'n’ — [in] Dimension of uniform distribution on a sphere to sample
% from.

% 'y’ — [out] Vector of length n containing 1 sample of n—dimensional
% uniform distribution on a sphere in R'n.

N = normrnd(0,1,n,1);

y = N./sqrt(sum(N."2));

function y = IncrementalChol(m, c¢)

% INCREMENTALCHOL computes the Cholesky decomposition incrementally

% when new ’'q’ is generated and appended to ’y’.

%

% 'm’ — [in] Leading principal minor of dimension k xz k of the

% correlation matriz.

% ¢’ — [in] Cholesky decomposition of the leading principal minor
% of dimension k—1 z k—1 of the correlation matrizc.

% 'y’ — [out] Cholesky decomposition of the leading principal minor
% of dimension k z k of the correlation matric.

k = size(m,1);
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for i = 1:k-1
tem = 0;
for j = 1:1i—-1
tem = tem+c(i,j)xc(k,j);
end

if (abs(m(k,i)—tem)>1.e—5)
c(k,i) = (m(k,i)—tem)/c(i,i);

c(k,i) = 0;
c(i,k) = 0;
end
tem = 0;
for j = 1:k-1
temp = tem+c(k,j)*c(k,j);
end
if (m(k,k)—tem<=0)
c(k,k) = 0;
else
c(k,k) = sqrt(m(k,k)—tem);
end

end

The code has been optimized for speed with the help of the built-in profiling
tool of MATLAB.

Listing C.3 uses the idea of prof. Harry Joe (personal communication) for
computing the Cholesky decomposition incrementally. It means that a lot of
computational time is saved since we do not perform the full Cholesky decom-
position of matrix y, but save it in matrix ¢ and append new row as new ¢ is
generated (line 21 of the listing).



Summary

High Dimensional Dependence
Copulae, Sensitivity, Sampling

Daniel Lewandowski

Uncertainty analysis has definitely past its infant times. Whether it is a regu-
latory obligation, a desire to optimize processes of all kinds, or simply a curiosity,
uncertainty analysis allows dealing with random in nature phenomena within a
well developed framework. It is no more a question of simple statistical analysis,
but rather a matter of full scale high-dimensional modelling, where dependencies
between variables are among the most important aspects. For already quite some
time industries operating with hazardous materials are subject to very deman-
ding probabilistic risk assessment regulations. Entities like nuclear power plants,
chemical factories or airliners often include departments responsible for constant
monitoring of risk factors. These, in turn, may exhibit high correlations between
each other. Therefore it is not only important to model the marginal distribu-
tions of variables in question; even more crucially the dependence structures must
be captured to reflect the interactions as these may alter final results significan-
tly. Actuarial sciences make use of high dimensional copulae for maximizing the
profit and minimizing risks and current guidelines often recommend usage of tail
dependent copulae for modelling assets. Currently copulae are among most po-
pular methods of modelling dependent random variables and most likely they will
preserve their position as such in the future.

The usage of copulae has been simplified over the years of development of
software tools for uncertainty analysis. A good example in this regard is the
software developed at the Delft University of Technology called UNICORN. It im-
plements various copulae with properties that should satisfy many users. Future
years should bring even more advanced software solutions with tools allowing ef-
ficient specification of complex dependence structures in a matter of minutes and
fast sampling to obtain results at site. Recently there has been a lot of effort
devoted to the development of graphical representations of dependence structu-
res, like dependence vines or continuous Bayesian belief networks. Especially the

131



132

last concept is currently actively developed at the Department of Mathematics of
Delft University of Technology.

Although this study centers the bulk of the work on copulae, we have also
broadened the perspective with departures to the field of sensitivity analysis,
expert judgement and studies on correlation matrices. Chapter 2 forms the point
of reference for the remaining papers incorporated into this thesis. It describes the
standard tools for modelling high dimensional data with some parametric families
of multidimensional copulae. We also study various dependence concepts and
measures expressing interactions between random variables in a quantitative way.
On the other hand, chapter 5 departures from copula modelling and concentrates
on another application of vines - generating random correlation matrices of size
d x d from the joint density of all correlation matrices of the same size. The
matrices can be drawn from a joint density being proportional to a power of the
determinant of the correlation matrix. The uniform distribution is a special case.
The idea was introduced by Joe [2006] and was based on the D-vine. The method
however is not limited to the use of this one type of copula. We argued that the
C-vine is less computationally demanding and can successfully applied as well.
In fact, we extend the method to be applicable to any regular vine. This brings
new applications of this method of generating random correlation matrices. For
instance, we can generate correlation matrices conditional on correlation values in
an arbitrary tree. The Onion method proves to be very efficient computationally,
however in some setups the C-vine method shows better performance. The Onion
method has also been extended to allow generating random correlation matrices
non-uniformly from the set of semi—positive definite correlation matrices.

An essential step in probabilistic risk analysis is sensitivity analysis and chap-
ter 6 is dedicated to this subject. The chapter concentrates on the notion of
correlation ratio, a variance based global sensitivity measure. Therefore we con-
centrated our efforts on developing a numerical method of estimating this quantity
based on samples. We estimate the regression curve via a simple least-squares er-
ror fit of a polynomial. However there are two dangers in doing so without any
control mechanism. Fitting a polynomial of too low degree may result in a very
bad fit, which does not correspond well to the true regression curve. On the
other hand, a polynomial of a very high degree exhibits a very good fit to this
specific sample, but cannot be seen as a good estimator of the regression for the
whole population. Therefore we introduced an overfitting prevention method to
overcome this problem. Three different criteria have been tested for detecting
the overfitting and the best performing algorithm is based on an early stopping
approach. The whole method of estimating the correlation ratio from a sample is
very easy to implement and performs well even with moderate sample size.

The subject of multidimensional statistical dependence modelling turned out
be far more complex than initial views of the author on this issue. For him this
work has probably brought more questions than it answered - feeling scientists
should be familiar with. Future research is therefore well motivated and this thesis
may not be the last word of the author on this story yet.



Samenvatting

Hoog-Dimensionale Afhankelijkheden
Copula’s, Gevoeligheden, Trekkingen

Daniel Lewandowsk?

De onzekerheidsanalyse is ongetwijfeld uit zijn kinderschoenen gegroeid. Of
het nu vanwege een wettelijke verplichting is, of vanwege de wens om processen
van allerlei te optimaliseren, of gewoon vanwege nieuwsgierigheid, de onzekerhe-
idsanalyse staat het toe om met natuurlijke fenomenen om te gaan in een goed
ontwikkeld raamwerk. Het gaat steeds minder om een eenvoudige statistische
analyse, maar meer om groot-schalig modelleren in meerdere dimensies waarbij
de afhankelijkheid tussen groot-heden één van de belangrijkste aspecten is. Re-
eds lang zijn industrién die werken met gevaarlijke stoffen onderhavig aan wet-
en regelgeving die een probabilistische risico-analyse voorschrijven. Organisaties
en bedrijven zoals kerncentrales, chemische fabrieken of luchtvaartmaatschappi-
jen hebben speciale afdelingen die de risico-factoren continu in de gaten houden.
Deze factoren kunnen een hoge onderlinge correlatie vertonen. Het is daarom niet
alleen belangrijk om de marginale kansdichtheden van deze stochasten te bepa-
len; ook de afhankelijkheidsstructuur moet bepaald worden, omdat de inherente
interactie tussen de stochasten het resultaat van de analyse sterk kan beinvlo-
eden. De actuariéle wetenschap maakt gebruik van hoger dimensionele copula’s
voor het maximaliseren van de winst en voor het minimaliseren van de risico’s.
Huidige voorschriften raden vaak aan om staart-athankelijke copula’s toe te pas-
sen bij het modelleren van verliezen of effecten. Op dit moment zijn copula’s één
van de meest populaire methoden om afhankelijke stochasten te modelleren en
waarschijnlijk zullen zij dit ook blijven in de toekomst.

De toepassing van copula’s is de afgelopen jaren sterk vereenvoudigd door
de ontwikkeling van programmatuur voor het uitvoeren van onzekerheidsanaly-
ses. Een goed voorbeeld hiervan is het programma UNICORN dat aan de Techni-
sche Universiteit Delft is ontwikkeld. In deze software zijn verschillende copula’s
geimplementeerd met eigenschappen die de meeste gebruikers tevreden zouden
moeten stellen. In de komende jaren zullen steeds meer geavanceerde software-
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applicaties het mogelijk maken om complexe afhankelijkheidsstructuren in slechts
enkele minuten te definieren en door te rekenen. Recentelijk is er veel inspan-
ning geleverd in het grafisch weergeven van dit soort afthankelijkheidsstructuren.
Voorbeelden hiervan zijn zogenaamde “vines” en “continuous Bayesian belief
networks”. Met name aan deze laatste wordt actief gewerkt aan de wiskunde-
afdeling van de Technische Universiteit van Delft.

Alhoewel het grootste deel van deze studie op copula’s is geconcentreerd, heb-
ben we onze grenzen ook verlegd met uitstapjes naar de gevoeligheidsanalyse,
het gebruik van expert meningen en naar de studie van correlatie matrices. Ho-
ofdstuk 2 vormt het beginpunt voor de verdere artikelen die aan de basis liggen
van dit proefschrift. Hierin worden de standaardmethoden beschreven voor het
modelleren van hoger dimensionale gegevens met een aantal parametrische fami-
lies van copula’s. We bestuderen ook verschillende concepten van afhankelijkheid
tussen stochasten en manieren om interacties tussen deze stochasten kwantitatief
te beschrijven. Daartegenover stappen we in hoofdstuk 5 af van de copula’s en
concentreren we ons op een andere toepassing van vines: het genereren van wille-
keurige correlatiematrices van grootte d x d vanuit de gezamelijke kansdichtheid
over alle correlatiematrices van deze grootte. De matrices kunnen getrokken wor-
den uit de gezamelijke kansdichtheid die proportioneel is aan de macht van de
determinant van de correlatiematrix. De uniforme verdeling is hiervan een bij-
zonder geval. Dit idee komt van Joe [2006] en was gebaseerd op de zogenaamde
D-vine. De methode is echter niet beperkt tot deze ene copula. Wij tonen aan
dat de C-vine ook goed toegepast kan worden en dat deze bovendien minder reke-
nintensief is. We laten ook zien dat de methode uitgebreid kan worden naar elke
reguliere vine. Dit creéert nieuwe mogelijkheden om deze methode toe te passen
bij het trekken van willekeurige correlatiematrices. Dit maakt het bijvoorbeeld
mogelijk om correlatiematrices te genereren conditioneel op correlatiewaarden in
een willekeurige boom. De zogenaamde ’Onion’ methode blijkt rekentechnisch erg
efficient te zijn, maar in sommige opstellingen laat de C-vine een betere prestatie
zien. Deze Onion methode is ook uitgebreid om het mogelijk te maken om wil-
lekeurige correlatiematrices op een niet-uniforme manier uit een verzameling van
semi-positief definiete matrices te trekken.

Een essentiéle stap in een probabilistische risicoanalyse is een gevoeligheidsa-
nalyse en hoofdstuk 6 gaat over dit onderwerp. Dit hoofdstuk bespreekt de notie
van de correlatie-ratio die een globale maat van gevoeligheid is op basis van de
variantie. We concentreren onze inspanning op de ontwikkeling van numerieke
methoden voor het schatten van deze ratio op basis van trekkingen. We schatten
de regressiecurve via een eenvoudige kleinste kwadraten methode voor het fitten
van polynomen. Er zijn echter twee valkuilen als we dit zonder een controleme-
chanisme doen. Het fitten van een polynoom van een te lage graad zal resulteren
in een slechte fit die niet goed overeenkomt met de ware regressiecurve. Aan de
andere kant zal een polynoom van een te hoge graad weliswaar goed fitten, maar
kan deze niet als een goede schatting voor de hele populatie beschouwd worden.
Hiervoor introduceren we een procedure voor het voorkomen van dit probleem
dat bekend staat als “overfitting”. Drie verschillende criteria voor het toetsen
op overfitting zijn getest en het criterium met de beste resultaten is gebaseerd
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op een aanpak van vroegtijdig stoppen. De hele methode voor het schatten van
de correlatie-ratio van trekkingen is heel eenvoudig en werkt goed, zelfs met een
beperkte hoeveelheid trekkingen.

Het onderwerp van hoger dimensionale statistische afhankelijkheid is veel com-
plexer gebleken dan de auteur in eerste instantie dacht. Voor hem heeft dit werk
waarschijnlijk meer vragen dan antwoorden opgeleverd. Een gevoel waar vele we-
tenschappers zich ongetwijfeld in zullen herkennen. Verder onderzoek is daarom
zeker wenselijk en dit proefschrift kan wel eens niet het laatste woord van de
auteur over dit onderwerp zijn.
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