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Chapter 1

Introduction

1.1 Representing high dimensional distributions

In analyzing physical systems our gaol is to capture the relationship between
input and output of a model. Usually, we represent model as a vector function

Y:D/hYZ:"':Ym]
with input vector
X =[X1, Xo,..., Xy

Values of X propagated through the model give us the corresponding value of
Y. Usually models are very complex and dimensions of vectors X and Y can be
lage. Moreover, since we cannot specify values of X precisely in most analysis,
the input vector is considered as a random vector and a distribution is assigned
to X. Exact analysis of such a model requires finding a joint distribution of X
to capture possible relationships and dependencies between elements of input
vector. For complex problems, finding such the joint distribution is very difficult.
Many approaches are then possible:

1. We can simplify our model by assuming independence between compo-
nents of X. Then the joint distribution of input vector is equal to product
of the distributions assigned to the components of X.

2. We can simplify our model by simplifying mapping function from the
analysis input to the corresponding analysis results (e.g. considering linear
models).



3. Graphical models can be used to represent high dimensional distribution
(e.g. Markov trees and its generalization to influence diagrams or new
graphical model called vines).

A well known example where first independence between variables was as-
sumed and then results were generalized to the dependent case, is theory of
extreme values. It is shown there that if the components of X are independent
and identically distributed and if the mapping function is minimum (maximum)
of these variables, then as dimension of the vector X becomes large we obtain
one of three possible distribution classes for the output vector Y. The domains
of attraction of the possible distribution classes are known, that is, necessary and
sufficient conditions for components of X so distribution of Y is one of the tree-
element class of possible distributions (Gnedenko [17], Haan [9]). The classical
extreme value theory is generalized by permitting dependence (e.g. stationarity
or the Markovian dependence) or allowing components to have different distri-
butions (Lindgren, Leadbetter and Rootzen [44]). This theory was intensively
studied for many years and was applied in various problems (e.g strength of ma-
terials testing, wave or flood data analyzing (Lindgren, Leadbetter and Rootzen
[44], Castillo [4], Gumbel [18]).

The first part of this thesis contains a contribution to the extreme value
theory. Double indexed, independent and identically distributed variables

X11, Xi2, Xoa, Xo1, X3, Xo3, X33, X3z, X31,...

are placed in rectangular matrix [X;;]. Output variable is defined as

Y = minmax Xj;
i J
or
Y = maxmin Xj;
i

then ten possible limit survive function classes (called reliability function classes)
of Y under linear normalization are determined (Kolowrocki [29],[28]). Possible
distributions depends on shape of the matrix [X;;], that is, on relationships be-
tween numbers of elements in rows and columns of this matrix. In this thesis the
domains of attraction of these limit distribution classes are determined (Chapter
2). In Chapter 3 it is shown how the theorems about domains of attraction can
be used to find possible limit distribution for non-homogeneous minmax models
(where X;; have different distributions).



Simple dependent models can be constructed by the linear transformation
of the independent variables with given marginals. This approach is due to
Steffensen [49].

One of the more common ways to define a high dimensional distribution is to
transform each of the input variables to univariate normal, and then to take the
multivariate normal distribution to introduce dependence between the variables
(Lauritzen [40], Muirhead [45]).

Graphical models seem to be a very convenient way of representing high
dimensional distributions. They can visually represent a given model and help
to describe its dependencies. An important property of graphical models is their
ability to describe complex structures in modular way, combining dependencies
between adjacent elements. The best known approach in this context is a tree
structure. A tree on N variables specifies at most N — 1 edges between the
variables. Each edge may be associated with a copula, that is a distribution on
[0,1]® with uniform marginals. Popular copulae are the diagonal band (Cooke
and Waijj [7]) and the minimum information copulae (Meeuwissen and Bedford
42]).

In the last chapter of this thesis, Chapter 6, the new copula, elliptical copula
is introduced, and its properties are studied. The elliptical copula is continuous
and can realize any correlation value in (—1,1). In constructing this copulae
properties of elliptically contoured and rotationally invariant random vectors
were used (Harding [5], Misiewicz [43]). A density function of the elliptical
copula with correlation p € (—1,1) is following

1 1
e R Y (z,y) € B
folzy) = e *(¢—)
0 (z,y) ¢ B
where
? 1
B = "Ij’ 1-2 _+_ u < —

The elliptical copula has linear regression property.

Given any tree on NN variables with copulae assigned to the edges, a joint
distribution can always be constructed satisfying the tree-copulae specification.
Moreover, it is shown in (Cooke [6]) that there is a unique minimum informa-
tion joint distribution satisfying the tree-copulae specification and under this
distribution the tree becomes a Markov tree. Distributions specified in this way

3



can be sampled on the fly. The tree-copulae method of specifying a joint distri-
bution is limited by the fact that there can be at most N — 1 edges on the tree
so tree full of constraints must be specified.

One generalization of the Markov trees are belief nets and influence diagrams
which use directed acyclic graphs as a representation of conditional indepen-
dence relationships. These structures have been used in Bayesian inference and
decision analysis.

A new class of models called vines was introduced in (Cooke [6]). A vine
on N variables is a set of trees, where the edges of tree 7 are the nodes of tree
j + 1, and each tree has the maximum number of edges. A regular vine on N
variables is a vine in which two edges in tree j are joined by an edge in tree j+1
only if these edges share a common node. The difference between Markov trees
and vines is that the conditional independence from Markov trees is replaced
by conditional dependence, with given conditional correlation coefficient.

X

Y Z Y 7
Figure 1. A Markov tree (left) and a vine (right) on 3 elements

Figure 1 shows examples of a Markov tree and a vine on three variables. In the
Markov tree variables Y and Z are conditionally independent given X, in the
vine Y and Z are not conditionally independent. It is shown in Chapter 5 that
the partial correlation between Y and Z with X may be large even in case when
Y and Z are conditionally independent given X.

Partial correlations or conditional (rank) correlations can be assigned to the
edges of the regular vine. There are (’2’) edges in regular vine on n elements and

there is a bijection from (—1, 1)(;) to the set of full rank correlation matrices
(Bedford and Cooke [3]). Thus we can specify a full rank correlation matrix
with (;‘) numbers which need not satisfy any algebraic constraints (e.g. positive
definiteness).

Using regular vines with conditional rank correlations we can determine a
convenient way of representing high dimensional distribution to realize a corre-
lation matrix and sample from this distribution on the fly.

4



In Chapter 5 of this thesis the relationship between partial and conditional
correlation is studied with particular attention to copulae used in high dimen-
sional graphical models. Sufficient and, in some cases, necessary conditions for
equality of partial and constant conditional correlations are obtained. Numeri-
cal results show that the difference between partial and conditional correlation
is small for the minimum information copula with given product moment cor-
relation. When approximate equality holds, regular vines enable us to specify a
correlation structure without algebraic constraints (e.g. positive definiteness).

In Chapter 4 techniques based on the properties of regular vines are used to
tackle a number problems relating to positive definiteness of a matrix. Define a
proto correlation matrix as symmetric real matrix with elements in the interval
(-1,1) and with ”1”’s on the main diagonal. We can determine whether a proto
correlation matrix is positive definite simply by calculating partial correlation
assigned to the edges of regular vine. If we find partial correlation on a regular
vine which is not in the interval (-1,1) then considered matrix is not positive
definite. The speed of this algorithm appears to be comparable to that of
previous algorithms. With this algorithm non-positive definite matrix can be
transformed into a positive definite matrix simply by changing values of these
partial correlations on regular vine which are less then -1 or garter than 1 and
recalculating respective correlations in initial proto correlation matrix. With
the new algorithm these alterations have a clear probabilistic interpretation. In
complex problems many entries in the correlation matrix may be unspecified,
and this partially specified matrix must be extended to a positive definite matrix
so completion problem must be solved (Laurent [38]). In Chapter 5 we show
how regular vine can be used to determine whether a partially specified matrix
can be extended to a correlation matrix. This approach can be useful where a
high dimensional correlation matrix should be specified (e.g. dependent Monte
Carlo simulations).

1.2 Outline of thesis

This Ph.D. Thesis consists of two parts. First contains results of the work I have
been doing in Gdynia Maritime Academy, Poland, second shows the results of
the research carried out in Delft University of Technology. There are five main
chapters of this thesis. They are largely self contained and they can be read
individually. At the moment all chapters are being published or are submitted
to publication in scientific journals or refereed conferences proceedings. It is
explained in Section 1.1 how they fit to the topic of this thesis.
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Chapter 2

Domains of attraction of
limit reliability functions

Dorota Kurowicka

Abstract: The problem of domains of attraction of limit reliability func-
tions R = 1 — F for series-parallel and parallel-series systems is presented. The
necessary and sufficient conditions for reliability function of the particular com-
ponents of the system are established so the limit reliability function is one of
the ten-element class of possible limit distribution. Moreover, some examples
are presented.

Keywords: extreme value theory, reliability, limit reliability functions, do-
mains of attraction



2.1 Introduction

Classical extreme value theory is concerned with properties of distributions of
the maximum

Xn = max{£1;£2> . gn}

of n independent identically distributed random variables, as n becomes large.
The basic classical results states that if for some sequences of normalizing con-
stants a, > 0, by, € (—00,00)

X, — b,
Gn

has a non-degenerate limiting distribution function, then this function must
have one of the three possible forms as follows:

0, r<0,a>0
exp[-z ], >0

B,(z) = {

_ xp[—(—2)?¢], z<0,a>0
() = { o =0 (2.1)
A(z) = exp[—exp(—z)], z€ (—00,00)

Frechet, Fisher and Tippett discovered these three possible distribution func-
tions. We call these distributions Weibull, Frechet and Gumbel respectively. In
1936, von Mises [51] gave sufficient conditions under which the three asymptotic
distributions are valid.

Theorem 2.1 ( von Mises conditions )

(A) Suppose F has a positive density F' for all x > x1. If for some a >0

FI
im @)

z—oo 1 —F(;L’)

then F' belong to the domain of attraction of ®.

10



(B) Suppose F' has a density F' which is positive in some interval (x1,x0) and
vanishes for x > xg. If for some a > 0

fim Fo—DF (@) _
ztzo 1-— F(CE)

then F belong to the domain of attraction of V.

(C) Suppose F has non-negative second derivative F” for all x in some interval
(z1,z0) and let F' vanishes for x > xo where xo may be finite or infinite.

If

b P @0 = F@)
ot (F'(x))?

then F' belong to the domain of attraction of A .

=-1

Gnedenko [17] has established necessary and sufficient conditions for domains
of attraction of these functions.

Theorem 2.2 (Gnedenko conditions)

(A) A necessary and sufficient conditions for the common distribution function
(cdf) F to belong to the domain of attraction of ®, are

(a) there exists xo such that F(xo) =1 and F(zg —€) < 1 for all e > 0,

(b) lim, ,o- % =k for k> 0.

(B) A necessary and sufficient condition for the cdf F' to belong to the domain
of attraction of ¥, is

. 1-F(x)
lim ———~— =k~ k .
acgr;ol—F(ka:) for k>0
(C) A necessary and sufficient conditions for the cdf F to belong to the domain
of attraction of A is there exists a continuous function A(z) such that
A(z) > 0 as z = xg and
1—F(z+ A(2)x)

lim =e

z—=xy 1- F(Z)

—T

where xo < 00, F(xzg) =1 and F(x) <1 for all z < ¢ .
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De Haan [9] formulated and proved the theorems about domains of attraction
using the theory of the regularly varying functions. He presented among other
things the following results:

Theorem 2.3 (De Haan conditions)

(A) A distribution function F' belongs to the domain of attraction of ®,, if and
only if 1 — F is (—a) -varying at infinity'.

(B) A distribution function F' belongs to the domain of attraction of ¥, if and
only if F has a finite endpoint® x¢ and the function U(z) = 1—F(zo—2z~1)
for all x € RT is (—a)-varying at infinity.

(C) A distribution function F belongs to the domain of attraction of A if and
only if

lim U(te) —=U(t) _logw
o Ulty) ~U(y)  logy

for all positive  and y (y # 1), where U : RT — R is defined by

U(z) =inf{y: 1 - F(y) < z}.

The three limit distributions with parameters a,, b, can be written in von
Mises form as follows

He(x) = exp{—{l-kc(xg/\)]%}, 1+c<ng>zo.

For ¢ > 0,¢ < 0,¢ =0 (in the case ¢ = 0 interpreted in the limit sense) we get the
Frechet, Weibull and Gumbel families respectively. For above representation of
limit distributions the following necessary and sufficient condition was presented
in Castillo [4].

L A function U : Rt — R wvaries regularly at infinity if there exists a p € R such that for
all z € RF

U(tx)

R
o0 U(1) :

2 A point zg < oo is called endpoint of the distribution function F if zo = sup {z|F(z) < 1}.

12



Theorem 2.4 (Castillo conditions)

Let p1,p2,p3,p4 be four real numbers in the interval (0,1). A necessary and
sufficient condition for a continuous cdf F' to belong to the domain of attraction
of mazxima of H. is given by

c c

) - F p
) - F~(p

A lot of peoples dealt with this problem. De Haan and Resnic [10] studied
continuous and ones differentiable domains of attraction. They gave sufficient
conditions and rate of convergence. They also gave results concerning Lp con-
vergence. Sweeting [50] dealt with uniform local convergence of densities of
absolutely continuous distributions. Pikands III [20] characterised the domains
of attraction in terms of inverse cumulative hazard function. Galambos and
Obretenov [16] established the necessary and sufficient conditions for A in term
of the expected residual life and hazard rate.

The limit theorems and domains of attraction in the case of dependence
sequences were in interest of a lot of authors. The summarisation can be found
for instance in the book of Leabetter, Lindgren and Rootzen [44].

The problem of finding limit distributions of regular homogeneous series-
parallel systems is directly related to the classic extreme value theory. With
references to this theory the problem can be formulated as follows. Let [X;;] be
a double array of independent, identically distributed random variables. For the
sequences of natural numbers k,, and [,, we define an array of random variables

) _ (=logpi)~¢ — (—logp2)~

lim Fﬁl(p
) (—logps)=¢ — (—logps) ¢

n—oo ] (p

W=~
TS ™

Yeitn=1,2.i=12 . k]

where

then [Y,,;] is a row-wise independent identically distributed double array with the
distribution function 1 — (1 — F)'». The problem of possible limit distributions
of suitably normed maxim

X, = max {X,;}
1<k<k,

is discussed in Kolowrocki[28],[25] and summarised in Kolowrocki [29]. In these
papers it is shown that there are ten possible limit distributions. This class of
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limit laws is more extensive than up to now known three-element class. It is
interesting that these laws strictly depend on the shape of the system structure.
In the case of square systems it was found three possible limit distributions
the same as in the case of maximum. Chernoff and Teicher [19], in this case,
established the domains of attraction in terms of certain limiting functions.

In this chapter the problem of domains of attraction of possible limit relia-
bility functions for series-parallel and parallel-series functions is solved.

The chapter is organized as follows. In Section 2.2 the essential notion
required for the paper will be given. Well known definitions and formulae will
be recall. The lemmas that will be necessary in the next sections are presented
and proved, or references are given to the papers or books, where their proofs
can be found. In Section 2.3 ten possible limit reliability functions for series-
parallel systems are presented. In Section 2.4 for the certain limit reliability
functions the theorem of the domains of attraction are established, that is, the
necessary and sufficient conditions which the reliability function of the particular
component should satisfy so the limit is one of the possible distributions. The
statements and proofs of the results about domains of attraction differ for the
individual cases. Section 2.5 consist of theorems about domains of attraction
for parallel-series systems and in Section 2.6 the examples are presented.

2.2 Essential notions and theorems

Suppose that E;,i = 1,2,...,n,n € N are components of the system S and
X; are lifetimes of E;. Moreover, suppose that X; are independent random
variables.

Definition 2.1 (Series system)
A system S is called series if its lifetime X is given by

X = 1I§1’lil£n{Xi}.

Figure 2.1 The shape of series system.

14



The sequence of reliability function of the series system is given by

R,(z) = HRi(a:), x € (—00,00), n €N.

i=1

Definition 2.2 (Parallel system)
A system S is called parallel if its lifetime X is given by

X = 1r;1£a£xﬂ{Xi}.

E,

E

n

Figure 2.2 The shape of parallel system.

The sequence of reliability function of the parallel system is given by
R.(z) = 1-][Fi(z), z€(-00,00), neN.

Definition 2.3 (Homogeneous system)

We call the system S homogeneous if the random variables X;,i = 1,2,...,n,
have the same cdf F(z) = P(X; > z), that is, if the components E; have the
same reliability function R=1— F.

It means that the sequence of reliability functions of the homogeneous series
system is

Ru(z) = (Ri(@)", =€ (—00,00) (2.2)



and for the homogeneous parallel system
Ro(z) = 1—(Fi(x)"*, =z€ (—o0,00). (2.3)

Suppose that E;;, where i = 1,2,...,k,,j = 1,2,...,l;, are components
of the system S and X;; are lifetimes of E;;. Moreover, suppose that X;; are
independent random variables.

Definition 2.4 (Series-parallel system)
A system S is called series-parallel if its lifetime X is given by

X = i XL
112%@{121&{ it}

Definition 2.5 (Parallel-series system)

A system S is called parallel-series if its lifetime X is given by

X = i XL
lrélilgk{lrsn%i{ it}

Ell E:l " - " Eknl

i
i

11

£

Sl ‘

Figure 2.3 The shape of parallel-series system.
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Definition 2.6 (Regular system)
A system S is called reqular if

li=1= :lkn_lna I, €N
Ell El: Elll
| En Bl By

Bt B2 S L R W

Figure 2.4 The shape of regular series-parallel system.

Definition 2.7 (Homogeneous system)

A regular system S is called homogeneous if the random wvariables X;;,i =
1,2,...,kn, 7 = 1,2,...,1, have the same distribution functions F', that is,
if the components E;; have the same reliability function R.

It is well known that the sequence of reliability functions of regular homo-
geneous series-parallel systems is given by

Ri, ko (r) =1 —[1— (R(x))!"]*, z € (~00,00), n €N (2.4)

and the sequence of reliability functions of regular homogeneous parallel-series
systems is given by

Rk, (2) =[1 = (F(2))"]*, 2 € (~00,00), n €N (2.5)

Next replacing n by a positive real number ¢ and assuming that k; and [; are
positive real numbers, we obtain families of the regular systems corresponding

17



to the pair (kt,l;). For these families of the systems there exist families of
reliability functions.

The family of reliability functions of the homogeneous series system is given
by

§Rt(m) = (R(w))ta T € (_00700)7 te (Oa OO) (26)
and for the homogeneous parallel system
Ri(z) = 1—(F@), =€ /(=00,0), t€(0,00) (2.7)

The family of reliability functions of regular homogeneous series-parallel systems
is given by

Ri, b (®) = 1—[1—(R(x)"])*, z€ (~00,00), t€(—00,00) (2.8)
and for regular homogeneous parallel-series systems
Ri, k() = [1L—(F(z)]*, z€(~00,00), t€ (—00,00) (2.9)

Let us assume that the lifetime distribution do not necessarily have to be
concentrated on the interval [0, 00). Then the reliability function does not have
to satisfy the usually demanded condition

R(z) =1 for z < 0.

This is a generalization of the commonly used concept of reliability functions.
This generalization is convenient in theoretical considerations. At the same
time, from the achieved results about the generalized reliability functions, the
same properties of usually used reliability functions appear. Hence we get that
a reliability function R is non-increasing, right-continuous R(—oo) = 1 and
R(400) = 0.

Definition 2.8 (Degenerate relability function)
A reliability function R is called degenerate if there exists xg € (—00,00) such
that

_ 1, z<uxz
R(z) = {0, T > xp.

18



Corollary 2.1 A function
R(z) = 1-—exp[-V(z)], z € (—00,00), (2.10)

is a reliability function if and only if function V is non-negative, non-increasing,
right-continuous function, V(—o00) = 00,V (00) = 0 and besides V may be iden-
tically oo in an interval.

Agreement

In our further considerations, if we use V' we always mean a function with the
properties specified in Corollary 2.1. If V is identically equal to oo in an interval,
we define that exp[—oc] = 0. If we say that V' is a non-negative, non-increasing
and right-continuous functions, we only mean that these properties hold on the
interval where V' # 0o. Moreover, we denote the set of continuity points of the
reliability function R by C'r and the set composed of continuity points of V' and
points such that V' = oo by Cy .

Definition 2.9 (Degenerate function)

A function V defined for x € (—o00,00) non-negative, non-increasing, right-
continuous V(—oo) = 00,V (c0) = 0 is called degenerate if there exists xo €
(—o00,00) such that

_ 0, =< To
Viz) = {0, T > xp.

Now, the following corollary is clear.

Corollary 2.2 A reliability function R given by (2.10) is degenerate if and only
if a function V is degenerate.

We shall investigate limit distributions of standardized random variable

X — b
Q¢ ’
where a; = a(t) > 0 and b, = b(t) € (—o0,00) are some suitably chosen func-
tions. And, since

X-b
P< o t > CE) = P(X > at$+bt) = §Rli7kt(at.’1§+bt)
t

then we introduce the following definition.
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Definition 2.10 (Limit reliability function, domains of attraction)

A reliability function R is called a limit reliability function of the family Ry, r,
given by (2.8) or an asymptotic reliability function of the series-parallel system
if there exist functions a; > 0 and by € (—o0,00) such that

tlifn Ri, k(@ + by) = tli)m 1—(1— (R(agzx + b))k = R(x) for z € Cr

The pair (ag,by) is called a norming function pair.
We say that a reliability function R belongs to the domain of attraction (Dx)
of R.

We can formulate similar definitions for series, parallel and parallel-series sys-
tems.

Definition 2.11 The reliability functions Ry and R are said to be of the same
type if there exist numbers a >0 and b € (—o0,00) such that

Ro(z) = R(az +b) for x € (—o0, 00). (2.11)

Definition 2.12 The reliability functions Vo and V' are said to be of the same
type if there exist numbers a > 0 and b € (—o0, 00) such that

Vo(z) = V(axz 4+ b) for z € (—o0,00).

First it will be in convenient to obtain some useful results necessary in the
next investigations. We will introduce the lemmas, which gives the equivalent
conditions of convergence to the non-degenerate limit reliability function. The
following two lemmas can be found in Kolowrocki [28].

Lemma 2.1 If

(a) the reliability function R is given by (2.10),
(b) the family Ry, , is given by (2.8),

(c) lim¢yoo ki = 00,

(d) at > 0,b; € (—00,00) are some functions
then

lim %Ry, g, (arx + b)) = R(z) for z € Cr

t—00
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18 equivalent to the assertion

tl'im ki(R(agx + b))t = V(x) for x € Cy.

Lemma 2.2 If R; is a reliability function’s family such that for some functions
ar > 0,b; € (—00,00)

lim Ri(ax + b)) = Ro(z) for z € Cr,,

t—o0
where Ry is non-degenerate reliability function, then the assertion

tlggo Ri(arx + Bt) = Go(x) for x € Cg,

where Gy is non-degenerate reliability function and oy > 0,5 € (—00,00), are
some functions, holds if and only if there exist constants a > 0,b € (—00,0)
such that

. Qg . B — by
lim — =a and lim ——
t—o0 g t—o0 g

=b
Moreover, Gy and R are of the same type, that is
Go(x) = Ro(ax + b) for x € (—00, ).

By Lemma 2.1 and Lemma 2.2 we can very easily obtain the following lemma.
Lemma 2.3 If R is a reliability function such that for some functions a; >
0,b; € (—o00,00)

lim  ki(R(aix +by))'s = Vo(x) for x € Cyy,

t—o0

where Vg is the function with properties like in Corollary 2.2, then the assertion
lim ki (R(azz + Be)' = Vi(z) for z € Cy,
t—o00

where V7 is the function with properties like in Corollary 2.2 and oy > 0,5; €
(—o00,00), are some functions, holds if and only if there exist constants a >
0,b € (—o0,00) such that

. Qg . Bt — b
lim — =a and lim ——
t—oo ay t—oo  ap

=b
Moreover, Vo and Vi are of the same type, that is
Vo(z) = Vi(az 4+ b) for x € (—00,00).
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The following lemma is a generalization of the Lemma 1 in Chernoff and Teicher
[19].

Lemma 2.4 The condition
lim t(R(a;z + b))t =V (z) forxz € Cy (2.12)
t—o0

is satisfied if and only if

there exist an extended, real-valued, non-decreasing, right-continuous function

~v(z) with v(—o00) = —00,v(00) = 0o such that for x in the set of points at which
~v(x) is continuous and finite we get

logt + v(z) + o(1)
ly

Proof. Let (2.12) holds. Then for all z such that V(z) # oo we get
t(R(ax + b)) = (1+0(1))V (x).

R(agr + by) = exp |—

(2.13)

Hence if
V(x) = —log(V(x))
then
logt + I log R(atx + b)) = —y(z) + o(1)
what proves (2.13). In analogous way we can show that (2.13) converges to
V(z) = exp(=7(x))
for all continuity points where + is finite. O

All results obtained for series-parallel lead to the analogous results for parallel-
series systems.

Lemma 2.5 If a reliability function R is an asymptotic reliability function of
the reqular homogeneous series-parallel system with the reliability function of
particular component R then a reliability function

R(z) =1 —R(—z) forz € Cr

is an asymptotic reliability function of the reqular homogeneous parallel-series
system with the reliability function of particular components

R(z) =1 - R(-z).
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Notation:
In the whole paper, we use the following notation:
If z(t) and y(t) are positive functions then

1=

(a) z(t) < y(t) means that lims o E— 0,

Z

(b) z(t) = y(t) means that lim; % 1,

=

(c) z(t) > y(t) means that lims, E— 00,
(d) z(#)Sy(t) means that z(t) and y(¢) are such that (a) or (b) hold,

y(t
y(t) or z(t) —y(?).

(e) z(t) £ y(t) means either z(t) +

2.3 Limit reliability functions

In the following theorem, which can be found in Kolowrocki [25], under a few
important assumptions related with the shape of the rectangular system, the
three possible limit reliability functions are determined.

Theorem 2.5 Suppose
ke =t, Iy = c(logt)?®, t € (0,00), ¢ >0,

where p(t) has the properties defined below.
Define the following three cases:

Case 1
log(logt) < |l; — clogt| and p(t) < (logt)* for every A > 0

and

< dlogv

lp(v) — p(1)IS log t[log(log £)]

for every natural v > 1, where 0 < 6 # 1 and 7, = 7,(t), t € (0,00), is
given by



Case 2
s L |ly — clogt|SClog(logt), s>0; C >0,
and

N dlogv
IP(7) = POl ~ e log 1]

for every natural v > 1, where 0 < 0 and 7, = 7,(t), t € (0,00), is given

by
Tv _ = eatosD |
Case 3
p(t)[Z (log ), A>0
and

dlogv

IP(r) = POl ~ o (og 8]

for every natural v > 1, where 0 < 0 and 7, = 7,(t), t € (0,00), is given
by

T, 1
Y yT=pNA®
t

where

and the sequence f; is defined inductively by

fi(z) =logz, fi(z) =log(fi — 1(z))
and n is such that

frt1(p(t)) < Alog(logt), A >0.
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Under the Cases 1,2 and 3 the only possible, non-degenerate, limit reliability
functions are as follows:

1, r <0
Rifz) = { 1—exp “], x>0
Rolw) = { (1)— exp[—(—z)?], z ; 8 (2.14)
Rsz(z) = 1—exp[—exp(—z)], =€ (—00,00).

We will present briefly the ideas of the proof of this theorem.

Sketch of the proof. First it can be shown that if function R given
by (2.10) is a limit reliability function of the series-parallel system and the
assumptions of the Cases 1,2, 3 are satisfied then the following estimations hold:
In the Case 1 of Theorem 2.5, we get

log T
I, Lo o8 _loguir<6logl/

I, logt  logt log ¢

) where 7(3)S s, (2.15)

1 01
lim logt {— Oguﬁ:r( ogY
t—o00

=—1 H =144 =1. (2.1
logt logt )} BV, M oK (2.16)

When the assumptions of the Case 2 are satisfied we obtain

I, log ™= 1 01
Ir = 14 8% _ gy +w(22%Y) where w(s) ~ s(2.17)
I logt  logtlog(logt) logt
. log v dlogv
lim logt |— = —log " = +4. 2.18
e 08 [ log tlog(log t) ( logt >] BV, M (2.18)

If the assumptions from Case 3 of Theorem 2.5 hold then

l log T log v dlogv

v =1 L _ + 2.19

Iy + logt  A(t)logt w( logt )’ (2.19)
lim logt |- %87 1y (O8N _ oo u—xs (220)
P A(t)logt logt N BV, B0 ’

If R is a limit reliability function then by Lemma 2.1, we get
lim k¢(R(azx + b)) = V(z) forz € Cy.
t—o00

25



Since in the Case 1, 2, 3 of Theorem 2.5 we get 7, = 7,(t) — 00 as t — oo then
from the above

lim 7, (R(ar,a+b.,))™ =V(z) forze Cy. (2.21)

t—o00
We can write (2.21) in the following form

Iy /L
: —lr, [l Ly v =
tlggo Tt t(R(ar,z +br)) ] V(z).

From the estimations (2.15) - (2.20) and by Definition 2.12 we can obtain the
functional equation

vV (ayx + B,) = V(z) (2.22)

for z € (—o00,0) and for any v > 1 and some p # 0.
The possible solutions of this equation determine the possible limit reliability
functions. O

Remark 2.1 It will be of convenience to modify, slightly, the assumption of
Theorem 2.5. In defining the sequences 1, = 7, (t), t € (0,00) in Cases 1,2 and
3, the possibility v = 1 was excluded. This case however, is trivial as we now
explain.

First note that 7,(t) =t when v = 1. In the case v = 1 the estimations (2.15) -
(2.20) are also true and the case v =1 does not impose extra restrictions on V
as that equation (2.22) is always valid (with oy = 1,8, = 0). Hence Theorem
2.5 holds also for v =1.

In the following theorem in the case when the number of series components
has the order of logarithm of number of parallel components, the four new limit
reliability functions were obtained. The full proof of this theorem can be found
in Kolowrocki [28].

Theorem 2.6 If
ke =t, (It — clogt) = s, where s € (—00,00), ¢ >0 (2.23)

then the only possible, non-degenerate, limit reliability functions of a series-
parallel system are of the following types:

Ra(z) = {

1, x <0

s

1 - exp[— exp(—2® — )], = >0
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Rs(z) = { 1 —exp[—exp((—z)* — £)], <0

0, x>0
_ 1 —exp[—exp(f(—z)* = 2)], <0
Re(w) = { 1 — exp[—exp(—z* — 2)], x>0
]., r <
Rz(z) = I —exp[—exp(—=2)], z1 <z <z
0, T >z, 1 < To.

Proof. In this case we define sequence 7, = t” for all v > 1 . Clearly
T, = 00 as t — 0o . Hence by Lemma 2.1 we get for z € Cy

lim 7, (R(ar,z +b,))™ = V()

t—o00
and

I, /1
lim 7, ¢t /b [t (R(ar,z + b)) = V().

t—00

Since in this case then l; = clogt + s(t) where s(t) ~ s then

. r clogt, + s(1) . cvlogt+ s(ry) . v+o(1)
lim % =lim ——————> = lim ————> = lim ———~ =v
t—woo Iy tooo clogt+ s(t) t—oo clogt + s(t) t—oo 1+ o(1)

and

T, . t)vlogt ) logt
lim 7t /% = lim exp |logm, — = logt| = lim exp s(t)vlogt + s(7,) log
t—oo t—oo t t—oo ClOgt + S(t)

L3 _ s(n)

= tlgglo exp [EW] = exp E(l/ — 1)] .

From the above and by Definition 2.12 the possible limit reliability functions
were determined by finding the solution of the equation

V(ayz + B,)]" =V(z)
for z € (—o00,00) and for any v > 1. O

The following theorem we can obtain almost immediately from the well-
known extreme value theory results for series systems.
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Theorem 2.7 If
tlgrolo k: =k, tlggo Iy =00 (2.24)

then the only possible non-degenerate limit reliability functions are one of the
following types:

— —expl—(—=z)~ ¢ k x
Rs(z) = {(1), [1 ep[ (—x) ]]v w;g
1, z <0
Role) = { 1=l —expl-a°]l¥, >0
Riolw) = 1-[1—expl-expallf, € (~o0,00).

Proof. A function R is a limit reliability function of the series-parallel
system if and only if there exist functions a; > 0 and b; € (—o0, 00) such that

R(z) = lim Ry, k, (azz + b)) = lim 1 —[1 — (R(asz + by))"]* for z € Cx.
t—00 t—00

Since k; — k and the well-known results for the series systems are true is the
case of the real index then the only possible non-degenerate limit reliability
functions of the family Ry, x, are of the form

R(z)=1-[1-Rix)*, i=1,2,3

where R;, i = 1,2, 3 are given by

Ri(z) = { (eicp[—(—w)‘”‘], i;g
— 1, x <0
Ra(z) = { exp[—z%], >0

Ri(zr) = exp[—expz], € (—00,00).

which concludes the proof. O

2.4 Domains of attraction of limit reliability func-
tions for series-parallel systems

In this section we present theorems which give sufficient and necessary condi-
tions for function R to be in domain of attraction of determined in Section 2.4
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possible limit reliability functions.

Let G be the functional inverse of R, G : [0,1] = R, G(u) = inf{z : R(z) <
u} and define function h as follows

lim — ¢ (e‘i) — by = h(). (2.25)

t—00 ag
The existence of this limit follows directly from Lemma 2.4.

Proposition 2.1 Under the assumption of Theorem 2.5 the function h takes
one of the following forms:

h(v) =~ y(z) =z z €R (in the case R3)
h(y) = e= ~v(z) = alogx x>0 (in the case Ry) (2.26)
h(y) = —e~= y(z) = —alog(—z) 2 <0 (in the case Ry)

Proof. By Theorem 2.5 we get that the only possible solutions of the functional
equation (2.22) are functions

Va(z) = exp(—z) for zeR,
Vi(z) =27¢ for >0, a>0,
Vo(z) = (—x)® for =<0, a>0.

Since by Lemma 2.4

v(x) = —log(V(2))

then the only possible forms of the functions v and h are given by (2.26). O

Proposition 2.2 If the assumptions of Theorem 2.5 are satisfied then there
exists p # 0 such that for all natural v (see Remark 2.1) and those © for which
v s continuous and finite, we get

Rlanz+br) = exp [_logtﬂogu +7(m)+o(1)}‘

2 (2.27)

Proof. Since, 7, — o0 as t = oo then by Lemma 2.4 for z where -y is continuous
and finite, we get

R(ar,x+b;) = exp [_ log, +7(x) + 0(1)} -

I,

29



Hence

R(ar,z+br) = exp l_log ot 7l(ﬂr) +oll
lt;_:
l (log 7, +y(z) + 0(1))%]
= exp|— ] = | .
t

Since by (2.15), (2.17) and (2.19) we get 5 — 1 as t — oo then

/lr,

_log T, +7(x) +0(1) + log =
li

R(ar,x +b;) = exp

Now, it is enough to show that for all cases of Theorem 2.5

le/lr,
log ~ = logv* + o(1).
By (2.16)
/1~
™ log 7, log 1,
log ” = log <expl . —logt ) = ERRTT - — logt
It 1+ logt  logt :tr( logt )
log 7, —logt —log % + log v + o(1)
= :1 H ]. .
e og v + of(1)

Similar calculations can be done for Case 2 and Case 3 of Theorem 2.5 using
estimation (2.18) and (2.20). This concludes the proof. O
Define aj as follows

ai = @G (e_logliH) -G (e_lol_fi) . (2.28)
By (2.27) for fixed p # 0, we get
_logttplog vt1+e, _ logt+ulogvtes
a; = G(e Tt >—G(e Te )

Define function (3, v) as follows

Tt(B,V) = Tt(ﬁayaeéaet) ,
_ {G (e_log t+ul?tgv+ﬁ+et > G (e_logt+ulltogu+ei )} (2_29)

-~
@y
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where ¢ € (0,00), € R, v is a natural number and €, = o(1), e, = o(1).

Now we can formulate theorems about domains of attraction of limit re-
liability functions given by (2.14). The theorems characterise the domain of
attraction in terms of the value of lim;_, oo 74 (1, V).

Theorem 2.8 If R € Dg, and we choose a; = a; then
Jim ri(B,v) = 8 (2.30)

for all B € R, v €N, fized u # 0 and €, = o(1), ¢ = o(1).
Conversely, if lim;_, o 1¢(8,v) = B exists for all 3 € R, v € N, fized u # 0 and
€; = 0(1), & = o(1) and if for all natural v, €, = o(1), & = o(1)

tlggo re(l,v) =1 (2.31)

logt

then R € Dr, with a; = a} and by =G (eiT).

Proof. If R € Dg, with a; = a; then by (2.29) and from (2.25) and (2.26) we
get, for fixed p # 0

1 _logt+plogv+B+e; _logt+plogrtes
lim r(B,v) = lim — |G (e Tt —G(e Tt )

t—00 t—00 ag

= h(ulogv + ) — h(ulogv) = plogv + 8 — plogr = B.

Now we will show the sufficiency. Let a; = a; and p # 0 then for all natural v,

for all positive, natural numbers k& and egk), ego)

limt_mo Tt (k’, I/) =

L 7logi+ylogv+k+egk) 7logt+plogu+e£0)
= hmt%ooa_t Gle T —Gle T

. (k—1i)
_logt+u10gV+(k—l—1)+1+ﬁi 232
G (e (2.32)

T; —

log t4 s log v (k—i—1)4e(F 71
—Gle T .
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By (2.31) we get

k—1

hmrtkl/ z_:mrtly Zl:
=0

i=0

For negative integers we have

1 log 1411 log v+ (— k) +k+e ) log t 411 log v+ (—k)+e )
lim ry(—k,v) = — lim — |G | e~ Tt -Gle Tt
t—o0 t—o00 ag

and so from the above we obtain

lim r(—k,v) = —k.

t—o00

Hence for all integer k, for all natural v and €}, ¢

lim ri(k,v) = k. (2.33)

t—00

Hence for k = 0 we get

) L 7logt+y,logu+ei _logttulogutes
limy o0 ™ Gle T —G(e T ) =

. _logttplog vte) _logt+tulogvtk
= llmtg)oo I Gle lt - (6 it ) (234)
_logttplogv+tk _logt+plogvtes

= —k+k=0.

for all natural v and all €, = 0(1), €, = o(1). This shows that lim;—, o (83, v, €}, €)
is independent of €}, €.

The next step is to show that this limit does not depend on v. Choose an
arbitrary integer v’ > 0 and consider the reparametrization ry (8, v) of r:(8,v)
where t' = 7,,. Function ry (8,v) can be written

logt+y,logu+;.alogu’+,@+czl logt+y,logu+y,logul+c:
Gle T —Gle T

where €' = o(1), € = o(1). We can write it like that because p is the same for
all v.

1

ar,,

v
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From (2.31) and (2.34) this function has the same limit as r:(3,vv', €}, €) as
t — oo.

. 1 AN 1 !
Jim r(8,) = lim ro(8,00') = lim ry(8,0)

which proves that lim;_, ., 7¢(3,v) is independent of v.
We now want to show that lim; ,. (83, v) = (3 for all real 8 and start with the
case 3 = % for some positive integer k.

ko limg_e ’I"t(%,ll) =

) ) log i+ylogu+k 1ogt+ulogy
= khmtﬁooa—i Gle ( )
logt+plogv+l+l logttplogvti
= l G -
Ez o 1MMt—o0 o e
. ogi+ylogv+l _logt+plogu
= lim;_0 a% [G (e Tt —
= 1.

Hence we get

. 1 1

fa () =5
which by the argument used for (2.32), implies for all integers j,k and v >
1,6, = o(1), €t = o(1) that

_logttulogrtdte logttplog vt j
Gle T e (e I ) =L (23)

Let r, (r¢”) be the monotone, rational functions converging as t — oo from be-
low (above) to the real number 8. Then from (2.35), and using the monotonicity

of G

, . 1 _ logtfulogrfte; _logt+plogvtey "
ry < thm — |G le T -G (e T ) <r”.
— 00 at

Consequently

1
lim —
t—o0 at

Jim r(B,v) = f

for all 6 € R, v € N, fixed p # 0 and €}, = o(1), & = o(1). We now show that
R € Dg, by applying Lemma 2.4 and will show that we may take y(z) = =
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there. Since lim;_, o (8, v) is independent of and of €, €, and of v then we get
for all real x

lim l [G (e_lcgwlritmm) -G (e_lolft)} =z.

t—o0 at

Ife, =G (e_lcz—fi) then from the above we obtain

lim i [G (67%) - bt] =x.

t—o0 ag

Hence for any € > 0 and t € (0, 00)

_logttaztes

at(a:—e)+bt§G(e Tt )Sat(a:+e)+bt

and

log t4+x4e4
- T

R((Lt(.’IJ + 6) + bt) S e S R((Lt(.’L’ + 6) + bt)

Hence for sufficiently large ¢

log t+2+2c+ey logt+z—2eteq
—cgttedIete; _logttr—2etes

e ¢ < R(atx+b) <e Tt
which is tantamount to (2.12) for y(z) = z and by Lemma 2.4 completes the
proof of sufficiency. O

Theorem 2.9 If R € Dg, and we choose a; = a}(ex —1)~* then

e, B 1
a

lim 74(3,v) =vea(ex —1)(ex —1)7" (2.36)

t—o00
forall B € R, v €N, fized p #0 and €, = o(1), e, = o(1).
Conversely, if lim;_, o m:(8,v) = B exists for all 3 € R, v € N, fized n # 0 and
€, = o(1), & = o(1) and if for all natural v, €, = o(1), & = o(1)

tlggo re(l,v) =v

(2.37)
then R € D, with a; = a}(ex —1)~* and by = @ (e_lol_ft) — ag.
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Proof. If R € Dy, with a; = a}(e= —1)! then by (2.29) and from (2.25) and
(2.26) we get, for fixed pu # 0

logt+u10gv+ﬁ+e log t+plogv+tes
lim (8, v) = lim — {G <e > -G (ef Tt )]
t—o00 t—o0 a,t
= (e7 =)' [h(ulogv + B) — h(ulog )]
= (e — 1) LeET — e
= (e¥ — 1) wEfer 1]

which proves (2.36).
Now we will show the sufficiency. Let a; = af (em — 1)~" then by (2.37)

1 _logttplogvtkte; _logt+plogrtes
lim r(1,v) = lim — |G (e Te -G (e Tt )

t—00 t—00 Qg

= Vg(ei —1).

Hence for all positive, natural numbers &

logt+ulogu+k+e£k) lcgt+ulogu+e(0)
Gle Tz —Gle Tz

k—1 1 log ¢+ log v+ (k—i— 1)+1+e(k i)
= lim — [G [ e” It

. t—o0 g

=0

log t+p log v+ (k—i— 1)+e(k i-1)
-G e [ A

lim r(k,v) = lim —
t—o0 t—o0 a

y (2.37) we get

. o . plogr+k—i—1 1
tlggort(k,u) o z;tlggoexp{ a (e 2
1=
k—1
k 1 1 1
= y%e;e_g(ea _1) (6_:)
=0
l—e &
= l/gege*é(ei -1 T zl/g(e*g -1)
1—e"=



For negative integers k we have

_logt+plogu+(—k)+k+e£0)
lim ri(=k,v) = —lim — |G |e Te
t—o0 t—00 Qg
logi+ulogv+(—k)+e£k)
-G e Tt =
b _k, Kk e,k
= —ypeaoe a(ea—l):]ja(e a—l)

Hence for all integer k, for all natural v and €}, ¢;

im re(k,v) = v&(es —1). (2.38)
t—o0
Hence for k£ = 0 we get
L 7logt+y,logu+ei _logttulogutes
limt%oo a_i |:G (e Iy — (e [ ):| =
) _logt+plogvtel _ logttplog vtk
= lim;_, 0 a% {G (e T - (6 ft ) (2.39)

e (e_logi-i—yl;ogv-{—k) e (e_logt+y,lltogu+ci )] _
= —l/g(ef -1) +l/§(e§ —-1)=0.

for all natural v and all ¢, = o(1), ¢, = 0(1), which means that lim;_, o, r+(3, v, €}, €;)
is independent of €}, €.

The next step is to show that this limit does not depend on v. Choose an
arbitrary integer v’ > 0 and consider the reparametrization ry (8,v) of ri(8,v)
where t' = 7,,. Function ry (8,v) can be written

logt+y,logu+;.alogu’+,@+czl logt+y,logu+y,logul+c:
Gle T —Gle T

where €' = o(1), € = o(1). We can write it like that because p is the same for
all v.

From (2.37) and (2.38) this function has the same limit as v~ (3, vV, €}, €;)
as t — oo. Hence

1

a
TVI

tlgrolo voar(B,v) = tlgrolo voer(B,vv') = tlgrolo vy (B, 0)
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which proves that lim;_,, v~ &1 (8,v) is independent of v.
We now want to show that

1 _logttplogvte; _logttplogvtey w, B
lim — |G (e Te —G(e Te ) =va(es — 1)

t—o0 a/t

for all real 8 and start with the case 8 = % for some positive integer k. From
(2.38)

© 1 . 1 logt+y,logu+1 logt+y,logu
ve(e= —1) = lim — [G (e ) G (e )}
t—o0 a/t
1 logt+ulogu+k logt+y,logu+
= lim — |G le —G|le
t—o0 a/t
log t+p log v+ & logi+ylogu+ =2
+G e & e
log t+pu log v+ & logt+plogu+
+G e & | —-G|e
1 k—1 lcgt+ulogu+l+1 log t+p log v+ 4
= lim —E Gle T —Gle Tt
t—o0 a/t "
i=0
-1
! I T | _losthutosvid legttutony
= ve(era)'| lim —v~o— |G |e Te —G(e Tt )
0 t—o0 at a/t
1=

1
wl—ea o . 1 logt+ulogvti  log t+ulogv
= vo——v o lim — |G |e It —G(e ft )
1 — e%a t—00 (g

Hence for all natural k, fixed u # 0 and all natural v and €}, = o(1), e = o(1),
we obtain

) 1 _logttplogvtfte; _logt4ulogvtet u 1
thm — |G le T -G (e N ) = V. (elm — 1) .
— 00 a/t

For rational r this condition takes form

. 1 _logttulogyvirie; _logttulogrtes B N
lim — |G le Iy —G(e It ) :Va(ea—l).

t—o0 at
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As in the proof of Theorem 2.8, we can take monotone, rational functions con-
verging from below (above) to the real number = and by monotonicity of G
get

) 1 _logttplogvtadte _logt+plog vteq b, o=
lim — |G (e Iy —G(e Iy ) :Va(ea—l).

t—o0 a/t

Since limy_, oo v~ & r¢(8,v) is independent of v and €}, €; then for sufficiently large
t and for any € > 0

= 1 _logttates _logt =z
ea—l—eg—[G(e Tz )—G(e s )}Sea—l—{—e.

log t
Let by = G (67%) — ay then we obtain

_logttaxtes

ai(e= —e)+bt§G(e Tt ) < aglex +e€)+ b

which is tantamount to (2.12) for v(z) = alogz, a > 0, z > 0 and by Lemma
2.4 completes the proof of sufficiency. O

Theorem 2.10 If R € Dg, and we choose a; = a}(1 — e~ =)L then

lim r(B,v) =v (e % —1)(e & — 1) (2.40)
t—o00
forall B € R, v €N, fized n # 0 and €, = o(1), & = o(1).
Conversely, if lim;_, o m:(8,v) = 3 exists for all 3 € R, v € N, fized pn # 0 and
€, = 0o(1), & = o(1) and if for all natural v, €, = o(1), & = o(1)
tlgrolo r(lLv)=v = (2.41)

logt

then R € Dy, with a; = af(1 — e*é)*1 and by = G (67 T ) + ag.

Proof. If R € Dg, with a; = af(1 — e =) ! then by (2.29) and from (2.25)
and (2.26) we get, for fixed u # 0

1 _logt+plogv+Bte; _logt+plogvtes
lim r(B,v) = lim — |G |e Te —G(e Tt )

t—o00 t—o00 a’t
= (1—e %) [h(ulogy + B) — h(plogv)]
_ (1_6_%)_1[_6_14105&1/44? _e_ulf;gv]
= (e T 1) Wt T -1
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which proves (2.40).
Now we will show the sufficiency condition. Set a; = af(1 — e =)~!. Then, as
in the proof of Theorem 2.8 a simple consequence of (2.41) is

1 _logt+plogvtkte; _logt+plogrtes u
1im—{G<e - n )—G(e o )] =y 5 (1—ev)2.42)

t—o0 at

for all integer k, for all natural v and €}, ¢;. When we consider the case k = 0 then
analogous way like in the proof of Theorem 2.8 we can have that r:(8, v, €}, €;)
is independent of €}, €.

As in Theorem 2.8, we can show that lim;_, o v& 7 (8,v) is independent of v.
We now want to show that

) 1 _logttplogvte] _ logttulogrtes o B
lim — |G |e Tt —G(e Tt ) =v a(l—e =).

t—o0 ag

for all real 8. In the case 8 = % for some positive integer k we get. From (2.40)

_n 1 . 1 _logt4plogv4l  log t4pulog v
v e(l—e =) = hm—[G(e Tt )—G(e Tt )]
t—o0 ag
k-1 105t+ulogu+i log t+plog v+ £
= lim — E Gle T —Gle T
t—00 Qg £
i=0
k-1 log t+u log v4+L
B, 1y . n 1 °g ""5" ogttplogvty _logttulogvy
= v=e(e7® )t lim ve— |G |e” D
. t—o00 ag
i=0
w1 — eié B, 1 logi""“og v+i log t4ulog v t+/.alogu
= VvV e———ve lim — |G |e G( )
1—e %a t—o0 g

Hence for all natural k, fixed g # 0 and all natural v and €}, = o(1), e = o(1),
we obtain

. 1 _logttplogvtite; _logt+plogvtes \ | o 1
thm— Gle Iy —G(e Tt ) =v a(l—e ’m).
— 00 at

For rational r this condition takes form

. 1 _logttplogvirie; _logt+plogvtes \ | o s
lim — |G e Tt —G(e Tt ) :Va(l—e a).

t—o0 at
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As in the proof of Theorem 2.8, we can take monotone , rational functions
converging from below (above) to the real number z and by monotonicity of G
get

) 1 _logttulogrtate; _logttplogvtes o e
lim — |G (e Ut —G(e Ut ) l/a(l—e a).

t—o0 g

Hence for sufficiently large ¢t and for any € > 0
» 1 _logttatey _logt »
1—6_3—6§—[G(e Tt )—G(e Tt )}Sl—e_?—f-e.

Qi
Taking by = G (eflol_fi) + a; we obtain

logt+z+eg

at(—(f% —€)+bt SG(C_ Le ) Sat(—efi +€)+bt

which is tantamount to (2.12) for y(z) = —alog(—z), a > 0, z < 0 and by
Lemma 2.4 completes the proof of sufficiency. O

Theorem 2.11 R € Dy, if and only if

_1
¢

(a) there exists an unique y such that R(y) =e~<,

. 1+clog R(rz+y) _
(b) hmrw Ttrclog Rirty) — z% x>0,

1+clog R(rz+y) _

lim, o TrclogRriy) — 0% T < 0.

Proof. Let the reliability function R belongs to the domain of attraction of R4.
By Lemma 2.1 there exist a; > 0 and b; € (—o0,00) such that

. * ’ 0
lim t(R(ax + b)) =V*(z) = { ?wa—% iio

t—o00

Since in this case I} = clogt + s(t) where s(t) = s then

clog t+s(t)

clog t+s(t) clogt

t (R(awz + b))t = ¢!~ " Fesr [t (R(azz + bt))mgt] (2.43)

Moreover we get

17clogt+s(t) s

clogt —S e ¢ and M

— 1last— oo.
clogt
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Therefore

Jlim ¢ (R(age + b)) '8t =V (x) (2.44)
where
0, x <0
Viz) = { e~ x>0.

We get for x > 0ast — o0

a

t(R(arx + blt))cmg t] ’ e 22
and further
12 (R(ag + b)) 18" = e~ (0" (2.45)
where
vy=2

Replacing in (2.45) vx by z, we get

a clogt2
t? (R(;ta: + bt)> —e .

By Lemma 2.2, we get

Qi
Qg2 = —, bt2 = bt.
Y

We can repeat this process and this way, for all natural k, we get
t

@y = % bk = bk =...=bp = by (2.46)

Hence a; — 0 as t — oo and b; is a constant, say y. For x = 0, we obtain from
(2.48)

t(R(by))°'°8" — 1 and elo8t(Helog B(b) _y 1 a5 ¢ — o0.
Hence

1
c

R(y) =€~ (2.47)
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We can show that y is unique.
1
Let there exists y' < y such that R(y") = e~ < then since a; — 0 we get

Veco 37, VisT, 0 +b €<y’,y) and R(azx + b)) = e~ <.
Hence
Vaco t (R(az + b)) 18" = e® =1

which is inconsistent with (2.44).
1

In analogous way we can show that there is no y” > y, such that R(y”) = e =
. Therefore the condition (a) is proved.
Hence and by (2.45), we get

00, z <0

NG (2.48)

tli}m logt (1 + clog R(arz + b)) =logV(z) = {

Let » — 0. Since a; — 0 as t — oo then for sufficiently small » > 0 we can
choose sufficiently large ¢, such that
ar <1 < apypp if ap < agqq (2.49)
or
a1 <7 <ap if agg < ag. (2.50)
Hence, for such that (2.49) holds, we get
1+ clogR(ai11 +y) <1l+clogR(r+y) <1+ clogR(a; +v).
For x > 0 we also get
1+ clogR(ai+1z +y) <1+ clogR(rz +y) <1+ clogR(aix + y)
and for x < 0
1+clogR(arx +y) <1+clogR(rx +y) <1+ clogR(ait1z +y).
This leads to

1+ clog R(att1z +y) < 1+ clog R(rx + y) < 1+ clog R(aix +y)
1+clogR(a;+y) ~ l+4+clogR(r+y) ~— 1+ clogR(ai1 +vy)

(2.51)
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for z > 0 and for z < 0 we get

1+ clog R(asz + y) < 1+ clog R(rz +v) < 1+ clog R(as 112 + y)
1+clogR(a:+y) — l+4+clogR(r+y) — 1+ clogR(ai1 +y)

(2.52)

Since
log(t + 1)

—1last— oo
logt

then from (2.48), it follows that, denominators of right and left sides of that
inequality (2.51) are convergent to —1 and numerators to —z® for z > 0. By
(2.48) we also get that dominators of right and left sides of inequality (2.52) are
convergent to —1 and numerators to oo for x < 0. In analogous way, we can
consider the case when (2.50) holds and we conclude the proof of necessity.
Now, suppose that (a) and (b) hold. We will show that R belongs to the domain
of attraction of R4. Define for x > 0

1

S Thogr S (2.53)
<1l+4clogR(z(1—-0)+y)}

a; = inf{z : 1 + clog R(z(1 +0) + y)

Since, according to (a) and (b) a; — 0 as t — oo then by (b), for € € (0,1) and
for z > 0 if t - oo, we have

1+clogR(az +y)  l+clogR(a(1—€)7% +y) . < " >a
1+ clog R(as(1 —¢€) +y) 1+ clog R(a;(1 —¢€) +y) 1—¢) "’
1+clogR(az +y)  1+clogR(ai(1+€)7F +y) . < T )a
1+ clogR(at(l+¢€) +y) 1+ clogR(at(l+¢€) +y) 14+€) °

For z < 0, we get

1+ clog R(azx + ) - 1+ clog R(asz + y)
1+ clogR(at(l —€) +y) " 1+ clogR(a(1+€) +y)

The left sides of the above relations are continuous functions of € and mono-
tone and the right sides are continuous functions. Therefore the convergence is
uniform. Now, for z > 0, we can write that for ¢ — oo

1+ clog R(atx + y) o 1+ clog R(atx + y) o

, - 2.54
1+ clog R(a;(1—0) +y) 1+ clog R(a¢(1 +0) +y) = (@5
and moreover for z < 0

1+ clog R(atx + y) S oo, 1 + clog R(a:z +y) — —00. (2.55)

1+ clog R(as(1 —0) +y) 1+ clog R(as(1 +0) +y)
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Form definition (2.53), for all z, we have

1+ clog R(asz + y)

1 log R
< —logt(l +clogR(at;g+y)) < + clog (at$+y)

1+ clog R(at(1 —0) +y) ~ 1+clog R(ai(1+0) +y)

By (2.54) and (2.55)

00, z <0

logt (1 + clog R(a;x +y)) — { Za, w0,

For x = 0 we get

logt(1+ clog R(a;z +y)) = 0

hence
lim t(R(aww + b)) = V(2)
t—00
where
00, z <0
Viz) = { e, ©>0.

Considering the beginning of the proof

lim ¢ (R(az + b)) = V*(x)

t—o00
where
00 <0
Viz) = Ja_s
() {e_”” e, x©>0.

By Lemma 2.1, we conclude that R belongs to the domain of attraction of
R4 O

Theorem 2.12 R € Dr, if and only if
(a) there exists an unique y such that R(y — 0) = e <,

. 1+clog R(rz+y) __
(b) hmrTO WM = [L’D" T > 0,

14clog R(rz+y) _

lim, 40 Telog Rity) — 00 7 < 0.
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Proof. Let a reliability function R belongs to the domain of attraction of
Rs. By Lemma 2.1 there exist a; > 0 and b; € (—00,00) such that

. (—a)"—+
lim t(R(a + b)) = e ¢V (z) = { ¢ » £<0

t—00 0, x> 0.
and
. _ (=), <0
tlggo logt (1 + clog R(azx + by)) = logV(z) = { ", r>0. (2.56)

Proceeding in the same way as in the proof of the Theorem 2.11, we can con-
struct a; and b; such that

at —0ast—ocoand by =y
From (2.56), we have
Ve<o logt (14 clog R(aix + b)) — (—x)*.
Hence
Eg R(z) =e*.

As in the proof of Theorem 2.11 we can show that y is unique. Therefore part
(a) is proved.

Further
. _ (=), <0
tlg& logt (1 + clog R(aiz +y)) =logV(z) = { —so. w30 (2.57)

Let 7 — 0. Since a; — 0 as t — oo then for sufficiently small —r > 0 we can
choose sufficiently large ¢, such that

— Q¢ S r S —Q¢41 if Ai41 S ag (258)
or
— Q41 S r S —Qy if ag S Aty1- (259)

As in the proof of Theorem 2.11, in the case when (2.58) holds, we get

1+ clog R(—a412 +y) < 1+ clog R(rz +y) < 1+ clog R(—aix + y)
1+clogR(—a;+y) — 1+clogR(r+vy) — 1+clogR(—azr1+y)
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for x > 0 and

1+ clog R(—atx + y) < 1+ clog R(rz +y) < 1+ clog R(—atr12 + y)
1+clogR(—a;+vy) — l4+clogR(r+y) = 1+clogR(—aw1+y)

for z < 0. We can consider also the case when (2.59) holds. This way we obtain
that (b) is satisfied.

Now, suppose that (a) and (b) hold. We will show that R belongs to the domain
of attraction of Rg. Define for x > 0

a; = inf{x : 1 + clog R(—z(1 —0) + y)

S logt S (260)
<1l+clogR(—z(140)+y)}

Since, according to (a) and (b) a; — 0 as t — oo then by (b), for e € (0,1) and
for z < 0 if t = oo, we have

1+ clog R(asz + y) _ l4clogR(—a(l — €)= +y) oz “
L+clogR(—ai(1—€)+y)  1+clogR(a:i(l—¢€)+y) 1—¢) ’
1+ clog R(asx + y) _ L+clog R(ar(1+ €)% +y) <_ T )a
1+clogR(—a;(14+¢)+y) 1+clogR(—a;(1+¢€)+7y) 1+e
For x > 0, we get
1+ clog R(aiz + y) oo, 1+ clog R(a;x + y) o 0.

1+ clog R(—a¢(1 —€) +y) 1+ clog R(—a¢(1+¢€) + )

The left sides of the above relations are continuous functions of € and mono-
tone and the right sides are continuous functions. Therefore the convergence is
uniform. Now, for z < 0, we can write that for ¢ — oo

1+ clog R(atx +y)
1+ clog R(—az(1 —0) +y)
1+ clog R(asz + y)

= (~2)°, (2.61)

= (—x)® 2.62
1+ clog R(at(1 +0) +y) (=2) (2.62)
and moreover for z > 0
1+ clog R(atz + y)
— 2.63
1+ clog R(—a;(1 —0) +y) o (2.63)
1+ clog R(atz + y) . (2.64)

1+ clog R(—az(1+0) +y)
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Form definition (2.60), for all z, we have

1+ clog R(azx + )

1 log R
<logt(1+ clogR(azx +y)) < + clog B(aiz +y)

1+ clog R(—a;(1 —0) +y) ~ 1+clogR(—a¢(1+0)+y)

By (2.61),2.62) and (2.63), (2.64)

(_m)aa <0
logt(l—i—clogR(atw-Fy))_) { —00, x>0
and
Tim ¢ (R(aw + b)) = V()
where
e(iz)a’ T < 0
V(z) { 0, x> 0.

Finally we get

lim ¢(R(atz + bt))lt = e*§V(x) =

t—o0

e =% 2<0
0, x> 0.

By Lemma 2.1, we conclude that R belongs to the domain of attraction of
Rs. O

Theorem 2.13 R € Dg, if and only if

(a) there exists an unique y such that R(y) = e <,
(b) lim, o FERERTEED) — ga g > 0.
Proof. Let R € Dg,. From Theorem 2.12, we have
3,, Rly2—0)=e* (2.65)

and

1+ clog R(r(ﬂéx) + y2)
10 1+ clogR(r + y2)

=pz% x>0,8>0
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that is

1+ clog R(rz +y) o
= 0 2.66
"o 1+clogR(r+y) v (2:66)

and
ag — 0, bt — Y2.

From Theorem 2.11, we get

3y R(p) =e~* (2.67)
and
1+ clog R(rx +y1) o
= 0 0 2.68
"0 1+ clogR(r +y1) ¥ >0, 6> (268)
and

at—>0, bt—)yl.

Hence y; = y» = y. By (2.65) and (2.67), we get (a) and by (2.66), (2.68), we
get (b).

Now, suppose that (a) and (b) hold. To fix the form of limit reliability function
R for x < 0, we may notice that

3, R(y)=e ¢ hence R(y —0) = e *. (2.69)
By (b) for 81 > 0, we get
1
1+ clog R(r(B7 z) + y2) N

= 0. 2.70
10 1+ clogR(r + ys2) b, o> (2.70)

By (2.69) and (2.70), considering Theorem 2.12, we get
R(z) = 1 — exp|— exp[B1 (—2)* — z]] for z < 0. (2.71)

To fix the form of the limit reliability function R for > 0, we may notice that

1

3, R(y) =€ =. (2.72)
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By (b) for 82 > 0, we get

lim 1+ clog R(r(Bs x) + y2)

e @ 0. 2.73
rto 14 clog R(r + y2) Por®, &> (2.73)

By (2.72) and (2.73), considering Theorem 2.11, we get
R(z) =1 — exp[—exp[fa2* — Z]] for z>0. (2.74)

Combining (2.72) and (2.74)

s

_ 1 —exp[—exp[Bi(—x)* = 2]], for <O
Riz) = { 1 —exp[— exp[ﬁlx”‘ - 2], for z>0.

This las result, according to Definition 2.11, means that R € Dg,. O
Theorem 2.14 R € Dx, if and only if there exist a > 0 and b such that

_1 _1
vye<az1+b,az2+b) R(y) =e = and vy¢<az1+b,az2+b) R(Z/) 7& € < (275)

Proof. Let (2.75) holds. We will show that R € Dg,. Since
t(R(arw +by) = elostiFelo Rlaeb) =

then assuming a; = a and b; = b, we get

elog t(1+clog R(aterbt))ef% —e 2

v
v
v

_y—b
:E_T€<z1,z2) )

1
_s —cte)y) _s
x:y;b<z1 36>0 elogt(l—i—clogR(aiaH-bi))e s _ elogt(l—i—clog(e ))6 ¢ = 00,
1. .
36>0 elogt(1+c10gR(atz+bt))67§ — elogt(lJrclog(e c ))67; 50

—_y—b
r=4—2>ws

as t — oo. It means that there exist a; > 0 and b; € (—o0, 00) such that

lim ¢ (R(aw + b)) = e #V(x)
t— o0
where
o0, T IT
V(z) = 1, zm<z<z

0, x>z
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Hence, by Lemma 2.1, R € Dg,.
Now, suppose that R € Dx.,. Since there exist a; > 0 and b; € (—00,00) such
that

lim elogt(1+clogR(atz+bt))eff — 67%‘/(1’) (276)
t—o0
where
00, T<I
V(z) = 1, oz <z<z
0, x>z
then
Vie<ar,z) Rlaz+b) = e . (2.77)

We will discuss separately the following three possible cases:
Case 1:

dyoecn R(yo) = e * and Vytyo R(y) # e T,
In this case by (2.77), we get
Vee<zr,zs) @T + bt = yo ast — o0
and
—t4o(mgy)

Tog t

R(atx +b;) =e .

Hence we get a; — 0, by = yo and further
Vee(—oco,e1)U<za,00) AT + by = yo as t — oo.

Since R is continuous in yg, then

sFo(iey)

vze(foo,w1)u<z2,oo) R(a’tx + bt) =e ° Tog?

which is inconsistent with (2.76).
Case 2:

3y R(yo) =e * R(yo—0) =€t Vyuy R(y)#e *.
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In this case by (2.77), we get
Vec<or,as) @ +by — yo ast — oo

and

R(aix + b)) = e~ 0lmgt),
Hence we get a; — 0, by — yo and further
Vee<za,0) T + bt — Yo ast — oo,
Since R is right continuous in yp, then
Voecanoo) R(arm +by) = e~ ()

which is inconsistent with (2.76).
Case 3:

1 1

Fy1 s vy€<y1,yz>R(y) =€ Yygcy po> R(y) #e =.
From the above and by (2.76), we have
vz6<m1,zz) Elye<y1,y2> atT + bt Y ast — 00, (278)

which holds either

(a) if a; — 0 and there exists yp €< y1,y2 > such that by — yo
or

(b) if there exist a > 0 and b such that y = az +b €< y1,y2 > and
ay — a, b; — b.
If the condition (a) holds then by the same arguments to that used in Case 1
and Case 2 we can find contradiction with (2.76). If the condition (b) holds
then by Lemma 2.2 we get a; = a,b; = b. Since (2.77) holds then

< azxy +b,ars +b) C<y1,y2 >
and
_1
Vy€<am1+b,am2+b) R(y) =€ c.
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If there exists yo < az; + b such that R(yo) = e~ ¢ then since a; = a,b; = b and

yo—b
— < 1 we get

elogt(1+c1ogR(at(y0a*b)+bt)) — elogt(l+clog R(yo)) — 1
- - )

which is inconsistent with (2.76).
Similar way we can show that there is no yo > azs + b such that R(yo) = e .
From the above and since R is reliability function we get (2.75). O

Theorem 2.15 R € Dg, if and only if

. 1—R(r)
1 S el . 2.
Jim o Rira) x® for x>0 (2.79)

Proof. R € Dy, if and only if there exist a; > 0 and b; € (—o0, 00) such that

Rg(@) = im Ry, (are +b) = lim 1— (1 = (R(apz + bi))" )"
for x € Cr,. Under the assumption (2.24) we get

Re(z) = lim 1 — (1 — (R(asx + b))k

t—o00

if and only if

lim (R(a:x + by))'* = Ro ()

t—o00

which means that R € Dﬁz . Hence from the well known theorems about
domains of attraction of limit reliability functions for series systems we obtain
(2.79). O

Theorem 2.16 R € Dr, if and only if
(a) there exists y such that R(y) =1 and R(y +¢€) < 1 for all e > 0,
(b) lim, o % =zx* for z>0.

Proof. R € Dy, if and only if there exist a; > 0 and b; € (—o0, 00) such that

Ro(@) = im Ry, (are +b) = lim 1— (1 = (R(apz + bi))" )"
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for x € Cr,. Under the assumption (2.24) we get
Ro(z) = lim 1 — (1 — (R(asz + b;))")*
if and only if

. i _ 7
tli>rIolo(R(atm + b))t = Ra(x)

which means that R € Dﬁl . Hence from the well known theorems about
domains of attraction of limit reliability functions for series systems the proof
is concluded. O

Theorem 2.17 R € Dy,, if and only if the condition

lim lt(R(atm + bt)) =e" (280)

t—00

is satisfied for all x, where by and a; are defined as

b = inf{e: Rz +0) < 1— ll <R@-0)  (281)
ap = inf{z: R(z(1+0) + b)) <1— = < R((z(1 — 0) + by)} (2.82)

l
Proof. R € Dg,, if and only if there exist a; > 0 and b; € (—00, 00) such that
Rio(z) = im Ry, x, (arz +b) = lim 1 — (1 - (R(agx + by))")*
for © € Cr,. Under the assumption (2.24) we get

Rio(z) lim 1 — (1 - (R(asz + bt))lt)k

- t—o00

if and only if

lim (R(asx + b))t = Rs(x)

t—o0

which means that B € Dz . Hence from the well known theorems about
domains of attraction of limit reliability functions for series systems we get
(2.80), (2.81) and (2.82). O
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2.5 Domains of attraction of limit reliability func-
tions for parallel-series systems

Since of duality (see Lemma 2.5) the result obtained for series-parallel systems
can be easily transformed on the parallel-series systems. Hence the theorems
are presented here without proofs.

First let us define

G :[0,1] = (—00,0), G(u) = inf{z|F(z) > u},

— — [ _logt-1 — [ _logt
a*y = G(e It )—G(e ’t),

L = _logttulogr—fte; __/ _logt+pulogutes
T(Bv) = = |Gle Tt —G(e Tt ) .

where t € (0,00), B € R, v is a natural number and €; = o(1), e, = o(1).

Theorem 2.18 If R € Dz and we choose a; = a* (e —1)7! then

im T8 ) b (e — I)(ek — 1)1
Jim 7(8,0) = v 5 (eF — 1) ~ 1)

forall B € R, v €N, fized n # 0 and €, = o(1), & = o(1).
Conversely, if lim;_, o m:(8,v) = 3 exists for all 3 € R, v € N, fized pn # 0 and
e; = o(1), ¢, = o(1) and if for all natural v, €, = o(1), ¢ = o(1)

. — e
tlgrolo T(l,v)=v =

then R € Dz with a; = Ft(ei — 1)l and by =G (e lft) —ay.

Theorem 2.19 If R € Dy and we choose a; = a*;(1 — e=%)7! then
lim 7(8,0) = vE (e F —1)(eF - 1)

forall p € R, v €N, fized p #0 and €, = o(1), & = o(1).
Conversely, if lim;_, o m:(8,v) = B exists for all 3 € R, v € N, fized pn # 0 and
€; = o(1), & = o(1) and if for all natural v, €, = o(1), & = o(1)

im T =ya
tlggo Ti(l,v) =v
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then R € Dy with a; = a*y(1 — eé)*1 and by = G (eflol;it) + ag.

Theorem 2.20 If R € Dy, and we choose a; = a*; then
tll>ngo Ft(ﬁ,l/) = B
for all B € R, v €N, fized p # 0 and €, = o(1), e = o(1).
Conversely, if lim;_, o T+(8,v) = B exists for all 3 € R, v € N, fized u # 0 and

€; = o(1), & = o(1) and if for all natural v, €, = o(1), & = o(1)

tlgrolo Te(l,v) =1

then R € Dﬁs with a; = a*; and by = G (eilft )

Theorem 2.21 R € Dz, if and only if

1
c
’

(a) there exists an unique y such that R(y —0) =1—e

. 1+4cl 1-R(rxz+ _ o«
(b) lim,jo LEEpE0 ARG = o 5> 0,

1+clog(1—R(rz+y))

lim;0 Ttclog(1_R(r+y))

=—00, z <0.

Theorem 2.22 R € Dz if and only if

o=

(a) there exists an unique y such that R(y) =1—e

’

. 1+4cl 1-R(rz+ _ o«
(b) lim, o 1+Cl°0gg((1_1§(r+yy)))) =z% x>0,

1+clog(1—R(rz+y))
1+clog(1—R(r+y))

limr‘w

=—00, z <0.

Theorem 2.23 R € Dy if and only if
_1

(a) there exists an unique y such that R(y) =1—e

. 1+4cl 1-R(rz+ _ o«
(b) lim, o 1+cf0gé(1_R((r+yy)))) =z% x> 0.

Theorem 2.24 R € Dz, if and only if there exist a > 0 and b such that
1 1
vy€<az1+b,az2+b) R(y) =1-e < and vy¢<az1+b,az2+b) R(y) 7& 1—e"c
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Theorem 2.25 R € Dz if and only if
(a) there exists y such that R(y) =0 and R(y —€) > 0 for all e > 0,

(b) lim, o 2 = 22 for &> 0.

Theorem 2.26 R € Dz, if and only if

lim R(r)
r—oo R(rz)

=z% for ©>0.

Theorem 2.27 R € Dy,, if and only if the condition
: _ -
tlggo le(R(atz + b)) =e
is satisfied for all x, where by and a; are defined as

by =inf{z: R(x +0) < — < R(z —0)}

1
A
a = inf{z : Rr(1+0)+b) < 7 < B((@(1-0) + b))

2.6 Examples

Example 1
If the regular homogeneous series-parallel system is such that

1, z<0
R(:L’) :{ e—Mc T ; 0

and the pair (k¢,!;) satisfies condition

k?t = t, lt = (IOg t)t

then R € Dg,.
Justification. Since p(t) = ¢ then by Case 3 of Theorem 2.5
7, = ty (-0 Teat Toa(ox D)
and
() = ()] = Ir —t] = t [yrETEED — 1] =

X

log v N log v
(1 —t)logtlog(logt)| ~ logtlog(logt)
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Hence § = 1. From estimation (2.20) we get u = 1.
Now we will find the inverse function of R.

1
Gu) = X log u.

We get
=G eft?fgt:r)i G e*(nl:ggtt)t _ llogt +1 B 1 log t _ 1 1
A (logt)t  A(logt)t A (logt)?t
and
1 _logt+1 _ _logt
re(l,v) = — [G (e ('°St>t> -G (e (logtﬁ)}
ag
llogt+logry+1 1llogtlogv
= Alogt)! |~ - — =
(log#) {/\ (log t)t A (logt)t
Hence by Theorem 2.8, R € Dy, with a; = m and b, = 5 (logt)'~".
Example 2
If the regular homogeneous series-parallel system is such that
1, z<0
R(z) = exp[@], 0<z<1
0, z>1

and the pair (k¢,[;) satisfies condition
k‘t = t, lt = (10gt)2

then R € Dg,.
Justification. Since p(t) =2 then § =1 so p = 1.
The inverse function of R is given by

60 e[ 1]

and

_logt41 __logt_ log? t
af = @ (e (15502) -G (e (‘°ggf)2> = exp {_logfﬁ] — exp [ log1]

—10gt+
ok _ g logt o o logt(l—pg) _ o logt _ 1(6 —1).
t

= €
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We have

]_ _logttlogv+1 _ logt+tlogv
Tt(l,V) = — |:G (e (log )2 ) -G (6 (log £)2 >:|
a;
1 1 1
= S| —ex
@ pl%ﬂ—ﬁﬁg%ﬂ) pl%a_m%%u)
~ i [e—logt(l—%) _ e—logt(l—llzgg'i’)] — i l(eflogVJrl _ elogy) _
a; a; |t
1 1 logrv,1
= — |-e%(e —1)| »vast— oo,
a; |t

Hence by Theorem 2.9, R € Dg, with a; = } and b; = 0.

Example 3
If the regular homogeneous series-parallel system is such that
1, z<0
R(z)=< 1-2, O<z<1
0, x>1

and the pair (k¢, ;) satisfies condition
k‘t:t, lt:C, c>0

then R € Dg,.
Justification. Since p(t) =0 then § =0 so p = 1.
The inverse function of R is given by

G(u) =1-—u.
We get
ag = G (6_%) -G (e_lngt) 1 _ e—togt+l) _q 4 ,—tlogt _ t—%(l—e*%)
and
(L) = — [ (e =) g (o )]

[1 _ e tllogttlogr+l) _ + e~ < (log t+log V)] —

S~ &=
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Hence by Theorem 2.10, R € Dy, where

with a; = # and by = 1.
Example 4
If the regular homogeneous series-parallel system is such that

R(z) = 1, z <0
)= exp[—Aexp(z)B], 2<0,4A>0,B>0

and the shape of the system is described by

1
k?t = t, lt = Zlogt
then R € Dg,.
Justification. We get
fory=0, Ry) =e 4 = e <
1+clog R(rz+y)

—eXx rr B
limrw Ttelog R(r+y) = limr.LO %{E[Wg]] = g[jB forz >0
lim, .o %’m =lim, o #W‘B] = —oo for z < 0.
Hence R € Dy, where
1, x <0
Ralw) = { 1 —exp[—exp(—zB)], = >0.
Example 5
If the regular homogeneous series-parallel system is such that
1, x <0
R(z) =< 2 0<z<1,
e ”, r>1

and the shape of the system is described by
k‘t = t, lt = lOgt

then R € Dgr;.
Justification. We get
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fory=1, Rly—0)=e 4 =e""!

. 1+clog R(rz+y) _ 1: 1+(ra+1(rz1)) _ 2

llmrTO W = llmrTO W =z° for x >0
. +clog rr+y) _ 1: —(rz+ 1 — _
im0 Toog RTy) = WMo THon ety = Mo 555 =
=lim;40 =% = —o0 for x <O0.

Hence R € Dg, where

1 —exp[—exp(—z)?], z<0
Rote) = { J Zlewa) 2 <0

Example 6
If the regular homogeneous series-parallel system is such that

r<—1
1<z <0,
0§m<%
mZ%

&

R(z) =

K wi=

O o= =

and the shape of the system is described by

logt
ky=t, Iy = o8

~ log?2

then R € Dg,.
Justification. We get
fory=0, R(y) =3 =e 82 = e<

14clog R(rz+y) 1-1

1+—lcé 5 log(5—5rx)

lim, 1o Trelos Rty = lim, 4o T, Tog(3 -1 =zforz >0
1 1

. 14clog R(rz+y) _ 1. I+i5e3 log(5—rz)

lim, o Trclog ROty = lim, o —S—Hloéz og1-r) = ¢ forz <0

Hence R € Dg;.
Example 7
If the regular homogeneous series-parallel system is such that

1, x <0
R(z)=< e !, 0<z<A,
0, 0<z>A,A>0
and the shape of the system is described by
kt = t, lt = logt
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then R € Dg,.
Justification. It is easy to notice that above function satisfies condition (2.75)
of Theorem 2.14.

Example 8
If the regular homogeneous series-parallel system is such that

1, z <0
1-— %arctan:r, z>0

R(z) = {
and the shape of the system is described by
kt:k‘, lim lt:OO
t—00

then R € Dg,.
Justification. We get
for y = 0, R(y) = 1,

. 1—R(rz +y) . 1—Zarctan(rx)
lim ———= = lim z

rio 1— R(r +y) rlo 1 — 2 arctan(r)

e
lim L&

1
(R F

=g for z > 0.

2.7 Conclusions

We have presented the necessary and sufficient conditions for the reliability func-
tion to be in domain of attraction of certain limit distributions. The obtained
results allows us to find the limit distributions of the homogeneous series-parallel
and parallel-series systems. These theorems can be used to prepare table which
immediately gives the answer what limit reliability function can we get for given
shape of the system and given element’s distribution. However, they can be use-
ful in finding the limit reliability functions for non-homogeneous and multi-state
systems.
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Chapter 3

Limit reliability functions
for non-homogeneous
systems

Dorota Kurowicka, Krzysztof Kolowrocki

Abstract: In this paper we present the way of finding limit reliability func-
tions of non-homogeneous series, parallel and series-parallel systems using the-
orems about domains of attractions; that is,theorems which give the necessary
and sufficient conditions for reliability function of the system’s components such
that the limit reliability function of this system is determined.

Keywords: extreme value theory, limit distributions, series-parallel systems
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3.1 Introduction

In the reliability estimations of large scale systems it is important to know the
influence of the type of components’ reliability on the reliability of the system.
For the series and parallel systems this problem was intensively studied by a lot
of authors. These study consisted of finding possible limit distributions of the
maximum of n i.i.d. random variables, determining the necessary and sufficient
conditions under which these distributions occur (Gnedenko [17]) and (Haan
[9]), finding the rate of convergence (Dziubdziela [12]). The theory of i.i.d. se-
quences was generalized by permitting dependence (e.g for Markov or stationary
sequences) or allowing elements to have different distributions. Summarization
can found in (Leadbetter, Lindgren and Rootzen [44]). In this chapter we will
keep the assumption that variables are independent but they can have different
distributions. We will call such a systems non-homogeneous. In Section 3.2
we present essential notions, definitions and lemmas necessary in this chapter.
In Section 3.3 the possible limit distributions for non-homogeneous series and
parallel systems are given and the theorems showing how to find which limit
distribution occur are presented. Section 3.4 consists of generalization of ob-
tained for series and parallel systems results on a series-parallel systems. Some
examples are also given.

3.2 Essential notions and theorems

Suppose that E;, i = 1,2,...,n, n € N are components of the system S and
X; are lifetimes of E;. Moreover, suppose that X; are independent random
variables.

Definition 3.1 We will call the series* (paralleP) system non-homogeneous if
it is composed of a types elements, 1 < a < n, and fraction of i-th kind element
is equal to q; , where ¢; > 0,51 | ¢; = 1. Moreover RY is a reliability function
of i-th type elements.

LA system is called series if its lifetime X is given by

1<i

X = min {X;}.
<n
2 A system is called parallel if its lifetime X is given by

X = ax {X;}.
lrélzsxn{ l}
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E,
q

E,
a,

E, —— q,

Figure 3.2. The shape of non-homogeneous parallel system.

The sequence of reliability functions of the non-homogeneous series system is

a
R (2) = [[(R@)"", @€ (-00,00), n €N
i=1
and for the homogeneous parallel system

R (r)=1- H(F(w))q"”, x € (—00,00), n € N.

i=1

Suppose that E;;, where ¢ = 1,2,...,k,, 7 = 1,2,...,1; , are components of
the system S and Xj;; are lifetimes of E;;. Moreover, suppose that X;; are
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independent random variables.

Definition 3.2 A regular series-paralleP (parallel-series) system is called non-
homogeneous if it is composed of a, 1 < a < ky,, k, € N, different kinds of
series (parallel) subsystems and the fraction of the i-th kind subsystem in the
system is equal to q;, where q; > 0, Zle qi = 1. Moreover, the i-th kind series
(parallel) subsystem consists of e;, 1 < e; < l,, I, € N, kinds of components
with reliability functions RO, j = 1,2,...,e; and the fraction the j-th kind
component in this subsystem is equal to p;;, where p;; > 0 and Z§=1 pij = 1.

Figure 3.3. The shape of non-homogeneous series-parallel system.

3 A system is called regular series-parallel if its lifetime X is given by

X = i X;it}.
’ 25, Lo, e
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Figure 3.4. The shape of non-homogeneous parallel-series system.

The reliability function of the regular series-parallel non-homogeneous system
is given by

Lok (@) =1=T[01 = (RD ())""]%*», 2 € (—o00,00)
i=1
where
RO (z) = H(RW) (x)P9, i=1,2,...,a.
j=1

The reliability function of the regular parallel-series non-homogeneous system
is given by

a
R, () = 1= T11 = (FO(2))]%*", @ € (—o00, 00)
i=1
where
€;
FO(z) = [JE ) (@)r9, i=1,2,...,a.
j=1
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Next replacing n by a positive real number ¢ and assuming that k; and [; are
positive real numbers, we obtain families of the regular systems corresponding
to t and to the pair (k¢,l:). For these families of the systems there exist families
of reliability functions.

The family of reliability functions of the non-homogeneous series system is given
by

Ry (z) = H(R(m))q"t, x € (—00,00), t € (0,00) (3.1)

i=1
and for the non-homogeneous parallel system by

a
Ri(x) =1 = [[(F@)"", = € (—00,00), n € (0,00). (3.2)
i=1
The family of reliability function of the regular series-parallel non-homogeneous
system is given by

k() =1— H[1 — (R (x))%]9% | 2 € (—o0,00), t € (0,00), (3.3)
where

RO(z) = [TR“™(x))?9, i=1,2,...,a. (3.4)

j=1
The family of reliability function of the regular parallel-series non-homogeneous
system is given by

R, (2) =1 - H[l — (FO(g))l]%k | 2 € (—00,00), t € (0, 00), (3.5)

i=1

FO(z) = [JE@ (@), i=1,2,...,a. (3.6)

j=1

Definition 3.3 (Limit reliability function)
A reliability function R is called a limit reliability function of the family R; given
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by (3.2) R, .k, given by (3.3)) if there exist functions a; > 0 and by € (—o0, 00)
such that

tli}m Ri(asx + b)) = R(x) for x € Op*

(tll>IIolo Ri, k. (aex + b)) = R(x) forz € C’R)

The pair (ag, be) is called a norming function pair.

Similarly we can introduce the definitions of limit reliability function for series
and parallel-series systems.

From the above we get that the exact reliability function in point x is approxi-
mately equal to the limit reliability function in the point zg—:"

R(z) ~ R (x_bt>. (3.7)

Qg

We can formulate equivalent conditions which should be satisfied to get the
weak convergence to the non-degenerate® limit reliability function. The lemmas
below can be found in Kolowrocki [24]. The proof of the first lemma is presented.
The other lemmas can be proven similarly.

Lemma 3.1 If

(a) the reliability function R'(z) = exp[—V'(z)],
(b) the family ®'; is given by (3.1),

(c) ar > 0,b; € (—00,00) are some functions
then

Jim R’y (arx + b)) = R () for z € C=r (3.8)

4 C'r means the set of continuity points of R.
5 A reliability function R is called degenerate if there exists zo € (—o0,00) such that

_ 1, <o
R(z) = {0, z > zo.

69



s equivalent to the assertion

lim ¢ (Z G FD (ax + bt)> =V'(z) forze Cym (3.9

t—o0
i=1
Proof. Suppose that (3.8) is satisfied.Then, for all € Cs such that R’ # 0
that is V' # oo, by (3.1) for i = 1,2...,a we have
lim FO (a;z + b;) = 0. (3.10)

t—o0

Moreover, according to (3.1), the condition (3.8) can be written for x € Cy7 in
the form

limy o0t Y 7, gilog R (azx + by)

=limy o0t Yo, gilog[l — FO (ax + by)] = =V (). (3.11)
From the expansion
log(l—xz) = —xz—o(x),
where o(z) < x and from (3.10), for i = 1,2, ..., a we obtain
tlog [1 — FO(quz +b)] = [—tFD(az + by) — to(FD (apz + by))] (3.12)

l [ (%) atT t
—t I:F(Z) (ata: + bt) + W} .

From the above and (3.11), we get (3.9).

On the other hand, if (3.9) is satisfied, then (3.10) also holds and from (3.12)
we obtain (3.11) and next by (3.1) the condition (3.8) holds.

Besides, for all x such that R’ = 0 that is V' = oo if (3.10) is satisfied, then
from the previous performed discussion it follows that conditions

im P _
tl—l>rgo Bis t(ata: + bt) =0 (313)
and
a 3
tlggo t Z 0 FD (az + by) = oo (3.14)
i=1

are equivalent. Otherwise, if (3.10) does not hold, that is, there exists ¢ such
that

t—o00
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and (3.13) is satisfied then it follows that (3.14) holds. Now if (3.14) holds then

= —0

a a
i , (9) - I , _ @
tlgrolo t 2; g;log R\ (azx + b)) = tlgrolo t 2; g; log [1 FY(aux + bt)}
1= 1=
i _ p(4)
< tlirgo [ t Z; aq; F\Y (arx + by)

in the case when F)(qux +b;) # 1 for i =1,2,...,a and by (3.1)

§R’t(atw + bt) =0

and in the case when there exists i such that F()(a;z 4+ b;) = 1. Hence (3.13)

holds which concludes the proof. O

Lemma 3.2 If

(a) limi,eo ke = 00,

(b) the reliability function R'(z) =1 — exp[—V'(z)],
(c) the family R, ;. is given by (3.3),

(d) a¢ > 0,b; € (—o0,00) are some functions

then

lim %), (ax + b)) = R'(z) forz € Cr

t—00

18 equivalent to the assertion

tlggo k¢ (Z; ¢i(RY (a;z + bt))“> =V'(z) forze Cy
where R is given by (3.2).

Lemma 3.3 If
(a) hmt_mo k‘t = k, hrnt_wo lt = 00,

(b) the reliability function R'(z) =1 — exp[-V'(z)],
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(c) the family R; , is given by (3.3),
(d) at > 0,b; € (—00,00) are some functions
then
lim R, (ax +b) =R'(x) for z € Cr (3.17)

t—o00

is equivalent to the assertion

. It
lim (R(’) (azz + bt))) = Qo(z) forz € O, (3.18)

t—00

where S is non-degenerate reliability function.

Lemma 3.4 If R(x) a limit reliability functions of the series (parallel-series )
system then function

R(z) =1—-R(—x)

is a limit reliability function of parallel (series-parallel) system.
If the pair (az,be) is the normalising function pair for series (parallel-series)
system then (ag, —by) is such a pair for parallel (series-parallel) system.

3.3 Limit reliability functions for non-homogeneous
series and parallel systems

In (Kolowrocki [24]) it is shown that there are three possible limit distribution
for non-homogeneous series system as follows:

=7 _ 1, <0
Rii(z) = exp[—d(z)z®*], >0
R'3(z) = exp[—d(z)expz], z € (—00,00).

and three for non-homogeneous parallel system

, _ 1, <0
Rii(z) = 1 —exp[—d(z)z™%], >0
Riy(z) = (1),_ exp[—d(z)(—z)°], i ; 8 (3.20)
R's(z) = 1—exp[—d(z)exp(—z)], z € (—o0,00).
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where function d depends on the reliability functions of the particular compo-
nents and their fraction in the system.

The theorems below show how to find which limit reliability function occur.
We can see that in general the procedure of finding limit distribution of non-
homogeneous system consist of choosing the ”worst” (is sense of condition (c) in
the theorems below) reliability function of the elements of the system, such that
it belong to the domain of attraction (R € Dg) of respective distribution (con-
dition (b)). The contribution of the reliability functions of the other elements
reveals in the function d.

Theorem 3.1 If
(a) Re {RV R® ... R®},

(b) there exists y such that R(y) =1 and R(y —€) < 1 for all e > 0,

1-R(rz+
I=Rredy) — po g5 0

limr‘w T_R(r+y)

_pt) .
(c) limrw% <1lfori=1,2,...,a, x>0,

there exists function

d() 0, x <0
T) = . a _R®
limy 0> 5, Qi%ﬁz_)w’ 20

then R'y is a limit reliability function of the non-homogeneous series system.

Proof. Let (a), (b) and (c) be satisfied. It is shown in the proof of theorem
about domain of attraction of limit distribution for series systems (Gnedenko
[17])¢ that for normalising functions a; and b; defined as follows:

a; =inf{z|R(z(1-0)+y) <1-=<R(z(14+0)+y)},z>0 (3.21)

| =

and

by =y, (3.22)

6 The variables here are indexed with positive real numbers ¢ not like in (Gnedenko [17])
where indices are natural. However, it doesn’t impose any extra restrictions since it is shown
in (Kurowicka [32]) that the theorems about domains of attraction are valid also in the case
of real index.
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where y is a point such that R(y) =1 and R(y —€) < 1 for all € > 0, we get

tlim t(1— R(awxr +vy)) =Vi(x) (3.23)
where
= . 0, <0
Vile) = { x* x>0.

We also get a; — 0T. The condition (3.23) for z > 0 can be written in the

following form

2“: 1-— R(’) (azz +y)
& R(a: +y)

lim t(l — (J,t.’E + y
t—00

Hence for z > 0 we get

a

Zq 1— R (a;x +y)
' R(at +y)

tlgrolot(l — R(awz +y)) =d(z)Vi(x).

By (b) and monotonicity of R(® follows that R()(y) = 1 for i = 1,2,...,a.
Hence

t—00

lim ¢ <Z ¢ F9 (ax + y)> =d(z)Vi(z) =V'i(z)

which by Lemma 3.1 means that R, is a limit reliability function of non-
homogeneous series system with function d defined above. O

Theorem 3.2 If
(a) Re {RM R® .. . R@},

(b) lim,_ ETR((M)) =z% >0

. RrR®
(c) lim,_ o0 ﬁ <1fori=1,2,...,a, x € (—00,00),
there exists function

d(z) = rlggo;qiil " R(ra) x € (—00,00)



then R'y is a limit reliability function of the non-homogeneous series system.

Proof. Let (a), (b) and (c) be satisfied. It is shown in the proof of theorem
about domain of attraction of limit distribution for series systems (Gnedenko
[17]) that for normalising functions a; and b; defined as follows:

4y = inf{a|R(—2(1 +0)) < 1— % < R(—z(1-0)},2> 0
and
b =0,
we get
tlgrolo t(1 — R(atx)) = Va(2) (3.24)
where
T = {57 150

We get a; — oo. Hence by (c) and since by (b) and (c¢) d(z) # 0 for all
z € (—00,00)

“ 1 RO (apr _
lim ¢(1 - R(a)) [Z q%«iﬂ))] — d(@)Vs(a).

Finally we obtain

t—o00

lim ¢t (Z q; (ata:)> =d(z)Vs(z) = V'5(x)

which by Lemma 3.1 means that R, is a limit reliability function of non-
homogeneous series system with function d defined above. O

Theorem 3.3 If
(a) Re {RV,R® ... R®»},
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(b) limt*}()o t (]. — R((Itl’ + bt)) =e®
where

1
by n

inf{z|R(z +0) <1— - < R(z —0)},

a; = inf{z|R(z(14+0)+b)<1

< R(z(1-0)+ by},

H-l@

(¢) IrVisrR(arx +b) #1 for & < xp and R(arx + b)) =1 for x > xg
where xg € [—00,00),

: 1—R® b .
(d) lim;—oo #ﬂm <1fori=1,2,...,a, x> xo,

there exists function

0, r < T
d(.’lf) = : a 1—RY (a z+b;)
limy oo Zl 1% T-Rarettr) > 7 > Zo

then R's is a limit reliability function of the non-homogeneous series system.

Proof. Let (a), (b) and (c) be satisfied. We get

lim t(1— R(azw + b)) = e* = V3(z). (3.25)
Hence
. ‘ ].—R()(ltl’-f-bt) e d
tlg& t(1— R(atx + b)) Z qi Rlare + by) =d(z)V3(x).
and

. (3 — — !
Jlim ¢ (; ¢ F Y (ar + bt)) =d(z)V3(z) = V's3(z)
which by Lemma 3.1 means that R3 is a limit reliability function of non-
homogeneous series system with function d defined above. O

Similarly using theorems about domains of attraction the limit reliability
functions for non-homogeneous parallel systems can be found. By Lemma 3.4
and Theorems 3.1, 3.2 and 3.3 the theorems which give procedure of finding
reliability function of non-homogeneous parallel system can be formulated and
proved.
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Theorem 3.4 If
(a) Re {RW R® ... R®},

(b) lim,_ 0 % =z% >0

(c) lim,— 0o R;g;;f) <1lfori=1,2,...,a, x € (—00,00),

there exists function

RO (rz)
R(rx)

, & € (=00, 00)

dlz) = lim Z;Qi

then R'y is a limit reliability function of the non-homogeneous parallel system.

Theorem 3.5 If
(a) Re {RV,R® ... R®»},

(b) there exists y such that R(y) =0 and R(y —€) > 0 for all e > 0,

R(rz+y) _ «
R(H_yy) =z% x>0

limrTO
. (%) .
(c) llmmo% <1fori=1,2,...,a, <0,
there exists function
R(i)(erry)

. a
d(l’) — llmrig Zi:l qlm, T < 0
0, x>0

then R's is a limit reliability function of the non-homogeneous parallel system.

Theorem 3.6 If
(a) Re {RW R® ... R®}

(b) limy oo t (R(aw + b)) =€ *
where

by inf{z|R(z +0) <

at inf{z|R(xz(1+0) + b;) <

7



(c) ArVisrR(arx + b) # 0 for x < zg and R(arz + b)) =0 for x > xg
where xg € (—00, ],

. RY (asa+b .
(d) llmtﬁm% <1lfori=12,...,a, x> x0,

there exists function

: a R(i)(a z+bs)
d(x) — lim; o Zizl l]im, T < I
0, T > T

then R's is a limit reliability function of the non-homogeneous parallel system.

Example 1
Let us consider series system composed of 100 elements of two types, which
occur in the system with the same frequency. The life time of the first type
elements has the exponential distribution with parameter A = 0.03 and the life
time of second kind elements is distributed according to Rayleigh with param-
eter o = 0.001. The limit reliability function of this system is R/.

Justification. We must show that the conditions of Theorem 3.1 are sat-
isfied. Let us notice that if we choose exponential distribution than conditions
(b) and (c) hold:

. 1—R(rz +y) . 1—exp[-Arz]
ory we 8¢ o 1— R(r+vy) o 1— exp[—Ar] & x>0
and
— R® — _ _ 2
lim 1-RYW(rz —y) ~ tim 1 — exp[—a(rz)?]
ri0 1= R(rz+y) ri0 1 —exp[—Arz]
2arz
= i - 2 =0<
lrlﬁ)l exp[—a(rz)® + Arz] 3 0<1

lim 1-R(rz +y)

1.
ri0 1 — R(rz +y)

From the above function d has the following form

. 0, =z<0
dlz) = {0.5, z>0.
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The conditions of Theorem 3.1 are satisfied hence the function

— 1 z <0
1 _ )
Ri(z) = { exp[—0.5z], = > 0.

is a limit reliability function of this system.
By (3.1) the exact reliability function of this system is given by

R'100(z) (exp[—0.032])*° (exp[—0.0012])"°

_ _ 2
= e 15700527 £ 2o > (),

Since by (3.21) and (3.22) the norming functions

1 1 1
X~ 003.100 3 ndor=0

ay =

then by (3.7) the approximate reliability function of this system is of the fol-
lowing form

o7 L (2—be [ 1, <0
§R100($)~R1< % >—{ exp[_l_fjgg]’ x> 0.

The difference between exact and approximate reliability functions is shown in
the Table 1 and Figure 5 below.

t R Rioo | R'1 — Rioo
0.0 | 1.0000 | 1.0000 0.0000
0.5 ] 0.4724 | 0.4665 0.0059
1.0 | 0.2231 | 0.2122 0.0109
1.5 | 0.1054 | 0.0942 0.0112
2.0 | 0.0498 | 0.0408 0.0090
2.5 1 0.0235 | 0.0172 0.0063
3.0 | 0.0111 | 0.0071 0.0040
3.5 | 0.0052 | 0.0028 0.0024
4.0 | 0.0025 | 0.0011 0.0014
5.0 | 0.0005 | 0.0001 0.0004

Table 3.1: The difference between exact and approximate reliability functions.
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------- Limit

— Exact

Figure 3.5. The difference between exact and approximate reliability function
of that system.

3.4 Limit reliability functions for non- homoge-
neous series-parallel systems

In (Kolowrocki [24]) it is shown that the possible limit reliability functions of
the non-homogeneous series systems are of the following form

Rif@) = {}’—exp[—d(x)m_a], 20

R e AN

Ris(@) = 1-exp[-d(z)exp(~2)], z € (~00,00).
Ria(z) = {}’—exp[—d(x)exp(—wa—%)]: i§3
Ris(@) = {é’—exp[—d(m)exp((—ﬂf)“—%)], i;g
Row) = {1 oe el o 150

80



1, T < T
R'7(z) = 1 —exp[—d(z)exp(=2)], 21 <z <z

0> 1’21‘2, r; < Ta.

1-— —di(x) exp[—(—2) " ?]]%*, =<0
R's(z) = { : ITi- (z) exp[—(=z)"“]] N

! — ]-7 r < 0

Rate) = {1 - aeploss, 50
R'io(z) = H[l — d;(x) exp[— exp z]]%*, € (—o0,0).

i=1

As in the Section 3.3, where theorems about domains of attraction were
used to determine the limit reliability function for the non-homogeneous series
and parallel systems, we show now how to find limit reliability function of non-
homogeneous series-parallel system. The theorems about domains of attraction
will be used which can be found in the chapter ” Domains of attraction of limit
reliability functions” of this thesis or in (Kurowicka [32]), (Kurowicka [33]) and
(Kurowicka [34]).

Theorem 3.7 If
(a) Re {RW, i=1,2,...,a} where RY is given by (3.4),
(b) Re€ Dg,,j=1,2,...,7 with a; and b; specified in respective theorem,

(c) IrVisrR(arx +b) #0 for & < zp and R(arx + b)) = 0 for x > xg
where xg € (—00, 0],

. R b .
(d) lim;—eo ﬁm <1fori=1,2,...,a, x> xo,
there exists function
. R +b)\ 1
d(x) — llmt—>00 Z?:l qi (%) , T <X
0, T > xo
then R';,5 = 1,2,...,7 is a limit reliability function of the non-homogeneous

series-parallel system with function d defined above.

Proof. Since (a) and (b) hold then by theorem about domain of attraction of
R; =1—exp[V;] we get

lim k; (R(ax + b))"* = Vj(x) for z € Cy,. (3.26)

t—00
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Since (c¢) and (d) are satisfied then (3.26), for z < zo, can be written in the
following form

. (RO (apm +b)\"
tlggo ki (R(azx + bt))l Z; i <W> = d(z)Vj(z).

For z > g, by (c) and (d), V;(z) and d(z) are both equal zero hence
e . le
lim kY g; (R(’) (@ + bt)) = d(z)Vj(x) = V}(2), = € Cy.
i=1

which by Lemma 3.2 means that R';,j = 1,2,...,7 is a limit reliability function
of that system. O

Theorem 3.8 If

(a) Re {RW, i=1,2,...,a} where RY is given by (3.4),

(b) R€ Dg;,j=8,9,10 with a; and b; specified in respective theorem,

(¢) IrVisrR(atx + b) #0 for & < zp and R(arx + b)) =0 for x > xg
where zg € (—00, 0],

. R b .
(d) lim; o % <1fori=1,2,...,a, > x,

there exists function

. R(i)(a z+by) b
di(z) = lim; oo (7R(ai;+bt; ) , T <o
0, T > To
then R';,j = 8,9,10 is a limit reliability function of the non-homogeneous

series-parallel system with function d defined above.

Proof. Analogous way like in the proof of Theorem 3.7 using Lemma 3.3 and
theorems about domains of attraction of Rj,j = 8,9, 10 we can show that if the
conditions (a)-(d) are satisfied then R';,j = 8,9,10 is a limit reliability function
of the non-homogeneous series-parallel system. O

Example 2 Let us consider a water supply system composed of 3 lines

with 100 segment pipes. The first line is composed of 80 segment pipes with
exponential reliability functions with A\; = 0.025 and 20 segment pipes with
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Erlang distribution with parameters & = 2, Ay = 0.065. The other 2 lines
are composed of 10 segment pipe with Rayleigh distribution with parameter
a1 = 0.001 and 90 segment pipes with Weibull with shape parameter § = %
and .... with parameter as = 0.6.

1§ 2 3 © 100

o
Ll Lal-

Figure 3.6. The water supply system.

Assuming that failure of the lines are independent we may consider this supply
system as a non-homogeneous, series-parallel system.

We have
k=3, l; =100, a = 2, qlzg, q2:§
and
e1 =2, p11 =038, p1a =0.2.
Hence
RM(z) = exp[—0.025-0.8z — 0.0065 - 0.22](1 + 0.1z)°>
= exp[—0.033z](1 + 0.1z)%2.
Since
ez =2, pp1 =0.9, prr =0.1
then
R®(z) = exp[-0.6-0.9z5 — 0.001-0.12?]

= exp[—0.542% — 0.000127].

We will show that the function R satisfies conditions of Theorem 3.8:
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e The condition (b) is satisfied since we can show

1— RW(rz) .1 —exp[—0.033rz](1+ 0.1rz)°2

= lim =g for z >0,

lim —
"0 1— RO (r) 710 1 — exp[—0.033r](1 + 0.17)02
and a; = ﬁ, by = 0.

e The condition (c¢) holds

R(l) (atw + bt)

1

exp {—0.54 (m)3 —0.0001 (ﬁﬂ ~

. R® (azz + by) .
fim RO (az + b)) Jim =
t=o0 R (apr + by) © exp [_0.0330.862lt] (1+0-1555;,)%
The functions d;, ¢ = 1,2 have the form
RO (azz + b) \
d = i - =1
1(1’) ti}I& <R(1) (a,t;[j + bt))
It
(2) 2) (557
do(z) = i B9 +b) | R

tlglo R1) (atg; + bt) T iooo R (0 (le )

exp [—0.54 (m)3 ~ 0.0001 (m)2 +0.033 (ﬁ)]

It

— i
oo (1+ 0155 )02

From the above and by Theorem 3.8, we get

<0

1 1’
Rig(z) = {1—[1—6){19[—33]]2 20

is the limit reliability function of this system.
Hence the approximate reliability function is given by

Z’—bt

%3,100 (33) ~ ng(

Qi
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By (3.3) and (3.4) the exact reliability function of the water supply system is
as follows

2

Rapoo(z) = 1-JJ01— (B ()"

i=1

1
1— [1 _ 6—3.390(1 + 00651’)02]2[1 _ 6—54953 —0.01302]‘

The difference between exact and approximate reliability functions of that sys-
tem is shown in Table 2 and Figure 6 below.

t R'q R3.100 | R'o — R3.100
0.0 | 1.0000 | 1.0000 0.0000
0.2 | 0.8913 | 0.8906 0.0007
0.4 | 0.6968 | 0.6935 0.0033
0.6 | 0.5117 | 0.5055 0.0062
0.8 | 0.3630 | 0.3547 0.0083
1.0 | 0.2523 | 0.2430 0.0093
1.2 | 0.1732 | 0.1639 0.0093
1.4 | 0.1179 | 0.1093 0.0086
1.6 | 0.0799 | 0.0723 0.0076
2.0 |1 0.0363 | 0.0311 0.0048
3.0 | 0.0049 | 0.0035 0.0014
4.0 | 0.0007 | 0.0004 0.0003
5.0 | 0.0001 | 0.0000 0.0001
6.0 | 0.0000 | 0.0000 0.0000

Table 3.2: The difference between exact and approximate reliability functions.
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Figure 3.7. The difference between exact and approximate reliability function
of the system.

3.5 Conclusions

It was shown how to find the limit reliability functions for non-homogeneous
series, parallel and series-parallel systems. Because of duality (see Lemma 3.4)
the obtained results can be transformed to parallel-series systems. We have seen,
in the presented examples, that exact and approximate reliability functions are

very close.
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Chapter 4

A parametrization of
positive definite matrices in
terms of partial correlation
vines

Dorota Kurowicka, Roger Cooke

Abstract: We present a parametrization of the class PD(n) of positive
definite n X n matrices using regular vines and partial correlations. Using a
bijection from (—1,1)(3) — C(n) (C(n)-class of correlation matrices) with a
clear probabilistic interpretation (Bedford and Cooke [3]), we suggest a new
approach to various problems involving positive definiteness.

Keywords: correlation, tree dependence, positive definite matrix, matrix
completion.
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4.1 Introduction

Positive (semi) definiteness is an important property of square matrices. There
are algorithms for testing positive definiteness such as the Choleski decompo-
sition or algorithms based on finding eigenvalues of a matrix. We propose to
study positive definiteness using partial correlations (Yule and Kendall [54])
in conjunction with a new structure which we call a regular vine (Cooke [6],
Bedford and Cooke [3]). A symmetric real matrix with elements in the interval
(-1,1) and with ”1”’s on the main diagonal is called a proto correlation matriz.
For a given n X n proto correlation matrix the canonical regular vine is con-
sidered. A vine is a set of trees such that the edges of the tree T; are nodes
of the tree T;y; and all trees have the maximum number of edges. A vine is
regular if two edges of T; are joined by an edge of T;y; only if these edges
share a common node in T;. A regular vine is called canonical if each tree Tj
has a unique node of degree n — i. Partial correlations can be assigned to the
edges of the canonical vine such that conditioning and conditioned sets of the
vine and partial correlations are equal (see Section 4.2). In general we have (3)
edges in a regular vine on n elements. All assignments of partial correlations
from the interval (-1,1), are consistent (see Theorem 4.2) and in this way the

bijection from (—1, 1)(;) to C(n) is constructed. This relationship can be used
to specify dependence in high dimensional distributions (Kurowicka and Cooke
[35]) but also to decide whether a proto correlation matrix is positive definite.
This algorithm can also be used to transform a non-positive definite matrix
into a positive definite matrix. With the new algorithm these alterations have
a clear probabilistic interpretation. This approach can be useful where a high
dimensional correlation matrix should be specified (e.g. dependent Monte Carlo
simulations). In complex problems many entries in the correlation matrix may
be unspecified, and this partially specified matrix must be extended to a posi-
tive definite matrix. We present preliminary results for the matrix completion
problem using canonical vine partial correlation specifications. In particular,
we present procedures for deciding whether a partially specified matrix can be
extended to a positive definite matrix for certain non-chordal graphs (Laurent
[38] and [39], Fiedler [13], Barrett, Johnson and Loewy [52], Barrett, Johnson
and Tarazaga [53]).

This chapter is organized as follows. In the Section 4.2 we introduce vines
and present definitions and theorems showing the relationship between vines and
positive definite matrices. Section 4.3 contains an algorithm for testing positive
definiteness of a matrix using the canonical vine. The relationship between the
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new algorithm and the known matrix theory results is also shown. In Section
4.4 repairing violation of positive definiteness is discussed and finally in Section
4.5 the algorithm solving the completion problem for few special cases of the
proto correlation matrix is presented.

4.2 Vines

Definition 4.1 (Tree) T = (N, E) is a tree with nodes N and edges E if it is
connected graph with no cycle. That is, there does not exist a sequence a1, - . ., ax
of elements of N such that

{a1,a2} € E, ..., {ax_1,a;} € E,{ar, a1} € E.

Definition 4.2 (Regular vine) V is a reqular vine on n elements if
1. V=T,....,Th-1)

2. Ty is a tree with nodes Ny = {1,...,n}, and edges E,; #E, =n —1;
fori=2,...,n—1 T; is a tree with nodes N; = E; 1, and edges E;; #FE; =
i—1.

3. (proximity) fori =2,...,n—1, {a,b} € E;,#a/Ab = 2 where A\ denotes
the symmetric difference. In other words, if a and b are nodes of T; con-
nected by an edge, where a = {a1,as},b = {b1,b2}, then exactly one of the
a; equals one of the b;.

Definition 4.3 (Constraint set)

1. Forje E;,i<n-—1
Uj(k) ={e |3 ei—(r—1) € €i—(k—2) € ... €], €€ e€i_(r_1)}
is called the k-fold union' of j; k=1,...,i
U = Uj;(i) is the complete union of j, that is, set of {1,...,n} reachable
from j by the membership relation.
U;j(1) ={i,j2} = 1.
By definition we write U;(0) = {j}.

1 1-fold union of the set is the set of elements i.e. set itself,
2-fold union es is the set of elements of elements of e, etc.
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2. Fori=1,...,n—1,e; € E;, ife; = {j, k} then the conditioning set associated

with e; s
D., = UJ’-* NnU;
and the conditioned sets associated with e; are

Ceiv]. = U; \Deﬁcei,k =U; \ D,.

3. The constraint set for V is

CV = {D€i7C€iyj7C€i,k |ei S Ei;ei = {_],k},l = ]-7---,77‘_ 1}

Note that for e € Ey, the conditioning set is empty.
For e; € Ej,i <n—1,e; = {j,k} we have U, = U; UU}.

Figure 4.1. A regular vine on 5 elements showing conditioned and conditioning
sets.

Definition 4.4 (Canonical vine) A regular vine is called a canonical if each

tree has a unique node of degree n — i.
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Figure 4.2. A canonical vine on 5 elements.

For regular vines the structure of the constraint set is particularly simple, as
shown by the following lemmata (Cooke [6]).

Lemma 4.1 Let V be a regular vine on n elements, and let j € E;. Then

#U; (k) =k+1;k=0,1,...,i.

Proof. The statement clearly holds for £ = 0,k = 1. By the proximity property
it follows immediately that it holds for £ = 2. We claim that in general

#U](k}) = Q#U](k‘ - 1) - #U](k‘ - 2),]{/‘ = 2,3,....

To see this, we represent the U;(k) as a complete binary tree whose nodes
are in set of nodes of V. The repeated nodes are underscored, and children of
underscored nodes are underscored. Because of proximity, nodes with a common
parent must have a common child. Letting X denote an arbitrary node, we have:
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T(0) X
U X X
U@ x X

U(3)

Evidently, the number of newly underscored nodes on echelon k (i.e. nodes
which are not children of an underscored node) is equal to the number of non-
underscored nodes in echelon £ — 2. Hence, the number of non-underscored
nodes in echelon k is

Q#U](k— 1) - #U](k‘ - 2) O

Lemma 4.2 IfV is a reqular vine on n elements then for alli =1,...n—1, and
all e; € Ey, the conditioned sets associated with e; are singletons, #U;, =i+1,
and #D., =1 — 1.

Proof. Let e; € E; and e; = {j,k}. By Lemma 4.1 #U; =i+ 1. Let
D =U;NU; and C =U;AU. It suffices to show that #C = 2. We get

i+1=#D+ #C (4.1)
and
2 = #C 4+ 2#D. (4.2)
When we divide (4.2) by 2 and subtract from (4.1) then
#C =2.
Hence #(Us \ D) =1, #U;\ D) =1and #D =i—1. O

Lemma 4.3 Let V be a regular vine, and suppose for j,k € E;,U; = Uy, then
j=k.
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Proof. There is a largest « such that U;(x) # Ui(z) and U;(z+1) = Ug(z+1).
Since #Uj(xz + 1) = x + 2, there can be at most  + 1 edges between these
elements. #U;(x) = #Ui(xz) = = + 1, but this implies that U;(z) = Ug(z),
since otherwise 7; would not be a tree. O

Lemma 4.4 If the conditioned sets of nodes i,j in a regular vine are equal,
then i = 3.

Proof. Suppose i and j have the same conditioned sets. By Lemma 4.2 the
conditioned sets are singletons, say {a,b},a € N,b € N. Let D; respectively D;
be the conditioning sets of nodes ¢ and j. Then in the tree T} there is a path
from a to b through the nodes in D;, and also a path from a to b through the
nodes in Dj. If D; # Dj, then there must be a cycle in the edges E;, but this
is impossible since T is a tree. It follows that D; = D;, and from Lemma 4.3
it follows that ¢ = 5. O

Definition 4.5 (Partial correlation) Let X;, ... X,, be random variables, and
leti, j, k be distinct indices, and let C be a (possibly empty) set of indices disjunct
from {i,j,k}. The partial correlation of X; and X; given {Xy,U{Xy|h € C}}
18

Pij;C — Pik;CPjk;C
PijshC = ——== - = —; Pie <1, piro < 1.
\/1 - /’ik;C\/I ~ Piko

(4.3)

where p;; = p(X;, X;).
If pirc =1 o7 P = 1, then pijirc is not defined.

In general, all partial correlations can be computed from the correlations by
iterating the above equation. If Xy,..., X, follow a joint normal distribution
with variance covariance matrix of full rank, then partial correlations correspond
to conditional correlations. In the other cases partial correlations can be inter-
preted in terms of partial regression coefficient (Yule and Kendall [54]). The
relationship between partial correlations and conditional correlations is studied
in (Kurowicka and Cooke [35]).

The edges in a regular vine may be associated with a set of partial correla-
tions in the following way:

fori=1,...,n—1, with e € E;,e = {j, k} we associate

PC. ;Ce r;De
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Definition 4.6 (Partial correlation specification) A partial correlation spec-
ification for a regular vine is an assignment of values in (—1,1) to each edge of
the vine.

From Lemma 4.2 it follows the the sets C, ; and C,  are singletons, and that
their intersection with D, is empty. For tree T3, the conditioning sets D, are
empty and the partial correlations are just the ordinary correlations. The order
of a partial correlation is the cardinality of the conditioning set. Hence this
association involves (n — 1) partial correlations of order zero, (n — 2) of order
one, ... and one of order (n — 2). In total there are

n—1

> =5

2.7 =\ o

Jj=1
edges in a regular vine and the same number of partial correlations associated
with the edges of a regular vine. Since the conditioned sets of each edge must be
distinct, it follows that each pair of indices appears once as conditioned variables
in a regular vine.

The following theorem shows that the correlations are uniquely determined
by the partial correlations on a regular vine.

Theorem 4.1 Let Xy,...,X, and Y1,...Y, be random variables satisfying the
same partial correlation vine specification. Then for i # j

Proof. It suffices to show that the the correlations p;; = p(X;, X;) can be cal-
culated from the partial correlations specified by the vine. Proof is by induction
on the number of elements n. The basic case (n = 2) is trivial. Assume the
theorem holds for i = 2,...n — 1. For a regular vine over n elements the tree
Tp—1 has one edge, say e = {j,k}. By Lemma 4.2, #D, = n — 2. Re-indexing

the variables X1,... X, if necessary, we may assume that
Ce,j = U;\De = X,
Ce,k = U]): \De = Xn>
ur = {l,...,n—1}
Ug = {2,...,n}
D, = {2,...,n—1}.
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The correlations over U and Uy are determined by the induction step. It
remains to determine the correlation pi,. The left hand side of

1n;3..n—1 — P12;3..n—1P2n;3..n—1
Pin;2..n—1 = Pin n2 p L p2n L (44)
\/1 ~ P12;3..n—1 \/1 ~ Pan3..n—1

is determined by the vine specification. The terms

P12;3..n—15 P2n;3..n—1

are determined by the induction hypothese. It follows that we can solve the
above equation for pip;3...n—1, and write

_ Pin.n—1 — P13;4..n—1P3n;4..n—1
Pin;3..n—1 = 5 5
\/1 - p13;4...n71 \/1 - p3n;4...n71

Proceeding in this manner, we eventually find

Pin — Pln—1Pnn—1

Pinn—1 =
\/1 - p%n—l \/1 - p?zn—l

This equation may now be solved for py,,. O

The following lemma shows that p1,:2.,—1 can be chosen arbitrarily in (4.4)
and the resulting system could be solved for pi,. This idea is the basic for the
proof of Theorem 4.2 below.

Lemma 4.5 If z,x,y € (—1,1), then also w € (—1,1), where

w=zy(1—-22)(1—-y3) + xy.

Proof. We substitute x = cosa,y = cos 5, and use

1—cos’a = sin’q;
cosacosf = cos(a — ) -;cos(oz + B);
snosing = cos(a — ) ; cos(a + B);
and find
Zcos(a - B) ;—cos(a + ) N cos(a — f3) ; cos(a + ) —w
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Write this as

a+b+a—b_
2 2

w,

where a,b € (—1,1). As the left hand side is linear in a,b, and z, its extreme
values must occur when z = 1 or z = —1. It is easy to check that in these cases,
we(-1,1). O

In the next lemma we will see that it is always possible to find a single
unknown variable on the right hand side of equation (4.4) such that the left
hand side will lie in the interval (—1,1).

Lemma 4.6 Let w,y € (—1,1), z € (—1,1) and

- e -
then
ze(-1L,1) & z€l, L #0, I, = (z,T) N (-1,1)

where

z = yw—+/(1-y?)(1-w?)

T = yw++/(1-y2)(1 —w?).
Proof. It suffices to find the solution of the following inequality

(w—=y)* < (1-2")(1-y?)
which is equivalent to

2? — 2wyx +w? +y* — 1 <0. (4.6)

We get

A = 4dwy® —4dw® —4y® + 4
= 41 —y*)(1 —w?).

Since y,w € (—1,1) then A > 0 and inequality (4.6) has always solution

L = (yw = VI =0 = wsyw + VI =)0 - 0?))
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Since w,y € (—1,1) then wy € (—1,1). We want also z € (—1,1) so we get
I=1,n(-11) (4.7)
which is always non-empty. O

Remark 4.1 Similar considerations hold if we change the role of w and x in
(4.5). Then we obtain that we can always find w such that z € (—1,1). This
solution belongs to the following non-empty interval

1= (ay = VI =)A= oy + VT =) 1= y7) N (-1, 1).
Lemma 4.7 Let w € (—1,1) and z given by (4.5).
ze (=L1) & (z,y) € A(w)

where

A(w) = {(z,y) : % + 2% < 1} (4.8)

Proof. It suffices to find points (z,y) € (—1,1)? such that
(w—=y)* < (1-2%)(1-y°)
therefore we test when the function

g(z,y) = (w—azy)’ - (1-2*)(1-y?)
= 22 +y* —2wry+w’ -1
= P2(1—w?) + (y— ow)? — (1 —w?)

is less than zero.
It is easy to notice that g(z,y) is less then zero if (z,y) € A(w). O

Remark 4.2 Note that point (0,0) always belongs to A(w).
In (Bedford and Cooke [3]) the following is proved:
Theorem 4.2 For any regular vine on n elements there is a one to one corre-

spondence between the set of n X n positive definite correlation matrices and the
set of partial correlation specifications for the vine.
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4.3 Positive definiteness

If A is an n x n symmetric matrix with positive numbers on the main diagonal,
then we may transform A to a matrix A* by setting

af = —3_, (4.9)
A* has ”71”-s on the main diagonal. Since it is known that A* is positive definite
if and only if all principle submatrices are positive definite then we can restrict
our further considerations to the matrices which after transformation (4.9) have
all aj; € (=1,1) where i # j. The matrix with all elements from the interval
(-1,1) and with ”1”-s on the main diagonal is called proto correlation matrix.

Then we get that

A*=DAD

where

1 . ..
ay={ v =7
0 otherwise.
Theorem 4.3 A is positive definite (A = 0) if and only if A* is positive definite.
Proof. It is easy to see that D is invertible
D™ = ey]
where
L a; ifi=j
v 0 otherwise.
Let A = 0 and y € R™ — {0} arbitrary vector. We want to show yA*y” > 0.
Since A* = DAD then
yA*yT = yDADyT.
Let z = yD then x € R™ — {0}. It is easy to see that 7 = Dy”. Hence we get

yA*yT = Az > 0.
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Analogously if we assume that A* > 0 then taking an arbitrary vector y €
R™ — {0} and using the following relationship between A and A*

A=D"14A*pD!

we can show yAyT > 0. O

In order to check positive definiteness of the matrix A* we will use the partial
correlation specification for the canonical vine. If all partial correlations from
the partial correlation specification on the vine are in the interval (—1,1) then
A* is positive definite.

We illustrate this algorithm for 5 x 5 proto correlation matrix given by

1 p12 p13 pua pis
pa1 1 pa3 pas pos
p31 p32 1 pas p3s
par paz paz 1 pas
P51 P52 P53 Psa 1

For this matrix we will consider the canonical vine on 5 variables as follows

Figure 4.3. Partial correlation specification for the canonical vine on 5
variables.

In the first tree we have to read correlations from the matrix A*. For the second
tree we will use formula (4.4) and calculate the following correlations:

P23;1, P24;15, P25;1-
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To calculate correlations ps4;12, p35;12 we will also have to calculate psz4;1 and
p35;1. Similarly, to calculate pgs;123 we will need pys.12 and pas;1.
In general we must calculate using formula (4.4)

-1
(n 5 > partial correlations of the first order

-2
<n 5 > partial correlations of the second order

<n—(n—2)E

5 > partial correlations of the (n-2) order.

Hence in order to verify positive definiteness of the matrix A* we have to cal-
culate

:Z:j (”;k> = w<%@

partial correlations using formula (4.4).
Example 1
Let us consider the matrix

25 12 -7 05 18
12 9 -1.8 1.2 6
A=| -7 -18 4 04 —-64
0.5 1.2 0.4 1 -04
18 6 —-64 —-04 16

and transform A to proto correlation matrix using formula (4.9). Then we get

1 08 —-0.7 0.1 0.9

0.8 1 -03 04 05

A*=1 -0.7 =03 1 0.2 -08
0.1 04 0.2 1 -08

09 05 -08 -0.8 1

Since

[ posits poast, posy | = [ 0.6068, 0.5360, —0.8412 |
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[ P31z, p3sie ] [ 0.0816, —0.0830 ]
[ P45;,123 ] = [ 0.0351 ]

are all between (—1,1), it follows that, A* and A are positive definite.

We now show the relationship between above procedure of testing positive
definiteness using canonical vine correlations specification and the known matrix
theory results.

Theorem 4.4 (Schur complement)
Suppose that symmetric matriz M is partitioned as

X v
wo= [ ]

where X, Z are square.

M0 Xs=0and Z-YTX"'Y - 0.

Let A be an n x n proto correlation matrix and A is partitioned in the following
way

_ X Y
4 = [YkT Zk]

where X is k x k, 1 <k<n-—2and Zn —k xn—k is a matrix.

We introduce the following notation:

A1 : matrix of the k-th order partial correlations with conditioned set
{12...k}.2

If M is a square matrix with positive elements on the main diagonal then
let M* denote the matrix M transformed to proto correlation matrix using
transformation (4.9).

Theorem 4.5

A=0 & Vick<n—2 (Zk — YkTX,lek)* = Ao k-

1 1. _
2Note that A;l2...n—2 — |: Pn,n—1;12...n—2 :|

1
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Proof. The proof is by iteration with respect to k. For k = 1 we get

_ X1
+ = [ a
where
1 pag p2a oo p2n
1 psa ... pan
Xlz[].], Y12[012013---Pln], le
1 Pn—1,n
1

Since certainly X; = 0, then by Theorem 4.4

A > 0if and only if Z; — V" X'V =0

We get
1- P%Q P23 — P12P13  ---  P2n — P12P1n
Z;Jl =7 — YlTXf1Y1 — 1—pi; <o+ P3n 7 P13P1n
1-pi,
Since A is the proto correlation matrix then p;; € (—1,1) @ere ,j=1,2,....n

and ¢ # j. Hence all elements on the main diagonal of A;; are positive so the

transformation (4.9) can be applied. After transformation ;lvl will be of the
form

p23—P12pP13 P2n —P12P1n
(1-p32)(1=p35) (1—p3,)(1-p7,)
1 P3n —P13P1n
—~ (1=p35)(1=p%,)

Pn—1,n—Pln—1P1n

V=03, _)(1-03,)
1

By formula (4.4) we see that ;171* = A.;. Hence and by Theorem 4.3 A > 0 if
and only if A; > 0.

3 Note that this is equivalent to checking if all correlations in the second tree in canonical
partial correlation vine are in (-1,1).
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If any element of the first row of A;1 is not in (-1,1) then A and A, are
not positive definite.® If all elements of the first row of A.; are in (-1,1) we can
apply the above steps with A.; in the role of A. Let A.(i,j) denote the (i, )
element of A.;. The result of applying Theorem 4.4 and formula (4.9) to A,
yields a matrix with off-diagonal elements (4, 75), i,7 =2,3,...n

A;l(iaj) - A;1(2>i)A;1(2>j) .
V- A3 20))(1 - 43(2,))

By the recursive formula (4.4), this is equal to
Piji12

so A2 is the matrix of second order partials. The proof is completed by
iteration.Od

Corollary 4.1

A0 A41>0 ... 415 n2>0E ppp_1;12..n—2 € (-1,1).

4.4 Repairing violations of positive definiteness

Partial correlations can be used to alter a non-positive definite matrix A so as
to obtain a positive definite matrix B. If the matrix is not positive definite then
there exists at least one element in the partial correlation specification of the
canonical vine which is not in the interval (—1,1). We will change the value of
that element and recalculate partial correlations on the vine using the following
algorithm:

forl1<s<n-2, j=s+2,s+3,...,n

Ps+1,5;12...5 ¢ (_1; ]-) = Ps+1,5;12...8 = \% (ps+1,j;12...s)

where V (ps41,5;12...s) € (—1,1) is the altered value of psi1 j12...5.
Recalculate partial correlations of lower order as follows:

V(Ps+17j;1---t—1) = V(Ps+17j;1---t)\/(1 - P%,s+1;1...t71)(1 - P§+1,j;1...t—1)(4_10)
+Pt,s+151...t—1Ps+1,5;1...t—1,

wheret =s,s —1,...,1.
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Theorem 4.6 The following hold:
(a) all recalculated partial correlations are in the interval (—1,1),

(b) changing the value of the partial correlation on the vine leads to changing
only one correlation in the matriz and doesn’t effect correlations which
were already changed.

(c) there is a linear relationship between altered value of partial correlation and
correlation with the same conditioned set in the proto correlation matriz,

(d) this method always produce positive definite matriz.
Proof.
(a) This condition follows directly from Lemma 4.5.

(b) The condition (b) is a result of observation that changing the value of the
correlation ps41 j:12...s in the above algorithm leads to recalculate corre-

lations of the lower order but only with the same indices before ”;”, that
is, s +1,7.
(c) Since pst1,j;12..¢—1 is linear in pgyq jo. 4 forallt =s,s—1,...,1 the linear

relationship between p;11,; and ps41,5;12...s follows by substitution.

(d) Applying the above algorithm whenever a partial correlation outside the
interval (—1,1) is found, we eventually obtain that all partial correlations
in partial correlation specification on the vine are in (—1,1), that is, the
altered matrix is positive definite. O

Let us consider following example:
Example 2
Let

1 -06 -0.8 0.5 0.9

—0.6 1 06 —-04 -04

A=| -08 0.6 1 0.1 -0.5
05 —-04 0.1 1 0.7

09 -04 -05 0.7 1

We get p3a,12 = 1.0420 hence A is not positive definite.
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Since ps4;12 > 1 then we will change its value to V(p34,12) = 0.9 and recal-
culate lower order correlations

V(psan) = V(psra2)y /(1= 93 ) (1 = pRat) + pasa ot

and

V(psa) = Vipas )/ (L= p3) (1 = p2y) + prapua

This way we will get for our example V(p34,1) = 0.9623 and finally the new
value in the proto correlation matrix V (ps4) = 0.0293. Next we will apply the
same algorithm to verify if this altered matrix become positive definite. We
obtained that matrix

1 -06 08 05 09

-0.6 1 06 -04 —-04

B=| -08 06 1 0.0293 -0.5
0.5 —-0.4 0.0293 1 0.7

09 -04 =05 0.7 1

is positive definite.

4.5 Completion problem

In this section we apply the canonical vine to completion problem. First, how-
ever, we quote the known results of completion problem which can be found in
[38], [39], [13], [52], [53].

We define the set of correlation matrices &, «x, as follows:

Enxn = {X = (z;;) symmetric n x n|X > 0,z =1foralli=1,2,...,n}.

Let G = (N, E) be a graph where N = {1,2,...,n}. G is simple i.e. has no
loops or parallel edges. We define set £ as a projection of &, «, on the subspace
RF indexed by the edge set of G

E(G) = {z € R”|3A = (a;j) € Enxn such that a;; = z;; for all ij € E}.

The sets £, xn and E(G) are called elliptopes.

Let G = (N, E) be a graph. Given a subset U C N, G(U) denotes the
subgraph of G induced by U, with node set U and with edge set {uv € E|u,v €
U}. One says that U is a clique in G when G(U) is a complete graph.
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Suppose X has diagonal entries 1, and let z = (z;;)ijer € RE denote the
vector whose components are specified entries of X. Let G denote the graph
with edge set E.

Definition 4.7
X is completable if x € E(G).
Clique condition

z e &(G) =

For every clique K in G, the projection xx of x on the (4.11)
edge set of K belongs to E(K). '

Since every vector z € £(G) has all entries in the interval [-1,1], we can find

arccos x
a, = ———= € [0,1] for every e € E.
™

Cycle condition

x € E(G) = a = (ae)eck satisfies condition

Decr Ge — EeEC\F ac < |F|—1 (4.12)
for C a circuit in G, F C C with |F| odd. '
The condition (4.11) and (4.12) are not sufficient in general. There are graphs,
however, for which (4.11) is sufficient. These graphs are called chordal ( graph G
is said to be chordal if every circuit of G with length > 4 has a chord; a chord of
the circuit C' is an edge joining two nonconsecutive nodes of C). The condition
(4.12) is sufficient for the circuits and series-parallel graphs i.e. graphs with no
K 4- minors*. These two conditions taken together suffice for describing eliptope
E(Q) for the graphs called cycle completable i.e. chordal graphs, series-parallel
graphs and their cliqgue sums (where clique sum of graphs G; = (N1, E1) and
G2 = (N3, E») is a graph G = (N1 U N>, E; U Es) such that the set K = Ny NN,
induces a clique (possibly empty) in both G; and G and there is no edge
between a node of N; \ K and node of Ny \ K).
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Now we present the solution of the completion problem for the special cases
of graphs using partial correlation specification of a canonical vine. We shall
see that verifying the relevant conditions for completability simultaneously gives
the set of completions.

Case 1
We have the following proto correlation matrix which needs to be completed

1 P12 P13 P14 . e e Pin
1 P23 P24 P2an
4 = 1 Pri+1 Prkt2 -+ Pkn
1 a O O
1 O O
1 O
L 1 -

where O represents an unspecified entry in this matrix.
Since all correlations from the rows 1 to k are given then we can calculate
all partial correlations in canonical vine specifications up to (k — 1)-th order.
Assigning the remaining partial correlations of order k£ to n —2 in the canon-
ical vine the value 0, we can specify all empty cells recalculating partial corre-
lations using the algorithm 4.10. In this case the matrix A can be completed if
and only if all partial correlations of order less then k are in the interval (—1,1).

Hence we must evaluate formula (4.4) Z;:kl-u [(%) - ("gk)] times.

Remark 4.3 The graph corresponding to above matrix is chordal. Since we
have n—k maximal cliques of size k+1 there, then by (4.11), the n—k principal
submatrices of size k + 1 should be checked for positive definiteness.

Case 2

4 A graph H is said to be minor of the graph G if H can be obtained from G by repeatedly
deleting and/or contracting edges and deleting isolated nodes. Deleting an edge e in graph
G means discarding it from the edge set of G. Contracting edge e = uv means identifying
both end nodes of e and discarding multiple edges and loops if some are created during the
identification of u and wv.
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[ 1 P12 P13 P14 Pin i
1 P23 P24 P2n
A = 1 prk+1r Prk+2 -+ Pkn
1 Pr+ik+2 O O
1 O O
1 O
L 1 =

We want to fill the & 4+ 1-th row and reduce this case to the previous one.

As in the Case 1 we can calculate all partials of order less then k but also
Pk+1,k+2;12...k can be calculated.

We want to choose pyy1,512...%, Where s = k+ 3,...,n in such a way that
Pk+2,5:12..k+1 Will be in the interval (—1,1).

Since pr42,s;12...k and pr41,s;12...1 cannot be computed and

Pk+2,812...k — Pk+1,k+2;12...kPk+1,s;12...k
2 2
\/(1 - pk+1,k+2;12...k)(1 - Pk+1,s;12...k)

Pk+2,5;12...k+1 =

then it is enough to assign them the value 0 and recalculate correlations using
(4.10). This way we will fill all empty cells in the rows k& + 1 and k£ + 2 and
reduce to Case 1.

Case 3

(a)

1 P12 P13 P14 Pin
1 P23 P24 P2n
L prk+1  Prk+2 Pkk+3 -+ Pkn
A = 1 Pk+1,k+2 ]

1 Ph4-2,k+3 e

1 O O

1 O

L 1 -

In this case we can calculate all partials of order less then & and pg41 g42;1...x and
Pk+2,k+3:1...k- Lo find the value of pyi2 g43:1...k+1 we will use Lemma 4.6. We
choose a value of py41 x+3;1...1 which belong to the non-empty interval given by
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(4.7). Similar solutions are obtained when the empty cell in row &k + 1 occupies
any other position except position (k + 1,k + 2).

(b)

_]. P12 P13 P14 Pin
1 P23 P24 P2n
T prgr1 Prgr2  Phkt3 P, k4 e Pk,n
A = 1 O o PhA1,k+4  Pht1,k+5

1 Pk+2,k+3  Pk+2,k+4  Pk+2,k+5 -

1 O O O

1 O O

1 O

I 1

The difference with Case a is that the partial correlation pjy1 k42;1...x, which
cannot be calculate now, appears in every correlations of order k£ + 1. In this
case that in addition to all partial correlations of order less then & correlations
Pk+2,k+3:1...k> Pk+2,k+4;1...k and prio g45:1...% can be calculated. We want to
find pr42,kt+4a51. k+1, Ph+2k+4;1.. k+1 ANA Ppi2 pya;1..k- We find using Lemma
4.6 value of priq g42;1..x which belongs to the intersection Ipii ky2.1..6 =
Tiqo bt k1 N et 2, kt5:1. k1 5 of two intervals such that correlations Ph+2,k+4;1.. k+1
and pry2 k+s:1..6+1 are in (—1,1). Next given this value of ppy1 kyo2:1.. .k, the
value of pp41,k+3;1...1 can be computed. In this case the matrix can be com-
pleted if all correlations which can be computed are in (—1,1) and if the interval
Ip11 k42;1..1 iS nOt empty.

Case 4

This case is an example of non-chordal graph with one circuit with length 4.

1 P12 P13 P14 Pin
1 P23 P24 P2an
1T prgr1 Prkt2 Pk, k43 Pkk+da -+ Phkn
A = 1 P+1,k+2 O Ph+1,k+4
1 Ph4-2,k+3 O
1 PrA43,k+4 e
1 O O
1 O
1 .

5 We write Iyi1 k42;1..k instead of Ipy 1 io -
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In this case we can calculate all partials of order less than k and pj1 k42;12...k,

Pl+1,k+4;12...ky Pk+2,k+3;12...k» Pk+3,k+4;12...k-
Using Lemma 4.6 we choose pg41,k+3;12...1 belonging to the intersection

It g3tk = T2 kg3t bt N Tpg3 k451, k41

of two intervals such that pg42,k+3:12...k+1 and pry3 k+4:12.. k+1 are in (—1,1) if
this intersection is non-empty. We next can find possible solutions for pyy3 +4;12
such that pris gta.12. k+2 is in (—1,1). Recalculating correlations using for-
mula (4.10) we can fill empty cells in the circuit. In this case the matrix can
be completed if all correlations which can be calculated are in (—1,1) and if
Ity 1,643;1...1 is not empty.

Remark 4.4 Let us notice that the procedure of finding correlation pyi1 g+3;12..k
which belong to the interval Iy 1 k43;1..1 allows us to choose a chord in this cir-
cuit. In this way, this case can be reduced to the previous cases where chordal
graphs were considered.

Case 5

In this case we show the general solution of the completion problem for the
circuit of length n (n > 4). The following matrix corresponds to the circuit of
length n

(1 pp, O O ... O Pin W
1 P23 O .. O O
A = 1 Pn—3,n—2 o o
1 Pn—2,n—1 a
1 Pn—1,n
_ i J
We have to choose correlations p13, p14,-..,p1n—1 such that by Lemma 4.6 and

Lemma 4.7 the following system is satisfied

P13 € Iy
(p13,p14) €  A(pzs)
(p14, p15) €  A(pss)

(4.13)

(p1,n—2,p1,n—1) € AlPn—2,n-1)
P1,n—1 S Infl,n;l
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If we can solve (4.13) then this matrix can be completed. We complete our
matrix with the algorithm presented below:

p3s;12 € (—1,1)
p3s12 € (—1,1)

pnfl,n;12 S (_1)1)
pasii23 € (—1,1)

Pr—1n5123 € (—1,1)

Pn—1,n;12...n—2 € (_1) ]-)

Case 6

¢t ¢

t ¢

p24:1 € Isg12 = pas can be recalculated with (?7)

p25;1 € I35,12 = pas can be recalculated

P2n;1 € In—1n;12 = pa2n can be recalculated

p3s:12 € 5,123 = p3s;1 and next pss can be recalculated
P3n;12 € In_1.n;123 = p3n;1 and next p3, can be recalculated

Pn—2n;12..n—3 € Infl,n;12...n72 = Pn—2,n;12...n—4

and next pp—s n;12..n—4, - - -, Pn—2,n €an be recalculated

In this case we consider wheel on n (n > 4) elements (a wheel on n elements
is a graph composed of a circuit C' on n — 1 nodes together with an additional
node adjacent to all nodes of C).

The following matrix corresponds to the wheel of length n

(1 pio
1

P13

P23
1

P14 P15 Pin 1
O O O P2n
p3s O a a
1 pp-3n-—2 g |
1 Pn—2,n—1 o

1 Pn—1,n

]

This case can be reduced to the Case 5 by applying Theorem 4.4. If correlations
Prkt+11 for k=2,3,...,n — 1 and pap;1 are in (-1,1) then the following matrix
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needs to be completed

1 p23;1 O O .. O an;l
1 P34;1 a N a a
1 Pn—2,n—1;1 o
1 Pn—1,n;1
1

Remark 4.5 Note that it is shown in [39] that the wheel onn (n > 4) elements
is not cycle completable.

Example 4

Figure 4.4 A wheel on 6 elements.

The following matrix correspond to the wheel on 6 elements

1 pi2 pi3s pua p1s pis 1 0.8 0.1 -03 05 -04
1 p3 O 0O pog 1 0 O o -0.1

1 ps 0O O _ 1 -06 O O

1 p3q O o 1 —-07 O

1 pas 1 0.2

1 1

We can calculate

[p23i1s P26ils P3ast, Pasits pssi] = [—0.1340, 0.4001, —0.6005, —0.6658, 0.5040).
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We must choose correlations ps4;; and pos;; such that the system similar to
(4.13) is satisfied. Since p24.1 € I34,12 = (—0.7119,0.8729) and pas,1 € Is6,12 =
(—0.5899,0.9932) then we can choose pag;; = p2s;; = 0. Hence psg12 =
—0.6060,p45;12 = —0.6658 and P56;12 = 0.5499. Now we can find P35;12 S
145;123 = (—01900,09970) Let us choose P35;12 = 0 then P45;123 = —0.8370
and pse;12 € Isei2s = (—0.8352,0.8352). Hence we can also take pse12 = 0
then P56;123 = 0.5499. Flnally we get P46;123 S 156;1234 = (—09173, —00032)
We take for instance py6;123 = —0.5 and now we can recalculate all correlations
using algorithm 4.10.

p241 =0 = pog = praprs = —0.24
p25:1 =0 = pos = prap1s =04
p3si2 =0 = p35.1 = pag;1p251 =0
=  p3s = p13p1s = 0.05
p36;12 =0 = p3g.1 = p23;1p26;1 = —0.0536
= P36 = P36;1 \/(1 — pi3)(1 = pls) + pr3pie = —0.0889
proazs = —0.5 = pigie = —0.3977 = paga = —0.3645 = pag = —0.1987.

We obtain that the matrix

1 08 01 -03 0.5 -04
1 0 -024 04 -0.1
1 -06 005 -0.0889
1 —-0.7 —0.1987
1 0.2
1

is positive definite.
General solution strategy
The following matrix is given (assumed to be symmetric)

1 P12 P13 ... Pin—1  Pin
P21 1 P23 .- Pa—1  P2n
P31 P32 1 cev P3n—1  P3n

Pn-1,1 Pn—1,2 Pn—-1,3 - 1 Prn—1n
pnl pn2 an e pn,nfl ]-
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Some of the entries p;; are not specified. First we must order the rows and
columns such that we obtain maximal bottom right triangle in this matrix com-
pletely unspecified. The advantage of this procedure is to reduce our completion
problem to those considered in Cases 1,2,3. Note that it is not always possi-
ble ( see Case 5, 6 ). Next we calculate all partial correlations which can be
computed. Let p1j, j € C1 where C7 = {j € {2,3,...,n}|p1; unspecified }. To
find these unspecified correlations we must solve a system such that all corre-
lations of the first order py;;1 where k # j, k € {2,3,...,n} and py; specified,
are in the interval (-1,1). If it is possible we choose solutions of this system
with correlation’s values zero if not we calculate them using Lemma 4.6 or/ and
Lemma 4.7. If this system has solutions then we can fill all empty cells in the
first row and the values of pyj,; are known. Next we repeat the same operation
for the unspecified elements in the second row psj,j € C>. We must solve a
system such that all correlations of the second order pj;12 where k # j and
k€ {3,...,n} such that py; is specified, are in the interval (-1,1). If this system
has solutions we obtain the following partial correlations of the first order paj;1.
Recalculating correlations using algorithm (4.10) we fill all empty cells in the
second row and the values of py;;12 will be known etc.

4.6 Conclusions

We have explained the use of partial correlation specifications on a canonical
vine in various problems regarding positive definiteness of the proto correlation
matrices. When applicable, these algorithms possess a clear probablistic inter-
pretations. We note, however, that they cannot apply to problems involving
positive semidefiniteness. Indeed, the denominators in (4.4) must be non-zero
and this implies that all partial correlations must be greater then -1 and less
then 1. The speed of these algorithms appears to be comparable to that of
previous algorithms.
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Chapter 5

Conditional and partial
correlations for graphical
uncertainty models

Dorota Kurowicka, Roger Cooke

Abstract: We study the relationship between partial correlation and con-
stant conditional correlation with particular attention to copulae used in high
dimensional graphical models. Sufficient and, in some cases, necessary con-
ditions for equality are obtained. Numerical results show that the difference
between partial and conditional correlation is small for the minimum informa-
tion copula with given product moment correlation. When approximate equality
holds, regular vines enable us to specify a correlation structure without alge-
braic constraints (e.g. positive definiteness) and to translate this structure into
an on-the-fly sampling algorithm.

Keywords: Partial correlation, conditional correlation, conditional inde-
pendence, Markov tree, copula, entropy, information, reliability model.
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5.1 Introduction

Mathematical models such as reliability diagrams, fault trees, accelerated life
testing models, etc, rely on parameters whose values cannot always be perfectly
measured. Nowadays, even elementary texts in risk and reliability prescribe
uncertainty analysis for such models and present elementary methods (see eg
Andrews and Moss [1]). Elementary methods inevitably assume that the un-
certainties over different parameters are independent. This is often unrealistic.
Methods for uncertainty analysis with dependence are currently an active re-
search topic. This article develops tools for representing dependence in high
dimensional distributions, such as those arising in uncertainty analysis of large
fault trees.

The Markov tree method for specifying dependence in high dimensional dis-
tributions permits on the fly sampling and has attractive theoretical features
(see Section 5.3). However, it is limited by the fact that only a ‘treefull’ of
constraints can be specified. Another popular approach ( Iman and Conover
[21] ) abandons on the fly sampling. A large sample matrix is held in memory
and transformed to realize a given (rank) correlation matrix. For large prob-
lems, many cells of the correlation matrix will typically be unspecified, and this
approach encounters the so called matrix completion problem ( Laurent [38] ):
can a partially specified matrix be extended to a positive (semi) definite matrix?
If an extension is possible, which extensions should be used? Furthermore, for
large problems, holding a sample matrix in memory imposes unwelcome trade-
offs between speed and accuracy. Vines promise to combine the advantages of
both approaches while avoiding the matrix completion problem. The key el-
ement is this: when conditional rank correlation is held constant, the partial
correlation and mean conditional product moment correlation are approximately
equal.

We first discuss partial and conditional correlation, and the graphical models
in which these are used. We then study conditions under which these two
correlations are identical. After introducing the Fréchet, the diagonal band and
the minimum information copulae, we present numerical results.

5.2 Partial and conditional correlations

For variables X; and X» with zero mean and standard deviations o; and o5, let
b12 be the number which minimizes

E(X; — b2 Xo)?.
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The product moment or Pearson correlation p(X;, Xs) between X; and X» is
defined as

1
p(X1,X2) = sgn(bi2)(b12b21)2.
It is easy to show that p(Xi,Xs) = %.
zero mean and standard deviations o;,i = 1,...,n.
Let the numbers b12;3,...,n7 ey bln;3,...,n—1 minimize
E(X1 — bz, nXo— .. —bins. n—1Xn)?;

then the partial correlations are defined as (Yule and Kendall [54]):

Consider variables X; with

1
p12:3,...n = sgi(bizs,..n) (b12:3,. . nb21:3,..n)2, etc.

Partial correlations can be computed from correlations with the following re-
cursive formula:

Pros..m = p12;3,...,n—21 — Pin;3,...,n—1 '52n;3,...,n—1. (5_1)
\/1 - pln;?),...,nfl\/]' - p2n;3,...,n71
The conditional correlation of Z and Y given X;
Pyzix = p(Y1X, Z|X)

is the product moment correlation computed with the conditional distribution
given X. In general this depends on the value of X, but it may be constant.
Letting F'x, Fy denote the cumulative distribution functions of X and Y’; the
rank correlation between X and Y is:

r(X,Y) = p(Fx(X), Fy(Y)).

For the joint normal distribution, partial and conditional correlations coincide.
We define the mean absolute difference between partial and conditional cor-
relation or conditional rank correlation as

AYZIX) = Elpyzx — pyzixl),
A (YZ|X)

E(lpyzix —ryzix|)-

If Y and Z are independent conditional on X, then of course ry z|x = pyzjx =0
and we write

A(Y Z|X) = A.

We shall see in Section 5.4 that A may be quite large, though a sharp upper
bound is not known at present.
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5.3 Trees, Vines and Copulae

Trees and vines are graphical modelling tools for specifying dependence struc-
tures in high dimensional distributions. We restrict attention to variables with
a uniform distribution on [0, 1] and present the main concepts informally. A tree
on N variables specifies at most N — 1 edges between the variables. Each edge
may be associated with a copula, that is a distribution on [0, 1]? with uniform
marginals. Popular copulae in this context are the diagonal band (Cooke and
Waij [7]) and the minimum information copulae (Meeuwissen and Bedford [42]);
these copulae are continuous and can realize any correlation value in [—1, 1] (for
the other copulae see Dall’Aglio, Kotz and Salinetti [14] and Nelsen [46]). Given
any tree on N variables with copulae on the edges, a joint distribution can al-
ways be constructed satisfying the tree-copulae specification. Moreover, it can
be shown (Cooke [6]) that there is a unique minimum information joint distri-
bution satisfying the tree-copulae specification and under this distribution the
tree becomes a Markov tree. Distributions specified in this way can be sampled
on the fly. The tree-copulae method of specifying a joint distribution is limited
by the fact that there can be at most N — 1 edges on the tree.

A vine on N variables is a nested set of trees, where the edges of tree j
are the nodes of tree 7+ 1; 7 = 1,..., N — 2, and each tree has the maximum
number of edges. A regular vine on N variables is a vine in which two edges in
tree j are joined by an edge in tree j + 1 only if these edges share a common
node, j = 1,...,N —2. Thereare (N - 1)+ (N -2)+...+1 = w
edges in a regular vine on N variables. Each edge in a regular vine may be
associated with a constant conditional rank' correlation (for j = 1 the conditions
are vacuous) and, using the diagonal band or minimum information copulae, a
unique joint distribution satisfying the vine-copulae specification with minimum
information can be constructed and sampled on the fly (Cooke [6]). Moreover,
the (constant conditional) rank correlations may be chosen arbitrarily in the
interval [—1,1]. Figure 4.1 shows a regular vine on 5 variables. The four nested
trees are distinguished by the line style of the edges; tree 1 has solid lines,
tree 2 has dashed lines, etc.The conditional rank correlations associated with
each edge are determined as follows: the variables reachable from a given edge
are called the constraint set of that edge. When two edges are joined by an
edge of the next tree, the intersection of the respective constraint sets are the
conditioning variables, and the symmetric difference of the constraint sets are
the conditioned variables. The regularity condition insures that the symmetric
difference of the constraint sets always contains two variables. Note that each
pair of variables occurs once as conditioned variables.
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Figure 5.1. A regular vine on 5 variables

The edges of a regular vine may also be associated with partial correlations, with
values chosen arbitrarily in the interval (—1,1). Using the recursive formulae
(5.1) it can be shown that each such partial correlation regular vine uniquely
determines the correlation matrix, and every full rank correlation matrix can
be obtained in this way (Bedford and Cooke [3]). In other words, a regular
vine provides a bijective mapping from (—1, l)N(Nfl)/2 into the set of posi-
tive definite matrices with 1’s on the diagonal. One verifies that p;; can be
computed from the sub-vine generated by the constraint set of the edge whose
conditioned set is {i,j} using recursive the formulae (5.1).We can determine
numerically the mean conditional product moment correlation for a given con-
stant conditional rank correlation. If this mean product moment correlation
were (approximately) equal to the partial correlations, then the recursive for-
mulae (5.1) could be applied to (approximately) compute the entire correlation
matrix of the joint distribution constructed from the regular vine-copula specifi-
cation. Alternatively, an arbitrary correlation matrix could be used to compute
the partial correlations on a regular vine, and these in turn used to determine

I Conditional rank correlations are implemented in the sampling algorithms; however, as
we know the conditional copula distributions and the relation between rank and mean product
moment correlations for these distributions, we could just as well associate mean conditional
product moment correlations.
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the constant conditional rank correlations, and to (approximately) sample the
distribution on the fly. The degree to which partial correlations and mean con-
ditional product moment correlations agree is a property of the copulae used,
and the correlation values themselves.

5.4 Conditions for A =0

The following example shows that A may be large.

Proposition 5.1 If

(a) X is distributed uniformly on an interval [0,1],

(b) Y, Z are independent given X,

(¢c) Y|X and Z|X are distributed uniformly on [0, X*],k > 0,
then

3k%(k —1)?
A = 2
4(k* +4k2 + 3k + 1)’ (5.2)

as k — oo this converge to %.

Proof. We get
E(Y) = E(Z) = E(E(Y|X)) = B(X") = k.
E(Y?) = E(Z%) = B(B*(Y|X)) = BE(X) =
Var(Y) = Var(Z) = 3(2kl+1) - (2(k1+1))2,
E(XY) = E(XZ) = E(B(XY|X)) = E(X(E(Y|X)) = B(X3™) = 55k,
Cov(X,Y) = Cov(X,Z) = E(XY) — E(X)E(Y) = L
)

1
3(2k+1)

1

1
2(k+2) ~ 22(k+1)°

E(YZ) = B(E(Y Z|X)) = E(E(Y|X)E(Z]X)) = E(X) = 15t
Cov(Y,2) = E(YZ) = EOV)(E(Z) = 1ty — 10
From the above calculations we obtain
_ Cov(Y,Z) 3k2
= e, AR+ 2k+1
and
Cov?(X,Y) 9k2(2k + 1)
PXYPXZ = NgrXVarY (b + 1)2(4k2 + 2k + 1)
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so that

_ 3k2(k —1)? 3

A= PYZZPXYPXZ — . ( ) ——ask—>o0. O
\/l_pQXY\/l_pQXZ Ak + 287 + k4 1) !
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Y|X and Z|X A

[0, X] 0.0000
0, X2 0.0769
0, X° 0.2126
0, X2 0.3243
0, X° 0.4049
0, X19] 0.5824
0, X109] 0.7348
0, X 1000000] 0.7500

Table 5.1: Numerical results for Proposition 5.1.

Table 6.1 shows some numerical results. We note that unconditional distribu-
tions of Y and Z are not uniform.

Theorem 5.1 Let
(a) X,Y,Z have mean 0,
(b) Y and Z be independent given X,
(c) EY|X)=AX, E(Z|X) = BX,
then
A=0. (5.3)
Proof. Since A = 0 is equivalent to

Cov(Y, Z) Cov(Y, X) Cov(Z, X)

Oyoz OyoXx 070X

it suffices to show that

o%Cov(Y,Z) = Cov(Y,X)Cov(Z,X) (5.4)
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We get

E(ZY) = E(E(Y Z|X)) = E(E(Y|X)(E(Z|X)) = ABo%,
E(XY)=E(XE(Y|X)) = Ac%k,
E(XZ) = Bo%.

Hence A =0 holds. O
Theorem 5.2 Suppose A =0 and
(a) X,Y,Z have mean 0,
(b) Y and Z are independent given X,
(c) E(Y]X) = bE(Z]X),
then
E(Y]X) = AX.
Proof. If A =0 then (5.4) is satisfied as well. From (b) and (c) we get
RE(EVIXP) = [B(XEYX)P.
Applying Cauchy-Schwarz inequality in the case of equality we obtain

E(Y|X) = AX. D

5.5 Copulae

Definition 5.1 A copula C is a distribution on the unit square with uniform
marginals.

Definition 5.2 Random variables X and Y are joined by copula C if and only
if their joint distribution can be written

Fxy(z,y) = C(Fy' (), Fy " (2)

~—

In the following we transform the unit square to [—%, %]2 to simplify the calcu-
lations.
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The simplest copulae are the Fréchet copula, where all mass is spread uni-
formly on the main diagonal. We get

M(s,t) = min(s,t),
1 1
W(s,t) = t—=,—2).
() = max(s4t- g 1)
1 142
-1z 1iz 12 1:2

Figure 5.2. Tllustration of the diagonals where mass of M (left) and W (right)
is concentrated.

Let ®(A) denote the class of mixtures of the Fréchet copulae with parameter

A € [0,1] on the unit square [—3,1]?, then whole mass is concentrated on the

diagonal and antidiagonal which depends on parameter A. We get
Ca(s,t) = AM(s,t)+ (1 — AW (s,t).

It is easy to see that this mixture of the Fréchet copulas has linear regression.

For the variables X, Y, Z joined by the mixtures of the Fréchet copulas the
assumptions of Theorem 5.2 are fulfilled so in this case A = 0.

The diagonal band copula with the density on the unit square [—%, %]2 is
given below. For the positive correlation the mass is concentrated on the diag-
onal band with vertical bandwidth 8 = 1 — a. Mass is distributed uniformly on
the inscribed rectangle and is uniform but is ”twice as thick” in the triangular
corners. We can easily verify that the mass on the rectangle is equal to % and
on the triangles % . For negative correlation the band is drawn between the
other corners.
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Figure 5.3. The diagonal band distribution with correlation 0.8.

The regression for the diagonal band distribution are given by the following
formulae:

0<a<05
sy X7+ X + (@ 0.5)7, -05 <X<-05+a
E(Y|X,a)=¢ 12X, —-05+a <X< 05-a
—ﬁ[Xz—X—k(a—O.S)z], 05—a <X< 0.5
05<a<l1
ey X7 + X + (@ = 0.5)7], -05 <X< 05—«
E(Y|X,a)=<X, 05—a <X< —05+a
s XX +(@-05)%, -05+a <X< 0.5

For negative a we can find the regression as follows
EY|X =z,0) =EY|X = —z,—0a).

The correlation coefficient can be calculated from the formula (Cooke and Waij

[71)
p=sgn(a)((1—lal)* —2(1 = |a))* +1).

The minimum information copula is the distribution with the joint density
function g(z,y) with minimal relative information with respect to the uniform
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density given uniform marginals and a given correlation. The density g(z,y)
has functional form (Meeuwissen and Bedford [42])

g(z,y) = K(z)r(y)e’

for (z,y) in unit square [—3, 1]%. Function £(z) is even around z = 0.

Figure 5.4. The minimum information distribution with correlation 0.8.

ro=0.8 number of points=50
05 T T T

-0.5
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 02 03 0.4 05

Figure 5.5. The conditional expectation for minimum information distribution
with correlation 0.8.
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5.6 Computing A

Let us consider variables X, Y uniform on [—%, %] We may write
EY|X) = kX +eX).
We want to find the coefficient k which minimizes the square error given by
E((EY|X) - kX)?).
Setting the derivative with respect to k equal to 0:
d

%E((E(Y|X)—kX)2) =0
implies

E(X(EY|X)-kX)) = 0,
which is equivalente to

E(XE(Y|X)) = E(kX?).

Hence
Cov(X,Y) = ko¥k
and finally since ox = oy

_ Cov(X,Y) Cov(X,Y)

k 2
Ox ox0y

Thus, the best approximation of the regression is the line with coefficient equal
to p.

The mean square difference with linear regression is equal to the variance of
the conditional expectation minus a correction term p*c%.

Proposition 5.2
E((E(Y|X) - pX)?) = Var(E(Y]X)) - p*0%.
Proof.
E((E(Y|X)-pX)?) = E(EXY|X)?) -2pCov(X,Y) + p’ck
E (E(Y|X)?) - p’o%
Var(E(Y'|X)) — p?0%. O
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Remark 5.1

_ Var(E(Y]X))
oy

CR is called correlation ratio.

Theorem 5.3 Let us consider variables X,Y,Z uniform on [, 1] and such

272
that'Y and Z are independent given X then

E(ey (X)ez (X))

A= PYZZPXYPXZ Ty
\/1_p%(Y\/1_p2XZ \/17"%()’\/179‘2)(2’
where
EyCY) = EKYMK)—pxyX—
Ez(X) = E(Z|X)—pzyX

Proof. We get
E(YZ) = E(E(Y Z|X)) = E(E(Y|X)E(Z|X)) =
pxvpxz0% + pxvE (Xez(X)) + px 2B (Xey (X)) + E (ey (X)ez (X)) .

Since
E(Xez(X)) = E(Xey(X))
E(XE(Y|X) - pxy X?)
XY
= Cov(X,Y) — pxyok = Cov(X,Y) — MU% =0
OxX0y
then we get

E(YZ) = pxvpxz0x + E(ey (X)ez(X)).
We can easily calculate that

E(XY) = pxyox and E(XZ) = pxz0%.
Hence we get

E(YZ) E(XY)E(XZ)
loyz — pxypxz| = -

OoyOyz (fyaz(fg(
1
= |E(ey (X)ez(X))]
OyOoz

which concludes the proof. O
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Remark 5.2 In the case when E(Y|X) = E(Z|X) we get

Ao lpvz=p’l _ VelEY|X))  p* _ CR-p?
1= ox(1=pY)  1-p* 1-p?

<1. (5.5)

Next we examine the difference between conditional and partial correlation when
we assume that conditional correlation is constant.

Theorem 5.4 Let
(a) X,Y,Z be uniform on [—1,1],
(b) E(Y|X) = E(Z|X) = AX,
(c) Oy|X = 0z|X,
(d) Pyzix =T,
then
pPYyz;x =T
Proof. It is easy to see that

pxz = pxy = A.
Since

Cov(Y|X, Z|X) E(YZ|X) — A2X?

Oy |X0z|X B Var(Y|X)

r=pyzx =

then
E(YZ|X) = rVar(Y|X)+ A*X?.
From the above we get

E(E(YZ|X)) _ E(@Var(Y|X)+ A2X?)
0% - 0%

pPYyz =

Since
E(Var(Y|X)) = Var(Y) — Var(E(Y|X)) = o% — A%0% = 0% (1 — 4?)
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then

ro% (1 — A%) + A%0%
0%

pyz = =7r(1 - A2%) + A%

Finally we can calculate the partial correlation Y, Z given X

P PYZ — PXYPXZ _ r(l — A%) + A% — A2 _,
’ V1-riyV1-rky 1- 42 .

Theorem 5.5 Let

O

(a) X,Y,Z be uniform on [~1,1],

(b) Y, X and Z, X be joined by the mizture of the Fréchet copulae with param-
eters By, By respectively,

(c) Pyzix =T,

then
pYyz;x =T
Proof. We get
E(Y|X) = X(24y -1),
B(ZIX) = X(24z-1),
E((Y]X)?) = X’(1-Ay)+X?4Ay = X2,

Let 2By —1 = Ay and 2Bz — 1 = Az then
Var(Y|X) = X?-X?43 =X?(1- A4}).
From the above we obtain

Uy|X:X ].—A%/ andUZ‘X =X ].—AZZ

We also get
Cov(X,Y) E(zE(Y|X)) Ayag(
pXY = = = > = AY
oyox OyoXx Ox
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Analogously we obtain
pxz =Az.
From the above calculations and by (c)

Oy |x0z|x XZ\/]_ —A%,\/]_ — AQZ .

Hence we calculate that

E(YZIX) = r/1-A3\/1-ALX? + Ay A, X

X2(rf1 - A2\/1 - 4% + Ay Ay)

and find
E(E(Y Z|X))
pYyz = ——_————
OoyOyz
. E(XZ(T‘\/].—A%/\/].—A%-l-AyAz))
= 0%(
. U%(T\/I—A%/\/I—A%-l-/ly/lz)
- 2
0%

= rf1-43\/1- 43 + Ay A,

Hence the partial correlation Y, Z given X is as follows

Py gix = PYZ — PXYPXZ :T\/l_A%/\/l_AQZ‘f‘AYAZ_AYAZ:
T VL= V= 0%s V1-A3/1- 45

which concludes the proof. O

5.7 Numerical results

We calculate A for several values of p = pxy = pxz using (5.5). The results
are prepared in Matlab 5.3 and presented in Table 5.2. A discrete version of the
minimum information distribution was obtained in Matlab 5.3 as a solution of
the optimization problem. Table 5.2 contains the results for discrete minimum
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information distribution where the unit interval was divided uniformly into 50
equal segments. If we take a better approximation of this distribution we find
that A becomes smaller.

The above results show that in the case of conditional independence for
diagonal band and minimum information distributions the correlation between
conditionally independent variables is almost equal to the product of correlation
between them and the variable on which we conditionalize. In all cases A is
lower for the minimum information copula.

p A
MINIMUM
DIAGONAL BAND | INFORMATION
0.1 7.08594¢-6 2.0455¢-6
0.2 1.54056e-4 1.0002e-5
0.3 8.64019e-4 4.0192e-5
0.4 2.82514e-3 1.6511e-4
0.5 6.84896¢-3 6.1690e-4
0.6 1.34098e-2 2.0390e-3
0.7 2.16325e-2 5.8727¢-3
0.8 2.92942e-2 1.3867e-2
0.9 3.27922e-2 2.2426e-2

Table 5.2: The comparison of A for diagonal band and minimum information
distributions for p = pxy = pxz-

Suppose in Table 5.3 we fix pxy, pxz and the conditional rank correlation and
sample using the minimum information copula. Table 5.3 compares partial
correlation, and the mean conditional product moment correlation for some
illustrative cases. We see that the difference between them can be in order
of 4%, and thus is larger than in Table 5.2 where Y and Z are conditionally
independent given X.
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Stipulated Computed

pxy | pxz | Tvzix | pyz pyz.x | Epyvzix A, A

0.1 0.7 0.0 0.0702 | 0.0002 | -1.347e-14 | 2.5e-4 | 2.5e-4
0.9 0.9 0.9 0.9795 | 0.8921 0.9004 0.0079 | 0.0083
-0.9 0.9 -0.9 -0.9739 | -0.8626 -0.8469 0.0374 | 0.0157
-0.9 0.9 0.9 -0.6631 | 0.7729 0.8098 0.1271 | 0.0369
-0.5 0.4 0.7 0.3267 | 0.6635 0.6525 0.0365 | 0.0110
0.3 0.9 -0.2 0.1906 | -0.1909 -0.1896 0.0091 | 0.0013
-0.1 | -0.3 -0.8 -0.7173 | -0.7873 -0.7719 0.0127 | 0.0154
0.8 0.8 0.8 0.9143 | 0.7619 0.7540 0.0381 | 0.0079

Table 5.3: The results of the simulations for minimum information distribution.

In Table 5.2 the conditional rank correlation and the conditional product mo-
ment correlation are equal and equal to zero. In Table 5.3 the conditional rank
correlation is constant, and not equal to the (non constant) conditional prod-
uct moment correlation. We believe that improved numerical routines will give
better approximations as the stipulated correlations become more extreme.

5.8 Conclusions

We have seen that mean conditional product moment correlation under constant
conditional rank correlation with the minimum information copula provides a
good approximation to the partial correlation, particularly if the stipulated
correlation values are less than 0.9 in absolute value. As explained in Section
5.3, this means that we can (approximately) specify a correlation structure
by giving the partial correlation values on a regular vine. The advantage of
this is that these values are algebraically independent; they need satisfy no
condition like positive definiteness, and the matrix completion problem does
not arise. Alternatively, we can start with an arbitrary correlation matrix,
and compute the partial correlations on a regular vine. Setting these equal
to mean conditional product moment correlations under constant conditional
rank correlations, we can retrieve the conditional rank correlations and thus,
combined with the minimum information copula, determine a sampling routine.
This sampling routine works on the fly: We draw one sample vector at a time,
we need not retain large numbers of sample vectors in memory.
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Chapter 6

Elliptical copulae

Dorota Kurowicka, Jolanta Misiewicz, Roger Cooke

Abstract: In this chapter we construct a copula, that is, a distribution with
uniform marginals. This copula is continuous and can realize any correlation
value in (—1,1). It has linear regression and has the properties that partial
correlation is equal to constant conditional correlation . This later property is
important in Monte Carlo simulations. The new copula can be used in graphical
models specifying dependence in high dimensional distributions such as Markov
trees and vines.

Keywords: correlation, conditional correlation, conditional independence,
partial correlations, tree dependence, copulae, vines

6.1 Introduction

In modelling high dimensional distributions the problems encountered include
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(a) Determining whether a partially specified matrix can be extended to a
correlation matrix;

(b) Finding a convenient way of representing correlation matrices;
(c) Choosing an unique joint distribution to realize a correlation matrix.

(a) is so called matrix completion which is receiving attention at the moment
(Laurent [38]). To tackle these problems the graphical models called vines were
introduced by (Cooke [6]). A vine is a set of trees such that the edges of the tree
T; are nodes of the tree T; 11 and all trees have the maximum number of edges. A
vine is regular if two edges of T} are joined by an edge of T} only if these edges
share a common node in T;. Partial correlations, defined in (Yule and Kendall
[54]), can be assigned to the edges of the regular vine such that conditioning and
conditioned sets of the vine and partial correlations are equal ( for the details we
refer readers to Bedford and Cooke [3]). There are (}) edges in the regular vine

and there is a bijection from (—1, 1)(3) to the set of full rank correlation matrices
([3]). Using regular vines with partial correlations we thus determine the entire
correlation matrix in convenient way (b). Using regular vines with conditional
correlations we can determine a convenient sampling routines (c). In general,
however, partial and conditional correlations are not equal. For popular copulas
such as the diagonal band (Cooke and Waij [7]) and the minimum information
copulae with given correlation (Meeuwissen and Bedford [42]), when conditional
rank correlation is held constant, the partial correlation and mean conditional
product moment correlation are approximately equal (Kurowicka and Cooke
[35]). This approximation, however, deteriorates as the correlations become
more extreme. For the well known Fréchet copulae the partial and constant
conditional correlations are equal but these copulae are not very useful from the
application point of view ([35]). In (Kurowicka and Cooke [36]) it is shown how
regular vines can be applied to the completion problem (a). For other copulae
and their properties we refer to (Dall’Agilo, Kotz and Salinetti [14]) and (Nelsen
[46]). In this article we present the new copula for which partial and constant
conditional correlations are equal. In constructing this new copula the properties
of elliptically contoured and rotationally invariant random vectors were used (see
Harding [5] and Misiewicz [43]). These copula present a striking companion
with copulae previously used in Monte Carlo simulation codes (Unicorn and
PREP/SPOP [23])

This chapter is organized as follows. In Section 6.2 the uniform distribution
on the sphere and its properties is presented. In Section 6.3 the copula is given.
The properties of this function are shown. In Section 6.4 after introducing
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definitions of the partial and conditional correlations the equality of partial
and constant conditional correlations for the new copula is proven. Section 6.5
contains conclusions.

6.2 Uniform distribution on the sphere and its
properties

Let X = (X, X2, X3) have the uniform distribution on the sphere with the
radius 7, Sa(r) C R® where sphere in R™ is defined as

S"Y(r) = {z € R"| Zw% =r?}.
k=1

We can see that for every ¢ € [—r, 7]

47r2

1

5 o

t 2
PXy<t)=P(Xa<t)=P(X3<t) = 2n / \/r2—a:2\/1+ [%\/T2—CE2:| dx
t

which means that each of the variables X, X» and X3 has a uniform distribution
on the interval [—r,7].
Consider now a linear operator A : R> — R? represented by the matrix

Since the random vector X is rotationally invariant, the random vector
W= (W, Wy, W3) = AXT

is elliptically contoured.

L A random vector X = (X1, Xo,...,Xy) is elliptically contoured if it is pseudo isotropic
with a function ¢ : R™ — [0, 00) defined by an inner product on R"; i.e there exists a symmetric
positive definite n X n matrix ¥ such that

c(€)? =< £,2¢ >,VE € R".

If ¥ = I then the vector X is called rotationally invariant.
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Harding proved (see [5]) that every elliptically contoured! random vector
on R™ n > 2 has the linear regression property if it has second moment. This
means in particular that for every j # k,j,k € {1,2,3} there exists a;; such
that

E(Wj|Wk) = ajka.
The numbers a;; can be calculated directly:
Wj = alel + a/]'2X2 + angg.

Since E(X;) = 0, E(X;Xy) = 0 for k # j and Var(Xy) = 5= [ 2%de = 3r?

thus Wy, Ws, W3 have expectations 0 and

1
3

1
Var(W]-) = F ((alel + Cl]'QXz + aj3X3)2) = 57'2 (Cl?l + Cl?g + (133) -

According to Harding’s result the conditional expectation E(W;|W}) coincides
with the orthogonal projection of vector W; onto Wj. Then we can calculate
for k #£ j

EW;Wi) = E((aji X1+ aj2Xs + aj3X3)(an X1 + areXo + ars Xs))
1
= §r2(aj1ak1 + ajpak2 + ajzags).
Finally we get

E(W;Wy) aj1ag1 + G202 + aj3ak3
E(W;|W = — L W, =" J / Wi. 6.1
(W;1Wi) Varly, " ai, +ai, +ai, e (6D

Notice now that random variables W7, Wa, W3 have uniform distributions, which
with appropriate choice of A will be uniform distributions on [—r,r]. We use a
very helpful property of rotationally invariant random vectors, namely:

if Y € R™ is rotationally invariant and a € R™ then the distribution of a1Y1 +
.o+ anYy is the same as the distribution of ||a||2Y1, where ||al|2 is the
Euclidean norm of the vector a.

Now we can write the following;:

PWr<t) = PlapknX1+ agaXs + apzXs < t)
t 1 t
= PlX; < =<+
( V ai1 + ai2 + ai3> 2 2ry ai1 + ai2 + a%3
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for t € [-r\/af, + a}, + ajy,7V/af, + af, +aj,).
It is enough to assume that for all k =1,2,3

a%l + a’%ﬁZ + a/i?) - 1 (6.2)

to have uniform distribution on [—r,7].

6.3 The elliptical copulae

Taking the projection of the uniform distribution on the sphere S 2(%) on a plane
(X,Y) we can construct copulae.

The area of surface given in functional form z = g(z,y) above area D C R?
can be calculated as:

//D \/1 + (%sﬂaz,y))2 + (diyg(m,y)>2dmdy. (6.3)

Using (6.3) for the sphere with radius , hence for function g(z,y) = 24/ — 2 — y2,

and dividing by the whole area of surface of §* (5), which is equal to 7, we obtain

S
// —— dxdy = 1.
2+y < T 1 mQ _ y

Hence function
fayy) = { = @y EB -
| )¢ B :

where B = {(z,y)|z® + y? < 1} is a density function in R
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Figure 5.1. The density function f.

We can easily check that the function f has uniform marginals.

™
=20 [t —a? —y? 1_ g2

To construct family of copulae which can represent all correlations p € (—1,1)
we consider linear transformation represented by a matrix

cose singp 0

A = sinp cosp O (6.5)
0 0 1
where
™ T
pE (_Za Z)-

This transformation satisfies condition (6.2).
Let (2',y,z") € S?(%). Applying transformation (6.5) we get points (z,y, z)
from ellipsoid

x = cos(p)z’ +sin(p)y’
= sin(p)a’ + cos(p)y’
z = 2z
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We now find the equation of this ellipsoid. Since

1

12 2 2
+ + = _
T y z 1

and
o coslp)z —sin(p)y
cos(2¢p)
/ —sin(p)z + cos(p)y
y =
cos(2¢)
2 = =z

then the ellipsoid is given by

22 4+ 9% — 2sin(2p)zy + (cos?(2p))2? =

This can be also written as
. 2
2 y —sin(2p)z > 1
7+ (7(:%(2()0) +z2° = 1
For all points from ellipse
—sin(2p)z\” 1
o, (yosnCoe)’ 1
cos(2¢p) 4
density function is given by following formula

folwy) = — L - (6.6)

WCOS(QQO) —2sin(2p)x
\/% —a? - (y coss(2(ap;p) )

The distribution with density function given by formula (6.6) has uniform
marginals so this is a copula. This copula depends on parameter . We will

write C',. For two variables joined by copula C, on [—%, %]2 the following holds:

Proposition 6.1 If X,Y are joined by the copula C,, then
pxy = sin(2p). (6.7)
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Proof. We get

E(XY) E(XE(Y|X))

PXY = = b}
ox0y O'X
By (6.1)
E(Y|X) = 2cos(p)sin(p)X
= sin(2p)X
hence
sin(2p)E(X? )
PXYy = sin@p) BXT) @)2 (X7 = sin(2yp)
Tx

which concludes the proof. O

We can see that the function f given by (6.4) and presented on the Figure
5.1 is a density function of the copula Cy. Correlation between variables X and
Y joined by the copula Cj is equal to 0.

It is more convenient to start with the assumption that elliptical copula
depends on correlation p € (—1,1). The parameter ¢ can be recovered as
follows

arcsin(p)
2

We will consider from now on the copula C' with given correlation p and write
C,.

The density function of the elliptical copulae with given correlation p €
(-1,1) is

1
1—p2 _
foag) = VAt

where

The figures below show graphs of density function of the copula C' with
correlation p = 0.8 and projection of this density on the plane.
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Copula C - r0=0.8
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Figure 5.2. A density function of the copula C' with correlation p = 0.8.

Copula C - r0=0.8
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Figure 5.3. Projecting of density function of the copula C with correlation
p = 0.8 on the plane.

For comparison we present below graphs of the density functions for diagonal
band and minimum information copulae with correlation 0.8.
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Figure 5.5. The minimum information distribution with correlation 0.8.
We show now some properties of the copula C,.
Theorem 6.1 If X,Y joined by the copula C, then
(a) E(Y]X)=pX,
(b) Var(Y|X)=1(1-p?) (5 - X?).

Proof. By (6.1) and (6.7) the copula C, has linear regression with coefficient
equal to correlation hence (a) holds. We verify condition (b)

pX /T2 /I-X2 L )
2. /T _x2 (v = pX) \/1 2 1 X24y2-2pX d
pX—\/T-pP\/T-X m/1—p \/z — Xy 2pXy

Var(YV|X) =
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1 1 1 1
Z(1=p? ——XZ/ t2 dt
1

2 1 2
= 5A=p)(; -X7)

which concludes the proof. O

6.4 Partial and conditional correlations

Let us consider variables X; with zero mean and standard deviations o;, i =
1,...,n. Let the numbers b12.3,... n,...,bin;3,...,n—1 Minimize

E ((Xl - b12;3,...,nX2 .. bln;S,...,nlen)z) ;

then the partial correlations are defined as (Yule and Kendall [54]):

N

p12:3,...n = sgi(bizs,..n) (b12:3,. nb21:3,..n)%, etc.

Partial correlations can be computed from correlations with the following re-
cursive formula:

P12;3,....,n—1 — P1n;3,...n—1 " P2n;3,...,n—1 ) (6.8)

2 2
\/1 - pln;3,...,n—1\/1 ~ Pan;3,...n—1

The conditional correlation of Z and Y given X

£12;3,...,n

Pyzix = p(Y1X,Z|X)

is the product moment correlation computed with the conditional distribution
given X. In general this depends on the value of X, but it may be constant.

We are interested in finding the relationship between partial pyz,x and
conditional correlations pzy|x if variables X and Y are joined by the copula
C and X, Z are joined by the copula C, .

PXY
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It is shown in (Kurowicka and Cooke [35]) that the linear regression property
leads to equality of partial and conditional correlations in the case of conditional
independence. We present now some numerical results prepared in Matlab 5.3.
We assume variables X and Y are joined by the copula C,,, and X, Z are
joined by the copula C),,, and Y and Z conditionally independent given X.

Stipulated Computed

PXY | PXZ Py z PY Z; X
0 0 -7.74e-19 | -7.74e-19
0.4 0.8 0.3199 -0.0002
0.2 | -0.9 | -0.1799 0.0002
-0.8 | 0.7 -0.5598 0.0005
0.9 | -0.9 | -0.8097 0.0017

Table 6.1: Numerical results for conditional independence.
Theorem 6.2 Let X,Y, Z be uniform on [—3, 1] and suppose
(a) X,Y are joined by C, .,
(b) X,Z are joined by C,,,

(c) Pyz|x =P
then
PYZ,X =P
Proof. By Theorem 6.1
EY[X) = pxvX,
E(Z|X) = psz.

The partial correlation py z,x can be calculated in the following way

Pzy — PXYPXZ
VA= pky) A= p% )
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We also get
E(YZ|X) - B(V|X)E(Z|X) _ E(YZIX) ~ pxypxzX’

pP=Przix =

Oy|X0z|X OYy|x0z|x
Hence
E(YZ|X) = poy|xozx +pxypxzX°.
Since
E(EYZ|X))
pzy = — 5
Ox
then

pE(UY\XUZ\X)

0% \/(1 —xy) (= pkz) .

PY Z; X

Since by Theorem 6.1

UYIX:\/%(l_Pg(Y)(i_X%: UZ|X:\/%(1—p%(Z)(i—X2)

then

pB (/0= ) (G = X250 = ) - 1)
o% V(1= pky)(1 = X z)
rih - )

X 12

PY Z,X

—
w|"‘

6.5 Conclusions

1. Elliptical copulae are continuous and can realize all correlation values

pe(—-1,1).

2. This copula has linear regression and for variables joined by this copula

we showed that partial and constant conditional correlations are equal.

3. Similar properties characterize normal and Fréchet distribution.

4. Combining elliptical copulae with graphical model called vines, presents
attractive way of representing high dimensional distribution and can be

used in direct sampling procedures.
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Samenvatting

Bij het analyseren van fysische systemen stellen we ons ten doel verband te
leggen tussen de input en de output van een model. We representeren een
model gewoonlijk als een vector functie

Y:[H7Y27"'7Ym]
met input vector
X =[X1, Xo,..., Xy

De waarden voor X geven ons, doorgegeven via het model, de bijbehorende
waarden voor Y. Gewoonlijk zijn modellen zeer complex en de dimensies van
de vectoren X en Y kunnen zeer groot zijn. Omdat we de waarden voor X vaak
niet precies kunnen vaststellen, moet de input vector X opgevat worden als een
random vector met een bepaalde verdeling. Voor een exacte analyse hebben we
de gezamenlijke verdeling van X nodig om zo verbanden en athankelijkheden
te leggen tussen de elementen van X. Voor complexe problemen is het erg
moeilijk deze gezamenlijke verdeling te vinden. De volgende benaderingen zijn
dan mogelijk:

1. We kunnen het model vereenvoudigen door aan te nemen dat de compo-
nenten van X onafhankelijk zijn. De gezamelijke verdeling van de input
vector is dan gelijk aan het produkt van de verdelingen van de componen-
ten van X.

2. We kunnen het model vereenvoudigen door de afbeelding die de input

vector afbeeldt op de output vector te vereenvoudigen (bijvoorbeeld door
te lineariseren).
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3. Grafische modellen kunnen worden gebruikt om hoog-dimensionale verdelin-
gen te representeren (bijvoorbeeld Markov bomen en generalisaties naar
influence diagrammen of nieuwe grafische modellen zoals vines).

Een bekend voorbeeld waarbij eerst onafhankelijkheid werd verondersteld en
waarbij later resultaten zijn gegeneraliseerd naar athankelijke gevallen is de ex-
treme waarden theorie. Daar heeft men laten zien dat wanneer de componenten
van X onafhankelijk en gelijk verdeeld zijn en de afbeelding het minimum (of
maximum) van deze variabelen is, dat er dan drie mogelijke verdelingsklassen
voor de output vector Y zijn als de dimensie van X groot is. Bovendien zijn
de aantrekkingsgebieden van de mogelijke verdelingsklassen bekend, d.w.z. dat
noodzakelijke en voldoende voorwaarden op de verdelingen van X zodat Y tot
één van de drie verdelingsklasse behoort, bekend zijn (Gnedenko [17], Haan
[9]). Deze klassieke extreme waarden theorie kan worden gegeneraliseerd door
afhankelijkheden toe te staan (stationariteit of Markov athankelijkheid) of door
componenten met verschillende verdelingen toe te staan (Lindgren, Leadbetter
and Rootzen [44]). Deze theorie is jarenlang intensief bestudeerd en toegepast
op verscheidene problemen (zoals het testen van matriaalsterkte en analyse van
golf- en vloeddata (Lindgren, Leadbetter and Rootzen [44], Castillo [4], Gumbel
[18])).

Het eerste gedeelte van dit proefschrift bevat een bijdrage aan de extreme
waarden theorie. De dubbel geindexeerde, onafhankelijke en gelijkverdeelde
variabelen

X117 X127 X227 X217 X137 X237 X337 X327 X317"'

worden geplaatst in een rechthoekige matrix [X;;]. De uitvoer variabele wordt
gedefinieerd als

Y = minmax Xj;
2 J
of
Y = maxmin Xj;.
i

Er worden tien mogelijke limiet survival functies (betrouwbaarheidsfunctie-
klassen genoemd) van Y bepaald onder lineaire normalisatie (Kolowrocki [29],[28]).
De mogelijke verdelingen hangen af van de vorm van de matrix [X;;], d.w.z.
van de relaties tussen het aantal elementen in de rijen en kolommen van deze
matrix. In dit proefschrift worden de aantrekkingsgebieden van deze limiet
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verdelingen bepaald (hoofstuk 2). In hoofstuk 3 wordt laten zien hoe de the-
orie over aantrekkingsgebieden kan worden gebruikt om mogelijke limiet func-
ties te vinden voor niet-homogene minmax modellen (waarbij X;; verschillende
verdelingen heeft).

Eenvoudige modellen kunnen worden geconstrueerd door middel van een lin-
eaire transformatie van onafhankelijke variabelen met gegeven marginale verdelin-
gen. Deze benadering is geintroduceerd door Steffensen [49].

Een gebruikelijke manier om een hoog-dimensionale verdeling te definiéren
is door iedere input variabele te transformeren naar een univariate normale
verdeling en vervolgens een multivariate normale verdeling te introduceren met
gegeven afhankelijkheden tussen de variabelen (Lauritzen [40], Muirhead [45]).

Grafische modellen lijken een handige manier om hoog-dimensionale verdelin-
gen te representeren. Ze kunnen een gegeven model visueel representeren en
helpen de afhankelijkheden te beschrijven. Een belangrijke eigenschap van
grafische modellen is dat ze complexe structuren op een modulaire wijze kunnen
beschrijven, door athankelijkheden van aangrenzende elementen te combineren.
De meest bekende methode is die van een boomstruktuur. Een boom met n
variabelen specificeert hoogstens n — 1 takken tussen de variabelen. Iedere tak
kan worden geassocieerd met een copula, een verdeling op [0, 1]*> met uniforme
marginale verdelingen. Populaire copulae zijn de diagonale band (Cooke and
Waij [7]) en de minimale informatie copulae (Meeuwissen and Bedford [42]).

In het laatste hoofdstuk van dit proefschrift, hoofdstuk 6, wordt de ellip-
tische copula geintroduceerd en worden haar eigenschappen bestudeerd. De
elliptische copula is continu en kan waarden aan nemen op het interval (—1,1).
Bij het construeren van deze copula worden eigenschappen van rotatie invari-
ate random vectors met elliptische vorm gebruikt (Harding [5], Misiewicz [43]).
Een dichtheidsfunctie van de elliptische copula met correlatie p € (—1,1) wordt
gegeven door:

7r\/11—p2 L — (z,y) € B
folzy) = \/izz( yl—p;)
0 (z,y) ¢ B
waarbij
T ’ 1
B = {(z,y)|2*+ (%) <3

De elliptische copula heeft de eigenschap van lineaire regressie.
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Gegeven een boom met n variabelen met copulae toegekend aan de takken,
kan er altijd een gezamenlijke verdeling worden geconstrueerd die voldoet aan
de specificatie volgens de boom-copulae. Bovendien kan men laten zien (Cooke
[6]) dat er een unieke minimum informatie gezamenlijke verdeling bestaat die
aan de boom-copulae specificatie voldoet en dat onder deze verdeling de boom
een Markov boom is geworden. Verdelingen die op deze manier zijn gespeci-
ficeerd kunnen ”on the fly” worden gesampled. Het specificeren van gezamenli-
jke verdelingen volgens de boom-copulae methode wordt beperkt door het feit
dat er hoogstens n — 1 takken aan de boom zijn.

Een generalisatie van Markov bomen zijn belief netwerken en influence dia-
grammen waarin acyclische grafen worden gebruikt als representatie van condi-
tionele onafhankelijkheids relaties. Deze structuren zijn gebruikt in Bayesiaanse
gevolgtrekking en beslissingsanalyse.

Een nieuwe klasse van Markov bomen werd geintroduceerd in (Cooke [6]);
Een vine met n variabelen is een verzameling bomen, waarvan de takken van de
boom j de knopen van de boom j + 1 zijn en waarbij elke boom het maximaal
aantal takken heeft. Een regelmatige vine met n variabelen is een vine waarin
twee takken in boom j alleen kunnen worden samengevoegd door een tak in
boom j + 1 als deze takken een knoop gemeen hebben. Het verschil tussen
Markov bomen en vines is dat de conditionele onafhankelijkheid van Markov
bomen wordt vervangen door conditionele athankelijkheid met een gegeven con-
ditionele correlatie coefficient.

A Y A

Figure 1. Een Markov boom (links) en een vine (rechts) met 3 elementen

In Figuur 1 worden voorbeelden gegeven van een Markov boom en een vine met
3 variabelen. In de Markov boom zijn de variabelen Y en Z conditioneel on-
afhankelijk gegeven X en in de vine zijn Y en Z niet conditioneel onafhankelijk.
In hoofdstuk 5 wordt laten zien dat partiéle correlatie tussen Y en Z met X
groot kan zijn zelfs als Y en Z conditioneel onafhankelijk zijn gegeven X.

Aan de takken van een regelmatige vine kunnen partiéle correlaties of con-
ditionele (rang) correlaties toegekend worden. Een regelmatige vine met n ele-
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menten heeft (%) takken en er is een bijectie van (-1, 1)(%) naar de verzameling

van volle rang correlatie matrices (Bedford and Cooke [3]). We kunnen dus een
volle rang correlatie matrix met (Z) getallen vinden die niet aan algebraische
beperkingen hoeven te voldoen (zoals positief definiet zijn).

Door gebruik te maken van regelmatige vines met conditionele rang corre-
laties kunnen we op een handige manier een hoog-dimensionale verdeling rep-
resenteren en kunnen we de correlatie matrix bepalen en uit deze verdeling ”on
the fly” samples trekken.

In hoofdstuk 5 van dit proefschrift wordt het verband tussen partiéle en con-
ditionele correlatie bestudeerd waarbij vooral aandacht besteed wordt aan copu-
lae die in hoog-dimensionale grafische modellen gebruikt worden. Voldoende, en
in sommige gevallen noodzakelijke voorwaarden voor gelijkheid tussen partiéle
en conditionele correlatie worden verkregen. Numerieke resultaten laten zien
dat het verschil tussen partiéle en conditionele correlatie klein is wanneer de
minimale informatie copula met een gegeven produkt moment correlatie wordt
gebruikt. Als de gelijkheid bij benadering geldt, kunnen we m.b.v. regu-
lar vines een correlatie struktuur zonder algebraische beperkingen construeren
(zoals positief definiet zijn).

In hoofdstuk 4 worden de technieken gebaseerd op de eigenschappen van
regelmatige vines gebruikt om een aantal problemen te verhelpen met betrekking
tot het positief definiet zijn van een matrix. Van een proto correlatie matrix,
gedefinieerd als een symmetrische, reéele matrix met elementen in (-1,1) en met
énen op de hoofddiagonaal, kunnen we bepalen of deze positief definiet is door de
partiéle correlaties toegekend aan de takken van een regelmatige vine te bereke-
nen. Als we een partiéle correlatie van een regelmatige vine vinden die niet in
(-1,1) zit, dan is de betreffende matrix niet positief definiet. De snelheid van
dit algoritme lijkt vergelijkbaar met bestaande algoritmen. Met dit algoritme
kan een niet positief definiete matrix worden getransformeerd naar een positief
definiete matrix door de waarden van de partiéle correlaties in een regelmatige
vine die niet in (-1,1) liggen te veranderen en de respectieve correlaties om
te zetten naar een initi€le proto correlatie matrix. Met dit nieuwe algoritme
hebben deze aanpassingen een duidelijke probabilistische interpretatie. In com-
plexe problemen zijn vaak veel elementen van de correlatie matrix niet gespeci-
ficeerd en de gedeeltelijk gespecificeerde matrix moet worden uitgebreid naar
een volle, positief definite matrix. Hiervoor moet het completeringsprobleem
worden opgelost (Laurent [38]).

In hoofdstuk 5 laten we zien hoe een regelmatige vine kan worden gebruikt
om te bepalen of een gedeeltelijk gespecificeerde matrix kan worden uitgebreid
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naar een correlatie matrix. Deze benadering kan nuttig zijn als een hoog-
dimensionale correlatie matrix gespecificeerd moet worden (zoals athankelijke
Monte Carlo simulaties).
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