




Propositions

accompanying the thesis

High Dimensional Dependence: Copulae, Sensitivity, Sampling

Daniel Lewandowski

1. Let c(x, y) be the density of a Ferguson’s (generalized diagonal band)
copula generated with density g(z), z ∈ [0, 1]. If g is bounded on [0, 1],
has finite number of discontinuities and

g(0)− g−(1) ≥ 0,

where
d

dx
g−(x) = max

{
− d

dx
g(x), 0

}
, g−(0) = 0,

then c(x, y) is a density of a mixture of diagonal band copulae.

see Chapter 3 of this dissertation

2. The vine method of generating random correlation matrices allows us
to generate correlation matrices conditional on correlation values in an
arbitrary tree.

see Chapter 5 of this dissertation

3. Let G = G(X), where X is a random vector of length n, and let η2(G|Xi)
denote the correlation ratio of G and Xi, i = 1, . . . , n. Then

η2(G|Xi) ≥ η2(G|h(Xi)),

where h(Xi) is a function of Xi such that σ2
h(Xi)

< ∞.

see Chapter 6 of this dissertation

4. Let G = G(X), where X is a random vector of length n and σ2
G < ∞.

Then
arg min

f
E

[
(G− f(Xi))2

]
= E[G|X].

see Chapter 6 of this dissertation



5. Based on numerical research the bivariate Gaussian copula has lower
relative information with respect to the independent copula than the
bivariate Frank’s copula for rank correlations less in absolute values than
0.445. Otherwise, the Frank’s copula has lower relative information.

6. Let D(K) denote the determinant of a Hermitian correlation matrix of
random variables indexed by the set K. Then the following holds

1− ρij;Lρ̄ij;L =
D({i, j, L})D({L})
D({i, L})D({j, L}) ,

where ρ̄ij;L denotes the conjugate of partial correlation ρij;L and L is a
set of indices such that i, j /∈ L.

7. The crucial fact for studying connections between (Hermitian) correla-
tion matrices and corresponding partial correlations matrices is that the
inverse of the correlation matrix R is equal to the (conjugate) transpose
of its cofactor matrix divided by the determinant of R.

8. Let partial correlations in each tree of a regular vine be equal. That is

ρij;K = ρlm;L

if |L| = |K|. Then
ρij = ρlm.

Having such a specification on a D-vine leads to Toeplitz product moment
correlation matrices.

9. One of the most critical and deepest texts about religion in general and
its significance for all human beings is “Baudolino” by Umberto Eco.

10. Mathematicians and politicians both make generalizations; the difference
is that the former’s are often deep while the latter’s are often stupid.
Poland exhibits both extremes (Prof. Banach vs President Kaczyński).

11. Best ideas come to mind after the second beer, but they are gone after
the third.

These propositions are considered opposable and defendable and as
such have been approved by the supervisor, Prof. dr. R.M. Cooke.



Stellingen

behorende bij het proefschrift

Hoog-Dimensionale Afhankelijkheden: Copula’s, Gevoeligheden,
Trekkingen

Daniel Lewandowski

1. Zij c(x, y) de verdeling zijn van een Ferguson’s (algemene diagonale band)
copula gegenereerd met de verdeling g(z), z ∈ [0, 1]. Als g begrensd is op
het interval [0, 1], een eindig aantal discontinuiteiten heeft, en

g(0)− g−(1) ≥ 0,

met
d

dx
g−(x) = max

{
− d

dx
g(x), 0

}
, g−(0) = 0,

dan is c(x, y) een verdeling van een mengsel van diagonale band copulae.

zie Hoofstuk 3 van deze dissertatie

2. De vine methode voor het genereren van stochastische correlatiematrices
biedt de mogelijkheid tot het genereren van correlatie matrices gecondi-
tioneerd op correlatiewaarden in een willekeurige boom.

zie Hoofstuk 5 van deze dissertatie

3. Zij G = G(X), met X een stochastische vector van lengte n, waarbij de
correlatie ratio van G en Xi, i = 1, . . . , n wordt gegeven door η2(G|Xi).
Dan geldt

η2(G|Xi) ≥ η2(G|h(Xi)),

met h(Xi) een functie van Xi zodanig dat σ2
h(Xi)

< ∞.

zie Hoofstuk 6 van deze dissertatie

4. Zij G = G(X), met X een stochastische vector van lengte n en σ2
G < ∞.

Dan geldt
arg min

f
E

[
(G− f(Xi))2

]
= E[G|X].

zie Hoofstuk 6 van deze dissertatie



5. Gebaseerd op numerieke onderzoek, voor rangcorrelaties lager dan 0.445
de Gaussische copula heeft een lagere relatieve informatie ten opzichte van
de onafhankelijke copula dan Frank’s copula. Voor hogere rangcorrelaties,
heeft Frank’s copula een lagere relatieve informatie.

6. Zij D(K) de determinant van een Hermitische correlatiematrix van stochas-
ten met een indexverzameling K. Dan geldt:

1− ρij;Lρ̄ij;L =
D({i, j, L})D({L})
D({i, L})D({j, L}) ,

waarbij ρ̄ij;L de geconjugeerde is van de partiële correlaties ρij;L, en L
een verzameling is van indices zdd i, j /∈ L.

7. Het cruciale gegeven bij de studie van relaties tussen (Hermitische) corre-
latiematrices en de corresponderende partiële correlatiematrices is, dat de
inverse correlatiematrix R gelijk is aan de (geconjugeerd) getransponeerde
van zijn cofactormatrix, gedeeld door de determinant van R.

8. Veronderstel dat de partiële correlaties in elke boom van een reguliere
vine gelijk zijn, dwz

ρij;K = ρlm;L

als |L| = |K|. Dan geldt
ρij = ρlm.

Een dergelijke specificatie voor een D-vine heeft tot gevolg dat de corre-
latiematrix een Toeplitz matrix is.

9. Een van de diepste en meest kritische teksten over religie in het algemeen,
en over haar betekenis voor de mensen is “Baudolino” van Umberto Eco.

10. Zowel wiskundigen als politici maken generalisaties, maar met dit verschil;
generalisaties van wiskundigen zijn vaak diep terwijl die van politici vaak
stompzinnig zijn. Polen geeft voorbeelden van beide (Prof. Banach en
President Kaczynski).

11. De beste ideeën komen na het tweede biertje, maar vertrekken na het
derde.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn
als zodanig goedgekeurd door de promotor, Prof. dr. R.M. Cooke.
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CHAPTER 1

Introduction

Certainty is the mother of quiet and repose, and
uncertainty the cause of variance and
contentions.

Edward Coke

There are many sources of uncertainty — lack of knowledge, noise in data,
chaotic nature of systems, etc. Whatever the source is, the uncertainty cannot
remain untackled. This is sometimes a regulatory requirement, and sometimes
it just pays off, as in optimization of industrial processes. A variety of ways of
dealing with uncertainties include increasing the predictability of the system by
taking control over some of its parameters, or at least measuring them, whatever
“measuring” may mean, as long as it gives us a new and useful information about
the state of these parameters. This, however, is not always feasible. Nobody can
claim to control the wave height of the ocean, or exactly measure temperature
on the surface of Sun. There is not much more to do than just to “tame” the
uncertainty — deal with it within a well established framework of reference. This
is where statistics comes to play the leading role and this thesis is the result
of four years of studying its concepts and methods focused on high dimensional
modelling. Before we proceed to the presentation of new results in the following
chapters, a few general words will be said in this introductory chapter about
various fields of statistics. This will help putting the results in a broader context.

In general we talk about a model instead of a system, as this suits better the
mathematical nature of this dissertation. We denote the model as G, where G
is a function of inputs X1, X2, . . . , Xn. The variable G is the explanandum (the
variable to be explained) and the variable Xi, i = 1, . . . , n, is the explanans (the
variable doing the explaining). The input variables need not be independent.

1



2

1.1 Uncertainty analysis
First of all, analysis of any model must include identification of its input factors
(Xi’s). Sometime this is quite easy, for instance when G is a clearly defined
physical phenomena with a mathematical formulation given in an analytical form.
On the other hand the identification process may require approaching experts on
the given subject of study and using their knowledge to come up with a reasonable
set of input parameters. The word reasonable itself allows for some subjectivity
in the selection of Xi’s. This is not necessarily a problem as long as it appropriate
methods (structured expert judgement) are used to elicit this expertise.

Having selected the input parameters, their probability distributions must be
determined. Data–rich areas like banking, insurance, or finance are privileged in
this regard. One can simply sample from the set of reported realizations or fit a
parametric distribution and use this one in further analysis. The latter solution
allows to account for unexpected realizations, that is realizations not reported in
the data, but still possible to occur.

The uncertainties in inputs are being propagated through the model to obtain
the distribution of the output. However, it would be very unreasonable to assume
independence between the input factors and treat all of them as not influencing
each other. The dependence may significantly affect the output distribution and
in the end make the whole analysis unrealistic if not accounted for.

1.2 Dependence modelling
When talking about dependence modelling we distinguish three subareas worth
deeper analysis. First of all: what is dependence? How do we define it and mea-
sure it? There is a great deal of literature on various measures of dependence.
Among them [Joe, 1997, Mari and Kotz, 2001] provide a good and extensive over-
view of dependence concepts. Many scientists have different views on the concept
of dependence as reflected in the measures they employ. Pearson’s product mo-
ment correlation, Spearman’s rank correlation, Kendall’s tau, tail dependence are
among the key dependence measures concepts. This variety shows that the world
we try to model is too complex to subjugate it to one measure only, although
they are not mutually independent. Choosing one specific measure follows very
simple reasoning: take the one you know how to cope with (analytically and
numerically). Product moment correlations are well established in this regard.

1.2.1 Product moment correlation matrices
Product moment correlation is often chosen as a measure of dependence bet-
ween two random variables. Usually denoted by Greek letter ρ it indicates the
strength (0 ≤ |ρ| ≤ 1) and the direction (sgn(ρ)) of a linear relationship between
two random variables. Simple to compute from data it has some obvious flaws
however. Take X ∼ U [−1, 1] and Y = |X|. Once a realization of X is known,
we know exactly the value of Y , hence clearly X and Y are dependent. However
ρ(X,Y ) = 0 indicating two uncorrelated random variables. In fact taking any
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even function of X as Y results in their product moment correlation being zero.
This small example shows that in general lack of correlation does not translates
into independence (a notable exception is the joint normal distributions).

Product moment correlation measures the strength of linear association of two
random variables. The counterpart of product moment correlation of two random
variables for multivariate models is a product moment correlation matrix. This
matrix contains product moment correlations computed for every possible pair
of random variables involved. Given a model consisting of n variables, there are(
n
2

)
such pairs, which can be arranged in a form of a square symmetric matrix of

dimension n × n. The symmetrical characteristic of the matrix reflects the sym-
metricity property of the product moment correlation itself ρ(X, Y ) = ρ(Y, X).
Entries of such a matrix are not algebraically independent as this would mean
that every square matrix with one’s on the main diagonal and values between -1
and 1 on off-diagonal is a correlation matrix. This is not true since not every such
matrix is positive semi-definite. In fact, treating correlations in the correlation
matrix as random variables, allows noticing some very interesting and complex de-
pendencies between them. Chapter 5 explores this idea further. Also it describes
two ways of generating product moment correlation matrices and extends them.
The generating can be done such that the joint density of correlations (treated
as random variables) is uniform for instance. Hence we can sample uniformly
from the set of positive semi-definite square matrices with 1’s on the diagonal and
ρij ∈ [−1, 1] off-diagonal. This can be helpful in model testing to see how they
behave in various scenarios.

The form of a matrix is very convenient for the following reason. Keeping
the limitations in mind one can develop a methodology for sampling dependent
random variables with correlations specified in a given correlation matrix. The
simplest is the following. Let U be a random vector of length n distributed
uniformly on the surface of the unit sphere in Rn. Then X = AU has covariance
matrix Σ = AAT . We call X a rotationally invariant random vector. Further, if
Y = RX, where R is a non-negative random variable, then Y has still the same
covariance matrix Σ and is called elliptically contoured. If R2 ∼ χ2

2 (Chi-squared
distribution with 2 degrees of freedom), then Y follows the multivariate normal
distribution. This is easy to implement, but the family of distributions obtainable
in this way may not suit our needs. The vine-copula method presented later in
this chapter provides much more robust techniques of generating samples from
multivariate joint distributions with correlated marginals.

1.2.2 Copulae

Introducing correlations does not necessarily have to rely on the multivariate nor-
mal model mentioned above. The concept of copulae can be successfully applied
instead. They represent a natural tool for modeling high-dimensional distribu-
tions with Markov dependence trees and a recent generalization thereof called
vines [Bedford and Cooke, 2002](see section 1.2.4 for a brief description of vines)
in which a multivariate distribution is built from bivariate pieces with given rank
and conditional rank correlations.
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Early accounts of bivariate distributions with uniform marginals can be traced
back to the early 40’s of the last century. Hoeffding [1940] studies such distribu-
tions in the square [−1/2, 1/2]2. Formally the notion of copula was first formulated
by Sklar [1959]. A copula is a joint distribution C on the unit hypercube with
uniform marginals. Any m-variate continuous distribution F has an associated co-
pula, which is the distribution C on the unit hypercube [0, 1]m of the vector of uni-
form random variables (F1(x1), . . . , Fm(xm)) where Fi, i = 1, 2, . . . , m, is the i-th
univariate marginal distribution of F . The functional form of C : [0, 1]m → [0, 1]
is

C(u) = F (F−1
1 (u1), . . . , F−1

m (um)), u ∈ [0, 1]m.

Conversely, if random quantities have known continuous marginals and a specified
continuous copula then the joint distribution is specified by the formula

F (x1, . . . , xn) = C(F1(x1), . . . , F2(x2)).

When U is a vector of m independent random variables then it is easy to see that
their copula is the uniform distribution on the unit hypercube, C(u) =

∏m
i=1 ui.

Markov trees and vines are coupled with bivariate copulae. The dependence
structure can be introduced by choosing a copula for each edge of the tree or
vine.

In practical applications the choice of a copula is mostly determined by the
copula’s efficiency in coping with certain problems. For example, software appli-
cations like Unicorn, a tool for carrying out uncertainty analysis developed at
the Delft University of Technology, make use of a set of fixed parametric families
of copulae, including the diagonal band copula [Cooke and Waij, 1986], the ellipti-
cal copula [Kurowicka et al., 2001] and the minimum information copula [Bedford
and Meeuwissen, 1997], leaving the final choice to the user. This methodology has
been successfully applied in uncertainty analysis combined with expert judgment
[Cooke, 1991]. [Nelsen, 2007] offers an extensive overview of copulae families.

Due to the nature of copulae we have control over the the rank correlation
between X and Y rather than the product moment correlation. This follows from
the fact the parameter of the copula usually corresponds to the product moment
correlation between FX and FY . Applying the inverse cumulative distribution
functions F−1

X and F−1
Y respectively gives the random variables of interest. This

may pose some problems as in many cases a closed form expression for the rela-
tionship between the rank and the product moment correlation for a given copula
is simply not known and hard to establish.

Chapter 3 describes the concept of Generalized Diagonal Band (GDB) copulae.
We also find the minimally informative GDB copula with respect to the uniform
background measure given the correlation constraint and introduce a new class of
multivariate copulae, namely the Dirichlet-type copulae in chapter 2.

1.2.3 Dependence trees
Markov dependence trees have long been known as a simple and intuitive gra-
phical model for dependence representation. They consist of nodes (random va-
riables) and edges joining selected nodes expressing correlations between bivariate
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1 2 3 4
{12} {23} {34}

5

{35}

Figure 1.1: Example of a Markov dependence tree on 5 variables.

margins of a multivariate joint distribution. It implicitly assumes conditional in-
dependence between each pair of random variables not directly connected, but
rather with a path leading through other intermediate nodes. The independence
is conditional on the variables on the path between these two variables. For ins-
tance, in Figure 1.1 variables 1 and 5 are conditionally independent given variables
2 and 3.

Their main usage is coupled with Monte Carlo sampling. When analytical
methods of determining joint distributions fail, the only solution may be gene-
rating a set of scenarios for input variables and studying the distribution of the
output variable based only on the obtained data. If dependence between input
variables is assumed and specified in a form of rank correlations, the scenarios
can be sampled with the use of dependence trees. The procedure is quite simple.
Pick a root (any node in Figure 1.1) and follow the path determined by edges
connecting the nodes until all nodes are visited. Each edge of the tree is assigned
a constraint set (a doubleton of indices of variables reachable from a given edge),
a rank correlation and a bivariate copula. The rank correlation is a parameter
for the copula joining the ranks (normalized to interval [0, 1]) of original random
variables. This allows to sample two variables uniform on [0, 1] representing the
ranks with the copula as their joint distribution. Knowing the marginal distribu-
tions of the variables on the tree one can apply their respective inverse cumulative
distribution functions to eventually obtain the proper quantiles.

Rank correlations on all edges of the tree are algebraically independent (thanks
to the fact that the tree is an acyclic graph) hence they can be freely changed to
any value between −1 and 1.

The conditional independence statements are quite strong assumptions. The-
refore a generalization of trees has been introduced called vines [Cooke, 1997].
We describe this concept in the next section.

1.2.4 Vines
Dependence vines are generalizations of dependence trees. Here the conditional
independence statements implied by the structure of the tree have been replaced
with the conditional dependence statements.

A vine is a set of nested trees, that is, edges of tree Ti are nodes of tree Ti+1.
Consider the set of nodes {1, 2, 3} representing random variables in Figure 1.2.
Edges {1, 2} and {2, 3} of tree T1 are nodes of tree T2. They can be joined
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1 2 3 4
{12} {23} {34}

5

{35}
{25|3}

{14|23}

{24|3}{13|2}

{15|23}

{45|123}

Figure 1.2: Example of a regular vine on 5 variables.

by an edge in T2, namely the edge denoted as {13|2}. This edge is assigned a
conditional rank correlation. Here {1, 3} is the conditioned set and {2} is the
conditioning set. Arcs between two nodes in a tree Ti can be drawn only if
these nodes share a common node in tree Ti−1. This is called the regularity
condition and it ensures that the conditioned sets are doubletons. Regular vines
offer a very convenient tool for modelling dependence in the sense that each edge
of the vine can be assigned a rank or conditional rank correlations which are
algebraically independent. Quite understandably sampling a dependence vine
is much more complicated then sampling a dependence tree. The dependence
structure is more complicated now and involves conditional rank correlations.
Algorithms for sampling a dependence vine can be found in Kurowicka and Cooke
[2006a].

Dependence vines are described in greater detail in section 5.

1.3 Sensitivity analysis

If uncertainty analysis is the first step in studying complex statistical models
then the sensitivity analysis is a natural follow-up. It answers the question of
importance of input factors for the output result. As in the case of measuring
dependence, one first has to determine what the term important variable means
and how this importance can be quantified. We elaborate on this in the following
paragraphs. The decision to carry out sensitivity analysis if very simple to justify
from practical point view. Sensitivity analysis can be easily translated directly
to saving money and/or reducing risks. After all, observing only selected, most
important factors means fewer resources used.

However these factors must first be determined. Sensitivity analysis does this
in a methodological manner with well established theorems. As in the case of
dependence measures, there is no one general sensitivity measure. A particular
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choice will depend on what aspect interests us most, whether it a global picture
of influences or maybe harder to study nuisances better investigated with local
sensitivity measures.

Section 6 introduces a new estimation method of the global sensitivity mea-
sure, called correlation ratio. It is a variance based measure, which is designed
to explain to what degree the variance of the output follows from the variance
of inputs. Computing this quantity analytically depends on the complexity of a
given model and in most cases an estimation must be computed.

1.4 Expert judgement
The vine-copula method of studying complex multivariate models requires speci-
fying rank and conditional rank correlations for the edges of the vine and selecting
(conditional) copulae. Assessing all these correlations can be a tremendous task
given the fact that the number of correlations to be specified for a model in-
creases dramatically as the dimension of the model increases. Not all of them
can be computed from data and the ultimate solution becomes the use of expert
judgement (apart from setting the missing correlations to 0, effectively making
more assumptions than one intended).

A number of methods for eliciting experts’ knowledge exist and Cooke [1991]
provides an excellent overview of these methods, as well as it introduces new ones
used in many applications. Section 4 introduces a new methodology based on the
minimum information principle that provides a much more flexible approach to
defining copulae. During the elicitation a copula is built rather than a correlation
elicited. Any quantity (or a group of quantities) depending on two variables in
question can be considered as quantiles specified by an expert. The system can
give guidance on the range of values for each quantile that are compatible with the
specifications already made by the expert. The method uses a D1AD2 algorithm
to build the copula that minimizes the information function given the constraints.
This method has been implemented in a Matlab code and is illustrated by an
example.
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CHAPTER 2

Review of multivariate copulae

We used to think that if we knew one, we knew
two, because one and one are two. We are
finding that we must learn a great deal more
about ’and’.

Sir Arthur Eddington

2.1 Introduction

Building multivariate distributions can be very effectively done by using the vine-
copula method, which “couples” bivariate pieces of this distribution in order to
get the full multivariate joint distribution. The dependence structure is provided
by specifying rank and conditional rank correlations on the edges of the correspon-
ding vine. This specification is simplified by the fact, that correlations on a vine
are algebraically independent. Alternatively one can use a method of sampling a
multivariate distribution which immediately follows from Sklar’s theorem. Every
continuous multivariate distribution has its unique copula representative. Hence
knowing how to sample from a multivariate copula allows us to obtain samples
from the corresponding multivariate distribution with given dependence struc-
ture. This section introduces concepts necessary to fully understand the notion of
multivariate copulae and their significance for generating samples from multiva-
riate distributions. Also, a new multivariate copula derived from the generalized
Dirichlet distribution has been introduced.

9
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2.2 Prerequisites
There are many dependence concepts that can be discussed in conjunction with
copulae. We list some of the most widely used here.

2.2.1 Spearman’s ρ and Kendall’s τ for copulae

Copulae correlate percentiles of univariate margins of joint distributions. There-
fore we mostly talk about rank correlations in case of copulae, instead of product
moment correlations. Two popular measures of such association are the Spear-
man rho, denoted as ρr, and Kendall’s τ . They can be calculated for a given
copula C(u, v) as follows [Hoeffding, 1940]

ρr = 12
∫∫

[0,1]2

C(u, v) du dv − 3,

τ = 4
∫∫

[0,1]2

C(u, v)dC(u, v) du dv − 1.

They both take values in the interval [−1, 1], with the sign indicating a negative
or positive dependence.

Kendall’s τ is easier to calculate for well known copulae, like the ones men-
tioned below in section 2.3. First of all, very simple analytic expressions exist for
converting parameters of Archimedean copulae, like Clayton or Gumbel copulae,
to this association coefficient. Spearman’s ρr has to be numerically estimated in
these cases, as closed form expressions do not exist. Secondly, in case of elliptical
distributions (like Gaussian and t-Student distributions) Kendall’s τ depends only
on the product moment correlation between pairs of its univariate margins, where
Spearman’s ρr depends also on the specific type of this distribution.

2.2.2 Partial and conditional correlations

The partial correlation ρ12;3,...,n can be interpreted as the correlation between the
orthogonal projections of random variables X1 and X2 on the plane orthogonal
to the space spanned by X3, . . . , Xn.

Definition 2.2.1 (Partial correlation). The partial correlation of random varia-
bles X1 and X2 with X3, . . . , Xn held constant is

ρ12;3,...,n = − C21√
C11C22

,

where Ci,j denotes the (i, j)th cofactor of the n-dimensional product moment cor-
relation matrix; that is, the determinant of the submatrix gotten by removing row
i and column j.
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Partial correlations can be calculated recursively with the following formula
[Yule and Kendall, 1965]

ρij;kL =
ρij;L − ρik;Lρjk;L√

(1− ρ2
ik;L)(1− ρ2

jk;L)
, (2.1)

where L is a set of indices, possibly empty, distinct from {i, j, k}. They can be
assigned to the edges of a regular vine, such that conditioned and conditioning
sets of the edges and those of partial correlations coincide. Every such assignment
uniquely parameterizes a product moment correlation matrix.

The conditional rank correlation of X and Y given random variables indexed
by set L is the rank correlation computed with the conditional distributions of X,
Y given L. They can be assigned to the edges of a regular vine in the same way
we do it for partial correlations. This is a more natural association as parameters
of copulae can be expressed in terms of rank correlations.

The vine-copula method gains significantly from knowing the relationship be-
tween partial correlations and conditional rank correlations for a given copula.
This is of great value for models with constant conditional rank correlations only,
or in cases where one is willing to violate this assumption. The following heuri-
stics works for vines with Gaussian copulae used for coupling bivariate piece of
the joint distribution realized by this vine. Suppose one wants to change one vine
to another (in other words change the conditional rank correlation specification).
This will not be possible to achieve unless conditional rank correlations on the
original vine can be somehow translated to conditional rank correlations on the
new vine. One of the solutions is to employ partial correlations as intermediate
step of the transformation. Consider this algorithm

Algorithm 2.2.1 (Changing conditional rank specification on a normal vine).

1. Convert conditional rank correlations on the original vine to corresponding
conditional product moment correlations (the transformation of course de-
pends on the chosen copula).

2. Convert conditional product moment correlations on the original vine to
corresponding partial correlations (the transformation also depends on the
chosen copula).

3. Use recursive formula (2.1) on partial correlations to obtain the unconditio-
nal product moment correlation matrix.

4. Use recursive formula (2.1) on the unconditional product moment correla-
tion matrix to obtain partial correlations for the edges of the new vine.

5. Convert these new partial correlations to corresponding product moment
correlations with the inverse of the transformation used in step 2.

6. Finally, convert conditional product moment correlations to conditional
rank correlations with the inverse of the transformation used in step 1.
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The main obstacle in using this algorithm is the lack of knowledge of the
transformations used in steps 1 (and inverse thereof in step 6) and 2 (5). There
are cases when they can be easily derived however and the following results of
Baba et al. [2004] are useful for determining multivariate distributions for which
the partial and the conditional product moment correlations coincide.

Theorem 2.2.1. For any random vectors X = (X1, X2) and Y = (Y1, Y2, . . . , Yp)
the following two conditions are equivalent

• E(X|Y) = α + BY for a vector α and a matrix B,

• ΣXX;Y = E
(
ΣXX|Y

)
,

where ΣXX;Y is the partial covariance matrix of X with Y fixed, and ΣXX|Y is
the corresponding conditional covariance matrix.

and

Corollary 2.2.2. For any random vectors X = (X1, X2) and Y = (Y1, Y2, . . . , Yp),
if there exists a vector α and a matrix B, such that

E(X|Y) = α + BY and ρ12|Y does not depend on Y,

then ρ12;Y = ρ12|Y almost surely.

Elliptically contoured distributions immediately come to mind when conside-
ring distributions complying with the assumptions of Corollary 2.2.2.

2.2.3 Tail dependence
So far only correlation coefficients have been discussed as concepts of dependence.
They measure average dependence over the domain of variables of interest. There
is however a measure that tries to capture the dependence more locally rather
than globally, in the tails (lower and/or upper) of distributions. We introduce the
notion of tail dependence:

Definition 2.2.2 (Upper tail dependence). Let X = (X1, X2) be a random vector.
We say that X is upper tail dependent if

λU = lim
v→1

P{X1 > F−1
1 (v)|X2 > F−1

2 (v)} > 0,

if the limit λU exists.

Conversely, we define the lower tail dependence

Definition 2.2.3 (Lower tail dependence). Let X = (X1, X2) be a random vector.
We say that X is lower tail dependent if

λL = lim
v→0

P{X1 ≤ F−1
1 (v)|X2 ≤ F−1

2 (v)} > 0,

if the limit λL exists.
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Figure 2.1: Scatter plot of samples from a 3-dimensional normal copula with projections
of 2-dimensional margins (all correlations are equal to 0.95).

These limits have simpler representation for copulae

λU = lim
v→1

1− 2v + C(v, v)
1− v

,

λL = lim
v→0

C(v, v)
v

,

where C is the cdf of a copula.
The next section gives examples of multivariate copulae and how the intro-

duced concepts of dependence can be used to describe the differences between
them.

2.3 Elliptical and Archimedean copulae
This section studies the most widely used multivariate copulae, serving as a point
of reference for the copula we develop in section 2.4. As an example we show a
scatter plot of samples from a 3-dimensional normal copula in Figure 2.1. White
dots represent the samples. Intensity of the colours of the plots in the background
represents relative height of the corresponding two dimensional marginals. Rank



14 Chapter 2

correlations between every pair of random variables is ρr(X, Y ) = ρr(Y,Z) =
ρr(X,Z) = 0.95.

2.3.1 Gaussian (normal) copula

Finance and insurance industries are already very familiar with the multivariate
normal copula, constructed from the multivariate normal distribution via Sklar’s
theorem. While the normality condition is satisfied in many applications, the
main reason for the normal copula being used so widely is its tractability. Qu-
ite often solutions for problems involving this copula exist analytically (closed
form relationships between various correlation coefficients for that matter). The
multivariate normal copula is in fact the joint normal transform. Since most
computations are done in the Gaussian space we can take advantage of linear
conditional expectations (regressions). This is important for the equivalence of
the conditional and partial correlations for the reasons explained in section 2.2.2.

Using this copula also means that the whole correlation matrix must be spe-
cified and this involves the previously mentioned problem of compatibility of cor-
relations (see section 1.2.1). Also, if a vector X of n random variables yields
rank correlation matrix Rr, then one has to transform this matrix to a product
moment correlation matrix using the following transformation

ρ(Xi, Xj) = 2 sin
(π

6
ρr(Xi, Xj)

)
, (2.2)

where i, j = 1, . . . , n, i 6= j. This step is necessary since the input for the normal
copula is a product moment correlation matrix. Unfortunately, as it has been
pointed out in [Kurowicka and Cooke, 2006a, chapter 4.2], this causes a large
percentage of semi-positive definite matrices Rr to be transformed to non-positive
definite matrices, with the percentage decreasing to 0 as the dimension increases.
We can cope with this problem by applying the notion of the partial correlation,
as we show in the next section.

For the sake of completeness we give the formula for the product moment
correlation as as function of Kendall’s τ for the normal copula [Fang et al., 2002]

ρ(Xi, Xj) = sin
(π

2
τ(Xi, Xj)

)
. (2.3)

This formula however is even more prone to transforming a Kendall’s τ matrix
into a non positive definite matrix, as it has been shown in Figure 2.2.

The multivariate normal distribution is an example of a distribution comply-
ing with the assumptions of Corollary 2.2.2. In fact, the corollary holds for a
much broader class of distributions, namely elliptically contoured distributions
(of which the normal distribution is a member). The equivalency of the partial
and conditional product moment correlation allows to develop another method of
generating correlated variables with the help of multivariate normal copula, called
normal vines introduced in [Kurowicka and Cooke, 2006a].
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Figure 2.2: Probability of feasibility of rank correlation and Kendall’s τ to product
moment correlation transformation.

2.3.2 Normal vines
Suppose that conditional rank correlations are specified on the edges of a regular
vine. Under the normality assumptions these conditional rank correlations can be
transformed to conditional product moment correlations with the relationship 2.2,
which in turn, are equal to the partial correlations. This way we obtain a partial
correlation vine for a joint normal distribution. Any partial correlation specifica-
tion on a vine characterizes a unique product moment correlation matrix and this
is the input for the multivariate normal copula. This method has been implemen-
ted in Unicorn, software for uncertainty analysis with correlations developed at
the Department of Mathematics of the Delft University of Technology.

Example of generating correlated samples with normal vine Consider a random vector
X = (X1, X2, X3), where Xi are iid N (0, 1), i = 1, 2, 3. Suppose the following
vine representation is given:

Ar =
[
ρr12 ρr13

ρr23|1

]
=

[
0.5 0.6

−0.8

]
.

The conditional rank correlation matrix Ar can be transformed with eq.(2.2) to
the conditional product moment correlation matrix

A =
[
ρ12 ρ13

ρ23|1

]
=

[
0.5176 0.618

−0.8135

]
.

Knowing ρij|k = ρij;k allows us to determine the product moment correlation
matrix R from the conditional product moment correlation matrix A with the
help of the recursive formula (2.1).

R =




1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1


 =




1 0.5176 0.618
0.5176 1 −0.2272
0.618 −0.2272 1


 ,
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and this one is always positive definite as any partial correlation matrix uniquely
parameterizes a product moment correlation matrix. The resulting lower trian-
gular matrix L, such that LLT = R is

L =




1 0 0
0.5176 0.8556 0
0.618 −0.6395 0.4572


 .

Now we draw 600 000 samples of X and calculate Y = LX. The result of this
operation, the random vector Y, is a correlated normal random vector with the
following sample product moment correlation matrix

R̂ =




1 0.5184 0.618
0.5184 1 −0.2269
0.618 −0.2269 1


 .

This is a very accurate approximation of the original correlation matrix R. Having
R̂ allows to compute the sample partial correlation matrix

Â =
[
0.5184 0.618

−0.8141

]
.

2.3.3 t-Copula
t-Copula as the name suggests corresponds to the multivariate Student’s t-distribution.
It is more powerful than the Gaussian copula in the sense that it has an extra
parameter, ν, called the degree of freedom. In fact, the Gaussian copula can be
seen as a limiting case of the t-copula as ν → ∞. Therefore it is not surprising,
that the upper tail dependence for the tcopula decreases to 0 as ν →∞, since the
Gaussian copula is tail independent (λU = λL = 0)[Embrechts et al., 2002].

Recently the t-copula has become a more popular choice for financial and
actuarial stochastic modelling; namely because of its close relation to the familiar
Gaussian copula. [Demarta and McNeil, 2005] extensively cover many variations
of the t-copula.

Both the Gaussian and the t-copulae are examples of elliptical copulae, that
is, copulae of elliptically contoured distributions. We characterize the elliptical
distributions as follows. Let vector U ∈ Rn have a sign-symmetric Dirichlet
distribution. In other words U is uniformly distributed on a unit sphere. The
joint density of the first k components of U, k < n, is of the form

fk(u) =
Γ

(
n
2

)

Γ
(

n−k
2

)
Γ

(
1
2

)k

(
1−

k∑

i=1

u2
i

)n−k
2 −1

+

,

where (a)+ = a whenever a ≥ 0 and (a)+ = 0 otherwise.

Definition 2.3.1. A vector X = (X1, X2, . . . , Xn) is said to be elliptically con-
toured with parameters µ and Σ if it has the stochastic representation

X = µ + RAU, (2.4)
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Figure 2.3: Scatter plots of vectors uniform on a sphere U = (U1, U2), rotationally
invariant V, and elliptically contoured X.

where µ ∈ Rn (n × 1 vector of means), R ≥ 0 is a random variable independent
of U, and A is an n× n constant matrix, such that AAT = Σ.

Vector X has mean vector µ and covariance matrix Σ. Figure 2.3 shows three
stages of generating samples from an elliptically contoured distribution starting
from a distribution on a sphere in R2 and resulting in correlation ρ(X1, X2) = 0.8.
The radius random variable R is Chi-square distributed with two degrees of fre-
edom, resulting in X being joint normal distribution. It is quite easy to see why
elliptical distributions have linear regressions.

Figure 2.4 shows samples generated from various copulae presented in this
section. Tails of the t-copula exhibit higher concentration of samples than in case
of the Gaussian copula indicating that it is both lower and upper tail dependent
(λL > 0 and λU > 0).

2.3.4 Archimedean copulae
The normal copula is very popular choice for generating correlation variables ad-
opted by such credit risk models as KMV or CreditMetrics. However historical
data usually suggests that other types of copulae may be more suitable as they
fit data better. A wide family of copulae are the so-called Archimedean copulae.

Definition 2.3.2 (Archimedean copula). A copula C(u1, u2, . . . , un) is called an
Archimedean copula if its joint cumulative distribution function can be written as

C(u1, u2, . . . , un) = φ−1(φ(u1) + φ(u2) + . . . + φ(un))

for all 0 ≤ u1, u2, . . . , un ≤ 1 and where φ is a generator function satisfying

• φ(1) = 0;

• φ is decreasing and convex.

• the inverse function f = φ−1 is completely monotonic, ie. (−1)−nf (n) ≥ 0
for n = 0, 1, 2, . . ..

Some well known families of Archimedean copula include
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• Clayton copula: φ(t) = t−θ − 1, θ > 0;

• Gumbel copula: φ(t) = (− ln(t))θ, θ ≥ 1;

• Frank copula: φ(t) = − ln
(

e−θt−1
e−θ−1

)
, θ ∈ R \ {0}.

The particular choice of a copula depends on how fits data. Every Archimedean
copula behaves differently with respect to the tail dependence, a very important
factor in dependence modelling.

As it has been already mentioned there is no analytical expression for the
Spearman’s ρ for Archimedean copulae. On the other hand, Kendall’s τ can be
computed with this formula [Genest and MacKay, 1986]

τ = 1 + 4
∫ 1

0

φ(t)
φ′(t)

dt.

Different coefficients for the left and right tail dependence are desirable in
many models, where complex dependencies occur. The Gumbel copula exhibits
higher correlation in the right tail, whereas the Clayton copula shows tighter con-
centration of mass in the left tail (see Figure 2.4c and 2.4d). Quite often copulas
can be flipped, i.e., instead of the original copula variable U we take 1−U , which
means that a left tail dependent copula becomes a right tail dependent copula.
This works only if a given copula is asymmetric obviously. The Frank copula is
the only bivariate Archimedean copula symmetric about the main diagonal and
the anti–diagonal of its domain, hence it has these coefficients equal (it is one of
the copulae implemented in Unicorn). It should be also noted that the Clayton
and the Gumbel copula in their standard forms realize only positive correlations.
[Joe, 1997] and [Venter, 2002] provide a good overview of tail dependence for
Archimedean copulae.

Often bivariate Archimedean copulae can be extended to higher dimensions
by making use of their associativity property

C(C(u1, u2), u3) = C(u1, C(u2, u3)).

2.4 Dirichlet-type copula as an example of a multivariate co-
pula

This section introduces a new copula of the Dirichlet type. The Dirichlet distribu-
tion has been studied mainly as a conjugate prior for the multinomial distribution
in Bayesian analysis [see Gustafson and Walker, 2003, for instance]. Indeed, the
standard Dirichlet distribution is defined on the n-simplex and as such it can
represent vectors of probabilities since the sum of the components of this vector
is unity.

1This section is based on a manuscript written jointly with Prof. Jolanta Misiewicz from
University of Zielona Góra, Zielona Góra, Poland.
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Figure 2.4: Scatter plots of various copulae realizing rank correlation ρr = 0.8.

Definition 2.4.1. A random vector (D1, D2, . . . , Dn) has a Dirichlet distribution
with positive parameters β1, β2, . . . , βn (notation D(β1, . . . , βn)) if

1. Di ∈ [0, 1], i = 1, 2, . . . , n;

2.
∑n

i=1 Di = 1 almost surely;

3. the joint density function of D(β1, . . . , βn−1) is

Γ(β1 + . . . + βn)
Γ(β1) · . . . · Γ(βn)

[
n−1∏

i=1

dβi−1
i

](
1−

n−1∑

i=1

di

)βn−1

+

,

where (c)+ = max(c, 0).

The j-th one-dimensional marginal density of the Dirichlet distribution is of
the form

f1(dj) =
Γ(

∑n
i=1 βi)

Γ(qi)Γ(βi)
dβi−1

i (1− di)
qi−1
+ ,



20 Chapter 2

where qi =
∑

k 6=i βk and hence is Beta distributed with parameters βi and qi for
all j = 1, . . . , n. The marginals are uniform only for βi = qi = 1, and this means
that the Dirichlet distribution has all marginals uniform only for n = 2. The class
of Dirichlet distributions will be extended in the next section. The generalization
allows to obtain uniform marginals for arbitrary dimension n.

This section is organized as follows. We generalize the class of Dirichlet di-
stributions in section 2.4.1. Section 2.4.2 links the Gamma distribution with the
Dirichlet distribution. We introduce a new multivariate copula based on Dirichlet
distribution in section 2.4.3 and proceed with conclusions in section 2.5.

2.4.1 Generalized Dirichlet distribution
We generalize the Dirichlet distribution following Gupta et al. [1996]:

Definition 2.4.2 (Generalized Dirichlet distribution). We say that a random
vector (D1, . . . , Dn) follows the generalized Dirichlet distribution with positive pa-
rameters α1, . . . , αn and β1, . . . , βn (notation D(α1, . . . , αn; β1, . . . , βn)) if

1. Di ∈ [0, 1], i = 1, . . . , n;

2.
∑n

i=1 Dαi
i = 1 almost surely;

3. the joint density function of (D1, . . . , Dn−1) is

Γ(δ1 + . . . + δn)
Γ(δ1) · . . . · Γ(δn)

[
n−1∏

i=1

αi dβi−1
i

](
1−

n−1∑

i=1

dαi
i

)δn−1

+

,

where δi = βi

αi
for i = 1, 2, . . . , n.

The Dirichlet distribution can also be symmetrized:

Definition 2.4.3 (Symmetrized Generalized Dirichlet distribution). A random
vector (D1, . . . , Dn) has a sign-symmetric Dirichlet-type distribution with para-
meters α1, . . . , αn and β1, . . . , βn (we use notation Ds(α1, . . . , αn; β1, . . . , βn)) if

1. Di, i = 1, . . . , n, is a symmetric random variable;

2.
∑n

i=1 |Di|αi = 1 almost surely;

3. the joint density function of (D1, . . . , Dn−1) is

Γ(δ1 + . . . + δn)
Γ(δ1) · . . . · Γ(δn)

(
n−1∏

i=1

αi

2
|di|βi−1

)(
1−

n−1∑

i=1

|di|αi

)δn−1

+

.

If αi ≡ 2 and βi ≡ 1 then the random vector (D1, . . . , Dn) has uniform
distribution on the unit sphere in Rn. This special random vector will be denoted
by U (n) = (U1,n, . . . , Un,n) and we denote the distribution of U (n) by ωn.
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Figure 2.5: Examples of densities of Dirichlet distributed random vectors with given
parameters.

The marginal density function of (D1, . . . , Dk), k < n, of the generalized
Dirichlet distribution D(α1, . . . , αn;β1, . . . , βn) at the point d = (d1, d2, . . . , dk)
is given by the following

fk(d) =
Γ (

∑n
i=1 δi)

Γ
(∑n

i=k+1 δi

) [∏k
i=1 Γ(δi)

]
(

k∏

i=1

αid
βi−1
i

)(
1−

k∑

i=1

dαi
i

)∑n
i=k+1 δi−1

+

.

The expectation of a product
∏k

i=1 Dhi
i , hi ∈ R, can be expressed as [see

Gupta et al., 1996]

E

(
k∏

i=1

Dhi
i

)
=

Γ
(∑n

i=1
βi

αi

)

Γ
(∑k

i=1
βi+hi

αi
+

∑n
i=k+1

βi

αi

)
k∏

i=1

Γ
(

βi+hi

αi

)

Γ
(

βi

αi

) . (2.5)

The formula for the covariance, variance and product moment correlation of Di

and Dj can be easily determined from eq.(2.5). For instance

Cov(Di, Dj) =
Γ(δ0)

[
Γ

(
δ0 + 1

αi

)
Γ

(
δ0 + 1

αj

)
− Γ(δ0)Γ

(
δ0 + 1

αi
+ 1

αj

)]

Γ
(
δ0 + 1

αi
+ 1

αj

)
Γ(δi)Γ(δj)

,

where δ0 =
∑n

i=1 δi.

2.4.2 Generalized Gamma distributions
The Dirichlet distribution has many connections with the Gamma and Beta di-
stributions. The relation between the standard Dirichlet and the generalized
Dirichlet distribution is analogous to the relation between the standard Gamma
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and the generalized Gamma distribution. The well known Gamma distribution
with positive parameters β, λ has the probability density function

f(x; β, λ) =
λβ

Γ(β)
xβ−1e−λx 1[0,∞)(x),

where Γ(β) is the gamma function by Γ(β, λ). The generalized Gamma distribu-
tion has an extra parameter α > 0.

Definition 2.4.4 (Generalized Gamma and Symmetrized Generalized Gamma
distribution). A random variable X follows the generalized Gamma distribution
Γ(α, β, λ), α, β, λ > 0, if it has density

αλβ

Γ(β/α)
xβ−1e−(λx)α

.

A random variable X has a generalized and symmetrized Gamma distribution
Γs(α, β, λ), α, β, λ > 0, if it has density

αλβ

2Γ(β/α)
|x|β−1e−|λx|α .

Notice that Γ(β, λ) = Γ(1, β, λ) and Γs(β, λ) = Γs(1, β, λ). Moreover we have
that if X ∼ Γ(β/α, 1) = Γ(1, β/α, 1), then X1/α is distributed as Γ(α, β, 1). If θ0

is a random variable with probability distribution P{θ0 = 1} = P{θ0 = −1} = 1
2 ,

and is independent of X then the product X1/αθ0 has the generalized Gamma
distribution Γs(α, β, 1). It follows that a random variable Y with the generalized
Gamma distribution Γs(α, β, λ) has the representation Y

d= (X/λ)1/αθ0.
Dirichlet distributed random variables can be generated by transforming Gamma

random variables.

Proposition 2.4.1. Let X1, . . . , Xn be independent random variables with distri-
butions Γ(αi, βi, 1) respectively. Then the random vector

(
X1

(
∑n

i=1 Xαi
i )1/α1

, . . . ,
Xn

(
∑n

i=1 Xαi
i )1/αn

)

has the generalized Dirichlet distribution D(α1, . . . , αn; β1, . . . , βn).
Let X1, . . . , Xn be independent random variables with distributions Γs(αi, βi, 1)
respectively. Then the random vector

(
X1

(
∑n

i=1 |Xi|αi)1/α1
, . . . ,

Xn

(
∑n

i=1 |Xi|αi)1/αn

)

has the sign-symmetric Dirichlet-type distribution Ds(α1, . . . , αn;β1, . . . , βn).

This gives a very convenient way to generate Dirichlet distributed random
vectors based on independent Gamma random variables.
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2.4.3 Multivariate copulae
One of the features of the generalized Dirichlet distribution is that it can be
a basis for a multidimensional copula constructed using two different techniques.
The first one relies on applying the Sklar’s theorem, that is transforming arbitrary
marginal distributions to uniform. An interesting alternative exists however —
the uniform distribution is in the class of all marginals of the generalized Dirichlet
distribution. For certain values of its parameters such that all the marginals are
uniform we obtain the Dirichlet-type copula. In other words, a high dimensional
copula is a special case of the generalized Dirichlet distribution. It can be shown
that in order to get uniform distributions for all one-dimensional marginals one
has to take

β1 = · · · = βn = 1, and α1 = · · · = αn = n− 1.

Proposition 2.4.2. A multidimensional generalized Dirichlet distribution, deno-
ted as D(α1, . . . , αn; β1, . . . , βn), is a copula if and only if αi = n− 1 and βi = 1
for every i = 1, . . . , n.

From now on we will use the notation Dn = (Dn
1 , . . . , Dn

n) for the random
vector with distribution D(n − 1, . . . , n − 1; 1, . . . , 1) and the notation Dn,s =
(Dn,s

1 , . . . , Dn,s
n ) for the random vector with the distribution Ds(n − 1, . . . , n −

1; 1, . . . , 1).
Since the random vector Dn,s has the joint density with contours symmetric

about the origin, it follows that

Cov
(
Dn,s

i , Dn,s
j

)
= 0, for every i, j = 1, . . . , n; i 6= j,

thus the copula Ds(n − 1, . . . , n − 1; 1, . . . , 1) will not be further investigated in
this thesis.

On the other hand, given a random vector Dn and using eq.(2.5) allows to
find

τn
def
= E

(
Dn

i Dn
j

)
=

Γ
(

n
n−1

)
Γ

(
2

n−1

)2

Γ
(

n+2
n−1

)
Γ

(
1

n−1

)2

for i 6= j. Utilizing the relation Γ(1 + r) = rΓ(r) and substituting p = 1/(n− 1)
we obtain

τn =
Γ(2p)2

3Γ(3p)Γ(p)
.

For n = 2 we find τ2 = −1/6, thus ρ(D2
1, D

2
2) = −1. For n = 3 we have

τ3 = 2/(3π), thus ρ(D3
i , D3

j ) = (8− 3π)/π. We write for further reference

ρn
def
= 12(τn − 3),

where ρn is the product moment correlation of any pair of random variables Dn
i ,

Dn
j , i 6= j.
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Figure 2.6: Examples of Dirichlet type copulae.

Figure 2.6 shows two dimensional marginals of n-dimensional Dirichlet-type
copulae. The densities clearly converge to the uniform distribution on the unit
square indicating decreasing correlation between the random variables as n incre-
ases.

The problem of having a fixed correlation given the dimension of the Dirichlet
distributed random vector D can be overcome (to some extent) by applying partial
symmetrization with respect to the diagonals and convex combinations. The
construction is based on the fact, that if the random variable X is uniformly
distributed on [0, 1] then also (1 − X) has a uniform distribution on [0, 1]. It is
also easy to see that the random variable

X(θ) = θX + (1− θ)(1−X),

where θ independent of X has distribution P{θ = 1} = p = 1 − P{θ = 0}, has
uniform distribution on [0, 1], and the same we can say about the random variable
Z(θ) = θX + (1− θ)(1−X ′), where X ′ independent of θ is an independent copy
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of X. Generalizing this simple remark we see that if

X(θ) = (Dn
1 (θ1), . . . , Dn

n(θn)) ,

where θ = (θ1, . . . , θn) is a random vector independent of Dn taking values in
{0, 1}n, then X(θ) has a copula distribution. Moreover, for each fixed value of
θ = (θ1, . . . , θn), a choice of i, j ∈ {1, . . . , n} ensures

(
Dn

i (θi), Dn
j (θj)

∣∣(θ1, . . . , θn)
) d=(

Dn
i (θi), Dn

j (θj)
∣∣(1, . . . , 1, θi, 1, . . . , 1, θj , 1, . . . , 1

)
,

where d= denotes equality of distributions. Assume that the distribution of the
random vector θ is given. Let

pi,j(ε1, ε2) = P {θi = ε1, θj = ε2} ; ε1, ε2 ∈ {0, 1}
and

pij = pi,j(1, 1) + pi,j(0, 0).

Now we can calculate

E
(
Dn

i (θi)Dn
j (θj)

)
= E

(
Dn

i Dn
j pi,j(1, 1)

)
+ E

(
Dn

i (1−Dn
j )pi,j(1, 0)

)
+

+E
(
(1−Dn

i )Dn
j pi,j(0, 1)

)
+ E

(
(1−Dn

i )(1−Dn
j )pi,j(0, 0)

)

= τnpi,j(1, 1) +
(

1
2
− τn

)
pi,j(1, 0) +

(
1
2
− τn

)
pi,j(0, 1) + τnpi,j(0, 0)

= τn (2pi,j(1, 1) + 2pi,j(0, 0)− 1) +
1
2

(1− pi,j(1, 1)− pi,j(0, 0))

= τn (2pij − 1) +
1
2

(1− pij) .

Finally we can calculate the product moment correlation

ρ
(
Dn

i (θi), Dn
j (θj)

)
= 12

(
E

(
Dn

i (θi)Dn
j (θj)

)− 1
4

)
= (12τn − 3) (2pi,j − 1) .

Attaining bounds of ρij corresponds to setting pij = ±1. This however does
not mean that the problem of finding the range of correlations obtainable with
the Dirichlet-type copula can be directly translated into the problem of finding
the range of obtainable correlations for Bernoulli distributed random vector θ. It
would have been equivalent if the vector (p1, . . . , pn) of the means of (θ1, . . . , θn)
was fixed and pi,j(1, 1) = E(θiθj) = pij , since then pij would fully control the
correlation between θi and θj . In our case we can freely choose expectations of θ
and distribute the probability mass pij between pi,j(0, 0) and pi,j(1, 1).

2.5 Conclusions
Dirichlet-type copulae are examples of another type of distributions in the sparse
class of multivariate copulae. Their construction is quite simple as they are special
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Figure 2.7: Bounds on the range of obtainable correlations with the Dirichlet-type
copula in a given dimension n.

cases of generalized Dirichlet distributions. This simplicity is reflected also in
the number of parameters controlling the copula, namely one — its dimension.
The correlation between every pair of margins of this copula is the same and
converges quickly to 0 as the dimension n increases. Because contours of two-
dimensional margins of Dirichlet-type copula of dimension n are parts of unit
spheres in Ln-space the correlation ρn is negative. In order to overcome the
problem of having fixed correlation we apply the convex convolution of measures.
This allows to obtain any correlation in [−ρn, ρn].

We also briefly presented some other multivariate copulae in this chapter,
namely Gaussian, t-copula and some examples of Archimedean copulae. Although
various multivariate copulae share such desirable properties like tractability and
are easy to cope with (see Gaussian copula as a prime example), they also suffer
from a limited set of dependency structures they can satisfy. The t-copula is a
welcome extension of the Gaussian copula in this sense. Archimedean copulae
in their standard form also exhibit the limitations of Gaussian and t-copula —
limited dependence structure. Various generalization of Archimedean copula are
aiming on reducing this problem. Among the most interesting is the concept of
fully nested Archimedean copulae, mentioned already in [Joe, 1997]. Bivariate
margins of this copula are still positive quadrant dependent, but at least different
degree of this dependence is allowed for different bivariate margins.

All these known results on multivariate extensions of standard copulae sug-
gests, that going this road does not allow to introduce flexible, satisfying a wide
range of dependence structures multivariate copulae. A better idea maybe is to
couple bivariate margins having the properties we would like to introduce. With
the vine-copula method we are not restricted to the use of one copula type for all
bivariate margins and the process of constructing a copula is well defined.
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Generalized diagonal band copulae

If I have ever made any valuable discoveries, it
has been owing more to patient attention, than
to any other talent.

Isaac Newton

3.1 Introduction
Suppose we want to build a multivariate distribution based only on very limi-
ted information, such as univariate marginals and rank correlations elicited from
experts. Assuming that these constraints are feasible, it would then be natural to
choose that distribution which adds as little information as possible beyond them.
The notion of mutual information between two continuous random variables can
help make this statement more precise.

Let f(x, y) denote the joint density of a random pair (X, Y ), and denote by
fX and fY the corresponding marginals. The amount I(X|Y ) of information that
each variable contains about the other may then be defined as

I(X|Y ) =
∫∫

f(x, y) log
{

f(x, y)
fX(x)fY (y)

}
dx dy ≥ 0. (3.1)

In the subsequent references to this formula we write I(fX |fY ) to also denote the
relative information of X with respect to Y .

In the special case where fX and fY are uniform on the interval (0, 1), eq.(3.1)
represents the relative information of the copula density f(x, y) with respect to

2This chapter is based on the publication Generalized diagonal band copulas by Daniel Le-
wandowski, published in Insurance: Mathematics and Economics, Volume 37, pages 49–67,
2005.

27



28 Chapter 3

the independent copula fX(x)fY (y) = 1. More generally, I(X|Y ) vanishes if, and
only if, X and Y are independent.

Bedford and Meeuwissen [1997] showed that the density f(x, y) of the mini-
mally informative copula with given rank correlation ρ(θ) is of the form

fθ(x, y) = κ

(
x− 1

2

)
κ

(
y − 1

2

)
eθ(x−1/2)(y−1/2), (3.2)

where κ (x− 1/2) is even around x = 1/2. The correlation induced by this co-
pula is controlled by the parameter θ. Although a Taylor series expansion for
(3.2) is available, this minimally informative copula is not tractable and must
be numerically approximated for each value of θ through a discretized optimiza-
tion problem. An additional difficulty associated with the use of (3.2) is that no
analytical form is generally available for its conditional cumulative distribution
functions and their inverses. Accordingly, simulating from the least informative
copula is inconvenient.

In this section, the search for a minimally informative copula satisfying corre-
lation constraints is not considered in full generality, but rather within the broad
class of generalized diagonal band (GDB) copulae introduced by Ferguson [1995].
This family of copulae, described in Section 3.2, extends the class of diagonal
band (DB) copulae first considered by Cooke and Waij [1986]. Those GDB copu-
lae that can be recovered by mixing only DB copulae are characterized in Section
3.3. In Section 3.4.2, we then deal specifically with the problem of approximating
minimally informative GDB copulae with given correlation. Section 3.5 contains
three examples of GDB copulae generated using Ferguson’s method for construc-
ting distributions in the convex closure of DB copulae; two other copulae already
implemented in a software for uncertainty modeling called Unicorn are also de-
scribed there. These five classes of copulae are then compared in Section 3.6 in
terms of their relative information with respect to the uniform background me-
asure under given correlation constraint. Finally, Section 3.7 contains conclusions.

3.2 Construction and properties of the generalized diagonal
band copula

Introduced by Ferguson [1995], the generalized diagonal band (GDB) copula of a
pair (X, Y ) of uniform random variables on the unit interval is defined as follows.

Definition 3.2.1 (Generalized Diagonal Band copula). Let Z be a continuous
random variable on the interval [0, 1] with density g. An absolutely continuous
copula C is a generalized diagonal band (GDB) copula if its associated density is
of the form

c(x, y) =
1
2
{g(|x− y|) + g(1− |1− x− y|)} . (3.3)

In the sequel, g is called the generating density of the GDB copula.

In his paper, Ferguson [1995] emphasized that each GDB copula may be seen
as a mixture of bivariate uniform densities on the boundaries of rectangles with
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corners (z, 0), (0, z), (1−z, 1) and (1, 1−z). The weight of each of the densities is
given by g(z), z ∈ [0, 1]. Most of the basic properties of GDB copulae stem from
this fact. In particular, note the symmetries

g(x) = c(x, 0) = c(1− x, 1) and g(y) = c(0, y) = c(1, 1− y)

and the fact that for any (x, y) ∈ A = {(x, y)|0 ≤ y ≤ 1/2, y ≤ x ≤ −y + 1},
Equation (3.3) simplifies to

c(x, y) =
g(x− y) + g(x + y)

2
.

For our purposes, one major advantage of the class of GDB copulae is that the
mutual information associated with any copula of the form (3.1) can be expressed
in terms of its generating density g. To see this, first observe that in the light of
the symmetry of c and the above identity, we have

I(c|u) = 4
∫∫

A

c(x, y) log {c(x, y)} dx dy,

where u denotes the uniform density on the unit square. Now if we substitute
x + y = v and x− y = t (with Jacobian 1/2), we get

I(c|u) =
∫ 1

0

∫ v

0

{g(v) + g(t)} log {g(v) + g(t)} dt dv

−
∫ 1

0

∫ v

0

{g(v) + g(t)} log(2) dt dv.

Since
∫ 1

0

∫ v

0

{g(v) + g(t)} dt dv = 4
∫∫

A

g(x− y) + g(x + y)
2

dx dy = 1

we get

I(c|u) =
∫ 1

0

∫ v

0

{g(v) + g(t)} log {g(v) + g(t)} dt dv − log(2). (3.4)

A second major advantage of the GDB class of copulae for our purposes stems
from the simple relationship between the generating density g of a GDB copula
C and the value of Spearman’s rho for the associated pair (X, Y ). To be specific,
Ferguson [1995] showed that if Z is distributed as g, then

ρr(X, Y ) = 1− 6E
(
Z2

)
+ 4E

(
Z3

)
. (3.5)

Using this fact and the above mentioned symmetries, one can thus check that
if the GDB copula generated by g(z) has correlation ρ, then g(1 − z) generates
a GDB copula with correlation −ρ. Furthermore, the following relationships
between the two GDB copulae hold:

c(x, y; ρ) = c(1− x, y;−ρ), (3.6)
CY |X=x(y; ρ) = CY |X=1−x(y;−ρ),

C−1
Y |X=x(y; ρ) = C−1

Y |X=1−x(y;−ρ).
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The third major asset of GDB copulae is the ease with which they can be
generated, using explicit forms for their conditional and inverse conditional cu-
mulative distribution functions. Particularly useful in this regard is the work of
Bojarski [2001], who developed GDB copulae independently of Ferguson. Whe-
reas Ferguson used a single generating function g(z), Bojarski’s generating density
gθ is a symmetric function whose support [−1 + θ, 1− θ] depends on a parameter
θ ∈ [0, 1]. Nevertheless, the two approaches yield the same class of copulae, and
the two generating functions are very closely related. Indeed, one can see that

g(z) =

{
gθ(−z) + gθ(z), if z ∈ [0, 1− θ];

0, otherwise.

As implied by the work of Bojarski, the conditional density cθ(y|x) is given by

cθ(y|x) = gθ(y − x) + 1{y+x<1−θ}gθ(−y − x) + 1{y+x≥1+θ}gθ(2− y − x),

which often leads to closed-form formulas for conditional and inverse conditional
cumulative distribution functions. It also suggests a simple GDB copula sampling
algorithm, namely:

Algorithm 3.2.1 (Sampling from a GDB copula).

1. Simulate independently a single x and y′ according to the uniform distribu-
tion on [0, 1].

2. Calculate y∗ = G−1
θ (y′−x), where G−1

θ is the inverse cumulative distribution
function of the random variable with probability density gθ.

3. If y∗ < 0, then let y = −y∗; else if y∗ > 1, then take y = 1− y∗.

4. The pair (x, y) is then an observation from GDB copula density c associated
with g.

The regression of Y given X = x, where X and Y are random variables joined
by the GDB copula, can be calculated with the formula

E(Y |X = x) =
1
2

(E[|U − x|] + 1−E[|1− U − x|])

=
1
2

[∫ x

0

(x− u)G(u)du +
∫ 1

x

(u− x)G(u)du + 1− (3.7)

−
∫ 1−x

0

(1− u− x) G (u) du +
∫ 1

1−x

(u + x− 1)G (u) du

]

We will refer to this expression when showing examples of GDB copulae in the
further sections.

The general form of the joint cumulative distribution function of a GDB copula
can be expressed as a set of integrals. If x ≤ y and x + y ≤ 1 then

F (x, y) =
∫ y−x

0

xG(u) du +
∫ x+y

y−x

x + y − u

2
G(u) du. (3.8)
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Figure 3.1: Construction of the GDB copula using Bojarski’s method.

Use the fact that F (x, y) = F (y, x) to obtain the distribution function for x ≥ y
and x + y ≤ 1. If x ≤ y and x + y ≥ 1

F (x, y) = (3.9)

=
∫ y−x

0
x G(u) du +

∫ 2−x−y

y−x
x+y−u

2 G(u) du +
∫ 1

2−x−y
(x + y − 1)G(u) du

and use the same fact F (1− x, 1− y) = F (1− y, 1− x) to obtain the distribution
function for x ≥ y and x + y ≥ 1.

Before closing this section, let us mention diagonal band (DB) copulae as one
of the simplest, yet very flexible one-parameter subclass of GDB copulae. A DB
copula with parameter θ ∈ [0, 1] (and hence ρ ∈ [0, 1]) is given by

dθ(x, y) =





1
1− θ

, if (x, y) ∈ S1 ∪ S3;

1
2(1− θ)

, if (x, y) ∈ S2;

0, elsewhere.

Here,

S1 = {(x, y) ∈ [0, 1]2 |x + y ≤ 1− θ},
S2 = {(x, y) ∈ [0, 1]2 |x− (1− θ) ≤ y ≤ x + (1− θ), x + y > 1− θ, x + y < 1 + θ},
S3 = {(x, y) ∈ [0, 1]2 |x + y ≥ 1 + θ},

as displayed in Figure 3.1.



32 Chapter 3

3.3 Mixtures of diagonal band copulae
In some circumstances, step 1 of Algorithm 3.2.1 is difficult to apply because the
inverse cumulative distribution function G−1

θ cannot be expressed in analytical
form. We present here another approach to generating a wide subclass of GDB
copulae that may sometimes solve this problem.

The content of this section is largely based on the work of Meeuwissen [1993],
but with some corrections and extensions. We characterize a class of mixtures
of DB copulae CM , which cover a wide subset of the class of GDB copulae. To
avoid unnecessary complications, we only deal here with absolutely continuous
mixtures cM (x, y). Details concerning the treatment of the more general case
including discontinuities are available in Appendix B.

Let M(θ) be a probability distribution on [−1, 1] with discrete mass 1−p at the
origin and the rest of the probability spread on [−1, 1] according to a continuous
function m(θ) ≥ 0, such that

∫ 1

−1

m(θ) dθ = p ∈ [0, 1].

We call this distribution a mixing function. Note, that the discrete atom of M(θ)
with probability 1 − p corresponds to the independent copula being used in the
mixture, hence the minimum value of the density of CM is 1 − p. A mixture of
DB copulae may be defined as follows.

Definition 3.3.1 (Mixture of DB densities). A mixture cM (x, y) of DB densities
dθ(x, y) is given by

cM (x, y) =
∫ 1

−1

dθ(x, y) dM(θ).

For such mixtures the following hold:

a) cM (x, y) = cM (y, x);

b) cM (x, y) = cM (1− y, 1− x);

c) cM (x, y) =
1
2
{cM (|x− y|, 0) + cM (1− |1− x− y|, 0)}.

Indeed, DB copulae have these properties for any θ ∈ [−1, 1], and the latter are
obviously preserved under mixing.

In view of the above, mixtures of DB densities are in the class of GDB copulae.
Our intention in this section is to show that reciprocally, a wide subclass of GDB
copulae can be recovered from mixtures of DB copulae.

We begin by observing that since the density cM (x, y) of a mixture of DB
copulae is uniquely determined by its conditional density cM (x, 0), the problem
of mixing densities of DB copulae can be simplified to mixing conditional densities
of DB copulae, which are step functions of the form

dθ(x, 0) =





0, if x ∈ [0,−θ];

1
1 + θ

, if x ∈ (−θ, 1];
(3.10)
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for θ ≤ 0 and

dθ(x, 0) =





1
1− θ

, if x ∈ [0, 1− θ];

0, if x ∈ (1− θ, 1];
(3.11)

for θ ≥ 0. These functions are finite for any θ ∈ (−1, 1). For θ = 1 or θ = −1,
we obtain the so-called Fréchet–Hoeffding bounds, and d−1(x, 0) and d1(x, 0) are
Dirac delta functions.

We show in Theorem 3.3.1 below that for a generating density g satisfying
certain conditions, there exists a mixing function M such that

g(x) =
∫ 1

−1

dθ(x, 0) dM(θ) =
∫ 1

−1

dθ(x, 0)m(θ) dθ + (1− p) d0(x, 0). (3.12)

Before stating the result, let us introduce two differentiable functions g+ and g−,
whose derivatives with respect to x are as follows:

d

dx
g+(x) = max

{
d

dx
g(x), 0

}
, g+(0) = 0, (3.13)

d

dx
g−(x) = max

{
− d

dx
g(x), 0

}
, g−(0) = 0. (3.14)

Then d
dxg(x) = d

dx g+(x)− d
dx g−(x) and g(x) = g(0)+ g+(x)− g−(x). See Figure

3.2 for an example of g(x) with corresponding g+(x) and g−(x).
It can be shown that if g(x) = cM (x, 0) is a conditional density of a mixture

cM (x, y) of diagonal band copulae, then the continuous part of the mixing function
M is

m(θ) =





−(1 + θ)
d

dθ
g+(−θ), θ < 0;

−(1− θ)
d

dθ
g−(1− θ), θ > 0.

(3.15)

We are now in a position to formulate the main theorem.

Theorem 3.3.1. Let c(x, y) be the density of a GDB copula generated with ge-
nerating density g(z), z ∈ [0, 1]. If g is absolutely continuous and

g(0)− g−(1) ≥ 0, (3.16)

then c(x, y) may be expressed as the density of a mixture of DB copulae.

Proof. We prove the result by showing that there exists a mixing function M given
the stated assumptions. By the construction of the DB copula, as per equations
(3.10) and (3.11), we have θ = −x if θ < 0 and θ = 1 − x when θ > 0. Hence in
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Figure 3.2: Construction of g+(x) and g−(x).

the light of (3.15),

∫ 1

−1

m(θ) dθ =
∫ 1

0

m(−x) dx +
∫ 1

0

m(1− x) dx

=
∫ 1

0

(1− x)
d

dx
g+(x) dx +

∫ 1

0

x
d

dx
g−(x) dx

=
∫ 1

0

d

dx
g+(x) dx−

∫ 1

0

x

{
d

dx
g+(x)− d

dx
g−(x)

}
dx

= g+(1)−
∫ 1

0

x
d

dx
g(x) dx = g+(1)− g(1) + 1.

Also, as observed earlier, it follows from (3.13) and (3.14) that g(x) = g+(x)+
g(0)− g−(x), and hence in particular when x = 1. Thus

∫ 1

−1

m(θ) dθ = g+(1) + 1− g+(1)− g(0) + g−(1) = 1− g(0) + g−(1).

Now by assumption, we have g(0) − g−(1) ≥ 0, while g(0) − g−(1) ≤ 1 follows
from the fact that g is a probability density on the interval [0, 1]. Consequently,
we have

0 ≤
∫ 1

−1

m(θ) dθ = p .

Define

g?(x) =
∫ −1

1

dθ(x, 0)m(θ) dθ.

It can be shown that

g?(x) = g+(x)− g−(x) + g−(1),
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which in light of (3.12) leads to g(x)− g?(x) = g(0)− g−(1) = 1− p. Therefore

g(x) =
∫ −1

1

dθ(x, 0)m(θ) dθ + 1− p =
∫ −1

1

dθ(x, 0)m(θ) dθ + (1− p) d0(x, 0).

¥

We call g−(1) ≥ 0 the total decrement of function g. All monotonic density
functions g satisfy condition (3.16), but also many non-monotonic functions can
be expressed as a mixture of the form (3.12). Note that parameter p can be easily
determined as

1−
∫ 1

−1

m(θ) dθ = 1− p = min
u∈[0,1]

g(u).

Mixtures of DB copulae are very easy to sample. The procedure is as follows:

Algorithm 3.3.1 (Sampling from mixtures of DB copulae).

1. Simulate a single θ according to M(θ).

2. Simulate a single observation according to dθ.

3. To generate a pseudo-random sample of size n, repeat the above steps n
times.

Hence if it is problematic to derive G−1
θ (z), but easy to obtain M−1(θ) in

analytical form, then one can use algorithm 3.3.1, instead of algorithm 3.2.1. In
order for this to work, of course, gθ(z) must generate a GDB copula which is also
a mixture of DB copulae.

3.4 Minimally informative GDB copula
In many situations we are interested in adding as little extra information to the
studied problem as possible. The copula ensuring this is the constrained minimum
information copula — it has the lowest value of the relative information with
respect to the independent copula (uniform) given constraints. We will constrain
on correlations. We present the constrained minimally informative copula below
and show how to obtain minimally informative mixtures of diagonal band copulae.

3.4.1 Minimum information copula
Suppose we want to reconstruct a multivariate distribution with given marginals
and correlation structure elicited from experts. If this is the only information
we have, then it is desired to choose the least informative distribution among
all the other multivariate distributions with the same marginals and correlation
structure, provided it exists. If one wants to obtain the minimally informative
joint distribution given the correlation specification on a dependence tree or vine,
then the constrained minimally informative copula assigned to the edges of the
tree/vine will ensure that (see Theorems 7 and 12 in [Cooke, 1997]).
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Figure 3.3: Minimum information copula with correlation ρ = 0.6.

There has been a great deal of effort concentrated on determining the expres-
sion for the least informative copulae with given correlation (see Figure 3.3 for an
example of a minimum information copula) and Bedford and Meeuwissen [1997]
solved this problem. They showed that the density f(x, y) of the minimally in-
formative copula has functional form

f(x, y) = κ

(
x− 1

2

)
κ

(
y − 1

2

)
eθ(x− 1

2 )(y− 1
2 )

where κ
(
x− 1

2

)
is a function even around x = 1

2 , for which a Taylor series expan-
sion has been determined. This solution is not easily tractable and for each value
of the rank correlation a discretized optimization problem must be solved in order
to obtain a numerical approximation. This is not efficient from the computatio-
nal point of view and can affect the accuracy. Therefore an approximation to
the minimum information copula is needed, which would provide an analytical
form for the conditional cumulative distribution function and inverse conditional
distribution function for this copula.

3.4.2 Approximation to the minimally informative GDB copula given the
correlation constraint

Part of Meuwissen’s research on mixtures of DB copulae concerned solving a di-
scretized optimization problem. The solution of this problem was a discretized
conditional density (step function) that met the conditions of Theorem 3.3.1 ge-
neralized to the non-continuous case. Therefore, it could be considered a finite
mixture of DB densities. This density generated a GDB copula with minimal
mutual information with respect to the uniform distribution under a correlation
constraint ρ. Although GDB copulae had not been formally introduced at that



Generalized diagonal band copulae 37

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Conditional density c
o
(x,0)

x

c o(x
,0

)

(a) The conditional density co(x, 0).

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Approximation of the mixing density m(θ)

θ

m
(θ

)

(b) Mixing weights for parameter θ.

Figure 3.4: The conditional density co(x, 0) of the minimally informative GDB copula
with ρ = 0.6 and the corresponding mixing weights as the solution of the system of
nonlinear equations (3.18)-(3.20) where n = 100.

time, Meeuwissen made use of the unique property of DB copulae (see eq. (3.3)),
which was later to be discovered by Ferguson [1995], allowing him to introduce
the entire class of copulae.

Let us briefly describe the approach Meeuwissen took in order to solve this
optimization problem. Assume that we are looking for an optimal GDB copula
co(x, y) with minimal relative information with respect to the independent co-
pula under the correlation constraint generated by a step function co(x, 0). For
i = 1, . . . , n, let ci(x) denote the value of the step function at point x ∈ (xi−1, xi],
where x0, . . . , xn is a partition of x ∈ [0, 1] into n intervals of equal length 1/n
(x0 = 0 and xn = 1). Hence the solution is a vector of length n of non-negative
real numbers.

Meeuwissen [1993] showed that the relative information of a GDB copula
co(x, y) generated by co(x, 0) with respect to the uniform background measure
is

I(co|u) =
n∑

i=1

i−1∑

j=1

ci + cj

n2
log

(
ci + cj

2

)
+

n∑

i=1

ci

n2
log(ci), (3.17)

and the correlation ρ realized by co(x, y) is

ρ(X, Y ) = 1 +
n∑

i=1

ci

{(
x4

i − x4
i−1

)− 2
(
x3

i − x3
i−1

)}
.

Meeuwissen differentiated eq. (3.17) with respect to each of c1, . . . , cn in order
to obtain n equations necessary to solve the problem. Then the solution is the
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Figure 3.5: Minimally informative GDB copula with correlation ρ = 0.6.

result of solving the following system of n + 2 non-linear equations

1

n

n∑
j=1

log(ci + cj) + λ
{(

x4
i − x4

i−1

)− 2
(
x3

i − x3
i−1

)}
+ µ = log(2)− 1, (3.18)

n∑
j=1

cj

{(
x4

j − x4
j−1

)− 2
(
x3

j − x3
j−1

)}
= ρ− 1, (3.19)

1

n

n∑
j=1

ci = 1. (3.20)

The mixing weights for the mixture of DB copulae are extracted from the
conditional distribution co(x, 0). These weights for minimally informative mixture
of DB copulae with ρ = 0.6 are presented in Figure 3.4b. Notice that the weight
for θ = 0 is equal to the minimum of co(x, 0) and directly corresponds to the
contribution of the uniform bivariate distribution.

As one can see in Figure 3.5, the numerically derived conditional distribution
c(x, 0) converges to a solution whose derivative with respect to x equals 0 for
x = 0 and x = 1. This provides smoothness of the copula, i.e., differentiability
everywhere on the unit square, even along both the diagonals.

3.5 Examples of GDB copulae
As we have already mentioned, our main goal is to find a copula within the class
of GDB copulae which (i) approximates the minimum information copula; (ii) is
capable of realizing any correlation ρ ∈ (−1, 1); and (iii) provides an analytical
form for the conditional cumulative distribution function and its inverse. The DB
copula meets most of these criteria, except for the small informativeness. In fact,
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it is not hard to find a family of GDB copulae having less information than the
DB copula. However, the additional conditions, in particular the availability of an
analytical form for the inverse cumulative distribution function, make this problem
more complicated. There are few probability distributions that are flexible enough
to generate a GDB copula with an arbitrary correlation, and at the same time that
have a simple enough form to allow for various kinds of analytical transformations.

In this section, we introduce three families of GDB copulae which have an
analytical form and which, to some extent, comply with the above mentioned
desiderata. These copulae can be generated by applying Ferguson’s approach and
achieve non-negative correlations. If negative correlations are desired, one need
only make use of property (3.6).

3.5.1 Triangular generating function
Assume the following generating function with non-negative parameter a

a) if 0 ≤ a ≤ 2,
ga(z) = −az + 1 + a/2 , z ∈ [0, 1],

b) if a ≥ 2

ga(z) =





−az +
√

2a, if z ∈
[
0,

√
2/a

]
;

0, if z ∈
[√

2/a , 1
]
.

Based on these equations for the generating density of the GDB copula, the
conditional and inverse conditional cumulative distribution functions can be deter-
mined and formulated in closed form expressions. However, we shall not mention
them here, in view of their complexity. Figure 3.6 shows the density of this copula
and the corresponding mixing function m(θ).

3.5.2 Truncated exponential distribution as the generating function
A GDB copula will now be presented that is generated by the truncated exponen-
tial distribution with truncation parameter equal to 1. The probability density of
a truncated exponential random variable Z with truncation parameter 1 is given
by

gλ(z) =
λ e−λz

1− e−λ
, for z ∈ [0, 1]. (3.21)

The derivative of gλ(z) with respect to z is not 0 at z = 0 and z = 1, hence the
generated copula density will not be differentiable on the diagonals.

This family of copulae does not include a copula for which ρ = 0, since the
exponential distribution family does not include the uniform distribution or, at
least, a distribution symmetric about point z = 1/2. However, the independence
case ρ = 0 is a limiting case corresponding to λ = 0 since gλ(z) → 1 as λ → 0
for all z ∈ [0, 1]. The conditional and inverse conditional cumulative distribution
function have closed form expressions for GDB copulae generated by (3.21) (see
Figure 3.7 for an example of the density function of this copula).
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Figure 3.6: GDB copula with correlation ρ = 0.6 generated by the triangle distribution
with parameter a = 3.4849.
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Figure 3.7: GDB copula with correlation ρ = 0.6 generated by the truncated exponential
distribution with parameter λ = 3.6673.

A relationship between correlation ρ and parameter λ is needed now. The
equation we have to solve for λ is given below

1 + 2
−6 eλλ + λ3 − 6 λ + 12 eλ − 12

λ3 (eλ − 1)
= ρ.

This equation can be solved numerically. It can be shown (we use eq.(3.7)) that
for the truncated exponential distribution case the regression curve is given as
follows

E(Y |X = x) =
eλλx− λ + λx + e−λ (x−1) − eλ x

λ (eλ − 1)
.

The joint cdf and pdf expressions for this copula can be calculated using
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eq.(3.8) and (3.9)

F (x, y) =





2 xeλλ−eλ (1+x−y)+e−λ (x+y−1)

2 λ (eλ−1)
, if x ≤ y and x + y ≤ 1;

2 yeλλ−eλ (1−x+y)+e−λ (x+y−1)

2 λ (eλ−1)
, if x ≥ y and x + y ≤ 1;

2 λ(xeλ−x−y+1)+eλ(x+y−1)−eλ(1+x−y)

2 λ (eλ−1)
, if x ≤ y and x + y ≥ 1;

2 λ(yeλ−x−y+1)+eλ(x+y−1)−eλ(1−x+y)

2 λ (eλ−1)
, if x ≥ y and x + y ≥ 1.

f(x, y) =





λ(eλ (1+x−y)+eλ (1−x−y))
2 (eλ−1)

, if x ≤ y and x + y ≤ 1;
λ(eλ (1−x+y)+eλ (1−x−y))

2 (eλ−1)
, if x ≥ y and x + y ≤ 1;

λ (eλ (1+x−y)+eλ (−1+x+y))
2 (eλ−1)

, if x ≤ y and x + y ≥ 1;
λ (eλ (1−x+y)+eλ (−1+x+y))

2 (eλ−1)
, if x ≥ y and x + y ≥ 1.

The conditional cumulative distribution functions can be expressed as follows.
First assume positive correlations. If x ∈ [0, 1/2] then

FY |X(y) =





eλ(1−x) sinh λy
eλ−1

, y ∈ [0, x];
eλ[1−e−λy cosh λx]

eλ−1
, y ∈ (x, 1− x];

1− eλx sinh λ(1−y)
eλ−1

, y ∈ (1− x, 1],

where sinh and cosh are hyperbolic sine and cosine, respectively. If x ∈ (1/2, 1]
then

FY |X(y) =





eλ(1−x) sinh λy
eλ−1

, y ∈ [0, 1− x];
e−λx[−2eλx+eλy(eλ+eλ(2x−1))]

2(eλ−1)
, y ∈ (1− x, x];

1− eλx sinh λ(1−y)
eλ−1

, y ∈ (x, 1].

In order to derive the inverse cumulative distribution functions for negative cor-
relations use the following property of the GDB copula

FY |X=x(y; ρ) = FY |X=1−x(y;−ρ).

Based on the above one can derive the inverse cumulative distribution functions
necessary for use with the vine-copula method.

3.5.3 The ogive distribution as the generating function
The optimization problem solved in Section 3.4.2 gives a characterization of an
optimal generating density providing a GDB copula with minimal relative infor-
mation under the correlation constraint. Unfortunately, it is quite problematic to
find a probability density g such that

g′(0) = g′(1) = 0, (3.22)
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Figure 3.8: Conditional and inverse conditional cdf’s for the GDB copula generate by
the truncated exponential distribution with parameter λ = 2.1624 (ρ = 0.4)

and which can be easily integrated and differentiated. Kotz and van Dorp [2004]
proposed the so-called ogive distribution, whose density function is given by

f(z; q) =
2q(1− z)q−1 {2q − 1− (q − 1)(1− z)q}

3q − 1
, q > 1. (3.23)

For q > 2, density (3.23) has the property (3.22). The GDB copula generated
by the ogive distribution with q = 2 has correlation ρ ≈ 0.34. Hence in order
to generate smooth GDB copulae achieving lower correlations, we must mix the
ogive distribution with the uniform density as follows:

g(z; p, q) = p + (1− p)f(z; q). (3.24)

Here p ∈ [0, 1] and q > 1 are parameters. This generating function ensures
smoothness of the generated copula along the diagonals, and hence lower rela-
tive information compare to copulae generated by the truncated exponential or
triangular density functions. In Figure 3.9a, we present a GDB copula with corre-
lation ρ = 0.6 generated by the mixture of ogive and uniform density (3.24) with
parameters p = 0.0591 and q = 3.7278.

Substituting the second and third central moment of random variable Z with
probability density (3.24) into (3.5) yields

ρ = (1− p)
{

1− 90 q3 + 168 q2 + 18 q − 36
(3 q − 1) (1 + q) (q + 2) (q + 3) (2 q + 3)

}
,

and solving this for q allows us to find an analytically given relationship between
correlation ρ and parameters q and p, viz.

p =
(6 ρ− 6) q5 + (43 ρ− 43) q4 + (105 ρ− 15) q3

(1− q) (2 q − 1) (3 q3 + 26 q2 + 45 q + 18)

+
(95 ρ + 73) q2 + (9 ρ + 9) q − 18 ρ− 18

(1− q) (2 q − 1) (3 q3 + 26 q2 + 45 q + 18)
.
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Figure 3.9: GDB copula with correlation ρ = 0.6 generated by the the mixture of ogive
and uniform distributions with parameters p = 0.0591 and q = 3.7278.
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Figure 3.10: Other copulae implemented in Unicorn.

We choose parameters p and q such that the copula generated by (3.24) with
these two parameters has minimal information among all other copulae in its class
realizing the same rank correlation ρ. Complexity of the expression representing
the mutual information (3.4) for this copula does not allow to solve this problem
analytically. As an alternative, we implemented a numerical routine searching for
optimal values of the parameters given the correlation constraint.

Unfortunately, the conditional cumulative distribution functions for this co-
pula are not analytically invertible. However, with one extra step in the algorithm
of Section 2, we can sample easily from this distribution. Simply, first sample the
generating density for GDB copula, the uniform distribution with probability p
or the ogive TSP distribution with probability 1 − p. Then follow the general
approach for sampling from a GDB copula with given generating density, since
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both distributions have invertible cumulative distribution functions.
As we show in the next section, this copula contains less relative information

for a given correlation than any other GDB copula introduced in this paper given
in analytical form.

3.5.4 Other copulae
We briefly present also two other families of copulae implemented already in
Unicorn (UNcertainty analysis wIth CORelations), a software for dependence
modeling with correlations developed at the Department of Mathematics of Delft
University of Technology. We compare these with the just generated GDB copu-
lae in terms of their relative information with respect to the uniform distribution
under fixed correlation constraint. The first copula implemented in Unicorn
was the diagonal band copula. Later the minimum information copula was imple-
mented in the form of precomputed tables stored in memory. This solution was
neither memory efficient nor very accurate.

Elliptical copula

The “elliptical copula” [see Kurowicka et al., 2001] is an absolutely continuous,
centrally symmetric copula with linear regression that can realize any correlation
in (−1, 1) (Fig.3.10a). Let

e(x, y; ρ) =
(

x− 1
2

)2

+
(

y − 1
2

)2

− 2ρ

(
x− 1

2

)(
y − 1

2

)
.

Then the copula’s density ce(x, y) with correlation ρ ∈ (−1, 1) is

ce(x, y; ρ) =





1

π
√

1
4 (1− ρ2)− e(x, y; ρ)

, (x, y) ∈ B;

0, (x, y) 6∈ B;

where

B =
{

(x, y) ∈ [0, 1]2
∣∣∣ e(x, y; ρ) <

1
4

(1− ρ)2
}

This “elliptical copula” is a particular case of the multivariate Pearson type II
distribution and should not be confused with the notion of meta-elliptical copulae
widely used in the literature [see Fang et al., 2002, Abdous et al., 2005].

The main disadvantage of this copula is its high mutual information coefficient
for given correlation and the fact that it does not include the independent copula.

Frank’s copula

Frank’s copulae is the only class of centrally symmetric Archimedean copulae
(Fig.3.10b). It is a one-parameter distribution with density

cf (x, y;α) =
α (1− e−α)

(
e−α(x+y)

)

{1− e−α − (1− e−αx)(1− e−αy)}2 (3.25)
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for non–zero parameter α. Parameter α > 0 corresponds to positive correlations
and vice versa. The independent copula u(x, y) = 1 can be seen as the limit

u(x, y) = lim
α→0

cf (x, y; α).

For additional details about this family of copulae, see [Frank, 1979, Nelsen, 1986,
Genest, 1987].

This copula can be problematic to implement in software. The inverse con-
ditional cumulative distribution function of this copula includes the term 1 −
exp(−α), of which a natural logarithm is computed. Unfortunately, most compu-
ter floating-point number representations would consider this term to be simply
equal 0 for α > 37.429. This means that in practice, the highest correlation that
this copula can realize is of the order of 0.987. A similar term occurs in the de-
nominator of eq.(3.25), which also causes numerical problems for large values of
α, and x and y close to 1.

For the two copulae presented in this section, conditional and inverse condi-
tional cumulative distribution functions are given in closed form expressions. Ho-
wever, they differ substantially from each other in the mutual information they
contain with respect to the independent copula under the correlation constraint.

3.6 Relative information of various copulae
In this section, we compare the mutual information values for the presented copu-
lae as functions of the rank correlation. For any GDB copula with density c(x, y)
generated by the generating function g, the relative information of c with respect
to the uniform density u can be calculated with the following formula

I(c|u) = 4
∫ 1

2

0

∫ 1−y

y

(
g(x + y) + g(x− y)

2

)
log

(
g(x + y) + g(x− y)

2

)
dx dy.

Equivalently if we substitute x + y = v and x − y = t (the Jacobian is 1/2) one
can use this expression instead

I(c|u) =
∫ 1

0

∫ v

0

(g(v) + g(t)) log (g(v) + g(t)) dt dv − log(2). (3.26)

or the following proposition

Proposition 3.6.1. For any GDB copula C(x, y) with density c(x, y) generated
by the generating function g, the relative information of c with respect to the
uniform density u is

I(c|u) =
∫ 1

0

g(u) log(g(u) + g(1))du−
∫ 1

0

∫ 1

0

dg(v)
dv v g(u)

g(u) + g(v)
dv du− log(2)

Proof. Solve eq.(3.26) by parts. ¥
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Table 3.1: The relative information of the minimum information copula for given rank
correlation (col. A) and percent increment for other copulae.

Rank
correlation

Copula

r A B C D E F G H I

0.1 0.00498 0.80 3.70 3.82 5.02 5.02 0.04 538.76 11013.25
0.2 0.02016 0.94 3.48 3.77 5.16 5.26 0.20 247.37 2721.58
0.3 0.04630 1.10 3.15 3.97 5.62 5.81 0.64 150.60 1186.33
0.4 0.08489 1.35 2.68 4.57 7.03 6.34 1.52 99.41 648.72
0.5 0.13853 1.69 2.15 6.83 7.54 7.09 2.65 69.40 399.72
0.6 0.21212 2.02 1.52 5.28 6.19 7.74 4.02 51.03 263.74
0.7 0.31526 2.35 1.01 3.85 4.78 8.23 5.58 37.39 180.75
0.8 0.47140 2.45 0.86 2.80 3.64 8.12 7.10 27.45 124.70
0.9 0.75820 2.18 1.35 2.07 2.76 7.09 8.25 18.58 81.85
0.95 1.06686 1.45 1.32 1.34 1.91 5.54 8.01 14.24 60.51
0.99 1.82640 1.16 0.98 0.47 0.85 3.27 6.54 8.84 37.26

A - minimum information copula
B - Frank’s copula
C - minimally informative GDB copula
D - GDB copula generated with the mixture of uniform and TSP distribution
E - GDB copula generated with the triangle distribution
F - GDB copula generated with the truncated exponential distribution
G - Gaussian copula
H - DB copula
I - Elliptical copula

The relative information values presented in Table 3.1 have been calculated
numerically by first generating a given copula density on a grid of 500 by 500
cells, and then approximating the relative information based on this density. We
used this method, because there is no closed form expression for the density
of the minimum information copula. Therefore, we decided to apply the same
numerical method to all copulae considered. The order of the copulae in the
table reflects their performance in terms of the relative information coefficient,
in comparison with the minimum information copula given the rank correlation.
The percentages in columns B–I express the increase in the relative information
coefficient relatively to this value for the minimum information copula.

We have one remark concerning the results in Table 3.1. We have shown, that
the constrained minimally informative mixture of DB copulae, with the correlation
being the constraint, is also a constrained minimally informative copula in the
class of all GDB copulae. Therefore numbers in columns D–F should never be
lower than in column C of the table. There is however such case for ρ = 0.99. This
is clearly a numerical error resulting from approximating the relative information
coefficient from discretized densities. With ρ approaching 1 some discretized
densities may exhibit numerical instabilities as their values increase to infinity in
the corners on the domain, causing errors in the estimates. All of the densities
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converge to the upper Fréchet-Hoeffding bound, but do it in a slightly different
way.

3.7 Conclusions
GDB copulae form a very large family of copulae, with the class of mixtures of
DB copulae as an important subset. Theorem 3.3.1 gives a characterization of
this subclass. In this paper, we systematized and extended current knowledge
on the class of GDB copulae. The main appeal of the GDB copula is its simple
and intuitive construction. Ferguson’s method provides a simple expression for
the rank correlation coefficient and straightforward sampling routine, whereas
the Bojarski’s method allows to simplify determining the conditional and inverse
conditional cumulative distribution functions for a given GDB copula.

The copulae presented in this paper can be used to approximate the mini-
mum information copulae. The copulae generated by the triangle density and
the mixture of uniform and ogive TSP distribution can achieve any correlation
ρ ∈ (−1, 1); the same holds for the copula generated by the truncated exponential
density. Further research on sampling with vines should concentrate on overco-
ming the requirement of having analytical forms for the conditional cumulative
distribution functions and their inverses giving more freedom in choosing a copula.

Algorithms for generating samples from GDB copulae (satisfying certain con-
ditions) have been proposed. If the inverse cumulative G−1

θ of the generating
density Gθ is given in analytical form, then algorithm 3.2.1 can be applied. If this
is not the case, but one can sample from M(θ), then algorithm 3.3.1 is available
for use.
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CHAPTER 4

Building discretized minimally-informative
copulae with given constraints

The important thing in science is not so much to
obtain new facts as to discover new ways of
thinking about them.

Sir William Bragg

4.1 Introduction
Decision support for problems involving uncertainty necessarily involves the mo-
delling of those uncertainties using joint probability distributions. Expert asses-
sment is usually used — sometimes in combination with statistical data — to
assess those distributions. Bayesian Belief Networks (see [Jensen, 2001]) provide
one possible method of modelling joint probability distributions and have become
very popular with the advent of easy to use software such as Hugin [Andreassen
et al., 1989], Genie and recently introduced yet already very powerful Uninet.
The latter has been developed at the Department of Mathematics of Delft Uni-
versity of Technology. One of the limitations of Bayesian Belief Networks (BBN)
is however that the elicitation burden for experts is rather heavy when the natural
quantification route of marginals and conditionals is taken.

Much research has been carried out about eliciting marginal distributions [Co-
oke, 1991, Cooke and Goossens, 2000]. Much less has been written about eliciting
joint information. Common strategies involve making assumptions about the jo-
int distribution in order to reduce the required information to the elicitation of a

3This chapter is based on a manuscript written jointly with Prof. Tim Bedford from Univer-
sity of Strathclyde, Glasgow, UK.

49



50 Chapter 4

correlation coefficient [Clemen et al., 2000]. For example, the method of Iman and
Conover [1982] assumes that after coordinate transformation of the marginals to
make them normal marginals, the joint distribution has become joint normal. Co-
pulae provide another route to quantifying joint distributions. They have become
very popular, with the Archimedean family in particular being used frequently
[Smith, 2003, Genest and Rivet, 1993]. Bedford and Meeuwissen [1997] take the
copula which has minimal information with respect to the uniform (independent)
copula amongst all those with a given (expert specified) Spearman rank correla-
tion.

The use of rank correlation as a measure of the degree of association be-
tween two variables is a good first step but has some clear limitations, the most
obvious being that the interpretation is very difficult for domain experts (who
are not necessarily expert in the subtleties of the many varieties of correlation).
Alternatively one can elicit information about observable quantities and infer the
dependency structure to be consistent with the observables [Kraan and Bedford,
2003, Kraan, 2002]. Another reason to consider observables in preference to rank
correlations is that correlations between more than two variables have to satisfy
algebraic relations which may not be obvious to the expert. Cooke [1997] and
Bedford and Cooke [2002] use an alternative parametrization via a vine struc-
ture to define a correlation matrix without the problem of algebraic relations.
This is at the cost of having to elicit more complex conditional rank correlations.
However this issue has been addressed in [Morales-Napoles et al., 2007].

This chapter sets out to show that we can use the minimum information tech-
niques from [Bedford and Meeuwissen, 1997] in conjunction with expert elicitation
of observables, to define a copula that represents the decision makers uncertainty
about the joint distribution of two random variables. This method differs from
previous methods also in that it allows interactive elicitation of expert opinions
by giving guidance as to what values of uncertain quantities are compatible with
the assessments already made. The method is based on using a D1AD2 algorithm
to determine the copula based on potentially asymmetric information about the
two variables. This contrasts with the simpler DAD algorithm used to determine
copulae with given rank correlation in [Bedford and Meeuwissen, 1997], as rank
correlation information is intrinsically symmetric information about the unknown
quantities.

Section 4.2 and 4.3 show the principles of using the D1AD2 algorithms for 2
and 3 dimensional cases, respectively. The usage of the 2-dimensional version of
the algorithm has been illustrated in section 4.4. Finally, in section 4.5 we give an
example of a software for interactive expert elicitation implementing the D1AD2

algorithm for constructing a minimally informative copula given constraints. A
simple expert elicitation is carried out for an artificial data set.

4.2 The D1AD2 algorithm

Bedford and Meeuwissen [1997] applied a so-called DAD algorithm to produce
discretized minimally informative copula with given rank correlation. This algo-
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rithm works because we know the general form taken by the copula, but relies on
the fact that the correlation is determined by the mean of the symmetric function
UV . The same approach can be used whenever we wish to specify the expectation
of any symmetric function of U and V . In order to have asymmetric specifications
we need to use the more general approach provided in [Borwein et al., 1994]. It
states that if A is a positive square matrix (called a kernel), then we can find
row vectors D1 and D2 such that the cell-wise product of DT

1 D2 and A is doubly
stochastic. The theory exists also for continuous functions and, indeed in much
more generality.

Suppose there are two random variables X and Y , with cumulative distri-
bution functions FX and FY respectively. These are the variables of interest
that we would like to correlate by introducing constraints based on some know-
ledge about functions of these variables. Suppose there are k of these functions,
namely h′1(X, Y ), h′2(X, Y ), . . . , h′k(X, Y ), and that the expert wishes to specify
mean values e1, . . . , ek for all these functions respectively. We can find cor-
responding functions of the copula variables U and V , defined by h1(U, V ) =
h′1(F

−1
1 (U), F−1

2 (V )), etc., and clearly these should also have the specified expec-
tations e1, . . . , ek. Let u denote the realization of U and v the realization of V .
We form the kernel

A(u, v) = exp(λ1h1(u, v) + . . . + λkhk(u, v)). (4.1)

For practical implementations we have to discretize the set of (u, v) values such
that the whole domain of the copula is covered. This means that the kernel A
described above becomes a 2-dimensional matrix A and that we seek row vectors
D1 and D2. Together they allow computing a doubly stochastic matrix B over
[0, 1]2, that is a discretized copula density

B = DT
1 D2.A, (4.2)

where . (dot) denotes the cell-wise product operator applied to same size matrices.
For each vector (λ1, . . . , λk) we can use the D1AD2 algorithm to generate

a unique joint density with uniform marginals. This copula gives the vector of
functions (h1, . . . , hk) an expected value vector which we call φ(λ1, . . . , λk). Now,
general theory [see Borwein et al., 1994] says that this copula is always the unique
minimum information copula (with respect to the uniform distribution) giving the
expected value vector φ(λ1, . . . , λk). Furthermore, the mapping φ maps Rk onto
the set of achievable expected value vectors. That set of possible expected value
vectors is a convex set, but little else can be said about it in general.

Suppose that both U and V are discretized into n points, respectively ui,
and vj , i, j = 1, . . . , n. Then we write A = (aij), D1 =

(
d
(1)
1 , . . . , d

(1)
n

)
, D2 =(

d
(2)
1 , . . . , d

(2)
n

)
, where aij = A(ui, vj), d

(1)
i = D1(ui), d

(2)
j = D2(vj). The double

stochasticity of D1AD2 with the extra assumption of uniform marginals means,
that

∀i=1,...,n

∑
j d

(1)
i d

(2)
j aij = n, and

∀j=1,...,n

∑
i d

(1)
i d

(2)
j aij = n,
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since for any given i and j the selected cell size in the unit square is 1/n2. Hence

d
(1)
i =

n
∑

j d
(2)
j aij

and d
(2)
j =

n
∑

i d
(1)
i aij

.

The D1AD2 algorithm works by fixed point iteration and is closely related to
iterative proportional fitting algorithms [Csiszar, 1975]. The idea is very simple
- start with arbitrary positive initial vectors for D1 and D2. Then successively
define new vectors by iterating the maps

d
(1)
i 7→ n

∑
j d

(2)
j aij

(i = 1, . . . , n), d
(2)
j 7→ n

∑
i d

(1)
i aij

(j = 1, . . . , n).

This iteration converges geometrically to give us the vectors required.

4.3 The DAD algorithm for the 3-dimensional case
The principles described in section 4.2 can be successfully adopted for construc-
ting 3-dimensional and higher dimensional counterparts of minimally informative
copulae derived in the previous section. For the 3-dimensional case, if A is a
positive cube matrix (called a kernel), then we have to find three row vectors D1,
D2 and D3 such that the cell-wise product D1, D2, D3, A is triply stochastic.
The continuous version of the kernel has the following form:

A(u, v, t) = exp(λ1h1(u, v, t) + . . . + λkhk(u, v, t)). (4.3)

The triple stochasticity requirement means that

∑
i,j d

(1)
i d

(2)
j d

(3)
s aijs = n2,

∑
i,s d

(1)
i d

(2)
j d

(3)
s aijs = n2

and
∑

j,s d
(1)
i d

(2)
j d

(3)
s aijs = n2.

Hence

d
(1)
i =

n2

∑
j,s d

(2)
j d

(3)
s aijs

, d
(2)
j =

n2

∑
i,s d

(1)
i d

(3)
s aijs

and d(3)
s =

n2

∑
i,j d

(1)
j d

(2)
j aijs

.

Similarly to the 2-dimensional case, the D1D2D3A algorithm works by fixed point
iteration as follows. Start with arbitrary starting vectors for D1, D2 and D3. Then
successively define new vectors by iterating the maps

d
(1)
i 7→ n2

∑
j,s d

(2)
j d

(3)
s aijs

(i = 1, . . . , n), d
(2)
j 7→ n2

∑
i,s d

(1)
i d

(3)
s aijs

(j = 1, . . . , n)

and d
(3)
s 7→ n2

∑
i,j d

(1)
j d

(2)
j aijs

(s = 1, . . . , n).

Using the analogy a similar algorithm for higher dimensional minimally informa-
tive copulae can be derived.
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4.4 Constructing minimally informative copula with the D1AD2

algorithm
The mapping from the set of vectors of λ’s onto the set of vectors of resulting
expectations of functions (h1, . . . , hk) has to be found numerically. We employ
optimization techniques for achieving the result. Experts specify expectations ei

of k functions of variables X and Y

E[h′i(X, Y )] = E[hi(U, V )] = ei, i = 1, 2, . . . , k.

The discretized copula density B is given by eq.(4.2). Hence, if one wants to
determine λ’s satisfying expert’s assessments, then the following set of equations
has to be solved

li(λ1, . . . , λk) =
1
n2

n∑

j=1

b∑

k=1

B(uj , vk)hi(uj , vk)− ei, i = 1, 2, . . . , k. (4.4)

The left hand sides of the above equations are just functions of λ’s and with opti-
mization algorithms their roots can be found. One of the possible solvers for this
task would be fsolve - Matlab’s optimization routine. It implements various
root finding techniques allowing for choosing the one suiting our problem best.
However we also obtained good results by using another of Matlab’s optimiza-
tion procedures in the example below, namely fminsearch, which implements
the Nelder-Mead simplex method [Lagarias et al., 1998]. The minimized function
is

lsum(λ1, . . . , λk) =
k∑

i=1

l2i (λ1, . . . , λk).

Example - World Bank data Consider the World Bank data on life expectancy at
birth collected in years 2000-2005 (variable X) and GDP per capita collected
in year 2002 (variable Y ). The relation between between these two variables
is of considerable interest for social planning. Rather than seeking a functional
relation between these variables, we construct a copula that represents their joint
distribution.

The data is available for 141 countries from around the world and is shown in
Figure 4.1. This plot includes a regression fit of the form

Ȳ = a(1−X−b)2, (4.5)

where a = 11900 and b = 0.0006503. This model type is known as a constant
relative risk aversion model (CRRA) and has been widely used in climate change
studies [Nordhaus, 2008]. The empirical cumulative distribution function for ran-
dom variables X and Y with realizations x and y are denoted by FX and FY

respectively. It should be noted that all presented results were obtained based
on discretized copula densities computed on a grid of 500 by 500 equally spaced
points.
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Figure 4.1: World Bank data on life expectancy at birth versus GDP per capita for 141
countries.

A minimally informative copula (denoted as C1) under constraints will be
constructed to model the World Bank data. Suppose the objective function for
the D1AD2 algorithm is chosen to be h′1(X, Y ) = XY . We fix the value of this
expectation

e1 =
1

141

141∑

i=1

xi · yi = 634 100.

This means that in fact the covariance and the product moment correlation are
being fixed, since E[X], E[Y ], V ar[X] and V ar[Y ] are given. The resulting
minimally informative copula density c1(u, v) for X and Y given E[XY ] fixed is
presented in Figure 4.2. In order to make the plot clearer each copula variable
has been discretized into only 30 equally spaced points.

One could introduce more constraints like higher order cross moments E[XpY q].
Our simulation results have shown however that the simulated samples given only
the E[XY ] constraint exhibit high level of concordance of higher order cross mo-
ments with their counterparts for the original World Bank data already. More
constraints can be added in order to get a better fit, but there is no need for
adding more constraints of this type.

A second constraint is added to model better the regression eq.(4.5) in the
original data. We also fix the expectation of h′2(X, Y ) = (Y − a(1−X−b))2. The
value of E[h′2(X,Y )] estimated from the World Bank data is 62.8242 and we take
this value as the second constraint in our optimization problem. Both objective
functions are shown in Figure 4.3 together with their counterparts in the copula
space.

The minimum information copula C2 with respect to the uniform distribution
given two constraints e1 = E[h1(U, V )] = 634 100 and e2 = E[h2(U, V )] = 62.8242
has been constructed on the same grid of 500 by 500 points. The Lagrange
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Figure 4.2: The minimally informative copula for the World Bank data given the
E[h′1(X, Y )] constraint.

Table 4.1: Comparison of various statistics for constructed copulae.

C1 C2 Frankmaxlike Frankcon

E[h′1(X,Y )] 634 100 634 100 632 640 634 100
E[h′2(X,Y )] 67.0508 62.8242 60.5371 56.0238
LogLikelihood 85.3314 86.1270 88.5635 87.8631
Relative information 0.6268 0.6322 0.6501 0.7221

multipliers in this case are λ1 = 3.7856 · 10−5 and λ2 = −0.0026811. Figure 4.4
shows the resulting minimum information copula density c2(u, v) on a grid of
30 by 30 points. It differs slightly from the copula in Figure 4.2. Although
both perfectly realize the first constraint, only the second one realizes the second
constraint (see Table 4.1).

The D1AD2 approach is very well suited for constructing minimally infor-
mative copulae with imposed constraints with respect to the uniform backgro-
und measure. However it does not guarantee to fit the data better than other
copulae as measured by the likelihood score. In fact, we found a parametric
copulae that yields higher likelihood score than C1 or C2 and it is the Frank co-
pula Frankmaxlike, whose parameter τ is chosen to maximize the likelihood of
the World Bank data (see Table 4.1). None of the constraints E[h1(U, V )] and
E[h2(U, V )] apply to this copula. For comparison we also find Frank’s copula
Frankcon, such that the first constraint is satisfied. This lowers the likelihood
score albeit it is still higher than what C1 or C2 achieved. Also, none of the
other maximum likelihood parametric copulae tested (Gaussian, t-copula, Gum-
bel, Clayton) scores higher on the likelihood than C1 or C2 for this data set. This
shows that while keeping the relative information low, C1 and C2 provide a very
good fit to the data. We expect the D1AD2 approach to perform even better with
respect to the likelihood score for less symmetric data, where standard centrally-
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Figure 4.3: Plots of objective functions over their domains.
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Figure 4.4: The minimally informative copula for the World Bank data given
E[h′1(X, Y )] and E[h′2(X, Y )] constraints.
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symmetric copulae are simply bound to fail to provide a decent fit. The likelihood
for copulae was computed using the method. Namely the data points were first
converted to uniform random variables using their respective empirical cumulative
distribution functions. After that the copulae densities were interpolated with the
bicubic method to obtain values of the densities at data points.

Computationally this method of constructing minimally informative copulae
is not very demanding for currently available computers. The search for λ’s
carried out with the fminsearch procedure was finished after 226 iterations
(28 seconds) for the copula C2 with the starting vector for λ’s equal (0.00001,
0.00001). The termination tolerances on the function lsum value and the λ’s were
set to be very restrictive at value of 10−12. This ensured very accurate estimation
of the Lagrange multipliers for the minimally informative copula given the two
constraints.

4.5 Software program for interactive expert assignment of
minimally-informative copulae

The minimally informative copulae given constraints can be the end result of
expert elicitation procedure with the use of the theory described in sections 4.2–
4.4. For this purpose a Matlab script has been written. The script is a tool with
graphical user interface and is able of presenting results in a form of plots. Figure
4.5 presents the interface of the program.

The entire process of elicitation can be described by the following algorithm
available for use with the DAD algorithm for 3-dimensional case:

Algorithm 4.5.1 (Interactive expert elicitation).

1. Define the target function of the variables of interest (for example, X+Y −Z,
X − Y , Y Z etc.).

2. If experts are to assess a percentile, then specify which percentile.

3. Search for possible values of the quantity to be assessed (with taking into
account the information supplied by the expert in previous iterations) and
present the results to experts.

4. Ask experts for their assessments (within the specified bounds).

5. If you want to include more information on the variables of interest, then
go to step 1.

Bounds obtained in step 3 will depend on the assessments given by experts in
previous iterations of the algorithm. It may happen, that the set of achievable
values of the quantity of interest will be empty. In such a situation the expert
has to reassess the value she/he proposed in the previously. Notice that in i-th
iteration the problem has to be solved for i Lagrange multipliers. This is the cru-
cial step, because the computer program has to determine the range of achievable
values for the assessed quantities. The next section describes our approach to
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Figure 4.5: Graphical user interface of Matlab program for interactive expert elicita-
tion.

dealing with this problem, although there is plenty of other possibilities that can
be successfully applied.

4.5.1 Algorithm searching for feasible values

A solver of non-linear equations is necessary for use in this elicitation method.
Many results will depend on the quality of this solver and its ability to find the
optimal solution, ie. for any given set of expectations find corresponding La-
grange multipliers λ’s. Suppose an expectation elicited by expert is given and
we know that there is a corresponding λ, but the solver does not converge. This
particular value of expectation will be considered as not feasible in such situ-
ations. It may not be a problem if we deal with only one expectation to elicit.
One can always derive the relationship between λ and the resulting expectation
and numerically invert it. But the situation becomes complicated when dealing
with a k-dimensional problem (assessment of k expectations). Now each of the
k Lagrange multipliers depends on all of the specified expectations. Hence in or-
der to determine the multipliers (solve the system of equations (4.4)), one has to
apply a solver of a system of non-linear equations, such as, for instance, fsolve
implemented in Matlab. Therefore it useful to incorporate the solver in the pro-
cess of searching for the bounds on the achievable values of expectations, because
then only the value of the i-th observable is sampled and combined with all the
previously assessed i − 1 observables. Next, the system of non-linear equations
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(4.4) of k variables is solved for the corresponding vector of λ’s. If the solver
converges, then we have found one of the achievable values of the i-th observable
quantity. In the simplest case, one can just sample a number of values of this i-th
observable and check, for which values the algorithm converges. The presented
Matlab script implements a more efficient procedure, based on the bisection me-
thod, which starts from some initial value, solves (4.4) for Lagrange multipliers,
checks the resulting expectations, and then based on some specified criteria alters
the initial value by ∆ and repeats these steps. The magnitude of the step ∆
decreases by half with each iteration, hence the maximum error of the estimation
of the lower and upper bound is 2−n(b− a), where [a, b] is the domain of the i-th
observable and n is the total number of iterations.

4.5.2 Example: Several observables

Consider expectations of various types of observable quantities (functions hi’s).
The D1D2D3A approach allows to explore the set of simultaneously achievable
values that may be taken by the expectations of these observables, under different
minimally informative distributions.

We illustrate the above approach with an example. Suppose we want to mo-
del relationships between three random variables. Let the variables be gamma
distributed independent random variables X, Y and Z with different parameters,
ie. X ∼ Γ(1, 2), Y ∼ Γ(2, 3) and Z ∼ Γ(1, 1). We ask experts to give us their
judgement on expectations of three functions of X, Y and Z. These bits of infor-
mation are used to build a copula for the joint of the gamma distributions. The
copula is given in a discretized form over a grid of size n = 20 per variable.

We start with asking the expert to asses the median percentile of the distri-
bution of X + Y . The bounds on achievable values of this percentile have been
found to be [4.85, 10.45], which is a considerably smaller interval than the whole
domain of X +Y , namely [0.7773, 24.0927]. Suppose, that the expert assessed the
value of the median to be rather conservative in the middle of the feasible values
interval as c1 = 8. The corresponding value of λ1 is λ1 = −1.336. The relative
information of the resulting joint distribution with respect to the independent
copula is R = 0.0514, which means that the expert’s assessment indeed added
some information to the joint distribution of X, Y and Z. It can be shown, that
the relative information would not increase if the expert had assessed the median
of X + Y to be 7.0645. By the construction of the minimally informative copula,
the bivariate margin fUV |T (u, v) of the constructed joint copula f(u, v, t) does
not depend on T , hence the conditional density fUV |T (u, v) stays the same for all
values of T and is presented in Figure 4.6.

Next we ask the expert to assess the median of the distribution of Y +Z. The
interval of achievable values for the median is given the bounds [4.8397, 8.3805].
This time the expert is less conservative and assesses the median of X + Y to be
c2 = 5, closer to the lower bound of achievable values. We should expect a signifi-
cant increase in the relative information coefficient. Given the expert’s estimate,
the problem is solved for a pair of λ’s, which are λ1 = −1.366, λ2 = 10.4849.
Notice, that λ1 did not change by introducing the additional information on the



60 Chapter 4

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

3

U

Minimally informative copula given the experts’ assessments

V

f U
,V

|T
(u

,v
)

Figure 4.6: Minimally informative copula given the expert’s assessment on the median
of X + Y .

distribution of Y + Z. This is because both assessments concern functions which
share only one variable, namely Y , and as such they can be assessed independently.
The relative information increases to R = 0.2464. Since the copula density de-
pends now on all of the variables, it is impossible to show the whole 3-dimensional
distribution in one plot. We present only two conditional densities of f(u, v, t) in
Figure 4.7, for t = 0.225 (22.5-th percentile of Z) and t = 0.725 (72.5-th percentile
of Z).

Finally, the expert has to assess the median of X + Y − Z. The domain
of the distribution of X + Y − Z is interval [−2.9116, 24.0674]. The bounds on
achievable values of the median of this distribution are [2.99, 10.2354]. Suppose,
that the expert assess the median to be c3 = 8.5. Then the corresponding λ’s are:
λ1 = 11.9673, λ2 = 15.6774, λ3 = −15.5675. Now λ1 and λ2 changed their values,
because the assessment of the median of X +Y −Z affects the previously assessed
quantities of interest. The relative information with respect to the independent
3-dimensional copula increases again and now its value achieves R = 0.57239.
Again we show only two conditional densities of f(u, v, t) in Figure 4.8.

4.6 Implementation issues

Most problems with practical implementations of various algorithms in computer
software are related to the limitations of representing floating-point numbers. The
most common representation of floating-point numbers in computers is so-called
double-precision format, which means that the minimum and maximum positive
values that one can represent are 2.22507 · 10−308 and 1.79769 · 10308, respecti-
vely. If we take the logarithm of these numbers that we obtain the minimum
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(a) The conditional density fUV |T=0.225(u, v).
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(b) The conditional density fUV |T=0.725(u, v).

Figure 4.7: Conditional densities fUV |T .
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Figure 4.8: Conditional densities fUV |T .

(≈ −708.3964) and maximum (≈ 709.7827) values for equation

λ1h1(u, v) + · · ·+ λkhk(u, v), (4.6)

which is part of the kernel function (4.3). It turns out, that while searching for
achievable values of our quantity of interest (see section 4.5.1), we encounter this
situation quite often, especially when dealing with multidimensional optimization
problems. A simple solution is to constantly monitor the value of eq.(4.6) and
change it to, say 700, if it is greater than 700, before the value of kernel function
(4.3) is computed. Otherwise, this number will be treated as either 0 or infinity
and the DAD algorithm will not converge and will not give any sensible results.

Furthermore, a very important requirement for the elicitation method intro-
duced in this paper to work is ensuring proper performance of a solver of a system
of nonlinear equations. As most of modern mathematical software packages (Ma-
tlab, Maple, MS Excel, etc.) include such optimization routines, the choice



62 Chapter 4

of the implementation platform becomes rather an issue of personal preferences.
The solver fsolve implemented in Matlab did not cause any problems in our
implementation and was giving good results without any need to interfere with
the optimization process. Much of attention should also be concentrated on the
convergence of the DAD algorithm to ensure, that the density (4.3) has indeed
uniform marginal distributions.

At last we would like to point out an issue that may not be a big problem
in general, nevertheless can cause serious numerical errors. Namely empirical
results show, that choosing values close to boundaries of the range of allowable
values results in copula densities that have rather irregular shapes (high peaks,
many areas with the density being equal zero). Similar situation takes place
when several observables (3 or more) are being assessed by experts. Algorithms
generating samples can be susceptible to numerical errors during sampling from
such densities, and in result produce samples that don’t reflect the information
given by experts.

4.7 Conclusions
One of the most frequently employed method of experts elicitation is to ask them
to assess median values of some quantities of interest. Then based on those asses-
sments, the rank correlation between pairs of the variables is estimated. This rank
correlation can be treated as a parameter of some predetermined copula (mostly
centrally-symmetric) and samples are generated from this copula. For experts,
who are not trained in statistics, the notion of correlation may be problematic
to understand. A more natural approach to the problem of the elicitation is to
ask experts questions, that occur in their professional work on a daily basis. We
propose the approach which complies with this recommendation.

We have introduced the D1D2D3A algorithm to show how non-symmetric
functions can be used for the subjective specification of copulae. A key difference
with earlier work using the rank correlation is that the set of allowable values for
observable expectations depends on the full set of observables under discussion.
Hence an interactive system is needed for the expert in ensuring that such values
are chosen coherently. A software programme has been written for this purpose
and presented with simulation results. We show step by step how additional
information can be nested and used for constructing minimally informative copula
with respect to the uniform background measure. The copula method can be
easily employed for generating dependent samples of the variables of interest.
We show that the achieved results proved the method to be useful, tractable
and intuitive. Future research may include implementations of other measures of
dependence as, for example, Kendall’s tau.



CHAPTER 5

Generating random correlation matrices
with vines and Onion method

Whenever you are asked if you can do a job, tell
’em, ’Certainly I can!’ Then get busy and find
out how to do it.

Theodore Roosevelt

5.1 Introduction
In his recent work Joe [2006] introduced a new method for generating random cor-
relation matrices uniformly from the space of positive definite correlation matrices.
The method is based on an appropriate transformation of partial correlations to
ordinary product moment correlations. The partial correlations can be assigned
to edges of a regular vine — an extension of the concept of Markov dependence
trees. Joe based his method on the so-called D-vine. We show that his metho-
dology can be applied to any regular vine and argue that another type of regular
vine, namely the C-vine, is more suitable for generating random correlation ma-
trices. They require less computational time since the transformation of a set of
partial correlations on a C-vine to a corresponding set of unconditional correla-
tions operates only on partial correlations that are already specified on that vine.
Please see [Bedford and Cooke, 2002] for more details on dependence vines.

An alternative method of sampling correlation matrices called onion method
has been proposed by Ghosh and Henderson [Ghosh and Henderson, 2003]. This
method can be explained in terms of elliptical distributions, and it does not involve

4This chapter is based on the manuscript Generating random correlation matrices based on
vines and extended Onion method by Daniel Lewandowski, Dorota Kurowicka, and Harry Joe
accepted for publication in Journal of Multivariate Analysis.
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partial correlations. We extend it to allow generating random correlation matrices
with the joint density of the correlations being proportional to a power of the
determinant of the correlation matrix.

The chapter is organized as follows. Section 5.2 generalizes the method of
generating correlation matrices proposed by Joe. In section 5.3 we extend the
onion method. We carry out a computational time analysis of both methods in
section 5.4. This is followed by the conclusions in section 5.5.

5.2 Generating random correlation matrices with partial cor-
relations regular vines

The main idea of Joe’s method [see Joe, 2006] to generate a correlation matrix
of size d × d is to sample values of

(
d
2

)
appropriately chosen partial correlations.

The distribution of a given partial correlation is a Beta
(

d−k
2 , d−k

2

)
distribution on

(−1, 1), where the value k is the cardinality of the set of conditioning variables
for the partial correlation. For a 4-dimensional correlation matrix Joe’s choice of
partial correlations become the following

ρ12, ρ23, ρ34, ρ13;2, ρ24;3, ρ14;23. (5.1)

However we extend the method to allow different choices for
(
d
2

)
partial correla-

tions. All choices of sets of partial correlations required for the method to work
can be described using the notion of the partial correlation regular vine [Bedford
and Cooke, 2002].

A vine V on d variables is a nested set of connected trees V = {T1, . . . , Td−1}
where the edges of tree Ti are the nodes of tree Ti+1, i = 1, . . . , d− 2. We denote
the set of all edges in tree Ti by Ei. A regular vine is a vine in which two edges in
tree Ti are joined by an edge in tree Ti+1 only if these edges share a common node,
i = 1, . . . , d− 2. Figure 5.1b shows an example of a regular vine on five variables.
According to the regularity condition edges {1, 2} and {4, 5} of this vine cannot
be joined by an edge in tree T2, however this is possible for edges {2, 3} and
{2, 4}. For each edge e of a vine we define the constraint set Ue, the conditioned
set {C1e, C2e} and the conditioning set De of this edge as follows: the variables
reachable from e are called the constraint set of this edge. When two edges are
joined by an edge of the next tree, the intersection of the respective constraint
sets form the conditioning set, and the symmetric difference of the constraint sets
is the conditioned set. The regularity condition ensures the conditioned set to
be a doubleton. In Figure 5.1 a symbol of the general form {L|K} denotes a
constraint set with conditioned set L and conditioning set K. The degree of node
e is #De.

Two distinct subtypes of regular vines are so-called C-vines (each tree Ti has
a unique node of degree d− i; see Figure 5.1c) and D-vines (each node in T1 has
degree at most 2, see Figure 5.1d). This chapter aims on employing the C-vine
in further analysis to generate random correlation matrices. Theorems presented
here will be illustrated on an example of a regular vine V5 shown in Fig. 5.1b.

We define two concepts allowing expressing some properties of regular vines.
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Figure 5.1: Examples of various vines types.

Definition 5.2.1 (m-child, m-descendent). If node e of a regular vine is an
element of node f , we say that e is an m-child of f ; similarly, if e is reachable
from f via the membership relation: e ∈ e1 ∈ . . . ∈ f , we say that e is an
m-descendent of f .

A few of the properties of regular vines are [see Kurowicka and Cooke, 2006a]:

Property 1 There are
(
d
2

)
edges in a regular vine on d variables.

Property 2 If V is a regular vine on d variables, then for all i = 1, . . . , d − 1
and all e ∈ Ei, the conditioned set associated with e is a doubleton and
#De = i− 1.

Property 3. If the conditioned sets of nodes e and f in a regular vine are equal,
then e = f .

Property 4. For any node e in one of the trees T2, . . . , Td−1 in a regular vine, if
variable i is a member of the conditioned set of e, then i is a member of the
conditioned set of exactly one of the m-children of e, and the conditioning
set of an m-child of e is a subset of the conditioning set of e.
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We add to this list one more property.

Lemma 5.2.1. Let e ∈ Ei, i > 1, be the node with constraint set {1, . . . , i + 1}
and {s, t} ⊂ De. There exists f ∈ Ej, j < i, such that {C1f , C2f} = {s, t}.
Proof. Node f is an m-descendent of e. The cardinality of the constraint set Ue of
e is i+1, thus there are

(
i+1
2

)
distinct doubletons in this set. Note also that there

are
(
i+1
2

)
edges in the subvine on nodes {1, . . . , i+1} by Property 1. By Property

4 the conditioned sets of all m-descendants of e are subsets of the constraint set
of e and by Property 3 these conditioned sets are all different. Therefore one of
the m-descendants of e must have the conditioned set {s, t}. ¥

As an example, Property 4 means that for node {35; 124} of vine V5, variable
3 or 5 can occur only in the conditioned set of one of the m-children of this node,
that is in either {34; 12} or {15; 24}, never in both at the same time. According
to Lemma 5.2.1 there should be three m-descendants of node {35; 124} with con-
ditioned sets being doubleton subsets of its conditioning set {124}. These are
nodes {12}, {24} and {14; 2}.

5.2.1 Partial and multiple correlations
One can notice that Joe’s choice of partial correlations in eq.(5.1) corresponds to a
partial correlation specification on the D-vine (compare with Fig. 5.1d). However
the best choice for computing ordinary product moment correlations from partial
correlations is a C-vine. For example, determining ρ34 from ρ34;12 in the C-vine
in Fig. 5.1c can be done recursively in two steps with eq.(2.1) solved for ρij;L as
follows:

step 1: ρ34;1 = ρ34;12

√
(1− ρ2

23;1)(1− ρ2
24;1) + ρ23;1ρ24;1,

step 2: ρ34 = ρ34;1

√
(1− ρ2

13)(1− ρ2
14) + ρ13ρ14.

Notice that only partial correlations specified in the vine appear in the formulae.
This is not the case with the partial correlations specified on a D-vine.

We adopt the notation D({L}) for the determinant of the correlation matrix
with random variables indexed by the set L.

Definition 5.2.2 (Multiple correlation). The multiple correlation Rd{d−1,...,1} of
variable Xd with respect to Xd−1, . . . , X1 is given by:

1−R2
d{d−1,...,1} =

D({1, . . . , d})
Cdd

,

where D({1, . . . , d}) is the determinant of the correlation matrix R and Cdd is
the (d, d) cofactor of R. By permuting indices, other multiple correlations in d
variables are defined.
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The multiple correlation satisfies [see Kendall and Stuart, 1961]:

1−R2
d{d−1,...,1} = (1−R2

d{d−2,...,1})(1− ρ2
d,d−1;d−2,...,1) (5.2)

= (1− ρ2
d,1)(1− ρ2

d,2;1)(1− ρ2
d,3;2,1) . . . (1− ρ2

d,d−1;d−2,...,1).

The determinant of a correlation matrix for d random variables can be expressed
as a product of terms involving multiple correlations [Kendall and Stuart, 1961]:

D({1, . . . , d}) = (1−R2
d{d−1,...,1})(1−R2

d−1{d−2,...,1}) . . . (1−R2
2{1})

= (1−R2
d{d−1,...,1})D({1, . . . , d− 1}). (5.3)

Lemma 5.2.2. Let i, j /∈ L.

1− ρ2
ij;L =

D({i, j, L})D({L})
D({i, L})D({j, L}) .

Proof. From eq.(5.2) with permuted indices we have

1− ρ2
ij;L =

1−R2
i{j,L}

1−R2
i{L}

.

Use eq.(5.3) to simplify the terms on the right hand side to obtain the result.
This simplifies the proof of Lemma 2 in [Joe, 2006]. ¥

5.2.2 Jacobian of the transformation from unconditional correlations to
the set of partial correlations

We investigate the Jacobian matrix for the transform T of a vector of ordinary
product moment correlations Q (all cells of the upper triangle part of a correlation
matrix R arranged in a row vector form) to a vector P of partial correlations on
a regular vine. Both of these vectors have the same length by the construction of
a regular vine. The elements of P are

Pi = ρC1i,C2i;Di , i = 1, . . . ,

(
d

2

)
.

Let the partial correlations in P be ordered lexicographically as follows: first
order partial correlations in the top tree T1 lexicographically, then order partial
correlations in the tree T2 lexicographically, and so on. Reorder the product
moment correlations in Q correspondingly simply by removing the conditioning
sets from the partial correlations. Hence for the partial correlation specification on
the regular vine in Figure 5.1b we have defined subsets P(i) and Q(i), i = 1, 2, 3, 4,
of P and Q respectively as

P(1) = {ρ12, ρ23, ρ24, ρ45}, Q(1) = {ρ12, ρ23, ρ24, ρ45},
P(2) = {ρ13;2, ρ14;2, ρ25;4}, Q(2) = {ρ13, ρ14, ρ25},

P(3) = {ρ15;24, ρ34;12}, Q(3) = {ρ15, ρ34},
P(4) = {ρ35;124}, Q(4) = {ρ35}.
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This order will be advantageous for deriving the Jacobian of the transformation T
in a simple form. In the following pages we derive the appropriate conditions for
this transformation to ensure the joint density of product moment correlations to
be proportional to a power of det(R) with the uniform distribution as a special
case.

We show the relationship between the form of the determinant of the correla-
tion matrix and the determinant of the Jacobian [Kurowicka and Cooke, 2006b].

Theorem 5.2.3. Let R be a d-dimensional correlation matrix and P the corre-
sponding vector of partial correlations on a regular vine. One has then

det(R) =
(d
2)∏

i=1

(1− P 2
i ) =

(d
2)∏

i=1

(1− ρ2
C1i,C2i;Di

). (5.4)

This is an important theorem as it allows us to express the determinant of
a product moment correlation matrix as a product of 1 minus squared partial
correlations on any regular vine. Joe [2006] provides the special case of this
formula for D-vines. We show that the Jacobian of the transformation T also
includes the same partial correlations as in eq.(5.4).

Lemma 5.2.4. Let ρij;L be a partial correlation of order |L|. There is no other
partial correlation ρst;Dst of order |L| in the regular vine, such that

∂ρst;Dst

∂ρij
6= 0.

Proof. The partial derivative ∂ρst;Dst/∂ρij 6= 0 if and only if set {i, j} is in the
constraint set {s, t, Dst}. By Property 3, {s, t} 6= {i, j}, thus either one of the
elements, i or j, must be in {s, t} and the other in Dst, or both {i, j} ⊂ Dst. In
case of the first situation assume without loss of generality that s = i and j ∈ Dst.
That means that one of the m-children of ρst;Dst has constraint set {i, j,Dst\{j}}.
This cannot happen because of Lemma 5.2.1. The second situation when {i, j} ⊂
Dst also cannot happen because of Property 3 and Lemma 5.2.1. ¥

Theorem 5.2.5. The Jacobian matrix J of the transform from Q to P has the
form

J =
[
I 0
A B

]
,

where I is the identity matrix of size (d−1)× (d−1), 0 is the matrix of 0’s of size
(d−1)×(d−1)(d−2)/2, A is a rectangular matrix of size (d−1)(d−2)/2×(d−1)
and B is a square lower triangular matrix of size (d−1)(d−2)/2×(d−1)(d−2)/2.

Proof. Let Jij denote the partial derivative of Pi with respect to Qj . The elements
Pi and Qi are equal, i = 1, . . . , d − 1, and are not functions of any correlations
other than themselves, and hence for i = 1, . . . , d− 1 and j = 1, . . . , d(d− 1)/1

Jij =

{
1, if i = j;
0, otherwise.
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This gives the identity matrix I and the matrix of zeros 0 as the upper parts of the
Jacobian matrix. By Definition 2.2.1 an element of P(i) is a function of product
moment correlations in ∪k≤iQ(k) only. Combining this result with Lemma 5.2.4
gives matrices A and B, and B is lower triangular. ¥

Corollary 5.2.6. The determinant det(J) of the Jacobian matrix J is

det(J) =
(d
2)∏

i=1

∂Pi

∂Qi
. (5.5)

The proof follows from B being lower triangular. For i = 1, . . . , d − 1 the
partial derivative ∂Pi/∂Qi = 1, hence the product in eq.(5.5) can start from
i = d.

5.2.3 Partial derivatives
We derive the expression for the partial derivative of partial correlation ρij;L with
respect to its corresponding unconditional correlation ρij .

Lemma 5.2.7. Let L be a nonempty set with indices distinct from {i, j}. Then

∂ρij;L

∂ρij
=

1√
1−R2

i{L}
√

1−R2
j{L}

. (5.6)

Proof. The lemma will be proved by induction. If L = {l} then from (2.1) we
have

∂ρij;l

∂ρij
=

∂

∂ρij


 ρij − ρilρjl√

(1− ρ2
il)(1− ρ2

jl)




=
1√

(1− ρ2
il)(1− ρ2

jl)
=

1√
(1−R2

i{l})(1−R2
j{l})

and the lemma holds. Assume that eq.(5.6) holds for the conditioning set L
containing d nodes. Extend now the conditioning set to include d + 1 nodes, ie.
{k, L}. The corresponding partial derivative thanks to the Chain Rule and the
recursive formula (2.1) can be expressed as

∂ρij;kL

∂ρij
=

∂ρij;kL

∂ρij;L

∂ρij;L

∂ρij
=

1√
1− ρ2

ik;L

√
1− ρ2

jk;L

1√
1−R2

i{L}
√

1−R2
j{L}

.

This can be expanded further by using Lemma 5.2.2

∂ρij;kL

∂ρij
=

√√√√ 1−R2
i{L}

1−R2
i{kL}

√√√√ 1−R2
j{L}

1−R2
j{kL}

1√
1−R2

i{L}
√

1−R2
j{L}

.
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Simplifying this equation yields

∂ρij;kL

∂ρij
=

1√
1−R2

i{kL}
√

1−R2
j{kL}

.

¥

Joe [2006] published a similar result:

∂ρ1d;2...d−1

∂ρ1d
=

D({2, . . . , d− 1})√
D({1, . . . , d− 1})D({2, . . . , d}) =

1√
1−R2

1{2,...,d−1}
√

1−R2
d{2,...,d−1}

for one specific ordering of nodes using the properties of partial correlations on
a D-vine. We gave a more general proof with no reference to any specific type
of vine. This lemma shows that the partial derivative ∂ρ35;124/∂ρ35 in case of V5

can be expressed as

∂ρ35;124

∂ρ35
=

(
(1−R2

3{124})(1−R2
5{124})

)− 1
2

=
(
(1− ρ2

34;12)(1− ρ2
13;2)(1− ρ2

23) · (1− ρ2
15;24)(1− ρ2

25;4)(1− ρ2
45)

)− 1
2

Only partial correlations specified in V5 appear in this product.

Lemma 5.2.8. Suppose variable d is in the conditioned set of the top node of a
regular vine. Then there is a permutation (j1, . . . , jd−1) of (1, . . . , d−1) such that
the product of all partial derivatives involving variable d is equal to

[
D({d− 1, . . . , 1})

d−1∏

i=2

(
1−R2

d{ji−1,...,j1}
)]− 1

2

.

Proof. Let {d, jd−1; jd−2, . . . , j1} be the constraint set of the single node e of
the top most tree Td−1. Collect all m-descendants of e containing variable d.
By Property 4, d occurs only in the conditioned set of m-descendent nodes of
e and the conditioning set of a m-child is a subset of the conditioning set of
its m-parent. By Property 3, variable d occurs exactly once with every other
variable {d− 1, . . . , 1} in the conditioned set of some node. Hence there is some
permutation (j1, . . . , jd−1) of (1, . . . , d− 1), such that in tree Ti (i = 1, . . . , d− 1)
there is a partial correlation associated with one of the edges of the tree with
the constraint set {d, ji; ji−1, . . . , j1}. By Lemma 5.2.7 the product of all partial
derivatives of partial correlations involving node d can be expressed as

d−1∏

i=2

∂ρdji;ji−1,...,j1

∂ρdji

=
d−1∏

i=2

[
1−R2

d{ji−1,...,j1}
]− 1

2 ·
d−1∏

i=2

[
1−R2

ji{ji−1,...,j1}
]− 1

2

=

[
d−1∏

i=2

(
1−R2

d{ji−1,...,j1}
)
·D({d− 1, . . . , 1})

]− 1
2

,
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where the last equality follows from the definition of the multiple correlation
coefficient via 1−R2

ji{ji−1,...,j1} = D({ji, ji−1, . . . , j1})/D({ji−1, . . . , j1}). If i = 1,
then ∂ρdji;ji−1,...,j1/∂ρdji

= 1 and therefore there is no need to include this term
in the above product. ¥

The determinant D({d− 1, . . . , 1}) does not depend in any particular way on
the indexing of the nodes {d − 1, . . . , 1}. Let |Jd| denote the determinant of the
Jacobian of the transform of Q to P for a regular vine on d nodes.

Lemma 5.2.9. Suppose variable d is in the conditioned set of the top node of a
regular vine. Then there is a permutation (j1, . . . , jd−1) of (1, . . . , d−1) such that
the recursive formula for the determinant |Jd| of the Jacobian for the transform
of Q to P is:

|Jd| = |Jd−1|
[
D({d− 1, . . . , 1})

d−1∏

i=2

(
1−R2

d{ji−1,...,j1}
)]− 1

2

.

Proof. By Corollary 5.2.6

|Jd| =
(d
2)∏

i=1

∂Pi

∂Qi
=

∏

i∈A

∂Pi

∂Qi
·
∏

i∈B

∂Pi

∂Qi
,

where A is the set of all partial correlations on a regular vine without node d
in the constraint set, and B is the set of all partial correlations with d in the
conditioned set. By Corollary 5.2.6, the first product is |Jd−1|. By Lemma 5.2.8,
the second product simplifies and the claimed result is obtained. ¥

Next is the main theorem of this chapter.

Theorem 5.2.10. The determinant |Jd| of the Jacobian for the transform of Q
to P is

|Jd| =




(d
2)−1∏

i=1

(1− ρ2
C1i,C2i;Di

)d−#Di−2




− 1
2

. (5.7)

Proof. Without loss of generality, assume variable d is in the conditioned set of
the top node. Let (j1, . . . , jd−1) be the permutation of (1, . . . , d−1) from Lemma
5.2.8.

The proof goes by induction. For d = 3, the Pi for i = 1, 2, 3 are ρj1j2 , ρ3j1

and ρ3j2;j1 , respectively. We have by Lemma 5.2.9

|J3| = |J2|√
1− ρ2

j1j2

√
1− ρ2

j13

=
1√

1− ρ2
j1j2

√
1− ρ2

j13

and the theorem is satisfied. Assume that eq.(5.7) holds for d− 1. Then again by
Lemma 5.2.9 for d we have

|Jd| = |Jd−1|
[
D({d− 1, . . . , 1})

d−1∏

i=2

(
1−R2

d{ji−1,...,j1}
)]− 1

2

.
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However with Theorem 5.2.3 and induction,

|Jd−1|D({d− 1, . . . , 1})− 1
2 =

=




(d−1
2 )−1∏

i=1

(1− ρ2
C1i,C2i;Di

)d−#Di−3 ·
(d−1

2 )∏

i=1

(1− ρ2
C1i,C2i;Di

)




− 1
2

=




(d−1
2 )∏

i=1

(1− ρ2
C1i,C2i;Di

)d−#Di−2




− 1
2

. (5.8)

The above product contains all terms with partial correlation from the vine on
nodes {d − 1, . . . , 1} raised to the appropriate power. There are d − 2 terms
missing in order to obtain the claimed result. These are the terms involving
all partial correlations with d in the conditioned set. They are obtained from∏d−1

i=2

(
1−R2

d{ji−1,...,j1}
)
. By eq.(5.2)

d−1∏

i=2

(
1−R2

d{ji−1,...,j1}
)

=
d−1∏

i=2

(1− ρ2
d,ji−1;ji−2,...,j1)

d−(i−2)−2. (5.9)

Notice that i− 2 in the exponent is the cardinality of the conditioning set. Hence
by combining eq.(5.8) with (5.9) we prove the theorem. ¥

The product in eq.(5.7) contains terms with all the partial correlations assigned
to the edges of a regular vine taken to the appropriate power depending on the
cardinality of the conditioning set. It does not explicitly include the term with
the top most partial correlation with the highest cardinality of the conditioning
set, i.e., for i =

(
d
2

)
, but its exponent according to the formula would be 0 anyway,

hence index i can go safely from 1 to
(
d
2

)
in eq.(5.7).

The above calculations can also be carried out in a simplified form for C-vines.
Let V be a C-vine on d nodes with node 1 as the root of the vine. Then one can
introduce a partial correlation specification on the nodes of this vine and present
them in the form of a matrix:

R =




1 ρ1,2 ρ1,3 . . . ρ1,d−1 ρ1,d

1 ρ2,3;1 . . . ρ2,d−1;1 ρ2,d;1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 ρd−1,d;1...d−2

1




.

The partial derivative of ρd−1,d;1...d−2 with respect to ρd−1,d is

∂ρd−1,d;1...d−2

∂ρd−1,d
=

d−2∏

i=1

∂ρd−1,d;1...i

∂ρd−1,d;1...i−1
=

d−2∏

i=1

[
(1− ρ2

d,i;1...i−1)(1− ρ2
d−1,i;1...i−1)

]− 1
2 ,
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where we assume the conditioning set {1, . . . , i− 1} for i = 1 to be the empty set.
For the lower order partial correlations one has

∂ρj,j+n;1...j−1

∂ρj,j+n
=

j−1∏

i=1

[
(1− ρ2

j,i;1...i−1)(1− ρ2
j+n,i;1...i−1)

]− 1
2

for 1 ≤ j ≤ d− 1 and 2 ≤ j + n ≤ d.
The determinant |Jd| of the Jacobian for the transform of Q to P for the

partial correlations on a C-vine is

|Jd| =
[

d−2∏

k=1

d∏

i=k+1

(
1− ρ2

k,i;1,...,k−1

)d−k−1

]− 1
2

. (5.10)

All partial correlations from the correlation matrix R except ρd−1,d;1,...,d−2

appear in the expression (5.10). However this term can also be added safely
because its exponent would be 0 (d− k− 1, where k = d− 1). Therefore k in the
first product in (5.10) can increase up to d − 1 instead of d − 2. We make this
adjustment in the subsequent calculations.

5.2.4 Algorithm for generating correlation matrices with vines
We show how to use the theorems to generate random correlation matrices such
that the density of the random correlation matrix is invariant under the choice of
partial correlation vine. Following the calculations of Joe [2006] we employ the
linearly transformed Beta(α, α) distribution on the interval (−1, 1) to simulate
partial correlations. The density g of this random variable is

g(x; α) =
2−2α+1

B(α, α)
(1− x2)α−1 =

2−2α+1Γ(2α)
Γ2(α)

(1− x2)α−1, (5.11)

where B is the beta function.
Suppose ρC1i,C2i;Di has a Beta(βi, βi) density on (−1, 1) and its realization

is denoted by pC1i,C2i;Di . Similarly, let the realization of an ordinary product
moment correlation ρC1i,C2i be denoted by qC1i,C2i . Then the joint density f of
ordinary product moment correlations in R is proportional to

f(qC1i,C2i ; 1 ≤ i ≤ d(d− 1)/2) ∝
(d
2)∏

j=1

g(pC1j ,C2j ;Dj ;βj) · |Jd| =
(d
2)∏

j=1

(1− pC1j ,C2j ;Dj )
βj− d−#Dj

2 . (5.12)

The exponent βj − d−#Dj

2 is a function of #Dj = n for a given d. In order to
make this exponent equal to a constant η − 1, βj will be replaced by αn so that
αn− (d−n)/2 = η− 1; thus αn = η + d−n−2

2 . We replace βj with αn in eq.(5.12)
and use Theorem 5.2.3 to obtain

f(qC1i,C2i ; 1 ≤ i ≤ d(d− 1)/2) = cd

(d
2)∏

j=1

(1− pC1j ,C2j ;Dj )
η−1 = cd det(R)η−1,

(5.13)
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where cd is the normalizing constant depending on the dimension d. The uniform
density is obtained for η = 1, which means that the marginal densities for partial
correlations pC1i,C2i;Di are Beta

(
d−#Di

2 , d−#Di

2

)
on (−1, 1), for i = 1, . . . , d(d −

1)/2,
For the C-vine the above reasoning has the following implications. By eq.(5.10)

the joint density f of the ordinary product moment correlations is

f(qij , 1 ≤ i < j ≤ d) = cd

d−1∏

k=1

d∏

l=k+1

(1− p2
kl;1,...,k−1)

αk−1−1− d−k−1
2 . (5.14)

The exponent αk−1 − 1 − d−k−1
2 is of the form βj − d−#Dj

2 as in eq.(5.12) with
#Dj = k−1. Thus the density (5.14) is uniform if αk−1 = d−k+1

2 and the marginal
densities for partial correlations ρkl;1,...,k−1 (1 ≤ k ≤ d− 1 and k + 1 ≤ l ≤ d) in
the matrix R are Beta

(
d−k+1

2 , d−k+1
2

)
on (−1, 1).

The normalizing constant cd for eq.(5.13) and (5.14) has the same formula as
the one derived in [Joe, 2006] since it does not depend on the specific vine used
in the calculations

cd = 2
∑d−1

k=1(2η−2+d−k)(d−k) ×

×
d−1∏

k=1

[
B(η + 1

2 (d− k − 1), η + 1
2 (d− k − 1))

]d−k
. (5.15)

If η = 1 this equation simplifies to

2
∑d−1

k=1 k2 ·
d−1∏

k=1

[
B

(
k + 1

2
,
k + 1

2

)]k

.

We denote the realization of random matrix R by r. Elements of r are rij ,
1 ≤ i, j ≤ d. The algorithm for generating correlation matrices with density
proportional to [det(r)]η−1, η > 1 is quite simple using the vine method based on
a C-vine.

Algorithm 5.2.1 (Generating random correlation matrices with C-vines).

1. Initialization β = η + (d− 1)/2.

2. Loop for k = 1, . . . , d− 1.

a) β ← β − 1
2 ;

b) Loop for i = k + 1, . . . , d;

i) generate pk,i;1,...,k−1 ∼ Beta(β, β) on (−1, 1);
ii) use recursive formula (2.1) on pk,i;1,...,k−1 to get qk,i = rk,i = ri,k.

3. Return r, a d× d correlation matrix.
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Figure 5.2: Boundary of the set of all triples (ρ12, ρ13, ρ23) leading to semi-positive
definite 3-dimensional correlation matrices.

Because the partial correlations in a regular vine can independently take va-
lues in the interval (−1, 1), one could more generally assign an arbitrary density
gi, supported on (−1, 1), to ρC1i,C2i;Di , and get a joint density for the correlation

matrix by multiplying
∏(d

2)
i=1 gi(pC1i,C2i;Di) by the Jacobian. This density in ge-

neral is not invariant under the choice of partial correlation vine, but by choosing
the vine and the gi appropriately, one could get random correlation matrices that
have larger correlations at a few particular pairs.

5.3 Onion method
Another interesting method of sampling uniformly from the set of correlation
matrices was the method proposed in [Ghosh and Henderson, 2003]. We give
a simpler explanation of their method, together with an extension to random
correlation matrices with density proportional to [det(r)]η−1 for η > 0. With the
derivation, we check that the normalization constant is the same as that given in
[Joe, 2006].

5.3.1 Background results
We start with some background results on the elliptically contoured distributions
[see Joe, 1997]. Consider the spherical density c(1 − wT w)β−1 for w ∈ Rk,
wT w ≤ 1, where c is the normalizing constant. If W has this density, then it
has the stochastic representation W = V U where V 2 ∼ Beta(k/2, β) and U is
uniform on the surface of the k-dimensional hypersphere. If Z = AW, where A
is a k × k non-singular matrix, then the density of Z is

c[det(AAT )]−1/2(1− zT [AAT ]−1z)β−1
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over z such that zT [AT A]−1z ≤ 1.

Lemma 5.3.1. The normalization constant c of the spherically contoured density
c(1−wT w)β−1 is

c = Γ(β + k/2)π−k/2/Γ(β).

Proof. From known results on elliptical densities, the density of the radial direc-
tion V is

cSk(1− v2)β−1vk−1, 0 < v < 1,

where Sk = 2πk/2/Γ(k/2). The density of Y = V 2 is

cSk(1− y)β−1y(k−1)/2 · 1
2y−1/2 = 1

2cSkyk/2−1(1− y)β−1, 0 < y < 1,

This is a Beta(k/2, β) density, so that

1
2cSk =

Γ(β + k/2)
Γ(k/2) Γ(β)

or c =
Γ(β + k/2)
πk/2Γ(β)

.

¥

The onion method is based on the fact that any correlation matrix of size
(k + 1)× (k + 1) can be partitioned as

rk+1 =
[
rk z
zT 1

]
,

where rk is an k × k correlation matrix and z is a k-vector of correlations. From
standard results we have det(rk+1) = det(rk) · (

1 − zT r−1
k z

)
. Let the upper

case letter of rk, z, rk+1 denote random vectors and matrices and let β, βk >
0 be two known parameters. If Rk has density proportional to [det(rk)]βk−1,
and Z given Rk = rk has density proportional to [det(rk)]−1/2(1 − zT r−1

k z)β−1

(hence it is elliptically contoured), then the density of Rk+1 is proportional to
[det(rk)]βk−3/2(1− zT r−1

k z)β−1. If one sets βk = β + 1
2 , then the density of Rk+1

is proportional to [det(rk+1)]β−1.
Because the density in eq.(5.11) is proportional to (1 − u2)α−1, which is a

power of det
(

1 u
u 1

)
= 1− u2, it can be used to generate r2.

5.3.2 Algorithm for generating random correlation matrices
Combining the above results yields the following algorithm for the extended onion
method to get random correlation matrices in dimension d with density propor-
tional to [det(r)]η−1, η > 1

Algorithm 5.3.1 (Generating random correlation matrices with the Onion me-
thod).

1. Initialization. β = η + (d − 2)/2, r12 ← 2u − 1, where u ∼ Beta(β, β),

r ←
(

1 r12

r12 1

)
.
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2. Loop for k = 2, . . . , d− 1.

a) β ← β − 1
2 ;

b) generate y ∼ Beta(k/2, β)

c) generate u = (u1, . . . , uk)T uniform on the surface of k-dimensional
hypersphere;

d) w ← y1/2u, obtain A such that AAT = r, set z ← Aw;

e) r ←
[

r z
zT 1

]
.

3. Return r, a d× d correlation matrix.

In step c), it should be numerically faster to use A from the Cholesky decom-
position of r rather than r1/2 based on the singular value decomposition. The
latter is indicated in [Ghosh and Henderson, 2003].

5.3.3 Derivation of the normalizing constant

As in case of the vine method, every off-diagonal element of the random correlation
matrix R has a marginal density Beta(η +[d− 2]/2, η +[d− 2]/2) on (−1, 1). For
the special case of η = 1 leading to uniform over the space of correlation matrices,
the marginal density of every correlation is Beta(d/2, d/2) on (−1, 1).

In the kth step of the algorithm, β = η + [d − 1 − k]/2. Using Lemma 5.3.1
and eq.(5.11), the reciprocal normalizing constant is

cd
′ = 22η+d−3 Γ2(η + d

2 − 1)
Γ(2η + d− 2)

d−1∏

k=2

π
k
2 Γ(η + d−1−k

2 )
Γ(η + d−1−k

2 + k
2 )

= 22η+d−3 Γ2(η + d
2 − 1)

Γ(2η + d− 2)

d−1∏

k=2

π
k
2 Γ(η + d−1−k

2 )
Γ(η + d−1

2 )
. (5.16)

We show that the expressions for the normalizing constants (5.15) and (5.16)
are equivalent. The proof makes use of the duplication formula relation [see
Abramowitz and Stegun, 1964, Duplication formula, pp. 256]

Γ(2t)
Γ(t)

= 2(2t−1) Γ(t + 1
2 )

Γ( 1
2 )

=⇒ Γ2(t)
Γ(2t)

22t−1 =
π

1
2 Γ(t)

Γ(t + 1
2 )

(5.17)

Proof. We start with eq.(5.15). By the duplication formula (5.17) with t = η +
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(d− 1− k)/2 we have

cd =
d−1∏

k=1

[
22(η+(d−1−k)/2)−1 Γ2(η + d−1−k

2 )
Γ(2η + d− 1− k)

]d−k

=
d−1∏

k=1

[
π

1
2 Γ(η + d−1−k

2 )
Γ(η + d−1−k

2 + 1
2 )

]d−k

=
∏d−1

k−1 π
k
2

Γd−1
(
η + d−1

2

)
d−1∏

k=1

Γd−k

(
η +

d− 1− k

2

)
·

·
d−1∏

k=2

Γ−(d−k)

(
η +

d− 1− k

2
+

1
2

)
.

Start the indexing in the second product from 1 instead of 2 and increase k by 1.
The upper limit can stay d− 1 because −(d− k) + 1 = 0 for k = d− 1.

cd =
∏d−1

k−1 π
k
2

Γd−1
(
η + d−1

2

)
d−1∏

k=1

Γd−k

(
η +

d− 1− k

2

)
·

·
d−1∏

k=1

Γ−(d−k)+1

(
η +

d− 1− k

2

)

=

∏d−1
k−1 π

k
2

Γd−1
(
η + d−1

2

)
d−1∏

k=1

Γ
(

η +
d− 1− k

2

)

=
d−1∏

k=1

π
k
2 Γ(η + d−1−k

2 )
Γ(η + d−1

2 )
.

This is the expression for cd
′ with

22η+d−3 Γ2(η + d
2 − 1)

Γ(2η + d− 2)
=

π
1
2 Γ(η + d

2 − 1)
Γ(η + d

2 − 1
2 )

=
π

k
2 Γ(η + d−1−k

2 )
Γ(η + d−1

2 )
.

where k = 1. ¥

The expression for the normalizing constant can be further simplified for η = 1.

Theorem 5.3.2. If η = 1 then the normalizing constant cd can be expressed as

cd =





π(d2−1)/4
∏(d−1)/2

k=1 Γ(2k)

2(d−1)2/4 Γd−1( d+1
2 ) , if d is odd;

πd(d−2)/4 2(3d2−4d)/4 Γd( d
2 )∏(d−2)/2

k=1 Γ(2k)

Γd−1(d)
, if d is even.

Proof. We rearrange terms in eq.(5.16) with η = 1:

c′d =
πd(d−1)/4

Γd−1(d+1
2 )

d−1∏

k=1

Γ
(

d− k + 1
2

)
=

πd(d−1)/4

Γd−1(d+1
2 )

d−1∏

k=1

Γ
(

k

2
+

1
2

)
. (5.18)
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If d is odd then by using the duplication formula (5.17) we obtain

d−1∏

k=1

Γ
(

k

2
+

1
2

)
=

(d−1)/2∏

k=1

Γ(k) Γ
(
k + 1

2

)

=
(d−1)/2∏

k=1

Γ(k)
Γ(2k)π

1
2

Γ(k) 22k−1
=

π(d−1)/4

2
∑(d−1)/2

k=1 2k−1

(d−1)/2∏

k=1

Γ(2k). (5.19)

Substituting eq.(5.19) in to eq.(5.18) yields the claimed result. If d is even then

d−1∏

k=1

Γ
(

k

2
+

1
2

)
= Γ

(
d

2

) (d−2)/2∏

k=1

Γ(k) Γ
(
k + 1

2

)
=

Γ
(

d
2

)
π(d−2)/4

2
∑(d−2)/2

k=1 2k−1

(d−2)/2∏

k=1

Γ(2k).

(5.20)
Substitute eq.(5.20) in to eq.(5.18) gives

c′d =
π(d2−2)/4 Γ

(
d
2

)

2(d−2)2/4 Γd−1
(

d+1
2

)
(d−2)/2∏

k=1

Γ(2k).

Apply the duplication formula to Γd−1(d+1
2 ) and cancel common terms to obtain

the final result. ¥

All arguments of the gamma functions in the formulae presented in The-
orem 5.3.2 are integers and hence can be replaced with factorials. Note that
the exponent of π in Theorem 5.3.2 for an odd number d is the same as that
for the next largest even number; for d = 3, 4, . . ., the exponents are respectively
2, 2, 6, 6, 12, 12, 20, 20, . . ..

5.4 Computational time analysis
Both the vine method and the onion method have been implemented in compu-
ter software and compared in terms of time required to generate a given number
of random correlation matrices. Two different software platforms were used for
this task, namely the scripting language of Matlab and a low level programming
language C. We used the built-in functions of Matlab to generate Beta and Gaus-
sian distributed random variables and to compute the Cholesky decomposition of
correlation matrices required by the onion method. These functions of Matlab
are compiled and cannot be edited. The onion method implemented in Matlab
computes the full Cholesky decomposition at each iteration of the generating pro-
cedure. However the amount of calculations can be limited by implementing a
Cholesky decomposition computed incrementally — that is a new row is added
at each stage when a new z is generated. We took this approach when implemen-
ting the onion method in C; without the incremental Cholesky decomposition,
the onion method was much slower than the vine method in the C programming
language. It does not save any computational time in Matlab compared to the
built-in Cholesky decomposition function because the advantage of having fewer
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Table 5.1: Time in seconds required to generate 5000 correlation matrices of given
dimension.

Dimension compiled C code with
full optimization enabled
(/0x)

m-script in Matlab 2007b

onion C-vine D-vine onion C-vine D-vine
5 0.015 0.016 0.031 1.422 0.775 1.281
10 0.047 0.078 0.172 3.356 1.806 6.067
15 0.109 0.234 0.547 5.346 3.075 15.523
20 0.187 0.406 1.438 7.397 4.679 30.835
25 0.281 0.687 3.250 9.591 6.798 53.444
30 0.437 1.078 6.625 11.856 9.348 84.958
35 0.609 1.562 12.344 14.411 12.564 127.388
40 0.813 2.203 21.438 17.035 16.718 182.578
45 1.063 4.125 35.312 19.868 21.493 252.862
50 1.344 3.891 55.515 22.839 27.222 340.846
60 2.094 6.266 124.203 29.530 41.767 577.313
70 3.078 9.375 246.656 47.140 84.795 918.209
80 4.328 13.406 451.422 82.422 46.374 1 404.285

operations is wasted on executing a non-compiled code. The programs have been
run on a desktop PC with Intel Core 2 Duo (2 × 3.2 GHz) processor, 3GB of
RAM memory and Windows XP SP3 operating system. The source code of the
software used for the analysis is available from the authors upon request.

Table 5.1 lists times necessary to complete the task of generating 5 000 random
correlation matrices of given dimension. The compiled code is faster as expected
and the incremental Cholesky decomposition routine allows the onion method to
be the clear winner in this case. The difference between the onion method and the
vine method in terms of the required calculation time gets bigger as the dimension
increases. We can see a different picture on the Matlab 2007b platform. The
vine method is faster than the onion method for lower dimensions of correlation
matrices (d < 44), but our tests showed that this also depends on the processor
used for calculations. We have included the results for the vine method based
on the D-vine for reference. The C-vine based method of generating correlation
matrices performs better in terms of the execution time by a large margin.

5.5 Conclusions
The main goal of this paper was to study and improve existing methods of genera-
ting random correlation matrices. Two of such methods include the onion method
of Ghosh and Henderson [2003] and the vine method recently proposed by Joe
[2006]. Originally the vine method was based on the so-called D-vine. We extend
this methodology to any regular vine by studying the relationship between the
multiple correlation and partial correlations on a regular vine. The C-vine exhi-



Generating random correlation matrices with vines and Onion method 81

bits computational advantage for generating random correlation matrices, since
the recursive formula (2.1) operates only on partial correlations that are already
specified on a vine. It is the only vine with this property. This simplifies the
generating algorithm and limits the number of calculations.

We also give a simpler explanation of the onion method in terms of elliptical
distributions. The generalization of this method yields a procedure to sample from
the set of positive definite correlation matrices with joint densities of correlations
proportional to det(r)η−1 with η > 0. This allows the choice of the method suited
to the need. The efficiency of the algorithms for generating random correlation
matrices depends heavily on the programming language used for implementation.
Preferably both methods would be implemented and benchmarked before the final
decision is made on the usage of one or another, however the onion method with
some heavy optimizations (like incremental Cholesky decomposition) seems to
have an edge in this regard.

For the vine method, a particular regular vine should be used if the partial
correlations associated with this vine are of main interest (i.e., the sequence of
conditioning is most natural for the variables) and they are needed as part of the
generation of the random correlation matrix.
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CHAPTER 6

Sample-based estimation of correlation
ratio with polynomial approximation

There are in fact two things, science and opinion;
the former begets knowledge, the latter
ignorance.

Hippocrates

6.1 Introduction
Suppose a model is defined as a function G = G(X1, X2, . . . , Xn). The aim
of sensitivity analysis is to investigate how much the uncertainty in Xi’s, i =
1, 2, . . . , n, or combinations thereof, contributes to the uncertainty in G. In this
paper we concentrate on the notion of the so-called correlation ratio — a variance
based measure.

The correlation ratio (CR) of random variable G with respect to random
variable X is defined as

η2(G|X) =
Var(E(G|X))

Var(G)
.

Evidently, this is not a correlation coefficient of random variables; it is not sym-
metric and it is always non-negative.

Thanks largely to the work of McKay [1997] the correlation ratio is becoming
recognized as a key notion in global sensitivity analysis. Other authors have

5This chapter is based on the publication Sample-based estimation of correlation ratio with
polynomial approximation by Daniel Lewandowski, Roger M. Cooke and Radboud J. Duintjer
Tebbens published in ACM Transactions on Modeling and Computer Simulation (TOMACS),
Volume 18, Issue 1, pages 1–17, 2007.

83
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studied this subject as well [e.g. Chan et al., 1997, Ishigami and Homma, 1990,
Cooke and Lewandowski, 2001]. Saltelli et al. [2000a] offer an extensive overview of
sensitivity analysis methods, including variance-based approaches. Recently the
correlation ratio has been applied and compared with other sensitivity measures in
[Duintjer Tebbens et al., 2008]. Theoretically, the correlation ratio is an attractive
tool for quantifying importance because it represents the fraction of the variance
of G that can be attributed to variation of X. However, there is an evident
problem with computing it in a simple and accurate manner — estimation of the
conditional expectation E(G|X) is the real challenge. A number of algorithms
have been developed to overcome this difficulty, some more successful than others.
Instructive among the lesser successful are the methods proposed by Kendall and
Stuart [1961] and Sobol’ [1993]. The first relies on a user-selected parameter (the
number of bins for discretizing the model) which fully controls the value of the
estimates. The second leads to very large deviations in the results and possible
negative values although some may consider this as a strength of this method as
it gives unbiased estimates. In general there is no need to approximate E(G|X) in
order to estimate the correlation ratio (methods like FAST and Sobol’ explained
in [Saltelli et al., 2000b] do not deal with that at all, for instance). However the
regression curve E(G|X) arises naturally in sensitivity analysis and having that
determined is a useful byproduct.

Recognizing the drawbacks of the standard estimation methods, we look for
methods which:

1. are based only on samples and do not require additional simulation and/or
special simulation methods,

2. give an approximation of E(G|X) in analytical form,

3. do not require any input from the user, as this could control the result,

4. are generic, ie. not model specific,

5. are easy to implement in computer code,

6. have accuracy at least on par with other known methods.

7. have little computational cost.

The first point really means that we are interested in methods of estimating the
correlation ratio from pseudo random or fully random samples only. The Bay-
esian method of Oakley and O’Hagan [2004], described in section 6.5.1, performs
best if the samples for input variables are carefully chosen and therefore needs a
special sampling algorithm. However, it also works with pseudo random samples
very well, and therefore we include this method in our comparison. Theorems
introduced in this paper help develop a new method of estimating correlation ra-
tios complying with this specification. The main objective therefore is to present
and compare 3 variants of this new method and decide which one performs best.
The best adaptation of the method will be compared with two already known
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state-of-the-art methods of estimating the correlation ratio on an example of a
multivariate model.

This chapter is organized as follows. Section 6.2 places the correlation ra-
tio into a broader context of global sensitivity measures. Section 6.3 presents a
general definition of the correlation ratio and section 6.4 list properties of the cor-
relation ratio. Next, in section 6.5 we describe methods proposed by Oakley and
O’Hagan [2004] and Li et al. [2002]. Section 6.6 introduces 3 variations of the new
method of estimating the correlation ratio. The performance of this method is
investigated in section 6.7 with conclusions and discussion following in section 6.8.

6.2 Global sensitivity measures
The correlation ratio belongs to a family of global quantitative measures of im-
portance of input factors for a given model; it is a variance-based non-parametric
method closely related to Sobol’ indices [Sobol’, 1993, Chan et al., 2000b]. Sobol’s
method relies on decomposing the model function G(U) into orthogonal sum-
mands of increasing dimensionality with zero mean, where U = (U1, U2, . . . , Un)
is a vector of length n of statistically independent uniform random variables on
[0, 1] with realizations u:

G(u) = G0+
n∑

i=1

Gi(ui)+
∑

1≤i<j≤n

Gij(ui, uj)+. . .+G1,2,...,n(u1, u2, . . . , un), (6.1)

where G0 denotes the expectation of G(U) and

Gi(ui) = E(G|ui)−G0;
Gij(ui, uj) = E(G|ui, uj)−Gi(ui)−Gj(uj)−G0; etc.

Similarly, higher–order terms can be obtained. This is the starting point for
the high-dimensional model representations (HDMR), tools for estimating Gi’s.
HDMR expresses the model output G as a function expansion as given in eq.(6.1).
It can be generalized to non-uniform and correlated inputs as it is done in (see [Li
et al., 2006, Bedford, 1998]). Li et al. [2002] approximate the HDMR component
functions analytically by orthonormal polynomials, polynomial spline functions
and ordinary polynomials (formulae exist for determining coefficients of ortho-
normal polynomials), as well as numerically by using kernel smoothers. They do
not, however, consider the problem of overfitting which is evidently possible if the
order of the polynomial is too high.

With the assumption of independence of inputs and given eq.(6.1) the variance
of G may be written:

Var(G(U)) =
∑n

i=1 V ar(Gi(Xi)) +
∑

1≤i<j≤n V ar(Gij(Xi, Xj))+
+ . . . + V ar(G1,2,...,n(X1, X2, . . . , Xn)).

(6.2)

The Sobol’ k-th order sensitivity index is defined as

Si1,...,ik
=

Var(Gi1,...,ik
(Ui1 , . . . , Uik

))
Var(G)

.
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Sobol’ indices sum up to unity. The first order Sobol’ indices were used already
by Pearson [1903].

The role of the correlation ratio in quantifying importance is based on the
well-known relation (which does not require {Ui} to be independent):

Var(G) = E(Var(G|Ui)) + Var(E(G|Ui)),

If the expected reduction in variance of G with Ui fixed is small, then the variance
Var(E(G|Ui)) is large. Normalizing by Var(G), Var(E(G|Ui))

Var(G) represents the fraction
of the variance of G which is ”explained” by Ui. The use of Sobol’ indices as a
sensitivity measure is then motivated by the fact that they explain all the variance,
according to eq.(6.2). For a more detailed overview of Sobol’ indices see [Chan
et al., 2000a]. The following section suggests another motivation of the correlation
ratio, not based on variance reduction, but on optimal prediction.

6.3 Definition of correlation ratio
Building on the concept of Sobol’ indices, we more generally define for any random
vector X = (X1, X2, . . . , Xn) and any subset X(k) of k components of X, (1 ≤
k ≤ n):

Definition 6.3.1. The correlation ratio η2 of G = G(X) with respect a to random
vector X(k) is

η2
(
G|X(k)

)
=

Var
(
E

(
G|X(k)

))

Var(G)
. (6.3)

The correlation ratio can be motivated in terms of optimal prediction. One
may ask for which function f : Rk 7→ R with σ2

f(X(k)) < ∞ is the correlation

ρ2(G, f(X(k))) maximal? The answer is given by the generalized result of Cooke
and Lewandowski [2001] (similar to a result of Whittle [1992]).

Theorem 6.3.1. Let X(k), G and and f(X(k)) have finite variance. Then

max
f

ρ2(G, f(X(k))) = ρ2(G,E(G|X(k))) =
Var(E(G|X(k)))

Var(G)
= η2(G|X(k)).

Proof. Let δ(X(k)) be any function with finite variance and write f(X(k)) =
E(G|X(k)) + δ(X(k)). Put A = σ2

E(G|X(k) )
, B = Cov(E(G|X(k)), δ(X(k))) =

Cov(G, δ(X(k))), C = σ2
G, and D = σ2

δ . Then

ρ2(G,E(G|X(k)) + δ(X(k))) =
(A + B)2

C(A + D + 2B)
,

σ2
E(G|X(k) )

σ2
G

=
A

C
,

(A + B)2

C(A + D + 2B)
≤ A

C
⇐⇒ B2 ≤ AD.

The latter inequality follows from the Cauchy-Schwarz inequality. ¥
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If k = 1 then the conditioning set of variables X(k) contains only one element
which we denote by X. If the optimal regression of G on X(k) = {X} is linear,
that is, E(G|X) = aX + b, then

Var(E(G|X)) = Var(aX + b) =

=
Cov2(aX + b,X)

Var(X)
=

Cov2(E(G|X), X)
Var(X)

=
Cov2(G, X)

Var(X)
,

and eq.(6.3) becomes the product moment correlation squared ρ2(G,X).
Sobol’ indices coincide with the correlation ratio when the explanatory va-

riables are independent uniforms. However, when the variables are not inde-
pendent, the motivation of Sobol’ indices in terms of variance decomposition,
as in eq.(6.2) is lost. It suffices to consider G = X + Y with X = Y . Then
η2(G|X) = η2(G|Y ) = η2(G|(X, Y )) = 1, and they obviously do not sum to one.
The correlation ratio admits a more general motivation in terms of prediction,
according to Theorem 6.3.1.
Remark. We know from Theorem 6.3.1 that η2(G|X) = ρ2(G,X) if the regression
curve E(G|X) is linear. Hence the notion of correlation ratio can be used for
testing the linearity of the regression. Kendall and Stuart [1961] test the linearity
of the regression with statistic

k = η2(G|X)− ρ2(G,X). (6.4)

The statistic 0 ≤ k ≤ 1, with k = 0 if E(G|X) is a linear function of X.

6.4 Properties of correlation ratios
The first lemma is straightforward and uses the linearity property of covariance.
We consider a partition of X into s disjoint subsets Xi of its components such
that X = (X1,X2, . . . ,Xs) (Xi 6= ∅, i = 1, . . . , s; s ≥ 1). The components of a
given subset do not have to be independent. If the {Xi} are independent, then
their correlation ratio’s explain all of the variance.

Lemma 6.4.1. Let G = G(X); X = (X1,X2, . . . ,Xs) (Xi 6= ∅, i = 1, . . . , s;
s ≥ 1), then:

Cov

(
G,

s∑

i=1

E(G|Xi)

)
=

s∑

i=1

V ar
(
E

(
G|Xi

))
.

The next proposition is straightforward, and Proposition 6.4.3 uses Lemma
6.4.1.

Proposition 6.4.2. Let gi : Rki → R where ki is the length of vector Xi, i =
1, . . . , s. Let {Xi}s

i=1 be mutually independent, and let G =
∑s

i gi(Xi) with σ2
gi

<
∞, such that σ2

G > 0. Then
s∑

i=1

η2(G|Xi) = 1.
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Proof.

E(G|Xi) = E




s∑

j=1

gj(Xj)|Xi


 = gi(Xi) +

∑

j 6=i

E(gj(Xj)),

so that V ar(E(G|Xi)) = V ar(gj(Xj)). Since :

V ar(G) =
s∑

i=1

V ar(gi(Xi))

we have:
s∑

i=1

η2(G|Xi) =
∑s

i=1 V ar(E(G|Xi))
V ar(G)

= 1.

¥

The additive form of G is essential. Let G = X ·Y , X⊥Y , E(X) = E(Y ) = 0.
Then V ar(E(G|X)) = V ar(X · E(Y )) = 0 = V ar(E(G|Y )). Without additivity
we can get only:

Proposition 6.4.3. Let G = G(X1,X2, . . . ,Xs) with Cov(E(G|Xi), E(G|Xj)) =
0, i 6= j; then

s∑

i=1

η2(G|Xi) ≤ 1.

Proof. Lemma 6.4.1 and the zero covariance assumption imply

Cov

(
G,

s∑

i=1

E(G|Xi)

)
=

s∑

i=1

V ar
(
E(G|Xi)

)
= V ar

(
s∑

i=1

E(G|Xi)

)
. (6.5)

On the other hand by the properties of variance

V ar

(
G−

s∑

i=2

E(G|Xi)

)
=

= V ar(G) + V ar

(
s∑

i=2

E(G|Xi)

)
− 2 Cov

(
G,

s∑

i=2

E(G|Xi)

)

= V ar(G)− V ar

(
s∑

i=2

E(G|Xi)

)
≥ 0. (6.6)

Then, by eq.(6.5) and (6.6) we have:

ρ

(
E(G|X1), G−

s∑

i=2

E(G|Xi)

)
=

=
Cov(E(G|X1), G−∑s

i=2 E(G|Xi))√
V ar(E(G|X1))

√
V ar(G)− V ar (

∑s
i=2 E(G|Xi))

=

√
V ar(E(G|X1))√

V ar(G)− V ar (
∑s

i=2 E(G|Xi))
≤ 1.
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Thus

V ar(E(G|X1)) + V ar

(
s∑

i=2

E(G|Xi)

)
≤ V ar(G).

¥

Proposition 6.4.4. If k = 1 (thus X(k) = (X)), then

η2(G|X) =
ρ2(G, X)

ρ2(X, E(G|X))
.

Proof. Since Cov(G,X) = Cov(E(G|X), X),

ρ2(G,X) =
Cov(E(G|X), X)
V ar(G)V ar(X)

· V ar(E(G|X))
V ar(E(G|X))

=
Cov(E(G|X), X)

V ar(E(G|X))V ar(X)
· V ar(E(G|X))

V ar(G)
= ρ2(E(G|X), X) · ρ2(G,E(G|X)).

However ρ2(G,E(G|X)) = η2(G|X). ¥

Proposition 6.4.5. Let h : Rk 7→ Rm, m ≤ k, with σ2
h(X(k))

< ∞. Then

η2(G|X(k)) ≥ η2(G|h(X(k))).

Proof. Consider quantities maxf ρ2(G, f(X(k))) and maxg ρ2(G, g(h(X(k)))). The
maximization procedure over all fs maximizes over all possible g◦h as well. Hence

max
f

ρ2(G|f(X(k))) ≥ max
g

ρ2(G|g(h(X(k)))).

¥

6.5 Standard methods of estimating correlation ratio
State-of-the-art methods for computing the correlation ratio include the Bayesian
approach of Oakley and O’Hagan [2004] and State Dependent Parameter (SDP)
model by Ratto et al. [2006]. We describe them both briefly here. The HDMR
method of Li et al. [2002] stops where we start. It approximates the component
functions but does not deal with the prevention of overfitting. It must be noted
that a variety of other approaches exist for carrying out this task, like FAST
[see Saltelli et al., 1999]. We do not consider these in this paper in view of the
requirements formulated in section 6.1.

It is assumed from now on that the sample size is m. Symbol xj denotes the
j-th vector of realizations of X and xi,j is the j-th realization of Xi.
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6.5.1 Bayesian approach
The first method employs the Bayesian paradigm by emulating G as a Gaussian
process whose parameters are assigned hyper prior distributions and updating
using model evaluations G(xj), j = 1, . . . ,m. For further reading on this method
please refer to the article of Oakley and O’Hagan [2004].

The biggest advantage of this approach is that it does not require a large num-
ber of simulations and therefore it is best suited for applications when computing
the model evaluations is rather complicated and time consuming. On the other
hand it requires the user to specify many parameters and to implement routines
for numerical integration. The sensitivity of this method to various specifications
of the input parameters is yet to be determined as there is no study on this subject
(the choice of samples for instance).

6.5.2 State Dependent Parameter models
The State Dependent Parameter modelling developed in [Ratto et al., 2006], in
turn, can be applied to any Monte Carlo sample and can be seen as one of the
postprocessing methods, ie. the analysis is done after the creation of the sample.
The idea is to extract the signal (E(G|Xi)) from noisy data (G(Xi)). In order
to prepare simulation data, which does not need to exhibit any temporal order,
for smoothing with this method one has to sort the values of Xi in an increasing
order (with Y = G(Xi) sorted accordingly) and pretend that this ordered statistic
specifies a time series. The change in Y as Xi changes its value from xi,j to
xi,j+1 is modelled as a random walk process. The forward filtering algorithm
has been coupled with backward recursive smoothing in this case Fixed Interval
Smoothing algorithm since the data is available for the whole range and does not
come sequentially.

Unfortunately, there is no computer implementation of this method available
at the time of this writing. Therefore a full comparison of the new method with
the SDP approach is not possible although it clearly has potential.

6.5.3 Sobol’ method
Sobol’ [1993] introduced a method using Monte–Carlo simulation. Let X∼i =
(X1, . . . , Xi−1, Xi+1, . . . , Xn). If we can sample X′

∼i from the conditional distri-
bution (X∼i|Xi) independently of X∼i, and if the evaluation of G is not too
expensive, then the following simple algorithm may be applied:
Algorithm 6.5.1 (Estimation of correlation ratio with Sobol’s method).

1. Sample x from X;

2. Compute G = G(x);

3. Sample x′∼i from (X∼i|Xi = xi) independent of X∼i = x∼i;

4. Compute G′ = G((xi,x′∼i));

5. Store Z = G ·G′;
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6. Repeat.

The average value of Z will approximate E(E2(G|Xi)), from which the esti-
mation of the correlation ratio η2(G|Xi) may be computed as

η2(G|Xi) ≈ E(E2(G|Xi))− E2(G)
σ2

G

.

If X∼i and Xi are independent, then this algorithm poses no problems. If X∼i and
Xi are not independent, then it may be difficult to sample from (X∼i|Xi). The
biggest weakness of this method is the high variance of the estimates, especially
for small samples. It is not unusual to obtain negative values of the estimation if
the true value is close to 0.

It could be more reasonable to choose one of the postprocessing methods of
estimating the correlation ratio, i.e. estimate V ar(E(G|Xi)) based only on a large
sample generated before the analysis.

6.5.4 Kendall-Stuart method
Kendall and Stuart [1961] propose a method that might be described as “pede-
strian”. Let m be the number of samples per variable.
Algorithm 6.5.2 (Estimation of correlation ratio with Kendall-Stuart method).

1. Collect m samples of (G,X);

2. Order the Xi values xi(1), ..., xi(m) from smallest to largest;

3. Divide the samples into M cells C1, ..., CM , where C1 contains the samples
with the m1 smallest Xi values, C2 contains samples with the m2 smallest
Xi values which are bigger than those in C1, etc.;

4. Compute Ĝj = E(G|Xi ∈ Cj), j = 1, ..., M ;

5. Compute the unbiased variance of these conditional expectations, weighted
by the number of samples, as

V ar(E(G|Xi)) ≈ V ar(Ĝ) =
M∑

j=1

nj(Ĝj − E(G))2

m− 1
.

This is an intuitive transliteration of the mathematical definition. The good
news is that its badness is illuminating. The problem lies in the choice of M and
mj . If M is sufficiently large, then mj is either 0 or 1. Take only those Cj ’s
with mj = 1. Then Cj contains exactly one sample, say (g′,x′) and E(G|Xi ∈
Cj) = g′ for all j’s. Taking the variance of these numbers will simply return the
unconditional variance of G. On the other hand, if we take M = 1, then all sample
values (g′,x′) will satisfy x′i ∈ C1 and E(G|Xi ∈ C1) = E(G), so the variance of
the conditional expectation will be zero. Appropriately choosing the size and
number of the cells Cj we traverse the values between V ar(G) and 0. Variations
on the pedestrian method using kernel estimators are discussed in [Kurowicka and
Cooke, 2006a], and experience the same issues.
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6.6 Polynomial approximation methods
The problems of estimating the correlation ratio are, for the most part, cau-
sed by the recurring issue of estimating the regression curve E(G|X) based on
data. There is a great deal of literature on the latter [Draper and Smith, 1998,
Kleinbaum et al., 1998]; but we propose a simpler strategy that can be easily
implemented.

For simplicity, we restrict attention to the case, where the explanandum X is
a one-dimensional random variable rather then a vector.

The method we propose assumes that the regression function is analytic, that is
it can be approximated as a Taylor expansion, i.e., a polynomial function. Having
said that one can immediately observe that Theorem 6.3.1 gives a good instrument
for estimating E(G|X). Intuitively, since the regression curve is a function that
maximizes ρ2(G, f(X)) over all possible f(X), then under the above assumption
of smoothness we are searching for a polynomial gd(X) of degree d that maximizes
ρ2(G, gd(X)). Optimization methods can be implemented with the coefficients of
the polynomial as independent variables.

6.6.1 Polynomial fit
For fixed d the optimization problem can be formulated as:

maximize ρ2(G, p0 + p1X + . . . + pdX
d) (6.7)

Optimization routines are time consuming, however. The following theorem
states that equivalent results can be obtained by simply applying the least–squares
error method to fit the polynomial.

Theorem 6.6.1. Let G = G(X) with σ2
G < ∞ and X ∈ X. Then

arg min
f

E(G− f(X))2 = E(G|X).

Proof. Decompose the variance of G− f(Xi) in order to obtain

E(G− f(X))2 = Var(G− f(X)) + E2(G− f(X)).

Minimizing the right hand side of the above equation implies setting E(G) =
E(f(X)) (hence E2(G− f(X)) = 0). Express f as

f(X) = E(G|X) + δ(X),

where E(δ(X)) = 0, and note that

E(G ·E(G|X)) = E(E(G|X)2)
E(δ(X) ·E(G|X)) = E(E(Gδ(X)|X)) = E(G · δ(X)).

Then
E(G− (E(G|X) + δ(X)))2 = E(G2 + δ(X)2)−E(E(G|X)2)

attains its minimum when δ(X) = 0 and hence f(X) = E(G|X). ¥
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Henceforth we use the least squares error method to fit a polynomial to data.
If one still prefers to apply the optimization problem (6.7) then consider the
following. The solution of (6.7) is unique up to positive affine transformation
(since the correlation is invariant under positive affine transformations). It is very
likely that the approximation v(x) of the regression curve E(G|X = x) obtained in
that way will not even pass through the scatter plot of G vs X. On the other hand
the least-squares error approach always leads to a regression approximation v′(x)
that has this feature. Hence there exists a linear transformation a v(x)+b = v′(x),
where a > 0 and b are real constants.

The next proposition gives formulae for calculating a and b in case E(G|X = x)
takes the form of a polynomial.

Proposition 6.6.2. Let p = (p0, p1, . . . , pd), X = (1, X, X2, . . . , Xd) and

p∗ = arg max
p

ρ2
(
G, pX

T
)

, p′ = arg min
p

E
(
G− pX

T
)2

.

Let v(X) = p∗X
T

and v′(X) = p′X
T
. Then there exist real constants a 6= 0 and

b such that
a v(X) + b = v′(X),

where

a =
Cov(G, v(X))
V ar(v(X))

,

b = E(G)− aE(v(X)).

Proof. Assume λ to represent one of the pi’s, i = 1, 2, . . . , d. Then let d/dλ denote
the operator of differentiation with respect to one of the coefficients of v = v(X).
Function v as a solution of the optimization problem (6.7) satisfies the following
equation

d

dλ
log(ρ2(G, v)) =

2 d
dλ Cov(G, v)
Cov(G, v)

− 2 d
dλ σv

σv
= 0. (6.8)

Note that d
dλ σv = Cov(u, d

dλ v)

σv
. Substituting d

dλ σv into (6.8) and simplifying yields

d
dλ Cov(G, v)
Cov(G, v)

=
Cov(v, d

dλv)
σ2

v

and therefore
d

dλ Cov(G, v)
Cov(v, d

dλv)
=

Cov(G, v)
σ2

v

=
Cov

(
G, 1

aE(G|X)− b
a

)

V ar
(

1
aE(G|X)− b

a

) = a. (6.9)

The latter equality follows from Lemma 6.4.1. In order to obtain the formula for
b note that

E(v) = E

(
1
a
E(G|X)− b

a

)
=

1
a
E(G)− b

a

and hence
b = E(G)− aE(v).

¥
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The above theorem can be illustrated by applying both the least–squares error
and the optimization methods in order to determine v and v′. Simply determine
coefficients a and b by formulating a minimization problem of the sum of squared
differences between a v(X) + b and G as a function of a and b. Then compare
them with those obtained by using the formulae given by Proposition 6.6.2.

6.6.2 Prevention of overfitting
Fitting a polynomial to data introduces a problem of overfitting. The challenge
is not to fit (in the least-squares error sense) a function that predicts perfectly
values of the fitted sample, but a function that will be representative for the
whole population from which the samples were drawn. Therefore there is a need
for introducing a mechanism to prevent overfitting. Since it has been assumed that
the model is a polynomial, the only parameter that can be used for controlling the
overfitting is the degree of the polynomial. Once the degree is fixed the coefficients
are uniquely determined by applying the least-squares error method.

Ideally, the number of independent samples from the same joint distribution
is unlimited. How can we escape from the trap of overfitting then? One can use
the algorithm given below:

Algorithm 6.6.1 (Overfitting prevention).

1. Split the sample into test and validations samples.

2. Fit a polynomial of degree d to the test sample,

3. Calculate the test correlation ratio using this polynomial as the regression
curve,

4. Calculate correlation ratios for the remaining validation data sets using
the same polynomial as the regression curve (build up a distribution of
correlation ratios),

5. Check if the correlation ratio for the test sample is significantly higher than
the other ones.

Clearly, if the polynomial fit is representative only for the test sample, then
its correlation ratio will be in the tail of the distribution of remaining validation
correlation ratios and we can reject the null hypothesis that this given polynomial
is a good approximation to the regression curve. Otherwise, the correlation ratio
of the test sample will be somewhere closer to the median of the distribution and
gives no evidence to reject the null hypothesis.

This method can be applied only if evaluating a model is not computationally
intensive and a large number of data sets can be produced. If this is not the case
a different method can be applied.

In order to experimentally determine the distribution of correlation ratios
given only one data set, one may be tempted to use resampling methods. We give
an equal importance to the test part (polynomial fit, test correlation ratio) and the
validation part (determining the distribution of validation correlation ratios given
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Figure 6.1: Empirical distribution of correlation ratio obtained using the jackknife
method and the value of the original correlation ratio (red line).

the polynomial fit), thus we split the whole sample into two data sets of the same
size and fit a polynomial only to the test part of the sample. Then one can apply
various resampling methods (like bootstrap or jackknife) to the entire sample in
order to use as much data as possible and to create validation samples needed to
determine the distribution of correlation ratios. However this method does not
give satisfactory results because the created validation samples contain, among
others, samples used to obtain the fit. Experimenting with these resampling
methods showed that the test correlation ratio is always equal (jackknife) or close
(bootstrap) to the average of the empirical distribution of validation correlation
ratios. Figure 6.1 shows one example of such case. Validation samples are created
with the jackknife method and the test correlation ratio is exactly equal to the
average of the validation CR’s.

Therefore we consider three other methods for determining the optimal degree
of the polynomial estimation of the regression curve:

Adjusted R2 This statistic is a rather standard tool used in regression analy-
sis for evaluating impact of additional variables on a model’s performance.
The multiple correlation R2 can be computed as the squared correlation
ρ2(G, gd(X)). The adjusted R2, accounting for the number of parameters
in the model, is

adj R2 = 1− (1−R2)
n− 1

n− d− 1

The adjusted R2 can decrease if increasing the polynomial degree d is not
associated with a sufficient increase in R2. Choose the degree d maximizing
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the adjusted R2.

Early stopping This idea is based on an approach applied in machine learning
models such as neural networks. The sample is split into two subsets: a
test sample and a validation sample. A polynomial of degree d is fitted to
the test sample and used to estimate the correlation ratio for the validation
sample. Choose the lowest d such that the correlation ratio with polynomial
of degree d on the validation set is greater than with d + 1.

Wilcoxon rank sum test The one-sided Wilcoxon rank sum test also compares
two data sets of estimates of correlation ratio based on the test sample (data
set 1) and the validation sample (data set 2) and tries to detect the shift
in their distributions. The null hypothesis is that both distributions are
equal. The alternative is that data set 1 is statistically larger than data set
2. The test statistic is the sum of ranks of the test observations among all
combined and sorted test and validation observations. Its distribution can
be easily tabulated or approximated by the normal distribution [Hodges and
Lehmann, 1970].

Our specific application of this test relies on the following reasoning. First
split a given sample into two equally sized subsets (T — test sample and V
— validation sample), then fit a polynomial of degree d to the test sample.
Now divide both T and V into 10 smaller data sets of equal size and calculate
the approximate correlation ratios for each of these based on the polynomial
fitted on the test sample. In the end 10 values of correlation ratio for the test
sample and 10 corresponding values of correlation ratio for the validation
sample are obtained. They form two sets that will be compared with the
help of the Wilcoxon rank sum test. The sum of the ranks WT of the test
group is expected to be larger than this sum WV for the validation group.
We use the following p-value as an indication of overfitting

P (WT ≥ wT ) = pW ,

where wT is the realization of the rank sum of the test sample correlation
ratios. Small p-value indicates overfitting. For the calculations presented
next, we choose degree d for which the p-value is closest to 0.05 from above.

6.7 Simulations and Results
The performance of all of the variations of the polynomial method introduced in
section 6.6.2 is compared in terms of their ability to estimate the true correlation
ratio. The search algorithm is restricted to polynomials of degree from 1 to 20, as
the fitting algorithms in generally available programs (eg. Matlab) experience
numerical instabilities for degrees greater than 20. The sample sizes that expose
sensitivity for overfitting are therefore also relatively small. Of course, if higher
degree polynomials can be reliably fitted, the overfitting issues will apply to larger
sample sizes. The synthetic benchmark model used for simulations is chosen such
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Figure 6.3: Convergence of the estimation of correlation ratio η̂2(G|X) as a function
of sample size n.

that the true η2(G|X) can be easily calculated analytically (X is the explaining
variable and Y is added noise). Let G = f(X)+Y = 1

8 (63X5−70X3 +15X)+Y

where X ∼ U [−1, 1] and Y ∼ N (0,
√
|X|), E(Y |X) = 0. Thus the true regression

function E(G|X) = f(X) is known. This highly non–linear model presented in
Figure 6.2 exhibits heteroscedasity in error variance, η2(G|X) ≈ 0.1538.

6.7.1 Influence of sample size
The sample size is a crucial factor in estimating any statistical quantity, therefore
we study its influence on the accuracy of the estimations. It can be observed in
Figure 6.3 that small sample sizes cause problems in estimating the correlation
ratio accurately, as expected. The estimations of the correlation ratio are compa-
red against the sample correlation ratio computed on the whole data set rather
than the true η2 in order to avoid penalizing the estimator for features of the
data. Since the regression function is given the sample correlation ratio can be
computed as the ratio of the sample variances Var(f(X)) and Var(G). The po-
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Figure 6.4: Various statistics vs degree of polynomial approximation for 60 samples.

lynomial approximation of degree 4 badly underestimates the sample correlation
ratio of 0.155. It simply does not exhibit enough variability. On the other hand
polynomial approximations of degree 5 (the degree of the model polynomial) and
15 yield good estimates for sample sizes greater than 400, indicating little sensi-
tivity to the polynomial degree once it is at least equal to the degree of the true
regression polynomial.

6.7.2 Overfitting
As it has been already mentioned an important issue for the polynomial methods
of estimating the correlation ratio is the prevention of overfitting. Figure 6.4
shows a typical picture of what one may expect from the values of the adjusted
R2, the test and the validation CR’s and p-values versus the degree of the fitted
polynomial approximation for a small sample size, in this case 60. In this situation
the adjusted R2 statistic is rather unstable.

We proposed two other techniques for preventing overfitting designed with
this specific issue in mind. Early stopping trains the polynomial approximation
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Figure 6.5: Various statistics vs degree of polynomial approximation for 200 samples.

first on test data and then checks its performance on validation data. Figure 6.4b
shows values of the estimates of the correlation ratio both on the test data and
the validation data against the degree of the polynomial approximation. The
validation-set correlation ratio gradually increases as the degree increases and
eventually starts decreasing when the degree of the approximation becomes too
high. We stop when the correlation ratio on the validation set starts to decrease.
This method is more eager to penalize data overfitting by reducing the optimal
degree of the polynomial approximation.

The Wilcoxon rank sum test for preventing overfitting is much more forgiving
in a sense that it rejects the hypothesis of overfitting only after there is a clear
evidence to do so. This evidence is the p-value being as close to 0.05 as possible,
but not lower. The threshold value (0.05 in our case) should reflect analyst’s
particular risk attitude. The example we present in Figure 6.4c shows the p-values
to be very noisy for this small sample but a general tendency for decreasing value
as the degree increases can be observed.

Things become clearer with a larger data set of 200 samples (see Figure 6.5).
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There is a clear jump of the adjusted R2 statistics when the degree of the ap-
proximation polynomial changes from 4 to 5. This jump can be explained by the
fact that the true model is also a fifth order polynomial in X. The early stopping
method also correctly detects the underlying model as the fifth order polynomial.
The maximum of the validation-set correlation ratio is attained for degree equal
to 5 and gradually decreases when the polynomial degree increases giving some
evidence for overfitting. The behavior of the p-value of the Wilcoxon rank sum
test is also much more stable than with only 200 samples. The degree with the
p-value closest to 0.05 from the top is 5 as well.

6.7.3 Robustness
The robustness of the estimation methods will be studied given three sample
sizes — 60, 200 and 1000 samples. We estimate the statistical fluctuation of the
estimation by iterating the estimation process 500 times. One iteration consists
of the following steps:

1. Generate n samples of X, Y and compute G = G(X, Y );

2. Fit polynomials of degree 1 to 20 to the whole sample and calculate the
adjusted R2 for each polynomial (Adjusted R2 method);

3. Fit polynomials of degree 1 to 20 to the first half of the sample and calculate
the estimated correlation ratio on the other half of the sample for each
polynomial (Early stopping method);

4. Fit polynomials of degree 1 to 20 to the first half of the sample, then split
each half into 10 subsamples and calculate the p-value of the Wilcoxon rank
sum test statistics for each polynomial (Wilcoxon rank sum test method).

Figure 6.6a shows the box plots of the estimates of correlation ratio calculated
based on 60 samples using various polynomial methods presented in this paper.
The lower and upper lines of the boxes are the 25th and 75th percentiles of the
sample and the whiskers are the 5th and 95th percentiles. The lines in the middle
of the box plots show the medians. The first box plot (denoted as Samp. CR in
Figure 6.6) represents the distribution of the estimates calculated using the true
regression function, ie. the error of the estimates occurs only due to statistical
fluctuation in samples. The remaining distributions contain variability also due to
the model approximation. Selecting an optimal polynomial based on the adjusted
R2 tends to overestimate CR (data overfitting) compared to the early stopping and
Wilcoxon methods. The best performing method both in terms of the accuracy
and low variability is the early stopping algorithm.

Figure 6.6b shows the box plots of the distribution of estimates given 200
samples. Quick comparison with Figure 6.6a shows that now the variability in
the estimates is considerably smaller (maximal standard error of the order of 0.1
compared to 0.16). All methods perform better with larger number of samples
providing more accurate estimates. Again, the best version of the polynomial
method was early stopping. The Wilcoxon rank sum test starts to exhibit an
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Figure 6.6: Box plots of the estimates of the correlation ratio.

undesirable feature — the erratic nature of the p-value causes in some cases to
choose 4 or less as the optimal polynomial degree. The value of the correlation
ratio is more heavily underestimated then (for example in Figure 6.3), making the
box plots look very stretched. Figures 6.6b and 6.6c confirm these observations.

The same model has been used for initial comparison of the Bayesian method
with early stopping. The Bayesian method has been implemented in GEM-SA
— Gaussian Emulation Machine for Sensitivity Analysis software and we use it
in the analysis. 50 sets of samples were generated with 100 samples of X, Y and
G per set. The estimates were converted to percentages and compared in this
form in Table 6.1. The Bayesian method underestimated the value of η2(G|X)
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Table 6.1: Estimates of the correlation ratio - Bayesian and Early stopping methods

Method Mean RMSE
Bayesian 3.78 1.71

Early stop 18.97 10.11

(15.38) with estimates tightly concentrated around value 3.78. Increasing the
number of samples to 400 (maximum supported by GEM-SA) did not cure this
problem. This suggests that the Bayesian method may have problems with non-
normal models and should be further explored. The early stopping algorithm on
the other hand produced a more sensible average estimate.

6.7.4 The analytic function of Oakley and O’Hagan
This model for benchmarks has been proposed by Oakley and O’Hagan [2004]. It
is a multivariate model with 15 inputs

G(X) = aT
1 X + aT

2 sin(X) + aT
3 cos(X) + XT MX, (6.10)

where X is a vector of independent standard normal random variables. Scalar
vectors a1, a2, a3 and matrix M are chosen such that the importance of the
inputs can be classified into 3 categories based on the appropriate values of the
correlation ratio. The same model has also been studied in [Ratto et al., 2006].

The full analysis of methods described in section 6.5 is not viable at this
moment as the authors of the SDP method could not supply the code with the
implementation. Therefore we base our findings on the comments of the authors
in [Ratto et al., 2006]. On the other hand, the method of Oakley and O’Hagan
[2004] has been implemented in GEM-SA and we use this software in our analysis.

Note that the estimates of the correlation ratio are presented on the percentage
scale rather than fractions and all the results are calculated based on percentages.

Oakley and O’Hagan [2004] report that given 250 evaluations of eq.(6.10) at ca-
refully chosen design points for X the standard deviations for the correlation ratio
estimates of X1, . . . , X5 is about 0.2, for X6, . . . , X10 is 0.5 and for X11, . . . , X15

is about 1. Since our method does not require any specific methods of generating
the sample we compare it with O’Hagan’s method using pseudo random samples
produced in Matlab. This is of course the situation less favorable for the Bay-
esian method, but it complies with the desiderata declared in section 6.1. The
decisive factor when we chose to limit the number of runs to 24 was long execution
time of GEM-SA software. Also, out of these 24 runs only 10 distinct vectors of
15 estimates (for each input variable) were returned by GEM-SA. This suggests
that the maximum likelihood optimization routine for the hyperparameters of the
Bayesian method gets stuck at some fixed points quite often. This may give a
misleading picture of the mean and RMSE of the estimates.

Figure 6.7 shows the mean estimates of the correlation ratios for this model
based on 24 iterations, 250 samples per variable each. The estimates produced by
the Bayesian method are much closer to the true values despite the fact that the
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Figure 6.7: Mean estimates of the correlation ratio based on 24 iterations and 250
samples per variable.

input sample was not chosen optimally. The early stopping algorithm tends to
overestimate the correlation ratios, especially if the true value is close to 0. The
power of the prevention of overfitting is limited for a small sample size like this.
The RMSE’s of the results are also smaller for the Bayesian method (0.5, 1.5 and
2.5 for each of the three groups of input variables respectively) although not on
a par with the results reported by Oakley and O’Hagan [2004] if the sample is
carefully selected (0.2, 0.5 and 1). In order to achieve a comparable RMSE with
the early stopping method the number of samples would have to be increased
to about 750 as Table 6.2 shows. This, however, is not enough to have similar
mean estimates — for this 1000 samples have to be generated. Overall the early
stopping method needs substantially more samples than the Bayesian approach.
It will definitely not beat the SDP method either, which seems to perform very
well in terms of determining values of the correlation ratios given 1000 samples
per variable.

6.8 Conclusions and discussion

There are many ways to quantify sensitivity. We have argued that the correlation
ratio η2(G|X) is particularly attractive in this regard, although it cannot always
be computed on-the-fly, and may be difficult to compute analytically.

The correlation ratio can be accurately estimated if the regression E(G|X) of
G on X is determined with sufficient accuracy. This paper develops a benchmark
for testing candidates for good estimates of E(G|X). The polynomial method
assumes that the underlying model is sufficiently smooth and can be accurately
approximated with a polynomial. In order to prevent overfitting we employ three
well motivated techniques based on: the adjusted R2, early stopping algorithm,
and Wilcoxon rank sum test. The early stopping method is most resistant to over-
fitting, has no “tweakable” parameters, is easy to implement and gave the best
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Table 6.2: Mean and standard deviations of the estimates of the correlation ratio obta-
ined with the early stopping method (750 and 1000 samples per variable, 100 iterations).

Analytical Mean Standard deviation
750 samples 1000 samples 750 samples 1000 samples

X1 0.1560 1.0499 0.7591 0.9011 0.6797
X2 0.0186 1.0346 0.5218 0.8172 0.4934
X3 0.1307 1.0311 0.6731 0.7570 0.5236
X4 0.3045 1.1800 0.9251 1.1149 0.6570
X5 0.2905 0.9849 0.7772 0.8972 0.6373
X6 2.3035 2.9734 2.8181 1.2959 0.9932
X7 2.4151 3.1584 2.9750 1.4744 1.2283
X8 2.6517 2.8456 3.0997 1.3179 1.3230
X9 4.6036 5.3172 5.5461 1.7640 1.6890
X10 1.4945 2.0598 2.0152 1.0798 1.1111
X11 10.1823 10.4025 10.7995 2.0375 2.1275
X12 13.5708 13.9139 13.8106 2.3893 2.0873
X13 10.1989 10.0289 10.3519 2.2431 1.9953
X14 10.5169 11.0706 10.4579 2.4762 2.1103
X15 12.2818 12.4564 12.4932 2.3133 2.0299

results. Therefore we used this specific algorithm for further comparison with the
Bayesian method. The Bayesian method performed very well on the benchmark
model proposed by Oakley and O’Hagan [2004], but experienced difficulties with
the model in section 6.7. Without questioning the advantages of Bayesian me-
thods for calculating the correlation ratio, there is a need for a simple generic
method that works for a wide variety of models and sample sizes. Polynomial ap-
proximations perform decently in this regard, with early stopping as front runner
and are very cheap to run when implemented in computer code. Obviously there
is a trade-off here between the cost of needing a lot of samples (depends on how
expensive the model is to run), and the cost of the algorithm itself. It should be
noted that one run of GEM-SA takes 5 minutes to complete one calculation of
estimates of η2(G,Xi) for the model described in section 6.7.4 on the current top-
of-the-line dual core Intel processor (Intel Core 2 Extreme X6800) with only the
option to calculate main effects selected and all the remaining program options
set to default.

Polynomial approximation methods can also be extended for estimation of jo-
int effects of 2 or more random variables on the output. One dimensional polyno-
mial functions would simply be replaced by their multidimensional counterparts.
Possible future research can look more into the robustness of various methods of
estimating the correlation ratio for different models as the choice of benchmark
models mattered quite a lot in this study.
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Conclusions

The point of quotations is that one can use
another’s words to be insulting.

Amanda Cross

This thesis aims at approaching the problem of statistical dependence model-
ling from many different angles to show the complexity of the issue and show
ways of dealing with it. Chapter 2 forms the point of reference for the remaining
papers incorporated into this thesis. It describes the standard tools for modelling
high dimensional data with some parametric families of multidimensional copulae.
We also study various dependence concepts and measures expressing interactions
between random variables in a quantitative way. Pearson’s product moment and
Spearman’s rank correlations in their unconditional and conditional forms are
among the best known concepts of dependence. However, they capture only li-
near (product moment correlation) or monotonic (rank correlation) dependence
between random variables. This often is not satisfactory, as more complicated
dependence structures can be observed and these must be properly modelled as
well. Tail dependence concepts allow for more accurate modelling of tails of mul-
tivariate distributions and this is crucial in applications to financial and insurance
markets, where risks are found to be extremes of analyzed distributions. This is
the reason for the increasing popularity of tail dependent distributions, like Stu-
dent’s t, Clayton or Gumbel, in actuarial science. We also introduce an entirely
new Dirichlet-type copula. It has been constructed without applying Sklar’s the-
orem as it is a special case of the generalized Dirichlet distribution. Unfortunately
the correlation structure of this copula is fixed and depends on its dimension only.
This limits the number of possible applications significantly. The above mentio-
ned distributions are examples of families of multivariate distributions. However,
another way of constructing multivariate distributions is to couple bivariate pieces
in a systemized manner, and a tool for this is the vine-copula method.

105
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The dependence vine is build on the concept of dependence tree. Here con-
ditional independence statements existing implicitly in a dependence tree, have
been replaced with conditional dependence statements, quantified with condi-
tional rank correlations and modelled with conditional bivariate copulae. De-
pendence modelling with vines requires a copula for which the conditional and
inverse conditional cumulative distribution functions can be efficiently computed,
and preferably are given in a closed form. Chapter 3 shows some examples of co-
pulae satisfying this requirement. They are members of a broad class of copulae
called generalized diagonal band (GDB) copulae. This class is a product of a very
intuitive geometrical method of construction. The whole copula density is gene-
rated from the density put on one of the boundaries of the copula domain. Future
work should concentrate on studying links between this generating density and
the properties of the resulting copula. We also extend and in some places correct
the work of Meeuwissen [1993] on a subclass of GDB copula, that is obtainable
through mixing of ordinary diagonal band copulae.

Chapter 4 of the thesis describes the use of the DAD algorithm to construct
discretized minimally informative copulae with respect to the independent copula
given some moment constraints. It extends the minimally informative copula
developed by Bedford and Meeuwissen [1997]. Their copula has been constructed
with just one constraint, namely E[XY ], where X and Y are uniformly distributed
on interval [− 1

2 , 1
2 ]. In order to simplify calculations the copula itself is also defined

on a square [− 1
2 , 1

2 ]2 and its density has the form

f(x, y) = κ(x)κ(y) exp(λxy).

From the set up of this copula we see that it must be centrally symmetric. Since
the exponent term is a symmetric function, it follows that the product of the
kappa functions is a symmetric function too. Hence κ is an even function on
[− 1

2 , 1
2 ]. The D1AD2 approach presented in chapter 4 generalizes this copula.

Vectors D1 and D2 are simply discretized counterparts of the kappa function in
the 2-dimensional case. The algorithm for determining these vectors is extremely
simple and consists of projecting an initial density for the copula on each margin
successively to impose uniform marginals for the final copula density. The resul-
ting minimally informative copula with respect to the independent copula under
the given moment constraints that has been fit to the World Bank data produces
a good overall fit to the data, and realizes the lowest possible level of information.
Frank’s copula with the maximum likelihood parameter estimate achieved higher
likelihood (at the expense of higher information).

The use of the minimum information principle makes the D1AD2 approach
attractive for expert elicitation applications. Experts are asked their opinion
on expectations of some functions of variables of interest and this is translated
into a minimally informative copula density given the assessments. We show
an example of running such a procedure in which a 3-dimensional discretized
minimally informative copula is being constructed.

The next chapter departures from copula modelling and concentrates on ano-
ther application of vines — generating random correlation matrices of size d× d
from the joint density of all correlation matrices of the same size. The matrices
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can be drawn from the joint density being proportional to a power of the deter-
minant of the correlation matrix. The uniform distribution is a special case. The
idea was introduced by Joe [2006] and was based on the D-vine. The method
however is not limited to the use of this one type of copula. We argued that the
C-vine is less computationally demanding and can successfully applied as well.
In fact, we extend the method to be applicable to any regular vine. This brings
new applications of this method of generating random correlation matrices. For
instance, we can generate correlation matrices conditional on correlation values in
an arbitrary tree. The Onion method proves to be very efficient computationally,
however in some setups the C-vine method shows better performance. The Onion
method has also been extended to allow generating random correlation matrices
non-uniformly from the set of semi-positive definite correlation matrices.

An essential step in statistical modelling is sensitivity analysis and chapter 6
is dedicated to this subject. The chapter concentrates on the notion of correlation
ratio, a variance based global sensitivity measure. We show some properties of
the correlation ratio and its links to other concepts used in sensitivity analysis,
namely Sobol’ indices, high dimensional model representations (HDMR) and state
dependent parameter models (SDP). Calculations of the correlation ratio can
be very tedious and quite often analytical solutions do not exist. Therefore we
concentrated our efforts on developing a numerical method of estimating this
quantity based on samples. We estimate the regression curve via a simple least-
squares error fit of a polynomial. However there are two dangers in doing so
without any control mechanism. Fitting a polynomial of too low degree may result
in a very bad fit, which does not correspond well to the true regression curve. On
the other hand, a polynomial of a very high degree exhibits a very good fit to
this specific sample, but cannot be seen as a good estimator of the regression for
the whole population. Therefore we introduced an overfitting prevention method
to overcome this problem. Three different criteria have been tested for detecting
the overfitting and the best performing algorithm is based on an early stopping
approach. The whole method of estimating the correlation ratio from a sample is
very easy to implement and performs well even with moderate sample size.
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APPENDIX A

More examples of GDB copulae

We present here more examples of GDB copulae generated by various distributions
defined on the interval [0, 1] and a formulation of the relative information of the
GDB copula in terms of its generating function.

A.1 Beta distribution as the generating function
Let the generating function g be in the class of beta distributions.

Definition A.1.1. Random variable X is beta distributed with parameters s and
q (denoted Beta(q, s)) if its probability density function has the form

f(x) =
xq−1(1− x)s−1

B(q, s)
. (A.1)

Explicit formula for the parameters of the beta distributions, q and s, as a
function of the product moment correlation ρ are needed. We have

E(X2) =
q (q + 1)

(q + s) (1 + q + s)
,

E(X3) =
q (q + 1) (q + 2)

(q + s) (1 + q + s) (s + q + 2)
,

and thus

ρ = 1− 2
q

(
3 q s + q2 + 3 q + 3 s + 2

)

(q + s) (1 + q + s) (s + q + 2)
.

This problem can be solved analytically and the solution is given below

s = s,

q =
1

3(ρ + 1)
[H(s, ρ)]

1
3 + (6s2 + 6s + ρ + 1) [H(s, ρ)]−

1
3 − s− 1,
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Figure A.1: GDB copulae realizing correlation ρ = 0.4 generated by the beta distribu-
tions with different parameters.

where

H(s, ρ) = −(ρ + 1)2
[
27s + 81s2 + 54s3

]−
− (ρ + 1)3

√
3

[
1 + 18s + 99s2 + 270s3 + 405s4 + 324s5 + 108s6+

+ ρ
(
3 + 36s + 117s2 + 54s3 − 243s4 − 324s5 − 108s6

)
+

+ ρ2
(
3 + 18s + 18s2

)− ρ3
]
.

For any ρ ∈ (−1, 1) there exist an entire family of beta distributions generating a
GDB copula with this given correlation. The optimal choice of parameters q and
s should allow to generate a copula with minimal relative information.

Remark. By the construction of the GDB copula and the properties of the beta
distribution one can notice, that if the beta distribution with parameters q = a
and s = b generates a copula with correlation ρ, then the beta distribution with
parameters q = b and s = a generates a copula with correlation −ρ.

A.2 Distribution based on cosine function as the generating
function

Let the generating function g(x) with parameters q and p be given by the formula

g(x) = p + 1x∈[0, 1
q ](1− p)q (cos(qπx) + 1) . (A.2)

where p ∈ [0, 1] and q ≥ 1. This generating function ensures smoothness of
the generated copula along the diagonals, and hence, lower relative information
compare to the truncated exponential density function for instance. It can be
shown that the relationship between the correlation realized by this copula and
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its parameters is given as follows

ρ =
1− p

q3

(
q3 + 2

q
(
6− π2

)

π2
+ 12

4− π2

π4
+ 1

)

and solving this formula for q allows to find the analytical solution

q = q,

p = 1− ρq3

(
q3 + 2

q
(
6− π2

)

π2
+ 12

4− π2

π4
+ 1

)−1

,

One can notice, that for lower correlations q = 1 and for higher correlations
p = 0 and there is only one value of ρ for which q = 1 and p = 0 (this is for
ρ ≈ 0.4927). Hence in fact, the generating function (A.2) can be controlled only
by one parameter at the time simplifying further calculations.

Assume that p = 1 first. Then

g(x) = p + (1− p) (cos(πx) + 1) .

Employing eq.(3.8) allows to find the bivariate cdf for x ≤ y, x + y ≤ 1 and its
derivatives

F (x, y) =
xπ2y + (1− p) sin (yπ) sin (xπ)

π2
,

f(x, y) = 1 + (1− p) cos (yπ) cos (xπ) ,

FY |X(y) =
yπ + (1− p) sin (yπ) cos (xπ)

π
.

Note that the density f(x, y) is given by the same formula everywhere on the
unit square, not only for x ≤ y, x + y ≤ 1. The same holds for the conditional
cumulative distribution function FY |X(y).

Now assume p = 0 and q ≥ 1. Then for y ≤ x and x + y ≤ 1 we have

f(x, y) =





q (1 + cos (xpπ) cos (y qπ)) , if y ≤ −x + 1
q ;

q(1+cos(xpπ) cos(y qπ)+sin(xqπ) sin(y qπ))
2 , if y > −x + 1

q and y > x− 1
q ;

0, elsewhere.

Then the conditional cdf for any x, y ∈ [0, 1] is given as the following

FY |X(y) =





0, y < x− 1/q;
yqπ+cos(xqπ) sin(yqπ)

π , x ≤ 1
q and y ≤ −x + 1

q ;
π(yq−q+1)+cos(xqπ) sin(yqπ)+

1
2 sin(2qπ)

π , x > 1− 1
q and y > −x + 2− 1

q ;
1, x < 1− 1

q and y > x + 1
q ;

yqπ−xqπ+π+sin(qπ(y−x))
2π , elsewhere.

Unfortunately, the conditional cdf’s are not analytically invertible.
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A.3 Relative information of the GDB copula in terms of its ge-
nerating function

The following corollary allows to express the relative information of a GDB copula
in terms of its generating density g.

Corollary A.3.1. The relative information of a GDB copula with density f(x, y)
generated by the generating function g with respect to the uniform distribution is

I(f |u) =
∫ 1

0

g(v) log(g(v) + g(1))dv −
∫ 1

0

∫ 1

0

dg(t)
dt tg(v)

g(v) + g(t)
dtdv − log(2).

Proof. Since the GDB copula is symmetric along both diagonals, we can calculate
the relative information only for one of the regions bounded by the diagonals and
multiply it by 4

I(f |u) = 4
∫ 1/2

0

∫ 1−y

y

f(x, y) log(f(x, y))dxdy

= 2
∫ 1/2

0

∫ 1−y

y

(g(x + y) + g(x− y)) [log (g(x + y) + g(x− y))− log(2)] dxdy

= 2
∫ 1/2

0

∫ 1−y

y

(g(x + y) + g(x− y)) log (g(x + y) + g(x− y)) dxdy − log(2).

The last equality follows from the fact that

4
∫ 1/2

0

∫ 1−y

y

f(x, y)dxdy = 2
∫ 1/2

0

∫ 1−y

y

g(x + y) + g(x− y)dxdy = 1.

Let x = 1
2 (t + v), y = 1

2 (−t + v). Then the Jacobian is 1/2 and

I(f |u) =
∫ 1

0

∫ v

0

(g(v) + g(t)) log (g(v) + g(t)) dtdv − log(2)

= I − log(2).

I =
∫ 1

0

∫ v

0

(g(v) + g(t)) log (g(v) + g(t)) dtdv

=
∫ 1

0

g(v)
∫ v

0

log (g(v) + g(t)) dtdv +
∫ 1

0

g(t)
∫ 1

t

log (g(v) + g(t)) dvdt

=
∫ 1

0

g(v)
∫ v

0

log (g(v) + g(t)) dtdv +
∫ 1

0

g(v)
∫ 1

v

log (g(v) + g(t)) dtdv

=
∫ 1

0

g(v)
∫ 1

0

log (g(v) + g(t)) dtdv.

Integrating
∫ 1

0
log (g(v) + g(t)) dt gives

∫ 1

0

log (g(v) + g(t)) dt = log(g(v) + g(t))|10 −
∫ 1

0

dg(t)
dt tg(v)

g(v) + g(t)
dt.
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Hence

I(f |u) =
∫ 1

0

g(v) log(g(v) + g(1))dv −
∫ 1

0

∫ 1

0

dg(t)
dt tg(v)

g(v) + g(t)
dtdv − log(2).

¥
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APPENDIX B

Mixtures of diagonal band copulae with
discontinuous mixing measures

Mixtures of diagonal band copulae described in chapter 3.3 allow for only one
point with discrete mass, that is at the origin. We extend this class of mixtures
to include discrete mass at any finite set of points in the interval [−1, 1].

B.1 Introduction
Let us define a more general mixing measure first

Definition B.1.1. Let 0 ≤ p ≤ 1. A probability distribution M(θ), M(θ) :
[−1, 1] → [0, 1] is called a mixing measure if its derivative with respect to θ consists
of an absolutely continuous part m(θ) ≥ 0 with

∫ 1

−1
m(θ) dθ = p and a discrete part

with mass pi > 0 at θi, −1 ≤ θi−1 ≤ θi ≤ 1, ∪i{θi} = A and
∑

i pi = 1 − p. A
may be empty.

The mixture of diagonal band copulae is defined then as in Definition 3.3.1.
For any two mixing measures M1 and M2 and any λ ∈ [0, 1], λM1 + (1− λ)M2 is
a mixing measure as well, and

cλM1+(1−λ)M2 = λcM1(x, y) + (1− λ)cM2(x, y).

The mixing measure M(θ) can be determined as follows. By Definition 3.3.1
a conditional density cM (x, 0) is a mixture of diagonal bands, thus cM (x, 0) =∫ 1

−1
dθ(x, 0) dM(θ). Let us rewrite it as follows

cM (x, 0) =
∫ 0

−1

1{θ∈[−x,0]}
1 + θ

dM(θ) +
∫ 1

0

1{θ∈(0,1−x]}
1− θ

dM(θ)

=
∫ 0

−x

1
1 + θ

dM(θ) +
∫ 1−x

0

1
1− θ

dM(θ). (B.1)
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Note that ∫ 0

−x

1
1 + θ

dM(θ) ≥ 0 (B.2)

is a nondecreasing, nonegative function of x, whereas

∫ 1−x

0

1
1− θ

dM(θ) ≥ 0 (B.3)

is a nonincreasing, nonnegative function of x. Now we shall decompose density
cM (x, 0) into two nonnegative components, g+(x) and g−(x) that we could relate
to (B.2) and (B.3) respectively. We introduce two functions g+(x) and g−(x)
differentiable almost everywhere, with the derivatives with respect to x defined
in (B.4) and (B.5), and set cM (x, 0) = g(x) = g+(x) + g(0)− g−(x).

d

dx
g+(x) = max

{
d

dx
g(x), 0

}
, g+(0) = 0 (B.4)

d

dx
g−(x) = max

{
− d

dx
g(x), 0

}
, g−(0) = 0 (B.5)

The nondecreasing component g+(x) of the conditional density cM (x, 0) corre-
sponds to mixing step functions given in (3.10). Similarly, the nonincreasing
component g(0, 0)− g−(x) corresponds to mixing step functions given in (3.11).

B.2 Determining the continuous part of the mixing measure
The continuous part m(θ) of the mixing measure M can be determined by diffe-
rentiating eq.(B.1)

d

dx
g(x) =

d

dx
g+(x) +

d

dx
(g(0)− g−(x)) =

d

dx
g+(x)− d

dx
g−(x)

=
m(−x)
1− x

− m(1− x)
x

.

The last equality emerges from substituting dM(θ) with m(θ)dθ in eq.(B.1) and
noticing that θ = x if θ < 0 and θ = 1 − x when θ > 0. By the construction of
eq.(B.4) and eq.(B.5) there is no x ∈ [0, 1] such that d

dx g−(x) are d
dx g+(x) are

both nonzero. This implies that the step functions (3.11) do not contribute to the
mixture at point x if d

dx g+(x) = 0, thus m(−x) = 0. Similar reasoning justifies
setting m(1− x) = 0 where d

dx g−(x) = 0. Eventually we have

d

dx
g+(x) =

m(−x)
1− x

=⇒ m(θ) = (1 + θ)
d

dx
g+(−θ), θ < 0,

− d

dx
g−(x) = −m(1− x)

x
=⇒ m(θ) = (1− θ)

d

dx
g−(1− θ), θ > 0.
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B.3 Determining the discontinuous part of the mixing measure
The discontinuities of g(x) correspond to the discontinuities of M in the following
way. Let xi, i = 1, 2, . . . , n, be the locations of discontinuities of g(x). Let A and
B be two disjoint subsets of the set of indices i ∈ {1, 2, . . . , n} such that

• if g(x+
i ) > g(x−i ) then i ∈ A,

• if g(x+
i ) < g(x−i ) then i ∈ B,

where g(x+
i ) = limx→x+

i
g(x) is the limit from above, and g(x−i ) = limx→x−i

g(x)
is the limit from below. The following holds then

Proposition B.3.1. M has a jump of size pi at −xi if i ∈ A, or at 1 − xi if
i ∈ B.

pi =

{
(1− xi)

(
g(x+

i )− g(x−i )
)
, if i ∈ A,

−xi

(
g(x+

i )− g(x−i )
)
, if i ∈ B,

Proof. A single diagonal band copula is also a mixture of diagonal band copulae
with a discrete mixing measure assigning weight 1 to the parameter of that copula.
Hence if we consider a conditional density dθ(x, 0) of a diagonal band density
dθ(x, y), where θ > 0, as a conditional density of a mixture of diagonal bands,
then the jump p of the mixing measure M at point θ is 1. In order to reflect the
fact that p1 depends on the difference of the both limits of dθ(x, 0) at x = 1− θ,
we assume that

p1 = a
(
dθ(x+, 0)− dθ(x−, 0)

)

where a is a monotonic, real function of x. We determine a with the following
calculations

1 = a
(
dθ(x+, 0)− dθ(x−, 0)

)
= − a

1− θ
= −a

x

Hence a = −x. Similar reasoning holds for determining a = 1−x when θ < 0. ¥

Combining both the information on the continuous and the discontinuous part
of the mixing measure full expressions for g+(x) and g−(x) can be determined

g+(x) =
∫ x

0

d

ds
g+(s) ds +

∑

i∈A, xi≤x

(
g(x+

i )− g(x−i )
)
,

g−(x) =
∫ x

0

d

ds
g−(s) ds−

∑

i∈B, xi≤x

(
g(x+

i )− g(x−i )
)
.

B.4 Formulation of the theorem
We already know that mixtures of diagonal band copulae are in the class of GDB
copulae. In this chapter we show what conditions have to be imposed on the
generating density g of the GDB copula to allow this copula to be represented as
a mixture of diagonal band copulae. We do this by showing that for a generating
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density g satisfying the conditions specified in Theorem B.4.2 below, there exist
a mixing measure M(θ), such that

g(u) =
∫ 1

−1

dθ(u, 0) dM(θ).

It follows from the fact that if the conditional density is a mixture of diagonal
bands, than the entire density over the unit square is a mixture of diagonal bands
as well. We introduce the following lemma first

Lemma B.4.1. For any bounded function g : [a, b] → R with finite number n of
discontinuities at xi, i = 1, 2, . . . , n,

n∑

i=1

(b− xi)
(
g(x+

i )− g(x−i )
)

=
∫ b

a

∑

xi≤x

(
g(x+

i )− g(x−i )
)
dx. (B.6)

Proof. The right hand side of eq.(B.6) can be expressed as
∫ b

a

∑

xi≤x

(
g(x+

i )− g(x−i )
)

dx =
n∑

i=1

∫ b

xi

(
g(x+

i )− g(x−i )
)

dx =
n∑

i=1

(b− xi)
(
g(x+

i )− g(x−i )
)

.

¥

We formulate the main theorem.

Theorem B.4.2. Let c(x, y) be the density of a generalized diagonal band copula
generated with generating density g(u), u ∈ [0, 1]. If g is bounded on [0, 1], has
finite number of discontinuities and

g(0)− g−(1) ≥ 0 (B.7)

then c(x, y) is a density of a mixture of diagonal bands.

Proof. Start with constructing the mixing measure M(θ)
∫ 1

−1

m(θ) dθ +
n∑

i=1

pi =
∫ 1

0

m(−x) dx +
∫ 1

0

m(1− x) dx +
n∑

i=1

pi

=
∫ 1

0

(1− x)
d

dx
g+(x) dx +

∫ 1

0

x
d

dx
g−(x) dx +

+
∑

i∈A

(1− xi)
(
g(x+

i )− g(x−i )
)−

∑

i∈B

xi

(
g(x+

i )− g(x−i )
)

=
∫ 1

0

d

dx
g+(x) dx−

∫ 1

0

x

(
d

dx
g+(x)− d

dx
g−(x)

)
dx +

+
∑

i∈A

(
g(x+

i )− g(x−i )
)−

n∑

i=1

xi

(
g(x+

i )− g(x−i )
)

= g+(1)−
(∫ 1

0

x
d

dx
g(x) dx +

n∑

i=1

xi

(
g(x+

i )− g(x−i )
)
)
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Solving
∫ 1

0
x d

dx g(x) dx by parts gives

∫ 1

0

x
d

dx
g(x) dx =

=
{

u = x v = g(x)−∑
xi≤x

(
g(x+

i )− g(x−i )
)−G(0)

v′ = d
dx g(x) u′ = 1

}
=

= g(1)−
n∑

i=1

(
g(x+

i )− g(x−i )
)− g(0)−

−
∫ 1

0


g(x)−

∑

xi≤x

(
g(x+

i )− g(x−i )
)− g(0)


 dx

= g(1)− 1−
n∑

i=1

(
g(x+

i )− g(x−i )
)

+
∫ 1

0

∑

xi≤x

(
g(x+

i )− g(x−i )
)
dx.

By Lemma B.4.1

−
n∑

i=1

(
g(x+

i )− g(x−i )
)
+

∫ 1

0

∑

xi≤x

(
g(x+

i )− g(x−i )
)
dx = −

n∑

i=1

xi

(
g(x+

i )− g(x−i )
)
.

Hence ∫ 1

−1

m(θ) dθ +
n∑

i=1

pi = g+(x)− g(1) + 1.

However g(1) = g+(1) + g(0)− g−(1). Thus

∫ 1

−1

m(θ) dθ +
n∑

i=1

pi = g+(1) + 1− g+(1)− g(0) + g−(1) = 1− g(0) + g−(1).

By the assumption g(0)−g−(1) is nonnegative and we have
∫ 1

−1
m(θ) dθ+

∑n
i=1 pi ≤

1. The weight m(0) assigned to the uniform density is determined by the fact that
M(θ) must be a mixing measure, thus

m(0) +
∫ 1

−1

m(θ) dθ +
n∑

i=1

pi = 1

¥

We call g−(1) ≥ 0 the total decrement of function g.
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APPENDIX C

Computer source code for generating
random correlation matrices

We list the source code of Matlab scripts used to generate random correlation
matrices uniformly from the set of semi-positive definite correlation matrices with
the onion and the vine methods.

Listing C.1: Vine method with C-vine

1 function y = GenerateCorMatrixCVine(d)
2

3 % GENERATECORMATRIXCVINE generates a cor re l a t i on matrix
4 % of s i z e d x d with the vine method (C−vine used ) .
5 %
6 % ’d ’ − [ in ] Dimension of the generated cor re l a t i on matrix .
7 % ’y ’ − [ out ] Corre lat ion matrix of dimension d x d .
8

9 % In i t i a l i z a t i o n speeds up ca l cu l a t i on s
10 y = eye (d ) ;
11

12 % row = 1
13 alp = 1+(d−2)/2;
14 y ( 1 , 2 : d) = 2∗betarnd ( alp , alp , 1 , d−1)−1;
15 prr ( 1 , : ) = y ( 1 , : ) ;
16

17 % row > 1
18 for m = 2: d−1
19 alp = 1+(d−1−m)/2 ;
20 prr (m,m+1:d) = 2∗betarnd ( alp , alp , 1 , d−m)−1;
21 for i = m+1:d
22 tem = prr (m, i ) ;
23 for k = m−1:−1:1
24 tem = prr (k ,m)∗ prr (k , i ) + . . .
25 tem∗sqrt ((1− prr (k ,m)∗ prr (k ,m))∗(1− prr (k , i )∗ prr (k , i ) ) ) ;
26 end
27 y (m, i ) = tem ;
28 end
29 end
30 y = y+y’−eye (d ) ;
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Listing C.2: Vine method with D-vine

1 function y = GenerateCorMatrixDVine(d)
2

3 % GENERATECORMATRIXDVINE generates a cor re l a t i on matrix
4 % of s i z e d x d with the vine method (D−vine used ) .
5 %
6 % ’d ’ − [ in ] Dimension of the generated cor re l a t i on matrix .
7 % ’y ’ − [ out ] Corre lat ion matrix of dimension d x d .
8

9 % In i t i a l i z a t i o n
10 y = eye (d ) ;
11 alp = d/2 ;
12

13 % Firs t o f f−diagonal
14 prr = 2∗betarnd ( alp , alp , 1 , d−1)−1;
15 for i = 1 : d−1
16 y ( i , i +1) = prr ( i ) ;
17 y ( i +1, i ) = prr ( i ) ;
18 end
19

20 % Remaining of f−diagonals
21 for m = 2: d−1
22 alp = alp − 0 . 5 ;
23 prr = 2∗betarnd ( alp , alp , 1 , d−m)−1;
24 for i = 1 : d−m
25 y ( i , i+m) = PartCorr2Corr (y , i , i+m, prr ( i ) ) ;
26 y ( i+m, i ) = y( i , i+m) ;
27 end
28 end
29

30 % Helper funct ions for GenerateCorMatrixDVine
31

32 function y = PartCorr2Corr (mat , j s t a r t , jend , prr )
33

34 % PARTCORR2CORR ca l cu l a t e s the product moment cor re l a t i on based on
35 % already f i l l e d pos i t i ons in the cor re l a t i on matrix and the corresponding
36 % par t i a l cor re l a t i on .
37 %
38 % ’mat ’ − [ in ] Pa r t i a l l y generated cor re l a t i on matrix .
39 % ’ j s t a r t ’ − [ in ] Row index of the computed corre l a t i on .
40 % ’ jend ’ − [ in ] Column index of the computed corre l a t i on .
41 % ’ prr ’ − [ in ] Value of the pa r t i a l co r re l a t i on with condit ioned se t
42 % [ j s t a r t , jend ] .
43

44 nrow = jend − j s t a r t − 1 ;
45 a = zeros ( nrow , nrow ) ;
46 b = zeros ( nrow , 2 ) ;
47 for i = j s t a r t +1: jend−1
48 i i = i − j s t a r t ;
49 for j = j s t a r t +1: jend−1
50 j j = j − j s t a r t ;
51 a ( i i , j j ) = mat( i , j ) ;
52 end
53 b( i i , 1 ) = mat( i , j s t a r t ) ;
54 b( i i , 2 ) = mat( i , jend ) ;
55 end
56

57 x = a\b ;
58

59 tem11 = 0 ;
60 for i i = 1 : nrow
61 tem11 = tem11 + x( i i , 1 )∗mat( i i + j s t a r t , j s t a r t ) ;
62 end
63

64 tem13 = 0 ;
65 for i i = 1 : nrow
66 tem13 = tem13 + x( i i , 2 )∗mat( i i + j s t a r t , j s t a r t ) ;
67 end
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68

69 tem33 = 0 ;
70 for i i = 1 : nrow
71 tem33 = tem33 + x( i i , 2 )∗mat( i i + j s t a r t , jend ) ;
72 end
73

74 y = tem13 + prr ∗sqrt ((1−tem11)∗(1−tem33 ) ) ;

Listing C.3: Onion method

1 function y = GenerateCorMatrixOnion (d)
2

3 % GENERATECORMATRIXONION generates a cor re l a t i on matrix
4 % of s i z e d x d with the onion method .
5 %
6 % ’d ’ − [ in ] Dimension of the generated cor re l a t i on matrix .
7 % ’y ’ − [ out ] Corre lat ion matrix of dimension d x d .
8

9 y = eye (d , d ) ; % i n i t i a l i z e
10

11 % row = 1
12 b = sqrt (betarnd (1/2 ,d /2 , 1 , 1 ) ) ;
13 u = 2∗unidrnd (2 ,1 ,1)−3;
14 q = b∗u ;
15 y (1 , 2) = q ;
16 y (2 , 1) = q ;
17

18 % row > 2
19 c = eye (d , d ) ;
20 for k = 2 : d−1
21 c ( 1 : k , 1 : k ) = IncrementalChol ( y ( 1 : k , 1 : k ) , c ( 1 : k−1 ,1:k−1)) ;
22 b = sqrt (betarnd ( k /2 , (d−k+1)/2 ,1 ,1 ) ) ;
23 u = GenerateSphereUnif ( k ) ;
24 q = c ( 1 : k , 1 : k )∗b∗u ;
25 y ( 1 : k , k+1) = q ;
26 y (k+1 ,1:k ) = q ’ ;
27 end
28

29 % Helper funct ions for GenerateCorMatrixOnion
30

31 function y = GenerateSphereUnif (n)
32

33 % GENERATESPHEREUNIF generates 1 sample of n−dimensional
34 % uniform d i s t r i b u t i on on a sphere in Rˆn .
35 %
36 % ’n ’ − [ in ] Dimension of uniform d i s t r i b u t i on on a sphere to sample
37 % from .
38 % ’y ’ − [ out ] Vector of l eng th n containing 1 sample of n−dimensional
39 % uniform d i s t r i b u t i on on a sphere in Rˆn .
40

41 N = normrnd(0 , 1 , n , 1 ) ;
42 y = N./ sqrt (sum(N. ˆ 2 ) ) ;
43

44

45 function y = IncrementalChol (m, c )
46

47 % INCREMENTALCHOL computes the Cholesky decomposition incrementa l ly
48 % when new ’q ’ i s generated and appended to ’y ’ .
49 %
50 % ’m’ − [ in ] Leading pr inc ipa l minor of dimension k x k of the
51 % corre l a t i on matrix .
52 % ’c ’ − [ in ] Cholesky decomposition of the lead ing pr inc ipa l minor
53 % of dimension k−1 x k−1 of the cor re l a t i on matrix .
54 % ’y ’ − [ out ] Cholesky decomposition of the lead ing pr inc ipa l minor
55 % of dimension k x k of the cor re l a t i on matrix .
56

57 k = s ize (m, 1 ) ;
58
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59 for i = 1 : k−1
60 tem = 0 ;
61 for j = 1 : i−1
62 tem = tem+c ( i , j )∗ c (k , j ) ;
63 end
64 i f (abs (m(k , i )−tem)>1.e−5)
65 c (k , i ) = (m(k , i )−tem)/ c ( i , i ) ;
66 else
67 c (k , i ) = 0 ;
68 c ( i , k ) = 0 ;
69 end
70

71 tem = 0 ;
72 for j = 1 : k−1
73 temp = tem+c (k , j )∗ c (k , j ) ;
74 end
75 i f (m(k , k)−tem<=0)
76 c (k , k ) = 0 ;
77 else
78 c (k , k ) = sqrt (m(k , k)−tem ) ;
79 end
80 end

The code has been optimized for speed with the help of the built-in profiling
tool of Matlab.

Listing C.3 uses the idea of prof. Harry Joe (personal communication) for
computing the Cholesky decomposition incrementally. It means that a lot of
computational time is saved since we do not perform the full Cholesky decom-
position of matrix y, but save it in matrix c and append new row as new q is
generated (line 21 of the listing).



Summary

High Dimensional Dependence
Copulae, Sensitivity, Sampling

Daniel Lewandowski

Uncertainty analysis has definitely past its infant times. Whether it is a regu-
latory obligation, a desire to optimize processes of all kinds, or simply a curiosity,
uncertainty analysis allows dealing with random in nature phenomena within a
well developed framework. It is no more a question of simple statistical analysis,
but rather a matter of full scale high-dimensional modelling, where dependencies
between variables are among the most important aspects. For already quite some
time industries operating with hazardous materials are subject to very deman-
ding probabilistic risk assessment regulations. Entities like nuclear power plants,
chemical factories or airliners often include departments responsible for constant
monitoring of risk factors. These, in turn, may exhibit high correlations between
each other. Therefore it is not only important to model the marginal distribu-
tions of variables in question; even more crucially the dependence structures must
be captured to reflect the interactions as these may alter final results significan-
tly. Actuarial sciences make use of high dimensional copulae for maximizing the
profit and minimizing risks and current guidelines often recommend usage of tail
dependent copulae for modelling assets. Currently copulae are among most po-
pular methods of modelling dependent random variables and most likely they will
preserve their position as such in the future.

The usage of copulae has been simplified over the years of development of
software tools for uncertainty analysis. A good example in this regard is the
software developed at the Delft University of Technology called Unicorn. It im-
plements various copulae with properties that should satisfy many users. Future
years should bring even more advanced software solutions with tools allowing ef-
ficient specification of complex dependence structures in a matter of minutes and
fast sampling to obtain results at site. Recently there has been a lot of effort
devoted to the development of graphical representations of dependence structu-
res, like dependence vines or continuous Bayesian belief networks. Especially the

131



132

last concept is currently actively developed at the Department of Mathematics of
Delft University of Technology.

Although this study centers the bulk of the work on copulae, we have also
broadened the perspective with departures to the field of sensitivity analysis,
expert judgement and studies on correlation matrices. Chapter 2 forms the point
of reference for the remaining papers incorporated into this thesis. It describes the
standard tools for modelling high dimensional data with some parametric families
of multidimensional copulae. We also study various dependence concepts and
measures expressing interactions between random variables in a quantitative way.
On the other hand, chapter 5 departures from copula modelling and concentrates
on another application of vines - generating random correlation matrices of size
d × d from the joint density of all correlation matrices of the same size. The
matrices can be drawn from a joint density being proportional to a power of the
determinant of the correlation matrix. The uniform distribution is a special case.
The idea was introduced by Joe [2006] and was based on the D-vine. The method
however is not limited to the use of this one type of copula. We argued that the
C-vine is less computationally demanding and can successfully applied as well.
In fact, we extend the method to be applicable to any regular vine. This brings
new applications of this method of generating random correlation matrices. For
instance, we can generate correlation matrices conditional on correlation values in
an arbitrary tree. The Onion method proves to be very efficient computationally,
however in some setups the C-vine method shows better performance. The Onion
method has also been extended to allow generating random correlation matrices
non-uniformly from the set of semi–positive definite correlation matrices.

An essential step in probabilistic risk analysis is sensitivity analysis and chap-
ter 6 is dedicated to this subject. The chapter concentrates on the notion of
correlation ratio, a variance based global sensitivity measure. Therefore we con-
centrated our efforts on developing a numerical method of estimating this quantity
based on samples. We estimate the regression curve via a simple least-squares er-
ror fit of a polynomial. However there are two dangers in doing so without any
control mechanism. Fitting a polynomial of too low degree may result in a very
bad fit, which does not correspond well to the true regression curve. On the
other hand, a polynomial of a very high degree exhibits a very good fit to this
specific sample, but cannot be seen as a good estimator of the regression for the
whole population. Therefore we introduced an overfitting prevention method to
overcome this problem. Three different criteria have been tested for detecting
the overfitting and the best performing algorithm is based on an early stopping
approach. The whole method of estimating the correlation ratio from a sample is
very easy to implement and performs well even with moderate sample size.

The subject of multidimensional statistical dependence modelling turned out
be far more complex than initial views of the author on this issue. For him this
work has probably brought more questions than it answered - feeling scientists
should be familiar with. Future research is therefore well motivated and this thesis
may not be the last word of the author on this story yet.



Samenvatting

Hoog-Dimensionale Afhankelijkheden
Copula’s, Gevoeligheden, Trekkingen

Daniel Lewandowski

De onzekerheidsanalyse is ongetwijfeld uit zijn kinderschoenen gegroeid. Of
het nu vanwege een wettelijke verplichting is, of vanwege de wens om processen
van allerlei te optimaliseren, of gewoon vanwege nieuwsgierigheid, de onzekerhe-
idsanalyse staat het toe om met natuurlijke fenomenen om te gaan in een goed
ontwikkeld raamwerk. Het gaat steeds minder om een eenvoudige statistische
analyse, maar meer om groot-schalig modelleren in meerdere dimensies waarbij
de afhankelijkheid tussen groot-heden één van de belangrijkste aspecten is. Re-
eds lang zijn industriën die werken met gevaarlijke stoffen onderhavig aan wet-
en regelgeving die een probabilistische risico-analyse voorschrijven. Organisaties
en bedrijven zoals kerncentrales, chemische fabrieken of luchtvaartmaatschappi-
jen hebben speciale afdelingen die de risico-factoren continu in de gaten houden.
Deze factoren kunnen een hoge onderlinge correlatie vertonen. Het is daarom niet
alleen belangrijk om de marginale kansdichtheden van deze stochasten te bepa-
len; ook de afhankelijkheidsstructuur moet bepaald worden, omdat de inherente
interactie tussen de stochasten het resultaat van de analyse sterk kan bëınvlo-
eden. De actuariële wetenschap maakt gebruik van hoger dimensionele copula’s
voor het maximaliseren van de winst en voor het minimaliseren van de risico’s.
Huidige voorschriften raden vaak aan om staart-afhankelijke copula’s toe te pas-
sen bij het modelleren van verliezen of effecten. Op dit moment zijn copula’s één
van de meest populaire methoden om afhankelijke stochasten te modelleren en
waarschijnlijk zullen zij dit ook blijven in de toekomst.

De toepassing van copula’s is de afgelopen jaren sterk vereenvoudigd door
de ontwikkeling van programmatuur voor het uitvoeren van onzekerheidsanaly-
ses. Een goed voorbeeld hiervan is het programma Unicorn dat aan de Techni-
sche Universiteit Delft is ontwikkeld. In deze software zijn verschillende copula’s
gëımplementeerd met eigenschappen die de meeste gebruikers tevreden zouden
moeten stellen. In de komende jaren zullen steeds meer geavanceerde software-
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applicaties het mogelijk maken om complexe afhankelijkheidsstructuren in slechts
enkele minuten te definieren en door te rekenen. Recentelijk is er veel inspan-
ning geleverd in het grafisch weergeven van dit soort afhankelijkheidsstructuren.
Voorbeelden hiervan zijn zogenaamde “vines” en “continuous Bayesian belief
networks”. Met name aan deze laatste wordt actief gewerkt aan de wiskunde-
afdeling van de Technische Universiteit van Delft.

Alhoewel het grootste deel van deze studie op copula’s is geconcentreerd, heb-
ben we onze grenzen ook verlegd met uitstapjes naar de gevoeligheidsanalyse,
het gebruik van expert meningen en naar de studie van correlatie matrices. Ho-
ofdstuk 2 vormt het beginpunt voor de verdere artikelen die aan de basis liggen
van dit proefschrift. Hierin worden de standaardmethoden beschreven voor het
modelleren van hoger dimensionale gegevens met een aantal parametrische fami-
lies van copula’s. We bestuderen ook verschillende concepten van afhankelijkheid
tussen stochasten en manieren om interacties tussen deze stochasten kwantitatief
te beschrijven. Daartegenover stappen we in hoofdstuk 5 af van de copula’s en
concentreren we ons op een andere toepassing van vines: het genereren van wille-
keurige correlatiematrices van grootte d × d vanuit de gezamelijke kansdichtheid
over alle correlatiematrices van deze grootte. De matrices kunnen getrokken wor-
den uit de gezamelijke kansdichtheid die proportioneel is aan de macht van de
determinant van de correlatiematrix. De uniforme verdeling is hiervan een bij-
zonder geval. Dit idee komt van Joe [2006] en was gebaseerd op de zogenaamde
D-vine. De methode is echter niet beperkt tot deze ene copula. Wij tonen aan
dat de C-vine ook goed toegepast kan worden en dat deze bovendien minder reke-
nintensief is. We laten ook zien dat de methode uitgebreid kan worden naar elke
reguliere vine. Dit creëert nieuwe mogelijkheden om deze methode toe te passen
bij het trekken van willekeurige correlatiematrices. Dit maakt het bijvoorbeeld
mogelijk om correlatiematrices te genereren conditioneel op correlatiewaarden in
een willekeurige boom. De zogenaamde ’Onion’ methode blijkt rekentechnisch erg
efficient te zijn, maar in sommige opstellingen laat de C-vine een betere prestatie
zien. Deze Onion methode is ook uitgebreid om het mogelijk te maken om wil-
lekeurige correlatiematrices op een niet-uniforme manier uit een verzameling van
semi-positief definiete matrices te trekken.

Een essentiële stap in een probabilistische risicoanalyse is een gevoeligheidsa-
nalyse en hoofdstuk 6 gaat over dit onderwerp. Dit hoofdstuk bespreekt de notie
van de correlatie-ratio die een globale maat van gevoeligheid is op basis van de
variantie. We concentreren onze inspanning op de ontwikkeling van numerieke
methoden voor het schatten van deze ratio op basis van trekkingen. We schatten
de regressiecurve via een eenvoudige kleinste kwadraten methode voor het fitten
van polynomen. Er zijn echter twee valkuilen als we dit zonder een controleme-
chanisme doen. Het fitten van een polynoom van een te lage graad zal resulteren
in een slechte fit die niet goed overeenkomt met de ware regressiecurve. Aan de
andere kant zal een polynoom van een te hoge graad weliswaar goed fitten, maar
kan deze niet als een goede schatting voor de hele populatie beschouwd worden.
Hiervoor introduceren we een procedure voor het voorkomen van dit probleem
dat bekend staat als “overfitting”. Drie verschillende criteria voor het toetsen
op overfitting zijn getest en het criterium met de beste resultaten is gebaseerd
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op een aanpak van vroegtijdig stoppen. De hele methode voor het schatten van
de correlatie-ratio van trekkingen is heel eenvoudig en werkt goed, zelfs met een
beperkte hoeveelheid trekkingen.

Het onderwerp van hoger dimensionale statistische afhankelijkheid is veel com-
plexer gebleken dan de auteur in eerste instantie dacht. Voor hem heeft dit werk
waarschijnlijk meer vragen dan antwoorden opgeleverd. Een gevoel waar vele we-
tenschappers zich ongetwijfeld in zullen herkennen. Verder onderzoek is daarom
zeker wenselijk en dit proefschrift kan wel eens niet het laatste woord van de
auteur over dit onderwerp zijn.
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